
UTRECHT UNIVERSITY

Faculty of Science

M.Sc. Artificial Intelligence thesis

Toward Computationally Efficient Real-World Raw

Image Denoising with Knowledge Distillation

Supervisor:

J. Zhang

First examiner:

R.W. Poppe

Second examiner:

I. Önal Erugrul

Candidate:

S.C.M. Rutten

Student number:

6616089

In cooperation with:

Bosch Security Systems BV

June 28, 2024

Abstract

Deep-learning based denoising models are used to replace traditional de-

noising methods because of their better generalization ability and accu-

racy. Generating realistic pair wise data is important for the accuracy of

these deep denoising models on real-world noisy sceneries. Most deep de-

noising works are focussed on the accuracy of the model, not taking the

efficiency into account. Transformer models are the state-of-the-art per-

forming denoising models. These transformer models are computationally

too heavy for real-time denoising. Knowledge distillation can be used for

compressing these models without losing much of the accuracy perfor-

mance. We show that training deep denoising models on real-world noise

model image pairs results in a good performance on the generated test set,

and on real sensor noise image. Further, we show that the teacher-student

architecture with knowledge distillation improves the accuracy of the stu-

dent network. These student models gain a lot of efficiency without losing

much of the teacher model accuracy, creating a better efficiency-accuracy

trade-off for real-world image denoising.

Keywords - Denoising, Computer vision, Deep learning, Vision transform-

ers, Knowledge distillation, real-world noise generation.

Contents

1 Introduction 4

1.1 Motivation and Context . 5

1.2 Research Goal . 6

1.3 Outline . 8

2 Related Work 10

2.1 Traditional Denoising . 10

2.2 Deep Learning for Image Denoising 11

2.3 Knowledge Distillation . 20

3 Method 27

3.1 Overview . 27

3.2 ISP Blocks . 30

3.3 Raw Image Denoising Dataset 34

3.4 Teacher Model for Raw Denoising 43

3.5 Distilling Knowledge to the Student 50

4 Experiments and Results 52

4.1 Dataset Selection . 52

4.2 Teacher Network Optimization 59

4.3 Student Network Learning via Knowledge Distillation 61

5 Conclusion 64

5.1 Discussion and Future Work . 66

Bibliography 77

A Data Selection Results 78

A.1 Separate Datasets Single Frame 78

A.2 Separate Datasets Averaged . 79

B Grid Artifact Abblation 80

2

CONTENTS CONTENTS

C Teacher Ablation Qualitative Results for Restormer-based Models 81

D Teacher Comparison Qualitative Results 90

E Student Ablation Qualitative Results using Knowledge Distillation 94

3

1. Introduction

Image denoising is part of the traditional image signal processing pipeline

(ISP) [1] and refers to the process of reducing or removing noise from a sig-

nal or image, resulting in a cleaner and more visually appealing output.

It is one of the oldest and most studied problems in image processing. De-

noising helps high-level vision tasks, like image classification, improve their

performance [2]. Despite the amount of research and well-performing tra-

ditional denoising algorithms, the challenge of preventing over-smoothing

and blurring on real noise images remains [3]. These challenges paved the

way for deep learning methods to be introduced to denoising. Deep de-

noising models can adapt more easily to the variable noise distribution.

Transformers are state-of-the-art denoising models. The well-performing

transformers are computationally heavy, making it impossible for real-time

image denoising on embedded devices. That is why we aim to compress

a transformer network. We try to reduce the accuracy gap between a big

transformer and a small transformer by applying knowledge distillation.

For training such a model, a big dataset with realistic noise image pairs

is required. To generate the dataset, we propose a pipeline to unify publicly

available data sets. The public data sets contain various light conditions.

To extend the dataset, we will use an unprocessing pipeline from [4] which

enables us to convert sRGB images back to raw. Denoising low-light images

is considered more challenging than good-light images because they have a

higher level of noise. A realistic noise model is used to create the pair-wise

data for the big dataset [5]. We make a selection of the datasets by training

a deep denoising model on each separate dataset and test the performance.

The selected dataset is then used to train the models and test the models.

The remainder of the chapter will provide an introduction to the study

by first discussing the motivation and context, followed by the research goal

along with the research questions, and lastly, the outline for the rest of the

4

1.1 Motivation and Context

paper.

1.1 Motivation and Context

The traditional ISP needs heavy tuning to process raw images into good,

clean sRGB images. State-of-the-art traditional denoising methods tend to

struggle with over-smoothing and blurred results, especially on real noise

images [6]–[9]. The better performing traditional methods are computa-

tionally inefficient [6], [8], [10]. Replacing the traditional image processing

blocks with a convolutional neural network (CNN) model has shown very

promising results [11]. CNNs have shown to be better at adapting to vari-

able distributed noise. The CNNs are integrated into the new surveillance

cameras with system-on-chips (SOCs). These embedded neural network en-

gines are becoming more powerful, enabling the use of deep learning meth-

ods for performing image processing tasks.

Deep neural networks tend to perform better on raw images than on

sRGB images because they contain more information and have not under-

gone any compression or processing based on the noise [12]. Therefore, the

deep learning focus tasks for our research are raw denoising and demosaic-

ing. The denoising and demosaicing tasks are combined into one model

to make it computationally more efficient [12]. A lot of well-performing

deep denoising models are computationally too expensive for real-time de-

noising on embedded devices. Most denoising research focuses more on

model accuracy than the balance between efficiency and accuracy [13], [14].

Finding the right balance between efficiency and accuracy is a hard chal-

lenge. The focus of our research is exploring computationally efficient deep

denoising models for raw denoising and demosaicing. Knowledge distilla-

tion is a proven method for compressing deep learning models and keeping

most of the accuracy [14], [15].

Deep learning models need large amounts of training data to reach suffi-

cient performance. The training data needs to cover various conditions and

environments to let the model learn how to operate in various scenarios.

Capturing raw real noise image pairs requires editing the exposure time and

5

Introduction

calibrating the camera while capturing image pairs. Changing the exposure

time during the image capturing causes a slight time difference between

the image pair, resulting in motion blur by the camera shaking or subject

motion. Aligning these images is a hard and time-consuming challenge.

Therefore, most image pairs are generated by adding synthetic noise

with a constant distribution to solve the challenges of capturing real image

pairs. White Gaussian noise is the most commonly used type of synthetic

noise [16]–[23]. However, real noise does not exhibit this constant distri-

bution, instead it possesses a spatial correlation. The difference between

the noise distributions result in deep denoising models not being effective

in real-world applications [12]. To improve the real noise performance, a

physics-based realistic noise model can be applied to clean images to gener-

ate realistic image pairs [5].

Using the more realistic image pairs results in a better performance for

the deep denoising models on real-world noise applications [12], [24], [25].

For the clean images, public available raw data can be used. However, the

images from different datasets are taken with different cameras and each

camera has its properties, such as sensor type, file type, acquisition con-

ditions, and type of image processing applied before storage, among oth-

ers. Therefore, it is necessary to have a data processing pipeline to unify

datasets. In addition, sRGB images are converted back to raw images using

an unprocessing pipeline [4] to enable more data to be added to the unified

dataset. After converting the sRGB images back, we use the same pipeline

as the original raw images for the unification.

1.2 Research Goal

To efficiently reduce real sensor noise, we question if using knowledge dis-

tillation for transformer model compressing benefits the denoising perfor-

mance of the more computationally efficient model. In this research, we aim

to answer the following questions:

1. What is the impact of compressing a transformer model for real world low-

6

1.2 Research Goal

light image denoising using knowledge distillation? The teacher model

will be shrunken to create a good balance between performance and

computational efficiency. We would like to measure the impact on

the performance of shrinking the deep denoising by answering the

following questions:

(a) How much knowledge is lost after compressing the model using knowl-

edge distillation? The performance difference between the teacher

and the student model on the unified test set is compared us-

ing the quality matrices peak signal-to-noise (PSNR) and struc-

ture similarity index (SSIM). In addition, the student and teacher

models are tested on the target sensor test set. This test set has no

ground truth images, making it impossible to calculate the PSNR

or SSIM. Therefore, the result images will be compared side by

side.

(b) How much computing power is saved after compressing the model us-

ing knowledge distillation? The difference in computing power be-

tween the teacher and the student model will be measured by the

average number of FLOPS used on a single test image from the

target images.

(c) What is the performance difference of the student network compared to

the same network structure being trained from scratch? Two identi-

cal network structures are trained differently. One is trained from

scratch and the other is trained using knowledge distillation from

the teacher network. The performance difference between the

models is measured the same as described in research question

1a.

2. How to generate pair-wise realistic noisy data on a large scale? We unify

publicly available datasets. We will add noise based on a real-world

noise model, to generate pair-wise realistic noisy data. We want to test

if this real-world noise model generates good enough image pairs for

the deep denoising models to learn from. To help answer this ques-

tion, we use the following sub-questions:

7

Introduction

(a) How to unify publicly available raw denoising datasets for the use of

training a deep denoising model? To test if the dataset is unified,

we will train the model multiple times, leaving each time one

dataset out of the training data. We will test the trained model

on the test data of the missing dataset, computing the PSNR and

SSIM. If the model performs well on different datasets, we could

conclude that the dataset is unified.

(b) What is the impact of the white balance and color correction matrix

approximation for converting sRGB images back to raw images? Dur-

ing the generation of the unified dataset, sRGB images are con-

verted back too raw to have more training data. In the process of

converting the sRGB images back to raw a few assumptions are

made, we would like to know what the impact of these assump-

tions are on the model.

(c) How large should the training dataset be for training the teacher net-

work? We create an extra dataset with by taking a random sample

from the training data with only half the size. We train the teacher

model twice, one time with the original training set and one time

with the smaller dataset. Then we use the same test method as

described in question 1a to conclude what the performance dif-

ference is for both models. We conclude if we need all data for

training the teacher model based on the results. We repeat this

process until we conclude that the performance from the model

is significantly less than the performance of the model trained on

the original training set.

1.3 Outline

The paper is organized as follows: in Section 2 the related work about im-

age denoising and knowledge distillation is described by identifying key

concepts and approaches. Section 3 presents the insights for the methodolo-

gies used for generating the dataset, implementing and testing the teacher

denoising model, student denoising model and the knowledge distillation.

8

1.3 Outline

The results of the experiment will be discussed in Section 4. Lastly, the re-

search questions will be answered to conclude the research in Section 5.

9

2. Related Work

First, this section describes the related work about traditional denoising in

Subsection 2.1. Then in Subsection 2.2 deep learning for denoising is de-

scribed. Further, the related work about knowledge distillation is described

in Subsection 2.3.

2.1 Traditional Denoising

Traditional denoising is aiming to reduce noise by manipulating the pixel

values based on the correlation between pixels in the original image. There

are many well-performing traditional algorithms for this task [6], [26]–[35].

The first traditional methods were linear filters because of their mathemati-

cally simplicity [30], [31]. However, through their lack of performance, the

linear filters have been replaced by non-linear filters [32]–[34]. Despite the

amount of research and different traditional solutions, some challenges re-

main in the field of image denoising. In order to denoise the images, tra-

ditional denoising methods tend to blur the edges in the image and signifi-

cantly reduce the level of detail [6]–[9]. Besides the loss of detail, traditional

methods have a hard time performing well on images with a high level of

noise due to over-smoothing [6]. Even if they would be able to denoise

highly noised images, traditional methods assume that noise is homoge-

neous white Gaussian distributed, but real noise is more complex. The per-

formance of the traditional methods drops significantly when tested on real

noisy images [7]–[9].

The field of image denoising has been significantly improved on those

challenges with the introduction of Bayesian least squares - Gaussian scale

mixture (BLS-GSM) [36]. BLS-GSM is a hybrid denoising algorithm com-

bining Bayesian estimation principles with a Gaussian scale mixture model.

BLS-GSM creates image patches to operate on. For each patch, BLS-GSM

10

2.2 Deep Learning for Image Denoising

uses Bayesian estimation to estimate the clean patch and noise variance. The

estimated noise component is subtracted from the noisy patch to produce

the denoised image. The image is reconstructed by averaging the overlap-

ping pixels from the patches [36]. Block-matching and 3D filtering (BM3D)

algorithm [35] made another improvement in the denoising field at a later

stage. BM3D has gained popularity due to its ability to effectively remove

noise while preserving important image details. Unlike traditional linear fil-

ters, BM3D exploits the redundancy present in natural images by grouping

similar image patches into 3D data arrays. By applying collaborative fil-

tering techniques, BM3D can achieve superior denoising performance com-

pared to linear filters and is often used to represent traditional models in

a performance comparison [35], [37]. Therefore, some researchers focused

on exploring and improving the non-linear filtering approaches like BM3D

for better image denoising results [38]–[40]. Because BM3D is complex to

implement, principal component analysis with local pixel grouping (LPG-

PCA) [41] was published. LPG-PCA applies local pixel grouping (LPG) on

the image patches to guarantee that only the sample blocks with similar

contents are used in the PCA estimation. The LPG-PCA iterates twice over

the image to reduce more noise [41]. These more complex denoising tech-

niques that exhibit improved performance of the remaining challenges tend

to incur high computational complexity and costs [6], [8], [10].

