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Abstract

The description of electrons in solids using Bloch’s theorem has allowed for a profound understand-
ing of the electronic band structure of regular crystalline materials. An example of its success is
the understanding of topological insulators and superconductors, and their invariants, via the
reciprocal space. Aperiodic systems on the other hand, which are systems that break transla-
tional symmetry but possess long-range order, cannot be studied using the same tools, rendering
their topological nature ambiguous. In this thesis, we review some physical and mathematical
properties of aperiodic systems, and discuss some experimental realisations. We introduce two
1D tight-binding models based on the Tribonacci substitution, the hopping and on-site Tribonacci
chains, which generalize the Fibonacci chain. For both hopping and on-site models, a perturbative
real-space renormalization procedure is developed. We show that the two models are equivalent
at the fixed point of the renormalization group flow, and that the renormalization procedure natu-
rally gives the Local Resonator Modes. Additionally, the Rauzy fractal, inherent to the Tribonacci
substitution, is shown to serve as the analog of conumbering for the Tribonacci chain. Our work
provides new insight into how the internal space of a cut-and-project quasicrystal is used to de-
scribe the eigenstates, and can in principle be applied to any cut-and-project quasicrystal. Finally,
we construct a Rice-Mele charge pump from the Tribonacci word, which exhibits multilevel topo-
logical pumping due to the multifractal nature of the Tribonacci chain’s energy spectrum. This is
a first step towards studying the topological properties of the Tribonacci chain.
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1. Introduction

The description of electrons in solids using Bloch’s theorem has allowed for a profound under-
standing of the electronic band structure of regular crystalline materials [1]. The discovery of
quasicrystals [2], aperiodic structures that break translational symmetry, has pushed the field for-
ward. The Penrose tilings [3] or the aperiodic mono-tile discovered recently by Smith et al. [4, 5]
are some of the typical examples that have fascinated physicists and mathematicians for years.
Quasi-crystalline lattices have been also experimentally realised using different quantum-simulator
platforms, such as ultracold atoms [6] or photonics [7].

The advent of topological insulators has reiterated the importance of periodicity in solids because
translation invariance is at the core of the topological classification of these materials [8–11]. It
remains an open question how the notion of topology translates to aperiodic structures such
as quasicrystals, where translation invariance is often replaced by scale invariance [12]. The
topological aspects of quasicrystals have been recently investigated [12–16], but methods are often
tailored to each model, and a general framework to study topology in these systems is lacking.

Arguably the most investigated quasicrystal is the Fibonacci chain [17], a one-dimensional model
based on the Su-Schrieffer-Heeger (SSH) model [18]. The latter is a tight-binding model in which
alternating weak and strong hopping parameters lead to a topological or trivial phase, depending
on whether the last bond in the chain corresponds to a weak or strong hopping, respectively. The
Fibonacci chain is a natural extension of the SSH model to the aperiodic domain [19], in which
the weak and strong hopping parameters are distributed according to a Fibonacci word. This
1D tight-binding chain hosts many interesting properties, such as a multifractal energy spectrum
and eigenstates [20–22]. In particular, a description of the system in terms of conumbers [23] has
revealed hidden symmetries in Hilbert space and allowed for a systematic prediction of the influence
of random disorder based on a renormalisation group (RG) scheme [19]. The interpretation of the
system in terms of local symmetries has also led to a more profound understanding of its physical
properties [24]. In addition, it was shown to be equivalent to the Harper model [25], from which
it inherits its topological properties, which can be viewed as the starting point of topology in
quasicrystals.

The motivation of the work in this thesis is to advance the knowledge of topology in quasicrystalline
matter. We go beyond the realm of dimerised models, such as the SSH and Fibonacci chain, and
introduce a quantum chain based on the Tribonacci substitution. More specifically, two tight-
binding chains, the hopping Tribonacci Chain (HTC) and the on-site Tribonacci Chain (OTC),
are defined analogously to the Fibonacci chain. These chains are closely linked to the Rauzy
fractal, a well-known compact domain with fractal boundary [26]. One immediate consequence for
the Tribonacci chain is that the method used by Kraus and Zilberberg [25] for studying topology is
no longer applicable. Despite this important difference, we show that the Tribonacci chain shares
many features with the Fibonacci chain. An RG scheme for the HTC and OTC is developed
along the lines proposed by Niu and Nori [19]. This allows for the same interpretation of the
spectrum as a multifractal set as for the Fibonacci chain [20]. The RG scheme is also used to
render the HTC and OTC equivalent at the RG fixed point. We show how the Rauzy fractal
orders the lattice points according to their local environment, in analogy with the conumbering
scheme. Furthermore, the RG procedure provides a natural way to enumerate all structures in the
Local Resonator Mode framework [24]. We also compute the multifractal dimensions of the energy
spectrum and eigenstates of the HTC, and compare them with the Fibonacci chain. These results
indicate that the Tribonacci chains are critical in terms of Anderson localization. Finally, we
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CHAPTER 1. INTRODUCTION

apply the Tribonacci modulation to a Thouless pump, and study the topological charge pumping
behaviour.

In Chapter 2 of this thesis, we begin by presenting the concept of a quasicrystal, providing its defi-
nition in both physics and mathematics. Moving on to Chapter 3, we delve into the mathematical
foundations of aperiodic structures, exploring topics such as substitution sequences, Cut-and-
Project Schemes (CPS), and (multi)fractals. Following this mathematical exploration, we briefly
discuss the relevance and some experimental realisations of aperiodic structures in Chapter 4. The
core of this thesis is Chapter 5, where we present the Tribonacci chain, and all related results. The
key outcomes of this chapter are summarised in a publication Ref. [27]. In Chapter 6, we introduce
topology in physics, serving as a bridge between the mathematical and physics approaches. We
conclude the thesis by giving our final remarks in Chapter 7, and motivating directions for further
research while offering potential starting points for pursuing those topics. Lastly, we present an
overview of all original work in Appendix C.

8 Multifractal Properties of Tribonacci Chains



2. Introduction to Quasicrystals

Figure 2.1.: Tenfold symmetric diffraction pattern with scaling symmetry (figure from Ref. [28]).

Classical crystals, obeying two-, three-, four- or sixfold rotational symmetry, are the cornerstone
of modern day solid state matter. Until 1982, the vast majority of the scientific community
believed that periodic crystals were the only kind of highly ordered solid state matter that could
be called crystals. In that year, Dan Shechtman [2] discovered a tenfold rotational symmetry in
the diffraction pattern of an AlMn sample. Not much later, the term quasicrystals was coined
for such materials with “non-crystallographic” symmetries. The scientific community despised
Shechtman’s work so much that he had only reached the level of assistant professor at the time
the Nobel Prize committee considered him a candidate in 2011. The fact that it took Shechtman
so many years to convince his peers, and that he was disregarded as a scientist until he received
his Nobel Prize in 2011, indicates that his findings did not fit in with the scientific paradigm of
the time.

2.1. Regular Crystals

Before the concept of a quasicrystal can be introduced, classical crystals need to be discussed first.
By a regular or classical crystal, we mean forms of matter where the atoms are positioned in a
periodic arrangement. This periodic arrangement is often called the lattice, which is a set of points
Γ ⊂ Rd, where d = 1, 2, 3 is the dimension of the lattice. The lattice Γ is generated by the linearly
independent primitive vectors ai, such that any two points x,y ∈ Γ are related by y = x + R

Multifractal Properties of Tribonacci Chains 9



CHAPTER 2. INTRODUCTION TO QUASICRYSTALS

where the lattice translation is given by R =
∑d
i=1 niai with ni ∈ Z. Such a lattice is also known

as a Bravais lattice.

There are three important reasons why classical crystals are widely studied in physics.

1. From an experimental perspective, the strictly periodic arrangement gives rise to discrete
diffraction spectra (see Section 2.2). This spectrum enables experimentalists to determine
the crystal structure from a scattering experiment.

2. The separation between planes acts as a “ruler” that allows one to measure distances as
small as a few ångstroms.

3. Since the arrangement is periodic under lattice translations R, the single-particle potential
U(r) is periodic, i.e. U(r + R) = U(r). This periodic property of the potential allows
for Bloch’s theorem to be derived, which is essential for studying electronic and transport
properties of classical crystals.

Although the points above are important, there is much more to classical crystals than is touched
upon here. One last essential element of the theory of classical crystals is the crystallographic
restriction theorem, which is the well-known result that classical crystals can only display two-,
three-, four- or sixfold rotational symmetry.

Theorem 2.1 (Crystallographic Restriction). A lattice Γ ⊂ Rd with d = 2, 3 can have n-fold
rotational symmetry at most for n ∈ {1, 2, 3, 4, 6} (Corollary 3.1 in Baake and Grimm [29])

Finally, we note that the lattice Γ encodes only the periodicity of a crystal. To fully describe
the atomic configuration of a crystal, the concept of a unit cell is required. The unit cell is the
smallest portion of the crystal that is repeated, which consists of at least one atom (not infinitely
many).

2.2. Diffraction

The diffraction spectrum plays a central role in the classification of (quasi)crystals and aperiodic
order in general. The diffraction spectrum originates from physics experiments where electrons (or
photons) hit a material with momentum kin and scatter elastically off the sample in a direction
kout. In principle, the scattered particles can fly off in any direction, and, in experiments, the
intensity in each direction is measured. For a difference q = kout − kin, the scattered intensity
is (up to a constant factor) measured as the structure factor S(q). If the material consists of
identical atoms at locations ri, the structure factor can be computed as

S(q) =
1

N

∑
j,k

eiq·(rj−rk). (2.1)

Note that S(q) is simply the modulus squared of the Fourier transform (FT) of the lattice {ri}i.
Even though the lattice and the diffraction spectrum are related via the FT, the inverse problem
of finding the lattice corresponding to a particular diffraction pattern is generally not well-posed
(no solution or not unique).

2.3. Quasicrystals and Aperiodicity

One of the most direct and earliest classifications of a quasicrystal departing from classical crystals
is by Levine and Steinhardt [30]:

“A quasicrystal is the natural extension of the notion of a crystal to structures with
quasiperiodic, rather than periodic, translational order.”

10 Multifractal Properties of Tribonacci Chains



CHAPTER 2. INTRODUCTION TO QUASICRYSTALS

As an example of a quasiperiodic function, Levine and Steinhardt take the function

f(x) = sinx+ sinπx, (2.2)

which clearly has no true period, since π is irrational. A quasicrystal of two unit cells A,B can be
constructed by inserting A if the sign of f(n) is positive and B if it is negative, labelling the cell
with integers n. Note that Eq. 2.2 can be obtained by taking the “cut” y = πx in the domain of
the function f(x, y) = sinx+ sin y. The cut y = πx in the x, y-plane is visualised as a blue plane
in Fig. 2.2, with the resulting quasiperiodic function that lies on the blue plane plotted on the
right. This is perhaps the simplest and crudest example of a CPS that can be used to generate a
quasicrystal lattice. The formal definition of a CPS is given in Section 3.2.

Figure 2.2.: The cut y = πx that gives the quasiperiodic function Eq. 2.2.

This method became popular when the Dutch mathematician De Bruijn [3] used CPS to obtain
2D Penrose tilings from a 5D hypercubic lattice. Another feature of CPS is that the diffraction
pattern of the resulting lattice is always discrete, provided that the original higher-dimensional
lattice has a discrete diffraction pattern [31]. This feature motivates the mathematical definition
of a crystal to be the result of a CPS [29]. If the result is a periodic lattice, one has a classical
crystal; otherwise, the result is a quasicrystal.

From a physics perspective, it seems tempting to define quasicrystals as crystals that have non-
crystallographic symmetries in the diffraction pattern, since a non-crystallographic symmetry is
the central property in Shechtman’s discovery from 1982. However, there exist non-periodic ma-
terials with allowed crystallographic symmetries and a discrete diffraction pattern. Therefore, the
International Crystallographic Union updated the definition of a crystal in 1991 as follows [28]:

“In the following by ‘crystal’ we mean any solid having an essentially discrete diffraction
diagram, and by ’aperiodic crystal’ we mean any crystal in which three-dimensional lattice

periodicity can be considered to be absent.”

Note that this definition does not define what a quasicrystal is and places the ability to diffract
central to the crystal property. An appropriate long-range order is a general property of ordered
solid-state matter, it would seem, since only short-range order would not be sufficient to create
a discrete diffraction spectrum. We will see later on that there are also systems with long-range
order that do not have a discrete diffraction pattern.

Multifractal Properties of Tribonacci Chains 11



3. Aperiodic Order

This chapter explores various topics from the vast field of aperiodic structures in mathematics.
The emphasis is placed on generating aperiodic 1D structures, but most methods can be used
to generate higher-dimensional structures as well. Section 3.5 treats an application of aperiodic
systems in physics to conclude this chapter.

3.1. Substitution Rules

One widely used method to create highly-ordered systems, especially one-dimensional, is the
method of substitution rules. The mathematical framework to study substitution rules is known
as symbolic dynamics.

3.1.1. Basic Symbolic Dynamics

This section follows the book by Brin and Stuck [32]. LetAm = {a0, . . . , am−1} be a finite alphabet
ofm ∈ N symbols and A∗

m be the set of all finite words that can be made by concatenating elements
from the alphabet. Furthermore, we define Σm = AZ

m,Σ
+
m = AN

m as the set of infinite two- and
one-sided sequences, respectively. Arguably, the most important operator is the shift operator σ,
which acts on a one- or two-sided sequence x as σ(x)i = xi+1, which is only invertible on Σm, not
Σ+
m. The pairs (Σm, σ) and (Σ+

m, σ) are called the full two-sided shift and the full one-sided shift,
respectively. The metric

d(x, y) = 2−l, l = min{|i| | xi ̸= yi} (3.1)

generates the product topology on Σ
(+)
m , which gives us a tractable notion of convergence of

sequences.

A substitution rule is then a function ρ : Am → A∗
m that assigns to each symbol a finite word.

The rule ρ can be applied to some word w ∈ A∗
m, where w = x0x1 · · ·xn, xi ∈ Am as the map

x0x1 · · ·xn 7→ ρ(x0)ρ(x1) · · · ρ(xn).

A useful tool in studying substitutions is the substitution matrix M. Consider the word wn after n

applications of some substitution ρ. Let N
(n)
l be the amount of occurrences of some letter l ⊂ Am

in wn. If N
(n) = (N

(n)
a0 , . . . , N

(n)
am−1)

T , then the matrix M relates

N(n+1) = M ·N(n).

The following definition makes the notion of a fixed point rigorous.

Definition 3.1. (Fixed point) The one-sided fixed point w ∈ Σ+
m of a substitution ρ, starting from

some seed w0, satisfies ρ(w) = ρ. For the bi-infinite fixed point, the seed w−1|w0 must be a legal
two-letter word of ρ.

Oftentimes, a substitution ρ has no fixed fixed point, but a certain power σ = ρk has, where k ∈ N.

A particularly interesting class of substitutions are the Pisot type.

12 Multifractal Properties of Tribonacci Chains
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Definition 3.2. (Pisot) A substitution ρ is called Pisot if and only if its substitution matrix M
has one dominant eigenvalue α > 1 and all other eigenvalues λ satisfy |λ| < 1.

In other words, there is precisely one expanding eigenspace of dimension one and all other
eigenspaces are contracting.

3.1.2. Sturmian Sequences

Before discussing particular substitution systems that generate words, we first discuss an important
class of words, called Sturmian words. Fix some finite alphabet A for the remainder of this section.
First, we introduce some useful definitions regarding words.

Definition 3.3. (Factor) For a word w = w0w1 · · · with wi ∈ A, a factor of length n is any
subword wi · · ·wi+n−1 ⊂ A∗ where i = 0, 1, . . . . The amount of distinct factors of length n in w
is denoted by pn(w).

Definition 3.4. (Periodic) A word w = w0w1 · · · is called eventually periodic if and only if

∃N,m > 0 : wi = wi+m ∀i ≥ N.

If N = 0, w is simply called periodic. Equivalently, w is eventually periodic if and only if

∃n > 0 : pn+1(w) = pn(w).

Definition 3.5. (Aperiodic) A word w = w0w1 · · · is called aperiodic if and only if it is not
periodic nor eventually periodic.

Now an important theorem by Morse and Hedlund [33], is the following.

Theorem 3.6. (Morse-Hedlund) A given infinite word w is aperiodic if and only if pn(w) ≥ n+1
for all n ≥ 0.

This can be seen by noting that if pn(w) ≤ n for some n ∈ N, the word w is (eventually) periodic
with period k ≤ n. A special class of words, the Sturmian words, are precisely those for which
pn(w) = n+ 1 is satisfied. Those can be seen as the words with minimal complexity that are still
aperiodic.

Definition 3.7. (Sturmian Sequence) An infinite word, also known as a sequence, is called Stur-
mian if pn(w) = n+ 1 for all n = 1, 2, . . . .

Figure 3.1.: Billiard construction of a Sturmian word (figure from Ref. [34]).
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Another more intuitive way to construct the Sturmian words, only valid if A is binary, is the
following. Consider the square [0, 1]2 ⊂ R2. Let a billiard ball start rolling at P ∈ [0, 1]2 in the
direction (1, α)T , where α is irrational. Assuming no friction, the ball will bounce off the walls and
roll forever in [0, 1]2. Any Sturmian word w(P, α) is constructed by appending a 0 to the sequence
if the ball hits a vertical wall and a 1 if a horizontal wall is hit. This procedure is visualised
in Fig. 3.1. Moreover, Coven and Hedlund [35] proved that the billiard construction is similar
to Definition 3.7. Concerning binary words, there are two additional useful definitions. Let |w|s
denote the amount of occurrences of symbol s in the finite word w.

Definition 3.8. (Balanced) An infinite binary word w is balanced if for any two factors u, v of
length n

||u|1 − |v|1| ≤ 1.

Definition 3.9. (Completely balanced) Consider an infinite binary word w and let wn denote the
finite word consisting of the first n symbols of w. Then w is completely balanced if there exists a
sequence n0 ≤ n1 ≤ · · · where k, nk ∈ N, limk→∞ nk =∞ such that w = limk→∞ wn

|wnk
|0 = |wnk

|1, ∀k ∈ N.

In Section 3.2.4, we will show that all binary Sturmian sequences can be generated from a Cut-and-
Project Scheme (CPS). The mathematical construction of the CPS ensures the diffraction pattern
to be pure point, which makes Sturmian words natural quasicrystals. Another relevant question
to ask is which Sturmian words can be constructed from a substitution rule. This question is
answered in Section 3.2.4 as well.

3.1.3. Fibonacci Substitution

One well-known substitution rule is the Fibonacci substitution. On the binary alphabet A2 =
{0, 1}, one defines the rule

ρ :

{
0 7→ 01,

1 7→ 0.
(3.2)

Starting out with the symbol 1, the Fibonacci word is constructed by repeatedly applying Eq. 3.2,
yielding:

1 7→ 0 7→ 01 7→ 010 7→ 01001 7→ 01001010 7→ 0100101001001 7→ · · ·

and similarly for the bi-infinite words

0|1 7→ 01|0 7→ 010|01 7→ 01001|010 7→ 01001010|01001 7→ 0100101001001|01001010 7→ · · ·

We label the words by the symbol f
(bi)
n (Fn is reserved for the Fibonacci numbers), indicating the

(bi-)finite Fibonacci word after n applications of the rule Eq. 3.2. There are many justifications
for the name “Fibonacci” for this substitution rule. Recall the famous Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, · · ·

starting with 0, 1 and subsequent numbers are the sum of the last two. Labelling the Fibonacci
numbers by F−1, F0, · · · we have F−1 = 0, F0 = 1 and Fn+2 = Fn+1 + Fn for n ∈ N0.

The Fibonacci sequence appears as early as 450-200 BC in Indian mathematics [36], where it
served the purpose of counting different patterns of long and short syllables. It became known as
the Fibonacci sequence when in 1202 it appeared in the book Liber Abaci (Book of Calculation),
written by Leonardo of Pisa, also known as Fibonacci. Fibonacci used the sequence to model a
rabbit population. Denote the pairs of rabbits in month n by rn. Each adult pair produces a pair
of babies each month, and the babies take one month to become adults. If one starts with one
pair of babies, r0 = 1, then one month later they are adults, i.e. r1 = 1. If one sees that the
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amount of adults in generation n is given by rn−1, and that rn is equal to rn−1 plus the amount
of parents in rn−1, one obtains

rn = rn−1 + rn−2,

which is the well-known Fibonacci sequence. Needless to say, there are many different ways to
obtain the Fibonacci sequence, one of which the rabbit sequence is a mere example and by no
means fundamental.

The golden ratio is obtained from the Fibonacci sequence as

ϕ =
1 +
√
5

2
= lim
n→∞

Fn+1

Fn
.

Equivalently, suppose Fn+1/Fn
n→∞−−−−→ x for some value x, dividing the equation Fn+2 = Fn+1+Fn

by Fn gives us the equation x2 = x+ 1, which is precisely solved by ϕ.

It turns out that the length of the finite Fibonacci words |fn| = Fn obeys exactly the Fibonacci
sequence (note we shifted the canonical numbering of Fibonacci numbers by one). This is true
because of the property of the Fibonacci substitution that subsequent words can be produced by
concatenating the previous two Fibonacci words [17]:

fn+2 = fn+1fn. (3.3)

The infinite Fibonacci word f = ρ∞(1) can be shown to be the limit of the sequence fn by showing
fn is a Cauchy sequence. Let n,m > N for some N ∈ N and w.l.o.g. m > n. Then

d(fn, fm) ≤
m−n∑
i=1

d(fn+i−1, fn+i) =

m−n∑
i=1

2−Fn+i ≤ 1−
Fn∑
i=1

2−i < 1−
N∑
i=1

2−i = ϵ(N),

where we first used the triangle inequality, then Eq. 3.1 with Eq. 3.3 for the equality, and N <
n ≤ Fn in the last strict inequality. By choosing N large enough, 1−

∑N
i=1 2

−i becomes arbitrarily
small by the geometric series. Since fn is a Cauchy sequence it is convergent to f . The same can
be shown for the bi-infinite word fbi, but in this case one needs to consider applications of ρ2 to
get a converging word.

Having established the existence of the infinite Fibonacci f word in Σ+
2 , we will now discuss some

relevant properties of f (see Ref. [34] for more background on claims made in the remainder of
this section).

We can count the number of symbols 0, 1 in a given word fn by[
N

(n+1)
0

N
(n+1)
1

]
=

[
1 1
1 0

][
N

(n)
0

N
(n)
1

]
,

such that N
(n+1)
0 = Fn, N

(n+1)
1 = Fn−1. The characteristic polynomial of the substitution matrix

x2 − x − 1 has ϕ and its conjugate as roots. By inspecting the substitution rule in Fig. 3.2, it is

Figure 3.2.: Self-similarity of the Fibonacci quasicrystal (figure from [37]).

clear that the Fibonacci lattice is self-similar. This self-similarity allows the use of renormalisation
schemes, i.e. schemes where the original system is described in terms of one or more copies of
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itself with possibly different parameters, to quantitatively analyse systems based on the Fibonacci
word.

The Fibonacci word f (bi) is also Sturmian [34]. This implies that it is aperiodic. From Section
3.2.2 we can conclude that it results from a CPS and the resulting lattice has a discrete diffraction
pattern.

Since the Fibonacci word is aperiodic and the lattice has a discrete spectrum, it is an aperiodic
crystal according to the physics classification. Mathematically, we speak of a quasicrystal because
it originates from a CPS. Additionally, we see self-similarity, a property shared among many
relevant quasicrystals in physics.

3.1.4. Thue-Morse Substitution

Another famous binary sequence that arises from a substitution rule is the Thue-Morse (TM)
sequence. The Norwegian mathematician Axel Thue found this sequence when looking for a
binary sequence without squares, i.e. two consecutive identical blocks. The TM sequence turns
up in wildly different corners of mathematics [38], so we will focus on its properties that are of
interest to us.

The substitution rule on the binary alphabet A2 = {0, 1}

ρTM :

{
0 7→ 01,

1 7→ 10
(3.4)

uniquely generates the Thue Morse sequence (tn)n∈N from the seed 0. The first few iterations of
the rule are given by

0 7→ 01 7→ 0110 7→ 01101001 7→ 0110100110010110 7→ · · ·

Inspecting these words more closely, one can observe that each subsequent word can be obtained
from the previous word by appending the bitwise negated previous word. If one defines on A2

the negation map 0 = 1, 1 = 0, which is applied by the same rules as a substitution rule, one can
generate the finite TM words Tn as follows.

T0 = 0,

T1 = 00 = 01,

T2 = 0101 = 0110,

T3 = 01100110 = 01101001,

T4 = 0110100101101001 = 0110100110010110.

Observe that the negation map preserves palindromes, and T2 is a palindrome. Hence, for n ≥ 2
the TM word Tn is a palindrome. Similarly, the infinite TM word t := T∞ (the TM sequence
(tn)n∈N) is an infinite palindrome. It is also true that the negation map swaps amount of 0’s and
1’s, so when appending the negation of some word w to itself, the amount of 0’s and 1’s in ww
is always equal. Observe that the length of the nth TM word is |Tn| = 2n. This means that the
amount of 1’s in Tn, the Hamming weight, is equal to the amount of 0’s |Tn|0 and is given by

|Tn|0 = |Tn|1 = 2n−1, ∀n > 0.

This means by Definition 3.9 that the TM word is completely balanced.

There are two ways to see that the TM sequence is not Sturmian. Firstly, by counting factors of
length two, it is clear that the TM sequence is not Sturmian: p2(t) = 4 ̸= 3. The second method
uses the completely balanced property and argues by contradiction. Suppose the TM sequence
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is Sturmian, denoted w(P, α), where α irrational. For the sequence to be completely balanced,
α = ±1 is required. This contradictions shows that the TM sequence cannot be Sturmian. From
Section 3.2.4 we can conclude that the TM sequence cannot arise from a CPS.

The TM sequence is not considered a quasicrystal. This is due to the fact that the Fourier
transform of the lattice is not a pure point spectrum [38], which implies that the TM sequence
cannot be constructed from a CPS. Despite all that, the TM sequence is ordered, aperiodic,
balanced, and has a high degree of self-similarity. Suppose that one has the infinite TM sequence
t. By the substitution rule Eq. 3.4, the word t2it2i+1 is either 01 or 10. Hence we can define the
deflation rule 01 7→ 0, 10 7→ 1, i.e. ρ−1

TM. This maps the TM sequence t to another sequence t′

by t′n = t2n. Since ρTM(t) = t and we can invert ρTM, we have t′ = ρ−1
TM(t) = t. Self-similarity

is directly obtained via the substitution rule as a renormalisation step with scaling factor 2, since
ρTM maps each symbol to a word of the same length.

To illustrate its fractal properties, one can show that the TM sequence can be used to generate
the Koch snowflake [39]. Drawing an infinite line in the plane using certain rules, also known as
turtle graphics, one obtains the Koch snowflake in the limit n→∞ from the rules:

• If tn = 0, move ahead one unit,

• If tn = 1, turn by π/3 radians.

In Fig. 3.3, various finite generations of the snowflake are shown that are proven to converge to
the Koch snowflake by Ma et al. [39].

Figure 3.3.: Koch snowflake emerging from turtle graphics (figure from Ref. [39]).

3.1.5. Tribonacci Substitution

A well-known generalisation of the Fibonacci sequence is obtained by summing the last three
numbers

Tn = Tn−1 + Tn−2 + Tn−3

where T−2 = 0, T−1 = T0 = 1. The Tribonacci words WT
n are generated by the substitution ρT on

the alphabet A3

ρT :


0 7→ 01,

1 7→ 02,

2 7→ 0

(3.5)

starting with the seed WT
0 = 0. Similar to the Fibonacci words, subsequent words are obtained

by concatenating the previous three words

WT
n =WT

n−1W
T
n−2W

T
n−3. (3.6)
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The number of symbols for a given word can also be counted,N
(n+1)
0

N
(n+1)
1

N
(n+1)
2

 =

1 1 1
1 0 0
0 1 0


N

(n)
0

N
(n)
1

N
(n)
2


from which we can read off N

(n+1)
0 = Tn, N

(n+1)
1 = Tn−1 and N

(n+1)
2 = Tn−2. For example take

WT
3 = 0102010, then N3

0 = T2 = 4, N3
1 = T1 = 2 and N3

2 = T0 = 1. The characteristic polynomial
of the substitution matrix above is λ3 − λ2 − λ− 1. In fact, the Fibonacci and Tribonacci can be
generalised as a k-bonacci sequence

Kn =

k∑
i=1

Kn−i, K0 = · · · = Kk−2 = 0,Kk−1 = 1

and the corresponding substitution rule ρk on Ak

ρk :



0 7→ 01,

1 7→ 02,

· · ·
(k − 2) 7→ 0(k − 1),

(k − 1) 7→ 0,

starting with the seed word 0. The corresponding characteristic polynomial is then

λk −
k−1∑
i=0

λi. (3.7)

The Fibonacci, Tribonacci and general k-bonacci substitutions can thus be viewed as the substi-
tutions corresponding to the hierarchy of the characteristic polynomials Eq. 3.7. It is known that
all k-bonacci substitutions are of Pisot type [40].

One particular choice of seed for the bi-infinite word is the seed 2|0 = ρ−1
T (0)|0. The substitution

for which a fixed point can be obtained is σ = ρ3T, i.e. three consecutive applications of the
Tribonacci substitution. Then, the Tribonacci word stabilises from the right hand side as well:

ρ3T :


0 7→ 0102010,

1 7→ 010201,

2 7→ 0102.

(3.8)

From Eq. 3.6 it can also be seen that every three applications to Wn, the right side of the
word is the original word Wn. The bi-infinite Tribonacci word is then the limit WT |WT =
limN→∞ ρ3N−1

T (0)|ρ3NT (0). Another choice of seed could have been 1|0, 0|0, or 0|2.

3.2. Cut-and-Project Schemes

Since CPS is often used as the definition of (quasi)crystals, its mathematical structure will be
explained in this section. Conumbering and the connection to Sturmian sequences is treated as
well, with the Fibonacci quasicrystal as leading example.

3.2.1. Mathematical Construction

To make the discussion appropriately precise, we introduce some definitions (see Ref. [29] for more
details).
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Definition 3.10 (Delone Set). A point set Λ ⊂ Rd is called Delone if it is discrete and relatively
dense. In other words, there exist 0 < r < R ∈ R such that for all x ∈ Λ:

(Λ \ {x}) ∩Br(x) = ∅, (Λ \ {x}) ∩BR(x) ̸= ∅,

where Br(x) denotes the open ball of radius r centered at x.

Intuitively, any lattice should be a Delone set, as atoms cannot be arbitrarily close but also not
too far apart in a solid. The next definition is essential for the CPS.

Definition 3.11 (Point Lattice). A point set Γ ⊂ Rd is a point lattice if there exist d linearly
independent vectors b1, . . . , bd, such that

Γ = Zb1 ⊕ · · · ⊕ Zbd :=
{ d∑
i=1

mibi | mi ∈ Z
}
.

Now, we are ready to define the general CPS.

Definition 3.12 (Cut-and-Project Scheme). A CPS is a triple (Rd, H,L) where H = Rm for some
m ≥ 0 and L ⊂ Rd ×H is a point lattice, together with the natural projections π : Rd ×H → Rd
and πint : Rd × H → H such that π|L is injective and πint(L) lies dense in H. To define which
points in L are projected onto Rd, an acceptance set A ⊂ H is provided.

Here, we explain the general CPS procedure to obtain some point set Λ, which will turn out to be
Delone. Denote L = π(L) and L⋆ = πint(L), and define the map ⋆ : L→ L⋆ as

x 7→ x⋆ := πint

(
(π|L)−1

(x)
)
,

where (π|L)−1
(x) is the unique point in L ∩ π−1(x). Since π|L is injective, L⋆ = πint(L) holds.

The following diagram summarises the procedure.

(3.9)

To ultimately obtain the point set Λ from the CPS, the acceptance set A ⊂ H together with the
projections are used. One selects all points (x, y) ∈ Rd × H, such that y ∈ A. Then π(x, y) is
added to Λ. This can be summarised as

Λ(A) := {x ∈ L | x⋆ ∈ A}. (3.10)

Such a set Λ arising from a CPS is called a model set. The requirement in Definition 3.12 that
πint(L) be dense in H is only necessary for generating aperiodic structures. This can be seen by
considering L ⊂ R2 and H = R. Then, an irrational cut will give a dense πint(L), whereas a
rational slope of L in R2 will not.

We are now in a position to state some useful results regarding model sets without proof, which
can be found in Ref. [29].

Theorem 3.13. If Λ is a model set, it is also a Delone set.
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This theorem ensures that any CPS will generate a physically reasonable lattice. In order to talk
about the diffraction pattern of a set Λ, we define its autocorrelation measure. The autocorrelation
measure γΛ of some point set Λ is defined to be the volume-averaged autocorrelation of its Dirac
comb δΛ =

∑
x∈Λ δx:

γΛ = lim
R→∞

γ
(R)
Λ := lim

R→∞

δΛ∩BR
⋆ δΛ∩BR

vol(BR)
,

where ⋆ denotes the autocorrelation operation and the limit exists for every Delone set [29]. Before
proceeding, we briefly review the definition of the autocorrelation for functions and measures. The
autocorrelation between two functions f, g : Rd → C is defined by

(f ⋆ g)(x) =

∫
Rd

f(x+ y)g(y)ddy,

where the overline indicated complex conjugation. Similarly, the autocorrelation measure of two
measures µ, ν is defined as (see Ch. 9 of Ref. [29])

(µ ∗ ν)(A) =
∫
Rd×Rd

1A(x− y)dµ(x)dν(y),

where 1A is the indicator function, and the complex-conjugation of a complex measure µ is defined
as
∫
A
dµ(x) = µ(A).

As discussed in Section 2.2, the diffraction pattern of a lattice is described by the structure factor
S(q) in Eq. 2.1. Before stating the main result of this section, the relation between the structure
factor S(q) and the autocorrelation measure γΛ needs to be established.

Recall that S(q) was the modulus squared of the FT of the lattice. To make this more rigorous,
let δΛ(x) =

∑
y∈Λ δ(x− y) be the Dirac comb of delta functions, instead of Dirac measures, that

describes the lattice Λ ⊂ Rd. Note that the measure δΛ is recovered by

δΛ(A) =

∫
A

δΛ(x) d
dx,

where A ⊂ Rd and we used the fact that for delta functions, the Riemann integral is defined.
Using the definition of the Fourier transform

f̂(q) =

∫
Rd

f(x)e−2πiq·x ddx, f(x) =

∫
Rd

f̂(q)e2πiq·x ddq,

the structure factor can be written as

S(q) =
1

N

∣∣∣δ̂Λ(q)∣∣∣2 =
̂(δΛ ⋆ δΛ)(q)

N
, (3.11)

where N is the amount of lattice sites in Λ and where the well-known result is used that for the
autocorrelation of a function f : Rn → R, (̂f ⋆ f)(q) = |f̂(q)|2 holds. Since S(q) is the FT of the
autocorrelation function, we need to take the FT of the autocorrelation measure. The FT of a
measure µ is defined as (see Ch. 8 of Ref. [29])

µ̂(q) =

∫
Rd

e−2πiq·xdµ(x), (3.12)

which is a function on Rd. Choose any radius R ∈ [0,∞), then there are finitely many N(R)
points in Λ ∩BR (assuming Λ is Delone). Then Eq. 3.11 can be rewritten as

S(q) =

∫
Rd

e−2πiq·x lim
R→∞

(δΛ∩BR
⋆ δΛ∩BR

)(x)

N(R)
ddx =

∫
Rd

e−2πiq·x lim
R→∞

dµ(R)(x), (3.13)
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and the FT of the autocorrelation measure can be rewritten as

γ̂Λ(q) =

∫
Rd

e−2πiq·x lim
R→∞

dγ
(R)
Λ (x), (3.14)

where we introduced the measure µ(R) defined by

µ(R)(A) =

∫
A

(δΛ∩BR
⋆ δΛ∩BR

)(x)

N(R)
ddx.

We will now show that for every value of R, the measures µ(R) and γ(R) are related by a constant
ρ(R). Let A ⊂ Rd be any set and denote Λ ∩BR = Λ′, then

µ(R)(A) =
1

N(R)

∫
A

ddx

∫
Rd

ddyδΛ′(y)δΛ′(x+ y)

=
1

N(R)

∫
Rd×Rd

1A(x)δΛ′(y)δΛ′(x+ y)ddxddy

=
1

N(R)

∫
Rd×Rd

1A(x− y)dδΛ′(x)dδΛ′(y)

=
1

N(R)
(δΛ′ ⋆ δΛ′)(A) =

vol(BR)

N(R)
γ
(R)
Λ (A) =

1

ρ(R)
γ
(R)
Λ (A).

(3.15)

By plugging Eq. 3.15 into Eqs. 3.13 and 3.14, we can conclude γ̂Λ(q) = ρS(q), where ρ =
limR→∞ ρ(R) can be interpreted as the average density over the whole lattice Λ. This limit
exists since Λ is assumed to be Delone. The relation between the structure factor and the auto-
correlation measure is now established, where S(q) is related by the FT of the autocorrelation
measure by the constant ρ.

We can now state the most important result, Theorem 9.4 from Ref. [29], which is the following
theorem.

Theorem 3.14. Let Λ be a model set for some CPS as given in Definition 3.12. The autocorre-
lation measure γΛ exists and its Fourier transform γ̂Λ is a positive definite, pure point measure.

We have shown that each lattice originating from a CPS has pure point diffraction spectrum.
In many cases, this spectrum is self-similar and has some rotational symmetry, which need not
be crystallographic. It is known that finding the real space lattice corresponding to some pure
point diffraction pattern is generally ill-posed. An interesting question, which to the best of our
knowledge is unanswered, is the following:

“Upon imposing a certain rotational symmetry and scale invariance on a pure point diffraction
pattern, is the problem of finding its real space lattice well-defined?”

We will now show how to apply the formal CPS in Eq. 3.9 to some examples.

