
UTRECHT UNIVERSITY

Department of Information and Computing Science

Applied Data Science master thesis

Scaling and Normalization of Embeddings: Evaluating the Impact of

Active Learning on ASReview Performance

First examiner:
Rens van de Schoot

Second examiner:
Duco Veen

Candidate:
Sjardi Djoy Willems

In cooperation with:
ASReview

July 1, 2024

Abstract

Active learning enhances efficiency in systematic reviews by optimizing the work saved over
random sampling (WSS) and identifying relevant papers. This study investigates the impact
of various preprocessing techniques on the performance of active learning models. Specif-
ically, it evaluates the effectiveness of TF-IDF, SBERT, and Doc2Vec embeddings combined
with different normalization and scaling methods, using Naive Bayes and logistic regression
classifiers.

The findings indicate that TF-IDF embeddings, particularly with L2 normalization and adding
the absolute minimum value paired with Naive Bayes, performed the best, achieving high re-
call and low average time to find relevant documents. The highest WSS of SBERT combina-
tions is achieved by combining z-score or Pareto normalization and absolute minimum scal-
ing with logistic regression, showed 3% lower WSS and required computational resources.
Doc2Vec, although less effective than SBERT, performed well with z-score or Pareto normal-
ization and CDF scaling without needing a GPU.

While TF-IDF remains a robust benchmark, SBERT and Doc2Vec offer promising alternatives
for improving systematic reviews, warranting further exploration with additional configura-
tions and fine-tuning. Further research should explore more combinations of feature extrac-
tors, classifiers, and normalization and scaling techniques.

Contents

1 Introduction 3

2 Method 5

2.1 Overview . 5

2.2 Data . 5

2.3 Data Preprocessing . 5

2.3.1 Scaling Methods . 5

2.3.2 Normalization Methods . 6

2.3.3 Feature Extraction Technique . 7

2.3.4 Classifier . 7

2.3.5 Performance Metrics . 8

2.3.6 Execution . 8

3 Results 9

4 Conclusion 11

4.1 Discussion . 11

5 Acknowledgement 13

5.1 Data scripts . 13

5.2 Generative A.I. 13

Bibliography 16

Appendix

A Metrics 17

A.1 SBERT . 17

A.2 Doc2Vec . 19

A.3 TF-IDF . 21

B Visualization 23

B.1 SBERT . 23

B.2 Doc2Vec . 24

B.3 TF-IDF . 25

2

1. Introduction

As citations double approximately every 12 years, researchers are more inclined to choose older
articles with more citations and visibility [1]. Researchers face growing challenges in identify-
ing the studies most relevant to their work. While this vast amount of information presents
new opportunities, Della Briotta Parolo et al. (2015) argue that a direct result of this growth is
the rapid decay of attention that can be devoted to individual papers. Consequently, less rele-
vant papers are often found, and the quality of research may diminish. Systematic reviews and
meta-analyses are essential for research findings, but the traditional manual review process is
labor-intensive and time-consuming.

In response to the problem of finding relevant papers in less time, Van De Schoot et al.
(2021) developed ASReview, a tool designed to conduct systematic reviews or meta-analyses
as efficiently and transparently as possible. ASReview addresses these challenges by using
active learning, a subset of machine learning, to streamline the review process. This innovative
approach not only saves time but also enhances the quality of the review by ensuring that the
most relevant studies are identified.

Active learning involves an iterative process where the researcher makes decisions about
the relevance of scientific articles. After each decision, the machine learning algorithm learns
and adapts, providing increasingly accurate results tailored to the researcher’s needs [2]. This
feedback loop enables the algorithm to achieve greater accuracy with fewer labeled training
data by selectively learning from the most informative examples [3]. This process stands in
contrast to traditional machine learning methods that require large, fully labeled datasets up-
front.

Active learning enhances the review process through several key components: the classifier,
feature extraction, balance strategy, and active learning query strategy. Central to this process
is feature extraction, which transforms raw article data into a set of features that the classifier
can understand and process. Common techniques include text vectorization methods like TF-
IDF (Term Frequency-Inverse Document Frequency) or word embeddings, which capture the
semantic meaning of the text [4]. Effective feature extraction is crucial, as it directly impacts the
classifier’s ability to categorize articles accurately [5].

Despite the effectiveness of active learning [6, 7, 8, 9], current methods such as TF-IDF and
Doc2Vec [10, 11] are fast, but may not capture the full semantic complexity of the text [12].
Additionally, these methods produce only positive embeddings, potentially limiting the clas-
sifier’s performance [13]. This research aims to explore alternative feature extraction methods,
including those that generate negative embeddings, and evaluate their impact on ASReview’s
performance. By addressing this gap, we seek to enhance the accuracy and efficiency of sys-
tematic reviews, making it easier for researchers to identify the most relevant studies.

After feature extraction, scaling and normalization methods are often applied to optimize
the data for classification [14, 15]. Scaling techniques like Z-score scaling, which standardizes
data to have a mean of zero and a standard deviation of one, are widely used in machine learn-
ing due to their effectiveness in handling features with different scales [16]. [17] for example
shows the effectivesness of z-score normalization on sequence classification tasks with SBERT,
as well as [18] shows promising result with z-score and Doc2Vec embeddings.

Other scaling techniques in this study are the L2 normalization [19] and Pareto scaling [20].

3

Introduction

Which adjust the range or distribution of the data, enhancing the classifier’s ability to process
features effectively. The normalization methods ensure all values are positive, which is partic-
ularly important for certain classifiers like Naïve Bayes [21]. These methods include Min-Max
normalization [22], normalization by adding the absolute value of the lowest number, Cumu-
lative Distribution Function (CDF) [23] normalization, and Sigmoid normalization [24]. Each
technique offers unique advantages in preparing data for machine learning algorithms, con-
tributing to the overall effectiveness of the classification process.

