
Graduate School of Life Sciences
MSc Medical Imaging

2023 - 2024

Detection and Segmentation of Tissue Markers
in Mammography: Studying their Impact on an

AI Breast Cancer Detection System

Minor Research Project

Ana San Román Gaitero

Examination Committee:

Supervisor: Dr. Alejandro Rodriguez Ruiz
VP of Clinical Strategy, ScreenPoint Medical

Daily Supervisor: Daan Sperber
Clinical Data Scientist, ScreenPoint Medical

Examiner: Dr. Kenneth Gilhuijs
Associate Professor, UMC Utrecht



Detection and Segmentation of Tissue Markers in
Mammography: Studying their Impact on an AI

Breast Cancer Detection System
Ana San Román Gaitero

ScreenPoint Medical
a.sanromangaitero@students.uu.nl

Abstract—Breast cancer is the leading cause of cancer
death among women. Accordingly, appropriate screen-
ing protocols for early diagnosis and treatment are
crucial to fight against this disease. Artificial intelligence
(AI) plays a significant role in screening mammograms
and helping radiologists identify potential abnormalities.
When a breast anomaly is detected, a biopsy is taken
and a tissue marker is placed in the affected area,
serving as a reference point for future treatments.
To ensure reliability, it is crucial to comprehend how
these tissue markers contribute to the process of breast
cancer detection using AI systems. To this end, this
study initially presents an image processing algorithm
that facilitates the creation of an annotated dataset
comprising images with tissue markers. This dataset
is then used to develop a deep learning approach that
is capable of discriminating mammograms with tissue
markers, as well as of segmenting these objects. The
study concludes with a methodology for analyzing
the performance of an AI system in breast cancer
screening. This framework does a comparison between
the AI system’s detected anomalous regions and the
locations of tissue markers. The results highlight the
strong performance of the deep learning model in both
the segmentation and detection of mammograms with
tissue markers. Moreover, the findings demonstrated
that regardless of the presence of clips, AI systems
can identify potential abnormalities with a reduced
probability of marking tissue markers.

Index Terms—Breast Cancer, Mammography, 2D X-
ray, DBT, Tissue Markers, Surgical Clips

I. Introduction

Breast cancer is the most diagnosed cancer and the
leading cause of cancer-related death among women world-
wide [1]. It is characterized by the presence of several
lesions, including masses and microcalcifications, among
others. Masses are large tumors that can be categorized as
either malignant or benign, and microcalcifications are
small calcium deposits that are an indicator of breast
cancer or impending disease [2]. In the clinic, digital
mammography is used as the standard breast cancer
screening exam for the general population and has been
proven to reduce breast cancer mortality [3]. This X-
ray technique captures a two-dimensional (2D) image
of the breast, enabling the detection of breast lesions,

such as masses and microcalcifications, before they even
become palpable. Identifying these lesions at an early stage
allows for the improvement of survival rates through the
early diagnosis and treatment of the disease [4]. Digital
breast tomosynthesis (DBT) is a technique that is also
used in the clinic to overcome some limitations of digital
mammography, particularity with high breast density and
overlapping tissue. Unlike 2D mammography, DBT acquires
multiple projections from different angles along a predefined
trajectory, which are then reconstructed into a series of
high-resolution slices to obtain a three-dimensional (3D)
image [5]. This method effectively addresses the limitations
of 2D mammography and enhances the accuracy of lesion
detection.

To assist radiologists improve the predictive performance
of screening mammography, computer-aided diagnosis
systems have been used for the past 20 years [6]. However,
the exponential growth of artificial intelligence (AI) and
the remarkable success in medical imaging have generated
considerable interest in the development of deep learning
algorithms to further enhance screening accuracy [6].
Over the years, several deep learning methods have been
developed and shown to be efficient in solving breast cancer-
related problems, including the detection of breast cancer
lesions [7, 8], the identification of microcalcifications [9]
and the segmentation of breast lesions [10, 11]. This shows
that AI decision support systems can bring many benefits
in facilitating radiologists’ interpretation of mammograms
for breast cancer detection. In particular in the context of
cancer treatments, which can be highly effective when the
cancer is diagnosed at an early stage.

In clinical practice, tissue markers, also referred to as
surgical clips, are tiny objects commonly used to mark
areas of interest during biopsy procedures [12]. The reason
to place a clip within a breast lesion is mainly related
to finding the area during surgery, after a biopsy, and
for future treatments and follow-up [13]. The presence
of these clips within mammograms presents a challenge
for AI systems when assisting radiologists in detecting
cancer, as they are placed in regions where suspicious
masses or microcalcifications are present, which should be



detected by the AI algorithm. Clips are very bright and
can be easily distinguished by the human eye, particularly
by radiologists, who understand their significance when
analyzing mammograms. However, AI systems lack the
contextual understanding of clips and may struggle to
identify masses accurately when clips are present. This
could lead to errors when detecting breast cancer, such
as marking clips as suspicious regions or influencing the
decision-making process due to their presence. Therefore,
it is important to study how AI breast cancer detection
systems handle these specific cases in order to ensure
reliability of the diagnostic result.

To date, no study has explored the influence of surgical
clips on AI systems or the application of deep learning
models to detect these tiny objects in mammograms.
Nevertheless, research has been conducted on the detection
of foreign objects in X-rays. Some studies have focused on
the detection of pacemakers and defibrillators using models
based on the MobileNet and DenseNet architectures [14],
while others have investigated the detection of shoulder
implants by integrating modified versions of ResNet-50
and DenseNet-201 [15]. Additionally, techniques for the
segmentation or detection of small objects have also been
developed, including the use of a multi-scale U-Net for
the segmentation of abdominal small organs and lesions in
computed tomography and magnetic resonance images [16].
A study also addressed the issue of incorrectly classified
pixels by implementing a focal loss function to train a
variation of a fully convolutional network for segmenting
small stent graft markers in medical images [17].

The current study aims to investigate the impact of
surgical clips on AI breast cancer detection systems,
developing a deep learning algorithm capable of identifying
and segmenting these small objects in 2D mammograms.
An understanding of the interaction between AI systems
and surgical clips could facilitate future advancements in
AI-based breast cancer detection, potentially enhancing
diagnostic accuracy in clinical settings.