2.2 Deep Learning for Image Denoising

The complexity and lack of flexibility for well performing traditional de-

noising methods prompted the popularity of deep learning methods in the

field of image denoising. Deep learning provides the availability of flexi-

ble performances with less computing power [11]. CNN-based image de-

noising enables adaptability to the specifics of the image. As a result of this

newfound understanding, denoising emerged as the forefront of image pro-

cessing research [42], [43]. There are three types of noise used for denoising

images: simple synthetic noise models (mostly white Gaussian noise), real

noise and realistic synthetic noise models [5].

11

Related Work

Figure 2.1: DnCNN architecture [16]

2.2.1 Deep Learning for Image Denoising using White Gaus-

sian Noise

DnCNN was the first research to apply a CNN on a range of Gaussian noise

levels, rather than focusing on one noise level [16]. The structure of the

DnCNN network is shown in Figure 2.1. There are three types of layers

used, marked with a different color in the image. The first layer (yellow) is

a convolutional layer with ReLU activation to add non-linearity. The sec-

ond until the second to last layers are similar to the first layer with addi-

tional batch normalisation [44]. The last layer is just a convolutional layer

without ReLU or batch normalisation, to reconstruct the output. The depth

of the network is task-specific. Higher vision tasks are often pixel-specific,

therefore the reconstructed images from lower vision tasks should have the

same size as the input image [45]. DnCNN adds zero padding to each layer

to make sure that each feature map has the same size as the input image to

remain the input image size through the whole model [16].

Not only improving the model performance, but also making them more

computationally efficient, became a goal for image denoising. Therefore,

in addition to a CNN network, CNBlind [17] was proposed to combine

the CNN network with unsupervised learning that synthesizes training ex-

amples from specific noise models. Most of the CNN networks use back-

propagation [46], [47] for training, however the proposed training method

uses Stochastic online gradient learning. Stochastic online gradient learning

randomly selects a small part of the training data and calculates the gradient

for the first small network, starting with one hidden layer. After training the

network for a set number of epochs, the weights of the first hidden layer are

copied to a new network with two hidden layers. The weights from the hid-

12

2.2 Deep Learning for Image Denoising

Figure 2.2: U-net architecture [18]

den layer to the output layer are discarded. The new network is trained for

the same number of epochs as the old model, before repeating the procedure

for N layers. The method allows big networks to train computationally effi-

cient with matching their performance when trained with back-propagation

[17]. With the same goal of making the training of models computation-

ally more efficient, combined with the goal of training a model on very few

training data, Ronneberger et al. [18] proposed the U-net model introducing

skip connections to learn from smaller amounts of data. The architecture is

shown in Figure 2.2. The architecture uses a feature contracting path and a

symmetric expansive path. The contracting path is similar to the DnCNN

network structure and repeats the structure of two 3x3 convolutions, fol-

lowed by ReLU activation and 2x2 pooling, compressing the features for

computational efficiency [19]. The expansive path upsamples the feature

map by concatenation of a 2x2 convolution with the corresponding cropped

feature map from the contracting path, followed by two 3x3 convolutions

and ReLU. The model is trained with explained stochastic gradient descent

method. The model was originally proposed for biomedical image segmen-

tation but became a widely used model for image denoising, outperforming

a lot of the previous models [15], [48]–[51].

The skip connections aim to recover spatial information lost during down-

sampling by skipping features from the contracting path to the expanding

13

Related Work

path [52]. This is beneficial for denoising because the model has access deep

into the model to features extracted early in the model without having to

learn how to transfer them through the whole network, so the focus can

be more on extracting new features. The skip connections are used in other

structures as well, REDnet [20] implementing the skip connections to a more

transparent model architecture in an attempt to improve the U-net perfor-

mance. The idea of the encoder-decoder remains, but the architecture is not

symmetric. The skip connections are used by adding the values instead of

concatenating, adding the values occurs to an exponential grow of param-

eters while still receiving low-level features in deep layers [20]. Another

network using the skip connections is MEMnet [21]. MEMnet implemented

the skip connections to generate a memory block to increase the prior state

influence on the outcome of the model. Additional to a feature contract-

ing and an expansive path, they add multiple stacked memory blocks in

between. The goal of this memory block is to learn which features are im-

portant for the reconstruction net to know. MEMnet has become less pop-

ular for denoising than U-net due to the simplicity and variety of available

pre-trained implementations of U-net [53].

In 2015, Szegedy et al. [22] introduced a new strategy for CNN-based im-

age classification. The transformer network became a very popular strategy

within multiple research fields, among them NLP and image classification

[54]–[56]. Transformers are also based on an encoder-decoder model. How-

ever, the difference with U-net is that U-net model is CNN-based, which

is good for local feature extracting. Transformer models use self-attention,

which is better for understanding broader context [57].

Due to their good performance on understanding the broader context,

Chen et al. [23] decided to introduce the transformer network to the field of

image denoising by proposing image processing transformer (IPT). The goal

of the research is to improve image processing. Image denoising is only one

of the subjects to achieve this. The model architecture is shown in Figure 2.3

and consists of four components: Heads, Transformer encoder, Transformer

decoder and tails. The architecture is structured with multiple heads and

tails to separate the different processing tasks, each task having one head

14

2.2 Deep Learning for Image Denoising

and one tail. The heads and tails consist of normal convolutional layers.

The heads and tails are separated by a transformer encoder and decoder.

The architecture of the transformer components are shown in Figure 2.4.

The transformer encoder first feeds each head to three distinct fully con-

nected layers, forming the query, key, and value of a self-attention block.

The queries and keys produce a matrix determining the focus of the in-

put. This matrix is scaled down and SoftMax is applied to get the attention

weights. The attention weights are multiplied with the values to compute

the multi-headed attention output. This output is added to the original in-

put and processed by feed forward layers. Here, another skip connection

from before the feed forward layers is added. The summation is normalised

to prevent gradient exploding. The decoder has similar sub layers as the

encoder. The decoder is meant to regenerate the clean image [58]. The IPT

model outperforms all discussed methods for image denoising [23].

IPT relies on over 115.5 M parameters and large-scale datasets (more

than 1.1 M images) to achieve the good performance. Therefore, Liang et

al. [59] introduced SwinIR. SwinIR is a transformer model with only ap-

proximately 10% of the parameters IPT has. SwinIR uses multiple Resid-

ual Swin Transformer Blocks (RSTB) containing multiple Swin Transformer

Layers (STL) followed by a convolutional layer and an add-skip connection

over all of them. The STL exist of a layer normalisation with an MSA, fol-

lowed by a skip connection over them. This structure is repeated with an

MLP instead of an MSA. Because of the recurrent architecture, SwinIR is

easy to compress. Therefore, Liang et al. [59] propose lightweight SwinIR

containing only four RSTB with 60 channels instead of six RSTB with 180

channels. This structure has even less parameters. Despite the more com-

putationally efficient transformer networks, the downside for transformer

models remains that they are very deep, with most of them being difficult

to compress and they are computationally heavy.

15

Related Work

Figure 2.3: Transformer denoising [23]

2.2.2 Deep Learning for Image Denoising on Real-world Noise

Despite the powerful and good performance of the models, the training pro-

cess is based on synthetic image data. Most data pairs are generated by

applying white Gaussian distributed noise to the clean image. The white

Gaussian noise model is not a good representation of real noise. Therefore,

Plötz et al. [60] created a benchmark addressing the remaining challenges

for real noise. For addressing these problems, they created the Darmstadt

Noise Dataset (DND). They collected real noise images and (nearly) noise

free images from the same viewpoint by changing the ISO values. In the

research they find that, despite the performance of the CNN models on syn-

thetic data, BM3D still has a better performance on denoising real data. The

DND is created in normal light conditions, however denoising for low-light

images is a big challenge as well.

Chen et al. [61] created a low light image dataset (SID) with the same

technique of editing the ISO values. The input of the models is the raw

image and the output is a sRGB image. This means that the model also

includes demosaicing. They use CAN [62] and U-net [18] and train them

on their collected data. They decide to exclude the residual connections

from their research because they claim that the residual connections are not

beneficial for their problem due to the different color spaces between their

input and output. Both CAN and U-net are compared to the denoising of

16

2.2 Deep Learning for Image Denoising

Figure 2.4: Transformer architecture [58]

a traditional pipeline and BM3D. From this research, we see that when the

networks are trained on the real data they do outperform the traditional

pipeline and BM3D. The U-net based model had a higher performance than

CAN [63]. Anwar et al. [64] only focus on the denoising of sRGB images.

Since the color spaces of their input and output are equal, they decided to

include the residual connections and propose RIDNet. From their research

we see that with similar color spaces it is beneficial to use the residual con-

nections as they outperform previous models on sRGB to sRGB image de-

noising.

In Section 2.2.1 we saw that transformers have a good performance be-

cause they use self-attention, which brings the benefit of understanding the

broader context. This helps for real noise denoising because it is less equally

distributed than Gaussian noise. However, SwinIR restricts the context ag-

gregation within the local neighbourhood due to the design choices, ignor-

ing the main reason for using self-attention over convolutions. Therefore,

Zamir et al. [65] propose a more efficient transformer than IPT, with the re-

maining benefit of understanding the broader context for the good perfor-

17

Related Work

Figure 2.5: Restormer architecture [65]

mance on denoising real noise. The architecture of the Restormer network

is shown in Figure 2.5. They use Transformer blocks in a similar down-

and up-scaling approach as U-net. The transformer blocks contain a multi-

Dconv head transposed attention (MDTA) block to compute query-key fea-

ture interactions across channels rather than spatial dimensions, followed

by a Gated-Dconv feed-forward network (GDFN) to allow useful informa-

tion to propagate further. Concatenation skip connections are used over the

transformer blocks and an element wise skip connection from the input to

the output to guide the lower extracted features through the network. They

prove that with a lower number of FLOPS, the Restormer still outperforms

IPT and SwinIR [65].

2.2.3 Deep Learning for Image Denoising on Improved Noise

Models

Despite the improvement on real noise images, generating real noise pairs

by extending exposure time causes motion blur due to camera shake or sub-

ject motion because it is difficult to align images captured using different

exposure times. Therefore, Hasinoff et al. [12] introduced a new camera

system to address these problems. With the camera system, they created the

HDR+ dataset. To create the dataset, they use two streams. The first stream

takes a picture and uses the normal ISP to generate the low-resolution im-

age. The second stream takes multiple images with a consistent exposure

time. These images are aligned and merged into a new and clean image.

18

2.2 Deep Learning for Image Denoising

With this dataset, they address the challenges of the blurred images in real

world noisy datasets. They also claim that denoising from raw images is

more efficient because the processing steps of the Image Signal Processing

(ISP) pipeline have no influence on the image yet, and it leaves more bits

per pixel [12], [25], [66].

Hasinoff et al. [12] were not the only ones trying to improve the real-

world noise model. Wei et al. [5] proposed a sensor-specific physics-based

noise formation model. They show that, particularly under extremely low

light conditions, their model represents the real noise better. The general

formula for digital sensor raw image D is:

D = KI + N,

where I is the number of photo electrons activated in the camera, K is the

overall system gain and N represents the composed noise. The noise is

sensor-specific. Because CMOS is currently the dominating image sensor,

Wei et al. focus on the physics-based noise model. The noise is calculated

with

N = KNp + Nread + Nr + Nq.

K is the same factor as in the previous formula, the system gain. Np is the

photon shot noise, Nread is the read noise, Nr is the row noise and Nq is the

quantization noise. In the research, they try to estimate the noise parameters

by calibrating the camera on two images. The first image is captured from

a white paper for uniformly light in the whole image, the second image is

captured in a lightness environment with the shortest exposure time. In

both images, there is no influence from the objects in an image but only

the sensor input. The combination of the light and dark input results in

the calibration of the noise parameters. The method is proven to estimate

the noise better than the Gaussian model, and the pipeline is easier than

19

Related Work

collecting real noise and clean image pairs [5]. However, the noise is often

assumed to be stationary, meaning its statistical properties (such as mean

and variance) remain constant over time or space. This simplification allows

for easier analysis and modelling, which results in a lower accuracy than for

models trained on physics-based noise pairs than on real-noise image pairs

[67].