3.2.2. Fibonacci Quasicrystal

We want to construct the 1D Fibonacci quasicrystal, so d = 1. Take H = R and start with a
cubic lattice in R2. Next, we draw a line L with slope α = 1/ϕ, where ϕ is the golden ratio, see
Fig. 3.4. We choose a basis in R2 such that cubic lattice is spanned by the canonical basis vectors
e1 = (1, 0)T and e2 = (0, 1)T . The acceptance set A is the strip of width 1+α√

1+α2
perpendicular

to the line, such that L× A is the region traced out by a unit cube sliding along L, see Fig. 3.5.
Projecting all lattice points in L × A onto the line L, the horizontal line in Fig. 3.4, yields the
Fibonacci quasicrystal. Long and short intervals correspond to a 0 and 1, respectively, in the
Fibonacci word 1f (note the 1 appended). The points in L × A are equivalently obtained from
the word 1f . For the first m symbols, the mth point in L×A is given by

xm = (nm0 , n
m
1 )

T
,
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Figure 3.4.: Fibonacci quasicrystal by means of CPS (figure from Ref. [22]). Red dots represent
sites that have one 0 and one 1 as neighbours in the Fibonacci word. Blue dots
represent sites that have two 0’s as neighbours in the Fibonacci word.

Figure 3.5.: Geometry of the sliding unit cube.

where nml are the amount of occurrences of letter l in the first m letters of 1f .

If we approximate ϕn = Fn−1/Fn−2 and let the slope be 1/ϕn, we obtain a periodic lattice with
unit cells of Fn sites. In Fig. 3.4, the unit cell contains F6 = 13 sites and the slope is given by
F4/F5 = 5/8. Approaching the irrational slope by rational numbers and considering the periodic
lattice for increasing n is a conventional way to study aperiodic CPS lattices.

Finally, we mention the conumbering method for approximant Fibonacci words. As seen in Fig. 3.4
the points can be numbered according to their ordering in H-space. It turns out that this precisely
orders the Fibonacci lattice points according to their local environment. Define bonding between
two consecutive points x,y as weak if y − x = e1, i.e. horizontal, and strong if y − x = e2, i.e.
vertical. Weak and strong bonds are depicted in Fig. 3.4 as single and double lines, respectively.
The conumbering scheme groups points surrounded by weak-strong, weak-weak and strong-weak
as adjacent couplings. It turns out that conumbering often reveals symmetries of the system that
are not manifest in the real-space ordering of lattice points [22]. Furthermore, given a real-space
index i, the corresponding conumber is given by

c(i) = Fn−1i mod Fn, (3.16)

which will be proven below.

Conumbering

In the special case H = R, Sire et al. [23] developed conumbering as an alternative way to label
the lattice points in Λ. Suppose we cut the d-dimensional hyperplane P spanned by

ai = (0, . . . , 0, pi, 0, . . . , 0,−ri), pi, ri ∈ R,

in Rd+1, where 1 ≤ i ≤ d and pi is the ith entry. The resulting lattice obtained by projecting
points on the plane is quasiperiodic in all directions if pi/ri = αi /∈ Q for all i, i.e. the plane
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cuts irrationally. Often, the quasicrystal is approximated by α′
i = p′i/q

′
i, where p

′
i, q

′
i ∈ Z. The

lattice that results from projecting on this approximate hyperplane P ′, called the approximant,
is periodic with a unit cell consisting of N points. The conumbering scheme labels points in the
unit cell according to their distance from P ′ before projecting. More precisely, Sire et al. showed
that all xj ∈ Rd+1 in the unit cell are obtained from a generator h as

xj = jh mod [a1, . . . ,an], 0 ≤ j < n,

where the modulo is taken w.r.t. the Z-module spanned by a1, . . . ,an. Conumbering provides a
1D description of a d-dimensional quasicrystal. It turns out that it orders the points according
to their local environment. We will discuss the conumbering scheme in detail for the Fibonacci
quasicrystal in the remainder of this section.

Consider the CPS for the Fibonacci approximant chain in Fig. 3.4, where the line L is spanned
by a = (8, 5). One obtains the conumbers by projecting the points on the orthogonal axis and
labeling them from closest to furthest away from L. We will now explicitly construct a generator
hn for every nth approximant, such that

x
(n)
j = hnj mod an, 0 ≤ j < Fn (3.17)

and the conumber c(j) for each point x
(n)
j is given by

c(j) = jFn−1 mod Fn.

In general, for the approximant with Fn sites in a unit cell one has an = (Fn−1, Fn−2), so αn =
Fn−2/Fn−1. For a point x = (x, y) to lie in L×A, it must satisfy

0 ≤ y − αnx < 1 + αn. (3.18)

On the other hand, for the unit cell to be constructed as in Eq. 3.17, we need {an,hn} to be a
basis of Z2. This is equivalent to

det

[
Fn−1 hxn
Fn−2 hyn

]
= Fn−1h

y
n − Fn−2h

x
n = ±1

by Pick’s theorem. If we want hj to lie in L × A for all j = 0, . . . , Fn − 1, we will require the
points x = jhxn on the line with slope hyn/h

x
n to satisfy Eq. 3.18. This yields

0 ≤ Fn−1h
y
n − Fn−2h

x
n ≤ 1,

which allows us to conclude Fn−1h
y
n − Fn−2h

x
n = 1. We will now show that either hn =

(Fn−2, Fn−3) or hn = (Fn−3, Fn−4), depending on the parity of n. For this we need Vadja’s
identity, which for our definition of the Fibonacci numbers reads:

Fn+iFn+j − FnFn+i+j = (−1)n+1Fi−1Fj−1.

We rewrite it in a more useful form

FnFn+i+j − Fn+iFn+j = (−1)nFi−1Fj−1

and relabel n+ i+ j → n− 1 to get

Fn−1−i−jFn−1 − Fn−1−jFn−1−i = (−1)n−1−i−jFi−1Fj−1.

Note that we can only pick i, j = 1, 2 to have Fi−1Fj−1 = 1. Now, we want to solve Fn−1h
y
n −

Fn−2h
x
n = 1. Hence, w.l.o.g. we set j = 1 to get

Fn−2−iFn−1 − Fn−2Fn−1−i = (−1)n−i (3.19)
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from which we can read off the solution

hn =

{
(Fn−3, Fn−4) if n mod 2 = 0,

(Fn−2, Fn−3) else.
(3.20)

Let us recap what we have established so far. For every nth approximant, we have shown that all

x
(n)
j are found by Eq. 3.17 using the generator Eq. 3.20. Additionally, Eq. 3.20 was derived with

the constraint that all x
(n)
j lie on a line in L × A that starts at the origin. Hence, x

(n)
j will be

ordered from close to far away from L, starting from j = 0 to j = Fn − 1.

Suppose that we relabel xj as x′
i, where i = 0, . . . , Fn − 1 labels the points from left to right

according to their location projected on L. By the pigeonhole principle, we should be able to find
a function c that maps one labeling to the other. The key to finding this function is to note that if
xj = (a, b) for some a, b ∈ N, then i = a+ b, i.e. the sum of the amount of horizontal and vertical
steps in the cubic lattice. Thus, given a conumber j =: c(i), the corresponding lattice label i is
found by

i = c−1(j) = xj + yj = j(hxn + hyn) mod Fn =

{
jFn−2 mod Fn if n mod 2 = 0,

jFn−1 mod Fn else.

Even more useful is the function c(i), which gives the conumber xc(i) corresponding to some site
x′
i. By inverting the above, we obtain c(i).

Start by multiplying both sides with Fn−1 and taking modFn to get

Fn−1i mod Fn = Fn−1(h
x
n + hyn)j mod Fn =

{
jFn−2Fn−1 mod Fn if n mod 2 = 0,

jF 2
n−1 mod Fn else.

If n is even, we have Fn−2Fn−1 = Fn−3Fn + 1, by Eq. 3.19. Similarly if n is odd, we have
F 2
n−1 = Fn−2Fn + 1. This reduces the above equation to

c(i) = Fn−1i mod Fn,

where now j = c(i), which is valid for all n. This concludes our proof of Eq. 3.16.

3.2.3. Tribonacci Quasicrystal

To construct the 1D Tribonacci quasicrystal we take d = 1 and H = R2. Points in Z3 ⊂ R3 are
given by

xm = (nm0 , n
m
1 , n

m
2 )

T
,

where nml counts the occurrences of letter l in the first m letters of the Tribonacci word. The line
L is defined by

L = {xeL | x ∈ R}, eL = lim
m→∞

xm
∥xm∥

,

i.e. the asymptotic direction of xm in R3. The line L coincides with the eigenspace of the
largest eigenvalue of the substitution matrix, which is guaranteed to be 1D because the Tribonacci
substitution is Pisot, i.e. it has only one expanding direction. We can thus write R3 = L ⊕ H.
The projection operator π : L⊕H → L is given by x⊕ y 7→ x.

To study the acceptance set A, label each xm as 0,1, or 2 by using ∆m = xm − xm−1 with the
rule 

0 if ∆m = (1, 0, 0)T ,

1 if ∆m = (0, 1, 0)T ,

2 if ∆m = (0, 0, 1)T .
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Projecting these points using πint : L ⊕ H → H as x ⊕ y 7→ y into H = R2 results in the
acceptance set A, the Rauzy Fractal (up to an affine transformation, see Section 5.3.1 for details).
This procedure is visualised in Fig. 3.6a where 0, 1, 2 correspond to red, green and blue. The
Rauzy fractal is equal to three scaled copies of itself, as depicted in Fig. 3.6b. The scaling factor is
1/β where β ≈ 1.8392 is the Tribonacci constant. The three copies are scaled by 1/β, 1/β2, 1/β3,
respectively.

x y

z

H

L

(a) Construction of the Rauzy fractal.

01
2

(b) Numbered Rauzy fractal.

Figure 3.6.: The Rauzy fractal as acceptance set A ⊂ H of the Tribonacci word.

3.2.4. Sturmian Sequences Revisited

We encountered the Sturmian words in Section 3.1.2. It turns out that an infinite word is Sturmian
if and only if it originates from a CPS with irrational cut [33]. This will be shown in this section
for Sturmian sequences on a binary alphabet.

Recall the alternative definition of Sturmian sequences as a billiard ball bouncing off the walls
in Section 3.1.2. This is the same as letting the ball roll in R2/Z2 in a straight line and append
0 or 1 by the same rules, which is again similar to a CPS with L = R and a projection set
A = [− α√

1+α2
, 1√

1+α2
]. This set arises from letting L × A be the result of tracing a unit cube of

the cubic lattice along L with the lower left vertex located on L. The value ρ where L intersects
the x-axis is called the intercept of L.

If α ∈ Q, the orbit of the ball is periodic, and so will the word w(P, α) be. If α is irrational,
the word will be aperiodic. Any Sturmian word is aperiodic, hence we require α irrational. We
conclude with the following theorem:

Theorem 3.15. A binary word is Sturmian if and only if it can be built from a CPS with L =
H = R, where the slope α is irrational.

Another interesting question is which Sturmian words can be generated by a substitution rule.
Since the Sturmian words and CPS words are 1-to-1, we can similarly ask which CPS words can
be constructed by a substitution rule. Yasutomi et al. [41] proved the following theorem.

Theorem 3.16. A CPS (viz. Sturmian) word can be constructed by a substitution rule if and
only if α is a quadratic irrational and the intercept ρ ∈ Z[α].

This precisely answers the question.
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3.2.5. Higher-Dimensional Tilings

So far, we have discussed applications of a CPS that yielded a 1D lattice. The advantage was that
the mathematical details remained tractable, except for a constructive description of the Rauzy
fractal, and the total space Rd × H has been a 2- or 3D space, which is something humans can
visualise. The two tilings discussed in this section, the Ammann-Beenker (see Fig. 3.7a) tiling and
the Penrose tiling (see Fig. 3.7b), are examples where geometric intuition is less helpful, as the
total spaces are 4- and 5D, respectively. We discuss the details of CPS for the Amman-Beenker
tiling, as this is the most tractable tiling, but the technical methods for the Penrose tiling are the
same.

(a) The Ammann-Beenker tiling. (b) Penrose.

Figure 3.7.: Tilings with local matching rules (figures from Ref. [42]).

Ammann-Beenker

The Ammann-Beenker tiling, as depicted in Fig. 3.7a, is a 8-fold rotationally symmetric tiling of
the plane. It is a quasicrystal in the sense that its diffraction spectrum, when taking the vertices
as atoms, is pure point, which can be seen as a consequence of the fact that it can be constructed
from a CPS.

One way to construct the Ammann-Beenker tiling is the inflation method. Consider the top two
tiles in Fig. 3.8. After inflating both tiles with a factor 1+

√
2, the tiles can be subdivided into its

original parts. Starting with a square, which is made of two yellow triangles, the inflation rules
are applied repeatedly in Fig. 3.8b to obtain the Ammann-Beenker tiling in Fig. 3.7a. Note the
blue, red and black markers on the sides and corners of the tiles. Those are called matching rules,
which ensure that the tiling can extend to infinity. It is well-known that for any aperiodic tiling
with matching rules, any violation of those rules destroys the possibility of extending the pattern
to infinity [42].

It is also true that any finite patch occurs infinitely often in the tiling [42], which can be proven
using the inflation construction of the Ammann-Beenker tiling as follows. Suppose one obtains
some pattern P after n iterations of inflation rules on a seed tile t. After another n iterations of
the inflation rules, the pattern P will occur once for every t ∈ P. So if t occurs at least twice in
P, the pattern occurs infinitely often.

Following the inflation rule ensures the matching rules to be satisfied, which ensures the tiling to be
aperiodic [42]. However, it turns out that the matching rules do not provide enough information to
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(a) Inflation with matching rules. (b) Repeated rules.

Figure 3.8.: The inflation rules of the Ammann-Beenker tiling and repeated application of them
(figures from Ref. [42]).

tile the plane, one tile at a time, such that all matching rules are satisfied. This can be conceptually
explained as follows. It is known that any finite patch of the Ammann-Beenker/Penrose tiling
repeats itself infinitely often in the infinite tiling. So suppose one is tiling the plane and only a
finite portion, call it P, is finished. Continuing the tiling, the same portion P would turn up again.
If matching rules would uniquely define a tiling, the same pattern must be tiled around the copy
of P. This results in a periodic tiling, which contradicts the statement that a tiling with satisfied
matching rules is aperiodic.

Note that tiling the plane tile-by-tile is possible. The matching rules give a good indication on
what tile to choose. However, at some points, more than one option is possible. If the choice
was wrong, one will get stuck at some points (no tiles fit at some point). This means that tiling
tile-by-tile will be a tedious trial-and-error process.

The fact that inflation rules only generate a finite portion and tiling the plane tile-by-tile is not
uniquely defined, another way of defining aperiodic tilings is desired. This is precisely the role
played by CPS, since it is a mathematically rigorous framework that uniquely determines the
infinite tiling with a finite set of rules. We will now show how the Ammann-Beenker tiling is
obtained from a CPS.

The remainder of this section summarises details of a work by Baake et al. [42]. Consider the unit
vectors in Fig. 3.9. More specifically, they read

a1 = (1, 0)T , a∗1 = (1, 0)T ,

a2 =
1√
2
(1, 1)T , a∗2 =

1√
2
(−1, 1)T ,

a3 = (0, 1)T , a∗3 = (0,−1)T ,

a4 =
1√
2
(−1, 1)T , a∗4 =

1√
2
(1, 1)T .

These vectors have the property that (ai ⊕ a∗i ) · (aj ⊕ a∗j ) = 2δi,j , from which we can conclude

that { 1√
2
ai ⊕ a∗i | i = 1, 2, 3, 4} is a orthonormal basis of R4. Denote a = (a1,a2,a3,a4)

T and let
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Figure 3.9.: Unit vectors in R2 for the CPS of the Ammann-Beenker tiling (figure from Ref. [42]).

u ∈ Z4, one can construct a hypercubic lattice, with lattice constant
√
2 as

L = {x⊕ x∗ | x = u · a, x∗ = u · a∗,u ∈ Z4}.

Now we have all our ingredients for the CPS for the Ammann-Beenker tiling. We have d = 2, H =
R2 and our hypercubic lattice L in R4. The projections are simply π(x⊕ y) = x, πint(x⊕ y) = y.
The acceptance set A is an octagon with unit edges. The vertices of the Ammann-Beenker tiling
are

Λ(A) = {x = u · a | x∗ = u · a∗ ∈ A,u ∈ Z4} ⊂ π(L).

This concludes our discussion of the construction of the Ammann-Beenker tiling from a CPS. Note
that the methods presented in this section are also applicable to Penrose tilings.

Penrose

To generate the Penrose tiling, see Fig. 3.7, one can use both an inflation scheme or CPS. These
are very similar to those of the Ammann-Beenker tiling. Therefore, we focus on a third method
to generate the Penrose tiling, called the pentagrid method. This method was developed by the
Dutch mathematician Nicolaas Govert de Bruijn [3]. The pentagrid method has a few advantages:

• From the Pentagrid method, the non-periodicity of the Penrose tiling can be read off,

• The pentagrid offers an easy way of generating a finite patch of the Penrose tiling at hand.

Now let us describe the Pentagrid method as a recipe to obtain Penrose tilings, where our discussion
is based on Ref. [43]. First, one takes five unit vectors ei in R2, which are at an angle of 72◦, as
depicted in Fig. 3.10a. For each unit vector ei, define a set of lines Vi that are perpendicular to
that unit vector, with a unit vector spacing. More specifically,

Li = {x ∈ R2 | x · ei = 0}, Vi = {Vi + nei | n ∈ Z},

where a set Vi is shown in Fig. 3.10b.

Now, one picks five real numbers γi ∈ R, and translates the sets of lines with eiγi. The numbers
γi must satisfy the requirement that not more than two lines intersect at each intersection of
lines. Each choice of γi that satisfies this requirement is called a Penrose tiling, and there are
uncountably many. Such a set of lines is depicted in Fig. 3.11a.

It is a curious fact of Penrose tilings that they are made up of ribbons, as shown in Fig. 3.11b.
De Bruijn showed [3] each ribbon is in one-to-one correspondence with a line in the pentagrid.
This can be understood in the following way. Consider the two highlighted lines in Fig. 3.11a
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(a) The unit vectors ei. (b) Set of lines Vi.

Figure 3.10.: Unit vectors and their parallel lines (figures from Ref. [43]).

(a) A pentagrid.
(b) A Penrose tiling with two high-

lighted ribbons.
(c) A tile constructed at the inter-

section of two pentagrid lines.

Figure 3.11.: A pentagrid with the corresponding Penrose tiling, where the highlighted lines in the
pentagrid correspond to the highlighted ribbons (figures from Ref. [43]).

that intersect. One can then construct a tile at this intersection as in Fig. 3.11c, by drawing
lines perpendicular to the pentagrid lines. Using this construction of a tile, one can determine the
sequence of tiles along any ribbon in the Penrose tiling.

Now it is clear why the pentagrid is useful for generating an arbitrary patch of a Penrose tiling,
since one simply studies the type of intersection between pentagrid lines to decide what the next
tile in a ribbon should be. Additionally, to see why the Penrose tiling must be non-periodic, we
show that the ratio of thick and thin rhombs converges to the golden ratio. Take an arbitrary line
in the pentagrid, then the interval between intersections with another pentagrid line defining a
thick rhomb is sin 72 and for a thin rhomb sin 36. Therefore, the ratio of thick and thin rhombs is

# thin rhombs

# thick rhombs
=

1/ sin 36

1/ sin 72
=

1 +
√
5

2
,

which is precisely the golden ratio. If the Penrose tiling were periodic, this fraction would be
rational, from which we can conclude the Penrose tiling is non-periodic. Note, however, that the
converse implication is not necessarily true: there exists non-periodic tilings with a rational ratio
between the type of tiles. An example is the Thue-Morse word, which has exactly the same amount
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of zeros and ones.

3.3. Fractality

As previously discussed, quasicrystals often display scaling symmetry in their diffraction pattern.
This symmetry is inherited from the self-similarity of the quasicrystalline lattice in real space. In
this section, a quick introduction to self-similarity, fractality, and multifractality is given. The
Cantor set will be the guiding example.

3.3.1. Cantor Set

We do not really need measures right now, but it is useful to start working in their language from
now on. Measures will prove to be a useful way to define a function on a set. Functions f : A→ B
assign an element b ∈ B to some a ∈ A; measures assign a value in [0,∞] to subsets of A.

To make this more precise, we first define the σ-algebra of sets on which a measure is defined.

Definition 3.17. (σ-algebra) A σ-algebra A on a set X is a family of subsets of X with the
following properties

X ∈ A,

A ∈ A ⇒ Ac ∈ A,

(Ai)i∈N ⊂ A ⇒
⋃
i∈N

Ai ∈ A.

The formal definition of a measure reads as follows.

Definition 3.18. (Measure) A measure µ on X is a map µ : A → [0,∞], defined a σ-algebra A,
which satisfies

µ(∅) = 0,

and, for a countable family of disjoint sets (Ai)i∈N ⊂ A,

µ

(⋃
i∈N

Ai

)
=
∑
i∈N

µ(Ai).

Moreover, µ is called a probability measure if µ(X) = 1.

For theoretical details on measures, see Ref. [44]. The most intuitive σ-algebra is the Borel
σ-algebra, which is obtained by taking the smallest σ-algebra containing the open sets in Rn.
Correspondingly, the most natural measure on the real numbers is the Lebesgue measure λ. For
an interval [a, b), λ([a, b)) = b− a.

The Cantor Set C = limn→∞ Cn is constructed by starting with C0 = [0, 1]. Each subsequent set
Cn is obtained by cutting out the middle third of each interval in Cn−1, see Fig. 3.12a. This is
the same as scaling Cn−1 by 1/3 and appending a copy of that shifted by 2/3, i.e.

Cn =
Cn−1

3
∪
(
2

3
+
Cn−1

3

)
. (3.21)

Like this, Cn will consist of 2n intervals of Lebesgue measure 3−n. Thus, the measure of the
Cantor set λ(C) = infn λ(Cn) = limn→∞ λ(Cn) = 0. In this sense, the Cantor set has measure
zero. This might strike the reader as obvious, since the Lebesgue measure of a point is zero. It
turns out that C has the same cardinality as R, i.e. the continuum c.

The Cantor set C has other remarkable properties. Firstly it is a closed set. It can be seen from
Eq. 3.21 that every Cn is closed, and C = ∩nCn is the intersection of closed sets, hence closed.
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Secondly, C contains no isolated points, i.e. for all x ∈ C, ϵ > 0, there is some y ∈ C such that
|x − y| < ϵ. By realising that the endpoints of C0 in fact never get removed, pick n such that
1/3n < ϵ and one of the 2n+1 endpoints will lie within ϵ from x. Finally, since C cannot contain
any open interval, its interior is empty. From this, we can conclude that C = C has empty interior,
hence is nowhere dense. Another type of Cantor set, the Smith-Volterra-Cantor set S in Fig. 3.12b

(a) Ternary Cantor set. (b) Smith-Volterra-Cantor set.

Figure 3.12.: Two different Cantor sets (figures from Wikipedia).

is generated from S0 = [0, 1] by removing the middle 1/4th of each interval. This set seems to be
the same as C, but if we compute the removed amount, we see that every step removes 2n times
an interval of width 1/4n+1, which sums to

∞∑
n=0

2n

22n+2
=

1

4

∞∑
n=0

1

2n
=

1

2
,

i.e. the Cantor set S has Lebesgue measure λ(S) = 1/2. Yet the same arguments as above can
be applied to show that S is closed, nowhere dense and contains no isolated points. Since we can
interpret the Lebesgue measure as a 1D volume, the set S has nonzero volume, yet empty interior,
hence it must have a boundary with nonzero volume. This shows how bizarre sets in a space as
simple as R can be. Therefore measures are the right tool to analyse functions on them.

3.3.2. Fractals

There is no universal definition of what constitutes a fractal. However, one can point to two
properties that set aside fractals from regular geometric objects: self-similarity and its anomalous
dimension. Self-similarity demands that an object, when scaled by a certain factor, looks the same
as (a part of) the original version. An anomalous dimensions occur naturally in the boundary
of fractal sets. Usually, one thinks of a boundary of a set in 2D to be a line, i.e. a 1D object.
However, many boundaries of fractals have dimension greater than 1. A notorious example is the
boundary of the Mandelbrot set, which has dimension 2. This explains why defining a fractal by
a non-integer dimension is inadequate.

The dimension of a fractal is most intuitively described via “box-counting”. If we would cover a
compact, open set of Rn (e.g. a ball or cube) with hypercubes with sides l, the amount of cubes
needed would scale as l−n. From this, we can read off that the dimension of the space is n. The
amount of boxes to cover a line in Rn scales as 1/l, so the dimension of a line is d = 1. Generally

Dbox = lim
l↓0

log#boxes of size l

log 1/l
. (3.22)

This formula becomes even simpler when the object is self-similar [45]. If one scales the object by
a factor S and N copies of the fractal of original size emerge, the Hausdorff dimension is

Dhd =
logN

logS
. (3.23)

Eq. 3.23 is only a special case of the Hausdorff dimension, which can be defined for any subset
S ⊂ X of a metric space (X, d), where d is a metric. For any U ⊂ X, define its diameter as
diam(U) = sup{d(x, y | x, y ∈ U)}, where diam(∅) = 0 is taken. Suppose we want to study some
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set S ⊂ X, take any δ > 0 and define the Hausdorff measure

HD
δ (S) := inf

{∑
i∈I

(diam(Ui))
D | (Ui)i∈I countable cover of S,diam(Ui) < δ

}
,

HD(S) = lim
δ↓0

HD
δ (S).

Intuitively, the Hausdorff measure raises the characteristic length of covering sets to some power
D, and sums the result. Depending on D, this can be length, area, volume, etc. As δ ↓ 0, a small
value of D causes the measure to diverge, and if D is very large, the measure converges to zero.
The Hausdorff dimension is then defined as

Dhd(S) := inf{D ∈ R | HD(S) = 0},

which takes the form of Eq. 3.23 for self-similar sets [46]. The idea of taking a real-valued dimen-
sion, determined by the scaling behaviour of increasingly smaller sets that cover S, is the same
as the box-counting dimension. In fact, in many cases Dbox(S) = Dhd(S) holds. It is the math-
ematical construction of the Hausdorff dimension that results in more favourable and consistent
results when Dbox(S) ̸= Dhd(S). For all strange sets that we study in this thesis, the box-counting
dimension does coincide with the Hausdorff dimension, so we need not explore the differences.

We will show that the Cantor set is a fractal in the sense that it is self-similar and has an anomalous
dimension. By inserting the Cantor set C into Eq. 3.21 we see that C is equal to two copies of
itself scaled by 1/3, which shown self-similarity. So if we scale C by a factor of 3, we obtain two
copies of C, hence by Eq. 3.23 Dhd = log 2

log 3 . If we count intervals of length l required to cover C,
one needs 2n intervals of length l = 1/3n to cover C, so by Eq. 3.22 Dbox = liml↓0

log 2n

log 3n = Dhd.
Note 0 < Dhd < 1, which shows the anomalous dimension of C.

3.3.3. Multifractals

The Cantor set C is a monofractal, a fractal with only one dimension dictated by Eq. 3.21 that
is locally the same for every point in C. It turns out that most interesting fractal objects contain
more than one fractal dimension, arising from different local scaling behaviour throughout the
fractal. The notion of local scaling, instead of global scaling like in Eq. 3.23, will be made precise
in this section.

Following the work by Halsey, Jensen, and Kadanoff [47] we want to define a measure µ on a set
S such that µ(S) = 1. Assuming S ⊂ Rn bounded, we can cover it with finitely many hypercubes
Ki with sides l. Define µ such that if we pick a random point in x ∈ S, the probability that it lies
in Ki is µ(Ki). We call it the mass of Ki and it can have multiple interpretations. Now, we vary
l and study the scaling behaviour

µ(Ki) ∝ lα.

The defining feature of multifractals, as opposed to monofractals, is that α = α(x), i.e. the scaling
behaviour varies locally instead of being a global constant. If S is covered by boxes of with sides
l, one can count the amount of boxes where α ∈ [α′, α′ + δ), denoted by N(α′, l, δ) where δ << 1.
The ansatz by Halsey et al. [47] is that this amount can be written as

N(α′, l, δ) ∝ l−f(α
′)δ.

The function f(α) is the dimension of the set of points that locally scale as α. To see f(α) is
indeed a dimension, compare this with the density of hypercubes ρ(l) = l−n, where n is clearly
the dimension. To summarise, α and f(α) describe a multifractal object in the following sense:

• α = α(x) is the local scaling behaviour of a point x ∈ S,

32 Multifractal Properties of Tribonacci Chains



CHAPTER 3. APERIODIC ORDER

• f(α) is the fractal dimension of the subset Sα ⊂ S that scales as α.

Hentschel et al. [48] showed that there is an infinite number of dimensions Dq that characterise a
set

Dq = lim
l↓0

1

q − 1

log
∑
i µ(Ki)

q

log l
. (3.24)

Note that for q = 0, we precisely obtain Eq. 3.22. Evaluating Eq. 3.24 is generally cumbersome,
so Halsey et al. [47] developed the following method. Let S1, . . . , SN partition S and each Si be
contained in a ball of radius li < l. Then, the partition function

Γ(q, τ, {Si}, l) =
N∑
i=1

µ(Si)
q

lτ
(3.25)

as l ↓ 0 neither goes to zero nor infinity, also commonly referred to as Γ being “of order unity”, if
precisely τ = (q− 1)Dq holds. We note that α, f(α) and q, τ(q) are thermodynamically conjugate
and hence related by a Legendre transform. The relations read [47]:

α(q) =
d

dq
τ(q),

f(α(q)) = qα(q)− τ.

Let us apply the formalism from this section to the ternary Cantor set. We can cover Cn with

2n intervals K
(n)
i of width ln = 3−n, so µ(K

(n)
i ) = 2−n. Since all these intervals are identical, we

can conclude for any x ∈ C that α(x) = α. This means that the local scaling is uniform, with α
determined by

µ(K
(n)
i ) = 2−n =

(
3−n

)α ⇒ α =
log 2

log 3
,

which coincides with the box-counting and Hausdorff dimension of C. One of the easiest examples
of a multifractal is the two-scale Cantor set [47]. For example, start with T0 = [0, 1] and remove
the second 1/4th interval. In general

Tn =
1

4
Tn−1 ∪

(
1

2
+

1

2
Tn−1

)
, T0 = [0, 1].

The resulting two-scale cantor set is T = ∩nTn, see Fig. 3.13. It is clear from the recursive relation

Figure 3.13.: The two-scale Cantor set T (figure from Wikipedia).

that 0, 1 ∈ T . To compute α(0), cover Tn in intervals of ln = 4−n. Using λ(Tn) = (3/4)n, we have

for the interval K
(n)
1 containing x = 0 that

µ(K
(n)
1 ) =

ln
µ(Tn)

=
4−n

(3/4)n
= 3−n = lα(0)n ⇒ α(0) =

log 3

log 4
≈ 0.79.
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Similarly, around x = 1 let ln = 2−n such that

µ(K
(n)
2n ) =

ln
µ(Tn)

=
2−n

(3/4)n
= lα(1)n ⇒ α(1) =

log 3/2

log 2
≈ 0.58,

which shows that indeed in T , the local scaling is not homogeneous, i.e. it is a multifractal.

Ultimately, one is interested in the multifractal dimension Dq. Suppose our set of interest is
partitioned like in Eq. 3.25. We decimate the scale l→ l2. If our set is constructed by repeatedly
taking the union of scaled and shifted versions of itself, like the Cantor sets, the partition function
for l2 becomes

Γ(q, τ, l2) =

N∑
i=1

N∑
j=1

[µ(Si)µ(Sj)]
q

(lilj)
τ = [Γ(q, τ, l)]2.

For Γ to be of order unity as l ↓ 0, it is evident that Γ(q, τ(q), l) = 1 must hold for any l. Now, it
is easy to determine Dq for the ternary Cantor set:

Γ(q, τ, 1/3) = 2
(1/2)q

(1/3)τ
= 1 ⇒ τ = (q − 1)

log 2

log 3
⇐⇒ Dq =

log 2

log 3
∀q,

which is equal to the exponent α for C. For the two-scale Cantor set, we have for N = 2 the
following details: S1 = [0, 1/4], S2 = [1/2, 1], µ(S1) = 1/3, µ(S2) = 2/3 so

Γ(q, τ, 1/2) =
(1/3)q

(1/4)τ
+

(2/3)q

(1/2)τ
= 1.

At q = 0, the above holds for τ = − log(
√
5−1)/2

log 2 so D0 = log ϕ/ log 2 ≈ 0.694. However, Dq varies
with q, so the two-scale Cantor set is clearly a multifractal.

Numerical Approximations of the Multifractal Dimensions

In this section, the method from Refs. [49,50] for numerically computing the multifractal dimension
Eq. 3.24 is explained. Throughout this section, denote S = {si | i = 1, . . . , N} ⊂ Rn as the set of
N points in n dimensions, for which one wants to evaluate Eq. 3.24. Each point can be written in
the canonical basis as si =

∑n
δ=1 s

δ
i eδ, where s

δ
i ∈ R. The steps of the algorithm are as follows.

1. Compute the largest scale using the infinity norm

Emax = max
i,j
∥si − sj∥∞ := max

i,j,δ
|sδi − sδj |.

2. Map the set S into the n-dimensional hypercube by the affine transformation

si → s̃i =
si

Emax + ϵ
,

where ϵ is a small number such that |si| < 1 is always true within machine precision.

3. Compute the smallest scale of the scaled set S′

Emin = min
i ̸=j
∥s̃i − s̃j∥2 := min

i ̸=j

√√√√ n∑
δ=1

(s̃δi − s̃δj)2.

Note that now the Euclidean norm is used instead of the infinity norm.

34 Multifractal Properties of Tribonacci Chains



CHAPTER 3. APERIODIC ORDER

4. Construct a set ofM rational decompositions of the unit cube, which decreases exponentially
in size. To this end, define

km := ⌊E−m/M
min ⌋, m = 0, 1, . . . ,M,

where each integer m labels a decomposition of the unit cube in boxes with length Em =
1/km, which are roughly linearly spaced on a logarithmic scale. Furthermore, label the boxes
Kν that partition the hypercube in the mth generation by an integer ν = 1, . . . , N(Em),
where N(Em) = knm is the total amount of boxes.

5. For each m, compute the fraction of points from S that lie in each box

pν(Em) =
|{x ∈ S̃ | x ∈ Kν}|

|S|
,

and compute the “partition function”

Zm(q) =

N(Em)∑
ν=1

[pν(Em)]q,

for a desired range of values q ∈ R.

6. For each value of q, define the dataset

{(xm, ym) = (lnEm, lnZm(q)/[q − 1]) | m = 0, 1, . . . ,M},

and use simple linear regression to fit the relation ym = aqxm, where the parameter aq = Dq

approximates the multifractal dimension.

Using the numerical recipe above, one obtains a reasonable approximation for the multifractal
dimension, provided q ≥ 0. For q < 0, the numerical method is shown to be unstable [50]. Ad-
ditionally, the numerical method has no rigorously proven guarantees on convergence. Therefore,
this method is appropriate for qualitative exploration of multifractal properties, which is satisfac-
tory for the research in this thesis. For more quantitative investigation, one should explore more
rigorous methods.

3.4. L-Systems

Yet another mathematical formalism to generate aperiodic, and most of the time fractal structures,
is the Lindenmayer system, or L-system for short. It was introduced in 1968 by the Hungarian
plant biologist Aristid Lindenmayer [51], who was working at Utrecht University at the time.
Lindenmayer developed the framework to model the growth process of fungi and bacterial colonies.
The key assumption is that the behaviour of cells, which multiply by growth and division, can be
described by a formal grammar, which is a well-defined mathematical notion. See the book by
Rozenberg and Salomaa [52] for the mathematical theory of L-systems.

Let us first give the definition of an L-system, and discuss applications later. Similar to symbolic
dynamics, we start with a finite alphabet A. This alphabet now consists of two types of symbols:

• variables: symbols that can be replaced by production rules,

• constants: symbols that cannot be replaced.

Now there is a set ρ of production rules, which describe how variables are replaced by some finite
string of symbols from A. Finally, there is an axiom ω ∈ A∗, where A∗ denotes the set of finite
words with symbols in A. The mathematical definition of an L-system reads:
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Definition 3.19. (L-System) An L-system is defined as the triple

L = (A, ω, ρ),

where A is a finite alphabet, ω ∈ A∗ the axiom, i.e. the starting block of the production rule, and
ρ : A → A∗ the set of production rules. A symbol s ∈ A is a constant if ρ(s) = s, else it is a
variable.

One can immediately see the similarity with the substitution rules as defined in Section 3.1.1.
The existence of an axiom is formally the only difference between the L-system and a substitution
rule. In practice however, substitution rules often do not have constants in the sense of L-systems.
Now, we will discuss applications of L-systems.

3.4.1. Algae

The starting point for Lindenmayer to model algae growth, perhaps based on Fibonacci’s rabbit
sequence (see Section 3.1.3), is the L-system with the following motivation. Suppose there exist
adult algae (A) and child algae (B). Every generation, adult algae produce a child and child algae
grow up to become adults. Suppose the first generation consists of one child. This amounts to
the L-system

Lalgae = (A, ω, ρ) = ({A,B}, B, {A→ AB,B → A}).

Note that there are no constants, and the above L-system generates

B → A→ AB → ABA→ ABAAB → ABAABABA→ · · · ,

which is exactly the Fibonacci substitution from Section 3.1.3. In fact, the Fibonacci, Thue-Morse
and Tribonacci sequences are defined as substitution rules with an axiom, which makes them all
equivalent to an L-system.

3.4.2. Cantor Set

To generate the Cantor set, take

Lcantor = ({A,B}, A, {A→ ABA,B → BBB}).

If the axiom is called the 0th generation, then for subsequent generations

A→ ABA→ ABABBBABA→ ABABBBABABBBBBBBBBABABBBABA, · · ·

If A means “draw a line of length ln” and B “move ln forward without drawing”, where ln = 3−n,
the L-system above precisely generates the ternary Cantor set in Fig. 3.12a. If n is the amount of
times that the production rules are applied, then the segments A correspond to the black lines in
Fig. 3.12a, and B to the blank spaces in the same figure.

3.4.3. Sierpinski Triangle

Now we come to the first example of an L-system that uses constants. Consider the L-system
given by

Lsierpinski = ({F,G,+,−}, F −G−G, {F → F −G+ F +G− F,G→ GG})

The interpretation of the symbols is as follows.