The classifier, a machine learning model, categorizes articles as relevant or irrelevant based
on the extracted features. The chosen classifiers each offers different advantages depending
on the dataset and research context [25]. For this study the best performing classifiers from
ASReview are picked, namely TF-IDF and Naive bayes. The balance strategy addresses im-
balanced datasets, where relevant articles are vastly outnumbered by irrelevant ones, using
techniques like oversampling, undersampling, or specialized loss functions [26]. The active
learning query strategy determines how the algorithm selects the most informative samples to
learn from using different sampling methods [27].

This experimental setup of 102 simulations focuses on transforming the outcomes of fea-
ture extractors with normalization and scaling techniques to enhance compatibility with naive
Bayes classifiers and evaluate their impact on active learning performance. By optimizing these
components and their interactions, ASReview aims to offer a more powerful and efficient tool
for conducting systematic reviews. The central question guiding this research is how feature
extraction methods, including those generating negative embeddings, and their subsequent
normalization and scaling impact the performance of active learning on ASReview’s accuracy
and efficiency.

This study investigates the comparison between advanced feature extraction methods like
transformers and traditional approaches such as TF-IDF and Doc2Vec in capturing semantic
complexities, while also considering their computational trade-offs. Additionally, it explores
the transformation of negative embeddings into positive ones through normalization and scal-
ing techniques, examining their effects on the overall performance of classifiers in active learn-
ing. Through these investigations, this research aims to reduce the workload on researchers
and ensure more comprehensive, high-quality reviews that advance scientific knowledge in an
era of rapidly expanding literature.

4

2. Method

2.1 Overview

This section describes the methods used to answer the research question on the effectiveness of
different feature extraction methods combined with normalization techniques and classifiers.
It covers the classifiers, feature extraction techniques, parameters, implementation details, and
evaluation metrics. The design construction is as follows: 1 dataset x 3 feature extraction tech-
niques x 4 normalization methods x 3 scaling methods x 2 classifiers + 3 FE x 4 normalization
methods x 2 classifiers + 3 FE x 2 classifiers = 102 simulations. ASReview offers a wide variety
of adjustable parameters. If any parameter (like balancing method and query strategy) is not
described here, the default values are used.

2.2 Data

The SYNERGY dataset is a free and open source dataset assembled to study selection processes
in systematic reviews [28]. Each dataset within SYNERGY are labeled, this means the accuracy
of the classifiers can be checked and makes them usable for systematic reviews. The dataset
used from SYNERGY is the van_de_schoot_2018 dataset that focuses on Post-Traumatic Stress
Disorder (PTSD). This dataset is compiled from four major databases: Pubmed, Embase, Psych-
Info, and Scopus [29]. The dataset contains 4544 useable rows. These 4544 rows contain: DOI,
OpenAlex ID, label, PubMed ID, and retrieval method. From the labeled data, 38 rows are
labeled as relevant.

2.3 Data Preprocessing

The data preprocessing approach employs a two-step process: scaling followed by normal-
ization. This sequence is crucial for handling embeddings that may contain negative values,
which can be problematic for certain classifiers like Naïve Bayes.

2.3.1 Scaling Methods

Scaling is applied first to adjust the range or distribution of the data. The following scaling
techniques are used:

1. Z-score Scaling: Also known as standardization or Pearson scaling, this well-known scal-
ing technique rescales the data so that the features have zero mean and unit variance [16].
The dataset is scaled by the standard deviation itself [20]. The scaled dataset retains its
original distance and order. It’s defined as:

z =
x − µ

σ
(2.1)

where z is the standardized value, x is the original value, µ is the mean of the dataset,
and σ is the standard deviation of the dataset.

5

Method

2. Pareto Scaling: Where the z-score is calculated by dividing by the standard deviation,
the Pareto score is calculated by dividing by the square root. The variance of the new
features is equal to the standard deviation of non-normalized features [16]. The scaled
dataset retains its original distance and order. It’s defined as:

x′ =
x − x̄√

σ
(2.2)

where x′ is the Pareto scaled value, x is the original value, x̄ is the mean of the variable,
and σ is the standard deviation of the variable.

3. L2 Normalization: Also known as vector or Euclidean normalization, L2 normalization
scales the data so that the sum of the squares of each element equals 1. This method
transforms each data point by dividing it by the L2 norm (or Euclidean norm) of the
vector. Unlike Z-score and Pareto scaling, L2 normalization does not retain the original
order or relative distances between data points. The direction of the vectors is maintained,
making it useful in embeddings [19]. It’s defined as:

x′i =
xi√
∑j x2

j

(2.3)

where x′i is the L2 normalized value and xi is the original value.

2.3.2 Normalization Methods

After scaling, normalization methods are applied specifically to ensure all values are positive,
which is necessary for certain classifiers like Naïve Bayes. The normalization methods used
are:

1. Min-Max Normalization: This method provides a linear transformation on the original
range of data [22]. It is typically scaled to the range [0,1]. The relative distance and order
are preserved in this method. It’s defined as:

x′ =
(

x − Xmin

Xmax − Xmin

)
× (new_maxX − new_minX) + new_minX (2.4)

where x′ is the normalized value, x is the original value, Xmin is the minimum value of
the feature, Xmax is the maximum value of the feature, new_maxX is the new maximum
value of the feature (1), and new_minX is the new minimum value of the feature (0).

2. Normalization by Adding Absolute Value of the Lowest Number: This method shifts
all values in the data by adding the absolute value of the minimum value in the data to
ensure all values are positive. This also keeps the same distance between numbers and
order as in the original dataset. It’s defined as:

6

2.3 Data Preprocessing

x′ = x + |Xmin| (2.5)

where x′ is the normalized value, x is the original value, and |Xmin| is the absolute value
of the minimum value of the feature.

3. CDF Normalization: This method applies the cumulative distribution function to trans-
form data values into a probability-based scale, typically in the range [0, 1]. The CDF for
a normal distribution is defined as:

FX(x) =
1
2

[
1 + erf

(
x − µ√

2σ

)]
(2.6)

where FX(x) is the CDF value, x is the original value, µ is the mean of the dataset, σ is the
standard deviation of the dataset, and erf is the error function.