II. Materials and methods

This section describes the research methodology and
provides a comprehensive understanding of each step,
illustrated in Figure 1. It begins with a description of the
original data available and continues with the preprocessing
techniques employed to obtain a clearer distinction between
the two class labels required for the study. This is followed
by the annotation process to obtain the clip segmentation
masks and the data selection of the final dataset used for
the subsequent task. Next, the architectural framework
of the deep learning models employed in the detection of
images with clips is explained. The last section summarizes
the evaluation metrics used to analyze the robustness and
performance of the experimental results.

Fig. 1. Methodology workflow.

A Original Data

The provided dataset comprises a total of 3163 patients
from two distinct sites, one in the Netherlands and the other
in the USA. Each patient, also referred to as a case, could
have undergone multiple examinations. Each exam includes
one or more images, with each image showing a different
perspective of the breast. The most common set consists
of four images: the craniocaudal (CC) and mediolateral
oblique (MLO) views for both the left and right breast. In
this context, the study focused on individual images rather
than entire examinations, given that not all image views
in an exam contain tissue markers.

In particular, Site A comprises 16248 2D images, the
majority of which were obtained by a Siemens device. In
the exams with cancer, lesions were manually annotated
based on the clinical reports under the supervision of
a radiologist. Each annotation includes a lesion type
(calcification group and/or soft tissue lesion), a cancer
type (e.g. ductal carcinoma in situ (DCIS) or invasive
lobular carcinoma (ILC)) and a region annotation with the
location of the cancer. In contrast, site B comprised 37767
3D mammography images, also known as DBT, from a
Hologic device. The study used synthetic images, which
are 2D projections derived from the original DBT images.

Table I presents a summary of the dataset, including the
number of patients, breast cancer outcomes, and images
from each site. It is important to note that none of the
images from the original dataset had been labeled with the
presence or absence of tissue markers. Consequently, this

TABLE I
Original data

Dataset Patients N B M Image Views

Total 3163 375 867 1921 54015
Site A 2038 0 617 1421 16248
Site B 1125 375 250 500 37767

Number of instances per variable. Patients with a normal (N), benign
(B), and malignant (M) outcome.
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dataset served as the starting point for the study.

B Image Processing
As previously stated, the provided dataset had no

annotations on surgical clips, as well as any indication
of the number of images that could contain one. Therefore,
prior to training a deep learning model and in order
to create a representative dataset for this task, it was
necessary to label images containing tissue markers within
the archive. Consequently, the first step was to develop and
implement an automated image processing (IP) algorithm
capable of discriminating images with clips from those
without clips and generating their corresponding binary
mask segmentations. The choice of image processing over
other techniques was based on the high-intensity values
of surgical clips, their distinct geometric shapes, and their
contrast against surrounding tissues. In addition to the
lack of training examples for any other AI algorithm. These
characteristics suggested that image processing techniques
could facilitate the annotation process. Later, a visual
assessment and manual annotation were required, which
resulted in the creation of a representative annotated
dataset. This could then be used to improve the accuracy
and efficiency of clip detection and segmentation through
the application of deep learning models.

1. Algorithm
The IP algorithm comprised several phases, which are

illustrated in Figure 2 and listed below. All functions were
implemented with the Open CV library [18].

1. Image normalization. The initial step in the process
was to normalize the data in order to ensure uniformity
in the distribution of pixel values.

2. Remove image background. With the breast seg-
mentations available, the next step involved removing
the background from the breast, ensuring that no other
image artifacts or image labels (such as the image view;
MLO, or CC) could affect the results.

3. Remove foreign objects other than clips. One of
the principal challenges encountered when applying
enhancing techniques to highlight the bright areas was
the presence of foreign objects with the same intensity
values, such as pacemakers, wires, or stickers placed
on the skin. To address this issue, it was necessary
to apply more preprocessing techniques for each type
of foreign object to obtain binary masks, which were
then used to remove the objects from the breast image.
This involved the application of several morphological
operations, filters, and thresholds, with different kernel
sizes and parameter values based on the foreign object
under study (refer to Appendix A).

4. Application of top hat filter. Once the non-clip
foreign objects had been removed from the image,
the next step involved identifying those remaining

structures with high-intensity values, which were
presumed to correspond to the surgical clips. This
was achieved by utilizing a top hat filter, with a kernel
size of 3 × 3 and a rectangular structuring element, to
enhance the brightest areas of the image.

5. Application of morphological operations. The
next step implicated applying erosion and dilation
techniques to isolate potential clip regions and remove
other structures, such as small microcalcifications. The
kernel size was set to 3×3 and an ellipse and a rectangle
were set, respectively, as structuring elements.

6. Application of mean shift filter. A mean shift filter
was applied to refine the pixel intensities within the
resulting regions; pixel values within a clip could vary
in a wide range of values making it harder to find
the most optimal threshold. The mean shift filter was
applied with a spatial radius of 25 and a range radius
of 110.

7. Thresholding. A binary threshold was applied to
the resulting image to obtain a binary mask of the
corresponding regions, which in the best scenario
should correspond with surgical clips. The threshold
value was set to 129.

8. Remove breast contour. Due to the large number of
instances with high-intensity pixels around the breast
contour, a binary mask representative of this contour
was obtained from the original image and aggregated
with the previous binary mask to obtain the final
segmentation mask. The breast contour mask was
obtained by first finding the contour of the original
breast mask and then dilating it with a kernel size of
8 × 8 for three iterations.

9. Label each image. The final stage assigned a label to
each image. In order to distinguish between instances
with and without clips, all regions within the final
segmentation mask were identified and their area
quantified. This area was used to determine whether
the region in question corresponded to a clip or not.
If the area of any of the regions in the image was
below the specified threshold, the image was labeled
as ”clip”. Conversely, if none of the contours were
found to exceed the specified threshold, the image was
labeled as ”no clip”. The range of area threshold was
set between 81 and 800.