• F or G: draw one unit forward,

• ±: turn counterclockwise by ±120◦ (2π/3 radians).
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Using this interpretation, the axiom F −G−G is a simple triangle, which is the n = 0 generation.
The difference between F and G is the following: sides G simply double in length in the next
generation, whereas the side F fills the triangle with a smaller one, see Fig. 3.14a. Subsequent
even generations are depicted in Fig. 3.14b.

𝐹

𝐺

𝐺

𝐺

𝐺

𝐺

𝐺

𝐺

𝐺

𝐹

𝐹

𝐹

𝑛 = 0 𝑛 = 1

(a) Generation 0 and 1. (b) Generations n = 2, 4, 6.

Figure 3.14.: The L-system for the Sierpinski triangle. In a), the black dot is the starting point,
red (blue) dots denote + (-), and the dotted lines in n = 1 denote the result of ρ on
the elements G in n = 0.

3.4.4. Fractal Plants

Arguable the most beautiful use of L-systems is the generation of fractal, plant-like structures.
We first show in detail how a plant structure is generated in the fractal binary tree, and then show
a few complicated structures without discussing its L-system.

Consider the L-system given by

Ltree = ({0, 1, [, ]}, 0, {0→ 1[0]0, 1→ 11}).

It is clear that [ and ] are the constants. The interpretation of symbols reads:

• 0: draw a leaf (endpoint of a tree),

• 1: draw a line segment,

• [: save current position and angle, and turn left by 45◦,

• ]: restore position and angle associated to the corresponding [ bracket, and turn right by
45◦.

In the language of abstract data types, the brackets [, ] define a push and pop operation, respec-
tively, on a last-in-first-out data stack. The the axiom and first four generations of the fractal tree
are depicted in Fig. 3.15.

For generating more complicated fractal plant-like structures (see Fig. 3.16), the mechanism of
constant symbols that read/write locations and angles turns out to be an essential tool [52].

Finally, we would like to point out that fractal plant-like structured can be generated by other
means. Examples of those are the Barnsley Fern and the Pythagoras tree. Those are examples
of an iterated function system. These are not necessarily related to L-systems, they rather give
another perspective on generating self-similar structures.

3.5. The Fibonacci Chain

In this section, we will introduce our first quantum mechanical model, the Fibonacci Chain (FC).
We will study the single-particle states for aperiodic 1D tight-binding models.
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Figure 3.15.: Axiom and first four generations of the binary tree (figures from Wikipedia).

Figure 3.16.: Fractal plants (figure from Ref. [53]).

3.5.1. Finite Fibonacci Chain

The system is defined by the tight-binding Hamiltonian

H =

FN∑
n=1

tn
(
|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|

)
, tn =

{
tw if (fN )n = 0,

ts if (fN )n = 1,

with the couplings tn determined by the Fibonacci word fN , where |fN | = FN . Solving the
time-independent Schrödinger equation

H |ψ⟩ = E |ψ⟩ (3.26)

boils down to a linear algebra problem once a basis is chosen. For example if N = 4, we have f4 =
01001. When writing the state |ψ⟩ =

∑FN

n=1 ψn |n⟩ in the position basis {|n⟩}n, the Hamiltonian
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H becomes the matrix

HPBC =


0 t1 0 0 t5
t1 0 t2 0 0
0 t2 0 t3 0
0 0 t3 0 t4
t5 0 0 t4 0

 , HOBC =


0 t1 0 0 0
t1 0 t2 0 0
0 t2 0 t3 0
0 0 t3 0 t4
0 0 0 t4 0

 ,
where we treat both periodic BCs (PBC) and open BCs (OBC). Solving Eq. 3.26 is a problem
of finding the eigenvalues and eigenvectors of the matrices above. Alternatively, one can write
Eq. 3.26 as the discretised version

(Hψ)n = tn−1ψn−1 + tnψn+1, n = 1, . . . , FN , (3.27)

where the basis {|n⟩}n is assumed. Since the Hamiltonians above correspond to a finite open and
closed chain, the spectrum consists of finitely many points. This is fine for studying edge-state
wavefunctions, but to study the gap structure of the energy spectrum we need to study the infinite
Fibonacci chain.

3.5.2. Infinite Fibonacci Chain

If we consider the bi-infinite Fibonacci word f (bi), then the bi-infinite 1D quantum chain has
Hamiltonian

(Hψ)n = tn−1ψn−1 + tnψn+1, n ∈ Z, tn =

{
tw if (f (bi))n = 0,

ts if (f (bi))n = 1,
∀n ∈ Z.

The discretised Schrödinger equation will read

(Hψ)n = Eψn, ∀n ∈ Z, (3.28)

where H is an operator on ψ ∈ l2(Z) := {x ∈ CZ | ∥x∥22 =
∑
x∈Z |x(n)|2 < ∞}, i.e. all square-

summable bi-infinite complex sequences. Often, the bi-infinite chain is approximated by fN as a
periodic crystal with fN defining the couplings in the unit cell. Whereas the finite chain yielded a
discrete spectrum with FN points, we now obtain a spectrum of FN separated energy bands upon
applying Bloch’s theorem [1].

Let us briefly explain how Bloch’s theorem is applied to periodic tight-binding chains. Let us label
each unit cell containing L sites with an integer n ∈ Z. The situation for L = 3 is depicted in
Fig. 3.17. One way to label a site |m⟩ in the chain is by the tensor product |m⟩ = |n⟩ ⊗ |r⟩. The
expression for a general tight-binding Hamiltonian with zero on-site energies then reads

H = −
∑
n∈Z

(
t0 |n− 1⟩ |L− 1⟩ ⟨n| ⟨0|+ |n⟩ ⟨n|

L−1∑
r=1

tr |r − 1⟩ ⟨r|

)
+H.c., (3.29)

where H.c. stands for Hermitian conjugate of the whole expression. Since the Hamiltonian is
periodic in n, one uses the FT

|n⟩ =
∫ π

−π

eikn√
2π
|k⟩ dk, |k⟩ =

∑
n∈Z

e−ikn√
2π
|n⟩

to derive the identity ∑
n

|n− n0⟩ ⟨n| =
∫ π

−π
e−ikn0 |k⟩ ⟨k| dk.
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Figure 3.17.: Labeling of a periodic chain (figure from Ref. [54].)

The above identity is used to rewrite the Hamiltonian Eq. 3.29 as

H = −
∫ π

−π
|k⟩ ⟨k|

(
t0e

−ik |L− 1⟩ ⟨0|+
L−1∑
r=1

tr |r − 1⟩ ⟨r|

)
dk +H.c.,

which can be rewritten using |r⟩ = (|0⟩ , |1⟩ , . . . , |L− 1⟩)T as

H = −
∫ π

−π
|k⟩ |r⟩h(k) ⟨r| ⟨k| dk, (3.30)

where h(k) is an L × L matrix. From Eq. 3.30 we can read off that any eigenstate of H in
momentum space has the form

|ψa⟩ = |ua,k⟩ |k⟩ ,

where a = 1, . . . , L labels the eigenstates |ua,k⟩ of h(k) with eigenvalue (energy) Ea(k). Depending
on H, the energy bands Ea(k) can have the same values for different values of a and/or k. The
study of Ea(k) is commonly referred to as band theory, and is one of the earliest triumphs of
theoretical condensed matter physics.

3.5.3. Spectrum

Bellissard et al. [55] showed that all Hamiltonians on l2(Z) of the form

(Hψ)n = ψn+1 + ψn−1 + λv(n)ψn (3.31)

where v(n) is a Sturmian potential v(n) = χ[1−α,1)(x + nα mod 1) have a “Cantor set of zero
Lebesgue measure” for λ > 0, α /∈ Q. In this section, we will elaborate on what this precisely
means and how this follows from the substitution rules Eq. 3.2. In particular, the spectrum of the
Fibonacci chain will be shown to generally be a multifractal set.

What Bellissard et al. [55] mean by a Cantor set of Lebesgue measure zero is the following. The
spectrum is a subset of R that contains no isolated points, is nowhere dense and has zero Lebesgue
measure, just as the ternary Cantor set in Section 3.3.1. Note that the spectrum need not be the
Cantor set, it simply shares the above three properties. Furthermore, a Cantor set can be mono-
or multifractal, depending on the decimation rules.

To discuss the fractal properties of the spectrum of the Fibonacci chain, we will use the renormal-
isation scheme by Niu and Nori [19] (see Ref. [22] for more details on this scheme). The idea is
to consider ρ = tw/ts << 1, in which limit one can approximate the Nth Fibonacci approximant
Hamiltonian as

HN = (zHN−2 − ts)⊕ (z̄HN−3)⊕ (zHN−2 + ts) +O(ρ4) (3.32)

where z = ρ/2 and z̄ = ρ2. For the Fibonacci chain approximants, we consider the infinitely
extended crystal where each unit cell is the approximant, such that one has energy bands. The
energy bands for N = 0, 1 are both single bands with widths 2ts, 2tw, respectively, and for N = 2
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there are two bands. All other spectra are unions of scaled and shifted versions of these according
to Eq. 3.32. By the same equation, it is clear that different parts of the spectrum (left, middle
or right) scale differently. This is analogous to the multifractal Cantor set in Section 3.3.3. One
would only expect Eq. 3.32 to yield a monofractal if all parts of the spectrum scale with the same
rate, i.e. z1/2 = z̄1/3 or equivalently ρ = 1/8. This turns out to be true only in the renormalisation
regime [17]. Rüdinger and Piéchon [56] showed, using the trace map formalism, that the exact
spectrum is never a monofractal. Finally, it is well-established that the hopping and on-site models
like Eq. 3.31 of the Fibonacci chain are equivalent in the n → ∞ limit [17]. We conclude that
the spectrum of Eq. 3.28 is a nowhere dense set that contains no isolated points, has Lebesgue
measure zero and is multifractal for any ρ.

For future purposes, we note that a renormalisation scheme as done by Niu and Nori [19] is not
possible for any aperiodic chain. For example, Qin et al. [57] applied the idea by Niu and Nori of
defining atoms and molecules to perform renormalisation for the Thue-Morse chain, but showed
that it did not allow for an approximation such as Eq. 3.32 of the Hamiltonian. This was due to
the fact that the atomic/molecular deflation rules did not yield a TM sequence again.

3.5.4. Gap-Labelling Theorem

Mace et al. [22] studied a systematic way of labeling the energy gaps of the Fibonacci chain
spectrum, introduced by Bellissard [58]. This method concerns the integrated density of states
IDOS(E), which is the fraction of energy states below some energy E. Mace showed that

IDOS(E ∈ gap) =
n

1 + α
mod 1,

where n is called the gap label. The derivation of the formula is simplified by using coprime
approximants FN−1/FN to the Fibonacci slope α = 1/ϕ and by the recursive structure Eq. 3.32
realising that each band has equal IDOS. The gap label n ∈ Z orders the gaps in the spectrum in
decreasing width as |n| increases.
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This chapter will motivate why quasicrystals are relevant to study in physics. Additionally, we
give an overview of some experiments that realise quasicrystals.

4.1. Introduction: Relevance of Quasicrystals

Since the introduction function decomposition by Joseph Fourier in 1822 using sinusoidal functions
for a heat problem, the ubiquitous Fourier transform (FT) has become a dominant tool in physics.
For its implementation in physics, one requires translational invariance, or discrete periodicity.
Therefore, the majority of tools developed in physics, being based on the FT, turned translationally
invariant systems into the most widely studied class of systems. For condensed matter, this
translates to regular crystals, where the cornerstone is Bloch’s theorem, which in turn relies on
the FT. Bloch’s theorem tells us that electron wavefunctions are sine waves, i.e. they are extended
throughout the system.

On the other hand, in totally disordered systems there is translational invariance too by isotropy.
Here, the well-known mechanism of Anderson localisation tells us that the electron wavefunctions
are localised, i.e. they are peaked at various locations but zero elsewhere.

Quasicrystals are neither translationally invariant nor disordered. The result is that the wave-
functions are critical, i.e. neither extended nor localised. This makes the quantum properties of
quasicrystals interesting. Because they lack translational invariance, many computational tools
are not available, and it is therefore difficult obtain analytic results for quasicrystals.

The remainder of this chapter introduces a few recent experiments that reproduced some signatures
for quasicrystals that were predicted theoretically. One of the main challenges is that in an exper-
iment, no system is truly infinite. It is therefore the question if theoretically predicted properties
for infinite quasicrystals are still present if only a finite portion of the system is considered.

4.2. Photonic Quantum Simulator

The first physical model of a quasicrystal that we considered, the finite Fibonacci chain from
Section 3.5.1, was realised in an experiment by Baboux et al. [59] in 2017. The setup is a photonic
crystal, where the occupation of each site in the Fibonacci chain is modeled by the presence of a
cavity polariton: a quantum of light-matter (photon-dipole) interaction where a photon polarises
dielectric matter. Since the geometry of the system can be chosen to emulate a quantum chain,
this is an example of a photonic quantum simulator, i.e. a system where the quantum properties
of light injected into the material are exploited to emulate some quantum system.

Baboux et al. generate the Fibonacci word using the alternative method

χj = sgn[cos (2πjσ−1 + ϕ)− cos (πσ−1)],

where σ = (1+
√
5)/2 and ϕ is a degree of freedom called the phason. The Fibonacci quasicrystal

is then constructed by letting the jth site be 0 if χj = 1 and 1 else. The reason for choosing this
construction of the Fibonacci chain is that once can continuously vary ϕ from 0 to 2π and arrive
at the same system. The experimental setup for various values of ϕ is displayed in Fig. 4.1. Note
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Figure 4.1.: The Fibonacci photonic quasicrystal (figure from Ref. [59]).

that the cavity polaritons implement the on-site model of the Fibonacci chain

(Ĥψ)n = t(ψn−1 + ψn+1) + ϵnψn,

where now the hopping parameters t are constant and the on-site energy ϵn is either high or low
according to the Fibonacci word (1 or 0 respectively).

The experiment measures gapped states and reveals their topological properties. To this end, the
emitted radiation, displayed in Fig. 4.2a, is studied in both real and momentum space. From the

(a) Real space and Fourier spectrum.
(b) Energy of the gapped modes q = −1, 2

as the phason varies.

Figure 4.2.: Experimental results (figures from Ref. [59]).

spectra in Fig. 4.2a, one can identify two gapped states. Baboux et al. [59] identify these states
using the momentum space gap label k = π

a (p+qσ
−1), where q is argued to be the gap topological

number. To each of these states |ψq⟩ with q = −1, 2, an energy is associated by Ĥ |ψq⟩ = Eq |ψq⟩.
As the phason ϕ is changed, this energy can vary and this is precisely what is measured and
displayed in Fig. 4.2b, juxtaposed with the theoretical prediction. From Fig. 4.2b, one can count
the amount of times that the energy “winds” around the gap and this corresponds precisely to
the theoretical prediction of the winding number W = 2q.
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This experiment is an example of a quasicrystal realised in experiment where the wavefunctions,
the spectrum and the topological properties of certain states can be studied. For an extensive
review on the field of topological photonic materials see Ozawa et al. [60].

4.3. Ultracold Atom Quantum Simulator

Another widely used method of implementing quantum models are optical traps for ultracold
atoms. Suppose a quantum system of either bosons or fermions is described by a potential V (r).
The idea of quantum simulation is to artificially create a potential landscape that reproduces V (r),
and load the appropriate quantum particles into the potential landscape. This section deals with
optical lattices, i.e. the potential landscape is a field of light and the quantum particles are atoms
which are ultracold such that their quantum behaviour dominates. For an extensive review on
the field of cold atoms in optical lattices, see Bloch et al. [61]. We will focus on experimental
realisations of aperiodic optical lattices, such as the fivefold symmetric lattice by Corcovilos et
al. [62] and the eightfold by Schneider et al. [6], which is similar to the Ammann-Beenker tiling
from Section 3.2.5.

Before discussing a specific experiment, we briefly explain the principles of an optical trap for cold
atoms. Consider a plane wave electric field

Ek(x, t) = En̂ei(k·x−ωt), (4.1)

where n̂ is the polarisation unit vector, E is the electric field strength, k the wavevector and ω
its angular frequency. If we superimpose another plane wave on top of Eq. 4.1 that propagates in
exactly the opposite direction, we obtain

E(x, t) = Ek(x, t) +E−k(x, t) = 2En̂ cos(k · x)e−iωt,

i.e. a standing wave. Using the phasor representation, time-averaged intensity reads

I(x) =
1

2Z0

〈
|E(x, t)|2

〉
= 2E2 cos2(k · x),

where Z0 is the vacuum impedance. To use the intensity profile as potential landscape, one can
put neutral particles with nonzero dipole moment into the system. The force resulting from the
potential is the dipole force [61]

F ∝ ∇I(x),

where ∇ is the gradient operator. The attractive or repulsive nature of the force is dependent
on the laser frequency ω and on the atomic resonant frequency ω0. Often, one chooses the laser
frequency such that the force is attractive towards the peaks of the intensity (ω < ω0). This allows
one to re-interpret the intensity I(x) as the potential (up to a constant) of an atom with nonzero
dipole moment in the electric field. The challenge is now to generate the desired intensity I(x)
that resembles some Hamiltonian by letting electric fields interfere.

Corcovilos et al. [62] constructed a fivefold symmetric 2D optical potential by taking five 850nm
laser beams that nearly propagate in parallel. These five beams are equally placed around a circle
and point slightly inwards towards the common axis, see Fig. 4.3a. The setup used by Schneider to
create the eightfold quasicrystal is slightly different, as it uses a large angle between the beams (see
Fig. 4.3b). In the region where they intersect, a quasicrystalline lattice is created with eightfold
symmetry.

The experimental result of the fivefold quasicrystal where dark regions indicate potential wells in
Fig. 4.4a, matches very well their numerical simulation. Additionally, the relative phases of the
five laser beams can be tuned at will. By changing two of these, e.g. ϕ1 and ϕ2, and varying them
in a loop in configuration space, see Fig. 4.4b, a potential well is displaced in the lattice. This
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(a) Fivefold quasicrystal by Corcovilos et al. [62].
(b) Eightfold quasicrystal by Schneider et al.

[6].

Figure 4.3.: Experimental setups (figures extracted from Refs. [6, 62]).

(a) Real space potential landscape. (b) Geometric pumping.

Figure 4.4.: Experimental results (figures from Ref. [62]).

phenomenon is called geometric pumping and allows the experimentalist to force transport in an
optical lattice by periodically changing relative phases.

Optical lattices are useful simulating many quantum phenomena, of which emulating quasicrystals
is merely an example. To name a few [61]: Bose-Einstein condensation, superfluid to Mott in-
sulator transition, dynamics near quantum phase transitions, rotating quantum gases, BCS-BEC
crossovers and out-of-equilibrium quantum dynamics.

4.4. Twisted Bilayer Graphene

The last experimental realisation of quasicrystals that we discuss is not a quantum simulator, in
the sense that it provides a flexible way of implementing various Hamiltonians. Instead, it is a
byproduct of the modern and popular field of twisted bilayer graphene. Before discussing the way
it implements quasicrystals, we explain the basics of twisted bilayer graphene.

The study of graphene has been around in the 20th century as a byproduct of research on graphite,
a material that is known to be a stack of graphene layers held together by Van der Waals forces.
However, it was not until 2004 that graphene was correctly isolated and fully characterised by
Geim and Novoselov, for which they received the Nobel Prize in physics in 2010. Graphene is a
2D layer of carbon atoms that form a honeycomb lattice. In Fig. 4.5a, a finite part of a graphene
sheet is shown. Here, both white and blue atoms are carbon atoms, but the colouring is applied
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(a) Unit cell (figure from Ref. [63]).
(b) The Brillouin zone with energy

bands (figure from Wikipedia).

Figure 4.5.: Graphene in real- and momentum space.

to emphasise that the unit cell of the graphene lattice consists of two inequivalent carbon atoms
because they have different neighbors. The vectors a1 = (1/2,

√
3/2)Ta0,a2 = (1/2,−

√
3/2)Ta0

span the Bravais lattice, which is triangular in this case with lattice constant a0. For completeness,
in Fig. 4.5b, the Brillouin zone (blue) is shown with the energy bands (grey). At six points in
momentum space, the bands touch as tips of a cone. These points are called Dirac cones, for
the behaviour of electrons resemble relativistic electrons. There are actually just two inequivalent
Dirac cones, indicated by either a white or black dot. These arise because the unit cell contains
two atoms. All three copies of each colour are then equivalent by the threefold symmetry of the
triangular lattice.

One might wonder why the unit cell cannot simply contain one carbon atom and define the
honeycomb structure as the lattice? This question is easily answered by the observation that
there exist no primitive vectors a1,a2 that can produce each point of the honeycomb as a linear
combination of the primitive vectors.

Suppose that one stacks two layers of graphene in a way that a blue atom sits on top of a white
atom in Fig. 4.5a. Unlike in graphite, let the top layer twist with an angle θ around some blue
atom sitting on top of a white one, see Fig. 4.6. This material is commonly referred to as twisted
bilayer graphene (TBG).

One can see that an emergent pattern, a so-called Moiré pattern, is formed. That is again a
honeycomb lattice, at a much larger scale. In fact, the angles θi at which different Moiré patterns
form can be labeled by an integer [65] and computed by

cos θi =
3i2 + 3i+ 1/2

3i2 + 3i+ 1
, i = 0, 1, 2, . . . .

Furthermore, the lattice constant of the Bravais lattice of the Moiré pattern is given by
√
3i2 + 3i+ 1a0.

These angles are just the angles that give a commensurate bilayer, in the sense that the stacked
lattice is periodic. Any other angle will also give rise to a Moiré pattern, but the lattice con-
figuration is not exactly periodic. Fig. 4.8 shows an example of this with incommensurate angle

46 Multifractal Properties of Tribonacci Chains



CHAPTER 4. QUASICRYSTALS IN EXPERIMENTS

Figure 4.6.: Twisted bilayer graphene and its Moiré pattern (figure from Ref. [64]).

θ = 30◦. This is precisely what gives rise to quasicrystals in TBG, which in this case is a dodecago-
nal quasicrystal [66]. Moreover, this quasicrystal has a manifest sixfold rotational symmetry in
real space. In Fig. 4.8b, six nonparallel lines are drawn in the same way as one does for the pen-
tagrid method mentioned in Section 3.2.5. The correspondence between nonparallel lines and real
space symmetry shows a remarkable resemblance to the pentagrid for the Penrose tiling. Finally,
to confirm that TBG indeed produces true quasicrystals as defined in Section 2.3, one needs to
perform diffraction experiments. From a mathematical perspective, it is not yet established that
TBG structures can arise from a CPS.

It turns out that there exist incommensurate magic angles in TBG, at which the material has
remarkable properties. These properties mainly concern the geometry of the band structure. Most
notably, flat bands and superconductivity are hallmarks of TBG [63]. Another noteworthy feature
of TBG is the similarity of its phase diagram with high-temperature (cuprate) superconductors.
This resemblance could be pure coincidence or indeed give insights into the unknown physics of

(a) i = 0. (b) i = 1. (c) i = 2. (d) i = 3.

Figure 4.7.: TBG at commensurate angles θi.
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(a) Aperiodic Moiré pattern. (b) A grid construction.

(c) Dodecagonal quasicrystal (figure
from Ref. [66]).

Figure 4.8.: TBG at the incommensurate angle of 30◦.

high-temperature superconductors. Andrei et al. [63] point out that this debate is still to be
settled.
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5. The Tribonacci Chain1

In Section 3.5, a quantum chain was studied that is based on the Fibonacci substitution from Sec-
tion 3.1.3, which was shown in Section 3.2.2 to yield a quasicrystalline structure. It is a model that
features critical eigenstates, and the Fibonacci substitution gives it a rich structure: multifractal
spectrum [20], multifractal wavefunctions [21], renormalisation via the Fibonacci substitution [19],
gap-labelling [58] and conumbering [23]. See the review paper by Jagannathan [17] for an overview
of the Fibonacci chain.

The Fibonacci chain is a binary chain, that is, it contains two different hopping parameters, or
equivalently, on-site energies [19]. There are many well-studied binary chains based on substitution
rules, such as the (generalised) Thue-Morse chain [67, 68], the metallic mean chains [69, 70] and
the Rudin-Shapiro chain [71, 72], to name a few. The advantage is that binary systems can be
parameterised by one parameter. For hopping models, this parameter ρ = t0/t1 is the ratio
between the two hopping parameters t0 and t1. For on-site models, it is the so-called resolution
ρ = |ϵ0 − ϵ1|/t, where ϵ0, ϵ1 are the two different on-site energies and t is a constant hopping
strength between adjacent sites.

In this chapter we introduce a new quantum chain, which is based on a substitution over an
alphabet of three letters, the Tribonacci substitution from Section 3.1.5. Even though we deviate
from the simpler case of a binary chain, we will see that similar techniques, such as renormalisation,
can be applied. Additionally, we will see that the internal space of the Tribonacci CPS, the Rauzy
fractal, plays a similar role as the conumbering scheme for the Fibonacci chain. The work in this
chapter has lead to a publication, see Ref. [27], which summarises the most important results.

5.1. The Model

Analogous to the Fibonacci quasicrystal, we can construct a quantum chain using the Tribonacci
substitution. Since the Tribonacci word contains three letters 0, 1, 2, we require three bonding
strengths t0, t1, t2 for the hopping model. Using the bi-infinite Tribonacci word

· · ·w−2w−1|w0w1 · · · =WT |WT ,

we define the hopping Tribonacci Chain (HTC) Hamiltonian as

H =
∑
n∈Z

twn |n+ 1⟩ ⟨n|+H.c.. (5.1)

One can also define a finite hopping chain with periodic boundary conditions from a Tribonacci
approximant WT

N , defined by

HN =

TN−1∑
n=0

twn
|n+ 1 mod TN ⟩ ⟨n|+H.c., (5.2)

for which the energy spectrum is plotted in Fig. 5.1a. The model can be parameterised using
two parameters, for instance t0/t2 and t1/t2. Inspired by Niu and Nori [19], we use only one
parameter ρ for the system by setting t0/t1 = t1/t2 = ρ. More generally, we denote H(p,q) as the

1This chapter is original work, and lead to the publication Ref. [27].
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Tribonacci Hamiltonian with t0/t1 = ρp, t1/t2 = ρq, where p, q are positive real numbers. It is
common practice to choose one energy scale and write all other parameters in units thereof. In
this case, we could write t0/t2 = ρp+q and t1/t2 = ρq. The reason for defining p, q in this way is
that the formulas of the renormalisation process in Section 5.2 become more intuitive to handle.
Also analogous to Niu and Nori [19], one defines atoms/molecules based on the local environment
of a lattice site. The atoms are sites that are coupled on both sides with t0. Molecules of type 1
consist of two sites coupled by t1 and molecules of type 2 are two sites coupled by t2. By the nature
of the Tribonacci word WT , molecules are surrounded by a t0 bond on both sides. Physically, this
means that the chain splits up into isolated dimers (the molecules of type 1 and 2), and isolated
monomers (atoms) upon setting t0 = 0.

0 500 1000 1500 2000 2500 3000
State number

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

En
er

gy
 E

/t 2

(a) The HTC with ρ = 0.2.
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(b) The OTC with c = 5.

Figure 5.1.: The energy spectrum for both the HTC and OTC of T13 = 3136 lattice sites and
periodic boundary conditions.

The HTC Hamiltonian possesses a symmetry called chiral (or sublattice) symmetry. The physical
interpretation of this symmetry is that the system can be split up into two non-interacting systems
that mutually interact. In the case of Eq. 5.1, the system can be split up into even and odd num-
bered sites, where it is clear that even (odd) sites do not interact. The mathematical formulation
of chiral symmetry is that there exists an operator Γ such that ΓHΓ = −H and Γ2 = 1, which in
this case reads

Γ =
∑
n∈Z
|2n⟩ ⟨2n| −

∑
n∈Z
|2n+ 1⟩ ⟨2n+ 1| .

A direct consequence of chiral symmetry is a symmetric spectrum around E = 0. This can be seen
by taking some solution H |ψ⟩ = E |ψ⟩, then |ϕ⟩ = Γ |ψ⟩ is also a solution since H |ϕ⟩ = HΓ |ψ⟩ =
−ΓH |ψ⟩ = −E |ϕ⟩. So for every energy E, there is a corresponding state with energy −E. See
Appendix B.1 for more details on chiral symmetry and its connection to tridiagonal matrices.

We can also define an on-site model using Tribonacci modulation of on-site potentials, with a
constant tunneling parameter t between sites. The on-site Tribonacci Chain (OTC) Hamiltonian
reads

Ho =
∑
n∈Z

ϵwn |n⟩ ⟨n| − t
∑
n∈Z
|n+ 1⟩ ⟨n|+H.c.. (5.3)

One can also define a finite on-site chain with periodic boundary conditions from a Tribonacci
approximant WT

N , defined by

Ho
N =

TN−1∑
n=0

ϵwn
|n⟩ ⟨n| − t

(
|n+ 1 mod TN ⟩ ⟨n|+H.c.

)
, (5.4)

for which the energy spectrum is plotted in Fig. 5.1b. Note that w.l.o.g. we can set ϵ0 = 0, and
the model can be parameterised using two variables: c1 = (ϵ1 − ϵ0)/t and c2 = (ϵ2 − ϵ0)/t such
that c2 − c1 = (ϵ2 − ϵ1)/t. In the future we will be interested in the weak coupling regime, in
other words |c1|, |c2|, |c2 − c1| ≫ 1. One has a lot of freedom in choosing such c1, c2. We use the
particular choice of c1 = c2/2 = c ≫ 1 to compare the on-site model with the hopping model.
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Later, we will see that the equivalence is not dependent on the choice of parameterisation of the
on-site model.

Finally, we would like to point out that there exists a quasiperiodic 2D tiling, the Rauzy tiling,
which is based on the Tribonacci numbers and is a cut-and-project set from a 3D space [73].
Several physical properties of tight-binding models on these lattices have been studied [74, 75],
in particular the effect of a magnetic field [13, 14, 76]. The generalized Rauzy tiling extends this
construction to arbitrary dimension, being a CPS from a d-dimensional periodic lattice to a (d−1)-
dimensional real space quasicrystal, and this family of tilings can be viewed as a generalization of
the Fibonacci chain [73]. In the light of these works, the Tribonacci chain generalises the Fibonacci
chain in the complementary direction. Instead of keeping the codimension of the CPS fixed at
one, we keep the real space dimension fixed at one and increase the dimensionality of the internal
space of the CPS.

5.1.1. Non-perturbative methods: Trace Map

For quantum chains that are based on substitution rules, the method of trace maps can be used to
derive exact results for the spectrum and wavefunctions. Baake et al. [77] point out that for binary
chains, the machinery of trace maps is well-understood. They also argue that generalisation to
substitutions with more than two letters is not straightforward. In this section, we give a short
introduction to the method of trace maps and derive the trace map dynamical system for the
Tribonacci chains.

Let |ψ⟩ be a solution to the Schrödinger equation H |ψ⟩ = E |ψ⟩, with E ∈ R and |ψ⟩ =∑
n∈Z ψn |n⟩, where ψ := (ψn)n∈Z ∈ l2(Z) := {x ∈ CZ | ∥x∥22 =

∑
n∈Z |x(n)|2 < ∞}, i.e. all

square-summable bi-infinite complex sequences. This can be used to write the Schrödinger equa-
tion for the HTC Eq. 5.1 as

(Hψ)n = tn−1ψn−1 + tnψn+1 = Eψn, (5.5)

and similarly for the on-site model Eq. 5.3

(Hψ)n = ϵnψn − tψn−1 − tψn+1 = Eψn. (5.6)

If one defines Ψn = (ψn, ψn−1)
T , then Ψn+1 for the hopping model can be obtained as

Ψn+1 = TnΨn, Tn =

(
E/tn −tn−1/tn
1 0

)
, (5.7)

where Tn can be found by solving Eq. 5.5 for ψn+1. One defines the matrixMn = Tn−1Tn−2 · · ·T0,
such that Ψn = MnΨ0. Because of Eq. 3.6, the matrices Mn themselves obey the recurrence
relation Mn+1 = Mn−2Mn−1Mn. By taking a trace of the matrices Mn, hence the name trace
map, one can study recurrence relations of these traces that describe the system. The trace map
can be used to describe the spectrum: as n→∞, the values of E that make the system not diverge,
belong to the spectrum [78]. For a finite system, the boundary conditions at the beginning and
end of the chain, ψ0/ψ1 = t0/E and ψN1/ψN−2 = tN−2/E, determines the spectrum uniquely.

Our partial result for the trace map dynamical system for the Tribonacci chain reads

xn+1 = 2xnyn − xn−3, (5.8)

yn+1 = 2xnxn−1 − yn−1, (5.9)

where xn = Tr{Mn}/2, yn = Tr{Mn−2Mn−1}/2. To prove this, we require the Cayley-Hamilton
theorem for SL(2,C) matrices, which implies for any A ∈ SL(2,C)

A2 = Tr{A}A− Id, (5.10)

A+A−1 = Tr{A} Id⇒ Tr{A−1} = Tr{A}. (5.11)
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For the Tribonacci transfer matrices we have the relations

Mn =Mn−3Mn−2Mn−1 ⇒M−1
n−3 =Mn−2Mn−1M

−1
n

Mn+1 =Mn−2Mn−1Mn,

which can be added together to yield

Mn+1 =Mn−2Mn−1

(
Mn +M−1

n

)
−M−1

n−3. (5.12)

Now, taking the trace of Eq. 5.12 and applying Eq. 5.11, we obtain

Tr{Mn+1} = Tr{Mn−2Mn−1}Tr{Mn} − Tr{Mn−3},

which is exactly the first relation in Eq. 5.8. The second equation is easier to obtain. By adding
MnMn−1 to both sides of the equation

MnM
−1
n−1 =Mn−3Mn−2,

one obtains
MnTr{Mn−1} =Mn−3Mn−2 +MnMn−1, (5.13)

where we used Eq. 5.11 in the first term. Taking the trace of Eq. 5.13, and using the cyclic
property of the trace, one obtains

Tr{Mn−1Mn} = Tr{Mn}Tr{Mn−1} − Tr{Mn−3Mn−2},

which is exactly the second relation in Eq. 5.8.

5.1.2. Non-Perturbative Methods: Zero Energy Wavefunction

Before we discuss the perturbative treatment of the HTC Eq. 5.1, we will show how to solve the
E = 0 state exactly.

Now assuming E = 0 is an eigenvalue, by Eq. 5.5 the wavefunction must satisfy

tnψn + tn+1ψn+2 = 0, ∀n.

If we label even (or odd) sites 2m = n with an integer m, we can write

ψ2(m+1) = −ρA(m)ψ2m, A(m) =



+2 (02)

+1 (01)

0 (00)

−1 (10)

−2 (20)

,

analogous to Macé [54]. The value of A(m) depends on t2m/t2m+1 = ti/tj , where ij can read
00, 01, 10, 02, 20, i.e. the possible factors of WT of length two. In the case of the bi-infinite
chain Eq. 5.1, the E = 0 is doubly degenerate, since the odd and even eigenstates are linearly
independent solutions. By setting ψ0 = 1, the unnormalised wavefunction reads

ψ2m = (−1)meh(m) log ρ, h(m) =

m−1∑
i=0

A(i),

in accordance with the result by Kalugin and Katz [79]. They found that the many-body ground
state at half-filling for a general quasicrystal has the form

ψm = C(m)eκh(m),
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where κ ∈ R and m labels the sites of the quasicrystal, which need not be one-dimensional.

In the case of a finite chain, the existence of an E = 0 state depends on the parity of the chain.
Consider a chain with N sites, labeled by n = 0, 1, . . . , N − 1. The E = 0 state would demand

(Hψ)0 = t0ψ1 = 0, (Hψ)N−1 = tN−2ψN−2 = 0.

From ψ1 = 0, we can already see that the wavefunction must be zero on all odd sites. Additionally,
the wavefunction must be zero on sites with the same parity as N − 2. If N were even, this would
mean ψ = 0, which means a E = 0 state cannot exist. Only if N is odd, we have one E = 0
state, which is consistent with the chiral symmetry of finite hopping Hamiltonians, as explained
in Appendix B.1. This wavefunction has only support on the even sites n = 0, 2, . . . , N − 1.

5.1.3. Multifractality

In this section, the multifractal properties of the HTC are studied and compared to those of the
Fibonacci chain, which are mainly taken from Ref. [54]. The Fibonacci chain was discussed in
Section 3.5.1, and we are now interested in the finite chain with periodic boundary conditions

HF
N =

FN−1∑
n=0

twF
n
|n+ 1 mod FN ⟩ ⟨n|+H.c., (5.14)

where the hopping parameters t0, t1 are related by t0/t1 = ρ and wFn denotes the nth letter of
the infinite Fibonacci word. Finally, the numerical method to reliably approximate multifractal
dimensions is explained in Section 3.3.3.

The first step in the analysis is numerical computation of the multifractal dimension Dq, given by
Eq. 3.24, for both the Fibonacci and the HTC. The results are plotted in Fig. 5.2(a), with the
particular choice of ρ = 0.2, such that the results can be compared with Ref. [54].

From Fig. 5.2(a), one can conclude that the Tribonacci has a multifractal energy spectrum, with
a generally lower fractal dimension than the Fibonacci chain. This can be seen as a consequence
of the fact that the Tribonacci chain’s renormalisation scheme contains factors with larger powers
of ρ (see Section 5.2.2) than the Fibonacci chain, resulting in stronger scaling.

As done for the Fibonacci chain in Ref. [22], one can compute the average multifractal dimension
Dψ
q for the wavefunctions as well. The results for ρ = 0.2 are plotted in Fig. 5.2(b). Again, the

conclusion is that the multifractal dimension is generally lower, and decays faster as a function of
q.

From the point of view of the quantum chain, it is not strange that the multifractal dimension of
the HTC wavefunctions is smaller. The HTC contains weaker bonds of O(ρ2) than the Fibonacci
chain, which has O(ρ) as weakest bond strengths. These weaker links in the HTC make it more
difficult for particles to traverse the chain. Since it is known that the average multifractal dimension
is related to diffusive properties in the system [80,81], a lower value for the HTC is expected. An
averaged multifractal dimension strictly between zero and one is also an indicator of critical states
and Anderson localisation [81], but one should study the inverse participation ratio as done in
Ref. [82] to strengthen this claim. The study of the inverse participation ratio is a topic for
further research.