Figure 2.6: SCUNet architecture [68]

SCUNet [68] is a transformer model trained on an improved noise model.

SCUNet is a combination of a CNN and a transformer, using the Swin Trans-

former Block from the SwinIR [54] and residual convolutional block from

DRUNet [69]. The blocks are concatenated and combined with a 1x1 con-

volution layer into one Swin-Conv (SC) block [68]. By fusing these blocks,

SCUNet aims to adopt the local model ability from the residual convolu-

tional block with the non-local modelling ability of the Swin transformer

block. The strided convolution (SConv) blocks are used for downscaling the

feature maps, while the transposed convolution (TConv) blocks are used for

upscaling. The SC Blocks with the up- and downscaling of the features are

used in a similar U-net shape as Restormer.

2.3 Knowledge Distillation

For model compression, there have been many studies on pruning, quan-

tization, low-rank decomposition and knowledge distillation. Knowledge

distillation is a promising method for image denoising gaining efficiency

without losing too much of the original accuracy [15].

2.3.1 General Knowledge Distillation Types

20

2.3 Knowledge Distillation

Figure 2.7: The schematic illustration of response-based, feature-based and
relation-based offline KD between teacher and student networks [70]

Over the years, extensive research has been conducted on model compres-

sion. Model compression refers to the process of reducing the size and

complexity of a machine learning model without significantly sacrificing

its performance. Knowledge distillation [13] is successful in diverse fields

including speech recognition, image recognition and natural language pro-

cessing [14]. The idea of knowledge distillation is simple, to transfer knowl-

edge from a pre-trained single large teacher network or set of large teacher

networks to a single smaller, and computationally more efficient student

network. Knowledge distillation has three different types: response-based

knowledge, feature-based knowledge and relation-based knowledge. The

different types are shown in Figure 2.7.

As the Figure 2.7 shows, response-based knowledge distillation focuses

on the final output layer of the teacher and student model. The idea is that

the student model learns from the prediction of the teacher model. The out-

put knowledge is transferred by adding a distillation loss to the loss func-

tion used for training the teacher network. The teacher network loss is task-

specific, the distillation loss is calculated between the teacher and student

21

Related Work

output. The knowledge distillation loss is added to the original initiated

loss function, giving the student loss function:

LS = αLT + βLkd,

where Lt is the teacher loss, Lkd is the knowledge distillation loss and al-

pha and beta represent the trade-off between the knowledge distillation loss

and the other losses. If the original loss function is combined with multiple

losses, each function has a trade-off weight. The knowledge of the teacher

network is also captured in the intermediate layers. Feature-based knowl-

edge distillation aims to transfer the feature activation from the teacher to

the student network by adding an extra distillation loss between the hidden

layers, as shown in Figure 2.7. Relation-based knowledge distillation aims

to transfer the relationship between feature maps to the student model. The

relationship can be modelled as a correlation between feature maps. So far,

there is only a little research using knowledge distillation for model com-

pression on low-level vision tasks like denoising.

2.3.2 Knowledge Distillation for Image Denoising

Chen et al. [15] are the first to introduce knowledge distillation to the field of

image denoising. They use a model-specific knowledge distillation method

using feature-based knowledge distillation called Collaborative Distillation

[3]. The method is based on U-net [18], also described in Section 2.2. The

goal is to reduce the computational complexity from the original U-net so it

can be deployed on embedded devices, like mobile phones. Collaborative

Distillation was introduced in the field of style transfer. For style transfer,

the decoder model is too task-specific to compress. Therefore, they focus

on compressing the encoder. An encoder and decoder are tightly matched,

introducing a new or compressed encoder to the same decoder would not

work. Collaborative Distillation aims to transfer the knowledge of the cur-

rent encoder E to a compressed encoder E′ to make it compatible with the

original decoder. Chen et al. [15] show that, despite a slight performance

22

2.3 Knowledge Distillation

decrease by compressing the encoder model four times, the proposed model

still outperforms state-of-the-art models like noise2noise [71] and BM3D

[35]. In addition, the proposed model has a significant computational ad-

vantage over U-net.

Young et al. [72] aim to improve their proposed denoising model us-

ing response-based knowledge distillation. They use the original U-net for

the teacher network in their proposal of an adapted U-net-based model for

the student network. For the proposed model, the convolutional layers

from the original U-net are replaced with a variant of MobileNet-V2 [73]

for efficient memory access. In addition, the skip-connection is shrunken

by adding point-wise convolution. At last, they add a feature-align layer

to make the model more aware of the input noise. They show that the

performance of raw image denoising from their proposed model improves

by using response-based knowledge distillation, which implies that using

response-base knowledge distillation in beneficial for U-net based student

models.

Li et al. [74] proposed a feature-based knowledge distillation method for

an encoder-decoder based model with attention blocks. They are the only

one so far bringing knowledge distillation to the field of denoising with-

out using U-net as the teacher network. For the teacher and student model,

they use the same framework but with different dimensions. The models

contain two separate branches: the enhancement branch and the gradient

branch. The gradient branch guides the network to retain more structural

information. The enhancement branch is the main part of the network us-

ing an auto-encoder design. In between the encoder and decoder, they use

Feature Attention Blocks (FAB), introduced by FFA-Net [75]. The features

are transferred from the teacher network to the student network after each

FAB to share the feature extraction knowledge. The teacher uses six FABs

with 96 intermediate feature maps, while the student network only consists

of three FABs with 48 intermediate feature maps, which reduces the used

parameters. The distillation loss is calculated based on a normalised atten-

tion map Q to force the attention pattern of the student network to be as

close as possible to the teacher network. Li et al. show that knowledge

23

Related Work

distillation from an encoder-decoder network with one distillation channel

between the attention blocks improves denoising sRGB images compared

to the state-of-the-art methods [74].

Chen et al. [76] have an entirely different approach for applying knowl-

edge distillation on U-net. They propose Two-Stage Raw Denoising (TSDN)

using Expand-Shrink-Learning (ESL) to shrink the model. Instead of trans-

ferring the feature information for training the weights, they try to transfer

the weights directly into a smaller model. ESL uses the Expand-Learning

(EL) step to increase the model size remaining in the architecture. The ex-

panded model is trained on the dataset from scratch. Subsequently, Channel-

Shrink-Learning (CSL) and Layer-Shrink-Learning (LSL) are used to shrink

the model to the target size. The CSL method halves the channel numbers

of the middle layers and trains the model again on the model using the

weights of the previous trained model as initialisation weights. Then the

same steps will follow to the nearing middle layers. This is repeated until

all channels are halved. After CSL, LSL will take place. LSL has a similar

approach, but instead of halving the channel size, it cuts back the middle

layers. After each cut, the model is trained again, using the weights of the

previously trained model as initialisation for the weights of the shrunken

model. TSDN outperforms U-net for extremely low-light conditions, while

the model size is one-eight of U-net.

Knowledge distillation is not only used for model compression. Chi et

al. [77] use two teachers with the same encoder-decoder structure as the

student network. They claim that kernel prediction network has a high per-

formance for constructing one clean image from a clean sequence input. A

denoising network has a high performance in denoising a single image. Chi

et al. [77] aim to combine the model qualities into one model using a mo-

tion and a denoising teacher. The knowledge is transferred after the encoder

models using feature-based distillation to train the student network. With

their research, they introduced multi-teacher learning to the field of denois-

ing.

In Section 2.2 we saw that transformers have a high performance for

24

2.3 Knowledge Distillation

denoising. To the best of our knowledge, there has been no research for ap-

plying knowledge distillation using transformer models within image de-

noising. Because of the high performance of the transformer models, we

would like to investigate the impact of shrinking a transformer model on

the performance for denoising.

2.3.3 Knowledge Distillation for Transformers Replacing Im-

age Processing Blocks)

Liang et al. [59] proposed a compressed version (lightweight SwinIR) in

their original SwinIR research. The combination of SwinIR as teacher and

lightweight SwinIR as student model is used in multiple knowledge distil-

lation image processing research. Jiang et al. [78] propose a compressing

model applied for super resolution using SwinIR and lightweight SwinIR.

The method uses response-based knowledge distillation and pruning. They

show that the performance of lightweight SwinIR, the compressed version

of SwinIR, has only a tiny drop compared to the original SwinIR while it

contains approximately 10% of the computing power. Xie et al. [79] also use

SwinIR and lightweight SwinIR for their proposed knowledge distillation

approach. They use a Frequency Similarity Matrix (FSM) and an Adap-

tive Channel Fusion (ACF) to transfer the relation-based knowledge from

SwinIR to lightweight SwinIR. FSM is meant to extract frequency informa-

tion from intermediate images to transfer the knowledge about edge and

texture parts. ACF is feature-based and is meant to transfer the spatial in-

formation for up-sampling the images. They show that using relation-based

knowledge distillation in the training process improves the performance of

lightweight SwinIR compared to training the model from scratch.

For knowledge distillation, it is more efficient for the student and teacher

models to have the same architecture framework, with different dimensions

[80]. Models like Restormer because rely on a more complex structure, mak-

ing it harder to compress the model (see Section 2.2.2). This could be a po-

tential reason why, as far as we know, Restormer is not used for knowledge

distillation so far. As described in Section 2.2.2, SwinIR uses local windows,

25

Related Work

(a) CAT architecture (b) CATB

Figure 2.8: The architecture of CAT [81]

losing the transformer advantage of understanding broader context. Chen

et al. [81] proposed CAT, a transformer model with recursive blocks aim-

ing to effectively combine convolution with attention mechanism. They use

horizontal and vertical rectangle window attention in parallel, using dif-

ferent heads for expanding the attention area. The architecture of CAT is

shown in Figure 2.8. The dimensions of the CAT are variable by adapt-

ing the number of Residual Groups and the number of CATB in a Residual

Group. This simplifies creating a teacher and student architecture with the

CAT framework. They show that with six residual groups containing six

CATB they achieve similar results to the Restormer model. Despite the po-

tential, there has been no research using the CAT framework for knowledge

distillation so far.

26

3. Method

In this section, we present the methodology used to develop our efficient

transformer models. Section 3.1 gives a high-level overview of the differ-

ent stages used to develop our model. The stages use the same ISP blocks,

which is why Section 3.2 describes the methodology for those blocks. Sec-

tions 3.3, 3.4 and 3.5 will go into detail about the stages, offering a compre-

hensive understanding of our approach.

3.1 Overview

Figure 3.1: The schematic overview of the used methodology

In Section 1.2 we described that the goal for our project is to efficiently

reduce real image noise using deep denoising. In Section 2.3 we saw that

knowledge distillation is a well-proven method for training efficient mod-

els with high accuracy. To apply knowledge distillation, three stages are

required. The stages are shown in Figure 3.1. The first stage is to create

a pair-wise image dataset for denoising, consisting of a noisy image with

the corresponding clean image. In Subsection 2.2.2 we saw that it is time-

consuming to gather a high amount of pair-wise data containing the sensor

specific real-world noise. In Subsection 2.2.3 we saw that improved noise

models are more efficient for creating pair-wise images without losing too

much of the real-world characteristics [5]. In this Subsection, we have also

27

Method

learned that denoising is more effective from raw images than from already

processed sRGB images [5], [12], [61], [66]. This is why we have decided to

create a pair-wise raw image dataset by applying a real-world noise model

on public available datasets.

The images from public available datasets are taken with multiple dif-

ferent sensors. These sensors have different specifications, resulting in dif-

ferent properties for the raw image. Most images are directly processed to

the unified sRGB format [82]. However, in Subsection 2.2.3 we have seen

that denoising is more effective on raw images. These raw images still con-

tain the different sensor-specific properties, unifying those properties be-

fore training improves the model performance [12], [25]. Properties which

should be unified are black level subtraction, Bayer pattern, rotation of the

image and number of bits [25]. To unify the data, we designed a raw2raw

pipeline to convert raw datasets to the unified format. The number of pub-

lic available, high-quality raw image datasets is limited. The sRGB for-

mat is the standard color space for images on the internet [82], which is

why the sRGB format is widely used and easily accessible. By incorporat-

ing sRGB images into our dataset, we can significantly increase the diver-

sity and representativeness of the data, allowing our model to learn from a

broader range of visual inputs and improve its performance in real-world

scenarios. The input of our pre-processing pipeline is a raw format. Hence,

we use an unprocessing pipeline converting the sRGB images back to raw

[4]. These raw images have to have the same unified format as the other

raw datasets to reach the optimal performance of the model. Therefore, the

raw2raw pipeline will also be applied on the unprocessed images forming

a sRGB2raw pipeline.