4. Sigmoid Normalization: This method applies the sigmoid function to scale data values
into the range (0, 1) in a non-linear fashion. The sigmoid function is defined as:

σ(x) =
1

1 + e−x (2.7)

where σ(x) is the normalized value and x is the original value and e is the base of the
natural logarithm (approximately 2.71828).

In the experimental setup, one scaling method is applied followed by one normalization
method. This two-step process that scales the data, and ensures that all values are positive,
making it suitable for all classifiers in the study, including those sensitive to negative values.
All feature extraction methods were also used without any normalization or scaling and with
only a normalization method.

2.3.3 Feature Extraction Technique

This technique transforms the raw abstracts from the articles into a set of features that the
classifier can understand and process. The techniques for this study are Doc2Vec, SBERT as
implemented in ASReview and TF-IDF (Term Frequency-Inverse Document Frequency) as a
comparison benchmark.

2.3.4 Classifier

The classifier is a machine learning model that categorizes articles as relevant or irrelevant
based on the features extracted from them. For this study, the naïve Bayes algorithm is em-
ployed. Caklovic (2022) demonstrated its effectiveness for ASReview. However, it is not suit-
able for negative embeddings without adding some normalization method that makes the em-
beddings positive. Every combination that is done with naïve Bayes is also done with logistic
regression as a benchmark.

7

Method

Feature Extraction Scaling Technique Normalization Technique Classifier

Doc2Vec

SBERT
Z-score Min-Max
Pareto Sigmoid Naïve Bayes

L2 Norm. CDF Logistic Regression
Absolute Minimum Scaling

TF-IDF

Table 2.1: The feature extraction methods, scaling techniques, normalization techniques and classi-
fiers used.

2.3.5 Performance Metrics

Different performance metrics are used to evaluate the efficiency and effectiveness of the sim-
ulation processes, as described below:

Work Saved over Sampling (WSS): Work Saved over Sampling (WSS) measures the efficiency
gain of using active learning compared to random screening in record review processes. Specif-
ically, it quantifies the percentage decrease in the number of records that need to be screened
when employing active learning techniques. WSS is typically evaluated at a predetermined
level of recall for relevant records, such as WSS@95%. This means it shows how much screen-
ing effort can be reduced while still identifying 95% of the relevant records. In other words, it
demonstrates the labor savings achieved at the expense of missing 5% of the pertinent infor-
mation [30].

Other metrics: The Average Time to Discovery (ATD) indicates how many records need to be
screened on average to find all relevant records in the dataset. The recall is the amount of
relevant records that have been found at a certain point during the screening phase, also known
as Relevant References Found (RRF). For example, RFF10% indicates the number of relevant
records found after screening the first 10% of records.

Compute time: The time measured is from the moment the main batch file calls the ASReview
Makita template command until the jobs.bat is done. This is all measured automatically in the
main batch file. The GPU utilization is calculated per combination simulation ran.

2.3.6 Execution

All the code was executed on a High Performing Computer with an A10 Nvidia GPU, 96GB
RAM and a Intel Xeon Gold 6342. The code can be found here: https://github.com/sjardi/
ADS_Master_Thesis. It has a readme file with all the list of libraries and commands needed
to run the code. By firing the main bat file (e.g. doc2vec_main.bat) it iterates through all the
classifiers, feature extractors and normalization / scaling techniques.

8

https://github.com/sjardi/ADS_Master_Thesis
https://github.com/sjardi/ADS_Master_Thesis

3. Results

All metrics that are not further discussed here, can be found in appendix A.

TF-IDF Embeddings

For TF-IDF embeddings, the combination with the naïve bayes algorithm proved to be the
most efficient and highest performing. Specifically, the combination of naïve bayes, l2 normal-
ization and adding the absolute minimum achieved a recall at 0.1 threshold (recall_0.1) of 97.3,
a Work Saved over Sampling at 0.95 recall (WSS@95) of 90.4, Extra Relevant Records (erf_0.1)
of 86.5, and an Average Time to Discover (ATD) of 90. These techniques demonstrated the best
recall scores, highest work saved over sampling, and lowest average time duration, indicating
extremely efficient document retrieval. Though these are only very slightly better by 0.7% com-
pared to the baseline. The top three best performing all are normalized with l2 normalization.
The small difference of WSS and ATD will not probably not be noticeable for most use cases.

Combination wss 0.95 atd runtime GPU(%)
(baseline) logistic - TF-IDF 89.4 117 65.8 0.00
(baseline) naïve bayes - TF-IDF 89.7 91 53.8 0.00
naïve bayes - l2 norm. - absmin 90.4 90 163.8 0.15
logstic - l2 norm. - absmin 90.1 105 234.8 0.17
naïve bayes - l2 norm. - sigmoid 89.9 108 241.5 0.32

Note. The baseline and the three best performing combinations with the TF-IDF classifier.

SBERT Embeddings

For SBERT embeddings, the two top performing combination was logistic regression with z-
score normalization and logistic regression with absolute minimum scaling and pareto normal-
ization. Both configurations achieved a recall_0.1 of 94.6, a WSS@95 of 87.5 and 87.4, an erf_0.1
of 83.8, and an ATD of 150 and 140 respectively. This technique provided high recall and effi-
cient document retrieval, making it effective for use with SBERT embeddings. Yet the WSS is
3% lower than TF-IDF, the average time to detection is 60 documents higher while recall and
ERF are slightly lower.

Combination wss 0.95 atd runtime GPU(%)
logistic - SBERT 87.0 139 228.5 57
logistic - z-score - absmin 87.5 151 287.0 11
logistic - pareto - absmin 87.4 140 246.0 13
logistic - l2 norm. - minmax 87.1 127 219.0 15

Note. The baseline and the three best performing combinations with the SBERT classifier.

Doc2Vec Embeddings

For Doc2Vec embeddings, the top performing configurations were naïve bayes with pareto or
z-score and CDF. This configuration achieved a recall_0.1 of 94.6, a WSS@95 of 84.5, an erf_0.1
of 83.8, and an ATD of 220. Yet the baseline still did better with a runtime of 150 while the other

9

Results

metrics were the same. The findings suggest that optimizing the Doc2Vec configuration can
impact the recall and efficiency of regression models.