It should be noted that all parameters, including kernel
sizes, types of morphological operations and filters, and
applied thresholds, were selected based on the performance
of the IP algorithm. These parameters were fine-tuned
to optimize the segmentation of clip regions and ensure
accurate detection of images with clips, using a manually
selected set of fewer than 50 images. Specifically, to identify
and select the optimal thresholds for the generation of the
final binary mask and the distinction of clip regions from
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Fig. 2. Image processing framework. Two examples are shown with the resulting image above a description of the applied preprocessing step.
Note that the first step, involving image normalization is not represented.

other regions, the following procedure was undertaken. The
preprocessing algorithm was applied to all 50 images, and
the resulting image from the mean shift filter output was
obtained. Subsequently, a histogram of all these image
outputs was generated, and the threshold was selected
based on the optimal value that comprised the high-
intensity pixel values while simultaneously removing other
high-intensity values that were proximate to the clips. In
contrast, the area threshold was determined by calculating
the mean of all the areas of the regions that were found in
the final masks and actually corresponded to clips.

2. Application
All images were processed by the IP algorithm in order

to be classified into the two categories. The output images
were paired with its binary segmentation mask. For those
images without clips, the segmentation mask represented
a zero image. Figure 3 illustrates different examples of
the output segmentations obtained from the IP algorithm.

Fig. 3. Visual examples of the image processing algorithm outputs.
Original images are seen on top, with their corresponding segmenta-
tion results on the bottom.

From left to right, the first image illustrates a successful
segmentation, capturing all clips present in the image. The
second image shows an image without clips, classified as
such due to segmented microcalcifications and parts from
the breast contour parts. The third image displays an
example in which a pacemaker is present, which highlights
the challenge of removing such objects to achieve optimal
detection. However, this case was accurately classified as
it contained clips. In contrast, the image on the right
illustrates an example of a wire that has been successfully
removed and a clip that has been accurately segmented.
The last image shows a false negative (FN), an image that
contains clips but has not been identified due to the absence
of any segmentation.

C Annotation
The final dataset was obtained following a visual selection

process, whereby any cases that had been misclassified
were moved to the other class. Once the two classes had
been distinguished, the corresponding binary segmentation
masks were redefined by manual annotation using a Python
graphical image annotation tool called LabelMe [19]. It
is important to note that the annotation process was
time-consuming, with each image containing between,
approximately, one and twelve surgical clips that had to be
manually segmented. Moreover, the majority of the images
from the original dataset did not contain tissue markers,
which resulted in a reduced number of images available
for annotation and, consequently, for training the deep
learning model.

D Data selection
The final dataset was a subset of the original set that

included the images found with clips and a comparable
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number of images without clips. This was done to ensure
balanced data for training. Therefore, the data selection
yielded a total of 3697 image views. This resulted in a final
dataset comprising 2701 images from site A, of which 1083
contained clips, and 996 images from site B, of which
550 contained clips. Table II presents the clinical and
demographic characteristics of the malignant cases, 1688
out of the 3697 patients from the study sample, used for
the deep learning task.

TABLE II
Demographic and Clinical Characteristics

Characteristics Sample (n=1688)

Cancer Region Characteristics

Mass, n (%) 62.26%
Calcifications, n (%) 30.0%
Architectural Distortions, n (%) 3.55%
Asymmetries, n (%) 4.19%

Histological Cancer Types

Invasive Non-Specific Type, n (%) 38.76%
Ductal Carcinoma In Situ, n (%) 11.63%
Invasive Lobular Carcinoma, n (%) 5.43%

Lesion Extent (maximum diameter)

Lesion Diameter, median (IQR), mm 16 (11-25)

Demographic Characteristics

Woman Age, median (IQR), years 61 (53-70)

IQR, interquartile range.

The dataset was divided into three sets for deep learning
experimentation. A total of 50% of the images were
allocated for training, 20% for validation, and 30% for
testing (refer to Table III). A greater proportion of Site
A was located into training because it contained easier
instances where clips could be easily detected with respect
to the background, which was observed in the IP outcomes.
The test set included the majority of the images from
Site B, which exhibited greater complexity and variability.
The aim of prioritizing Site A for training and reserving a
substantial portion of Site B for testing was to train the
model on an easier clip detection task and to evaluate the
model’s performance under more realistic and challenging
conditions found in clinical settings.

TABLE III
Data Split for Deep learning

Dataset Site A Site B

Train 1648 200
Validation 491 250
Test 562 546

Number of images for each dataset and site.

E Deep Learning
A deep learning algorithm was developed to identify

images containing surgical clips across the entire data
archive. Two different approaches were considered; a
segmentation model and a classification model. All models
were implemented with the Pytorch library using Python
3.8.10 [20].

1. Image Classification
Given that the primary goal is to simply identify which

image contains clips and which does not, the first deep
learning approach considered a classification model based
on the ResNet50 architecture. The use of ResNet50 as
a baseline allows for a consistent comparison of other
techniques against a well-established standard model in
the domain of classification tasks.

1.1 ResNet50
The ResNet50 architecture consists of 16 residual blocks,

comprising 48 convolutional layers, followed by a max
pooling layer and an average pooling layer [21]. The final
layer is a softmax function that performs classification.
The implementation of the ResNet50 model is conducted
using the PyTorch library, in particular the package
torchvision.models, using transfer learning. This approach
employs pretrained weights to enhance performance and
accelerate the convergence of the model. In order to
adapt the ResNet50 for the binary classification between
images with and without clips, a new linear layer with
an output dimension of two was added to the final fully
connected layer. As a result, the model is initialized using
the pretrained weights from ImageNet [22], with all layers
frozen except for those from the fourth block (layer 4) and
the final fully connected layer. With this method, the final
layer can be adapted to the tissue markers detection task
while maintaining the valuable information obtained from
the ImageNet feature representations.

1.2 Loss function
The ResNet50 classification employs a loss function

that combines the standard cross-entropy loss with a
weighted penalty for false positive (FP) predictions. This
approach addressed an issue encountered in the initial runs
where instances containing only microcalcifications were
incorrectly labeled as clips. Therefore, by adding a 0.7
penalty to the cross-entropy loss, the model was able to
reduce the FP predictions.

1.3 Experiments
A number of different learning rates, optimizers, and

learning rate schedulers were studied in order to determine
the optimal parameter configuration. The final ResNet50
model was trained for 50 epochs with a batch size of 32.
The input images were resized to 224 × 224 pixels and
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converted to a three-channel RGB format. Furthermore,
as the model had been pretrained on the ImageNet
dataset, the normalization process utilized the mean and
standard deviation values associated with this dataset.
In addition, a penalty weight of 0.7 was applied to the
loss function, in combination with the AdamW optimizer
and the ReduceLROnPlateau learning rate scheduler. The
learning rate was set to 0.0005 and the weight decay to
0.01.