Learning from more data usually improves the model, as long as the

data is good [83] (see Section 2.2). To reduce the training time as much as

possible, we want to select only the high-quality datasets. It is too time-

consuming to check the quality of the images manually, which is why we

will apply an image quality assessment, training a deep denoising model

on each separate dataset and compare the performance results [84]. Dur-

ing the image quality assessment, the model architecture will stay the same.

28

3.1 Overview

Therefore, the performance differences will be based on the features from

the datasets. As long as the model is good enough to extract those features

well from the data, the quality comparison with a different model will be

similar to the quality comparison with the final model [84]. We will com-

pare the images based on U-net [18] because it is a widely used model for

image denoising, it is easy to set up, and it is computationally less heavy

than transformer models [15], [19], [48]–[51] (see Subsection 2.2.1). After

comparing the dataset qualities, we try to understand why certain datasets

score better than others by using t-SNE [85]. These insights will allow us

to identify the attributes that would be most beneficial if we were to add

more data to enhance the model. We aim to get the insights by applying

t-SNE because it is a popular method for exploring high-dimensional data

[86], [87].

In Section 2.2 we saw that it is easier for a model to reach a high accuracy

if efficiency is not considered. In Section 2.3 we saw that good performing

models can help to guide more efficient models to a higher accuracy. There-

fore, the second stage is to train a teacher model on the selected unified

dataset from stage 1. The goal of the teacher model is to achieve the high-

est possible accuracy while ignoring the efficiency aspect. As we have seen

in Section 2.2, transformers are high performing models for deep denois-

ing, but they are not very efficient [23], [59], [65]. We are aiming to find the

best performing denoising model among some popular choices in the image

restoration domain. We have learned that different sensor-specific noise can

affect the performance of a model (see Subsection 2.2.2). We chose to train

multiple transformer models for the teacher model in order to experiment

which performs best for the target noise. To the best of our knowledge, there

are no widely used transformer models for raw image denoising. Therefore,

we chose to adjust widely used transformers for sRGB image denoising. We

selected the Restormer model [65] (See Section 2.3) and the SCUNet [68] for

the comparison because they are well performing and widely used for real-

world image denoising [68], [88]. More about training the teacher models is

described in Section 3.4.

Looking back to the goal, we see that the teacher model does not fit the

29

Method

requirement for being efficient (see Section 1.1). Therefore, the third stage is

to train the student model. The goal for the student model is to be more ef-

ficient than the teacher model, without losing much of the performance. To

achieve the low performance loss for the smaller model, we decided to use

feature-based and response-based knowledge distillation (see Section 2.3).

Knowledge distillation is a proven method for maintaining the model’s per-

formance while decreasing its size [13], [14]. Feature-based and response-

based distillation are the most used methods within the field of low-level

image processing [15], [79], [89]. It is beneficial for the student model to

have the same type of structure as the teacher model [80] (see Section 2.3).

Hence, we choose the best performing teacher model and compress that

structure for the student model.

3.2 ISP Blocks

In this section, we will describe the methodology of multiple ISP blocks.

These blocks are used throughout the different stages. First, we will de-

scribe white balancing in Section 3.2.1. In Section 3.2.2 we will describe color

correction and in Section 3.2.3 we will describe about gamma correction.

3.2.1 White Balance

Figure 3.2: Color mapping from sensor spectral to CIE XYZ using white bal-
ance and color correction

Each camera sensor has its own spectral response, which creates differ-

ences in color matrixes of an image. This would result in different images

if two cameras with a different sensor would make an image of the same

setup. The color space of the raw image is mapped to a general color space

30

3.2 ISP Blocks

to prevent these color differences in the processed images. This process

takes two steps, applying white balance and color correction. Figure 3.2

shows the color shift of the two color mapping steps.

White balance is used to adjust the temperature of the light in the image.

With cold light, the color of white surface is more blue while with warm

light, the color is more yellow. For automatic white balance, the algorithm

needs to determine the sensor’s response to the scene illumination. In the

pipeline, we use the “Gray world” algorithm because it is the easiest method

to apply [1]. For the raw image, it means that the white balanced image is

calculated by the following formula:


B′

G′

G′

R′

 =


Gavg/Bavg 0 0 0

0 1 0 0

0 0 1 0

0 0 0 Gavg/Ravg




B

G

G

R



White balancing the sRGB image has the same goal as for white balanc-

ing sRGB. The difference is that the white balance now needs to be applied

on a 3-channel sRGB image. For the sRGB format, the white balanced is

calculated by the following formula:


R′

G′

B′

 =


Gavg/Ravg 0 0

0 1 0

0 0 Gavg/Bavg




R

G

B



The Gray world algorithm assumes that the average reflectance of a

scene is gray. The color patch of the raw image is not relevant, the white

balanced color patch for the same sensor is always similar (if the same white

balance algorithm is used) [1].

31

Method

3.2.2 Color Correction

The second step for the color mapping is color correction. The goal for color

correction is to approximate the true colors based on the white balanced im-

age. As described in Subsection 3.2.1, the color patches from the white bal-

anced images are similar. Therefore, we can use a sensor-specific constant

matrix for to convert the white balanced image to the true color image. For

the unified dataset, we use the identity matrix because there are multiple

sensors used with an unknown color correction matrix. For the target data,

we use the following matrix:


R

G

B

 =


1671 −316 −51

−363 1024 −369

43 −386 1541




X

Y

Z



The color correction matrix is configured based on test images taken with

the target sensor. The test images are taken from a Macbeth color cherker

(see Figure 3.3).

Figure 3.3: Macbeth color checker

A Macbeth color checker is a board with different precise colors with

know RGB values. The color correction matrix is then configured by search-

ing the color correction matrix which gives the least color deviation E on the

Macbeth color checker.

32

3.2 ISP Blocks

Figure 3.4: Gamma correction

3.2.3 Gamma Correction

The goal of gamma correction is to standardize the way colors are displayed

and interpreted across different devices, such as computer monitors, print-

ers, and digital cameras. Gamma correction can be applied to the raw image

or to the sRGB image. The sRGB gamma curve is designed to ensure that

colors are accurately represented and displayed consistently, regardless of

the device being used. This helps to create a more uniform and predictable

color experience for users across different platforms and devices. The effect

of sRGB gamma is shown in Figure 3.4. The encoding of the sRGB gamma is

related to Steven’s power-law [90]. The following formula is used as sRGB

gamma:

R′G′B′ = (12.92 ∗ RGB ∗ ind) + (1.055 ∗ RGB1/2.4 − 0.055) ∗ (1 − ind)

Where RGB is the image and ind is an index matrix marking the darkest

33

Method

regions of the image. The ind matrix is generated by rgb < 0.0031308. ind is

introduced to brighten and create more visibility in the darkest parts of the

image. This is important for the pipeline of the research because denoising

is mainly targeted on low light images.

3.3 Raw Image Denoising Dataset

This section describes the methodology used to generate the pair-wise raw

dataset for training the deep denoising models. First, we will describe the

characteristics of the public available datasets in Subsection 3.3.1. These

characteristics are important for the method to unify the datasets. How the

datasets are unified is described in Subsection 3.3.2. From the unified data,

we make a selection based on the quality of the images in Subsection 3.3.4.

3.3.1 Sensor-Specific Data Characteristics

Multiple different public available datasets are used for training the deep

denoising models. Each dataset has its properties such as sensor type, file

type, acquisition conditions, type of image processing applied before stor-

age, among others. We use datasets with raw and sRGB formats. The raw

formats are images directly taken from the sensor and differ based on the

sensor they are taken with. These image sensors have different patterns to

capture colors, named Bayer patterns [25]. Some examples of the easiest

Bayer patterns are shown in Figure 3.5. The properties of the raw datasets

are shown in Table 3.1.

Figure 3.5: Bayer pattern examples

The differences in black level subtraction, Bayer pattern, rotation of the

image and number of bits between the datasets should be unified to use the

datasets consistently [25].

34

3.3 Raw Image Denoising Dataset

Dataset Format Light
condi-
tion

Number
of
images

Image
size

Bayer
pattern

Number
of bits

Black
level
sub-
tracted

os04a10
(target)

Raw Low/
med

300 1920x1080 BGGR 16 Yes

HDR+
[12]

Raw Low 3640 4068x3036 RGGB/
BGGR

10-14 No

SIDD
[66]

Raw Low/
med/
high

160 5328x3000 RGGB/
BGGR/
GRBG

1 Yes/
No

SID [25] Raw Low/
high

231 4288x2848 RGGB 14 No

Raise
[91]

Raw Low/
Med/
High

8156 3008x2000,
4288x2848,
4992x3280

RGGB 12/14 Yes

Mit5k
[92]

Raw Low/
med/
high

5671 4368x2912 BGGR 16 No

Table 3.1: Dataset details

The real noise data is in raw format. The characteristics from the noise

data are shown in Table 3.1. The target sensor is an OS04A10 sensor. The

real noise images are taken in a studio with different light conditions and

outside with different noise levels. The noise range is from 32db until 63db,

which is from low noise to very high noise. The examples for the noise

levels are shown in Figure 3.6.

We also public available sRGB datasets for unprocessing. sRGB images

are processed to the standard color space for images on the internet, which

means that they have already processed properties like Bayer pattern and

black level subtraction [82]. Table 3.2 shows the properties for the sRGB

datasets.

Dataset Format Light
condi-
tion

Number
of
images

Image
size

Flickr2K sRGB High 2650 2040x1140

Table 3.2: Dataset details

35

Method

(a) 32db (b) 45db (c) 63db

Figure 3.6: Real sensor input images

3.3.2 Data Unification and Preparation

This subsection describes how we unify the raw datasets in Subsection 3.3.2.1

and how we unprocess the sRGB images in Subsection 3.3.2.2.

3.3.2.1 Raw to Raw Data Unification

Figure 3.7: Raw to raw unifying pipeline

Figure 3.7 shows the overview of the raw2raw unifying pipeline. The

first step of the pipeline is subtracting the black level. For pixels with “no

light”, the values should be zero. However, sensor noise can cause that

those pixels still have a value above zero. Those values can be corrected

by subtracting black level [1]. For the target data, the black level is already

subtracted before saving the raw data. It is important to match the black

36

3.3 Raw Image Denoising Dataset

level settings from the unified dataset to teach the model how to handle

zero values. For some datasets, the black level is already subtracted (see

Figure 3.1). For the other datasets, subtracting the black level is the first

step of the unifying pipeline.

The next step is unifying the Bayer pattern. Having the same Bayer pat-

tern across the dataset is beneficial for the performance of the model [25].

Liu et al. proposed a method to unify the Bayer patterns of raw image data

[25]. This process is shown in Figure 3.8. The target Bayer pattern for the

dataset is BGGR. The images with a different Bayer pattern are cropped

with one row from the top and bottom (GRBG to BGGR), one from both

sides (GBRG to BGGR) or one from top, bottom and both sides (RGGB to

BGGR).

Figure 3.8: Bayer pattern unification [25]

After converting to the right Bayer pattern, the image size is reduced.

The bigger the image is, the longer it takes for the model to denoise the

image. Later we also see that the images are cropped for training in the

training pipeline (see Section 3.3.3). Saving the unified images in a larger

resolution would only be beneficial if multiple patches were created from

the images, which is not the case. We therefore crop the images in advance

to save disk space. For cropping, a random area with the fixed size is chosen.

Then the image is rotated based on the metadata. Images can be taken with

different positions of the sensor. The camera saves how the image should be

rotated to have the image not upside down. We rotate the images based on

the rotation detection of the camera because the target sensor also corrects

the rotation before saving.

To normalise the image data, the number of bits is converted to the target

of 16 bits and the dtype is set to uint 16. Normalising the data is important

for the deep denoising performance [93]. With normalising the data, the

37

Method

raw2raw unification is finished.

(a) HDR+ raw (b) SIDD raw (c) SID raw (d) Raise raw (e) Mit5k raw

(f) HDR+ sRGB (g) SIDD sRGB (h) SID sRGB (i) Raise sRGB (j) Mit5k sRGB

Figure 3.9: RAW2RAW image validation

After saving the file, we want to validate the unified format for each

dataset. For validation, we can visualise the unified images. For these visu-

alisations we will add white balance, demosaic the image and add gamma

correction because these steps highlight the effect of the raw2raw unification

pipeline. The steps are shown in Figure 3.7 The results are shown in Figure

3.9, the upper image is from the HDR+, the second image from Flickr2k and

the last image is from the Mit5k dataset.

3.3.2.2 sRGB to Raw Data Unification

For the unified dataset, two sRGB datasets are used, being Flickr2K and Un-

splash. The properties of the datasets are shown in Table 3.1. To unprocess

the sRGB data back to raw, the proposed method from Brooks et al. [4] is

used. This is a widely used pipeline for image unprocessing [94], [95]. The

steps are shown in Figure 3.10.