Combination wss 0.95 atd runtime GPU(%)
(baseline) Logistic - Doc2Vec 84.5 228 150.0 0.0
naïve bayes - pareto - cdf 84.5 181 220.0 0.1
Logistic - z-score - cdf 84.3 194 221.0 0.2
naïve bayes - l2 norm. - cdf 83.9 191 220.0 0.0

Note. The baseline and the three best performing combinations with the Doc2Vec classifier.

10

4. Conclusion

This study investigated the effects of various normalization and scaling techniques applied to
different document embeddings within the context of active learning for systematic reviews.
The primary objective was to identify preprocessing methods that enhance recall, reduce work-
load, and improve the overall efficiency of the active learning process.

The findings indicate that TF-IDF embeddings consistently achieved the highest efficiency.
Specifically, the combination of Naive Bayes with TF-IDF, l2 normalization and adding the
absolute minimum value configuration achieved a recall at 0.1 threshold (recall_0.1) of 0.973, a
normalized Work Saved over Sampling (WSS@95) of 0.904, an Extra Relevant Records (erf_0.1)
of 0.865, and an Average Time to Discover (ATD) of 90. These results demonstrate the high
performance of this combination in identifying relevant records quickly and accurately while
reducing the workload needed for screening documents.

SBERT embeddings also showed strong performance, particularly with the z-score normal-
ization combined with absolute minimum scaling and logistic regression. This configuration
achieved a recall_0.1 of 0.946, a WSS@95 of 0.875, an erf_0.1 of 0.838, and an ATD of 150.568.
However, this approach required more computational resources compared to TF-IDF, making
it less efficient overall despite its high recall potential.

For Doc2Vec embeddings, the top performing configurations were Naive Bayes with Pareto
or z-score and CDF. This setup achieved a recall_0.1 of 94.6, a WSS@95 of 84.5, an erf_0.1 of 83.8,
and an ATD of 220. Yet, the baseline still did better with a runtime of 150 while the other metrics
were the same.

Overall, while TF-IDF remains a robust and efficient benchmark for active learning in sys-
tematic reviews, Doc2Vec configurations show considerable potential, and SBERT provides
high-recall options despite higher computational costs. These findings are consistent with prior
research emphasizing the importance of efficient preprocessing methods in enhancing the per-
formance of machine learning models in text classification tasks. Yet when adding normaliza-
tion or scaling methods the runtime increases, sometimes to even 2 to 20 times the baseline
value.

Future research should explore additional normalization techniques and embedding types,
and consider the integration of more advanced machine learning algorithms to further enhance
the efficiency and accuracy of systematic reviews. Additionally, the trade-offs between com-
putational efficiency and recall performance should be further investigated to optimize model
configurations for practical applications in various domains.

4.1 Discussion

Despite the promising results, this study has several limitations. The evaluation was conducted
on a specific set of embeddings and normalization techniques, and there might be other combi-
nations that would work better. Additionally, the computational efficiency of the models was
assessed without any extensive algorithmic optimizations. Due to time constraints the code is
hardcoded. If Makita were to support pre- or post-processing methods like normalization and
scaling as a parameter, there can easily be added much more algorithms and combinations for
simulations.

11

Conclusion

Future research should explore a broader range of embeddings and preprocessing methods,
including more advanced machine learning algorithms and hybrid approaches that combine
multiple embeddings. Moreover, integrating domain-specific knowledge into the preprocess-
ing pipeline could further enhance model performance. For example, fine-tuning a transformer
with a dataset of papers in the research field could provide better contextual understanding and
improve outcomes [31, 32, 33].

The feature extraction, scaling, and normalization techniques utilized in this study are op-
timized for GPU acceleration, significantly enhancing computational efficiency. However, the
classifiers themselves (except SBERT) do not leverage GPU capabilities, resulting in a bottle-
neck in processing speed. To address this, leveraging a GPU-enabled library such as NVIDIA’s
RAPIDS cuML library [34, 35] could allow for GPU acceleration of classifiers like logistic re-
gression and naïve Bayes, thereby improving overall performance.

The computing power is high on SBERT, but still no more than 22% utilization for non
default combinations. Yet, the hardware costs come close to 10.000 euro. This is not something
that every researcher has to its disposal. But using ASReview as a SaaS solution can be a
solution.

In conclusion, this study provides insights into the optimization of document embeddings
for active learning in systematic reviews. The results demonstrate the effects of selecting ap-
propriate preprocessing techniques to balance recall, workload, and computational efficiency,
paving the way for more effective and efficient systematic review processes.

12

5. Acknowledgement

With the help of Makita it became much easier to create and execute multiple simulation.
Thanks for Jelle Teijema for providing insights and feedback on this process.

5.1 Data scripts

All code can be found on: - ASReview: https://github.com/asreview - Makita: https://github.com/asreview/asreview-
makita - Data: https://github.com/asreview/synergy-dataset - Code used in this paper: https://github.com/sjardi/master_-
thesis_ADS

5.2 Generative A.I.

Most of the code and scripts are created with help of ChatGPT or Claude AI. Parts of the text
in this paper are checked and improved by the LLM’s.

13

Bibliography

[1] Pietro Della Briotta Parolo et al. “Attention decay in science”. In: Journal of Informetrics
9.4 (Oct. 2015), pp. 734–745. ISSN: 1751-1577. DOI: 10.1016/j.joi.2015.07.006. URL:
http://dx.doi.org/10.1016/j.joi.2015.07.006.

[2] Ruoyu Wang. “Active Learning-Based Optimization of Scientific Experimental De-
sign”. In: 2021 2nd International Conference on Artificial Intelligence and Computer En-
gineering (ICAICE). IEEE, Nov. 2021. DOI: 10.1109/icaice54393.2021.00060. URL:
http://dx.doi.org/10.1109/ICAICE54393.2021.00060.