5.2. Perturbative Renormalisation

A perturbative renormalisation (RG) analysis of the HTC Eq. 5.1 and OTC Eq. 5.3 can be carried
out, analogous to the one performed by Niu and Nori [19] for the Fibonacci chain. We start in
Section 5.2.1 by working out the self-similar properties of the Tribonacci word, and how these
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a) b)

Figure 5.2.: Multifractal properties of the Fibonacci chain Eq. 5.14 and the HTC, at ρ = 0.2. (a)
The multifractal dimensions of the energy spectrum for the Fibonacci chain HF

19 and
the HTC H13. The size of the chain is chosen such that they have approximately
the same maximum number of points in Ki in Eq. 3.24. (b) The average multifractal
dimensions of the eigenstates of the Fibonacci chain HF

14 and the HTC H10. The size
of the chains is chosen such that they have approximately the same number of lattice
sites.

lead to a perturbative RG scheme for the HTC and OTC. Sections 5.2.2 and 5.2.3 carry out the
calculations that lead to the perturbative RG schemes Eqs. 5.33 and 5.36 for the HTC and OTC,
respectively. Finally, in Section 5.2.5 the RG schemes are used to prove that the HTC and OTC
are equivalent models in the limit of applying the RG scheme infinitely many times.

5.2.1. The Renormalisation Scheme

A key property of the Tribonacci WT word is its self-similarity [83]. Take any finite string s =
s1 · · · sN of length N that occurs somewhere in WT . We say that s occurs at position i in WT if
s1 · · · sN = wi · · ·wi+N . Let i1, i2, . . . denote the places where s occurs in WT . Then, the words
rj = wij · · ·wij+1

between occurrences of s have useful properties. Firstly, for any choice s, the

word rj ∈ {r(0), r(1), r(2)} takes one of three values. Secondly, if we label r(l) such that r(0) occurs
most often, r(1) second most often and r(2) least often, then the map κ : r(l) 7→ l. where l = 0, 1, 2,
maps the string r1r2 · · · back to WT . In other words

κ(r1)κ(r2) · · · =WT , (5.15)

where ri ∈ {r(0), r(1), r(2)} are the words between subsequent occurrences of s in WT . This also
works if s occurs in a Tribonacci approximant WT

N . By applying periodic boundary conditions
when determining rj , the map κ results in

κ(r1)κ(r2) · · · =WT
N−k, (5.16)

where k depends on the choice of s. Eqs. 5.15 and 5.16 are the foundation of the perturbative RG
scheme presented in this section, for which the proof is given in Section 5.2.4.

For the RG scheme, it is convenient to consider the Nth HTC approximant Eq. 5.2. Furthermore,
the Hamiltonian is split up in two parts

HN = H0,N +H1,N , (5.17)

where H1,N contains only the terms with a t0 hopping, such that H0,N can be regarded as the
unperturbed Hamiltonian. Note that H0,N has only five highly degenerate energy levels E =
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Table 5.1.: For WT
N and particular strings s = 0, 1, 2, 00, the occurrences between s can be one of

r(i), and map to WT
N−k under the map κ : r(i) 7→ i, i = 0, 1, 2.

s r(0) r(1) r(2) maps WT
N to

0 1 2 ∅ WT
N−1

1 020 00 0 WT
N−2

2 010010 01010 010 WT
N−3

00 10201010201 102010201 10201 WT
N−4

0,±t1,±t2. The E = 0 states are the atoms, which are isolated sites, corresponding to 00 in WT .
Type-1 molecules are the E = ±t1 states, corresponding to 010 in WT . These are isolated dimers,
consisting of two neighboring sites coupled by a t1 bond, on which an eigenstate can either bond
(E = t1) or anti-bond (E = −t1). Similarly, the E = ±t2 states correspond to 020 in WT , and
are called type-2 molecules.

Upon setting t0 nonzero, the atoms/molecules start to interact. If one considers one type of atom
or molecule as a lattice site, one can compute the effective coupling between subsequent sites using
Brillouin-Wigner perturbation theory. Fig. 5.1a depicts the spectrum of Eq. 5.2, where one can
see five branches around E = 0,±t1,±t2 that would become fully degenerate upon setting t0 = 0.

Now, we explain the simplest case, the type-1 molecule, in detail. The procedure for the other
bonds is exactly the same, but with longer computations. Consider the Tribonacci approximant

WT
6 = 01

r1
0201

r2
001

r3
020

r4
101

r5
0201

r6
001

r7
0201

r8
0201

r9
001

r10
020

r11
101

r12
0201

r13
0. (5.18)

The first step is to tabulate all words ri occurring between 1’s in W6, starting after the first
occurrence of 1, and considering periodic boundary conditions. The possibilities are 020, 00 and
0, which occur 7, 4 and 2 times, respectively. Therefore

{r} = {r1 = r(0), r2 = r(1), r3 = r(0), . . . , r13 = r(1)},
r(0) = 020, r(1) = 00, r(2) = 0.

(5.19)

Finally, upon applying the map κ : r(l) 7→ l, the Tribonacci approximant WT
4 is obtained as

WT
4 = κ(r1)κ(r2) · · ·κ(r13) = 0102010010201, (5.20)

which has k = 2 in Eq. 5.16. The procedure in Eqs. 5.18, 5.19, and 5.20, which is the s = 1 case,
can be carried out for any s. This is done for s = 0, 1, 2, 00 in Table 5.1. We note that if open
boundary conditions are enforced on the approximantsWT

N , the last word r13 would be dropped in
Eq. 5.18, resulting in WT

4 with the last symbol removed. Since the last symbol of WT
N is not used

in the HTC (OTC) Eq. 5.1 (Eq. 5.3) when enforcing open boundary conditions, the RG scheme for
the Tribonacci word works equally well for the Tribonacci chain with open and periodic boundary
conditions.

To proceed with the renormalisation scheme, consider H0,N , which is Eq. 5.2 with t0 = 0. Since
each occurrence of 1 or 2 in any Tribonacci word is both preceded and followed by a 0, the chain
consists of non-interacting atoms and molecules, which results in the energy spectrum

σ(H0,N ) = {−t2,−t1, 0, t1, t2}. (5.21)

The amount of t2 bonds is TN−3 and the amount of t1 bonds is TN−2. Therefore, the energies
E = ±t2 and E = ±t1 are each TN−3-fold and TN−2-fold degenerate, respectively. All other
TN − 2TN−2 − 2TN−3 = TN−4 states have E = 0, which is exactly the amount of atoms in the
approximant chain. Upon setting t0 > 0, the degeneracies will be lifted and five energy bands
form, one around each value in the spectrum Eq. 5.21. As we work in the perturbative limit, we
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can keep t0/t1 ≪ 1 such that bands from two different values from the unperturbed spectrum do
not approach each other. Ultimately, this motivates us to look for an approximation where

HN ≈ (H−t2 − t2)⊕ (H−t1 − t1)⊕Ht0 ⊕ (Ht1 + t1)⊕ (Ht2 + t2), (5.22)

where each individual Hamiltonian is unknown and has |σ(H(·))| ≪ t1.

We will now show how the self-similarity of the Tribonacci words can be applied to the Hamiltonian.
For this, we focus on the first four columns of Table 5.1. At t0 = 0, we denote an eigenstate of
H0,N as |E, i, t0 = 0⟩, where E = ±t2,±t1, 0 and i labels the ith occurrence of an atom/molecule
on which the eigenstate is localised. We assume that these eigenstates vary continuously with t0,
which they do since the degeneracies in the spectrum are lifted for t0 > 0. Upon setting t0 > 0, the
isolated atoms and molecules start to couple, and we can compute the generally nonzero elements
⟨E, i, t0|HN |E′, i′, t0⟩. The key idea of the renormalisation scheme is to define five new chains
that together form the original HTC. These are:

• The atomic chain. Here, the lattice sites are the 00-atoms in HN and the couplings between
them are t00i = ⟨E = 0, i, t0|HN |E = 0, i+ 1, t0⟩. It has no on-site energy terms. This chain
has TN−4 sites and periodic boundary conditions.

• The type-1 molecular bonding chain. The lattice sites are the 010 molecules and their
adjacent coupling is t1i = ⟨E = t1, i, t0|HN |E = t1, i+ 1, t0⟩. Additionally, the chain has
on-site energies ϵi = E = t1. It has TN−2 sites and periodic boundary conditions.

• The type-1 molecular anti-bonding chain. This is the same as the molecular 1 bonding chain,
but now with E = −t1.

• The type-2 molecular bonding chain. The lattice sites are the 020 molecules and their
adjacent coupling is t2i = ⟨E = t2, i, t0|HN |E = t2, i+ 1, t0⟩. Additionally, the chain has
on-site energies ϵi = E = t2. It has TN−3 sites and periodic boundary conditions.

• The type-2 molecular anti-bonding chain. This is the same as the molecular 2 bonding chain,
but now with E = −t2.

Up to now, we have made no approximation, and one can check that all chains combined describe
all 2TN−2+2TN−3+TN−4 = TN states of HN . The reason to start using perturbation theory from
now on, is that |E, i, t0⟩ is unknown for t0 ̸= 0. Using perturbation theory, we will see in Section

5.2.2 that t
(·)
i will depend only on the couplings connecting the subsequent atoms/molecules. For

each chain, there are exactly three different strings of couplings as dictated by Table 5.1, which
are visualised in Fig. 5.3, where a single line denotes a t0 coupling, double line a t1 and a triple
line a t2. Since we have shown, by constructing Table 5.1, that these strings of couplings map to
a Tribonacci word themselves, we can conclude that each of the five atomic/molecular chains is
a HTC with unknown t0, t1 and t2. The perturbative expression of HN in terms of five different
HTCs, with different hopping parameters and on-site energies, allows us to improve the ansatz in
Eq. 5.22 to

HN ≈ (z2H
(p2,q2)
N−2 − t2)⊕ (z1H

(p1,q1)
N−3 − t1)⊕ z0H(p0,q0)

N−4 ⊕ (z1H
(p1,q1)
N−3 + t1)⊕ (z2H

(p2,q2)
N−2 + t2),

(5.23)

where zi, pi and qi for i = 0, 1, 2 remain to be determined from perturbation theory.

5.2.2. Brillouin-Wigner Perturbation Theory for the Hopping Model

This section explains how perturbation theory can be applied to HN to compute the values of zi, pi
and qi in the ansatz Eq. 5.23. Canonical Rayleigh-Schrödinger time-independent perturbation
theory cannot be applied here because of the degeneracy of the H0,N energy levels. This problem
also arose in the case of the Fibonacci chain, for which Brillouin-Wigner perturbation theory
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(a) Molecular-1 chain segments. (b) Molecular-2 chain segments.

(c) Atomic chain segments.

Figure 5.3.: Atomic and molecular chains.

(BWPT) was used. The framework of BWPT is now briefly introduced, after which we apply it
to the HTC. We start by writing the Hamiltonian as

H = H0 +H1,

where H0, H1 are the unperturbed and perturbing part, respectively. Denote Q as the projection
operator on the eigenspace of E0, which is spanned by all |ψ0⟩ such that H0 |ψ0⟩ = E0 |ψ0⟩. The
goal is to derive some effective Hamiltonian Heff that agrees with H on Q, for each of the five
unperturbed energy levels E0 = ±t2,±t1, 0.

We start by fixing some |ψ⟩ , E that satisfy H |ψ⟩ = E |ψ⟩. Additionally, define P as

P = Id−Q,

i.e. the projection orthogonal to Q. Rewriting the Schrödinger equation we obtain

(E −H0) |ψ⟩ = H1 |ψ⟩ . (5.24)

Using Eq. 5.24, one can check that

P |ψ⟩ = P
1

E −H0
H1 |ψ⟩ (5.25)

holds. We denote the inverse of an operator O as O−1 = 1
O for clarity in future computations.

By noting that H0P = PH0 such that

(E −H0)P |ψ⟩ = PH1 |ψ⟩ , (5.26)

and using P 2 = P and Eqs. 5.24 5.26, one can check that the following equalities:

P |ψ⟩ = P
1

E −H0
H1 |ψ⟩ =

1

E −H0
PH1 |ψ⟩ = P

1

E −H0
PH1 |ψ⟩ . (5.27)

Note that 1
E−H0

is ill-defined (division by zero) on the kernel of P , so every time one needs to

find an expression for P 1
E−H0

, the well-defined expression for 1
E−H0

P can be used instead. Using
P and Q we write |ψ⟩ as

|ψ⟩ = (Q+ P ) |ψ⟩ = Q |ψ⟩+ P
1

E −H0
H1 |ψ⟩ . (5.28)

Realising that Eq. 5.28 is a self-consistent equation for |ψ⟩, one can sum all the terms that arise
from iterating that equation to get

|ψ⟩ =

[ ∞∑
n=0

(
P

1

E −H0
H1

)n]
Q |ψ⟩ . (5.29)
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To obtain an expression for Heff, one needs to multiply Eq. 5.29 with QH which yields

EQ |ψ⟩ =

[
QH0 +QH1

∞∑
n=0

(
P

1

E −H0
H1

)n]
︸ ︷︷ ︸

Heff

Q |ψ⟩ .

Using Q2 = Q, the expression for Heff can be written as

Heff = QH0Q+QH1

[ ∞∑
n=0

(
P

1

E −H0
H1

)n]
Q. (5.30)

Note that during the whole derivation, there was no need to pick a certain unperturbed energy
E0, which is strictly needed to define the projectors P,Q. Suppose one now chooses some E0,
one might wonder what value to insert for E, which is the unknown energy of the full system. It
turns out that the energy E0 of the unperturbed system can be used, as long as Heff is used at
the lowest non-vanishing order in H1 for that particular computation.

In Fig. 5.3a, the three possible words between occurrences of a t1 bond are depicted. The applica-
tion of BWPT starts by writing down the eigenstates of H0, which is in this case the Hamiltonian
of a chain in Fig. 5.3a, with t0 = 0. Focusing on the chain with six sites, labeled 0 in Fig. 5.3a,
the (un)perturbed Hamiltonians read

H0 = t1 |1⟩ ⟨2|+ t2 |3⟩ ⟨4|+ t1 |5⟩ ⟨6|+H.c.,

H1 = t0(|2⟩ ⟨3|+ |4⟩ ⟨5|) +H.c.,

and the six eigenstates of H0 are

|±⟩1 =
1√
2
(|1⟩ ± |2⟩) , E0 = ±t1,

|±⟩2 =
1√
2
(|3⟩ ± |4⟩) , E0 = ±t2,

|±⟩3 =
1√
2
(|5⟩ ± |6⟩) , E0 = ±t1.

The renormalised coupling t′0, i.e. the hopping amplitude between adjacent lattice sites |+⟩1 and
|+⟩3 (or |−⟩1 and |−⟩3) of the molecular 1 (anti-)bonding chain, is then computed by

t′0 = ⟨±|1Heff |±⟩3 ,

where the subscript 0 refers to the fact that the subword that determines the couplings in the
chain is mapped to the symbol 0 in the HTC, as dictated by Table 5.1. Moreover, Heff should
be of lowest order in H1 such that t′0 is non-vanishing. In general, we denote the renormalised
couplings by t′i, where the subscript indicates it plays the role of a ti bond in the renormalised
chain. If the amount of t0 bonds in a chain is k, then one can see that Heff must be at least of

order k in H1. We denote H
(k)
eff as the effective Hamiltonian Eq. 5.30 up to and including the kth

order in H1. Proceeding with the computation of t′0, we have

⟨±|1H
(0)
eff |±⟩3 = ⟨±|1H0 |±⟩3 = ±t1 ⟨±|1 |±⟩3 = 0,

⟨±|1H
(1)
eff |±⟩3 = ⟨±|1H

(0)
eff +H1 |±⟩3 = ± t0√

2
⟨3|±⟩3 = 0.

It turns out that the second order in H1 is nonzero:

⟨±|1H
(2)
eff |±⟩3 = ⟨±|1H

(1)
eff +H1P

1

±t1 −H0
H1 |±⟩3

=± t20
2
⟨3|P 1

±t1 −H0
|4⟩ ,
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Table 5.2.: For general p, q in the HTC given by H(p,q) (or H
(p,q)
N ), the renormalised couplings

t′i = ci(p, q)ti are shown.

E0 t′0 c0(p, q) t′1 c1(p, q) t′2 c2(p, q) |t′0/t′1| |t′1/t′2|

0
t70
t41t

2
2

ρ6p+2q − t60
t31t

2
2

ρ6p+2q − t40
t21t2

ρ4p+2q ρp ρ2p+q

±t1 ∓ t20t2
2(t22−t21)

ρp+q/2
t20
2t1

ρ2p/2 ± t02 ρp+q/2 ρq ρp

±t2 t40t
2
1

2t2(t21−t22)2
ρ3p+5q/2 ± t30t

2
1

2(t21−t22)2
ρ3p+4q/2 ± t20t1

2(t22−t21)
ρ2p+3q/2 ρp+q ρp+2q

and by noting |4⟩ = ± |±⟩2−|∓⟩2√
2

we can proceed as

⟨±|1H
(2)
eff |±⟩3 =

t20
2
√
2
⟨3|P 1

±t1 −H0
(|±⟩2 − |∓⟩2).

Now using the operators

P = |∓⟩1 ⟨∓|1 + |±⟩2 ⟨±|2 + |∓⟩2 ⟨∓|2 + |∓⟩3 ⟨∓|3 ,
1

±t1 −H0
P =

1

±2t1
|∓⟩1 ⟨∓|1 +

1

±t1 ∓ t2
|±⟩2 ⟨±|2 +

1

±t1 ± t2
|∓⟩2 ⟨∓|2 +

1

±2t1
|∓⟩3 ⟨∓|3 ,

we can complete the computation by using Eq. 5.27:

⟨±|1H
(2)
eff |±⟩3 =

t20
2
√
2
⟨3| 1

±t1 −H0
P (|±⟩2 − |∓⟩2)

=± t20
2
√
2
⟨3|
(

1

t1 − t2
|±⟩2 −

1

t1 + t2
|∓⟩2

)
=∓ t20

4

2t2
t22 − t21

= ∓ t20
2t2

(
1 +O

(
t21
t22

))
≈ ∓ t20

2t2
= ∓ρ

p+q

2
t0 = ∓ρ

2

2
t0.

This computation is carried out for all possible words in Figs. 5.3a, 5.3c and 5.3b. The results of
the computation of the renormalised couplings are summarised in Table 5.2. By chiral symmetry
of the HTC, see Appendix B.1, the sign of t′i has no influence on the spectrum, as was also the
case for the Fibonacci chain. Coefficients ci, which are taken only at leading order in ρ, describe
the renormalisation such that t′i = citi. To represent the results in Table 5.2 in a analogous way
as Niu and Nori [19] did, we write RG of the HTC into five chains as

{t0, t1, t2} =



{t′0, t′1, t′2} =
{

t40t
2
1

2t2(t21−t22)2
,+

t30t
2
1

2(t21−t22)2
,+

t20t1
2(t22−t21)

}
,

{t′0, t′1, t′2} =
{
− t20t2

2(t22−t21)
,
t20
2t1
,+ t0

2

}
,

{t′0, t′1, t′2} =
{

t70
t41t

2
2
,− t60

t31t
2
2
,− t40

t21t2

}
,

{t′0, t′1, t′2} =
{
+

t20t2
2(t22−t21)

,
t20
2t1
,− t02

}
,

{t′0, t′1, t′2} =
{

t40t
2
1

2t2(t21−t22)2
,− t30t

2
1

2(t21−t22)2
,− t20t1

2(t22−t21)

}
.

(5.31)

By filling in the results from Table 5.2 into the ansatz Eq. 5.23, we can approximate the nth
Tribonacci Hamiltonian as

HN ≈ (z2H
(2,3)
N−3 − t2)⊕ (z1HN−2 − t1)⊕ (z0H

(1,3)
N−4)⊕ (z1HN−2 + t1)⊕ (z2H

(2,3)
N−3 + t2), (5.32)

where z0 = ρ6, z1 = ρ2/2, z2 = ρ5/2. The spectrum of the finite HTC with periodic boundary
conditions is plotted in Fig. 5.1a, where the branching structure of Eq. 5.32 is apparent.
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Note that as long as p > 0 and q ≥ 0, the renormalisation scheme results in Table 5.2 can be used.
For general (p, q), one can derive from the last three columns of Table 5.2 that

H
(p,q)
N ≈(z2H(p+q,p+2q)

N−3 − t2)⊕ (z1H
(q,p)
N−2 − t1)

⊕ (z0H
(p,2p+q)
N−4 )⊕ (z1H

(q,p)
N−2 + t1)⊕ (z2H

(p+q,p+2q)
N−3 + t2),

(5.33)

where t0/t1 = ρp, t1/t2 = ρq and z0 = ρ4p+2q, z1 = ρp+q/2, z2 = ρ2p+3q/2. Since the Tribonacci
word WT maps to itself when counting occurrences between 1, 2 or 00, we can rephrase Eq. 5.33
for the infinite HTC as

H(p,q) ≈(z2H(p+q,p+2q) − t2)⊕ (z1H
(q,p) − t1)

⊕ (z0H
(p,2p+q))⊕ (z1H

(q,p) + t1)⊕ (z2H
(p+q,p+2q) + t2),

(5.34)

where all coefficients are the same as in Eq. 5.33. Finally, it is necessary to comment on the error
of the approximation in Eq. 5.34. The error is directly determined by the order at which the
perturbation theory is performed, which is different in the five blocks of the Hamiltonian. The
error in each block is determined by the next-to-leading order of zi, i.e.

H(p,q) =(z2H
(p+q,p+2q) − t2 +O(ρ2z2))⊕ (z1H

(q,p) − t1 +O(ρ2z1))
⊕ (z0H

(p,2p+q) +O(ρ2z0))⊕ (z1H
(q,p) + t1 +O(ρ2z1))

⊕ (z2H
(p+q,p+2q) + t2 +O(ρ2z2)).

(5.35)

The spectrum of the HTC is compared with the spectrum of the approximate RG scheme Eq. 5.32
in Fig. 5.4a. This is a numerical check that the RG scheme is a good approximation to the energy
spectrum of the HTC.
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(a) The HTC H13 with ρ = 0.2.
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Figure 5.4.: The energy spectrum for both the HTC and OTC of T13 = 3136 lattice sites and
periodic boundary conditions, compared with the approximate RG scheme Eq. 5.33
and 5.33.
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5.2.3. Brillouin-Wigner Perturbation Theory for the On-Site Model

Consider the on-site model Eq. 5.3, and define

H0 =
∑
n∈Z

ϵn |n⟩ ⟨n| , ϵn =


ϵ0 if (w)n = 0,

ϵ1 if (w)n = 1,

ϵ2 if (w)n = 2.

H1 = −t
∑
n∈Z
|n+ 1⟩ ⟨n|+H.c.,

such that we can apply exactly the same BWPT formulas as in Section 5.2.2. In the case of the
on-site model, we need the words occurring between subsequent occurrences of the symbols 0, 1
and 2 in WT , which are given in the first three rows of Table 5.1. The key result of BWPT is that
the on-site Hamiltonian can be written as a block diagonal of three Hamiltonians of the hopping
model, as will be shown in the remainder of this section. This fact plays a crucial role in the
argument of Section 5.2.5, that shows the equivalence of the HTC and OTC.

Carrying out the BWPT calculations for the on-site model is less cumbersome than it was for the
hopping model, since the unperturbed Hamiltonian H0 is diagonal. Note that H0 is a chain with
three kinds of non-interacting atoms. We call them the atomic chains 0, 1, 2, where each chain
consists of the sites with energy ϵ0, ϵ1 and ϵ2, respectively. Starting with the atomic 0 chain, the
most frequent occurrence between 0’s is the word 1, as one can see from Table 5.1. In this case,
we have

H0 = ϵ0 |1⟩ ⟨1|+ ϵ1 |2⟩ ⟨2|+ ϵ0 |3⟩ ⟨3| ,
H1 = −t (|1⟩ ⟨2|+ |2⟩ ⟨3|+H.c.) ,

with unperturbed eigenstates

|1⟩ , |3⟩ , E = ϵ0,

|2⟩ , E = ϵ1.

The two adjacent lattice sites of the atomic 0 chain that we are considering are |1⟩ , |3⟩, and the
effective coupling between them is computed as

t′0 = ⟨1|Heff |3⟩ ,

where Heff should be of lowest order in H1 such that t′0 is non-vanishing. For the zeroth and first
order, the result vanishes, but for the second order

H
(2)
eff = QH0Q+QH1Q+QH1P

1

E −H0
H1Q = H

(1)
eff +QH1P

1

E −H0
H1Q,

the result of the computation reads

t′0 = ⟨1|H(2)
eff |3⟩ = ⟨1|H1P

1

ϵ0 −H0
H1 |3⟩ = t2 ⟨2| 1

ϵ0 −H0
|2⟩ = t2

ϵ0 − ϵ2
.

All effective couplings are computed in similar fashion in Appendix A.2, and the results are
tabulated in Table 5.3.

Using the fact that the on-site chain renormalises to three HTCs with couplings given in Table
5.3, we make the ansatz that the on-site Tribonacci Hamiltonian can be approximated as

Ho
N ≈ (z0H

(p0,q0)
N−1 + ϵ0)⊕ (z1H

(p1,q1)
N−2 + ϵ1)⊕ (z2H

(p2,q2)
N−3 + ϵ2), (5.36)

where zi, pi and qi are unknown constants, that depend on c1 and c2 of the on-site model. The
spectrum of eigenvalues of Eq. 5.36 is depicted in Fig. 5.1b, where the branching into three HTC
spectra, each around the dimensionless energy ϵi/t, becomes apparent.
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Table 5.3.: Effective hopping parameters for the OTC, part I.

E0 t′0 t′1 t′2

ϵ0 t2/(ϵ0 − ϵ1) t2/(ϵ0 − ϵ2) t
ϵ1 t4/(ϵ1 − ϵ0)2(ϵ1 − ϵ2) t3/(ϵ1 − ϵ0)2 t2/(ϵ1 − ϵ0)
ϵ2 t7/(ϵ2 − ϵ0)4(ϵ2 − ϵ1)2 t6/(ϵ2 − ϵ0)3(ϵ2 − ϵ1)2 t4/(ϵ2 − ϵ0)2(ϵ2 − ϵ1)

Table 5.4.: Effective hopping parameters for the OTC, part II.

E0 ai = |t′0/t′1| bi = |t′1/t′2|
ϵ0 |c2/c1| 1/|c2|
ϵ1 1/|c2 − c1| 1/|c1|
ϵ2 1/|c2| 1/|c2(c2 − c1)|

The values of pi, qi in Eq. 5.36 can be determined by computing the absolute value of the ratios
t′0/t

′
1 = ρp, t′1/t

′
2 = ρq and using the identity a = ρlog a/ log ρ for any a > 0. This results in the

values z0 = t, z1 = t/c1, z2 = t/[c22(c2 − c1)] and pi = log ai/ log ρ, qi = log bi/ log ρ for i = 0, 1, 2.
The values of ai, bi are tabulated in Table 5.4, and the fact that 0 < ai, bi, ρ < 1 ensures that
pi, qi > 0. Finally, we want to point out that the renormalisation for the infinite OTC reads

Hon-site ≈ (z0H
(p0,q0) + ϵ0)⊕ (z1H

(p1,q1) + ϵ1)⊕ (z2H
(p2,q2) + ϵ2), (5.37)

where the coefficients are the same as in Eq. 5.36.

The spectrum of the OTC is compared with the spectrum of the approximate RG scheme Eq. 5.36
in Fig. 5.4b. This is a numerical check that the RG scheme is a good approximation to the energy
spectrum of the OTC.

5.2.4. Proof of Renormalisation Scheme

In this section we will prove that the renormalisation in Table 5.1 is correct.

Theorem 5.1. For each of the strings 1, 2 and 00, there are exactly three distinct words that
occur between subsequent occurrences of these strings in the Tribonacci word WT . These words
are given by Table 5.1. Moreover, for each string, if one maps the longest word to 0, the shortest
word to 2 and the other to 1, the order of the words reproduces the Tribonacci word WT . Finally,
if one considers the finite Tribonacci word WT

n , the sequence of words mapped to 0, 1, 2 generates
another finite Tribonacci word of lower order when considering periodic boundary conditions. For
1, 2 and 00, these words are WT

n−2,W
T
n−3 and WT

n−4, respectively.

Proof. We will first prove the infinite case and then make a few adjustments to prove the finite case.
Throughout this proof, let ρ denote the Tribonacci substitution on the alphabet A3 = {0, 1, 2}.

• Infinite case: The proof will be split up in the cases 1, 2 and 00.

– Case 1: Consider w1
0 = ρ2(0) = 0102, w1

1 = ρ2(1) = 010 and w1
2 = ρ2(2) = 01. To study

all possible words between occurrences of 1 inWT , it is sufficient to study w1
i 01 = 01x1

for i = 0, 1, 2 since ρ2(WT ) =WT and each w1
i starts with 01. One can see x can only

read s10 = 020, s11 = 00 or s12 = 0. This proves that there are exactly three possible
words between 1’s in WT .

– Case 2: Consider w2
0 = ρ3(0) = 0102010, w2

1 = ρ3(1) = 010201 and w2
2 = ρ3(2) = 0102.

To study all possible words between occurrences of 2 in WT , it is sufficient to study
w2
i 0102 = 0102x2 for i = 0, 1, 2 since ρ3(WT ) = WT and each w2

i starts with 0102.
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One can see x can only read s20 = 010010, s21 = 01010 or s22 = 010. This proves that
there are exactly three possible words between 2’s in WT .

– Case 00: Consider w00
0 = ρ4(0) = 0102010010201, w00

1 = ρ4(1) = 01020100102 and
w00

2 = ρ4(2) = 0102010. To study all possible words between occurrences of 00 in WT ,
it is sufficient to study w00

i w
00
j = 01020100x00y for i, j = 0, 1, 2 since ρ4(WT ) = WT

one can see that both x and y contain no 00. An important note is that the above
holds since the word 22 does not occur in WT . One can see x can only read s000 =
10201010201, s001 = 102010201 or s002 = 10201. This proves that there are exactly three
possible words between 00’s in WT .

So we see that the words sli occur in a Tribonacci sequence, we introduce the map σ : sli →
i ∈ A3, where l = 1, 2, 00. From the above, we saw that under ρ2 (ρ3 or ρ4), any i ∈ A3 in
WT that is mapped to w1

i (w2
i or w00

i ), leads to the occurrence of the word s1i (s2i or s00i ).
Therefore, by mapping all s1i (s2i or s00i ) in WT back to A3 using σ, one exactly recovers
WT .

• Finite case:

– Case 1: Note that for n > 0, the finite Tribonacci word reads WT
n = 01 · · · , and we

need n > 1 for n − 2 ≥ 0. From the proof of the finite case above, we know that for
each i ∈ A3 in WT

n−2, the word s1i is completed by appending any next word w1
j to

ρ2(i), since any word reads w1
j = 01 · · · . Therefore, to form all words s1i corresponding

to symbols i in WT
n−2, one needs to append 01 to WT

n , which is the same as taking
periodic boundary conditions, i.e. attaching the begin and end of WT

n to form a ring.
By doing this one obtains exactly WT

n−2 by counting words between 1’s in WT
n , using

periodic boundary conditions, and mapping σ : 020→ 0, 00→ 1, 0→ 0.

– Case 2: Note that for n > 1, the finite Tribonacci word reads WT
n = 0102 · · · , and we

need n > 2 for n − 3 ≥ 0. From the proof of the finite case, we know that for each
i ∈ A3 in WT

n−3, the word s2i is completed by appending any next word w2
j to ρ3(i),

since any word reads w2
j = 0102 · · · . Therefore, to form all words s2i corresponding

to symbols i in WT
n−3, one needs to append 0102 to WT

n , which is the same as taking
periodic boundary conditions, i.e. attaching the begin and end of WT

n to form a ring.
By doing this one obtains exactly WT

n−3 by counting words between 2’s in WT
n , using

periodic boundary conditions, and mapping σ : 010010→ 0, 01010→ 1, 010→ 0.

– Case 00: Note that for n > 3, the finite Tribonacci word readsWT
n = 01020100 · · · , and

we need n > 3 for n− 4 ≥ 0. From the proof of the finite case, we know that for each
i ∈ A3 in WT

n−4, the word s00i is completed by appending any next word w00
j to ρ4(i),

since any word reads w00
j = 01020100 · · · , or w00

2 = 0102010 but then appending any

other word w00
k = 0 · · · creates a 00. When appending 01020100 to WT

n , and mapping
the words s00i between 00’s in WT to A3 exactly recovers WT

n−4.

The final goal would be to prove the theorem above, for any k-bonacci word WK , or find the
proof in literature. We noted in simulations of the 4-bonacci words, it is possible that different
words between occurrences of some factor have the same length, which was not the case for the
Fibonacci and Tribonacci word. They do still map to the 4−bonacci word when mapping the
frequencies of the words to symbols 0, ..., 3 from highest to lowest. This works perfectly by taking
periodic boundary conditions, which recovers a previous generation approximant of W 4

N . In fact,
this procedure works for all k-bonacci words checked in simulations. The fact that this procedure
works is proven by Berthé et al. [84] for a broad class of infinite words called the Arnoux-Rauzy
words, in which the Tribonacci word WT is contained.
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5.2.5. Hopping and On-site Model Equivalence

Having established the renormalisation of the Tribonacci hopping and on-site chains using pertur-
bation theory (see Eq. 5.34 and Eq. 5.37), we are in shape to argue that the hopping and on-site
model are equivalent. By equivalence we mean that by applying the renormalisation Eq. 5.34 for
the hopping model infinitely often, it tends to the same RG fixed point as it does for the on-site
model Eq. 5.37.

To make our argument more tractable, we introduce the renormalisation depth N ≥ 0, which
counts how often the renormalisation equations are applied to the hopping and on-site Hamilto-
nians. Starting with the hopping Hamiltonian H(1,1), note that Eq. 5.34 can be applied to H(1,1)

to obtain five blocks, and to each of these blocks Eq. 5.34 can be applied again. This process can
be continued indefinitely, where the amount of blocks for the hopping model as function of N is
given by Bhop(N) = 5N .

Now consider the on-site Hamiltonian Eq. 5.3. We can apply Eq. 5.37 once, yielding three blocks of
hopping Hamiltonians. To each of these three blocks, the procedure for the hopping model can be
applied. Therefore, the amount of blocks as function of N is given by Bo-s(N) = max{1, 3 ·5N−1}.

Let us now focus on Eq. 5.34, where each block (z
(N)
i H(p

(N)
i ,q

(N)
i )− t(N)

i ) at renormalisation depth

N > 0 is described by two relevant parameters: p
(N)
i , q

(N)
i , where i = 1, 2, . . . , 5N . The other

values are less interesting since z
(N)
i

N→∞−−−−→ 0 exponentially fast and limN→∞ t
(N)
i ∈ σ(H), i.e.

contains the same information as the spectrum. Denote the set of all p
(N)
i , q

(N)
i as IN such that

IN = {p(N)
1 , q

(N)
1 , p

(N)
2 , q

(N)
2 , . . . , p

(N)

5N
, q

(N)

5N
}.

For each N , we define the probability measure µN on the measurable space (IN , 2
IN ) by

µN (A) = |A|/|IN |,

where A ⊂ IN is any subset and | · | denotes the cardinality of a set. Furthermore, we introduce
the set

JN := {x ∈ IN | x ≤ N},

the set of p
(N)
i , q

(N)
i that are less than, or equal to N . Our aim is to prove that

lim
N→∞

µN (JN ) = 0, (5.38)

which would imply that the RG fixed point of the Tribonacci chain, either hopping or on-site, is
only described by HTCs with p = q =∞, except for a part of the spectrum that has measure zero.
We will also show that the RG fixed point is independent on the initial p, q in Eq. 5.34, which
implies that the RG fixed points of the HTC and OTC are the same, rendering them equivalent
models in the same sense as Niu and Nori [19].

The rest of this section is devoted to proving Eq. 5.38. The dynamical system on the values p, q
generated by Eq. 5.34 can be represented by the map

f : R2 → R10, (p, q) 7→


(p+ q, p+ 2q)

(q, p)
(p, 2p+ q)

(q, p)
(p+ q, p+ 2q)

 . (5.39)

We can modify Eq. 5.39 to the following function, that yields the same, or smaller values:

f̃ : R2 → R10, (p, q) 7→


(2p̃, 2p̃)
(p̃, p̃)
(p̃, p̃)
(p̃, p̃)
(2p̃, 2p̃)

 , p̃ := min{p, q} (5.40)
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Note that Eq. 5.40 is symmetric with respect to the permutation p←→ q in its arguments, as well
as in each of the five tuples of the output, which allows us to write as a function of only one
variable:

g : R→ R5, p̃ 7→ {2p̃, p̃, p̃, p̃, 2p̃}. (5.41)

Starting with any p, q, p̃ ∈ R, note that after N applications of f to p, q and g to p̃, it is true that

p
(N)
i , q

(N)
i ≥ p̃

(N)
i , for each i = 1, 2, . . . , 5N . Note that after N applications of g to some initial

value p̃, we have a set IgN of 5N different real values. Similarly, define JgN := {x ∈ IgN | x ≤ N},
we can now rigorously show limN→∞ |JgN |/|I

g
N | = 0, which implies that Eq. 5.38 holds. Note that

the map g leaves 3/5 of its output constant and multiplies 2/5 with a factor of two. For x ∈ JgN to
hold, it can be multiplied by a factor of two at most ⌊log2N⌋ times. By this argument, |JgN | can
exactly be computed by counting the possible ways that g can be successively applied to a single
initial value p̃0 > 0. First let ñ = ⌈log2 p̃0⌉, such that 2ñ ≥ p̃0. An initial value p̃0 lies in JgN if and
only if it has been multiplied by 2 at most ⌊log2N⌋ − ñ times. Therefore, to count the number
of values in JgN , we need to count the number of values in IgN that have been multiplied by 2 at
most ⌊log2N⌋ − ñ times, or less. This is precisely given by the exact combinatorial argument

|JgN |/|I
g
N | =

⌊log2N⌋−ñ∑
n=0

(
N

n

)
(3/5)N−n(2/5)n <

⌊log2N⌋∑
n=0

(
N

n

)
(3/5)N−n(2/5)n,

which can be bounded from above as

⌊log2N⌋∑
n=0

(
N

n

)
(3/5)N−n(2/5)n ≤

(
N

log2N

)
(3/5)N log2N. (5.42)

Now we need to approximate
(

N
log2N

)
, for which we can use Stirling’s approximation log n! =

n log n− n+O(log n):

log

(
N

log2N

)
= logN !− log(N − log2N)!− log(log2N)!