Figure 3.10: Unprocessing pipeline [4]

38

3.3 Raw Image Denoising Dataset

For Flicker2K there is no metadata available, the normal distributed color

correction matrix, digital gains and white balance will be used to reverse the

processing steps. The results are shown in Figure 3.11.

(a) Flickr2k sRGB source
image

(b) Flickr2k unprocessed
raw image

(c) Flickr2k sRGB (verifica-
tion)

Figure 3.11: sRGB unprocessing and unification results

The restored image in 3.11c is a bit more greenish than the source image

in 3.11a because color correction is not yet applied to the image. This is not

necessary for validation of the unification steps.

3.3.2.3 Adding Noise Based on Real-world Noise Model

The unified datasets contain only clean images. For training the model,

clean and noisy image pairs are required. Therefore, a real-world noise

model is used to generate realistic noise for adding to the clean images. The

real-world noise model is an extension of the Gaussian noise model and is

formulated as:

Noise = N(0, 1) ∗
√

Aa ∗ Ad ∗ I
Nsat

+ Ad2 ∗ (Aa ∗ CT1n ∗ CT2n)2 + (PRNU ∗ s)2

Where N(0, 1) is the normal distribution with µ = 0 and σ = 1. Aa is

the analogue gain. Ad is the digital gain. I is the normalised image before

adding the noise. Nsat is the saturation limit, determined by exposing the

sensor long enough that every pixel reaches the full capacity. PRNU is the

per pixel gain. CT1n and CT2n are respectively STD(Nt1) and STD(Nt2)

where Nt1 and Nt2 are components of the thermal noise before and after

the analogue gain. CT1n and CT2n are determined by capturing sensor

39

Method

output in the dark at various analogue gain settings. The read noise is then

calculated for each gain setting. A fit is performed between the calculated

read noise and sigma according to the noise model to determine CT1n and

CT2n.

The amount of noise is controlled by calculating the analogue gain Aa

and digital gain Ad. Noise is often displayed in the dB format. First, we

need to calculate the linear gain from the dB using the standard formula:

Al = 10
db
20

From the linear gain, we can calculate the sensor gain with the following

formula:

As =
Al
Ac

Where Ac is conversion gain, which is 4.1433 for the target sensor. With

the sensor gain, we can determine the analogue gain. Usually, the analogue

gain is measured from the sensor. However, the analogue gain can never be

higher than the total sensor gain. Therefore, if the sensor gain is lower than

the maximal analogue gain, we set the sensor gain as analogue gain. Giving

the formula:

Aa = min(As, Aamax)

From the analogue gain and the sensor gain, we can calculate the digital

gain using:

40

3.3 Raw Image Denoising Dataset

Ad =
As
Aa

After calculating the noise, it is added to the image. The image with the

simulated noise can reach outside the image range. Therefore, an important

step after adding the noise is to clip the image. These steps result in the

following formula:

In = clip0,1(I + Noise)

3.3.3 Pre- and Post-Processing Pipeline

Figure 3.12: Overview of the data process pipeline for denoising

This section describes the details about the pre- and post-processing pipelines,

forming an ISP. The overview of the ISP used for the experiments is shown

41

Method

in Figure 3.12. The first step of the ISP is to crop the image, this step is

only used for training the model with the purpose to speed up the training

process. After cropping, the image is normalised to 1 bit. The next step is

to white balance the raw image. White balancing, important for the gen-

eralisation of colors between different sensors. Applying white balance is

based on the color values of an image, the colors from the raw image are

saved for later. More about white balance is described in Subsection 3.2.1.

Applying white balance can result in values outside the value range, which

causes artefacts in the image. Therefore, it is important to clip the image as

the next step. The last step is to extract the color channels from the images

according to the Bayer pattern. This makes it easier for the model to handle

the different colors.

The pre-processed image is then used as input for the denoising model.

The denoising model takes a 4-channel raw image as input and outputs

a 3-channel RGB image. After the model prediction, the post-processing

starts. The first step of post-processing is white balancing the generated

image. The goal to white balance again is to get the same white values as the

original image. To reach this goal, the measured colors from the first white

balancing step are used. White balance for the sRGB image is described

in Subsection 3.2.1. The next step is to apply color correction to balance

the colors in a digital image. More about color correction is described in

Subsection 3.2.2. Similar as we have seen in processing, the next step is to

clip to make sure the image values are within the range after adding values.

The last step is to apply gamma correction, which makes the image brighter.

How the gamma correction works is described in Subsection 3.2.3.

3.3.4 Data Selection based on U-net Performance

Before the data is used for training, we want to validate the quality of the

dataset. Each candidate dataset is used to train a separate U-net model [18]

integrated in the pipeline described in Subsection 3.3.3, replacing the trans-

former denoising. The real sensor data has no ground truth pairs. Therefore,

an unseen test set is created by randomly selecting 10% of each public avail-

42

3.4 Teacher Model for Raw Denoising

able dataset described in 3.3.1. The test set images will be centre cropped to

448×448 because of computational reasons. This test set is used for gener-

ating quantitative results. In addition, the separate trained models will be

tested on the real sensor data, which generates qualitative results.

For visualising the feature differences between the datasets, we first ex-

tract the features using the VGG16 model [96]. The VGG16 model is a

widely used model for extracting features from images [97]. The feature

output is (n ∗ 7 ∗ 7 ∗ 512) which makes it impossible to visualise. We use

t-SNE [85] to reduce the feature space to two dimensions, which enables the

visualisation of the features.

To reduce the training time even more, we also want to test the perfor-

mance drop by using a sample of the selected datasets. The expectation is

that denoising performance will decrease by sampling the data. However,

if this would not be the case, it saves training time. For the samples, we

randomly select a half and a quarter of all the datasets.

3.4 Teacher Model for Raw Denoising

This subsection describes the methodology used for the teacher network.

Two transformer models are used to determine the best teacher model, be-

ing Restormer [65] and SCUNet [68]. Both Restormer and SCUNet are orig-

inally used to denoise sRGB images (3 channel input), while we aim to de-

noise raw images (4 channel input). Raw denoising requires an integrated

upsampling step in the model [98]. Therefore, some changes will be made

to both models. The network structure of Restormer is discussed in Subsec-

tion 3.4.1 and the network structure of SCUNet is described in Subsection

3.4.2.

3.4.1 Modified Restormer Architecture

The original Restormer architecture for denoising sRGB images is described

in Subsection 2.2.2. The modified Restormer model is shown in 3.13. The

skip connection from the input image to the restored image (the upper above

43

Method

Figure 3.13: Modified Restormer Model

one in Figure 2.5) is not used for real noise denoising in the original proposal

because of performance reasons [65], which is why we will also not use it.

The number of transformer blocks is also something to determine. Using

more or less transformer blocks at the resolution steps is a method to scale

the Restormer model. The number of blocks used for the teacher model are

respectively 4, 6, 6, 8 for the parameters L1, L2, L3 and L4. The number of

heads for each block is also scalable. We use 2 heads at each block. These

settings are based on the original proposed model for real noise image de-

noising [65].

To enable raw to sRGB denoising, an upsampling method is added be-

tween the last transformer block and the last 3×3 convolution layer. If we

would upsample at the beginning, all feature map shapes would be dou-

bled. Bigger feature maps result in a longer prediction time. Therefore, we

will place the upsample step at the end of the model.

We decided to apply a transposed convolution operator because of the

good performance [99]. A transposed convolution task is the reverse opera-

tion of a regular convolution task and is commonly used for image genera-

tion tasks where a higher resolution is desired [65], [68].

3.4.2 Modified SCUNet Architecture

The modified SCUNet is shown in 3.14. The goal of the SCUNet is to denoise

sRGB images. Therefore, we add an extra upsampling between the last SC

Block and the last 3x3 convolution layer, just like we did at the Restormer

44

3.4 Teacher Model for Raw Denoising

Figure 3.14: Modified SCUNet Model

model. Besides adding an extra upsampling for raw denoising, we also

changed the padding from replication padding to reflection padding. The

original padding caused a border problem in our data (See Figure 3.15a).

The border problem only appeared when tested on data which was not di-

vidable by 64.

(a) Border problem (b) Apply reflection padding

Figure 3.15: Border problem for SCUNet default training strategy

We tried multiple padding options. When applying reflection padding

instead of replication padding, the border artefacts are gone. The result for

using reflection padding is shown in 3.15b.

3.4.3 Training Strategy for the Teacher Network

The first phase for knowledge distillation is to train the teacher. We trained

two teacher models, one based on the Restormer [65] model and one based

on the SCUNet [68]. The training strategy for both models started based

45

Method

on their original proposal, but after some experiments the training strategy

changed. More about those experiments is described in Chapter 4. The final

training strategy is described further in this section. First, we describe how

we initialise the weights in Subsection 3.4.3.1. Then we describe in Subsec-

tion 3.4.3.2 about progressive learning for Restormer. At last, the teacher

loss is described in Subsection 3.4.3.3.

3.4.3.1 Initialising the Weights

The first step before the training starts is to initialise the weights of a model.

For both the Restormer and SCUNet based models, the weights are ini-

tialised by copying the weights from the pre-trained models. Initialising

the weights from a model with a similar goal is beneficial for the training

speed because the weights have an indication which is probably closer to

the convergence point than with random weights. The adjustment for both

models from a three channel input to a four channel input precludes the

initialisation for the input weights from the original models. The extra up-

sampling step is also not trained in the original proposal. Therefore, these

weights are initialised by a random value between 0 and 1.

3.4.3.2 Progressive Learning

The original Restormer weights are trained using progressive learning. Pro-

gressive learning is a method to increase the patch size and decrease the

batch size multiple times after completing a certain number of iterations.

The goal for progressive learning is for the transformer model to learn fea-

tures at different levels of detail. W found that the progressive learning

performs significantly better for the Restormer model, which is why we

decided to use it for training the Restormer-based model. Because of the

significant improvement in performance, we also tried applying progres-

sive learning to the SCUNet based model. Despite the improvement for the

Restormer model, using progressive learning did not improve the results for

the SCUNet compared to the original strategy with a fixed patch and batch

size. This could be because SCUNet already has a combination of a trans-

former block and a CNN block for extracting non-local and local features,

46

3.4 Teacher Model for Raw Denoising

while Restormer only uses transformer blocks.

3.4.3.3 Teacher Loss

The teacher loss is based on the loss used to train the original SCUNet [68],

[100]. The loss is a combination of a pixel loss, a perceptual loss and an ad-

versarial loss. Pixel loss is a pixel wise comparison between the prediction

and the reference image. As pixel loss, we use L1 loss, defined by:

lpixel =
n

∑
i=1

|yi − ŷi|

Where n is the number of pixels, yi represents the reference pixels and ŷi

represents the predicted pixels.

Figure 3.16: VGG-19 architecture [101]

In addition to the pixel loss, we use the perceptual loss. Perceptual loss

is used to match the features between the reference data and the predic-

tion. For the feature extraction, we use the pre-trained VGG-19 model [102]

because VGG-19 is known to be a good feature extractor and VGG-19 is

used in the SCUNet proposal [68], [103]. After the features are extracted

for both the predicted and reference image, L1 loss is used to calculate the

differences between them. The SCUNet proposal uses the layers Conv1_2,

Conv2_2, Conv3_4, Conv4_4 and Conv5_4 (see Figure 3.16). If we use the

same layers for the perceptual loss, a grid artifact appears in the results (see

Figure 3.17a).

47

Method

(a) Grid artefact sensor specific (b) Grid artefact sensor specific solved

(c) Grid artefact public unified (d) Grid artefact public unified solved

Figure 3.17: Grid artefacts for SCUNet default perceptual loss

Perceptual loss can cause these kinds of grid artefacts [104]. We decided

to train a SCUNet model without the perceptual loss to see if the perceptual

loss is causing the pattern. For the model, we use the same training strategy

used for the baseline model, except for removing the perceptual loss.

Loss function PSNR ↑ SSIM ↑
With Lper 37.150 0.906
No Lper 36.537 0.899

Table 3.3: Dataset details based on 1950 centre cropped 448×448 images of the
unified test, with 60 dB of noise.