[3] Jingyu Shao, Qing Wang, and Fangbing Liu. “Learning to Sample: an Active Learning
Framework”. In: CoRR abs/1909.03585 (2019). arXiv: 1909.03585. URL: http://arxiv.
org/abs/1909.03585.

[4] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
Information Retrieval. July 2008.

[5] R. Kavitha and E. Kannan. “An efficient framework for heart disease classification us-
ing feature extraction and feature selection technique in data mining”. In: 2016 Inter-
national Conference on Emerging Trends in Engineering, Technology and Science (ICETETS).
2016, pp. 1–5. DOI: 10.1109/ICETETS.2016.7603000.

[6] Amirhossein Saeidmehr, Piers David Gareth Steel, and Faramarz F. Samavati. “Sys-
tematic review using a spiral approach with machine learning”. In: Systematic reviews
13.1 (Jan. 2024). DOI: 10.1186/s13643-023-02421-z. URL: https://doi.org/10.1186/
s13643-023-02421-z.

[7] Kevin E. K. Chai et al. “Research Screener: a machine learning tool to semi-automate
abstract screening for systematic reviews”. In: Systematic reviews 10.1 (Apr. 2021). DOI:
10.1186/s13643-021-01635-3. URL: https://doi.org/10.1186/s13643-021-01635-
3.

[8] Brian E. Howard et al. “SWIFT-Active Screener: Accelerated document screening through
active learning and integrated recall estimation”. In: Environment international 138 (May
2020), p. 105623. DOI: 10.1016/j.envint.2020.105623. URL: https://www.sciencedi
rect.com/science/article/pii/S0160412019314023.

[9] Eduardo Mosqueira-Rey et al. “Human-in-the-loop machine learning: a state of the
art”. In: Artificial intelligence review 56.4 (Aug. 2022), pp. 3005–3054. DOI: 10.1007/
s10462-022-10246-w. URL: https://doi.org/10.1007/s10462-022-10246-w.

[10] Quoc V. Le and Tomas Mikolov. “Distributed Representations of Sentences and Doc-
uments”. In: arXiv (Cornell University) (Jan. 2014). DOI: 10.48550/arxiv.1405.4053.
URL: https://arxiv.org/abs/1405.4053.

[11] Radim Řehůřek and Petr Sojka. “Software Framework for Topic Modelling with Large
Corpora”. English. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks. Valletta, Malta: ELRA, May 2010, pp. 45–50.

[12] Kowsari et al. “Text Classification Algorithms: A Survey”. In: Information 10.4 (Apr.
2019), p. 150. ISSN: 2078-2489. DOI: 10.3390/info10040150. URL: http://dx.doi.org/
10.3390/info10040150.

[13] Tomas Mikolov et al. Efficient Estimation of Word Representations in Vector Space. 2013.
DOI: 10.48550/ARXIV.1301.3781. URL: https://arxiv.org/abs/1301.3781.

[14] Kelsy Cabello-Solorzano et al. The Impact of Data Normalization on the Accuracy of Ma-
chine Learning Algorithms: A Comparative Analysis. Jan. 2023, pp. 344–353. DOI: 10.1007/

14

https://doi.org/10.1016/j.joi.2015.07.006
http://dx.doi.org/10.1016/j.joi.2015.07.006
https://doi.org/10.1109/icaice54393.2021.00060
http://dx.doi.org/10.1109/ICAICE54393.2021.00060
https://arxiv.org/abs/1909.03585
http://arxiv.org/abs/1909.03585
http://arxiv.org/abs/1909.03585
https://doi.org/10.1109/ICETETS.2016.7603000
https://doi.org/10.1186/s13643-023-02421-z
https://doi.org/10.1186/s13643-023-02421-z
https://doi.org/10.1186/s13643-023-02421-z
https://doi.org/10.1186/s13643-021-01635-3
https://doi.org/10.1186/s13643-021-01635-3
https://doi.org/10.1186/s13643-021-01635-3
https://doi.org/10.1016/j.envint.2020.105623
https://www.sciencedirect.com/science/article/pii/S0160412019314023
https://www.sciencedirect.com/science/article/pii/S0160412019314023
https://doi.org/10.1007/s10462-022-10246-w
https://doi.org/10.1007/s10462-022-10246-w
https://doi.org/10.1007/s10462-022-10246-w
https://doi.org/10.48550/arxiv.1405.4053
https://arxiv.org/abs/1405.4053
https://doi.org/10.3390/info10040150
http://dx.doi.org/10.3390/info10040150
http://dx.doi.org/10.3390/info10040150
https://doi.org/10.48550/ARXIV.1301.3781
https://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-3-031-42536-3\{_}33
https://doi.org/10.1007/978-3-031-42536-3\{_}33

Bibliography

978-3-031-42536-3\{_}33. URL: https://doi.org/10.1007/978-3-031-42536-
3_33.

[15] Lihao Ge and Teng-Sheng Moh. “Improving text classification with word embedding”.
In: 2017 IEEE International Conference on Big Data (Big Data). 2017, pp. 1796–1805. DOI:
10.1109/BigData.2017.8258123.

[16] Dalwinder Singh and Birmohan Singh. “Investigating the impact of data normalization
on classification performance”. In: Applied soft computing 97 (Dec. 2020), p. 105524. DOI:
10.1016/j.asoc.2019.105524. URL: https://doi.org/10.1016/j.asoc.2019.
105524.

[17] Hassan Sajjad et al. “Effect of Post-processing on Contextualized Word Representa-
tions”. In: arXiv (Cornell University) (Jan. 2021). DOI: 10.48550/arxiv.2104.07456.
URL: https://arxiv.org/abs/2104.07456.

[18] Tomasz Walkowiak and Mateusz Gniewkowski. “Evaluation of vector embedding mod-
els in clustering of text documents”. In: Proceedings of the International Conference on
Recent Advances in Natural Language Processing (RANLP 2019). Ed. by Ruslan Mitkov
and Galia Angelova. Varna, Bulgaria: INCOMA Ltd., Sept. 2019, pp. 1304–1311. DOI:
10.26615/978-954-452-056-4_149. URL: https://aclanthology.org/R19-1149.