2. Image Segmentation
The next approach was undertaken for two reasons.

Firstly, as previously stated, surgical clips are tiny objects
located in areas where a biopsy has been taken, that
is to say, areas where malignant or benign masses and
microcalcifications may be present. These suspicious regions
should be marked as high-risk areas for breast cancer. No
study has been conducted to evaluate the performance of
AI systems on images with clips; it is unclear whether
they mark a clip because there is indeed a suspicious
mass underneath, or because they have learned that a clip
indicates a suspicious mass was present in the past, but
there is no longer risk of cancer. Therefore, it is necessary
to localize these clips in order to be compared with areas
that the AI breast cancer detection systems have identified
as potential lesions.

Secondly, as observed in the preprocessing step where
the final dataset of images was obtained, clips were often
mistaken with microcalcifications due to their high degree
of similarity; small white spots that are randomly scattered
or grouped like clips. This can make the classification task
more challenging since a classification model lacks the
morphological information required to accurately identify
clips, specifically their appearance or location. For these
two reasons, a segmentation approach was selected as the
primary deep learning model, with a different twist on the
usual approach. The study employed a U-Net architecture
as a segmentation model, generating the corresponding
segmentation masks and subsequently acting as a classifier
according to the presence or absence of surgical clips.

2.1 U-Net
The U-Net architecture consists of an encoder (down-

sampling path), a bottleneck, and a decoder (upsampling
path) [23]. Both the downsampling and upsampling paths
apply two 3 × 3 convolutions with stride and padding
values of 1, each followed by a ReLU activation. In the
downsampling path, convolutional blocks are followed by a
2×2 max pooling operation with a stride of 2, reducing the
spatial dimensions and progressively doubling the number
of feature channels up to the bottleneck layer. It also
uses skip connections to preserve the spatial information
of the feature maps from the encoder to the decoder.
The bottleneck layer includes two 3 × 3 convolutions
followed by a ReLU activation, serving as a connection

between the two streams. In the decoder path, transposed
2 × 2 convolutions upsample the feature maps, halving the
number of feature channels. The upsampled feature maps
are concatenated with the corresponding feature map from
the encoder path, and retrieved from the skip connections,
integrating high-level information with fine details. These
concatenated maps undergo two 3 × 3 convolutions with
ReLU activations. The final layer uses a 1×1 convolution to
reduce the feature channels to the desired number for the
final segmentation map, followed by a sigmoid activation
for binary segmentation.

2.2 Loss function
The loss function employed for image segmentation

is based on the one proposed by [24] and is shown in
Equation 1. It is a combination of the Focal loss function
and the Tversky index, which addresses the challenge
of data imbalance, whereby tiny, small objects situated
on a large background. Other techniques, such as Dice
Similarity Coefficient (DSC) or weighted binary cross-
entropy, encounter difficulties when dealing with this type
of cases because they weigh FP and FN equally. In the
context of highly imbalanced data and small regions of
interest, such as surgical clips, it is better to assign greater
weighting to FNs than to FPs in order to improve the
recall rate. The Tversky similarity index addresses this
issue by providing greater flexibility in balancing FPs and
FNs through the introduction of two parameters, α and
β. Additionally, the Focal loss introduces the parameter
γ to prioritize hard examples, addressing the challenge of
segmenting small objects due to their minimal contribution
to the loss.

Focal Tversky Loss =
∑

(1 − Tα)
1
γ (1)

In addition, a weight penalty is incorporated into the
Focal Tversky Loss during training in order to address
the challenge in the classification task of the segmentation
model. The objective is to identify FP and FN by comparing
the predicted segmentations with the ground truth labels
(clip/no clip) at a pixel level. This enables the identification
of areas where the model incorrectly predicts the presence of
clips (positive) where none are present in reality (negative),
and vice versa. The regions containing FP are multiplied
by a penalty weight, denoted by θ, while those with FN
are multiplied by the inverse of the penalty weight (1 − θ).
The sum of these two penalties into a single metric results
in the addition of the resulting value to the Focal Tversky
Loss. The weighted penalty provides a detailed evaluation
of the model’s ability to distinguish between the two classes,
namely the presence and absence of clips.

2.3 Experiments
For image segmentation the training process used images

from both classes: clips and no clips, each paired with
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their corresponding masks. This means that for images
containing clips, the ground truth segmentation masks
were binary, with clips represented by one-pixel values.
On the other hand, for images without clips, the ground
truth masks were formed by zero pixel values. Therefore,
the segmentation model was forced to learn to generate a
zero-valued segmentation when an image with no clips was
input into the model.

Multiple experiments were carried out using a variety of
criteria and approaches with respect to the classification
performance. Some of these entailed the utilization of
different image sizes and penalty weights for the loss
function under evaluation. Moreover, a series of methods
were conducted based on the model’s predicted masks sub-
sequent to a preliminary run with a reasonable parameter
configuration. In this first run, the main challenge was
the segmentation of regions containing microcalcifications,
which, as negative instances, resulted in FP. Moreover,
identifying clips located in bright areas or on top of
microcalcifications and masses also led to a considerable
amount of FN. To address this, further training approaches
were implemented, including data augmentation techniques
with Gaussian noise, rotation, and flipping. Furthermore,
an additional penalty was introduced to the loss function
when an image was predicted as a clip, but in reality, it
contained only microcalcifications. This was achieved by
adding a third label to the dataset, representing images
containing only microcalcifications, to reduce FP. The final
experiment involved the incorporation of images without
clips into all three sets to evaluate whether the model’s
performance improved with a larger dataset.

After all these experiments and the identification of
the optimal methodology and parameter configuration,
the U-Net was trained using the 2D images and their
corresponding masks as input, which were resized to a
resolution of 512 × 427 and normalized between 0 and 1.
The model was trained over 150 epochs using the AdamW
optimizer with a learning rate of 0.0001, a batch size of 8,
and a weight decay of 0.01. The Focal Tversky loss function
was used to effectively deal with class imbalance, guiding
the model optimization with α = 0.7, β = 0.3, γ = 0.8,
and θ = 0.6. Early stopping was also implemented in order
to prevent overfitting.