When we remove the perceptual loss, we see that the grid artefacts dis-

appear (see 3.17). What we also see is that the performance on details is

worse. When we look at Table 3.3, we see that the performance on the uni-

48

3.4 Teacher Model for Raw Denoising

fied dataset also significantly decreased. The perceptual loss used to train

SCUNet consists of five different layers, being Conv1_2, Conv2_2, Conv3_4,

Conv4_4 and Conv5_4. These are the last layers from the first five blocks of

the VGG19 layers. After these layers, ReLu is applied to the features. It is

more usual to extract the features from the ReLu layers [104]. Therefore, we

first try to use ReLu1_2, ReLu2_2, ReLu3_4, ReLu4_4 and ReLu5_4 layers

for the perceptual loss. We train a model using each separate layer as the

perceptual loss, to see which layer causes the grid artefacts. We keep the set

weights from the SCUNet training (0.1, 0.1, 1, 1, 1) for the layers. The results

for these models are shown in Appendix B. From the results, we see that the

border effect is only visible for the models trained with the ReLu3_4 and

ReLu4_4 layers. We therefore choose to continue the training only using

ReLu1_2, ReLu2_2 and ReLu5_4. This results in the following loss function:

Lper = 0.1∗ L1(ReLu1_2(y), ReLu1_2(ŷ))+ 0.1∗ L1(ReLu2_2(y), ReLu2_2(ŷ))

+ 1 ∗ L1(ReLu5_4(y), ReLu5_4(ŷ))

The last addition to the teacher loss is the adversarial loss. The adver-

sarial loss is used to create and control the competition between the encoder

and the decoder. For the adversarial loss, we use a combination of the sig-

moid and BCE loss [105]. The adversarial loss is defined by:

ladv =
∑n

i=1 −wi[yi ∗ log σ(ŷi) + (1 − yi) ∗ log(1 − σ(xi))]

n

Where n is the batch size, ŷi is the prediction, yi is 0 or 1 if the generated

image is real and wi is an optional weight for each sample which we do not

use.

These loss functions together form the teacher loss, which can be defined

49

Method

as:

lteacher = αlpixel + βlper + γladv

For training, we use α = 10, β = 1 and γ = 1. In the SCUNet training

proposal they use α = 1, β = 1 and γ = 1 but we saw that the pixels loss

started and stayed significantly lower during training than the other losses,

which would result in little influence. Therefore, we chose to set α to 10.

The proposed training strategy for Restormer suggests to only use l1 loss.

However, in the experiments we saw that using only l1 loss performed bad

for restoring colors, which is why we decided to use the lteacher also for the

Restormer model. The experiment is shown in Section 4.2.1.

3.5 Distilling Knowledge to the Student

After the training of the teacher model is done, the student model can be

trained. As described in Section 2.3, The goal while training the student

model is to transfer the knowledge from the teacher model to the student

model. To achieve the knowledge transfer, we use some loss functions based

on the teacher predictions. In Section 2.3 we saw that response-based loss

and feature-based loss perform best for image denoising. For response-

based loss, we use L1 loss between the student prediction and the teacher

prediction, resulting in:

lresponse =
n

∑
i=1

|ŷi,teacher − ŷi,student|

For the feature loss, we use the feature maps at the end of each resolution

step. Between the feature maps, we also use the L1 loss to calculate the

difference, resulting in:

50

3.5 Distilling Knowledge to the Student

l f eature =
m

∑
j=1

wj

n

∑
i=1

| fij,teacher − fij,student|

Where m is the number of resolution steps, wj is a weight to set the trade

of between the different feature maps, and fij is the feature value i from

feature map j.

To form the total student loss, we add the teacher loss functions to the

knowledge distillation losses, resulting in the following formulas:

lstudent_response = αlpixel + βlper + γladv + δlresponse

lstudent_ f eature = αlpixel + βlper + γladv + ϵl f eature

From Section 2.3.3 we have learned that for using knowledge distillation

for transformer models, it is better for the accuracy of the model to reduce

the number of blocks over the number of channels. We therefore will com-

press the teacher model blocks to halve the number of blocks and a quarter

of the number of blocks to examine the knowledge distillation effectiveness.

51

4. Experiments and Results

This chapter describes the experiments and results of training the denois-

ing transformer using knowledge distillation. As described in Section 3.1,

our research consists of three stages. For the first phase, a selection of the

unified data will be examined in Section 4.1. The goal of the second phase

is to optimize the performance of the teacher model. The experiments for

optimizing the teacher network are described in Section 4.2. The teacher

model is then used to transfer the knowledge to a computational less heavy

student model. The experiments about distilling the knowledge from the

teacher to the student are described in Section 4.3.

For testing the performance of the trained models on the unified dataset,

we use two metrics, peak signal-to-noise (PSNR) and structure similarity

index (SSIM). PSNR and SSIM are image quality metrics. PSNR is based

on the mean squared error (MSE). When MSE approaches zero, PSNR ap-

proaches infinity [106]. SSIM is an image comparison method considered to

be correlated with the human visual system. SSIM uses three loss-based fac-

tors to calculate the similarity, instead of using only one [106]. SSIM tends

to be

4.1 Dataset Selection

This section describes the results of the data selection experiment. First,

the quantitative results are shown in 4.1.1. Then the qualitative results are

shown in 4.1.1. Next, the feature differences are displayed using t-SNE in

4.1.3. At last, the sampling of the data is described in 4.1.4.

52

4.1 Dataset Selection

4.1.1 Quantitative Data Selection Results

This subsection will discuss the results for the data selection. The models,

trained on the separate datasets, are tested on the target data with a noise

level of 60db. 60db is a high level of noise which is typically only occurs in

low-light conditions. The input image with 60db is shown in Figure A.1b.

Table 4.1 the quantitative values are shown for each separate trained model.

Dataset PSNR ↑ SSIM ↑
HDR+ 32.413 0.883
SIDD 31.993 0.865
SID 31.240 0.868

Raise 34.965 0.891
Flickr2K 34.135 0.886

Mit5k 34.417 0.885
All combined 34.637 0.893

Selected 34.794 0.890

Table 4.1: Dataset selection quantitative results on 60db noise

In Table 4.1 the quantitative values are shown for each separate trained

model. The model trained on all data is the baseline for the performance

comparison of the models. Table 4.1 shows that the models trained on

HDR+, SIDD and SID perform significantly worse on PSNR than the model

trained on all the data. On SSIM the HDR+ scores similar to the baseline

model, but SIDD and SID still perform significantly worse. Raise is the

best performing separate model, scoring even better on the PSNR than the

model trained on all data. This implies that some data decreases the perfor-

mance of the model. Mit5k scores on PSNR and SSIM slightly worse than

the model trained on all dataset. Flickr2k performs on SSIM similar to the

baseline model, but on PSNR it performs worse.

Overall, we see that it is important to make a selection from the datasets

because Raise on its own performs better than the model trained on all

datasets. Further, we see that SIDD and SID perform significantly less on

PSNR and SSIM than the model trained on all data.

53

Experiments and Results

4.1.2 Qualitative Data Selection results

For the qualitative comparison, we use the same models used in Section4.1.1.

To get an insight in the visual performance, we show single frame results of

the separate models in Figure A.1.

If we compare the results of the separate trained models against the

model trained on all the datasets, we can see that the model trained on

HDR+ removes the noise comparable with the model trained on all the

datasets. Especially in the dark regions, the model trained on HDR+ seems

to clear the noise well compared to the model trained on all data. The model

trained on SIDD has little fade compared to the model trained on all data.

We use the term fade to describe the circular faint spots as in shown in A.1g.

Despite the little fade, the image is more blurry than the image from the

model trained on all data. The image produced by the model trained on the

SID dataset has also little fade, but the level of detail is also low. The model

trained on Raise performs similar to the model trained on all data, with a

little more blur. The model trained on Flickr2k generates more fade, mainly

in the dark parts. Despite the fade, the image has a good amount of detail.

At last, we compare the model trained on Mit5k. The image generated by

the model performs similar to the model trained on HDR+ except for the

fade. The Mit5k model generates more fade than the HDR+ model.

When we compare these visual results to the quantitative results from

4.1.1, we see that the low PSNR and SSIM from SIDD and SID are confirmed

by the low performance on the visible results. In the case of HDR+, we

observe that the visible outcomes align more closely with the similar SSIM

as the model trained on all, rather than the lower PSNR. For Flickr2K we see

the opposite. Based on the qualitative results, you would expect Flickr2K to

perform better on the visual results.

Practical applications often use the approach to merge multiple frames

for a better denoising performance [24]. They take the average over multiple

frames, resulting in less noise. Therefore, we also show the averaged results

of the denoising models in Figure A.2. The frames are averaged based on

100 samples with the noise level of 60db.

54

4.1 Dataset Selection

The averaged frame results in Figure A.2 a better visual of the quality

of the reconstruction of the image. It is easier to see the generated colors

and details of the images. The averaged results confirm the previous claim

that the colors are off for the model trained on the SID dataset, having a

greyish look. The colors of the SIDD model look more realistic than the

other models. If we look at the details, we see that the SIDD model still

lacks of detail compared to the other models. The Raise model has slightly

more detail than the other models.

Based on the qualitative and quantitative performances, we chose to use

the HDR+, Raise and Mit5k. Raise and Mit5k score high on both qualitative

metrics and on the single and average target data comparison, which make

them a clear choice to add in the selected dataset. HDR+ scores bad on

the PSNR, but it scores high on SSIM and on the regenerated target data,

which is more important for the research. Flickr2k scores high on the unified

test set, but the lack of performance on the target data is too significant to

include them in the selected dataset. The SIDD and SID dataset score bad

on both the quantitative metrics of the unified test set and the visual results

of the target test set.

When we compare the selected dataset from Table 4.1 we see that based

on PSNR it has a higher performance than the model trained on all the data.

Based on SSIM it performs comparable to the model trained on all data. The

visual results confirm these statistics. The model trained on the selected

data contains a bit less fade and has more detail.

4.1.3 The Differences Between the Datasets Using t-SNE

We use a t-SNE plot to highlight the similarities in the datasets. To generate

this plot, we first extract features of the datasets with the pre-trained VGG16

model [96]. For predicting the features, we leave the fully connected layers

out of the model to extract the features of the images. When we get the

features, we flatten them and use t-SNE to reduce the dimensions to two.

The t-SNE visualisation for all data is shown in Figure 4.1.

In Figure 4.1 we see a strong group of mostly purple (Raise) at the left.

55

Experiments and Results

Figure 4.1: t-SNE highlighting the feature differences between the potential
data sets.

The rest of the data seems more evenly spread in a bigger cloud. This im-

plicates that Raise has different features in within the data than the other

datasets. When we dive deeper in the features of Raise [91] we see that un-

like the other dataset, Raise is not focussed on low light images. The rest

of the features are similar to the other datasets, which implies that the big

feature difference cluster is based on the high light image.

Based on the quantitative (Section 4.1.1) and qualitative results (Section

4.1.2) we decided to continue with the datasets HDR+, Raise and Mit5k.

In the t-SNE from Figure 4.1 we see that the yellow dots from the flickr2k

dataset are slightly spread over the cloud on the right. The red dots are

more available in the right bottom corner of the t-SNE plot. The green and

blue dots, from the SIDD and the SID dataset are more even spread over the

figure. This implies that the SIDD and SID dataset are more similar to the

other datasets. The reason for their less performance is probably that they

56

4.1 Dataset Selection

have a few samples, making it harder for a model to learn the patterns of

the data. The Flickr2k dataset is the only dataset based on sRGB images.

The results implicate that the unprocessed sRGB images are not as good for

the raw denoising as the original raw images.

4.1.4 Data Reduction

We also want to test For testing the performance drop when using a smaller

dataset, the same model is trained on half of the samples and a quarter of the

samples from the combined dataset. These smaller datasets are created by

sampling for each dataset separately, making sure the ratio between datasets

remains. The quantitative results for the sampled datasets are shown in

Table 4.2

Dataset PSNR ↑ SSIM ↑
Full sample (all) 34.637 0.893
Half sample (all) 34.738 0.891

Quarter sample (all) 34.932 0.891

Table 4.2: Data sample selection quantitative results on 60db noise

The results in Table 4.2 show that the PSNR of the half and quarter sam-

ple is slightly higher than the PSNR from the model trained on all the data.

This is a noticeable result because the performance of a model is expected

to go up if there is more data available for training. The SSIM shows a

slight decrease in performance when the data is reduced, which is more

expected. The results imply that the performance would not decrease sig-

nificantly when using a quarter of the available dataset. However, the dif-

ferences are small, which would indicate that it would be beneficial to only

use a sample of the dataset.

For testing the performance drop when using a smaller dataset, the same

test set is used for the models trained on half and a quarter of the data. The

single frame results are shown in Figure 4.2.

The single frame results in Figure 4.2 show that the amount of detail

decreases when we halve the training data. The quarter sampled data has

more detail than the half sampled data. However, the fade increases signifi-

57

Experiments and Results

(a) Full sample (all) (b) Half sample (all)

(c) Quarter sample (all)

Figure 4.2: U-net trained on separate samples of the combined test set, tested
on target test set with single frames containing 60 db noise.

cantly each time we halve the dataset, which implies that it would decrease

the performance of the model if a smaller sample of the available data is

used.