[19] Jarrod Haas, William Yolland, and Bernhard Rabus. “Exploring Simple, High Quality
Out-of-Distribution Detection with L2 Normalization”. In: arXiv (Cornell University)
(Jan. 2023). DOI: 10.48550/arxiv.2306.04072. URL: https://arxiv.org/abs/2306.
04072.

[20] Robert A Van Den Berg et al. “Centering, scaling, and transformations: improving
the biological information content of metabolomics data”. In: BMC genomics 7.1 (June
2006). DOI: 10.1186/1471-2164-7-142. URL: https://doi.org/10.1186/1471-2164-
7-142.

[21] Ana Caklovic. Out with the Old and in with the New? - A Comparison of Classical vs. State-
of-the-Art Feature Extractors in the Context of Systematic Reviews. 2022. URL: https://
studenttheses.uu.nl/handle/20.500.12932/42409.

[22] S. Gopal Krishna Patro and Kishore Kumar Sahu. “Normalization: a preprocessing
stage”. In: arXiv (Cornell University) (Jan. 2015). DOI: 10.48550/arxiv.1503.06462.
URL: https://arxiv.org/abs/1503.06462.

[23] Lingzi Zhang et al. Are ID Embeddings Necessary? Whitening Pre-trained Text Embeddings
for Effective Sequential Recommendation. 2024. arXiv: 2402.10602 [cs.IR]. URL: https:
//arxiv.org/abs/2402.10602.

[24] Xiaoyan Zhuo, Jialing Zhang, and Seung Woo Son. “Network intrusion detection using
word embeddings”. In: 2017 IEEE International Conference on Big Data (Big Data). 2017,
pp. 4686–4695. DOI: 10.1109/BigData.2017.8258516.

[25] Liang Yao, Chengsheng Mao, and Yuan Luo. “Graph Convolutional Networks for Text
Classification”. In: Proceedings of the AAAI Conference on Artificial Intelligence 33.01 (July
2019), pp. 7370–7377. ISSN: 2159-5399. DOI: 10.1609/aaai.v33i01.33017370. URL:
http://dx.doi.org/10.1609/aaai.v33i01.33017370.

[26] Rie Johnson and Tong Zhang. “Effective Use of Word Order for Text Categorization
with Convolutional Neural Networks”. In: arXiv (Cornell University) (Jan. 2014). DOI:
10.48550/arxiv.1412.1058. URL: https://arxiv.org/abs/1412.1058.

[27] Punit Kumar and Atul Gupta. “Active Learning Query Strategies for Classification,
Regression, and Clustering: A Survey”. In: Journal of Computer Science and Technology
35.4 (July 2020), pp. 913–945. ISSN: 1860-4749. DOI: 10.1007/s11390-020-9487-4. URL:
http://dx.doi.org/10.1007/s11390-020-9487-4.

[28] Jonathan De Bruin et al. SYNERGY - Open machine learning dataset on study selection in
systematic reviews. Version V1. 2023. DOI: 10.34894/HE6NAQ. URL: https://doi.org/
10.34894/HE6NAQ.

15

https://doi.org/10.1007/978-3-031-42536-3\{_}33
https://doi.org/10.1007/978-3-031-42536-3\{_}33
https://doi.org/10.1007/978-3-031-42536-3_33
https://doi.org/10.1007/978-3-031-42536-3_33
https://doi.org/10.1109/BigData.2017.8258123
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.1016/j.asoc.2019.105524
https://doi.org/10.48550/arxiv.2104.07456
https://arxiv.org/abs/2104.07456
https://doi.org/10.26615/978-954-452-056-4_149
https://aclanthology.org/R19-1149
https://doi.org/10.48550/arxiv.2306.04072
https://arxiv.org/abs/2306.04072
https://arxiv.org/abs/2306.04072
https://doi.org/10.1186/1471-2164-7-142
https://doi.org/10.1186/1471-2164-7-142
https://doi.org/10.1186/1471-2164-7-142
https://studenttheses.uu.nl/handle/20.500.12932/42409
https://studenttheses.uu.nl/handle/20.500.12932/42409
https://doi.org/10.48550/arxiv.1503.06462
https://arxiv.org/abs/1503.06462
https://arxiv.org/abs/2402.10602
https://arxiv.org/abs/2402.10602
https://arxiv.org/abs/2402.10602
https://doi.org/10.1109/BigData.2017.8258516
https://doi.org/10.1609/aaai.v33i01.33017370
http://dx.doi.org/10.1609/aaai.v33i01.33017370
https://doi.org/10.48550/arxiv.1412.1058
https://arxiv.org/abs/1412.1058
https://doi.org/10.1007/s11390-020-9487-4
http://dx.doi.org/10.1007/s11390-020-9487-4
https://doi.org/10.34894/HE6NAQ
https://doi.org/10.34894/HE6NAQ
https://doi.org/10.34894/HE6NAQ

Bibliography

[29] Rens Van De Schoot et al. “Bayesian PTSD-Trajectory Analysis with Informed Priors
Based on a Systematic Literature Search and Expert Elicitation”. In: Multivariate behav-
ioral research 53.2 (Jan. 2018), pp. 267–291. DOI: 10.1080/00273171.2017.1412293. URL:
https://doi.org/10.1080/00273171.2017.1412293.

[30] Rens van de Schoot et al. “An open source machine learning framework for efficient
and transparent systematic reviews”. In: Nature Machine Intelligence 3.2 (Feb. 2021),
pp. 125–133. ISSN: 2522-5839. DOI: 10.1038/s42256- 020- 00287- 7. URL: http://
dx.doi.org/10.1038/s42256-020-00287-7.

[31] Cristiano Mesquita Garcia et al. “Improving Sampling Methods for Fine-tuning Sen-
tenceBERT in Text Streams”. In: arXiv (Cornell University) (Mar. 2024). DOI: 10.48550/
arxiv.2403.15455. URL: https://arxiv.org/abs/2403.15455.