=N logN − (N − log2N) log(N − log2N) +O(logN)

=N logN − (N − log2N)

(
logN + log

(
1− log2N

N

))
+O(logN)

=
log2N

log 2
+ (N − log2N)

(
log2N

N
+O

(
log22N

N2

))
+O(logN)

=
log2N

log 2
+O(logN).

Since we are interested in the large N limit, it is enough to know the divergent behaviour of(
N

log2N

)
. We can now further approximate Eq. 5.42 as

(
N

log2N

)
(3/5)N log2N =elog

2N/ log 2+O(logn)eN(log 3−log 5)elog log2N

=eN(log 3−log 5)+O(log2N) N→∞−−−−→ 0,

since log 3− log 5 < 0. This means that

0 ≤ |JN |/|IN | ≤ |JgN |/|I
g
N |

N→∞−−−−→ 0,

proving the statement in Eq. 5.38.
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5.3. The Rauzy Fractal

One of the tools to study the Fibonacci chain is the conumbering scheme, as explained in detail
in Section 3.2.2. The conumbering scheme was obtained by projecting the Fibonacci staircase in
the complementary space H. The useful property is that conumbering reorders the lattice sites
according to their local environment. We will show in this section that the Rauzy fractal can be
seen as a conumbering scheme for the Tribonacci chain. Since the Rauzy fractal plays such a
central role in this section, we start off by explaining in detail what the Rauzy fractal is and how
the two most common methods of generating the set are related.

5.3.1. Generating the Rauzy Fractal

There are two main ways of generating the Rauzy fractal: projecting on the contracting eigenspace
of the Tribonacci substitution or using a valuation map. By using a bi-orthogonal basis of eigenvec-
tors of the adjacency matrix of the Tribonacci substitution, we can derive the affine transformation
that relates the two different methods of generating the Rauzy fractal. It turns out that the valua-
tion map generates a Rauzy fractal where the domains are scaled versions of the whole fractal (see
Fig. 5.5a), which is the canonical Rauzy fractal. The projection method yields a skewed version
of this fractal (see Fig. 5.5c). It is worth noting that many sources (see Ref. [33], section 7.4.3,
and Refs. [85–87]) claim that the canonical Rauzy fractal is obtained using the projection method,
which is strictly speaking not the case.

The Rauzy fractal, as introduced in Section 3.2.3, was obtained by Rauzy in 1982 [26] by means of
a valuation map E. Let A = {0, 1, 2} be the alphabet for the Tribonacci substitution ρ, then the
valuation map E : A∗ → C associates a complex number to each finite word. For any u, v ∈ A∗,
Rauzy demanded that E(uv) = E(u)+E(v) and E(ρ(u)) = ωE(u) for some constant ω ∈ C. Note
that since ρ(WT ) =WT , it must be true that E(WT ) = 0. Denote |u|i the number of times that
i ∈ A occurs in u. A crucial fact is that the Tribonacci substitution ρ is Pisot. This implies that
the adjacency matrix

M =

1 1 1
1 0 0
0 1 0

 ,

defined by Mij = |ρ(j)|i, has one eigenvalue |β| > 1 and all other eigenvalues have |λ| < 1.

The matrix M has one real eigenvalue β = (1 +
3
√
19 + 3

√
33 +

3
√
19− 3

√
33)/3 ≈ 1.8392, the

Tribonacci constant, and two complex eigenvalues ω, ω̄, which are complex conjugates of each
other. The corresponding normalised right eigenvectors of M are denoted by |vβ⟩ , |v⟩ , |v⟩. The
valuation map is given by

E(u) =
∑
i∈A
|u|ivi,

where ⟨vt| = (v0, v1, v2) is the left eigenvector of M , corresponding to the eigenvalue ω. The left
eigenvector is obtained via the bi-orthogonal construction from Appendix B.2, which means it
need not be normalised. We are now in shape to define the Rauzy fractal using the valuation map.
Let [WT ]m denote the first m symbols of the Tribonacci word. The Rauzy fractal is the set

R := {E([WT ]m) | ∀m ∈ N)}, (5.43)

which is displayed in Fig. 5.5a. This plot is made by taking the complex number z = a+ bi, where
a, b ∈ R, and plotting it as a point (a, b) ∈ R2. This set can be partitioned in three domains Ri

where i = 0, 1, 2 (red, green, blue respectively), that are the same as R up to a factor β−(1+i), a
rotation and translation. These domains are defined by

Ri := {E([WT ]m) | wm = i, m ∈ N)}, (5.44)

where wm denotes the mth symbol of WT . See Ref. [88] for more details on generating the Rauzy
fractal.
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(a) Using the valuation map. (b) Affine transformation of valuation map.

(c) Using the projection method.

Figure 5.5.: Two different Rauzy fractals.

The second method, which we refer to as the projection method, is the method explained in Section
3.2.3. Let the unstable eigenspace Eu of M be the one-dimensional real space spanned by |vβ⟩,
and the stable eigenspace Es be spanned by {|re⟩ , |im⟩}, where |re⟩ = Re{|v⟩} and |im⟩ = Im{|v⟩}.
Equivalently, one can define Es = {c |v⟩ + c̄|v⟩ | c ∈ C} ⊂ R3. Denote π the projection along
Eu onto Es. Any |x⟩ ∈ R3 can be uniquely decomposed as |x⟩ = γ |vβ⟩ + c |v⟩ + c̄|v⟩ where
γ ∈ R, c ∈ C. The map π then acts as π |x⟩ = c |v⟩+ c̄|v⟩. Denoting the mth point in the staircase
as |xm⟩ =

∑m
i=0 |ewi

⟩, the projection method yields the Rauzy fractal

R = {π |xm⟩ | m ∈ N},

which is displayed in Fig. 5.5c. One immediate connection between the valuation and the projection
method, is the fact that the valuation map can be written as

E([WT ]m) =
〈
vt
∣∣xm〉 = c,

where we used |xm⟩ = γ |vβ⟩ + c |v⟩ + c̄|v⟩ and the fact that {⟨vtβ | , ⟨vt| , ⟨vt|} and {|vβ⟩ , |v⟩ , |v⟩}
form a bi-orthogonal system.
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The question now is: how are the sets in Figs 5.5a and 5.5c related? We will derive an affine
transformation that maps the former to the latter as points in R2. We first need a choice of basis
to represent the points of R and R in R2. For the complex numbers in R, we have the canonical
representation z = a + bi 7→ (a, b) ∈ R2. In associating Es with R2, we have some freedom. By
applying a Gram-Schmidt procedure to the real and imaginary parts of |v⟩, we can define

|e1⟩ = |re⟩ /∥|re⟩∥,
|e2⟩ = |res⟩ /∥|res⟩∥, where |res⟩ = |im⟩ − ⟨e1|im⟩ |e1⟩ .

(5.45)

Then we can represent any |x⟩ = a′ |e1⟩+ b′ |e2⟩ ∈ Es ⊂ R3 as (a′, b′) ∈ R2.

We can now answer the question: for a given |xm⟩, how are (a, b) and (a′, b′) related? For a fixed
m ∈ N, we have seen that E([WT ]m) = c = a+ bi and π |xm⟩ = c |v⟩+ c̄|v⟩ = a′ |e1⟩+ b′ |e2⟩. The
answer is the matrix A that solves (

a′

b′

)
= A

(
a
b

)
. (5.46)

By noting that
|x⟩ = c |v⟩+ c̄|v⟩ = 2a |re⟩ − 2b |im⟩ , (5.47)

and inverting Eqs. 5.45 to obtain

|re⟩ = ∥|re⟩∥ |e1⟩ ,
|im⟩ = ∥|res⟩∥ |e2⟩+ ⟨e1|im⟩ |e1⟩ ,

(5.48)

we can plug Eqs. 5.48 into Eq. 5.47 to obtain

|x⟩ = (2a∥|re⟩∥ − 2b ⟨e1|im⟩) |e1⟩ − 2b∥|res⟩∥ |e2⟩ ,

from which we can read off the matrix A as being given by

A =

(
2∥|re⟩∥ −2 ⟨e1|im⟩

0 −2∥|res⟩∥

)
. (5.49)

To demonstrate the correctness of Eq. 5.46, the map in Eq. 5.49 is applied to R in Fig. 5.5a, which
yields the result in Fig. 5.5b. It is of no surprise that Figs. 5.5b and 5.5c are identical, since we
have just derived the mathematical correspondence between the two.

5.3.2. The Rauzy Fractal vs. Conumbering

In this section, the Rauzy fractal will be proposed as a conumbering scheme for the Tribonacci
chain. We will discuss many similarities with the conumbering scheme for the Fibonacci chain,
and some essential differences.

First of all, the Rauzy fractal is obtained by projecting the Tribonacci staircase onto the internal
space of the CPS, as demonstrated in Section 3.2.3. The result is the canonical Rauzy fractal up
to an affine transformation, as shown in Section 5.3.1. So the Rauzy fractal and the conumbering
scheme both order the lattice points in a compact set in the internal space of their CPS.

We saw in Eq. 5.44 that the Rauzy fractal can be decomposed into domains, where the mth point
was classified by the local environment of the mth letter in the Tribonacci word WT . Since the
letters in WT define the on-site potentials in the OTC Eq. 5.3, it is clear that the red, green and
blue regions in Fig. 5.5a contain exactly the lattice points with on-site potential ϵ0, ϵ1 and ϵ2,
respectively.

To order the lattice points of the HTC Eq. 5.1, we need to partition R in a different way. Note
that around a lattice point, one can have three distinct local environments:

1. Red: 01 (t0 on the left and t1 on the right) or 10,
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2. Green: 02 or 20,

3. Blue: 00.

Environments 1 and 2 indicate that the lattice point lies in the molecular type-1 (type-2) chain,
and environment 3 is the atomic chain. Analogous to Eq. 5.44, we have the following partition:

Rω := {E([WT ]m) | wm−1wm = ω, m ∈ N)}, (5.50)

where ω = 00, 01, 10, 02, 20. The resulting partition is depicted in Fig. 5.6, where 01, 10 are red,
02, 20 green and 00 blue, respectively. It is now clear how the Rauzy fractal can be used to order
the lattice points, for both the hopping and on-site model, according to their local structure.

Figure 5.6.: Partition of the Rauzy fractal for the HTC Eq. 5.1.

One can go a step further, and consider the possible environments of the local structures discussed
above. For example, if one takes the local structure 020 in WT , what are the distinct local
environments? First, because of the constraints of the Tribonacci substitution, the first few letters
around 020 are predetermined, being 0102010. Now, we find the possible letters x, y such that the
factor x0102010y occurs in WT . The possible values xy turn out to be:

0 : xy = 01, 10,

1 : xy = 02, 20,

2 : xy = 00.

For each label 0, 1 and 2, the xy values always occur in pairs, in the sense that if x = 01 is the
environment of the nth occurrence of 020 in WT , then x = 10 must be the environment of the
(n + 1)th occurrence. Moreover, when determining xy for all occurrences of 020 in WT , then if
the pair (or single value for label 2) of xy values is mapped to its corresponding letter (0,1 or
2 as in the enumeration above), one exactly obtains WT . We have no proof of this claim, but
tested it extensively numerically, while all the time applying periodic boundary conditions to the
Tribonacci approximants WT

N .

For the factors 0, 00, 010 and 020 of WT , the possible environments are given in Table 5.5. The
question that naturally arises is if one can keep iterating the process of finding the environments of
environments, and so on. In Section 5.3.3, we will show that the RG scheme is enough to generate
Table 5.5 and all subsequent environments for the Tribonacci word.
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Table 5.5.: For every factor, the environments of the extended factor, due to the Tribonacci
substitution constraints, are given, together with the corresponding label (0,1 or 2).
The columns corresponding to 0, 010 and 020 are used to subdivide the Rauzy fractal for
the on-site model, and the columns 00, 010 and 020 are used similarly for the hopping
model.

Factor of WT 0 00 010 020
Environments x0y x01020100102010y x010y x0102010y

0 xy = 12, 21 xy = 12, 21 xy = 20, 02 xy = 01, 10
1 xy = 01, 10 xy = 01, 10 xy = 21, 12 xy = 02, 20
2 xy = 11 xy = 11 xy = 22 xy = 00

Having discussed the similarities with the conumbering, we now turn to the essential differences
between the Rauzy fractal and conumbering. As demonstrated by Macé et al. [22], the conumbering
scheme is useful when plotting all eigenstates in a 2D grid, where one axis labels the conumbered
sites, and the other axis the ordered energy levels. Since the Rauzy fractal orders the points of a
1D lattice in a compact set in two dimensions, it cannot be used to reorder the Tribonacci lattice
sites in a meaningful way to make a similar 2D plot. Alternatively, one could plot the wavefunction
onto the Rauzy fractal and study the stack of Rauzy fractals, where the stack is made up of one
Rauzy fractal per energy level. The study of wavefunctions on the Rauzy fractal is carried out in
the remainder of this chapter.

5.3.3. Wavefunctions on the Rauzy Fractal

In order to study wavefunctions on the Rauzy fractal, we take a finite Tribonacci chain and
numerically compute the eigenvalues and wavefunctions. For an energy Ei in the spectrum, the
wavefunction |ψ⟩i has value ψi(n) ∈ R on site n. As discussed in the previous section, we project
the lattice sites onto the internal space of the CPS to obtain the Rauzy fractal. An example
wavefunction of the HTC and OTC is plotted on the Rauzy fractal in Fig. 5.7(a) and (c). More
examples of the wavefunctions for the HTC and OTC are found in the Appendix A.5 Figs. A.15
and A.16, respectively.

The key observation is if Ei is from a certain band, the wavefunction ψi is localised primarily on
lattice sites associated to that band. More precisely, the spectrum of the OTC splits up into three
bands, one around each ϵi, as discussed in Section 5.2.3. Now if Ej is contained in the band around
ϵi, then ψj(k) has primarily support on lattice sites with on-site energy ϵwk

= ϵi. Equivalently,
we saw in Section 5.2.2 that the spectrum of the HTC splits up into five bands, one centered
around each ±t2,±t1, 0. If Ei sits in a band associated to some atomic chain or molecular 1 (or
2) (anti-)bonding chain, the wavefunction ψi(j) has primarily support on that particular chain.
We would like to point out the similarity between the eigenstates |ψ⟩0 in Fig. 5.7(a) and in the
red region in Fig. 5.7(d). This can be understood by the fact that the eigenstate |ψ⟩0 of the OTC
Ho

13 is approximately the eigenstate of the first block of Eq. 5.36, which is a HTC.

Upon subdividing the Rauzy fractal again according to Table 5.5, Figs. 5.7(b) and (d) are obtained.
In view of th RG scheme Eqs. 5.33 and 5.36, the subdivision of the Rauzy fractal can be understood
in two equivalent ways: 1) by determining the environments of the nearest neighbor structures of
the lattice sites (which is Table 5.5), 2) By considering the nearest neighbors of the lattice sites of
the renormalised atomic and molecular chains. Since one can keep applying the RG scheme, we
have shown that the RG scheme naturally gives the environments of a lattice site.

Since the interaction between sites is finite, there are some nonzero amplitudes on the other regions
of the Rauzy fractal. Finally, when looking at the plots of the wavefunctions, it seems that scaled
down copies of the same pattern are repeated. These patterns correspond to the environments
of lattice sites and can be explained from the local symmetries of the chain, as will be shown in
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a) c)

b) d)

Figure 5.7.: The eigenstate |ψ⟩0 on the Rauzy fractal of T13 = 3136 points. The regions are colored
according to the local environment of a lattice site n in the HTC (or OTC), and the
length of the black triangles are proportional to |ψ0(n)|2. (a) |ψ⟩0 of the HTC H13

with coupling ρ = 0.2 and coloring according to nearest-neighbor bonds. (b) |ψ⟩0
of the HTC H13 with coupling ρ = 0.2 and coloring according to the five possible
environments of the local structures in a). (c) |ψ⟩0 of the OTC Ho

13 with coupling
c = 5 and and coloring according the on-site potential of a lattice site. (d) |ψ⟩0 of the
OTC Ho

13 with coupling c = 5 and coloring according to the five possible environments
of the lattice sites in c).

Section 5.3.4.

5.3.4. Local Resonator Modes

It is an interesting fact that all local environments are known from only the nearest-neighbor
structures and the RG Eq. 5.33. This fact can be applied to elegantly categorize all Local Resonator
Modes (LRMs) of the HTC and OTC. This LRM framework was developed by Röntgen et al.
[24], and applied to the Fibonacci chain, among other chains. The LRM framework is used to
perturbatively describe the eigenstates of a on-site model, based on the local structures of the
chain, such as the environments given in Table 5.5. By the diagonal nature of an unperturbed
on-site model, the theoretical underpinnings of the framework could be developed with relative
ease. In principle, the framework could be developed for hopping models, but this would require
an arduous development of the theory. Therefore, we focus on the OTC Eq. 5.3 first, and later
show numerical evidence that the framework can be similarly applied to the HTC Eq. 5.1.
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Consider the on-site model Eq. 5.3, which is parameterised as c1 = c2/2 = c = 100, such that the
chain is at high contrast. Furthermore, we consider the chain with periodic boundary conditions
and T7 = 81 sites, depicted in Fig. 5.9. In the same way that the spectrum can be split up in three
parts, see Eq. 5.36, one can identify three bands of eigenstates that are clustered around ϵ0, ϵ1 and
ϵ2 with T6, T5, T4 states per band, respectively. In a band of eigenstates corresponding to ϵi, one
can see that the states are primarily localised on the sites with potential ϵi (in agreement with
Section 5.3.3). Furthermore, the arrangements of the wavefunctions on these sites is determined by
the local structures of the OTC, as given in Table 5.5, which is precisely what the local resonator
framework by Röntgen et al. [24] describes.

Figure 5.8.: The HTC eigenstates |ψ⟩i of H7, ordered such that Ei < Ei+1. The sign and magni-
tude on each site is represented by a color. The green lines denote the splitting after
one RG step, the black lines denote two RG steps. Note that the states between two
subsequent lines localize on similar local environments, which is more accurate for the
black lines than for the green lines.

In similar fashion, one can take the HTC with periodic boundary conditions and T7 = 81 sites
at weak coupling, in this case ρ = 0.1 is taken. The eigenstates with their sign are compared to
the Tribonacci chain structure in Fig. 5.8. Analogous to Eq. 5.33, we can identify five bands of
eigenstates. Again, in each of these bands, the states primarily sit on the sites which belong to
the corresponding atomic/molecular (anti)bonding chain. Here, the amount of states per block is
exactly T4, T5, T3, T5, T4, respectively. Finally, since each of the bands between the green lines in
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Figure 5.9.: The OTC eigenstates |ψ⟩i of Ho
7 . The colors and green/black lines have the same

meaning as in Fig. 5.8.

Fig. 5.9 is approximately described by a HTC according to Eq. 5.36, these bands themselves have
a comparable local resonator structure to that in Fig. 5.8.

The states between the green lines in Figs. 5.8 and 5.9 correspond to the same class of LRMs.
Upon subdividing the area between these green bands, marked with black lines, the classes of
LRMs become more refined. The key insight is that the refinement of the LRMs corresponds
one-to-one with the refinement of environments of a lattice site in Table 5.5. We note that this
correspondence is only shown to hold on a qualitative level, by counting the amount of eigenstates
and studying their localisation, and should be proven and studied more quantitatively in future
work.

The main conclusion of this section is that the wavefunctions of the Tribonacci chains can be
described by the framework of LRMs, where the LRMs correspond to eigenstates that localise on
one type lattice sites that have a particular environment. This means that the wavefunction is
determined by the band in which the energy of the state lies, together with the local resonator
structures of the sites/bonds belonging to that energy band. This is key to understanding the
structure of the wavefunctions when plotted on the Rauzy fractal in Section 5.3.3: The RG scheme
naturally gives all environments of a lattice site, and at the same time categorizes the LRMs. This
simplification of the analysis is founded on the self-similarity of the Tribonacci word.
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5.4. Edge States in the Tribonacci Chain

Up to now, we have studied the HTC and OTC models with exclusively periodic boundary con-
ditions. Now, we impose open boundary conditions to the HTC in Eq. 5.1 which yields the
Hamiltonian

H̃N,∆ =

TN−2+∆∑
n=0

twn
|n+ 1⟩ ⟨n|+H.c., (5.51)

where the parameter ∆ ∈ Z can be set nonzero to tune the truncation of the chain. Adding or
removing sites by varying ∆ does not introduce disorder, since the added/removed bonds still
follow the Tribonacci word. Note that one could also add/remove bonds at the beginning of the
chain. However, we do not explore that here since there is a priori no reason why the left end is
qualitatively different than the right end, and understanding the truncation behaviour of one side
would enable us to understand the other side as well.

Upon choosing certain approximants N and truncation parameters ∆, the energy spectrum reveals
in-gap modes. These modes indicate localisation since there is no state nearby, so they do not
tunnel well into the bulk and therefore must localise. To study the edge modes, we fix some N,∆
and collect all modes that show exponential decay instead of looking only at pronounced in-gap
modes.

We take N = 8,∆ = 0, corresponding to Fig. 5.10a, and study all eigenstates. For these values,
the Tribonacci word begins and ends as (up to the first difference) 0102 · · · 0010. The exponentially
decaying edge modes are filtered out by checking if the logarithm is roughly linear. All left and
right edge modes, together with their location in the spectrum, are displayed in Figs. 5.11 and
5.12, respectively. Note that we look only at states up to E = 0, as all E > 0 states are simply
chiral partners of E < 0 energy states. First of all, we see that there are both left and right edge
modes. Second of all, the amount of “noise” in the exponential decay seems to correlate with the
gap size in which the mode lies. By “noise” we mean the deviation from a pure exponential decay.
This deviation is not truly noise here, since it is a deterministic pattern that is determined by
Tribonacci substitution.

To say more about the effect of choosing a different truncation, we take N = 8,∆ = 1, which adds
one bond to the chain. The left and right edge modes for this system are shown in Figs. 5.13 and
5.14, respectively. Firstly, note from Figs. 5.11 and 5.13 that the left edge modes are unaffected
by changing the truncation of the right side of the chain. Moreover, note that the right edge mode
for N = 8,∆ = 1 in Fig. 5.14a decays much faster than the one for N = 8,∆ = 0 in Fig. 5.12c,
while the latter state lies in a bigger gap than the former. This means that the strength of the
exponential decay is not necessarily related to the gap size in which the edge mode lies.

For N = 8,∆ = −2 and N = 9,∆ = 0, 1,−2, the same analysis as done in this chapter is carried
out in Appendix A.4. The results of the full analysis regarding edge states in the HTC with open
boundary conditions can be summarised as follows:

• The left edge states are unaffected by different truncations of the right hand side.

• Gap width or distance to a band seems not to be the guiding principle in determining the
exponential decay.

• Because of chiral symmetry, each edge mode |ψ⟩ has a chiral partner Γ |ψ⟩.

5.5. Tribonacci Topological Charge Pump

In this section, we study the consequences of charge pumping on an Tribonacci chain. The charge
pump will directly inherit the spectral properties of the Tribonacci chain, which determine the
way in which charges (electrons) are transported. The work in this section is a generalisation of
the Fibonacci charge pump in Ref. [89].
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Firstly, the concept of a charge pump is explained in Section 5.5.1, after which the topological
aspects of charge pumping are shown in Section 5.5.2. In Section 5.5.3 we consider the Tribonacci
variant of the charge pump and in Section 5.5.4, the charge pump for general aperiodic modulations
is studied.

5.5.1. Introduction to Charge Pumping

A charge pump, originally studied by Thouless et al. [90], is a one-dimensional system that is
modulated periodically in time in an adiabatic fashion. The working principle can be qualitatively
compared to the screw of Archimedes in Fig. 5.15(a): After each full rotation of the screw, a unit
of water is pumped upwards and the screw is back to its original position. In an analogy with
a charge pumping Hamiltonian, the screw represents the potential in the Hamiltonian and water
represents the charges.

In a charge pumping Hamiltonian, there is often a background potential U0(x), which is static in
time, and a time-varying periodic modulation U1(x, t), that has the same spatial period as U0.
This situation is depicted in Fig. 5.15(b), where charges are pumped by the movement of the
modulating potential U1. Note that U1 is not necessarily strong enough to overcome the potential
barrier of U0 in a classical sense, but since we are working in a quantum mechanical regime, charge
is pumped by particles tunneling to adjacent lattice sites.

The simplest model that captures the essential aspects of charge pumping is the Rice-Mele charge
pump. Using the definition of the model from Ref. [89], the Rice-Mele Hamiltonian reads

H(t) =
∑
n∈Z

({[∆− (−1)nδ(t)] |n+ 1⟩ ⟨n|+H.c.} − (−1)nh(t) |n⟩ ⟨n|),

δ(t) = δ0 cos(2πt/T ), h(t) = h0 sin(2πt/T ),

(5.52)

where ∆ is a constant hopping term, representing the static potential, T the period of the temporal
modulation and h0, δ0 real parameters. Instead of giving a full explanation of charge pumping,
for which we refer the reader to chapters 4 and 5 of Ref. [92], we explain how charge pumping
manifests itself in a single-particle model like Eq. 5.52.

Consider the spectrum of Eq. 5.52 with a finite number of sites and open boundary conditions in
Fig. 5.16b for all values t ∈ [0, T ], where the Fermi level is taken to be EF /∆ = 0. The hallmark
of charge pumping is that a single particle is pumped to one end of the chain, and that at the
end this particle is pumped through the Fermi level, which must lie in a energy gap of the infinite
system. The amount of charges that are pumped is equal to the number of energy levels that
cross the Fermi level from below in one pumping cycle [92], which is one charge in the case of
Fig. 5.16b. To respect the symmetries of the system, for each charged pumped upwards (the red
line in Fig. 5.16b), there must be a corresponding charge being pumped downwards (the green line
in Fig. 5.16b). Since this crossing is an effect that is only visible upon enforcing open boundary
conditions, Fig. 5.16a gives us no information in that regard. However, in the next section we will
show that charge pumping is a topological property than can be derived from the bulk system,
i.e. the system with periodic boundary conditions.

5.5.2. Topological Aspects of Charge Pumping

In chapter 5 of Ref. [92], it is shown that the amount of pumped particles in Eq. 5.52 per cycle is
given by a Chern number

C =
1

2π

∫ T

0

dt

∫ 2π

0

dkF (k, t), (5.53)

with F (k, t) the Berry curvature defined by

F (k, t) =
∑
n∈occ

i
[
⟨∂tun(k, t)|∂kun(k, t)⟩ − ⟨∂kun(k, t)|∂tun(k, t)⟩

]
, (5.54)
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where |un(k, t)⟩ are the eigenstates of the Bloch Hamiltonian (see Section 3.5.2 how to compute it)
of Eq. 5.52 corresponding to the occupied bands. For ∆ > |h0|, |δ0|, the Hamiltonian Eq. 5.52 is
topological with C = 1 and pumps exactly one unit of charge per cycle [89,92]. The fact that the
amount of charges is a topological invariant, a Chern number, means that the amount of pumped
charges is quantised and constant under continuous deformations of Eq. 5.52 that leave the band
gap finite in Fig. 5.16a. The band gap is required to remain finite, otherwise it is ambiguous which
eigenstates correspond to the filled bands in Eq. 5.54.

As shown in Ref. [89], one can derive Eq. 5.53 for systems that lack translational invariance, which
do not allow for the construction of a Bloch Hamiltonian. Suppose one has a rectangular lattice
with Lx, Ly sites in the x- and y-direction, respectively. Let the Fermi projector

P =
∑
n∈occ

|ψn⟩ ⟨ψn| , (5.55)

be the projector on the filled eigenstates |ψn⟩. In order to make the position operators x̂, ŷ
compatible with periodic boundary conditions x ∼ x+ Lx, y ∼ y + Ly, we consider the operators(

0M,M 0M,N

0N,M U

)
= P exp

{
2πi

x̂

Lx

}
P = Px,(

0M,M 0M,N

0N,M V

)
= P exp

{
2πi

ŷ

Ly

}
P = Py,

(5.56)

where the basis of Px, Py is chosen to be the eigenstates |ψn⟩ where n = 1, . . . ,M label the empty
states and n =M+1, . . . , LxLy label the filled states, of which there are a total of N . Furthermore,
we denote 0A,B as a A × B matrix of zeros and U and V are N × N matrices. If λi denote the
eigenvalues of V UV †U†, the Bott index is defined as

IBott =
1

2π

∑
i

Im lnλi =
1

2π
ImTr lnV UV †U†. (5.57)

The Bott index is an object originating from K-theory, which measures the anti-commutativity
of two operators U, V . In a physical setting, the Bott index operators U, V in Eq. 5.56 measures
the geometric (Berry) phase that is picked up as the Hamiltonian is varied along a closed loop
in parameter space. For a mathematical approach that bridges the gap with its application in
physics, we recommend Ref. [93]. For a more physics-oriented approach, as used in this section,
we refer the reader to Refs. [89, 94,95].

We will now show exactly how the Bott index relates to the Chern number in Eq. 5.53 of the
Rice-Mele model. As shown in Ref. [89], the unitary x-position operator U† acts as

exp

{
−2πi x̂

Lx

}
=
∑
kn

|kn⟩
〈
kn −

2π

Lx

∣∣∣∣ , |x⟩ = 1√
Lx

∑
kn

eiknx |kn⟩ ,

where kn = 2πn/Lx and n = 1, 2, . . . , Lx, and a similar result with x → y holds for the y-
position operator. If one now assumes the Bloch Hamiltonian exists and considers some momentum
eigenstate |ψ(kx, ky)⟩, the operator V UV †U† acts as an anti-clockwise translation of the eigenstate
along the perimeter of the rectangle [kx, kx+2π/Lx]× [ky, ky+2π/Ly]. Therefore, the eigenvalues
λn of V UV †U† are precisely the Berry phases eiγn of translating an eigenstate |ψn⟩ along a
rectangle in k-space. The final step is to identify the y-dimension with time t ∈ [0, T ]. This has
the effect of changing the action V † : ky 7→ ky + 2π/Ly to V † : t 7→ t+∆t, where ∆t = T/Ly and
Ly is an integer that parameterises the discretisation of the time domain. This change is directly
implemented by taking V † = e−iHt, the time-evolution operator.

By taking the imaginary part of the logarithm in Eq. 5.57, the Bott index is precisely the sum
of all Berry fluxes γn. The key connection to the Chern number is that it is given by the sum of
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Berry fluxes [92], and therefore the Bott index in Eq. 5.57 is proven to be equivalent to the Chern
number in Eq. 5.53 in Refs. [93, 96].

Finally, we briefly explain the numerical method from Ref. [89] for evaluating the Bott index
Eq. 5.57 that is used in Sections 5.5.3 and 5.5.4. For a general pump Hamiltonian H(t) with
L lattice sites and periodic boundary conditions, discretise the interval [0, T ] into N intervals of
width ∆t = T/N , where T̃ = {0,∆t, . . . , (N − 1)∆t} denotes the set of all time values. For every
t ∈ T̃ , the Schrödinger equation H(t) |ψn(t)⟩ = En(t) |ψn(t)⟩ is solved. Each eigenstate is written

in position basis as |ψn(t)⟩ =
∑L
l=1 ψn(t) |l⟩, such that the operator exp{2πix̂/L} acts on a state

as exp{2πix̂/L} |ψn(t)⟩ =
∑L
l=1 e

2lπi/Lψn(t) |l⟩. Using these definitions, one defines the M ×M
matrices Ũt, Ṽt,t+∆t for every t ∈ T̃ as

[Ũt]n,m = ⟨ψn(t)| exp
{
2πi

x̂

L

}
|ψm(t)⟩ , [Ṽt,t+∆t]n,m = ⟨ψn(t)|ψm(t+∆t)⟩ , (5.58)

where the indices n,m run over the M ≤ L filled states of the system. The Bott index Eq. 5.57 is
approximated by the formula

ĨBott =
1

2π

∑
t∈T̃

ImTr ln Ṽt,t+∆tŨt+∆tṼ
†
t,t+∆tŨ

†
t , (5.59)

which recovers Eq. 5.57 in the limit ∆t→ 0 [89].

5.5.3. The Tribonacci Charge Pump

In the work by Yoshii et al. [89], the Rice-Mele charge pump is modified using the Fibonacci word
f from Section 3.1.3. This is done by replacing the terms (−1)n in Eq. 5.52, which represent an

infinite periodic string · · · 01010101 · · · , with the term (−1)(f(bi))n , where (f (bi))n denotes the nth
word of the bi-infinite Fibonacci word f . In this way, a weak bond corresponding to a 0 in f is
mapped to (−1)0 = 1 and a strong bond 1 in f is mapped to the value −1.

Since we have three letters 0, 1 and 2 in the Tribonacci word, we cannot simply raise −1 to the
power of a letter, since 0 and 2 would result in the same contribution. Since the t2 bonds are
stronger than the t1 bonds in the Tribonacci chain, we choose the replacement

(−1)n → g(n) =


1 if wn = 0,

−1 if wn = 1,

−2 if wn = 2.

in Eq. 5.52, where wn is the nth letter of the bi-infinite Tribonacci word. Although this is a
physically motivated choice, one can choose any three distinct values that are associated to the
letters 0, 1 and 2 in the Tribonacci word.

Before turning to our results, let us briefly explain the main results of the work in Ref. [89]. In
the limit of infinite system size, the Rice-Mele charge pump in Eq. 5.52 has a time-dependent
two-band Bloch Hamiltonian since the unit cell consists of two sites. Therefore, the only valid
filling that one can choose is half-filling. In the case of an aperiodic Rice-Mele pump, such as the
Fibonacci pump in Ref. [89], there is no well-defined unit cell, hence any filling can be chosen.
Yoshii et al. [89] showed that the Fibonacci Rice-Mele pump with ∆ > |h0|, |δ0| can pump a charge
at various filling levels, which they call multilevel pumping. The way to compute the amount of
pumped charges for a given filling is to numerically evaluate the Bott index Eq. 5.59 for a finite
system with periodic boundary conditions at the desired filling.

The first step in studying the pumping behaviour of the Tribonacci charge pump is to compute
the energy levels during one cycle, which are displayed in Fig. 5.17. First, note that for any value
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of t ∈ [0, T ], the energy spectrum in Fig. 5.17a can be divided into five bands, analogous to the
spectrum of the HTC in Fig. 5.1a. Upon taking open boundary conditions in Fig. 5.17b, it is clear
that lines emerge that traverse energy bands during one cycle. The open boundary spectrum is
shown as well in Fig. 5.17c for ∆ = 20, in which case the model is a regular monoatomic hopping
chain with a perturbative Rice-Mele modulation.

In order to see whether the models in Figs. 5.17b and 5.17c are in fact charge pumps, we numerically
evaluate the Bott index Eq. 5.59. The results for a Tribonacci Rice-Mele charge pump with T6 = 44
sites can be summarised as follows:

• For ∆ = 2, 20, 200, 2000, the Bott index is one for all fillings except M = 0, 1. This means
that the system pumps precisely one charge for all fillings, except M = 0, 1, independent of
∆.

• The Fibonacci Rice-Mele model with F8 = 34 and F9 = 55 sites yields exactly the same
results regarding the Bott indices.

There is one observation that is, to our best knowledge, not compatible with the working principle
of the charge pump as explained by Asboth et al. in Ref. [92]. In Fig. 5.17c, there is clearly no
energy level traversing the well-separated bands. This is consistent with the picture where the
model is a regular hopping chain with a Rice-Mele modulation that weak. In that case, however,
one would expect a zero Bott index for fillings that lie in between the separated bands in Fig. 5.17c.
This is not the case for the numerically computed Bott indices using Eq. 5.59. In order to resolve
this dichotomy, a starting point would be to numerically compute the location of Wannier centers
during one full cycle and compare it with the result of the Bott index. As explained in Ref. [92],
if these centers move one lattice site, this means one charge has been pumped.

5.5.4. General Aperiodic Charge Pumping

The multilevel pumping, found by Yoshii et al. [89] in the Fibonacci Rice-Mele model which is
also present in the Tribonacci Rice-Mele model in Section 5.5.3, turns out to be a common feature
of aperiodic Rice-Mele models. More specifically, we show the multilevel pumping behaviour of
Rice-Mele models based on the Thue-Morse, Rudin-Shapiro, silver mean substitution.

The Thue-Morse substitution is a binary substitution explained in Section 3.1.4, yielding the
binary Thue-Morse word WTM = · · ·wTM−1 |wTM0 wTM1 · · · . The silver mean ρSM substitution is a
generalisation of the Fibonacci substitution that reads

ρSM : 0 7→ 010, 1 7→ 0, (5.60)

for which we denote the fixed point word as WSM = · · ·wSM−1 |wSM0 wSM1 · · · . The Rudin-Shapiro
substitution ρRS is a four-letter substitution that reads

ρRS : 0 7→ 01, 1 7→ 02, 2 7→ 31, 3 7→ 32, (5.61)

resulting in the fixed point W̃RS . The binary Rudin-Shapiro word WRS = · · ·wRS−1 |wRS0 wRS1 · · ·
is obtained by mapping 1 7→ 0, 2 7→ 1 and 3 7→ 1 in W̃RS . Using these aperiodic binary words, we
study the Rice-Mele model where (−1)n → (−1)wx

n is taken with a fixed x ∈ {TM,SM,RS}.