The output of the segmentation model comprised the
predicted clip segmentations and the corresponding pre-
dicted labels, which were assigned to the predicted masks.
This predicted label was calculated based on the predicted
segmentation. If the sum of the mask pixel values equaled
zero, it meant that no region was segmented and, conse-
quently, no clip was identified in the image. Conversely,
if the predicted segmentation included positive regions, it
indicated that the model had identified clips within the
image, and thus the ”clips” label was assigned.

F Analysis and evaluation

In order to evaluate the performance of the different
models, accuracy, precision, and recall were calculated from
the ground truth and predicted labels in the classification
task at the image level. The aforementioned calculations
were performed for both the ResNet50 and U-Net model
classifications. Furthermore, the same analysis was em-
ployed on the deep learning test set for the IP algorithm
to enable a comparison with the deep learning models.

On the other hand, to assess the performance of U-Net
image segmentation, the DSC was calculated at both the
regional and image levels between the ground truth segmen-
tations and the predicted masks. The image-level analysis
evaluates the entire segmentation mask, considering the
background, while the region-level analysis assesses the
quality of individual clip segmentation within an image.
The DSC is a metric that quantifies the overlap between two
volume segmentations. It is defined as twice the intersection
of the volumes divided by their union [25]. Therefore the
DSC was employed to quantify the overlap between two clip
segmentation masks. The approach initially determined
the DSC across the entire test set at the image level,
including both instances with and without clips. Later,
it was calculated over only the set of images that contained
clips, to provide a more accurate representation of the
model’s performance in clip segmentation. The region-level
analysis was conducted by comparing each individual region
identified in the prediction mask with each individual clip
from the ground truth mask by calculating the DSC. Then,
the best matches were identified by selecting the highest
DSC from all possible combinations, as each clip had a
single correspondence, resulting in one DSC value per clip.

III. AI in Breast cancer detection

The second part of the study used Transpara 2.1.0,
an AI system developed by Screenpoint Medical BV in
Nijmegen, the Netherlands. The aim was to evaluate the
capacity of the AI system to identify suspicious masses
and calcifications in mammograms with clips and to
quantify their risk of cancer. Transpara analyzes each
exam using a scoring system that ranges from 1 to 100,
with 100 indicating the highest risk and 1 indicating the
lowest risk of developing cancer [26]. Scores above 75 are
classified as Elevated risk, with approximately 1 in 6 exams
showing cancer. Scores between 74 and 43 are classified
as Intermediate risk, with approximately 1 cancer in 250
exams. Lastly, scores below 43 are considered low risk
with more than 4000 exams per cancer and which are not
displayed to the user. As a result, Transpara only shows
the user those findings that have been scored above 43 and
provides a final exam score corresponding to the highest
region score.
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Fig. 4. Transpara’s performance evaluation process. One example is shown with the resulting image next to a description of the applied step.

A Performance Evaluation of Transpara
In order to analyze how Transpara performs when clips

are present in an exam, the study focused on individual
findings categorized as Intermediate-Elevated (IE) risk
of cancer. Note that these individual findings correspond
to breast regions identified by Transpara. The following
workflow was required due to the discrepancy between the
deep learning model, which had been trained on PNGs,
and Transpara’s outputs, which are in DICOM format.
Therefore, to align the model’s output with Transpara’s
findings, it was necessary to translate the region findings
from Transpara’s coordinate system to the PNG coordi-
nate system. Accordingly, the evaluation of Transpara’s
performance is illustrated in Figure 4 and involved the
following steps:

1. Clip segmentation using U-Net: The best model
weights of the U-Net obtained from the previous
steps were used to process all the images in the
original dataset. This step aimed to detect all images
containing clips and to generate their respective clip
segmentation masks.

2. Transpara breast cancer detection: Transpara
processed the original dataset to identify anomalous
regions and assign corresponding risk scores in 2D
and DBT DICOM exams. This step produced JSON
files with the region-finding results, including contour
pixel coordinates and their region scores. The spacing,
translation, and flipping information of the original
DICOM images were obtained from the ScreenPoint
database.

3. Image generation: An in-house tool was used to gen-
erate the PNG images from the DICOM images in the
original dataset. This step generated the corresponding
JSON files containing the spacing, translation, and
flipping information of the PNG image. This was

required to convert the image from DICOM space
to PNG.

4. Region mapping: An interpolation process was per-
formed once the Transpara findings and the generated
PNG JSON files were obtained. This entailed the
processing of JSON files from both algorithms, the
extraction of region details, and the translation of
coordinates based on spacing, translation and flip
information to accurately map Transpara findings from
DICOM onto the PNG images.

5. Selection of high-risk regions (IE risk): Binary
segmentation masks were created for those findings
that have region risk scores above 43, which correspond
to those regions with an IE risk of breast cancer, as
previously explained.

6. Transpara evaluation: The final step involved com-
paring the images that contained clips and IE regions
found by Transpara. To analyze the degree of overlap
between both areas, a region-level DSC approach
analogous to the one employed by the U-Net was
performed. This entailed computing a DSC for each
combination of clip-finding in both masks. Given that
the goal was to determine the likelihood of Transpara
marking a clip as a lesion, only the match pair with
the highest DSC was taken into account. If no match
was found, it could be inferred that Transpara had not
marked a clip as a lesion. Conversely, if a matching
pair was identified (any DSC between both regions),
it could be concluded that Transpara had marked a
clip itself or a nearby lesion.

IV. Results

In this section, the results of the experiments are
presented. It is important to note that the IP algorithm
was not intended to be a final segmentation or detection

8



method but is included in Results Section A and Section B
to highlight and discuss the differences between traditional
algorithms and AI-based approaches.

A Image Classification
The results of all image classification methods are

presented in Table IV. Firstly, the experimental results
demonstrate that transfer learning enhances ResNet50’s ac-
curacy performance, reaching 0.85. As expected, the U-Net
outperforms the other methods in terms of accuracy, recall
and precision, achieving 0.95, 0.93 and 0.97 respectively.
Conversely, the IP algorithm achieved the lowest accuracy
of all, reaching 0.78, but a higher recall rate in comparison
to the ResNet-50 model. This is because the IP method
served as the baseline method to create the final dataset,
thus, it was expected to have a high performance.