[32] Juri Grosjean and Jannis Vamvas. Fine-tuning the SwissBERT Encoder Model for Embed-
ding Sentences and Documents. May 2024. URL: https://arxiv.org/abs/2405.07513.

[33] Bin Wang and C.-c. Jay Kuo. “SBERT-WK: A Sentence Embedding Method by Dissect-
ing BERT-Based Word Models”. In: IEEE/ACM transactions on audio, speech, and language
processing 28 (Jan. 2020), pp. 2146–2157. DOI: 10.1109/taslp.2020.3008390. URL:
https://doi.org/10.1109/taslp.2020.3008390.

[34] Sebastian Raschka, Joshua Patterson, and Corey Nolet. “Machine Learning in Python:
Main Developments and Technology Trends in Data Science, Machine Learning, and
Artificial Intelligence”. In: Information 11.4 (Apr. 2020), p. 193. DOI: 10.3390/info1104
0193. URL: https://doi.org/10.3390/info11040193.

[35] RAPIDS Development Team. RAPIDS: Libraries for End to End GPU Data Science. 2023.
URL: https://rapids.ai.

Appendices

16

https://doi.org/10.1080/00273171.2017.1412293
https://doi.org/10.1080/00273171.2017.1412293
https://doi.org/10.1038/s42256-020-00287-7
http://dx.doi.org/10.1038/s42256-020-00287-7
http://dx.doi.org/10.1038/s42256-020-00287-7
https://doi.org/10.48550/arxiv.2403.15455
https://doi.org/10.48550/arxiv.2403.15455
https://arxiv.org/abs/2403.15455
https://arxiv.org/abs/2405.07513
https://doi.org/10.1109/taslp.2020.3008390
https://doi.org/10.1109/taslp.2020.3008390
https://doi.org/10.3390/info11040193
https://doi.org/10.3390/info11040193
https://doi.org/10.3390/info11040193
https://rapids.ai

A. Metrics

This chapter shows all the metrics gained from running the code. It is color coded per column:
best score, second best, lowest score, second lowest.

A.1 SBERT

Combination recall 0.1 wss 0.95 erf 0.1 atd runtime GPU(%)
logistic - SBERT 97.3 87 86.5 139 228.5 57
logistic - z-score - absmin 94.6 87.5 83.8 151 287 11
logistic - pareto - absmin 94.6 87.4 83.8 140 246 13
logistic - l2 normalize - minmax 94.6 87.1 83.8 127 219 15
logistic - pareto - minmax 94.6 87.1 83.8 127 223 15
logistic - z-score - minmax 94.6 87.1 83.8 127 212 7
naïve bayes - z-score - absmin 94.6 86.4 83.8 136 184 18
logistic - sigmoid 94.6 85.4 83.8 155 258 13
logistic - pareto - cdf 94.6 85.4 83.8 152 249 13
logistic - z-score - cdf 94.6 85.4 83.8 153 250 13
logistic - cdf 94.6 85.4 83.8 152 254 13
logistic - l2 normalize - cdf 94.6 85.4 83.8 153 255 13
logistic - pareto - sigmoid 97.3 86.0 86.5 116 209 16
logistic - l2 normalize - sigmoid 94.6 85.9 83.8 171 202 16
logistic - l2 normalize - absmin 94.6 84.9 83.8 154 198 17
logistic - z-score - sigmoid 94.6 84.9 83.8 145 230 14
naïve bayes - pareto - absmin 94.6 84.9 83.8 138 186 18
NB - l2 normalize - minmax 94.6 84.8 83.8 131 182 18
naïve bayes - pareto - minmax 94.6 84.8 83.8 131 181 18
naïve bayes - z-score - minmax 94.6 84.8 83.8 131 182 18
naïve bayes - pareto - sigmoid 94.6 84.7 83.8 136 189 18
NB - l2 normalize - sigmoid 94.6 84.0 83.8 145 181 18
naïve bayes - sigmoid 94.6 84.1 83.8 143 188 18
logistic - absmin 94.6 84.1 83.8 127 211 16
naïve bayes - absmin 94.6 84.3 83.8 127 151 22
naïve bayes - z-score - sigmoid 94.6 83.9 83.8 148 187 18
naïve bayes - cdf 91.9 82.4 81.1 153 174 19
naïve bayes - l2 normalize - cdf 91.9 82.4 81.1 153 176 19
naïve bayes - pareto - cdf 91.9 82.4 81.1 153 174 19
naïve bayes - z-score - cdf 91.9 82.4 81.1 153 172 19

17

Metrics

Figure A.1: All SBERT - combinations Recall Plot

[H] Note. This table summarizes the performance metrics for logistic and naïve Bayes (NB)
regression models using different SBERT configurations.

18

A.2 Doc2Vec

Figure A.2: The blue line is when the GPU was running and for how much percentage the GPU is
being utilized. It is visible that both SBERT and its normalization and scaling techniques are using
a lot of GPU power. The only downtime is from using the classifiers.

A.2 Doc2Vec

Combination recall 0.1 wss 0.95 erf 0.1 atd runtime GPU(%)
(baseline) Logistic - Doc2Vec .946 .845 .838 228 150 0.0
NB - pareto - cdf .946 .845 .838 181 220 0.1
Logistic - z-score - cdf .946 .843 .838 194 221 0.2
NB - l2 norm - cdf .946 .839 .838 191 220 0.0
NB - pareto - sigmoid .946 .838 .838 197 225 0.0
NB - z-score - cdf .946 .838 .838 198 220 0.0
Logistic - l2 norm - cdf .946 .837 .838 197 222 0.0
Logistic - z-score - absmin .919 .830 .811 210 218 0.1
NB - l2 norm - absmin .919 .830 .811 221 223 0.1
Logistic - pareto - sigmoid .919 .830 .811 202 226 0.0
NB - z-score - sigmoid .919 .825 .811 203 223 0.0
Logistic - pareto - minmax .919 .825 .811 224 211 0.2
Logistic - pareto - cdf .919 .823 .811 219 225 0.1
Logistic - l2 norm - absmin .892 .823 .784 245 365 0.0
Logistic - pareto - absmin .919 .821 .811 210 221 0.1
NB - z-score - absmin .892 .821 .784 240 223 0.0
NB - pareto - absmin .892 .818 .784 247 225 0.1
NB - pareto - minmax .892 .818 .784 239 221 0.0
Logistic - z-score - sigmoid .919 .817 .811 215 224 0.0
NB - z-score - minmax .919 .807 .811 245 330 0.0