For the three aperiodic words, the energy levels of the corresponding Rice-Mele pump are displayed
in Fig. 5.18. For each model, it is clear that there are energy levels that move from one band of
energy levels to another during a cycle, which is an indication of charge pumping. We numerically
compute the Bott index for the finite systems with periodic boundary conditions using Eq. 5.59.
For ∆ = 2, 20 and h0 = δ0 = 1, we obtain the following conclusions for the silver mean pump with
41 sites and both the Thue-Morse as well as the Rudin-Shapiro pump with 32 sites:

• The silver mean and Rudin-Shapiro systems have a Bott index of one for all fillings except
the fillingsM = 0, 1. This is precisely the same situation as for the Fibonacci and Tribonacci
Rice-Mele pumps.
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• The Thue-Morse system has a Bott index of one for all even fillings, independent of ∆. For
odd fillings, the Bott index takes varying integers, which values depend on ∆.

In that sense, the three aperiodic chains display multilevel pumping as well, where for the Thue-
Morse chain one should consider only even fillings. It is an interesting open question why the
pumping behaviour of the silver mean and Rudin-Shapiro pumps, where the latter is not even a
quasicrystal, is similar to the Fibonacci and Tribonacci case, but the Thue-Morse pump, also not
a quasicrystal, is different.

The fact that the numerically computed Bott index is almost always equal to one for the Fibonacci,
Tribonacci, Silver mean, and Rudin-Shapiro chain, especially in the absence of a band crossing, is
an important topic for further research. If one was to further investigate this topic, we recommend
the following courses of action:

1. First, attempt to analytically compute the Chern number Eq. 5.53 for the Rice-Mele model
in Ref. [89], and look if this is always equal to one for δ0 ̸= 0 and h0 ̸= 0, as they claim to
be the case. If that is indeed true, then the model in Ref. [89] is an inappropriate model for
topological charge pumping, since there would be charge pumping without an energy level
crossing.

2. Study the finite-size effects on the result of the numerical computation of the Bott index.
Because of limited computational resources and time, we have only studied aperiodic chains
with ∼ 100 lattice sites. It could be the case that the results become radically different if
one increases the number of lattice sites.

3. Study the stability and correctness of the numerical scheme proposed in Ref. [89], which is
used here as well. It could be the case that numerical artefacts cause the Bott index to be
nonzero as we are not in the thermodynamic limit, hence the Bott index need not be equal
to the Chern number.
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(a) N = 8,∆ = 0.
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(b) N = 8,∆ = −2.
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(c) N = 11,∆ = 0.

0 250 500 750 1000 1250 1500 1750
State number

1.0

0.5

0.0

0.5

1.0

En
er

gy
 E

/t 2

(d) N = 12,∆ = 0.
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(e) N = 13,∆ = 0.
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(f) N = 14,∆ = 0.

Figure 5.10.: The energy spectrum of the HTC with open boundary conditions Eq. 5.51 for various
N,∆, where some exhibit pronounced in-gap modes.

(a) (b) (c) (d)

Figure 5.11.: All left modes of N = 8,∆ = 0.
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(a) (b) (c)

Figure 5.12.: All right edge modes of N = 8,∆ = 0.

(a) (b) (c) (d)

Figure 5.13.: All left modes of N = 8,∆ = 1.

(a) (b) Questionable edge mode.

Figure 5.14.: All right edge modes of N = 8,∆ = 1.

Figure 5.15.: a) Archimedes’ screw: pumping water by periodic motion. b) The static potential
U0 and the modulating potential U1 (figure from Ref. [91]).
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(a) Periodic boundary conditions.
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(b) Open boundary conditions.

Figure 5.16.: The Rice-Mele charge pump spectrum for ∆ = 2, δ0 = h0 = 1, and 60 lattice sites.
The red line indicates a charged pumped to the upper band, and the green line
indicates a charge pumped to the lower band.
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(a) Periodic boundary conditions,
∆ = 2.
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(b) Open boundary conditions,
∆ = 2.
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(c) Open boundary conditions,
∆ = 20.

Figure 5.17.: The energy levels during a full cycle of the Tribonacci Rice-Mele pump with T7 = 81
sites, h0 = δ0 = 1, and various ∆ values.
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(a) Silver mean pump, 99 lattice
sites.
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(b) Thue-Morse pump, 128 lattice
sites.
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(c) Rudin-Shapiro pump, 128 lat-
tice sites.

Figure 5.18.: The energy levels during a full cycle of three finite aperiodic Rice-Mele pumps with
∆ = 2, h0 = δ0 = 1 and open boundary conditions.
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6. Topology in Physics

The aim of this chapter is to introduce topology in physics from a viewpoint that is accessible
to both physicists as well as mathematicians. While relying on the least amount of background
knowledge from both physics and mathematics, we bridge the mathematical theory of topology
and the classification of symmetry protected topological (SPT) states in a rigorous way. To
achieve this goal, we introduce all necessary concepts from mathematics and physics in Section 6.1.
Subsequently, we introduce the concept of topology in physics, and explain the bulk-boundary
correspondence: a hallmark of topology in condensed matter. Subsequently, the mechanism of
symmetry protected topology is explained in Section 6.3. Finally, in Section 6.4, the full tenfold
way classification of translationally-invariant SPT states is given in the context of K-theory, which
completes the bridge between topology in condensed matter and mathematical topology.

Central references on which this chapter is based are the review papers by Chiu et al. [11] and
Ludwig [10].

6.1. Preliminaries

6.1.1. Mathematical Topology of Spaces and Maps

The mathematical subject of topology describes properties of objects “modulo” continuous de-
formations. If two objects can be deformed continuously into each other, they are topologically
equivalent. The only properties of interest are those that are kept invariant under those continuous
deformations, such as the amount of holes in a sheet, or the structure of a knot. These properties
are called topological invariants. Perhaps the most famous example of a continuous deformation is
the equivalence between the doughnut and the coffee mug, where the amount of holes (both have
one) is kept invariant during the continuous deformation.

In this brief mathematical section, we review the mathematical concepts of topology that are
used throughout this chapter. We start by defining what a topology is, and how it allows for the
definition of a continuous map.

Definition 6.1. (Topology, topological space, open set, neighborhood) Let X be a set and τ a
family of subsets of X. The family τ is topology on X if and only if

1. ∅, X ∈ τ ,

2. For any collection (Aα)α∈I (I may be uncountable) where each Aα ∈ τ , the union
⋃
α∈I Aα ∈

τ is a member of the topology,

3. For any finite collection Ai ∈ τ , the intersection
⋂
iAi ∈ τ .

If τ is a topology, the tuple (X, τ) is a topological space. We often say that X is a topological
space, by which we mean (X, τ).

Given a topological space (X, τ), we say that a subset U ⊂ X is open if and only U ∈ τ . Finally,
a neighborhood of a point x ∈ X is any set V ⊂ X such that there exists an open set U ∈ τ for
which x ∈ U ⊂ V ⊂ X holds.

Since we will be working with topological spaces, let us briefly discuss the most important topolo-
gies that we will need. Firstly, if X ⊂ Rd, we will always take the “natural” topology τd on the
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real numbers. This topology is defined as the smallest topology that contains all open d-balls

Bd(x, r) = {y ∈ X | d(x, y) < r}, x ∈ X, r > 0,

where d(·, ·) is the Euclidean metric. Secondly, if we have two topological spaces (X, τX) and
(Y, τY ), the product topology on the space X × Y is defined by

τX×Y := {D ⊂ X × Y | ∀ (x, y) ∈ D ∃U ∈ τX , V ∈ τY such that x ∈ U, y ∈ V, and U × V ⊂ D}.

Unless specified otherwise, the topology of X×Y , where X,Y are topological spaces, will be taken
to be the product topology.

Definition 6.2. (Continuous map) Let f : X → Y be a map between the topological spaces X,Y .
The map f is continuous if and only if for every open set V ⊂ Y , the inverse image

f−1(V ) = {x ∈ X | f(x) ∈ V } = U

is an open set. Furthermore f is said to be continuous at a point x ∈ X if and only if f−1(V ) is
a neighborhood of x for every neighborhood V of f(x) ∈ Y .

A key notion in topology is the equivalence between two topological spaces.

Definition 6.3. (Homeomorphism, topological equivalence, topological invariant) A homeomor-
phism between two topological spaces X,Y is a bijective continuous map f : X → Y with continuous
inverse. If there exists a homeomorphism between two topological spaces X and Y , they are said
to be topologically equivalent, denoted by X ∼= Y .

If X is a topological space and denote p(X) as some property of X, then p(X) is called a topological
invariant if p(X) = p(Y ) for every Y such that X ∼= Y .

Next, one can study the maps between topological spaces, and their equivalence.

Definition 6.4. (Homotopy) Let f : X → Y be a continuous map between topological spaces X,Y .
A homotopy of f is a family of continuous maps (ft)t∈[0,1] : X → Y such that:

1. f0 = f ,

2. The map F : X × [0, 1]→ Y is continuous, where F (x, t) := ft(x).

Furthermore, we say that f0 and f1 are homotopic, denoted by f0 ≃ f1. Two maps f, g are said
to be homotopic if and only if there exists such a map F , satisfying the above properties, with
F (x, 0) = f and F (x, 1) = g.

Now, we are ready to introduce homotopy classes; the topologically distinct maps between topo-
logical spaces.

Definition 6.5. (Homotopy Class) Let X and Y be any topological space. The set

[X,Y ] := {f : X → Y | f continuous}/ ∼,

contains all equivalence classes of topologically distinct maps. The equivalence relation ∼ is defined
on the set of continuous functions, where f ∼ g holds if and only if f ≃ g, i.e. they are homotopic.

Finally, we introduce the concept of path-connectedness and the set of path-connected components.

Definition 6.6. (Path-connected, path-connected component) Two points x, y ∈ X in a topological
space X are said to be path-connected if and only if there exists a continuous function f : [0, 1]→ X
such that f(0) = x and f(1) = y, defining an equivalence relation. Denote x ∼ y as the equivalence
relation, where two points are equivalent if they are path-connected. The set of points y ∈ X that
satisfy x ∼ y constitute the path-connected component of x ∈ X. The set of path-connected
components is denoted

π0(X) = X/ ∼ .
A topological space X is path connected if π0(X) = {1}, i.e. consists of one element, or equivalently
x ∼ y for all x, y ∈ X.
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Topology of Loops

A tractable setting to apply the above definitions is a loop in the punctured plane P = R2 \ {0}.
Let S1 = [0, 1]/(0 ∼ 1) denote the unit circle, i.e. the interval [0, 1] where the begin and end are
glued together.

Definition 6.7. (Loop) A loop in the space X is a continuous map γ : S1 → X.

Two loops γ1 and γ2 in any space X are homotopic if and only if there exists a family of loops
γ[t] for t ∈ [0, 1], such that γ[0] = γ1, γ[1] = γ2, and the map t 7→ γ[t] is continuous in the space of
loops. We will now show why a loop cannot be “untied” from the origin in the punctured plane
P in a continuous way. Consider the loops in P

γ1(x) =

(
cos 2πx
sin 2πx

)
, γ2(x) =

(
cos 2πx− 2
sin 2πx

)
, γ[t](x) =

(
cos 2πx− 2t

sin 2πx

)
, (6.1)

where γ1 encloses the puncture in P and γ2 does not. By observing that γ[1/2](0) = 0 /∈ P , it is
clear that γ[1/2] is not a loop in P . Hence, γ1 and γ2 are not topologically equivalent. Note that
this is not a proof, since one has to show that the loops cannot be deformed into each other for
any choice of family γ[t]. In similar fashion, one cannot continuously deform the two loops

γ3(x) =

(
cos 4πx
sin 4πx

)
, (6.2)

and γ1 into each other, since γ1 wraps once around the punctured origin and γ3 wraps two times.

𝛾(𝑥)

෤𝛾(𝑥)

Figure 6.1.: Projecting a loop γ (red) onto the unit circle (dashed). The resulting projected loop
γ̃ is schematically depicted in blue.

Instead of constructing explicit continuous maps between loops to study their topological equiva-
lence, it is often useful to study properties that are kept invariant during continuous deformations:
topological invariants. In the case of loops in the punctured plane P , the relevant topological
invariant is the winding number ν [97]. The winding number counts the amount of times that the
loop winds around the puncture, counting +1 for each anti-clockwise winding and −1 for each
clockwise winding. To see why the winding number is a topological invariant, take any loop γ.
Since the puncture is at the origin, each point on the loop can be projected onto the unit circle
in P in a continuous way by the map γ(x) 7→ γ(x)/||γ(x)||2 =: γ̃(x) = (cosϕ(x), sinϕ(x))T , where
ϕ(x) is the phase that parameterises the unit circle (see Fig. 6.1). In fact, for any loop γ and its
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projected version γ̃ are homotopic. The winding number is then the integral of the phase over S1,
divided by the phase of one winding

ν(γ) =
1

2π

∫
S1
dϕ(x) =

1

2π

∫
S1

dϕ

dx
dx ∈ Z, (6.3)

which must be an integer [98]. Because ν is restricted to the discrete set Z, the winding number
reads ν(γ) = ν(γ′) for any pair of homotopic loops γ ∼ γ′. The power of Eq. 6.3 is that it can
immediately decide whether or not two loops are homotopic, without explicitly constructing a
homotopy.

Note that the target space P is not homeomorhpic to R2, in which all loops are nullhomotopic.
On the other hand, if we were to cut open the base space S1 to a regular interval, all images in
P would be open strings, which are nullhomotopic. These examples show that the topology of
both the base space as well as the target space influence the topological properties of the mapping
between them.

For proofs, and more details regarding loops, we refer the reader to the books by Nakahara [99] and
Hatcher [98], where the former is most suitable for physicists and the latter for mathematicians.

6.1.2. Quantum Mechanics

Model Definition

To be more precise, the physical systems that we consider are gapped, non-interacting, fermionic
second-quantised Hamiltonians. These systems are described with fermionic creation (annihilation)

operators ψ̂†
I (ψ̂I) where I = i1, . . . , iN in the case of N lattice sites, that act on the fermionic

Fock space H := F−(H), the many-body Hilbert space, where H is the single-particle Hilbert
space. The indices i1, . . . iN are general multi-indices that can also have orbital or spin degrees of
freedom. These operators obey the canonical fermionic anti-commutation relations

ψ̂I ψ̂
†
J + ψ̂†

J ψ̂I =: {ψ̂I , ψ̂†
J} = δIJ , {ψ̂I , ψ̂J} = {ψ̂†

I , ψ̂
†
J} = 0,

where I, J are the general multi-indices. The non-interacting property is reflected in the structure
of the Hamiltonian, which contains only quadratic terms in the creation/annihilation operators.
For non-superconducting systems, the second-quantised Hamiltonian has the form

Ĥ =
∑
I,J

ψ̂†
IHIJ ψ̂J ≡ ψ̂†Hψ̂, (6.4)

where HIJ is a N×N called the first-quantised Hamiltonian. For superconducting systems, define
the Nambu spinors as

Ψ̂† = (ψ̂†
1, . . . , ψ̂

†
N , ψ̂1, . . . , ψ̂N ).

The second-quantised Hamiltonian for superconducting systems has the form

Ĥ =
1

2
Ψ̂†HΨ̂, (6.5)

where the 2N×2N matrix H is the first-quantised Hamiltonian, often referred to as a Bogoliubov-
De Gennes (BdG) Hamiltonian. The gapped property will be explained in Section 6.1.2.

For further reference, we denote the set of all “allowed” single-particle Hamiltonians as GH, where
the notion of “allowed” is explained in Section 6.3.4.
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The Bloch Hamiltonian

If the first-quantised Hamiltonian (viz. single-particle Hamiltonian) H is translationally invariant,
Bloch’s theorem [1] can be applied, as was done for 1D systems in Section 3.5.2. We refer the
reader to the book by Kittel [100] for a general treatment of Bloch’s theorem to any Bravais lattice
in detail.

Here, the general method of obtaining the Bloch Hamiltonian is explained. We assume that the
system is translationally invariant such that there is a Bravais lattice Γ, which hosts a unit cell
of M atoms at each Bravais lattice point. In this way, each lattice point of H can be uniquely
labeled by a tuple (x, i), where x ∈ Γ and 1 ≤ i ≤ M . An example is the graphene lattice in
Fig. 4.5a, where the unit cell consists of two atoms A and B, and the Bravais lattice is spanned
by the vectors a1 and a2. Define creation/annihilation operators Âi(R) for atom i in the unit cell
at position R. The only nonzero anti-commutator reads

{Âi(R), Â†
j(R

′)} = δijδR,R′ .

Since there is periodicity due to the Bravais lattice Γ, the operators Âi are Fourier transformed

Âi(R) =
1√
N

∑
k∈BZ

Âi(k)e
ik·R,

where N is the number of lattice sites and BZ denotes the (first) Brillouin zone, the primitive
cell of the reciprocal lattice of Γ. Analogous to the real-space operators, the Fourier space cre-
ation/annihilation operators obey anti-commutation relations where the only nonzero relation
reads

{Âi(k), Â†
j(k

′)} = δijδk,k′ .

By using algebraic identities such as 1
N

∑
R e

iR·(k−k′) = δk,k′ , the second-quantised Hamiltonian
can be rewritten as

Ĥ =
∑
k

ψ̂†(k)H(k)ψ̂(k)(k), ψ̂(k) =
(
Â1(k), . . . , Ân(k)

)T
, (6.6)

where H(k) is a M ×M matrix for every k ∈ BZ, called the Bloch Hamiltonian.

Band Structures

The eigenvalue problem for the Bloch Hamiltonian reads H(k) |ua(k)⟩ = Ea(k) |ua(k)⟩, where
1 ≤ a ≤M denotes the energy band, Ea(k) is the energy of the state in band a with momentum
k and |ua(k)⟩ is the momentum eigenstate of band a. An important feature of bands is that they
can be empty, filled, or partially filled. This can be understood in the simplest way by defining an
energy EF , the Fermi energy, and consider all states with Ea(k) ≤ EF to be filled, and the rest
empty. In practice, the Fermi energy can be tuned by, e.g. by applying an external voltage. A
schematic representation of a band structure of a 1D system is plotted in Fig. 6.2. In Fig. 4.5b,
the two energy bands of graphene are plotted as two grey surfaces, and the Fermi level is indicated
by the blue plane.

The band structure is important for the study of insulating systems, since the Fermi energy must
always lie inside a gap for all k ∈ BZ, as in Fig. 6.2. To ensure this is the case, a so-called flat-band
Hamiltonian is constructed from H(k):

Q(k) =

n∑
a=1

|ua(k)⟩ ⟨ua(k)| −
M∑

b=n+1

|ub(k)⟩ ⟨ub(k)| ,

where |ui(k)⟩ are the eigenstates of H(k). This procedure is also known as “spectral flattening”,
and it is known that the deformation from H(k) to the flat-band Hamiltonian is continuous for
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Figure 6.2.: Schematic band structure of n filled and m empty bands, divided by a gap (black
dotted lines), in which the Fermi energy EF (blue dotted line) lies (based on Ref. [10]).
Since the x-axis is the BZ, periodic boundary conditions apply.

every k ∈ BZ. In fact, the maps γ : k 7→ Q(k) and γ′ : k 7→ H(k) are homotopic [10, 101]. From
now on, unless explicitly indicated, when saying Bloch Hamiltonian, we refer to the map

γ : k 7→ Q(k), γ ∈ G = {allowed maps γ : BZ → G}, (6.7)

where G is the space of allowed flat-band Hamiltonians G ⊂ CM×M . What “allowed” exactly
means is discussed in Section 6.3.4.

6.2. Introduction to Topology in Physics

At first glance, topology seems to be an inappropriate tool for physicists, since the deformation
of a physical system often yields a quantitatively different result. However, in modern condensed
matter, simplified model systems such as tight-binding models are often used to describe a real-
world material. If the real-world system can be obtained, at least to a good approximation, from
the simplified model via a continuous deformation, the topological invariants of the model system
carry over to the real-world system. One powerful feature of this approach is that the real-world
system is “robust” to any kind of disorder that can be described as a continuous deformation, in
the sense that properties connected to the topological invariant are unaffected.

6.2.1. Definition of Topology in Physics

We are now in shape to define the main essence of topology for non-interacting, second-quantised
fermionic insulators or superconductors:

“When talking about topology of a system Ĥ = Ψ̂†HΨ̂, we mean the topological properties of the
space GH of allowed single-particle Hamiltonians. If H is path-connected to all other allowed
H ′ ∈ GH, the system is said to be topologically trivial, otherwise, the system is said to be

topological.”

The definition above can written more succinctly as follows.

Definition 6.8. (Topology in Physics - General case) A system H ∈ GH is topologically trivial
if and only if π0(GH) = {1}, i.e. has one path-connected component. Otherwise, H is said to be
topological.
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Furthermore, H,H ′ ∈ GH are topologically equivalent if and only if H and H ′ are path-connected,
i.e. they lie in the same path-connected component of G.

When the system is translationally invariant, the definition above can be reformulated in terms of
the Bloch Hamiltonian:

“When talking about topology of a system Ĥ, we mean the topological properties of the Bloch
Hamiltonian γ ∈ G as a map from BZ → G. Two systems described by γ, γ′ ∈ G are called

topologically equivalent if and only if γ and γ′ can be continuously deformed into each other in G
(i.e. γ, γ′ are homotopic). If γ is homotopic to all other allowed γ′ ∈ G, the system is said to be

topologically trivial, otherwise, the system is said to be topological.”

The definition for translationally invariant systems can written more succinctly as follows.

Definition 6.9. (Topology in Physics - Translationally invariant case) A system γ ∈ G is topo-
logically trivial if and only if π0(G) = {1}, i.e. has one path-connected component. Otherwise, γ
is said to be topological.

Furthermore, γ, γ′ ∈ G are topologically equivalent if and only if γ ≃ γ′, i.e. they are homotopic
and therefore lie in the same path-connected component of G.

In the case of translational invariance, the two Definitions 6.8 and 6.9 can be compared and are
simply related by the identity π0(GH) = π0(G), since the Bloch Hamiltonian Q(k) is uniquely
obtained from H.

In Section 6.3, symmetries that one can impose on a Hamiltonian are discussed at length. These
symmetries are essential to the study of topology, since enforcing a certain symmetry changes the
space GH. Finally, in Section 6.4, a complete classification of the spaces GH is presented.

6.2.2. The Bulk-Boundary Correspondence

Until now, we have assumed the existence of a gap in the band structure of the bulk system,
which is necessary for the system to be an insulator. Now, consider a bulk topological insulator
that shares a boundary with vacuum, as is the case in Fig. 6.3. If we think of the material and
the boundary to be macroscopic, the quantum mechanical properties can locally be modeled by a
Hamiltonian Ĥ(x) that describes an infinite, translationally invariant system. For any xb ∈ bulk,
the Hamiltonian Ĥ(xb) is topological. Similarly for any xv ∈ vacuum, the Hamiltonian Ĥ(xv)
is trivial. Additionally, for every path from xb to xv, the boundary is crossed at some point
x∂ ∈ boundary.

Since space is continuous and Ĥ(xb) and Ĥ(xv) are not topologically equivalent, the map x 7→
Ĥ(x) must be discontinuous at x∂ . In terms of the Bloch Hamiltonian described by G ∋ γ(x) :
k 7→ Q(k,x), this means that the map x 7→ γ(x) ∈ G has a discontinuity at x = x∂ . It turns out
that at such a discontinuity, the band gap vanishes. This results in a gapless, hence conducting,
boundary mode at the Fermi energy, which is a hallmark of topological insulators.

Note that if Ĥ(xb) and Ĥ(xv) are topologically equivalent, the band gap never closes as they
can be continuously deformed into each other. Therefore, the topology of the bulk Hamiltonian
dictates the boundary behaviour; this is the bulk-boundary correspondence. Here, we prove the
bulk-boundary correspondence in terms of the Bloch Hamiltonian. An important alternative way
is to use the formalism of (non-abelian) Wilson loops, which are treated in detail in Ref. [102].

The remainder of this section is devoted to proving that the band gap closes at the interface
between two topologically distinct materials. More generally:

Theorem 6.10. If two Hamiltonians Ĥ0 and Ĥ1 are not topologically equivalent, the band gap
closes at some point during any continuous deformation of the spectrum from Ĥ0 to Ĥ1.

For the proof, we need the following theorem.
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Bulk (Topological) Vacuum  (Trivial)

𝐸𝐹 𝐸𝐹 𝐸𝐹

Boundary

Figure 6.3.: A material that has a topological bulk Hamiltonian (grey), with a boundary (dashed
line) that is in contact with vacuum (white) - a topologically trivial insulator. The
band gap closes at the boundary of the material at the Fermi energy.

Theorem 6.11. (Theorem 8 (p. 130) in Ref. [103]) Let A(t) be a continuous (differentiable)
complex matrix-valued function of t, λ(t) an eigenvalue of A(t) of multiplicity one. Then we
can choose an eigenvector h(t) of A(t) pertaining to the eigenvalue λ(t) to depend continuously
(differentiably) on t.

To show the non-triviality of Theorem 6.11, we show an example of a continuous matrix-valued
function that has discontinuous eigenvectors at the point where the eigenvalues become degenerate.

Example 6.12. (Example of discontinuous eigenvectors of a continuous matrix-valued function)
Consider the matrix-valued function

A(t) =



(
1− t2 0

0 1 + t2

)
for t < 0,(

1 t2

t2 1

)
for t ≥ 0,

where t ∈ R. This matrix is continuous and differentiable at t = 0 since limϵ→0A(ϵ) = A(−ϵ) and

limϵ→0
dA
dt (ϵ) = dA

dt (−ϵ) =

(
0 0
0 0

)
. Solving the eigenvalue problem A(t)vi(t) = λi(t)vi(t) yields

λ1(t) = 1 + t2 and λ2(t) = 1− t2 for all t ∈ R, and eigenvalues{
v1(t) = (0, 1)T , v2(t) = (1, 0)T , for t ≤ 0,

v1(t) = (1, 1)T , v2(t) = (1,−1)T for t ≥ 0,

which are clearly not continuous at t = 0, which is the only value of t for which the eigenvalues
are degenerate.

Proof of Theorem 6.10. Let H0(k), H1(k) be the single-particle Bloch Hamiltonians of Ĥ0, Ĥ1,
respectively. By assumption, any allowed map [0, 1] ∋ t 7→ H(t,k) where H(0,k) = H0(k) and
H(1,k) = H1(k) must be discontinuous in t at some value (t′,k′). We assume that the eigenvalues
λi(t,k) are continuous, such that the energy bands are a continuous function of t (a natural
assumption in physics).

⇒

There exists at least one eigenvector vi(t,k) that is discontinuous in t at (t
′,k′).

⇐⇒
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¬(all eigenvectors vi(t,k) are continuous in t).

⇒ (using Theorem 6.11)

¬(all eigenvalues λi(t,k) are continuous in t and isolated.)

⇒

There exists at least one eigenvalue λi(t,k) that has multiplicity > 1 for some (t′,k′).

6.3. Symmetry Protected Topological States

In Section 6.1.2, the Hamiltonians for insulators and superconductors were introduced, which are
the relevant models in this chapter. This section aims to describe symmetry protected topological
(SPT) states, hosted by these models. These are short-range entangled (SRE) states of Ĥ that
have topological properties that are protected by symmetry conditions imposed on Ĥ. SRE states
are eigenstates of Ĥ that can be continuously transformed to a direct product state by applying
infinitesimal local unitary transformations. See part II of Ref. [10] for details.

The rest of this chapter is devoted to the relevant symmetries that can be imposed on Ĥ. Most
importantly, we discuss how these imposed symmetries affect the space G (see Eq. 6.7) of allowed
Bloch Hamiltonians.

6.3.1. Symmetries in Quantum Mechanics

An operator Ŝ : H → H that is either unitary or anti-unitary (i.e. ŜiŜ−1 = −i) is called a
symmetry of a second-quantised Hamiltonian Ĥ ∈ L(H) if

ŜĤŜ−1 = Ĥ, (6.8)

i.e. if Ŝ commutes with the Hamiltonian. A natural question is now; how does Ŝ act on the
single-particle Hamiltonian H? The answer is that there exists a (anti-)unitary matrix U such
that UHU−1 = ±H and acts on the creation/annihilation operators as

Ŝψ̂I Ŝ
−1 =

∑
J

(U†)I,J ψ̂J .

The question is now: what symmetries Ŝ do we need to consider. It turns out that the simplest
and most fundamental approach is to consider the symmetries that are anti-unitarily realised on
the first-quantised and/or the second-quantised Hilbert space:

• Time-reversal (TR) symmetry (TRS),

• Charge-conjugation/particle-hole (PH) symmetry (PHS),

• Chiral/sublattice symmetry (CS) (combination of TRS and PHS).

We refer the reader to Ref. [11] for a proof that these three symmetries indeed exhaust all anti-
unitarily realised symmetries.

6.3.2. Fundamental Symmetries

In this section, we showcase the most important properties of the three fundamental anti-unitary
symmetries, and therefore, skip the derivation of most results. The reader can consult Refs. [10]
and [11] for all missing details.
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Time-Reversal Symmetry

The first symmetry we discuss is time-reversal symmetry T̂ , acting on the time-evolution operator
Û(t) := exp{itĤ} as T̂ Û(t)T̂ −1 = Û(−t). Using Eq. 6.8 and that fact that T̂ is anti-unitary, one
can see that TR acts on the single-particle Hamiltonian as

UTH
∗U†

T = H,

where UT is a N×N unitary matrix and H∗ denotes the complex conjugation of H. Let K denote
the anti-unitary complex conjugation operator KHK−1 = H∗ with K2 = 1, then one can define
T = UT ·K such that

THT−1 = H.

If T̂ were to be applied twice, the resulting action on the single-particle Hamiltonian reads

UTU
∗
TH

∗(UTU
∗
T )

† = H,

where we define T2 := UTU
∗
T . There turn out to be two possibilities T2 = ±1, which can be

proven using Schur’s lemma [10]. We summarise the three possible ways that TR can be present
as

T =


0, when H is not TR invariant,

+1, when H is TR invariant and T2 = 1,

−1, when H is TR invariant and T2 = −1.
Finally, by noting that TR acts on Fourier space operators as

T̂ ψ̂(†)(k)T̂ −1 = ψ̂(†)(−k),

where ψ̂(k) is defined in Eq. 6.6, it can be shown that the action on the Bloch Hamiltonian reads

UTH
∗(k)U†

T = H(−k), TH(k)T−1 = H(−k),

where now UT ,T are M × M matrices. This has the implication that the spectrum of H(k)
is reflection symmetric w.r.t. k = 0. If ψ(k) is an eigenstate of H(k) such that H(k)ψ(k) =
E(k)ψ(k), then

H(k)T−1ψ(−k) = T−1H(−k)ψ(−k) = E(−k)T−1ψ(−k).

Particle-Hole Symmetry

The next symmetry is particle-hole symmetry Ĉ, which physically means that there are equally
many filled and vacant states, and that the system is invariant under the exchange of filled and
vacant states. PHS is a unitary operator on the second-quantised Hamiltonian acting as

Ĉψ̂I Ĉ−1 =
∑
J

(U∗†
C )I,J ψ̂

†
J , Ĉψ̂kĈ−1 = ψ̂†

−k, (6.9)

where UC is a unitary N ×N matrix. From Eq. 6.8 and Eq. 6.9, one can derive that the action
on the single-particle Hamiltonian reads

UCH
∗U†

C = −H.

Entirely analogous to TR, we define C = UC ·K and the operator C2 such that there exist three
ways that PHS can manifest itself

C =


0, when H is not PH invariant,

+1, when H is PH invariant and C2 = 1,

−1, when H is PH invariant and C2 = −1.

The action of PHS on the Bloch Hamiltonian reads

CH(k)C−1 = −H(−k),

where C = UC ·K and UC is now a M ×M unitary matrix.
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Chiral Symmetry

The last symmetry, chiral symmetry Ŝ ≡ T̂ ·Ĉ, is a anti-unitary symmetry on the second-quantised
Hilbert space. This symmetry has the physical interpretation that the system can be split up into
two non-interacting systems

Ĥ =

(
0 Ĥ12

Ĥ†
12 0

)
.

The action of CS on the second-quantised Hamiltonian reads

Ŝψ̂I Ŝ−1 =
∑
J

(U∗†
S )I,J ψ̂

†
J , ŜiŜ−1 = −i.

The action on the single-particle Hamiltonian therefore is

USHU
†
S = −H, US = UTU

∗
C = S,

where US is a unitary N ×N matrix. Finally, the action on the Bloch Hamiltonian is

SH(k)S−1 = −H(k),

where now S = US is a M ×M unitary matrix. To conclude, there exist two ways that CS can
manifest itself, being S = 0, 1, denoting that CS is either present (S = 1) or not (S = 0).

Summary

To summarise, there are three fundamental symmetries T̂ , Ĉ and Ŝ, with their single-particle
versionsT,C and S that are not unitarily realised on both the second-quantised and first-quantised
Hilbert space. Table 6.1 summarises the possible (anti-)unitary action of a symmetry on both the
first- and second-quantised Hamiltonian.

Table 6.1.: For all fundamental symmetries T,C, S, and general unitary symmetries U , the table
indicates if the symmetry is realised unitarily (U) or anti-unitarily (K) on the relevant
Hilbert space.

T C S U
Second-quantised K U K U
First-quantised K K U U

The three symmetries act on the first-quantised Hamiltonian as

UTH
∗U†

T = H, UCH
∗U†

C = −H, USHU
†
S = −H,

and on the Bloch Hamiltonian as

UTH
∗(k)U†

T = H(−k), UCH
∗(k)U†

C = −H(−k), USH(k)U†
S = −H(k).

6.3.3. Topological Protection

In this section, we explain how the fundamental symmetries discussed in Section 6.3.2 can lead
to an SPT state. For any Ĥ, let H denote the single-particle Hamiltonian and U(t) = exp{itH}
the corresponding time-evolution operator. Suppose the system possesses no symmetry, i.e. T =
C = S = 0, then H is a general Hermitian matrix, so the time-evolution operator is a general
N × N unitary matrix, i.e. U(t) ∈ U(N). Now suppose the system possesses only TRS, so
T = +1, C = S = 0. By anti-unitarity of T, the matrix H must be real and symmetric. Since any
hermitian matrix can be written as H = Hs +Ha, where Hs symmetric and Ha anti-symmetric,
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we can write our TR symmetric matrix as Hs = H −Ha. Since for any anti-symmetric Ha, the
operator exp{itHa} ∈ O(N), one can see that the time-evolution operator of a real symmetric
Hs must lie in U(N)/O(N), since it is defined by the time-evolution operator of any Hermitian
matrix modulo the anti-symmetric part.

Topological protection arises as follows. If one demands T = +1, C = S = 0, then Ĥ is topologi-
cally equivalent to all other Hamiltonians Ĥ ′ for which the time-evolution operator U(t)′ lies in the
same path-connected component of U(N)/O(N) as U(t). Moreover, if π0(U(N)/O(N))) = {1},
the system is topologically trivial. If U(N)/O(N) has more than one path-connected component,
enforcing T = +1, C = S = 0 ensures that two Hamiltonians from different components cannot
deform continuously into each other without closing the bulk gap. Hence, if there is a physical
property that depends on the connected component, this property is topologically protected by
the enforced symmetries.

Now consider the M ×M Bloch Hamiltonian Q(k) that has n filled and m empty bands, where
M = n+m and no symmetry requirements, i.e. T = C = S = 0. Since Q(k) is Hermitian, for all
k ∈ BZ, there exists a unitary U(k) ∈ U(n+m) such that Q(k) = U(k)ΛU†(k) where

Λ =

(
1n 0
0 −1m

)
,

where 1k denotes the k × k identity matrix. If we assume that

U(k) =

(
U1(k) 0

0 U2(k)

)
, U1(k) ∈ U(n), U2(k) ∈ U(m),

then Q(k) = U(k)ΛU†(k) = Λ. By observing that Q(k) is unitary, and unique up to U1, U2, the
space of possible Bloch Hamiltonians reads

Q(k) ∈ U(n+m)/U(n)× U(m) = G.

By enforcing one or more of the fundamental symmetries, the space G becomes more restricted,
as well as the space G. An example of such a restriction on G is the requirement Q∗(k) = Q(−k),
since this is a restriction on the map γ : BZ → G rather than on the space G itself. The result
of enforcing symmetries on maps γ : BZ → G is the space G. Table 6.4 gives this space G for all
possible combinations of T,C and S.

The reason for using the Bloch Hamiltonian instead of the single-particle Hamiltonian H, is that
the map γ : BZ → G naturally leads to a topological invariant, such as Chern numbers, Chern-
Simons invariants, Zak phases and winding numbers [11]. Additionally, these winding numbers are
often naturally related to physical properties, such as the quantum Hall conductance [8]. We do
not review invariants of topological phases of matter here. Instead, we refer the reader to Ref. [11]
for an extensive overview, and show an example of a winding number as topological invariant for
the Su-Schrieffer-Heeger (SSH) model in Section 6.3.5.

6.3.4. Spaces of Allowed Hamiltonians

In this section we discuss the important notion of the space of allowed single-particle Hamiltonians
GH and Bloch Hamiltonians G. Any space of allowed Hamiltonians must obey the following two
requirements:

1. The space must contain only Hamiltonians that obey the symmetry requirements from Sec-
tion 6.3.1,

2. Any two Hamiltonians are path connected in the space if and only if they can be deformed
into each other without closing the gap in which the Fermi energy lies.
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The first requirement is easy to implement, which is shown in Section 6.3.3.

The power of Bloch Hamiltonians is that by Theorem 6.10, any of the spaces G in Table 6.4
automatically satisfies the second requirement. It is precisely the second requirement that is
extremely hard to account for in determining GH for systems with N → ∞ lattice sites, in the
absence of a Bloch Hamiltonian. Since the spectrum of a tight-binding lattice model is typically
bounded, the spectrum must have accumulation points (Bolzano-Weierstrass), hence Theorem 6.10
is not applicable anymore. The unavailability of such a theorem makes it hard to construct a space
in which the second requirement is satisfied.

6.3.5. Topology in the SSH Model

The SSH model [18] is a one-dimensional tight-binding lattice model with 2N lattice sites, defined
by the second-quantised Hamiltonian

Ĥ = v

N−1∑
n=0

â†nb̂n + w

N−1∑
n=0

b̂†nân+1 +H.c., (6.10)

where v, w ∈ R are parameters and ân, b̂n are fermionic creation/annihilation operators where the

only nonzero anti-commutators are {ân, â†m} = {b̂n, b̂†m} = δn,m. Upon taking periodic boundary

conditions (PBC) one defines â
(†)
N = â

(†)
0 , and for open boundary conditions (OBC) one takes

â
(†)
N = 0.