TABLE IV
Image Classification Performance

Evaluation Metrics (95% CI)

Model Accuracy Recall Precision

U-Net 0.948
(0.93-0.96)

0.932
(0.91-0.95)

0.947
(0.93-0.97)

ResNet50 0.847
(0.83-0.87)

0.787
(0.75-0.82)

0.852
(0.82-0.89)

IP 0.782
(0.75-0.80)

0.906
(0.88-0.93)

0.694
(0.65-0.73)

Evaluation metrics with a 95% confidence interval (CI). Image
processing algorithm (IP).

Moreover, Table V presents the accuracy, recall and
precision on both data sites separately. The U-Net demon-
strated a strong predictive performance reaching 0.98
accuracy in Site A, and a high sensitivity and precision
in the detection of clips, with a score of 0.99 and 0.94,
respectively. Furthermore, the U-Net also reaches the
highest accuracy and precision in Site B, with 0.92 and 0.95,

respectively. Conversely, ResNet50 demonstrates robust
accuracy for tissue marker classification in Site A, with
a value of 0.94. However, its performance declines when
predicting instances from Site B, with an accuracy of 0.75.
Lastly, as expected, the IP algorithm demonstrated the
lowest performance in comparison with the other two deep
learning models, although the sensitivity towards Site B
was the highest of all three methods, with a value of 0.92.

B Image Segmentation

The performance of the U-Net model in image segmen-
tation was initially evaluated by the DSC at the image
level for the entire test set, which included images with
and without clips. The U-Net achieved an overall DSC
of 0.84 in the test set. With regard to Site A, the model
achieved a DSC of 0.90, whereas for Site B, the DSC
was 0.78. Moreover, to assess the efficacy of the U-Net in
segmenting the clips, the evaluation was also conducted
exclusively on images with clips at an image and region
level. The results can be seen in Table VI, which displays
the median DSC and interquartile range for the entire
dataset comprising clips in both methods. The median
DSC of the U-Net at both the image and region levels was
0.85 and 0.88, respectively. In contrast, the IP algorithm
exhibited substantially lower DSC, with a median of 0.55
and 0.66 at the image and region levels, respectively.

TABLE VI
Image segmentation Performance

Methods Image-Level Region-Level

U-Net 0.85 (0.75-0.90) 0.88 (0.80-0.92)
IP 0.55 (0.31-0.69) 0.61 (0.00-0.75)

Dice Similarity Coefficient (DSC) Median and Interquartile Range
(IQR) on both image and region levels for the entire dataset containing
clips. Image processing algorithm (IP).

TABLE V
Image Classification Performance per Datasets

Evaluation Metrics (95% CI)

Dataset Model Accuracy Recall Precision

Site A U-Net 0.975 (0.962-0.988) 0.989 (0.981-0.998) 0.938 (0.918-0.958)
ResNet50 0.933 (0.911-0.955) 0.900 (0.874-0.927) 0.933 (0.911-0.955)
IP 0.895 (0.869-0.920) 0.888 (0.842-0.934) 0.812 (0.757-0.866)

Site B U-Net 0.919 (0.897-0.942) 0.897 (0.872-0.923) 0.954 (0.937-0.972)
ResNet50 0.788 (0.737-0.839) 0.800 (0.750-0.850) 0.708 (0.652-0.764)
IP 0.669 (0.630-0.709) 0.917 (0.885-0.948) 0.640 (0.594-0.685)

Evaluation metrics and 95% confidence intervals (CI) achieved with each Site in the classification tasks. Image processing algorithm (IP).
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The analysis was also conducted separately for each site,
as illustrated in Figure 5, only in images containing clips.
The following figure presents violin plots of the DSC for
the U-NET and the IP algorithm, evaluated on both image
and region levels. Detailed statistical information on the
DSC distributions is provided in Appendix B. The U-NET
demonstrated superior and more reliable segmentation at
the image level, as evidenced by a more concentrated
distribution towards higher DSC compared to the IP
method. The broader DSC distribution for the IP algorithm
indicates inconsistency in achieving accurate segmentation
across different images and clips. Moreover, Site A had a
greater number of higher DSC values compared to Site B in
both methods. It is noteworthy that at a region level, two
distinct clusters of DSC scores can be observed, one towards
higher DSC values and one towards zero. In particular, the
U-Net has the majority of the values concentrated in the
highest peak in both sites, indicating that it is successful in
segmenting all the clips present in the image. In contrast,
the IP has a higher proportion of values around zero in
both sites, suggesting that it does not capture all the clips.

Fig. 5. Comparison of DSC for image and region level analysis across
both sites and segmentation methods. IP, Image Processing

C Transpara’s performance evaluation
After processing the original data, the study detected a

total of 2696 exams (6160 image views) containing clips
using the U-Net segmentation model. However, due to
some limitations of the in-house image generation tool,
the number of exams with clips and Transpara findings
was reduced to 1154 exams (1956 image views). Thus, the
final study population consisted of 1154 exams. After the
region mapping process and selection of high-risk regions,
753 exams were found to be in the IE category, indicating
that 401 exams, representing 34.7% of the total, exhibited
no evidence of lesion detection. Finally, in Transpara’s
evaluation step, the number of exams that exhibited an
overlap between at least one of the findings and a clip was
182 (226 image views), seen in Figure 6. This suggests that
in 571 exams, or 50% of the time, a clip does not overlap
with an IE risk finding.

As illustrated in Figure 7, the scenarios were diverse.
Starting from the top left, the first image shows the scenario

Fig. 6. Histogram of the DSC overlap between the clip segmentation
mask and Transpara region mask

Fig. 7. Example of different image views and different DSC after the
evaluation of Transpara. The outcome represented by a light blue
Transpara finding and a dark blue filled clip is an overlap. In contrast,
a non-overlap outcome is illustrated as a white finding and an unfilled
blue clip.

in which a clip and a finding do not have any overlap.
Furthermore, in instances where the DSC value fell within
the range of 0 to 0.01, as seen in the top right image, the
clip was found to be in contact with the region delineated
by Transpara, but not within it. If the DSC value was in the
range of 0 to 0.6, the clip was either partially or completely
within a region marked by Transpara. It is noteworthy
that in this case, surrounding tissue was also present, as
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illustrated in the bottom left image. Nevertheless, when the
DSC was equal to or greater than 0.6, Transpara marked
the entire clip as a finding, indicating a false positive in the
detection of cancer (see the bottom right image in Figure
7). Consequently, in our study population of 1154 exams,
the results show that Transpara incorrectly identifies a clip
as an IE finding in 2.8% of cases (32 exams). Nevertheless,
this also indicates that while there is a 2.8% chance of FP
due to clips, Transpara has a higher accuracy of 13% (150
exams) in identifying and marking abnormal tissue with a
high risk of breast cancer, regardless of the presence of a
clip.