19

Metrics

Combination recall 0.1 wss 0.95 erf 0.1 atd runtime GPU Util. (%)
NB - l2 norm - sigmoid .892 .805 .784 240 222 0.0
Logistic - z-score - minmax .892 .799 .784 234 182 0.2
Logistic - l2 norm - sigmoid .649 .786 .541 178 985 0.0

Note. The average GPU utilization is calculated per combination. If the utilization is below
0.01% it will show up as zero. All methods do use GPU enabled functions, but by far the most
time is spent by the classifiers.

Figure A.3: GPU utilization of Doc2Vec

The small spikes indicate a very short burst of (low) GPU utilization. This indicates it is
not optimized for using a GPU. This hinders performance and might not speed up the process
much. The outcome metrics should be the same.

20

A.3 TF-IDF

Figure A.4: All Doc2Vec combinations Recall Plot

A.3 TF-IDF

Combination recall 0.1 wss 0.95 erf 0.1 atd runtime GPU(%)
(baseline) logstic - TF-IDF 0.973 0.894 0.865 117 65.8 0.00
(baseline) naïve bayes - TF-IDF 0.973 0.897 0.865 91 53.8 0.00
naïve bayes - l2 normalize - absmin 0.973 0.904 0.865 90 163.8 0.15
logstic - l2 normalize - absmin 0.973 0.901 0.865 105 234.8 0.17
NB - l2 normalize - sigmoid 0.973 0.899 0.865 108 241.5 0.32
logstic - sigmoid 0.973 0.899 0.865 109 732.0 0.04
naïve bayes - sigmoid 0.973 0.899 0.865 101 86.2 0.35
NB - l2 normalize - minmax 0.973 0.897 0.865 91 148.2 0.22
naïve bayes - absmin 0.973 0.897 0.865 91 147.0 0.19
naïve bayes - pareto - minmax 0.973 0.897 0.865 91 148.5 0.61
naïve bayes - z-score - minmax 0.973 0.897 0.865 91 148.5 0.61
logstic - l2 normalize - minmax 0.973 0.894 0.865 117 251.0 0.35
logstic - pareto - minmax 0.973 0.894 0.865 117 265.1 0.02
logstic - z-score - minmax 0.973 0.894 0.865 117 260.7 0.40
logstic - absmin 0.973 0.894 0.865 117 277.8 0.12
naïve bayes - pareto - sigmoid 0.973 0.890 0.865 85 79.9 1.37
logstic - l2 normalize - sigmoid 0.973 0.876 0.865 132 518.5 0.16
naïve bayes - cdf 0.973 0.867 0.865 115 89.1 0.82
naïve bayes - l2 normalize - cdf 0.973 0.867 0.865 115 79.4 1.26

21

Metrics

Combination recall 0.1 wss 0.95 erf 0.1 atd runtime GPU Util. (%)
naïve bayes - pareto - cdf 0.973 0.867 0.865 115 80.0 1.34
naïve bayes - z-score - cdf 0.973 0.867 0.865 115 80.5 1.54
logstic - cdf 0.946 0.844 0.838 133 1500.1 0.08
logstic - pareto - cdf 0.946 0.844 0.838 134 1271.1 0.13
logstic - z-score - cdf 0.946 0.844 0.838 135 1316.2 0.08
logstic - l2 normalize - cdf 0.946 0.844 0.838 138 1508.8 0.07
logstic - pareto - absmin 0.946 0.835 0.838 266 837.3 0.13
logstic - z-score - absmin 0.811 0.721 0.703 416 1090.3 0.12
naïve bayes - z-score - absmin 0.270 0.012 0.162 1622 1587.7 0.04

Note. The lowest score is an outlier, that’s why two different values are selected as lowest
value per column.

Figure A.5: All TF-IDF runtime and GPU utilization. There are big outliers, these combinations do
not seem to go well together. Generally this also means lower WSS and even recall as seen in the
table.

22

B. Visualization

This chapter shows all graphs that help to visualize the transformations of the feature embed-
dings.

B.1 SBERT

Figure B.1: Default SBERT.

Figure B.2: SBERT with Min-Max Normalization.

23

Visualization

Figure B.3: SBERT shows less shape distortion than Doc2Vec.

B.2 Doc2Vec

Figure B.4: Default Doc2Vec, no transformation.

Figure B.5: Doc2Vec with Min-Max scaling. Note the x-axis. Where it first was between -7.5 and
10 is now 0 to 1 while the shape remained largely the same. Already a change in the PCA graph is
visible.

24

B.3 TF-IDF

Figure B.6: A much rounder shape and much more equally distributed. The documents are also
way more equally distributed in the PCA graph.

B.3 TF-IDF

Figure B.7: Default TF-IDF embeddings. The high peak at zero shows the sparsity of TF-IDF em-
beddings.

Figure B.8: Min-Max should change almost nothing for the already positive embeddings. And that
is shown here.

25

Visualization

Figure B.9: Showing the "S" shape that logistic regression and sigmoid functions are known for.
The PCA graph shows the embeddings are much more equally spread now.

26

	Introduction
	Method
	Overview
	Data
	Data Preprocessing
	Scaling Methods
	Normalization Methods
	Feature Extraction Technique
	Classifier
	Performance Metrics
	Execution

	Results
	Conclusion
	Discussion

	Acknowledgement
	Data scripts
	Generative A.I.

	Bibliography
	Metrics
	SBERT
	Doc2Vec
	TF-IDF

	Visualization
	SBERT
	Doc2Vec
	TF-IDF