(a) Full sample (all) (b) Half sample (all)

(c) Quarter sample (all)

Figure 4.3: U-net trained on separate samples of the combined test set, tested
on target test set with averaged images containing 60 db noise.

The averaged results of 100 frames with 60db of noise are shown in Table

58

4.2 Teacher Network Optimization

4.3 to have a more clear sight in the details and color reconstruction. They

show that the amount of detail decreases in each step of halving the dataset.

In addition to the decreasing amount of detail are the colors of the generated

images from the smaller datasets more greyish than the image generated by

the model trained on all data.

Based on the decreasing detail in both the single frame result and the

averaged frame results, we decided that the performance drop of the model

would suffer too much for sampling the selected data.

4.2 Teacher Network Optimization

For the experiments, we decided to use the proposed real noise training

strategies from SCUNet [68] and Restormer [65] (see Section 3.4). SCUNet

uses a patch size of 544×544 with a batch size of 24. We reduced the patch

size to 224×224 and the batch size to 16 because of computational limita-

tions. A step-wise learning rate is used starting from 0.0001. The optimizer

is Adam [107].

For the Restormer the Adam optimizer is also used with a linear learn-

ing rate is used starting at 0.0001. The proposed progressive learning for the

Restormer model is with patch and batch sizes of [(128x128, 64), (160x160,

40), (192x192, 32), (256x256, 16), (320x320, 8), (384x384, 8)] updated at it-

erations [92K, 156K, 204K, 240K, 276K] [65]. For computational reasons, we

reduce the batch size with a factor four, resulting in [(128x128, 16), (160x160,

10), (192x192, 8), (256x256, 4), (320x320, 2), (384x384, 2)].

4.2.1 Restormer with SCU loss

The results from the baseline Restormer model contain little color, and they

still contain noise (see Figure C.1, C.7 and C.13, containing 32db, 45db and

63db of noise). The reason could be that the L1 loss is based on the differ-

ences between the pixel values, without taking important structures within

the pixels into account [108], [109]. Therefore, we chose to train a new

Restormer model with the same loss as the SCUNet model. Table 4.3 shows

59

Experiments and Results

the qualitative results for the experiment.

Loss function PSNR ↑ SSIM ↑
L1 34.392 0.874

lteacher loss 37.459 0.911

Table 4.3: Restormer performance based on 1950 center cropped 448×448 im-
ages of the unified test, with 60 dB of noise.

In Table 4.3 we see that based on both PSNR and SSIM the performance

of the Restormer model has increased significantly. If we look at the vi-

sual results in Figures C.1, C.7 and C.13, containing 32db, 45db and 63db

of noise, we see that the colors are restored, and the noise is significantly

less. From this experiment, we can say that the SCUNet-based loss works

better for the Restormer on our target data. Combining the L1 loss with

adversarial loss and perceptual loss allows for a more comprehensive and

robust optimization process. Each loss function captures different aspects

of the image reconstruction task. By combining them, the model can learn

to balance various trade-offs and produce higher-quality results

4.2.2 Best Performing Teacher Model

Before knowledge distillation is applied, we want to compare which teacher

model is performing best. To validate that the transformers perform better

for the real sensor noise, we decided to also compare the U-net trained on

the selected dataset. The quantitative results are shown in Table 4.4.

Modified Architecture PSNR ↑ SSIM ↑ parameters (M) ↓ GFlops ↓
SCUNet 37.254 0.916 17.963 272

Restormer 38.536 0.931 26.154 463
U-net 35.022 0.903 0.766 77.2

Table 4.4: Deep denoising performance based on 1950 center cropped 448×448
images of the unified test, with 60 dB of noise.

In Table 4.4 we see that the transformer networks outperform U-net sig-

nificantly. We also see that Restormer performs better than the SCUNet

based on PSNR. If we look at the SSIM, the models are more comparable.

The qualitative results are shown in Appendix D. If we look at the qualita-

tive real sensor results, we see that for small noise (32db) the differences are

60

4.3 Student Network Learning via Knowledge Distillation

small, but if we look at the higher noise level (63db) the differences become

more visual. Especially in terms of color the transformer models perform

better than U-net. They also contain a bit more detail. If we look at the dif-

ferences between SCUNet and Restormer we see that Restormer has slightly

better details but SCUNet has less remaining noise. PSNR and SSIM form

the good bases for the image comparison. PSNR has a weakness for mea-

suring fidelity signal, resulting in a low representation for the perceptual

quality. SSIM represents the perceptual quality better, which is why SSIM is

more important for our comparison [108], [110]. For SSIM the differences in

performance are small, which means that the visual results are required for

making a good dicision. For the visual results, the SCUNet has less detail

but also less remaining noise. The focus task is denoising, which is why we

chose to continue with SCUNet for knowledge distillation.

4.3 Student Network Learning via Knowledge Dis-

tillation

For the student model, we want to compress the SCUNet-based in multiple

steps to see the effect for each compression level. Therefore, one student

model contains half the number of blocks and the second student model

contains a quarter of the blocks. We use the same training strategy as for

the teacher model, except for the student loss. We also have to decrease the

batch size to 12 because we extract the features while training.

For the knowledge distillation, we want to compare the results from

the methods against the teacher model and the student model trained from

scratch. The comparison with the teacher model will show how much per-

formance there is lost with compiling the model. The comparison with

the student model trained from scratch will show how much influence the

knowledge distillation has had on the performance of the student model.

The results of the experiment are shown in Table 4.5.

If we look at Table 4.5 the surprising thing is that the PSNR of the SS2

model is higher than the teacher model. This is surprising because we

61

Experiments and Results

ID Knowledge
distilla-
tion

Blocks PSNR ↑ SSIM ↑ parameters (M) ↓ GFlops ↓

T Teacher
model

4 37.254 0.916 18.0 272

SS2 Student
model
from
scratch

2 37.524 0.920 9.7 163

SS1 Student
model
from
scratch

1 37.246 0.917 5.5 108

SR2 Response
based

2 37.290 0.916 9.7 163

SF2 Feature
based

2 37.561 0.921 9.7 163

SR1 Response
based

1 37.405 0.919 5.5 108

SF1 Feature
based

1 37.363 0.918 5.5 108

Table 4.5: Knowledge distillation results based on 1950 center cropped
448×448 images of the unified test, with 60 dB of noise.

would expect to lose performance on accuracy when compressing a model.

The SSIM of the student model from scratch is comparable with the teacher

model because the difference is small. For SS1 we see that the student model

trained from scratch performs slightly lower on both PSNR and SSIM, which

is more in line with the expectations.

If we look at the PSNR for the SF2 model, we see that it is slightly higher

than the teacher model and comparable with SS2. The SSIM for the feature-

based model is comparable with the teacher model and the SS2. The SR2

performs similar to the teacher model on both PSNR and SSIM. Because of

the small differences in the quantitative performance, it is important to look

at the visual results for the performance comparison.

The qualitative data is shown in Appendix E. If we look at the visual

results for the teacher model and SS2, we see that they make more sense.

The teacher model has more detail and less fade than the SS2 and the SS1

model. The response-based models perform significantly worse than the

62

4.3 Student Network Learning via Knowledge Distillation

teacher model, but also significantly better than the student model trained

from scratch. The feature-based models perform slightly worse than the

teacher model, but they perform significantly better than the student model

trained from scratch. The differences are the best visible in the higher noise

images.

The qualitative results from the unified dataset implicate that the knowl-

edge distillation has no positive effect on the model performance of the

student model, and that SS2 and SS1 perform comparable to the teacher

network. However, the qualitative results from the real sensor data show

a significant improvement using knowledge distillation when compressing

the models to half the blocks, especially for the feature-based model. From

these statements, we can learn that it is beneficial to use knowledge distil-

lation to improve small model performance. We also see that little accuracy

is lost, and much efficiency is gained by compressing a bigger model using

knowledge distillation.

63

5. Conclusion

The goal of the research is to find the right balance between efficiency and

accuracy for real sensor denoising. We have gone through three phases be-

fore cumming to the final denoising model. First, we unified and selected a

raw dataset. The research question applicable for this stage was:

2. How to generate pair-wise realistic noisy data on a large scale?

To answer this question, we answer the specified sub-questions. The first

sub-question was:

2a. How to unify publicly available raw denoising datasets for the use of train-

ing a deep denoising model?

For this research question, we proposed a unification pipeline. We uni-

fied multiple public available raw datasets using the unification pipeline.

The processed were used as clean images. We used a real-world noise model

to generate the noisy pairs. The quality of the processed images were tested

using U-net model. We found that the processing pipeline was resulting in

good denoising results for the real sensor images. The next sub-question to

answer was

2b. What is the impact of the white balance and color correction matrix approx-

imation for converting sRGB images back to raw images?

To answer this sub-question, we used an additional unprocessing pipeline

to the unification pipeline. This unprocessing pipeline estimates the white

balance and color correction matrix. For the unprocessed unified images, we

used the same test as the unified raw images. Based on this test, we found

that the white balance and color correction matrix approximation were not

good enough to include the Flickr2k sRGB dataset in the selected dataset.

The last sub-question in this phase was:

How large should the training dataset be for training the teacher network?

64

We trained a U-net model on samples of the dataset, testing how impor-

tant the amount of data was for the quality of the prediction. From this test,

we found that using a smaller sample of the selected dataset would harm

the accuracy too much.

The next phase was to train the teacher network. For this stage, there

were no research questions to answer. However, this stage was required

to enable the knowledge distillation. For training the teacher network, we

optimised the Restormer and SCUNet model. In addition to the original

networks, we added an upsampling layer to the Restormer and SCUNet

to make raw denoising possible. During the optimization, we resolved a

border problem caused by replication padding and a grid artifact caused by

specific layers of the perceptual loss. We also found that the L1 loss for train-

ing the Restormer was not good for our real sensor data, which is why we

added the perceptual loss and adversarial loss. The transformer models out-

performed the U-Net on the unified testset and on the real sensor data. The

differences in performance were more clear by a higher noise level. For the

transformer comparison, SCUNet turned out to be more applicable based

on a comparable performance with a more efficient model. This resulted in

SCUNet forming a basis for the knowledge distillation.

In the last stage, we compressed the SCUNet into a more efficient student

model by using response-based and feature-based knowledge distillation.

In this stage, we tried to answer the following research question:

1. What is the impact of compressing a transformer model for real world low-

light image denoising using knowledge distillation?

To answer this question, we answer the specified sub-questions. The first

sub-question was:

1a. How much knowledge is lost after compressing the model using knowledge

distillation?

To answer this sub-question, we used response-based and feature-based

knowledge distillation. The student model trained with response-based

knowledge distillation had a significant drop in performance. The student

65

Conclusion

model trained with feature-based knowledge distillation only had a small

performance drop.

1b. How much computing power is saved after compressing the model using

knowledge distillation?

For the student models, we compressed the teacher model twice. We

used half of the blocks and a quarter of the blocks. Half the blocks gains

an efficiency of approximately 45% and a quarter of the blocks gains an

efficiency of approximately 70%.

1c. What is the performance difference of the student network compared to the

same network structure being trained from scratch?

Compressing the model without using knowledge distillation causes a

significant performance drop. Using response-based knowledge distillation

slightly improves the student model’s performance. For a better result, you

can apply feature-based knowledge distillation because that method signif-

icantly improved the performance on the real sensor data.

5.1 Discussion and Future Work

This section describes the discussion and future work points of the research.

First, the conflicting results between the quantitative and qualitative results

are described in Subsection 5.1.1. Then the batch reduction of the progres-

sive learning strategy from the Restormer model is discussed in Subsection

5.1.2. At last, some techniques to finalise the student model performance

are described in Subsection 5.1.3.

5.1.1 Conflicting Results Between Quantitative Results and

Qualitative Results

Throughout the experiments, we have observed that the quantitative met-

rics implied the opposite as the qualitative results. This was mainly true for

PSNR. Calculating the PSNR is based on pixel values, which results that the

perceptual differences and structural information is not considered when

66

5.1 Discussion and Future Work

calculating the loss. This could lead to different PSNR quality values than

the quality differences shown in an image [110]. There is some work which

aims to improve the metrics over PSNR. However, the possible improve-

ments are too complex to use, which is why PSNR is currently still widely

used [110].

SSIM showed less difference in the experiments and was more in line

with the qualitative results. SSIM is calculated based on luminance, con-

trast, and structural similarity, representing the perceptual quality better.

This is why SSIM is a better quality metrics for the reconstruction of the

image than PSNR [108], [110]. There is numerous research which tries to

improve the metrics for image quality comparison. However, it tends to be

challenging to get all the quality measures into a number [110].