V. Discussion

Although the IP algorithm was not originally designed for
the purpose of detecting and segmenting clips in 2D mam-
mograms, it proved to be a valuable tool for the creation
of an adequate dataset. The algorithm demonstrated its
potential as a first step to identify images containing clips
and to facilitate manual selection and annotation of the
dataset. Nonetheless, some challenges were found during
the process. The inconsistency in pixel intensity values
across different images, as well as between clips within the
same image, led to difficulties in optimizing threshold values
and generalization processes. Foreign objects other than
clips, such as pacemakers and wires, also posed challenges
due to similar intensity values, as seen in Figure 3. Even
though their larger areas facilitated partial removal in
the initial stages, some residuals were still present in the
final segmentation masks. However, it is noteworthy that,
for the purpose of this algorithm, prioritizing FP over
FN was acceptable. This approach ensured that images
containing clips were not missed, even if it meant additional
work to remove incorrectly identified microcalcifications
or other artifacts during the manual annotation. Lastly, if
this algorithm were to be improved for a more autonomous
task of detecting and segmenting clips across images, a
more larger and diverse dataset would be required to make
a more extensive optimization experiment. It is, however,
important to note that, as an IP algorithm constrained
by predefined operations and filters, its ability to improve
performance may be constrained by inherent limitations.

It is noteworthy that microcalcifications were the most
challenging tissue type within the breast to differentiate
from surgical clips due to their high degree of similarity.
This was encountered in the IP algorithm, seen in Figure 3,
as well as in the deep learning models. This was expected,
given that these calcium deposits have similar intensity
values and occasionally rounded shapes, as some of the
tissue markers observed in mammograms. To address
this issue, it was necessary to incorporate an additional
FP penalty into the deep learning models. Future work
could include additional microcalcification annotations to
improve clip segmentation and differentiation between these
two objects.

In regard to the deep learning classification models,
as expected, the U-Net model demonstrated superior
performance in detecting images with clips. This may be
attributed to the fact that, although a segmentation model
is not designed for classification purposes, the additional
spatial information provides extra information regarding
the appearance of clips, facilitating the differentiation
from other similar regions, such as microcalcifications.
Additionally, ResNet50 reached a high accuracy in detecting
clips, particularly in those cases from Site A. However,
it consistently performed below U-Net, which may be
attributed to the deep network nature of ResNet50 and the
fact that the dataset was not sufficiently large to enable
fine-tuning of the model. It is notable that ResNet50 also
encounters greater difficulty in identifying clips from Site
B, which suggests that it is more challenging to predict
complex examples for the model. On the other hand, U-Net
demonstrated its capability to learn clip features mostly
from Site A and to identify with high-certainty clips within
Site B, therefore, reaching a strong level of generalization.
This shows that U-Net is capable of detecting clips in more
complex and diverse clinical contexts, so if other sites from
more diverse backgrounds were to be predicted by this
model, the chances of achieving strong performance would
be higher.

The same observations can be derived from Figure 5
regarding the segmentation results and in comparison with
the IP algorithm. At the region level, the U-Net achieves
DSC values between 0.8 and 1 for the majority of clips
in both sites. In addition, the broader distribution of the
IP algorithm in the image-level analysis suggests that its
segmentation performance is inconsistent, with significant
variability likely due to partial clip segmentations or errors
in differentiating clips from similar objects, which was seen
in Figure 3. Moreover, the distribution on the region level
demonstrates that clips are rarely fully segmented, with the
majority of instances exhibiting incomplete segmentation,
as evidenced by the highest peak of the distribution, which
has DSC values between 0.5 and 0.8. This may be attributed
to the intensity discrepancy within regions previously
discussed, which makes it challenging to determine an
optimal threshold. Overall, the results demonstrate that
the U-Net is effective under more realistic and challenging
scenarios that can be found in clinical settings. It accurately
detects and segments clips with a superior performance
compared to the ResNet50 and also the IP algorithm.

The study evaluated Transpara’s performance in breast
cancer detection on 1154 exams containing clips. Transpara
exhibited a false positive rate of approximately 3%, yet
identified anomalous regions with a high risk of breast
cancer in 13% of cases, regardless of the clips. It is
evident that the higher accuracy in detecting potential
cancers in situations where Transpara might have more
challenges outweighs the risk of marking 3% of the clips.
Additionally, the presence of 50% of exams with no overlap
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between clips and Transpara findings and the 35% of the
cases with no abnormalities detected further demonstrates
Transpara’s robust performance in scenarios where clips
are present. In the context of cancer detection, and given
that Transpara assists radiologists, this trade-off may be
considered acceptable. Regions that have been misclassified,
such as clips, can be reviewed by radiologists, meanwhile,
the system ensures that masses are not being overlooked.
Prioritizing the identification of potential malignancies over
the risk of FP is crucial in the diagnosis of breast cancer. To
further enhance Transpara’s performance, incorporating
the U-Net pipeline to detect the presence of clips and
compare the clip masks with Transpara’s finding masks
could reduce the FP rate. This improvement could enhance
the reliability of Transpara’s algorithm in distinguishing
true positives from false positives involving clips.

Moreover, it should be noted that the majority of images
from Site B were not used to evaluate the performance
of Transpara due to limitations in the intermediate steps.
Most of these images were DBT, an image format that
the in-house image generation tool was not able to process.
As a result, out of nearly 5000 images that were found
to contain clips within this site, only 500, which were
obtained from 2D mammograms, were available for the
analysis. Addressing this issue could potentially increase
the number of images processed, thereby providing a larger
dataset for the evaluation. Despite this, it is unlikely that
enlarging the dataset will alter the results of Transpara, as
the dataset used was already considered to have high quality
and variability, ensuring a reliable and robust evaluation.