To obtain the single-particle Hamiltonian as a 2N × 2N matrix, define

Ψ̂ = (â0, b̂0, â1, b̂1, . . . , âN−1, b̂N−1)
T ,

such that Eq. 6.10 can be rewritten as Ĥ = Ψ̂†HΨ̂ with

HPBC =



0 v w
v 0 w

w
. . .

. . .

. . .
. . . w
w 0 v

w v 0


, HOBC =



0 v
v 0 w

w
. . .

. . .

. . .
. . . w
w 0 v

v 0


,

for PBC and OBC, respectively. The energy spectra of HPBC and HOBC , i.e. the eigenvalues, are
plotted in Fig. 6.4 as function of the parameter v/w. Note that for approximately v/w ∈ [−1, 1],
the SSH model with open boundary conditions in Fig. 6.4b has two E = 0 states, located at
the edges. These states do not exist in the SSH model with periodic boundary conditions (see
Fig. 6.4a). In fact, these edge modes are topological, as will be shown in this section, and are the
result of the bulk-boundary correspondence from Section 6.2.2 in the SSH model.

The starting point for studying the topological properties of a model, is the Bloch Hamiltonian
representation. By defining ψ̂n = (ân, b̂n)

T and the Fourier transform over the N unit cells

ψ̂n =
1√
N

N−1∑
m=0

eikmnψ̂km ,

with km = 2πm/N , the Hamiltonian in Eq. 6.10 with PBC can be rewritten as Ĥ =
∑
k ψ̂

†
kH(k)ψ̂k

where

H(k) =

(
0 v + we−ik

v + weik 0

)
= d0(k) Id+d(k) · σ⃗
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(a) Periodic boundary conditions.
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(b) Open boundary conditions.

Figure 6.4.: The energy spectrum of the SSH model with N = 20 unit cells, for various values of
v/w.

is the Bloch Hamiltonian, which can be written in terms of Pauli matrices σ⃗ = (σx, σy, σz)
T with

d0(k) = dz(k) = 0 and dx(k) = v + w cos k, dy(k) = w sin k. Furthermore, the BZ is the interval
[0, 2π], where periodic boundary conditions are imposed such that 0 ∼ 2π are identified as the
same point. Now, one can view the Bloch Hamiltonian as a map γ : BZ → G, where G = R2 is
the space where the vector d(k) lives in.

Solving the time-independent Schrödinger equation H(k) |ψ±(k)⟩ = E±(k) |ψ±(k)⟩ yields the
eigenvalues of the Bloch Hamiltonian E(k) = ±

√
v2 + w2 + 2vw cos k, which constitute the band

structure. Furthermore, the eigenstates read

|ψ±(k)⟩ =
1√
2

(
v+we−ik

E±(k)

1

)
=

1√
2

(
±dx(k)−idy(k)|d(k)|

1

)
.

The band structure of the SSH model is plotted in the top part of Fig. 6.5 for various v, w values.
In the bottom row of Fig. 6.5, the loop traced out by the vector d(k) is shown for the v, w values
of the corresponding band structure in the top row. Note that for v = w = 1, the band gap closes,
which is not allowed according to Section 6.3.4. This happens precisely when H(k) = 0, which is
equivalent to d(k) = 0. Therefore, the space G should be adapted to G = R2 \ {0}

By observing that Eq. 6.10 has a real and symmetric single-particle Hamiltonian, and that there
exists CS, represented by the unitary

Γ =
∑
n∈Z
|2n⟩ ⟨2n| −

∑
n∈Z
|2n+ 1⟩ ⟨2n+ 1| ,

it is clear that the SSH model has all three fundamental symmetries, i.e. T = C = S = 1. Let
us further assume that the only allowed deformations of the SSH model are variations in the
parameters v, w. Under these assumptions, the space of allowed Bloch Hamiltonians reads

G = {γ : BZ → R2 \ {0} | γ(k) = d(k) = (v + w cos k,w sin k)T }.

Now, we have reduced the study of topology of the SSH model to the problem of loops in the
punctured plane that have the specific form γ(x) = (v+w cos 2πx,w sin 2πx)T , where x ∈ S1. By
a change of coordinates, we can set w → 1 and v → v/w, which gives us the simple problem of
determining whether the loop

γ(x) =

(
v/w + cos 2πx

sin 2πx

)
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Figure 6.5.: Top: band structure of the SSH model Eq. 6.10 for various v, w values. Bottom:
closed loop of the vector d(k) in the (dx, dy)-plane (figure from Ref. [104]).

winds around the origin. Clearly, for precisely v/w = 1,−1, the loop hits the origin at x = 1/2, 0.
Moreover, for |v/w| < 1, the loop is homotopic to the v/w = 0 case, hence has ν(γ) = 1 by Eq. 6.3.
For |v/w| > 1, the winding number is zero.

A more general way to compute the winding number is to write d(k) as the complex number
h(k) := dx(k) + idy(k). When writing h(k) = r(k)eiθ(k) in polar form, the differential dh/h reads
dh
h = d ln r+ idθ. Since the term d ln r vanishes for closed loops, one can use the winding number
formula

ν(γ) =
1

2πi

∫
γ

dh

h
=

1

2πi

∫ 2π

0

dk
d

dk
lnh(k). (6.11)

Another way to view topology in the SSH chain, and in many other models, is to consider the
winding of the wavefunction of the filled bands across the BZ. This winding can be quantified
using the Berry phase, also known as the geometric phase, which reads

γBerry = i

∫ 2π

0

⟨ψ−(k)|
d

dk
|ψ−(k)⟩ . (6.12)

The winding number Eq. 6.11 and the Berry phase Eq. 6.12 are in fact related. Note that |ψ−(k)⟩ =√
2
−1

(−h(k)∗/|h(k)|, 1)T , then the integrand of Eq. 6.12 can be written as

2 ⟨ψ−(k)|
d

dk
|ψ−(k)⟩ =

h(k)

|h(k)|
d

dk

h(k)∗

|h(k)|
=

d

dk

(
h(k)

|h(k)|
h(k)∗

|h(k)|

)
︸ ︷︷ ︸

=0

−h(k)
∗

|h(k)|
d

dk

h(k)

|h(k)|

= − d

dk
lnh(k) +

d

dk
ln |h(k)|,

(6.13)

by using partial integration twice. Now plugging Eq. 6.13 into Eq. 6.12, one obtains the identity

γBerry =
1

2i

∫ 2π

0

dd
d

dk
lnh(k) = πν(γ).

The topological invariant is in this case a winding number that is also the Berry phase over the
one-dimensional BZ. This type of topological invariant is an example of a Zak phase [92].
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To summarise, the SSH model is a topologically nontrivial model, characterised by a Zak phase
topological invariant. This invariant can be studied via the Bloch Hamiltonian as a loop in the
punctured plane, as well as via the Berry phase of the filled eigenstate. Moreover, in the regime
|v/w| < 1 where the winding number is nonzero, there exist E = 0 edge modes, as can be seen
in Fig. 6.4b. These modes vanish for |v/w| > 1 since the bulk Hamiltonian is now topologically
equivalent to the trivial/vacuum case, as explained in Section 6.2.2.

6.4. Classification of Topological States of Matter

6.4.1. Tenfold Way

The starting point of the classification of SPT states of matter is the so-called tenfold way, which
use in physics originates from the classification of random matrices by Altland and Zirnbauer [9].
Recall that there are three ways to realise both TRS and PHS: T = 0,±1 and C = 0,±1. This
already gives a total of nine different classes. The third symmetry, CS, is present if both TR and
PH are symmetries, and is absent if either TRS or PHS is missing. However, when both TRS and
PHS are missing, CS can be either present or absent. The case T = C = 0, S = 1 gives us the
9 + 1 = 10 possible ways that the three fundamental symmetries can appear.

The second ingredient of the tenfold way is the spatial dimension of the model, which is equal to
the dimension d of the Brillouin zone manifold. For each of these ten combinations of symmetries
and dimension d, there is a certain space GH in which H must be contained, or equivalently, a
space G in which the Bloch Hamiltonian γ : BZ → G must be contained.

Table 6.2.: The tenfold way of classifying topological insulators and superconductors.

T C S Cartan d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7
Label

0 0 0 A Z 0 Z 0 Z 0 Z 0
0 0 1 AIII 0 Z 0 Z 0 Z 0 Z
+ 0 0 AI Z 0 0 0 2Z 0 Z2 Z2

+ + 1 BDI Z2 Z 0 0 0 2Z 0 Z2

0 + 0 D Z2 Z2 Z 0 0 0 2Z 0
− + 1 DIII 0 Z2 Z2 Z 0 0 0 2Z
− 0 0 AII 2Z 0 Z2 Z2 Z 0 0 0
− − 1 CII 0 2Z 0 Z2 Z2 Z 0 0
0 − 0 C 0 0 2Z 0 Z2 Z2 Z 0
+ − 1 CI 0 0 0 2Z 0 Z2 Z2 Z

Table 6.2 displays the most common representation of the tenfold way in physics. For each spatial
dimension d, the table indicated whether a given combination of symmetries yields a topologically
trivial model (indicated by a zero) or a topological model. The labels Z, 2Z and Z2 indicate a
topological state for which the topological invariant is represented by integers, even integers, or
a binary value (e.g. ±), respectively. Furthermore, the table turns out to be periodic in d with
period 8 for the “real” symmetry classes, which is called the Bott periodicity of the tenfold way,
and periodic with period two for the “complex” symmetry classes A and AIII. By examining the
dimensionality and symmetries of the model, the tenfold way immediately answers the question
whether the model can host a topological phase or not. The remainder of this chapter is devoted
to deriving the entries in Table 6.2, for which K-Theory is the central tool.
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6.4.2. Cartan Classes, Classifying Spaces, and K-Theory

To introduce the remarkable mathematical structures that we will showcase in this section, we
start by asking the following question: what are all possible generalizations of the sphere, i.e.
spaces with constant curvature. The mathematician Elie Cartan solved the problem in 1926, and
those turned out to exactly be the ten coset spaces in the time-evolution operator column in
Table 6.3. A peculiar feature of the Bloch Hamiltonian for d = 0 in column in Table 6.3, is that it
is obtained by shifting the time-evolution column one downwards, and taking periodic boundary
conditions in both the complex and real sector separately.

Table 6.3.: For each Cartan label (see Table 6.2 for corresponding symmetries), this table shows
the space in which the time-evolution operator must lie and the space in which the
Bloch Hamiltonian must lie when d = 0. The classifying space, corresponding to each
Cartan label, is given in the last column. Finally, the two spaces C0, C1 constitute the
complex sector, where all other spaces Ri constitute the real sector.

Cartan Time-evolution operator Bloch Classifying
Label U(t) = exp{itH} Hamiltonian Space

A U(N) U(N +M)/U(N)× U(M) = C0

AIII U(N +M)/U(N)× U(M) U(N) = C1

AI U(N)/O(N) O(N +M)/O(N)×O(M) = R0

BDI O(N +M)/O(N)×O(M) O(N) = R1

D O(N) O(2N)/U(N) = R2

DIII SO(2N)/U(N) U(2N)/Sp(2N) = R3

AII U(2N)/Sp(2N) Sp(N +M)/Sp(N)× Sp(M) = R4

CII Sp(N +M)/Sp(N)× Sp(M) Sp(N) = R5

C Sp(2N) Sp(2N)/U(N) = R6

CI Sp(2N)/U(N) U(N)/O(N) = R7

The next step towards a full classification of topological matter, the tenfold way in Table 6.2, is
to extend Table 6.3 to the spaces of Bloch Hamiltonians when d > 0. For each Cartan class, the
result is shown in Table 6.4. Now we are in shape to answer the question: how to distinguish
all topologically distinct Bloch Hamiltonians, given a certain symmetry class? The answer for
the real sector, obtained by Kitaev [105] using K-theory, is to compute the generalised homotopy
group

π(T d, Rq) = π0(Rq−d)⊕
d−1⊕
s=0

(
d

s

)
π0(Rq−s), (6.14)

where T d is the d-dimensional torus (homeomorphic to the BZ [10]), and the bar denotes that the
constrains on Rq in Table 6.4 are taken into account. Note that the generalised homotopy group
satisfies π0(G) = π(BZ,G) in view of Eq. 6.7. It turns out that only the first part π0(Rq−d),
also denoted as π̃(G) in this chapter, is of relevance for the tenfold way of classifying topological
materials. If the first part π̃(G) ̸= 0, the system is a strong topological insulator/superconductor,

which are exactly the systems described by the tenfold way. The second part
⊕d−1

s=0

(
d
s

)
π0(Rq−s)

can be shown to be a result of translational invariance, which is a unitarily realised symmetry,
hence irrelevant. A nonzero second part indicates if the system is a weak topological insula-
tor/superconductor.

This has the implication that if a d-dimensional system corresponding to a symmetry class Rq
(or Cq) is not translationally invariant, the zeroth homotopy group of the space of allowed single-
particle Hamiltonians GH satisfies π0(GH) = π0(Rq−d) (or π0(Cq−d)). Note, however, that the
space GH is very complicated, as argued in Section 6.3.4, and not simply one of the spaces in
Table 6.3.

The final step is to invoke the real K-theoretic result that π0(Rq−d) ∈ {0,Z, 2Z,Z2} with Bott
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Table 6.4.: The ten spaces G of Bloch Hamiltonians Q(k) as maps BZ → G. Note that σ, τ are
Pauli matrices (the difference in notation is used to emphasise that the Pauli matrices
act in different sectors) and q(k) denotes the matrix that uniquely defines Q in the
presence of chiral symmetry.

Cartan label Bloch Hamiltonian Space G
A {Q(k) ∈ Gm,n+m(C) = U(n+m)/U(n)× U(m)}
AI {Q(k) ∈ Gm,n+m(C) | Q(k)∗ = Q(−k)}
AII {Q(k) ∈ G2m,2(n+m)(C) | (iσy)Q(k)∗(−iσy) = Q(−k)}
AIII {q(k) ∈ U(m)}
BDI {q(k) ∈ U(m) | q(k)∗ = q(−k)}
CII {q(k) ∈ U(2m) | (iσy)q(k)∗(−iσy) = q(−k)}
D {Q(k) ∈ Gm,2m(C) | τxQ(k)∗τx = −Q(−k)}
C {Q(k) ∈ Gm,2m(C) | τyQ(k)∗τy = −Q(−k)}

DIII {q(k) ∈ U(2m) | q(k)T = −q(−k)}
CI {q(k) ∈ U(m) | q(k)T = q(−k)}

periodicity π0(Ri) = π0(Ri mod 8), and the analogous complex K-theoretic result π0(Cq−d) ∈ {0,Z}
with Bott periodicity π0(Ci) = π0(Ci mod 2) ∈ {0,Z}. Evaluating the homotopy groups π0(Cq−d)
and π0(Rq−d) for all values of q and d = 0, . . . , 7, one obtains the tenfold way Table 6.2.

6.4.3. A Final Note on Topological Triviality

In our definition of topology for SPT states in Section 6.2.1, a system is defined as topological if
and only if π̃(G) ̸= 0. Now that we are familiar with the groups that π̃(G) can be, we are obliged
to add a confusion nuance to our definition.

Suppose a d-dimensional system γ ∈ G = {allowed maps BZ → G} belongs to a symmetry class
such that w.l.o.g. π̃(G) = Z (no loss of generality since we could have taken any other nonzero
group from Table 6.2), then each path-connected component Gn of π̃(G) is associated to some
n ∈ Z. If γ lies in G0, i.e. the path-connected component associated to the identity element 0 ∈ Z
(or 2Z,Z2), we say that the system γ is in a topologically trivial phase.

This subtle distinction can be understood in light of the SSH model from Section 6.3.5. The SSH
model has symmetry class BDI and dimension d = 1. Therefore, the tenfold way tells us that
G = Z, i.e. the system is topological. When |v| > |w|, we saw that the chain has winding number
one, hence a topologically nontrivial phase. On the other hand, when |v| < |w|, the winding
number is zero, hence the phase is trivial.

6.5. Conclusion and Outlook

This section treated the topology of SPT states in condensed matter physics. More specifically,
we identified the three fundamental symmetries TRS, PHS and CS, and studied the topology of
the space of allowed Hamiltonians for each symmetry class. The answer is given by the tenfold
way in Table 6.2, which can be derived using K-theory when translational invariance is assumed.
The tenfold way gives the relevant homotopy group for each of the ten symmetry classes and every
spatial dimension d ≥ 0.

Studying the topology of allowed Bloch Hamiltonians G is an equivalent approach to studying
the topology of GH, which has the advantage that it allows for a natural explanation of the bulk-
boundary correspondence. Moreover, since the space GH is very complicated to construct (see
Section 6.3.4), the Bloch Hamiltonian is the canonical way right now. However, one must discard
the second part of the generalised homotopy group in Eq. 6.14 when studying its topology. This
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is actually the case for the SSH model in Section 6.3.5: despite being a good educational model, it
is a weak topological insulator and the quantisation of the winding number is due to the unitary
symmetries of the lattice instead of its symmetry class [102] in the tenfold classification. This
is an example where the full homotopy group becomes richer in presence of additional unitary
symmetries, in this case (lattice) translational invariance. Upon taking the effect of additional
unitary symmetries into account, the tenfold classification can be extended, which is precisely
the topic of topological crystalline insulators/superconductors [11]. An example of a true strong
topological insulator that fits within the tenfold framework is the Haldane model [106]. This is a
two-dimensional insulator, characterised by a topological invariant called the Chern number.

An entirely different way of studying the topological properties of SPT states is the framework of
quantum geometry [107]. The idea is to parameterise the Hamiltonian H = H(λ) with λµ being
a vector in parameter space. The eigenstates ψ(λ) vary with the parameterisation as well, and we
denote ∂µψ = ∂ψ

∂λµ . The quantum geometric tensor is then defined as

χµν = ⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩ ⟨ψ|∂νψ⟩ ,

and the Berry connection Aµ = i ⟨ψ|∂µψ⟩, yielding the Berry curvature

Fµν = ∂µAν − ∂νAµ = i(χµν − χνµ).

Analogous to the Berry phase being related to a topological invariant, the winding number for
the SSH in Section 6.3.5, the Berry connection Aµ in the context of quantum geometry is used to
study the topological properties of the Hamiltonian. In fact, the quantum geometry framework
can be applied to non-Hermitian system as well [108]. This has the advantage is that it allows to
distinguish phases which are not distinguishable within the Bloch Hamiltonian framework.

Finally, we would like to point out that there are two main open questions regarding the framework
of non-interacting (crystalline) topological insulators/superconductors.

• How to implement interactions into the classification scheme?

• How to extend the classification of topological matter to non-integer dimensions?

102 Multifractal Properties of Tribonacci Chains



7. Conclusion

7.1. Conclusion

To conclude, this thesis started with the study of ordered, non-periodic mathematical structures
in Chapter 3. These include substitution sequences, tilings, CPS, (multi)fractals and L-systems.
More specifically, we zoomed in on a class of aperiodic structures, called quasicrystals, that are
mathematically described via a CPS. The most important quasicrystal in this thesis is the Tri-
bonacci word, obtained by projecting a 3D cubic lattice onto a 1D line. In the internal space of
two dimensions lies a compact domain with fractal boundary, the Rauzy fractal, which acts as the
acceptance set.

To show the relevance of aperiodic order outside the realm of mathematics and theoretical physics,
we briefly touched upon experimental realisations of aperiodic structures in Chapter 4. The
experiments discussed involve photonic quantum simulators, ultracold quantum simulators and
twisted bilayer graphene.

In Chapter 5, the bulk of original work in this thesis, we zoom in on a new quasicrystal called the
Tribonacci chain. Analogous to the Fibonacci chain, we define a hopping and on-site Tribonacci
chain. These models are based on the Tribonacci numbers that generalise the Fibonacci numbers,
hence the model is a generalisation of the Fibonacci chain. First we discuss some non-perturbative
properties, such as the trace map, the E = 0 eigenstate and the multifractal properties of the Tri-
bonacci chain. Subsequently, we develop the perturbative real-space renormalisation scheme for
the Tribonacci chains based on the self-similar properties of the Tribonacci word. The perturba-
tive calculations were carried out using the framework of Brillouin-Wigner Perturbation Theory.
This scheme can be used to explain the fractal structure of the energy spectrum and show that
the hopping and on-site model are equivalent. When plotting the eigenstates onto Rauzy fractal
in the internal space of the Tribonacci word, the renormalisation scheme is shown to dictate the
structure of the eigenstates. The renormalisation scheme can be seen to subdivide the Rauzy frac-
tal, where each domain of the subdivision corresponds to a branch of the energy spectrum. We
also show that the renormalisation scheme precisely explains the Local Resonator Mode structure
of the Tribonacci chains, which is a new insight as well, and that Local Resonator Modes corre-
spond to subdivisions of the Rauzy fractal. Because the details of the Rauzy fractal are relevant
to our work, we explain the difference between two common ways in mathematics literature to
generate the Rauzy fractal. These methods are the projection method and the valuation map
method. They are equivalent, and we derive the relation between them. After a brief analysis of
edge modes in the hopping Tribonacci chain with open boundary conditions, we turn to the study
of a topological charge pump with a Tribonacci structure. We show that the charge pumping be-
haviour is analogous to that of the Fibonacci chain, being multilevel. Upon studying the pumping
behaviour of more general aperiodic structures, we find that the silver mean and Rudin-Shapiro
also behave in a similar way, despite being of a different class of aperiodic order. The Thue-Morse
charge pump behaves quite differently, and requires some further investigation.

As a final part of this thesis, we study the tenfold classification of symmetry protected topological
states in non-interacting fermionic gapped systems in Chapter 6. The aim is not to give a com-
prehensive overview, but rather bridge the gap between the mathematical formulation and the
canonical approach in physics. Therefore, this section is designed to be accessible to both math-
ematicians and physicists with minimal preknowledge. After introducing essential preliminaries
from mathematics and physics, we define the relevant notion of topology, the fundamental non-
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unitary symmetries, and prove the bulk-boundary correspondence. Subsequently, we turn to the
tenfold classification using K-theory and end with a summary pointing to alternative descriptions
and open questions.

7.2. Outlook

In this final section, we point towards remaining open questions and relevant further directions of
research that are connected to the work in this thesis. We start by mentioning some small and
relatively straightforward tasks that could not be included in the thesis due to time constraints.

First of all, it could be interesting to develop the trace map of the Tribonacci chain in Section 5.1.1
by deriving the intial conditions and studying its dynamics. A starting point would be Ref. [109]
together with the work in this thesis. A more mathematically oriented task would be to study
invariants of this trace map, analogous to the Fricke characters for binary trace maps in Ref. [110].

To expand on the second exact result, the E = 0 wavefunction in Section 5.1.2, is interesting to
see if the method of renormalisation paths developed by Macé et al. [111] can be used to explain
all Tribonacci eigenstates as well. Additionally, this framework could be used to study the effect
of disorder in the Tribonacci chain, analogous to the work in Ref. [82].

To obtain analytic results next to the numerical results in Section 5.1.3 on the multifractal prop-
erties of the spectrum, one could attempt to evaluate Eq. 3.25 for the renormalisation scheme in
Eq. 5.33. This is done in Ref. [20] for the Fibonacci chain, which could serve as a guiding exam-
ple. If this turns out to be unfeasible, one could study and implement more reliable methods of
numerically computing the multifractal dimension. This would be a relevant improvement, since
the currently used method from Section 3.3.3 does not work for q < 0.

In order to strengthen the claims in Section 5.1.3 about the criticality of eigenstates, the inverse
participation ratio of the eigenstates should be studied. This is necessary, as the current argument
relies on the average over all states, which yields skewed results if one part of the eigenstates is
localised and the rest is extended.

Finally, it is interesting to study the anomalous behaviour of the Thue-Morse charge pump in
Section 5.5.4. Additionally, the Rudin-Shapiro pump behaves as all other quasicrystalline charge
pumps, which is not straightforward. Since self-similarity is a reason to expect multilevel pumping
according to Yoshii et al. [89], a starting point could be to compare the self-similar properties
of general quasicrystals, the Thue-Morse and Rudin-Shapiro chains. Additionally, the apparent
dichotomy between Fig. 5.17c, where charge is pumped without an energy level crossing the Fermi
energy, and the intuitive explanation of charge pumps in Ref. [92] could be studied.

Now, we turn to more ambitious and impactful open questions.

7.2.1. Complete the Generalisation of the Fibonacci Chain

One could generalize the Tribonacci substitution to any Pisot substitution, or consider the general
k-bonacci substitution 0 → 01, 1 → 02, . . . , (k − 1) → 0, as explained in Section 3.1.5. The
latter would make the generalization of the Fibonacci chain as complete as the complementary
generalization in Refs. [73–75]. The generalisation would be complete in the sense that both the
cases fixing the internal dimension d′ = 1 while increasing the real space dimension d, and, fixing
the real space dimension d = 1 while increasing the dimension d′ of the internal space (this is the
k-bonacci approach), would have been explored for all dimensions d and d′.
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7.2.2. Topological Classification of the Tribonacci Chains

Kraus and Zilberberg [25] have constructed an explicit equivalence between the Fibonacci chain
and a topological model in 2D. It would be interesting to study the ramifications of the Tribonacci
word on the topological properties of the HTC and OTC. Constructing an equivalence between the
Tribonacci chain, hopping and/or on-site, and some other model in higher dimensions for which
the topology is well known, would be key to understanding the topological properties.

7.2.3. Tribonacci Spin Chains

To gain more insight into the aperiodic effect of the Tribonacci word, one could consider the spin
chain

H = −
∑
i

Ji
(
σxi σ

x
i+1 + σyi σ

y
i+1

)
, (7.1)

where the couplings {Ji} can depend on the site index and follows the Tribonacci word. Under
the Jordan-Wigner transform, this maps to the Hamiltonian of a free fermionic hopping model
with couplings Ji/2:

H = −
∑
i

Ji
2

(
c†i ci+1 + c†i+1ci

)
(7.2)

a†j = σxj + iσyj , cj = eπi
∑j−1

k=0 a
†
kakaj

Since the Jordan-Wigner transformation implies

σzj = c†jcj − 1/2,

a transverse field term hjσ
z
j , changing the XY model to a transverse field Ising model, amounts to

adding an on-site energy term to Eq. 7.2. One can make the XY model anisotropic by introducing
a nonzero γi on each site, changing Eq. 7.1 to

H = −1

2

∑
i

Ji[(1 + γi)σ
x
i σ

x
i+1 + (1− γi)σyi σ

y
i+1]−

∑
i

hiσ
z
i , (7.3)

which gives the isotropic XY model for γi = hi = 0 and the transverse-field Ising model for γi = 1.
As Hermisson [112] and Luck and Nieuwenhuizen [113] point out, the hi = 0 isotropic XYmodel has
non-universal scaling behaviour for the Fibonacci substitution. The critical exponents interpolate
between the uniform and the random case. Lee and Tong [114] claim that the quantum phase
transition of isotropic and anisotropic XY models sit in a different universality class. It would be
interesting to understand how these implications change, or not, for the Tribonacci chain.

The take-away is that the relevance of the Tribonacci aperiodicity depends on the model taken, and
it would be interesting to find out how exactly. The starting point would be the renormalisation
framework by Hermisson et al. [112, 115], or the strong disorder renormalisation as in Ref. [116].
The study of aperiodic spin chains is relevant in holography, as they also occur at the boundaries
of discrete Anti-de Sitter spaces [117].

7.2.4. Experimental Realisations

Finally, experimental setups, such as polaritonic waveguides [59] and dielectric resonators [118],
which were employed to study the Fibonacci chain, can be used to probe the electronic and
multifractal properties of the hopping and on-site Tribonacci chain. In this way, the Fibonacci
and Tribonacci chains can be compared in an experimental set-up, validating the analysis in
Section 5.1.3.
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7.2.5. Topological Classification of Fractal Systems

Perhaps the most ambitious topic for further research, is generalising the classification of topo-
logical matter to systems that have fractional real space dimension, hence they are fractals. We
present the following possible starting points. We note that some (or all) of them could turn out
to be ill-posed or simply proved unfeasible after little investigation.

• Since the tenfold framework relies ultimately on the computation of the generalised homotopy
group in Eq. 6.14, one could try to formulate the problem with d non-integer. This would
require one to come up with a well-defined notion of a non-integer dimensional torus, or
sphere.

• Another approach is to directly generalise the concept of a homotopy group πd(X) of some
space to non-integer d. It is, however, unclear how one would start attacking problem and
no work has been done on it yet, to the best of our knowledge.

• Yet another approach is to generalise the Bloch transformation. If some discrete lattice
translational invariance is present, one can apply Bloch’s theorem. This is linked to the
fact that momentum k is the conserved charge of translations. In a fractal, translational
invariance is swapped for scale invariance. One could try to identify the conserved charge of
the discrete scale invariance at hand, and attempt to construct a transformation analogous
to the Bloch transformation. The analog of the Brillouin zone for this transform would then
serve as the space BZ in Chapter 6, which allows for the study of topology of the analog
Bloch Hamiltonian.

Yet another proposition to check is whether quasicrystals can generally be studied via their internal
space, which is conumbering for the Fibonacci chain and the Rauzy fractal for the Tribonacci
chain, and how the renormalisation scheme can be applied in the internal space to understand the
eigenstates. Since the renormalisation scheme originates from the self-similar structure, it could
be interesting to study if self-similarity can replace translational invariance in the topological
classification of quasicrystals and/or fractals.
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A. Supplementary Material for the
Tribonacci Chain

For further reference, we start by writing down all the orders of Eq. 5.30 that we need in this
appendix:

H
(0)
eff =QH0Q,

H
(1)
eff =H

(0)
eff +QH1Q,

H
(2)
eff =H

(1)
eff +QH1P

1

E −H0
H1Q,

H
(3)
eff =H

(2)
eff +QH1P

1

E −H0
H1P

1

E −H0
H1Q,

...

H
(n)
eff =H

(n−1)
eff +QH1

(
P

1

E −H0
H1

)n−1

Q.

A.1. BWPT Calculations for the Hopping Model

a)

c)

b)

Figure A.1.: The different chains occurring in the HTC. The black dots denote the lattice sites,
a single/double/triple line denotes a t0/t1/t2 bond. a) the molecular-1 chains, b)
molecular-2 chains and c) atomic chains. The vertical numbers 0, 1, 2 denote the
letter to which that chain renormalizes, the horizontal numbers 1, 2, . . . denote the
lattice site labeling in the perturbative calculations in Section A.1.

The results of the perturbative calculations for the renormalized couplings t′i are summarized in
Table 5.2. In this table, the function c(p, q) is the leading order in ρ in t′i = c(p, q)ti. The last two
columns give the new ρpi = |t′0/t′1| and ρqi = |t′1/t′2|.

We can now explain how Eq. 5.33 is obtained. Let t0 = 0, take one of the five unperturbed
energies E0 = 0,±t1,±t2, and consider the chain formed by the unperturbed eigenstates with
that energy. Firstly, the pi and qi corresponding to that chain are exactly the exponents in the

block ziH
(pi,qi)
N−k + E0. The value k corresponding to E0 can be read off from the last column of

Table 5.1, and is given by k = 2, 3, 4 for E0 = ±t1,±t2, 0 for the HTC, respectively. The value

of zi is the ratio between the chain under consideration and H
(pi,qi)
N−k . Note that if all bonds in

H
(pi,qi)
N−k are divided by t2, the spectrum is bounded and of size O(1). So in order to match the
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energy scale of the chain under consideration and H
(pi,qi)
N−k , we divide all renormalized couplings

in the chain by t′2 and all couplings in H
(pi,qi)
N−k by t2. This is equivalent to multiplying H

(pi,qi)
N−k

by t′2/t2 = c2(p, q) = zi, which means that ziH
(pi,qi)
N−k is now an approximation of the HTC with

renormalized couplings t′i. Finally, the result is shifted by the value of E0, since the new lattice
sites of each chain have the on-site energy E0. This procedure is carried out for each of the five
E0 values, thereby obtaining five blocks in Eq. 5.33.

The remainder of this section is devoted to computing the t′i values in Table 5.2. All calculations are

done for the HTC H
(p,q)
N , where p, q > 0 are assumed to be integers. It turns out that the order of

perturbation theory needed is equal to the amount of t0 in the chain that is considered in Fig. A.1.
This means that in the worst case, which is the top chain in Fig. A.1(c), one needs seven orders of
perturbation theory. We show all computational details for the type-1 molecular chain. For the
other chains, the computational steps are identical, but we give only the operators H1,

1
E−H0

P
and eigenstates, and skip the computational steps of repeatedly applying these operators. This is
enough, because if the operators and eigenstates are known, the computation can be carried out
using a computer algebra program such as Mathematica.

A.1.1. Type-1 Molecules

Computation of t′0

Consider the top chain in Fig. A.1(a), for which the Hamiltonian H = H0 +H1 reads

H0 = t1 |1⟩ ⟨2|+ t2 |3⟩ ⟨4|+ t1 |5⟩ ⟨6|+H.c.,

H1 = t0 |2⟩ ⟨3|+ t0 |4⟩ ⟨5|+H.c.,

and the six eigenstates of H0 read

|±⟩1 = (|1⟩ ± |2⟩) /
√
2, E0 = ±t1,

|±⟩2 = (|3⟩ ± |4⟩) /
√
2, E0 = ±t2,

|±⟩3 = (|5⟩ ± |6⟩) /
√
2, E0 = ±t1,

from which we can read off
Q = |±⟩1 ⟨±|1 + |±⟩3 ⟨±|3 .

The perturbation theory gives

⟨±|1H
(0)
eff |±⟩3 = ⟨±|1H0 |±⟩3 = ±t1 ⟨±|1 |±⟩3 = 0,

⟨±|1H
(1)
eff |±⟩3 = ⟨±|1H1 |±⟩3 = ± t0√

2
⟨3|±⟩3 = 0,

⟨±|1H
(2)
eff |±⟩3 = ⟨±|1H1P

1

±t1 −H0
H1 |±⟩3

=± t20
2
⟨3|P 1

±t1 −H0
|4⟩ .

We can write 1
±t1−H0

P as

1

±t1 −H0
P =

1

±2t1
|∓⟩1 ⟨∓|1 +

1

±t1 ∓ t2
|±⟩2 ⟨±|2 +

1

±t1 ± t2
|∓⟩2 ⟨∓|2 +

1

±2t1
|∓⟩3 ⟨∓|3 ,

and by using |4⟩ = ± |±⟩2−|∓⟩2√
2

we can proceed as

⟨±|1H
(2)
eff |±⟩3 =

t20
2
√
2
⟨3| 1

±t1 −H0
P (|±⟩2 − |∓⟩2)

=± t20
2
√
2
⟨3|
(

1

t1 − t2
|±⟩2 −

1

t1 + t2
|∓⟩2

)
= ∓ t

2
0

2

t2
t22 − t21

= t′0.
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This can be approximated as

t′0 = ∓ t20
2t2

(
1 +O

(
t21
t22

))
≈ ∓ t20

2t2
= ∓ρ

p+q

2
t0,

such that c0(p, q) = ρp+q/2 can be read off.

Computation of t′1

Consider the middle chain in Fig. A.1(a), for which the Hamiltonian H = H0 +H1 reads

H0 = t1 |1⟩ ⟨2|+ t1 |4⟩ ⟨5|+H.c.,

H1 = t0 |2⟩ ⟨3|+ t0 |3⟩ ⟨4|+H.c.,

and the five eigenstates of H0 read

|±⟩1 = (|1⟩ ± |2⟩) /
√
2, E0 = ±t1,

|ψ⟩2 = |3⟩ , E0 = 0,

|±⟩3 = (|4⟩ ± |5⟩) /
√
2, E0 = ±t1,

from which we can read off
Q = |±⟩1 ⟨±|1 + |±⟩3 ⟨±|3 .

Since the chain consists of two t0 bonds, we need two orders of perturbation theory for a nonzero
result. For that we need

1

±t1 −H0
P =

1

±2t1
|∓⟩1 ⟨∓|1 +

1

±t1
|ψ⟩2 ⟨ψ|2 +

1

±2t1
|∓⟩3 ⟨∓|3 ,

which can be used to compute

t′1 = ⟨±|1H
(2)
eff |±⟩3 = ⟨±|1H1

1

±t1 −H0
PH1 |±⟩3 = ± t

2
0

2
⟨3| 1

±t1 −H0
P |3⟩ = t20

2t1
.

Finally, we can compute the ratio

|t′0/t′1| =
t20t2

2(t22 − t21)
2t1
t20

=
t1
t2

1

1− t21
t22

≈ ρq,

to leading order in ρ.

Computation of t′2

Consider the bottom chain in Fig. A.1(a), for which the Hamiltonian H = H0 +H1 reads

H0 = t1 |1⟩ ⟨2|+ t1 |3⟩ ⟨4|) +H.c.,

H1 = t0 |2⟩ ⟨3|+H.c.,

and the four eigenstates of H0 read

|±⟩1 = (|1⟩ ± |2⟩) /
√
2, E0 = ±t1,

|±⟩2 = (|4⟩ ± |5⟩) /
√
2, E0 = ±t1,

from which we can read off
Q = |±⟩1 ⟨±|1 + |±⟩2 ⟨±|2 .
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Since the chain consists of one t0 bond, we need one order of perturbation theory for a nonzero
result. Hence we can directly compute

t′2 = ⟨±|1H
(1)
eff |±⟩2 = ⟨±|1H1 |±⟩2 =

t0√
2
⟨±|1 |2⟩ = ±

t0
2
.

Finally, we can compute the ratio

|t′1/t′2| =
t20
2t1

2

t0
=
t0
t1

= ρp.