Some limitations were encountered in this study. The
annotations for the tissue markers were not available,
requiring manual annotation to redefine the masks obtained
from the IP algorithm. This introduces user variability,
given that the annotations were not checked by a radiologist.
Future work could consider involving experts to ensure
consistent annotations. On the other hand, exploring
nnU-Net or other models such as transformers, could
potentially improve performance and robustness when
dealing with dual tasks, such as simultaneous segmentation
and classification. Lastly, this study only considered 2D
images, thus, incorporating 3D images could enhance
overall performance. Instead of working with synthetic
DBT images and digital mammography, the incorporation
of a third dimension could enhance the understanding of
how surgical clips are and maybe help in differentiate them
from microcalcifications, for instance.

In the context of a woman who has undergone biopsy
and treatment, information on whether a region with
a clip was previously diagnosed as malignant and has
now been diagnosed differently by an AI system in the
following examinations should be further researched. This
could provide information about post-treatment changes or
potential recurrence of malignancy, since radiologists may
have difficulty interpreting follow-up mammography due to

these changes [27]. In cases where treatment is successful,
the affected tissue should become benign and no detection
of malignancy should be reported. With the information on
surgical clips that was obtained in this study, it could be
valuable to study how different treatments vary the effects
on the surrounding tissue and see what treatments are more
effective in reducing malignancy. Therefore, longitudinal
studies in regions with clips can provide information to
radiologists to redefine treatment or personalize therapy.
However, to make this possible more information would
be needed, such as the pathology results from a biopsy.
Furthermore, an important area of future research is
investigating how cancer predictions are obtained under
regions containing surgical clips. This involves checking
whether these regions are being marked as malignant or
benign because of the presence of the clip. Explainable
AI techniques, such as saliency maps of the decision-
making process, can highlight the regions contributing
to the model’s prediction [28]. If the clips are significant
contributors to the malignant or benign outcome, it may
indicate that the clip is triggering the model’s decision and
affecting the predictions. Therefore, the incorporation of
surgical clip information into the radiologists’ report, and
the investigation of all these suggestions, could potentially
enhance the contribution to better clinical outcomes.

VI. Conclusion

The current study explores the impact of tissue markers
on the performance of AI systems in breast cancer detection
by introducing a deep learning algorithm that can not only
identify but also segment these tiny objects in mammogra-
phy. The study shows that these models are suitable for the
detection of tissue markers, achieving strong performance
in the segmentation of all clips within a 2D mammogram,
even in the presence of more complex and variable data.
Moreover, despite the presence of clips, the AI system
under evaluation is able to identify areas of concern
that may require further attention and exhibits a low
incidence of marking clips as potential abnormalities. Thus,
indicating that it is robust to tissue markers when assisting
radiologists in breast cancer detection. Nevertheless, the
study of tissue markers in breast cancer detection and
AI systems remains a challenge. If these systems were to
become fully autonomous, further improvements should
be examined to enhance their performance with surgical
clips. Future work should focus on exploring the impact
of tissue markers on the model’s decision-making process,
ensuring predictions are not influenced by these objects.
Such advancements could facilitate a deeper understanding
and management of AI in breast cancer detection.

References
[1] Hyuna Sung, Jacques Ferlay, Rebecca L Siegel, Mathieu

Laversanne, Isabelle Soerjomataram, Ahmedin Jemal, and
Freddie Bray. “Global cancer statistics 2020: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers

12



in 185 countries”. In: CA: a cancer journal for clinicians 71.3
(2021), pp. 209–249.
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Appendix A
A Foreign object masks

In order to obtain binary masks for foreign objects that differ from clips, a variety of approaches were employed, the
details of which will be elucidated in the following sections.

To obtain a binary mask for pacemakers or other structures such as implants, it is first necessary to check whether
there is a significant presence of bright pixels. This is achieved by computing the histogram to verify if at least 600 pixel
values have the highest intensity value. This value was selected on the assumption that these objects should have larger
areas. If this was the case, then the next step was to proceed with removing the object. Given that these objects have
high-intensity values, a binary threshold with a value of 230 was applied. Subsequently, a dilation was performed with a
kernel size of 11 × 11, followed by a closing operation with a kernel size of 9 × 9. The next step involved identifying the
largest contours within the image. The resulting contour was then used to create the final binary mask, which had the
same dimensions as the previous output image.

On the other hand, medium-sized foreign objects, such as wires, were removed after big foreign objects. The initial
step was to directly apply a top hat filter to the image. The subsequent step involved applying a dilation filter with a
kernel size of 7 × 7 for four iterations, followed by a closing filter with a kernel size of 9 × 9. A mean shift filter was
then applied with a spatial and range radius value of 15 and 30, respectively. This was followed by a binary threshold
filter with a value of 110, after which the largest contour in the image was obtained. The final step was to create a
binary mask of the resulting contour.

Note that, these were two consecutive steps, they were applied in the same order as previously described.

B Image Segmentation Results

TABLE A.1
Image-Level DSC Statistics

Dataset Model Mean ± std 25% 50% 75%

Site A U-NET 0.846 ± 0.121 0.841 0.873 0.905

IP 0.613 ± 0.226 0.495 0.667 0.783

Site B U-NET 0.684 ± 0.310 0.667 0.830 0.891

IP 0.434 ± 0.239 0.229 0.477 0.629

Dice Similarity Coefficient (DSC) statistics at the image levels for both sites with clips. The statistics represent the median and standard
deviation (std) and the 25%, 50% and 75% percentiles of the DSC distributions. Image processing algorithm (IP).

TABLE A.2
Region-Level DSC Statistics

Dataset Model Mean ± std 25% 50% 75%

Site A U-NET 0.830 ± 0.194 0.833 0.880 0.920

IP 0.567 ± 0.347 0.076 0.721 0.817

Site B U-NET 0.718 ± 0.333 0.760 0.875 0.914

IP 0.428 ± 0.320 0.000 0.558 0.693

Dice Similarity Coefficient (DSC) statistics at the region levels for both sites with clips. The statistics represent the median and standard
deviation (STD) and the 25%, 50% and 75% percentiles of the DSC distributions. Image processing algorithm (IP).
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