A.1.2. Type-2 Molecules

Computation of t′0

Consider the top chain in Fig. A.1(b), for which the Hamiltonian H = H0 +H1 reads

H0 = t2 |1⟩ ⟨2|+ t1 |3⟩ ⟨4|+ t1 |6⟩ ⟨7|+ t2 |8⟩ ⟨9|+H.c.,

H1 = t0 (|2⟩ ⟨3|+ |4⟩ ⟨5|+ |5⟩ ⟨6|+ |7⟩ ⟨8|) +H.c.,

and the nine eigenstates of H0 read

|±⟩1 = (|1⟩ ± |2⟩) /
√
2, E0 = ±t2,

|±⟩2 = (|3⟩ ± |4⟩) /
√
2, E0 = ±t1,

|ψ⟩3 = |5⟩ , E0 = 0,

|±⟩4 = (|6⟩ ± |7⟩) /
√
2, E0 = ±t1,

|±⟩5 = (|8⟩ ± |9⟩) /
√
2, E0 = ±t2,

from which we can read off
Q = |±⟩1 ⟨±|1 + |±⟩5 ⟨±|5 ,

and

1

±t2 −H0
P =

1

±2t2
|∓⟩1 ⟨∓|1 +

1

±t2 ∓ t1
|±⟩2 ⟨±|2 +

1

±t2 ± t1
|∓⟩2 ⟨∓|2

+
1

±t2
|ψ⟩3 ⟨ψ|3 +

1

±t2 ∓ t1
|±⟩4 ⟨±|4 +

1

±t2 ± t1
|∓⟩4 ⟨∓|4 +

1

±2t2
|∓⟩5 ⟨∓|5 .

Now we can compute

t′0 = ⟨±|1H
(4)
eff |±⟩5 = ⟨±|1H1

(
P

1

±t2 −H0
H1

)3

|±⟩5 =
t40t

2
1

2t2(t21 − t22)2
.

To leading order in ρ this can be expanded as

t′0 =
t30t

2
1

2t2(t21 − t22)2
t0 ≈

t30t
2
1

2t52
t0 =

ρ3p+5q

2
t0,

from which we can read off c0(p, q) = ρ3p+5q/2.

Computation of t′1

Consider the middle chain in Fig. A.1(b), for which the Hamiltonian H = H0 +H1 reads

H0 = t2 |1⟩ ⟨2|+ t1 |3⟩ ⟨4|+ t1 |5⟩ ⟨6|+ t2 |7⟩ ⟨8|+H.c.,

H1 = t0 (|2⟩ ⟨3|+ |4⟩ ⟨5|+ |6⟩ ⟨7|) +H.c.,
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and the eight eigenstates of H0 read

|±⟩1 = (|1⟩ ± |2⟩) /
√
2, E0 = ±t2,

|±⟩2 = (|3⟩ ± |4⟩) /
√
2, E0 = ±t1,

|±⟩3 = (|5⟩ ± |6⟩) /
√
2, E0 = ±t1,

|±⟩4 = (|7⟩ ± |8⟩) /
√
2, E0 = ±t2,

from which we can read off
Q = |±⟩1 ⟨±|1 + |±⟩4 ⟨±|4 ,

and

1

±t2 −H0
P =

1

±2t2
|∓⟩1 ⟨∓|1 +

1

±t2 ∓ t1
|±⟩2 ⟨±|2 +

1

±t2 ± t1
|∓⟩2 ⟨∓|2

+
1

±t2 ∓ t1
|±⟩3 ⟨±|3 +

1

±t2 ± t1
|∓⟩3 ⟨∓|3 +

1

±2t2
|∓⟩4 ⟨∓|4 .

Now we can compute

t′1 = ⟨±|1H
(3)
eff |±⟩4 = ⟨±|1H1

(
P

1

±t2 −H0
H1

)2

|±⟩4 = ± t30t
2
1

2(t21 − t22)2
.

To leading order in ρ this can be expanded as

t′1 = ± t30t1
2(t21 − t22)2

t1 ≈
t30t1
2t42
± t1 = ±ρ

3p+4q

2
t1,

from which we can read off c1(p, q) = ρ3p+4q/2. Finally, we can compute the ratio

|t′0/t′1| =
t40t

2
1

2t2(t21 − t22)2
2(t21 − t22)2

t30t
2
1

=
t0
t2

= ρp+q.

Computation of t′2

Consider the bottom chain in Fig. A.1(b), for which the Hamiltonian H = H0 +H1 reads

H0 = t2 |1⟩ ⟨2|+ t1 |3⟩ ⟨4|+ t2 |5⟩ ⟨6|+H.c.,

H1 = t0 |2⟩ ⟨3|+ t0 |4⟩ ⟨5|+H.c.,

and the six eigenstates of H0 read

|±⟩1 = (|1⟩ ± |2⟩) /
√
2, E0 = ±t2,

|±⟩2 = (|3⟩ ± |4⟩) /
√
2, E0 = ±t1,

|±⟩3 = (|5⟩ ± |6⟩) /
√
2, E0 = ±t2,

from which we can read off
Q = |±⟩1 ⟨±|1 + |±⟩3 ⟨±|3 ,

and

1

±t2 −H0
P =

1

±2t2
|∓⟩1 ⟨∓|1 +

1

±t2 ∓ t1
|±⟩2 ⟨±|2 +

1

±t2 ± t1
|∓⟩2 ⟨∓|2 +

1

±2t2
|∓⟩3 ⟨∓|3 .

Now we can compute

t′2 = ⟨±|1H
(2)
eff |±⟩3 = ⟨±|1H1P

1

±t2 −H0
H1 |±⟩3 = ± t20t1

2(t22 − t21)
.
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To leading order in ρ this can be expanded as

t′2 = ± t20t1
2t2(t22 − t21)

t2 ≈ ±
t20t1
2t32

t2 = ±ρ
2p+3q

2
t2,

from which we can read off c2(p, q) = ρ2p+3q/2. Finally, we can compute the ratio

|t′1/t′2| =
t30t

2
1

2(t21 − t22)2
2(t22 − t21)
t20t1

=
t0t1
t22 − t21

≈ t0t1
t22

= ρp+2q,

up to leading order in ρ.

A.1.3. Atoms

Computation of t′0

Consider the top chain in Fig. A.1(c), for which the Hamiltonian H = H0 +H1 reads

H0 =t1 (|2⟩ ⟨3|+ |6⟩ ⟨7|+ |8⟩ ⟨9|+ |12⟩ ⟨13|)
+ t2 |4⟩ ⟨5|+ t2 |10⟩ ⟨11|+H.c.,

H1 =t0
(
|1⟩ ⟨2|+ |3⟩ ⟨4|+ |5⟩ ⟨6|+ |7⟩ ⟨8|

+ |9⟩ ⟨10|+ |11⟩ ⟨12|+ |13⟩ ⟨14|
)
+H.c.,

and the fourteen eigenstates of H0 read

|ψ⟩1 = |1⟩ , E0 = 0,

|±⟩2 = (|2⟩ ± |3⟩) /
√
2, E0 = ±t1,

|±⟩3 = (|4⟩ ± |5⟩) /
√
2, E0 = ±t2,

|±⟩4 = (|6⟩ ± |7⟩) /
√
2, E0 = ±t1,

|±⟩5 = (|8⟩ ± |9⟩) /
√
2, E0 = ±t1,

|±⟩6 = (|10⟩ ± |11⟩) /
√
2, E0 = ±t2,

|±⟩7 = (|12⟩ ± |13⟩) /
√
2, E0 = ±t1,

|ψ⟩8 = |14⟩ , E0 = 0,

from which we can read off

Q = |ψ⟩1 ⟨ψ|1 + |ψ⟩8 ⟨ψ|8 ,

and

1

−H0
P =

∑
i=2,4,5,7

1

∓t1
|±⟩i ⟨±|i +

1

±t1
|∓⟩i ⟨∓|i +

∑
j=3,6

1

∓t2
|±⟩j ⟨±|j +

1

±t2
|∓⟩j ⟨∓|j

Now we can compute

t′0 = ⟨ψ|1H
(7)
eff |ψ⟩8 = ⟨ψ|1H1

(
P

1

−H0
H1

)6

|ψ⟩8 =
t70
t41t

2
2

,

from which we can read off c0(p, q) =
t60
t41t

2
2
= ρ6p+2q.
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Computation of t′1

Consider the middle chain in Fig. A.1(c), for which the Hamiltonian H = H0 +H1 reads

H0 =t1 (|2⟩ ⟨3|+ |6⟩ ⟨7|+ |10⟩ ⟨11|)
+ t2 |4⟩ ⟨5|+ t2 |8⟩ ⟨9|+H.c.,

H1 =t0
(
|1⟩ ⟨2|+ |3⟩ ⟨4|+ |5⟩ ⟨6|+ |7⟩ ⟨8|

+ |9⟩ ⟨10|+ |11⟩ ⟨12|
)
+H.c.,

and the twelve eigenstates of H0 read

|ψ⟩1 = |1⟩ , E0 = 0,

|±⟩2 = (|2⟩ ± |3⟩) /
√
2, E0 = ±t1,

|±⟩3 = (|4⟩ ± |5⟩) /
√
2, E0 = ±t2,

|±⟩4 = (|6⟩ ± |7⟩) /
√
2, E0 = ±t1,

|±⟩5 = (|8⟩ ± |9⟩) /
√
2, E0 = ±t2,

|±⟩6 = (|10⟩ ± |11⟩) /
√
2, E0 = ±t1,

|ψ⟩7 = |12⟩ , E0 = 0,

from which we can read off
Q = |ψ⟩1 ⟨ψ|1 + |ψ⟩7 ⟨ψ|7 ,

and

1

−H0
P =

∑
i=2,4,6

1

∓t1
|±⟩i ⟨±|i +

1

±t1
|∓⟩i ⟨∓|i +

∑
j=3,5

1

∓t2
|±⟩j ⟨±|j +

1

±t2
|∓⟩j ⟨∓|j

Now we can compute

t′1 = ⟨ψ|1H
(6)
eff |ψ⟩7 = ⟨ψ|1H1

(
P

1

−H0
H1

)5

|ψ⟩7 = − t60
t31t

2
2

,

from which we can read off c1(p, q) =
t60
t41t

2
2
= ρ6p+2q. Finally, we can compute the ratio

|t′0/t′1| =
t70
t41t

2
2

t31t
2
2

t60
=
t0
t1

= ρp.

Computation of t′2

Consider the bottom chain in Fig. A.1(c), for which the Hamiltonian H = H0 +H1 reads

H0 =t1 |2⟩ ⟨3|+ t1 |6⟩ ⟨7|
+ t2 |4⟩ ⟨5|+H.c.,

H1 =t0
(
|1⟩ ⟨2|+ |3⟩ ⟨4|+ |5⟩ ⟨6|+ |7⟩ ⟨8|

)
+H.c.,

and the eight eigenstates of H0 read

|ψ⟩1 = |1⟩ , E0 = 0,

|±⟩2 = (|2⟩ ± |3⟩) /
√
2, E0 = ±t1,

|±⟩3 = (|4⟩ ± |5⟩) /
√
2, E0 = ±t2,

|±⟩4 = (|6⟩ ± |7⟩) /
√
2, E0 = ±t1,

|ψ⟩5 = |8⟩ , E0 = 0,
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a) b) c)

Figure A.2.: The different chains occurring in the OTC. The black dots denote the lattice sites,
the black lines a bond t and the number in the black dot denotes ϵi, the on-site
potential . a) the type-2 atomic chains, b) type-1 atomic chains and c) type-0 atomic
chains. The vertical numbers 0, 1, 2 denote the letter to which that chain renormalizes,
the horizontal numbers 1, 2, . . . denote the lattice site labeling in the perturbative
calculations in Section A.2.

from which we can read off

Q = |ψ⟩1 ⟨ψ|1 + |ψ⟩5 ⟨ψ|5 ,

and
1

−H0
P =

∑
i=2,4

1

∓t1
|±⟩i ⟨±|i +

1

±t1
|∓⟩i ⟨∓|i +

1

∓t2
|±⟩3 ⟨±|3 +

1

±t2
|∓⟩3 ⟨∓|3

Now we can compute

t′2 = ⟨ψ|1H
(4)
eff |ψ⟩5 = ⟨ψ|1H1

(
P

1

−H0
H1

)3

|ψ⟩5 = − t40
t21t2

,

from which we can read off c2(p, q) =
t40
t21t

2
2
= ρ4p+2q. Finally, we can compute the ratio

|t′1/t′2| =
t60
t31t

2
2

t21t2
t40

=
t20
t1t2

= ρ2p+q.

A.2. BWPT Calculations for the On-site Model

The results of the perturbative calculations for the renormalized couplings t′i are summarized in
Table 5.3. The construction of Eq. 5.36 from Tables 5.3 and 5.4 is entirely analogous to the
HTC case. Since the values ai, bi in Table 5.4 are not represented as powers of ρ, we use the
mathematical identity a = ρlog a/ log ρ for any real number a > 0. Using this trick, the values ai, bi
can be converted to the exponents pi = log ai/ log ρ and qi = log bi/ log ρ in Eq. 5.36.

The remainder of this section is devoted to computing the t′i values in Tables 5.3 and 5.4. All
calculations are done for the OTC Ho

N , for arbitrary real c1 and c2 that satisfy |c1| ≫ 1, |c2| ≫ 1
and |c2 − c1| ≫ 1. The perturbative calculations will be easier than for the hopping model, since
the unperturbed OTC is diagonal.

A.2.1. Type-2 Atoms

Computation of t′0

Consider the top chain in Fig. A.2(a), for which the Hamiltonian H = H0 +H1 reads

H0 = ϵ2 |1⟩ ⟨1|+ ϵ0 |2⟩ ⟨2|+ ϵ1 |3⟩ ⟨3|+ ϵ0 |4⟩ ⟨4|
+ ϵ0 |5⟩ ⟨5|+ ϵ1 |6⟩ ⟨6|+ ϵ0 |7⟩ ⟨7|+ ϵ2 |8⟩ ⟨8|+H.c.,

H1 =

7∑
i=1

t |i⟩ ⟨i+ 1|+H.c.,
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and the eight eigenstates of H0 read H0 |i⟩ = E0 |i⟩, from which we can read off

Q = |1⟩ ⟨1|+ |8⟩ ⟨8| ,

and the operator

1

ϵ2 −H0
P =

1

ϵ2 − ϵ0
|2⟩ ⟨2|+ 1

ϵ2 − ϵ1
|3⟩ ⟨3|+ 1

ϵ2 − ϵ0
|4⟩ ⟨4|

+
1

ϵ2 − ϵ0
|5⟩ ⟨5|+ 1

ϵ2 − ϵ1
|6⟩ ⟨6|+ 1

ϵ2 − ϵ0
|7⟩ ⟨7| ,

which is also diagonal. Now we can compute

t′0 = ⟨1|H(7)
eff |8⟩ = ⟨1|H1

(
P

1

ϵ2 −H0
H1

)6

|8⟩ = t7

(ϵ2 − ϵ0)4(ϵ2 − ϵ1)2
=

t

c42(c2 − c1)2
.

Computation of t′1

Consider the middle chain in Fig. A.2(a), for which the Hamiltonian H = H0 +H1 reads

H0 = ϵ2 |1⟩ ⟨1|+ ϵ0 |2⟩ ⟨2|+ ϵ1 |3⟩ ⟨3|+ ϵ0 |4⟩ ⟨4|
+ ϵ1 |5⟩ ⟨5|+ ϵ0 |6⟩ ⟨6|+ ϵ2 |7⟩ ⟨7|+H.c.,

H1 =

6∑
i=1

t |i⟩ ⟨i+ 1|+H.c.,

and the seven eigenstates of H0 read H0 |i⟩ = E0 |i⟩, from which we can read off

Q = |1⟩ ⟨1|+ |7⟩ ⟨7| ,

and the operator

1

ϵ2 −H0
P =

1

ϵ2 − ϵ0
|2⟩ ⟨2|+ 1

ϵ2 − ϵ1
|3⟩ ⟨3|

+
1

ϵ2 − ϵ0
|4⟩ ⟨4|+ 1

ϵ2 − ϵ1
|5⟩ ⟨5|+ 1

ϵ2 − ϵ0
|6⟩ ⟨6| ,

which is also diagonal. Now we can compute

t′1 = ⟨1|H(6)
eff |7⟩ = ⟨1|H1

(
P

1

ϵ2 −H0
H1

)5

|7⟩ = t6

(ϵ2 − ϵ0)3(ϵ2 − ϵ1)2
=

t

c32(c2 − c1)2
.

Finally, we can compute the ratio

|t′0/t′1| =
∣∣∣∣ t

c42(c2 − c1)2
c32(c2 − c1)2

t

∣∣∣∣ = 1

|c2|
.

Computation of t′2

Consider the bottom chain in Fig. A.2(a), for which the Hamiltonian H = H0 +H1 reads

H0 = ϵ2 |1⟩ ⟨1|+ ϵ0 |2⟩ ⟨2|+ ϵ1 |3⟩ ⟨3|+ ϵ0 |4⟩ ⟨4|
+ ϵ2 |5⟩ ⟨5|+H.c.,

H1 =

4∑
i=1

t |i⟩ ⟨i+ 1|+H.c.,
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and the five eigenstates of H0 read H0 |i⟩ = E0 |i⟩, from which we can read off

Q = |1⟩ ⟨1|+ |5⟩ ⟨5| ,

and the operator

1

ϵ2 −H0
P =

1

ϵ2 − ϵ0
|2⟩ ⟨2|+ 1

ϵ2 − ϵ1
|3⟩ ⟨3|+ 1

ϵ2 − ϵ0
|4⟩ ⟨4| ,

which is also diagonal. Now we can compute

t′2 = ⟨1|H(4)
eff |5⟩ = ⟨1|H1

(
P

1

ϵ2 −H0
H1

)3

|5⟩ = t4

(ϵ2 − ϵ0)2(ϵ2 − ϵ1)
=

t

c2(c2 − c1)
.

Finally, we can compute the ratio

|t′1/t′2| =
∣∣∣∣ t

c32(c2 − c1)2
c2(c2 − c1)

t

∣∣∣∣ = 1

|c2(c2 − c1)|
.

A.2.2. Type-1 Atoms

Computation of t′0

Consider the top chain in Fig. A.2(b), for which the Hamiltonian H = H0 +H1 reads

H0 = ϵ1 |1⟩ ⟨1|+ ϵ0 |2⟩ ⟨2|+ ϵ2 |3⟩ ⟨3|+ ϵ0 |4⟩ ⟨4|
+ ϵ1 |5⟩ ⟨5|+H.c.,

H1 =

4∑
i=1

t |i⟩ ⟨i+ 1|+H.c.,

and the five eigenstates of H0 read H0 |i⟩ = E0 |i⟩, from which we can read off

Q = |1⟩ ⟨1|+ |5⟩ ⟨5| ,

and the operator

1

ϵ1 −H0
P =

1

ϵ1 − ϵ0
|2⟩ ⟨2|+ 1

ϵ1 − ϵ2
|3⟩ ⟨3|+ 1

ϵ1 − ϵ0
|4⟩ ⟨4| ,

which is also diagonal. Now we can compute

t′0 = ⟨1|H(4)
eff |5⟩ = ⟨1|H1

(
P

1

ϵ1 −H0
H1

)3

|5⟩ = t4

(ϵ1 − ϵ0)2(ϵ1 − ϵ2)
= − t

c21(c2 − c1)
.

Computation of t′1

Consider the middle chain in Fig. A.2(b), for which the Hamiltonian H = H0 +H1 reads

H0 = ϵ1 |1⟩ ⟨1|+ ϵ0 |2⟩ ⟨2|+ ϵ0 |3⟩ ⟨3|+ ϵ1 |4⟩ ⟨4|+H.c.,

H1 =

3∑
i=1

t |i⟩ ⟨i+ 1|+H.c.,

and the four eigenstates of H0 read H0 |i⟩ = E0 |i⟩, from which we can read off

Q = |1⟩ ⟨1|+ |4⟩ ⟨4| ,
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and the operator
1

ϵ1 −H0
P =

1

ϵ1 − ϵ0
|2⟩ ⟨2|+ 1

ϵ1 − ϵ0
|3⟩ ⟨3|

which is also diagonal. Now we can compute

t′1 = ⟨1|H(3)
eff |4⟩ = ⟨1|H1

(
P

1

ϵ1 −H0
H1

)2

|4⟩ = t3

(ϵ1 − ϵ0)2
=

t

c21
.

Finally, we can compute the ratio

|t′0/t′1| =
∣∣∣∣ t

c21(c2 − c1)
c21
t

∣∣∣∣ = 1

|c2 − c1|
.

Computation of t′2

Consider the bottom chain in Fig. A.2(b), for which the Hamiltonian H = H0 +H1 reads

H0 = ϵ1 |1⟩ ⟨1|+ ϵ0 |2⟩ ⟨2|+ ϵ1 |3⟩ ⟨3|+H.c.,

H1 =t |1⟩ ⟨2|+ t |2⟩ ⟨3|+H.c.,

and the three eigenstates of H0 read H0 |i⟩ = E0 |i⟩, from which we can read off

Q = |1⟩ ⟨1|+ |3⟩ ⟨3| ,

and the operator
1

ϵ1 −H0
P =

1

ϵ1 − ϵ0
|2⟩ ⟨2| ,

which is also diagonal. Now we can compute

t′2 = ⟨1|H(2)
eff |3⟩ = ⟨1|H1P

1

ϵ1 −H0
H1 |3⟩ =

t2

ϵ1 − ϵ0
=

t

c1
.

Finally, we can compute the ratio

|t′1/t′2| =
∣∣∣∣ tc21 c1t

∣∣∣∣ = 1

|c1|
.

A.2.3. Type-0 Atoms

Computation of t′0

Consider the top chain in Fig. A.2(c), for which the Hamiltonian H = H0 +H1 reads

H0 = ϵ0 |1⟩ ⟨1|+ ϵ1 |2⟩ ⟨2|+ ϵ0 |3⟩ ⟨3|+H.c.,

H1 =t |1⟩ ⟨2|+ t |2⟩ ⟨3|+H.c.,

and the three eigenstates of H0 read H0 |i⟩ = E0 |i⟩, from which we can read off

Q = |1⟩ ⟨1|+ |3⟩ ⟨3| ,

and the operator
1

ϵ0 −H0
P =

1

ϵ0 − ϵ1
|2⟩ ⟨2| ,

which is also diagonal. Now we can compute

t′0 = ⟨1|H(2)
eff |3⟩ = ⟨1|H1P

1

ϵ0 −H0
H1 |3⟩ =

t2

ϵ0 − ϵ1
= − t

c1
.
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Computation of t′1

Consider the middle chain in Fig. A.2(c), for which the Hamiltonian H = H0 +H1 reads

H0 = ϵ0 |1⟩ ⟨1|+ ϵ2 |2⟩ ⟨2|+ ϵ0 |3⟩ ⟨3|+H.c.,

H1 =t |1⟩ ⟨2|+ t |2⟩ ⟨3|+H.c.,

and the three eigenstates of H0 read H0 |i⟩ = E0 |i⟩, from which we can read off

Q = |1⟩ ⟨1|+ |3⟩ ⟨3| ,

and the operator
1

ϵ0 −H0
P =

1

ϵ0 − ϵ2
|2⟩ ⟨2| ,

which is also diagonal. Now we can compute

t′1 = ⟨1|H(2)
eff |3⟩ = ⟨1|H1P

1

ϵ0 −H0
H1 |3⟩ =

t2

ϵ0 − ϵ2
= − t

c2
.

Finally, we can compute the ratio |t′0/t′1| = |c2/c1|.

Computation of t′2

Consider the bottom chain in Fig. A.2(c), for which the Hamiltonian H = H0 +H1 reads

H0 = ϵ0 |1⟩ ⟨1|+ ϵ0 |2⟩ ⟨2|+H.c.,

H1 =t |1⟩ ⟨2|+H.c.,

and the two eigenstates of H0 read H0 |i⟩ = ϵ0 |i⟩, from which we can read off

Q = |1⟩ ⟨1|+ |2⟩ ⟨2| = Id,
1

ϵ0 −H0
P = 0,

which are not needed anyway. Now we can compute

t′2 = ⟨1|H(1)
eff |2⟩ = ⟨1|H1 |2⟩ = t,

and the ratio |t′1/t′2| = 1/|c2|.

A.3. BWPT Results for the Hopping Model with Different
Energy Scale

Table A.1.: Renormalised couplings for the tribonacci chain, new definition of p′, q′.

Lattice t′0 c′0(p
′, q′) t′1 c′1(p

′, q′) t′2 c′2(p
′, q′)

00
t70
t41t

2
2

ρ6p
′−4q′ − t60

t31t
2
2

ρ6p
′−4q′ − t40

t21t2
ρ4p

′−2q′

1 ∓ t20t2
2(t22−t21)

ρp
′
/2

t20
2t1

ρ2p
′−2q′/2 ± t02 ρp

′
/2

2
t40t

2
1

2t2(t21−t22)2
ρ3p

′+2q′/2 ± t30t
2
1

2(t21−t22)2
ρ3p

′+q′/2 ± t20t1
2(t22−t21)

ρ2p
′+q′/2

In the analysis in Section 5.2, we set t0/t1 = ρp, t1/t2ρ
q. Now, is it more common practice to take

one energy scale, t2 and describe t0/t2 = ρp
′
, t1/t2 = ρq

′
. We immediately see p′ = p + q, q′ = q.

So to obtain these results, replace every p in Table 5.2 with p′ − q. This yields Table A.1, which
does not seem to be a big improvement in terms of conciseness of expressions.
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A.4. Additional Analysis of Edge Modes in the HTC

A.4.1. N=8

The main thing to note is that for ∆ = −2, 0, there is a pronounced in-gap state between the
second/third and third/fourth branch of the spectrum, which are right edge modes. Additionally,
for all ∆, there is a state sitting in the gap of the second (fourth) branch of the spectrum,
corresponding to a left-edge state. This one is always present because the left side of the chain is
always the same.

∆ = −2

Looking at the first and last bond of the chain, we denote all the bonds from the left and from
the right inward, up the bond at which the first difference occurs. This results in 01 · · · 00, i.e.
the first and last bond are a t0, the second bond is a t1 and the second to last bond is a t0. This
means that the first difference occurs at the second bond.

0 20 40 60 80 100 120 140
State number

1.0

0.5

0.0

0.5

1.0

En
er

gy
 E

/t 2

Figure A.3.: N = 8,∆ = −2.

Below we show all eigenstates that behave like edge modes.

(a) (b) (c) (d)

Figure A.4.: All left modes of N = 8,∆ = −2.
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(a) (b) (c)

Figure A.5.: All right edge modes of N = 8,∆ = −2.

A.4.2. N=9

Now we consider N = 9, to have a slightly better resolution, while it is still feasible to manually
inspect all eigenstates.

∆ = 0

Looking at the first and last bond of the chain, we denote all the bonds from the left and from
the right inward, up the bond at which the first difference occurs. This results in 0 · · · 1.
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Figure A.6.: N = 9,∆ = 0.

Below we show all eigenstates that behave like edge modes.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure A.7.: All edge modes of N = 9,∆ = 0.

∆ = 1

Looking at the first and last bond of the chain, we denote all the bonds from the left and from the
right inward, up the bond at which the first difference occurs. This results in 01020100 · · · 10102010.
Note that the difference occurs here at the ninth symbol. This means that the left and right modes
must sit quite close in the spectrum, which is indeed the case. Those modes correspond to index
80 and 81 in Figs. A.9c and A.9h, respectively.
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Figure A.8.: N = 9,∆ = 1.

Below we show all eigenstates that behave like edge modes.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure A.9.: All edge modes of N = 9,∆ = 1.

∆ = −2

Looking at the first and last bond of the chain, we denote all the bonds from the left and from
the right inward, up the bond at which the first difference occurs. This results in 0 · · · 2.
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Figure A.10.: N = 9,∆ = −2.

Below we show all eigenstates that behave like edge modes.
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(a) (b) (c) (d) (e)

Figure A.11.: All left edge modes of N = 9,∆ = −2.

(a) (b) (c) (d)

Figure A.12.: All right edge modes of N = 9,∆ = −2.

A.4.3. Larger Approximants

Below we show spectra of Eq. 5.51 for higher values of N . Note that the pronounced in-gap modes
between second/third and third/fourth branch occur at N = 3k + 2. These correspond to right
edge modes, and since the termination of WN is the same with period three in N , this is expected.

Furthermore, the in-gap states within the second and fourth branch (e.g. the in-gap state between
index 200 and 400 or 600 and 800 in Fig. A.13a) are present for all N . This is no surprise, since
these correspond to left edge modes.
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(a) N = 11,∆ = 0.
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(b) N = 12,∆ = 0.

Figure A.13.: More spectra of Eq. 5.51.
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(a) N = 13,∆ = 0.
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(b) N = 14,∆ = 0.

Figure A.14.: More spectra of Eq. 5.51.

A.5. Wavefunctions on the Rauzy Fractal

Figs. A.15 and A.16 contain more examples of eigenstates plotted on the Rauzy fractal, where
the Rauzy fractal is subdivided again according to environments of the local structures. These
figures give more evidence for the observation that the eigenstates localize on the Rauzy fractal
in regions that correspond to the branch of the spectrum of the eigenstate. For example, in
Fig. A.16(a)/(b)/(c), the state belongs to the bottom/middle/top branch of the spectrum, hence
localizes on the red/green/blue area of the Rauzy fractal.
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a)

c)

b)

Figure A.15.: (Color online) Three eigenstates of the HTC H13, plotted on the subdivided Rauzy
fractal. The height of the black triangles on site n are proportional to |ψi(n)|2. On
the right hand side, the eigenstate is plotted, together with the state (red dot) in
the spectrum (blue). a) i = 800, b) i = 1500 and c) i = 2800.
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a)

c)

b)

Figure A.16.: (Color online) Three eigenstates of the OTC Ho
13, plotted on the subdivided Rauzy

fractal. The height of the black triangles on site n are proportional to |ψi(n)|2. On
the right hand side, the eigenstate is plotted, together with the state (red dot) in
the spectrum (blue). a) i = 1500, b) i = 2300 and c) i = 2800.
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B.1. Symmetric spectrum for hopping models

Consider a chain with N sites, described by a tight-binding Hamiltonian

H =

N−1∑
i=1

ai |i⟩ ⟨i+ 1|+ bi |i+ 1⟩ ⟨i| =



0 a1
b1 0 a2

b2
. . .

. . .

. . .
. . . aN−1

bN−1 0

 ∈ GL(N,C), (B.1)

which need not be Hermitian. The energy spectrum consists of the roots of the characteristic
polynomial p(λ) = det(H − λ Id), where Id is the identity matrix. We will prove that for any
Hamiltonian Eq. B.1, it is true that for all λ ∈ C such that p(λ) = 0, one also has p(−λ) = 0.
More precisely:

Theorem B.1. For any N × N tridiagonal matrix A ∈ GL(N,C), where N ∈ N, with zero
diagonal, it is true that

λ ∈ σ(A) ⇐⇒ −λ ∈ σ(A).

Proof. The determinant of a general tridiagonal matrix

T =



c1 a1
b1 c2 a2

b2
. . .

. . .

. . .
. . . aN−1

bN−1 cN

 ∈ GL(N,C),

can be obtained using the following recursion relation [119]. Let f−1 = 0, f0 = 1, where the
recurrence relation reads

fn = cnfn−1 − an−1bn−1fn−2.

The determinant is then the Nth iteration, i.e. detT = fN .

Now let A be the matrix in Eq. B.1, which is a general N × N tridiagonal matrix with zero
diagonal. Observe that T = A − λ Id is a tridiagonal matrix, for which the recurrence relation
reads

fn(λ) = −λfn−1(λ)− an−1bn−1fn−2(λ),

where the λ dependence is implemented as a function property. The key to proving the theorem
is the observation that for n even (odd), fn(λ) is an even (odd) function of λ for n ≥ 1. We will
show this using strong induction.

• For n = 1, one has f1(λ) = −λ, which is an odd function.

• For n = 2, one has f2(λ) = λ2 − a1b1, which is an even function.
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• Now suppose that for all 1 ≤ k < n, it holds that fk(λ) is an even (odd) function of λ
if k is even (odd). Suppose that n is even (odd), then −λfn−1(λ) and fn−2(λ) are both
even (odd) functions, which makes fn(λ) = −λfn−1(λ) − an−1bn−1fn−2(λ) an even (odd)
function, which completes the induction step, and hence the proof.

From this we can conclude that det(A− λ Id) = fN (λ) = ±fN (−λ), where it is + for N even
and − for N odd. For λ ∈ σ(A) to hold, fN (λ) = ±fN (−λ) = 0 must be true, which implies
−λ ∈ σ(A), proving the statement.

An alternative way to prove Theorem B.1 is based on chiral symmetry, also known as sublattice
symmetry: the sites with an even label only interact with odd labeled sites, and vice versa. This
leads one to introduce the operator

Γ =

⌈N/2⌉∑
j=1

|2j − 1⟩ ⟨2j − 1| −
⌊N/2⌋∑
j=1

|2j⟩ ⟨2j| ,

which acts as the identity on the odd sites and as minus the identity on the even sites. One can
check that for any H as in Eq. B.1, it is true that HΓ = −ΓH. Now suppose H |ψ⟩ = E |ψ⟩ for
some E ∈ C, then H |ϕ⟩ = HΓ |ψ⟩ = −ΓH |ψ⟩ = −EΓ |ψ⟩ = −E |ϕ⟩. This means that for every
E ∈ σ(H) with eigenstate |ψ⟩, the state |ϕ⟩ = Γ |ψ⟩ has energy −E, which proves Theorem B.1.

B.2. Biorthogonal Bases

Let M be a diagonalisable n × n matrix with elements in a field F . This means that there exist
n eigenvalues λn and eigenvectors |vn⟩ such that M |vn⟩ = λn |vn⟩ and {|vi⟩}i spans Fn. If one
arranges the vectors as columns of a matrix

V =

 | |
|v1⟩ · · · |vn⟩
| |

 ,

it is known that these matrices diagonalise the matrix as

D = V −1MV =

λ1 λ2
. . .

 .

The columns |vi⟩ of V are the right eigenvectors. Similarly, there exist left eigenvectors ⟨wi| such
that ⟨wi|M = γi ⟨wi|. For Hermitian matrices, ⟨wi| = |vi⟩† and γi = λi holds, and the eigenvectors
are orthogonal.

In general, eigenvectors are not orthogonal and the left- and right eigenvectors are different. It
turns out, however, that the left eigenvectors is the dual basis of the right eigenvectors. Consider

V −1 =

— ⟨u1| —
...

— ⟨un| —

 ,

now we can show that ⟨ui| are left eigenvectors of M :

V −1M = V −1MV V −1 = DV −1 =

— λ1 ⟨u1| —
...

— λn ⟨un| —

 .
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This shows that the left eigenvectors are the rows of V −1, the inverted matrix where the columns
are the right eigenvectors, and that the left- and right eigenvectors have the same eigenvalues.
Moreover, since V −1V = Id, the left- and right eigenvectors form a biorthogonal system, i.e.
⟨ui|vj⟩ = δij .

It is important to note that this is not a biorthonormal system. Even when the right eigenvectors
|vi⟩ are chosen to be unit vectors, the corresponding left eigenvectors ⟨ui| are not of unit length in
general. This is an important notion in non-Hermitian quantum mechanics, where the resolution
of identity is written as

Id =
∑
n

|vn⟩ ⟨un|
⟨un|vn⟩

,

where the eigenvectors are chosen to be of unit length, such that ⟨un|vn⟩ need not be unity.
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C. Overview of Original Results

This appendix presents an overview of all original results in this thesis.

• Proving the correspondence between S(q) and the Fourier Transform of the autocorrelation
measure γΛ in Section 3.2.1.

• Explicit proof of the conumbering scheme for the Fibonacci chain in Section 3.2.2.

• All figures in this thesis that do not explicitly refer to a source from which they are taken.
Notable examples are:

– The 3D visualisation of the cut-and-project procedure for the Tribonacci word in
Fig. 3.6a.

– Plots of Moiré patterns in Figs. 4.7, 4.8a and 4.8b.

• The Tribonacci chain, Chapter 5, and all corresponding results, leading to the publication
Ref. [27].

• The explicit correspondence between the two methods of obtaining the Rauzy fractal, treated
in Section 5.3.1.

• Theorem 6.10 and its proof.
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[44] René L Schilling. Measures, integrals and martingales. Cambridge University Press, 2017.
30

[45] Benoit B Mandelbrot and Benoit B Mandelbrot. The fractal geometry of nature, volume 1.
WH freeman New York, 1982. 31

[46] Kenneth Falconer. Fractal geometry: mathematical foundations and applications. JohnWiley
& Sons, 2004. 32

[47] Thomas C. Halsey, Mogens H. Jensen, Leo P. Kadanoff, Itamar Procaccia, and Boris I.
Shraiman. Fractal measures and their singularities: The characterization of strange sets.
Phys. Rev. A, 33:1141–1151, Feb 1986. 32, 33

[48] H George E Hentschel and Itamar Procaccia. The infinite number of generalized dimensions
of fractals and strange attractors. Physica D: Nonlinear Phenomena, 8(3):435–444, 1983. 33

[49] A. Block, W. von Bloh, and H. J. Schellnhuber. Efficient box-counting determination of
generalized fractal dimensions. Phys. Rev. A, 42:1869–1874, Aug 1990. 34

[50] L. V. Meisel, Mark Johnson, and P. J. Cote. Box-counting multifractal analysis. Phys. Rev.
A, 45:6989–6996, May 1992. 34, 35

[51] Aristid Lindenmayer. Mathematical models for cellular interactions in development I. fila-
ments with one-sided inputs. Journal of theoretical biology, 18(3):280–299, 1968. 35

[52] Grzegorz Rozenberg and Arto Salomaa. The mathematical theory of L systems. Academic
press, 1980. 35, 37

[53] Premshree Pillai. Fractal plants: https://disquiet.in/posts/2019/11/26/fractal-plants, Dec
visited 11-11-2022. 38
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[83] Valérie Berthé, Clelia De Felice, Francesco Dolce, Julien Leroy, Dominique Perrin,
Christophe Reutenauer, and Giuseppina Rindone. Acyclic, connected and tree sets. Monat-
shefte für Mathematik, 176(4):521–550, 2015. 54
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Zhuo-Yu Xian. Towards explicit discrete holography: Aperiodic spin chains from hyperbolic
tilings. SciPost Phys., 13:103, 2022. 105

[118] Mattis Reisner, Yanel Tahmi, Frédéric Piéchon, Ulrich Kuhl, and Fabrice Mortessagne.
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