5.1.2 Progressive Learning Strategy

For training the Restormer we used the proposed progressive learning strat-

egy [65]. Because of computational reasons, we could not follow the pro-

posed batch size for the strategy. Finding the optimal progressive learning

for the best performance is about finding the right trade-off iterations for

changing the patch- and batch sizes. When the batch sizes are decreased,

it could result in different trade off between the other progressive learning

parameters [111]. We reduced the batch size by a factor of four, but we did

not optimise the number of iterations for changing the batch and patch size.

For future work, the progressive learning strategy could be optimised for

the smaller batch size. More available computing power could also enable

the ability to train with the original proposed progressive learning strategy.

5.1.3 Student Model Optimizing

When training the student model, we used real-time predictions from the

teacher model to generate the teacher loss. Because of limited computing

power, we had to reduce the batch size for training the student model. Re-

ducing the batch size can result in a lower accuracy, so for optimizing the

student model, the same batch size as the training could be beneficial for

67

Conclusion

the model accuracy. For future work, the teacher features and results could

be saved, which would save computing power, so the student model could

be trained on the same batch size as the teacher network. This saves a lot

of computational power for the teacher network, but it will take a bit of

(low-cost) memory.

Further, the student model is only trained on unified publicly available

data with a noise model to generate the image pairs. Using the real-world

noise model is close to the real noise images. However, we only add noise

to the images. The other features which correlate with noise, like image

darkness, are not simulated. Therefore, we expect that training the model

first on the generated simulated data, and then fine tune on the real noise

data is expected to improve the model accuracy [112].

For applying the knowledge distillation, we only applied response-based

and feature-based knowledge distillation separately. In Subsection 2.3 we

saw that knowledge distillation techniques are often combined. To improve

the effect of knowledge distillation, the feature-based and response-based

methods could be combined. We also set the loss trade-off weights for the

distillation loss to one. For further improvement of the knowledge distilla-

tion effect, the trade-off values for the loss weights could be tweaked. Be-

cause we did not use multiple weighs, we are not sure that the weights are

optimal. We would expect that the weight of the feature-based knowledge

distillation should be higher because the performance went significantly up

when we added the feature distillation loss.

68

Bibliography

[1] M. Brown and S. Kim, “Understanding color and the in-camera
image processing pipeline for computer vision,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. Tutorial, 2019, pp. 1–247.

[2] D. Liu, B. Wen, X. Liu, Z. Wang, and T. S. Huang, “When image de-
noising meets high-level vision tasks: A deep learning approach,”
arXiv preprint arXiv:1706.04284, 2017.

[3] H. Wang, Y. Li, Y. Wang, H. Hu, and M.-H. Yang, “Collaborative
distillation for ultra-resolution universal style transfer,” in Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recog-
nition, 2020, pp. 1860–1869.

[4] T. Brooks, B. Mildenhall, T. Xue, J. Chen, D. Sharlet, and J. T. Bar-
ron, “Unprocessing images for learned raw denoising,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Jun. 2019.

[5] K. Wei, Y. Fu, J. Yang, and H. Huang, “A physics-based noise for-
mation model for extreme low-light raw denoising,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2020, pp. 2758–2767.

[6] L. Fan, F. Zhang, H. Fan, and C. Zhang, “Brief review of image
denoising techniques,” Visual Computing for Industry, Biomedicine,
and Art, vol. 2, pp. 1–12, 2019.

[7] A. Kaur and G. Dong, “A complete review on image denoising
techniques for medical images,” Neural Processing Letters, vol. 55,
no. 6, pp. 7807–7850, 2023.

[8] R. Kaur, G. Karmakar, and M. Imran, “Impact of traditional and
embedded image denoising on cnn-based deep learning,” Applied
Sciences, vol. 13, no. 20, p. 11 560, 2023.

[9] S. Gupta et al., “A review and comprehensive comparison of image
denoising techniques,” in 2014 International Conference on Comput-
ing for Sustainable Global Development, 2014, pp. 972–976.

[10] Z. Kong, F. Deng, H. Zhuang, X. Yang, J. Yu, and L. He, “A compar-
ison of image denoising methods,” arXiv preprint arXiv:2304.08990,
2023.

[11] A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, “Using deep
neural networks for inverse problems in imaging: Beyond ana-
lytical methods,” IEEE Signal Processing Magazine, vol. 35, no. 1,
pp. 20–36, 2018.

[12] S. W. Hasinoff, D. Sharlet, R. Geiss, et al., “Burst photography for
high dynamic range and low-light imaging on mobile cameras,”
ACM Transactions on Graphics, vol. 35, no. 6, pp. 1–12, 2016.

69

Bibliography

[13] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[14] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distilla-
tion: A survey,” International Journal of Computer Vision, vol. 129,
pp. 1789–1819, 2021.

[15] W. Chen, L. Peng, Y. Huang, M. Jing, and X. Zeng, “Knowledge
distillation for u-net based image denoising,” in International Con-
ference on ASIC, 2021, pp. 1–4.

[16] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
gaussian denoiser: Residual learning of deep cnn for image de-
noising,” IEEE transactions on image processing, vol. 26, no. 7, pp. 3142–
3155, 2017.

[17] V. Jain and S. Seung, “Natural image denoising with convolutional
networks,” Advances in neural information processing systems, vol. 21,
2008.

[18] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional net-
works for biomedical image segmentation,” in Medical Image Com-
puting and Computer-Assisted Intervention, 2015, pp. 234–241.

[19] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of
feature pooling in visual recognition,” in Proceedings of the 27th in-
ternational conference on machine learning, 2010, pp. 111–118.

[20] X. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very
deep convolutional encoder-decoder networks with symmetric skip
connections,” Advances in neural information processing systems, vol. 29,
2016.

[21] Y. Tai, J. Yang, X. Liu, and C. Xu, “Memnet: A persistent memory
network for image restoration,” in Proceedings of the IEEE interna-
tional conference on computer vision, 2017, pp. 4539–4547.

[22] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[23] H. Chen, Y. Wang, T. Guo, et al., “Pre-trained image processing
transformer,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2021, pp. 12 299–12 310.

[24] Y. Wang, H. Huang, Q. Xu, J. Liu, Y. Liu, and J. Wang, “Practical
deep raw image denoising on mobile devices,” in European Confer-
ence on Computer Vision, Springer, 2020, pp. 1–16.

[25] J. Liu, C.-H. Wu, Y. Wang, et al., Learning raw image denoising with
bayer pattern unification and bayer preserving augmentation, 2019. arXiv:
1904.12945 [cs.CV].

[26] A. Beck and M. Teboulle, “Fast gradient-based algorithms for con-
strained total variation image denoising and deblurring problems,”
IEEE transactions on image processing, vol. 18, no. 11, pp. 2419–2434,
2009.

70

https://arxiv.org/abs/1904.12945

Bibliography

[27] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation
based noise removal algorithms,” Physica D: Nonlinear phenomena,
vol. 60, no. 1-4, pp. 259–268, 1992.

[28] R. H. Chan, T. F. Chan, and C.-K. Wong, “Cosine transform based
preconditioners for total variation deblurring,” IEEE transactions
on Image Processing, vol. 8, no. 10, pp. 1472–1478, 1999.

[29] C. R. Vogel and M. E. Oman, “Fast total variation-based image
reconstruction,” in International Design Engineering Technical Con-
ferences and Computers and Information in Engineering Conference,
vol. 97669, 1995, pp. 1009–1015.

[30] N. Wiener, Extrapolation, interpolation, and smoothing of stationary
time series: with engineering applications. The MIT press, 1949.

[31] P. Bouboulis, K. Slavakis, and S. Theodoridis, “Adaptive kernel-
based image denoising employing semi-parametric regularization,”
IEEE Transactions on Image Processing, vol. 19, no. 6, pp. 1465–1479,
2010.

[32] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in International conference on computer vision, 1998, pp. 839–
846.

[33] G.-Z. Yang, P. Burger, D. N. Firmin, and S. Underwood, “Structure
adaptive anisotropic image filtering,” Image and Vision Computing,
vol. 14, no. 2, pp. 135–145, 1996.

[34] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image
processing and reconstruction,” IEEE Transactions on image process-
ing, vol. 16, no. 2, pp. 349–366, 2007.

[35] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denois-
ing by sparse 3-d transform-domain collaborative filtering,” IEEE
Transactions on Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007.
DOI: 10.1109/TIP.2007.901238.

[36] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, “Im-
age denoising using scale mixtures of gaussians in the wavelet do-
main,” IEEE Transactions on Image processing, vol. 12, no. 11, pp. 1338–
1351, 2003.

[37] M. Lebrun, “An Analysis and Implementation of the BM3D Image
Denoising Method,” Image Processing On Line, vol. 2, pp. 175–213,
2012.

[38] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Bm3d im-
age denoising with shape-adaptive principal component analy-
sis,” in Signal Processing with Adaptive Sparse Structured Represen-
tations, 2009.

[39] M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi, “Nonlo-
cal transform-domain filter for volumetric data denoising and re-
construction,” IEEE transactions on image processing, vol. 22, no. 1,
pp. 119–133, 2012.

71

https://doi.org/10.1109/TIP.2007.901238

Bibliography

[40] M. Makitalo and A. Foi, “Optimal inversion of the anscombe trans-
formation in low-count poisson image denoising,” IEEE transac-
tions on Image Processing, vol. 20, no. 1, pp. 99–109, 2010.

[41] L. Zhang, W. Dong, D. Zhang, and G. Shi, “Two-stage image de-
noising by principal component analysis with local pixel group-
ing,” Pattern recognition, vol. 43, no. 4, pp. 1531–1549, 2010.

[42] M. Elad, B. Kawar, and G. Vaksman, “Image denoising: The deep
learning revolution and beyond—a survey paper,” SIAM Journal
on Imaging Sciences, vol. 16, no. 3, pp. 1594–1654, 2023.

[43] Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, “Deep networks
for image super-resolution with sparse prior,” in Proceedings of the
IEEE international conference on computer vision, 2015, pp. 370–378.

[44] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Interna-
tional conference on machine learning, 2015, pp. 448–456.

[45] C. Tang, L. Yuan, and P. Tan, “Lsm: Learning subspace minimiza-
tion for low-level vision,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 6235–6246.

[46] P. Werbos, “Beyond regression: New tools for prediction and anal-
ysis in the behavioral sciences,” 1974.

[47] P. J. Werbos, “Backpropagation through time: What it does and
how to do it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1550–
1560, 1990.

[48] M. P. Reymann, T. Würfl, P. Ritt, et al., “U-net for spect image de-
noising,” in IEEE Nuclear Science Symposium and Medical Imaging
Conference, 2019, pp. 1–2.

[49] L. Bao, Z. Yang, S. Wang, D. Bai, and J. Lee, “Real image denois-
ing based on multi-scale residual dense block and cascaded u-
net with block-connection,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops, 2020,
pp. 448–449.

[50] S. Lee, M. Negishi, H. Urakubo, H. Kasai, and S. Ishii, “Mu-net:
Multi-scale u-net for two-photon microscopy image denoising and
restoration,” Neural Networks, vol. 125, pp. 92–103, 2020.

[51] J. Gurrola-Ramos, O. Dalmau, and T. E. Alarcón, “A residual dense
u-net neural network for image denoising,” IEEE Access, vol. 9,
pp. 31 742–31 754, 2021.

[52] M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal,
“The importance of skip connections in biomedical image segmen-
tation,” in International Workshop on Deep Learning in Medical Image
Analysis, International Workshop on Large-Scale Annotation of Biomed-
ical Data and Expert Label Synthesis, 2016, pp. 179–187.

[53] R. Komatsu and T. Gonsalves, “Comparing u-net based models for
denoising color images,” AI, vol. 1, no. 4, pp. 465–486, 2020.

72

Bibliography

[54] Z. Liu, Y. Lin, Y. Cao, et al., “Swin transformer: Hierarchical vision
transformer using shifted windows,” in Proceedings of the IEEE/CVF
international conference on computer vision, 2021, pp. 10 012–10 022.

[55] C. Jia, Y. Yang, Y. Xia, et al., “Scaling up visual and vision-language
representation learning with noisy text supervision,” in Interna-
tional conference on machine learning, 2021, pp. 4904–4916.

[56] T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot
learners,” Advances in neural information processing systems, vol. 33,
pp. 1877–1901, 2020.

[57] X. Jia, J. Bartlett, T. Zhang, W. Lu, Z. Qiu, and J. Duan, “U-net vs
transformer: Is u-net outdated in medical image registration?” In
International Workshop on Machine Learning in Medical Imaging, 2022,
pp. 151–160.

[58] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you
need,” Advances in neural information processing systems, vol. 30,
2017.

[59] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte,
“Swinir: Image restoration using swin transformer,” in Proceed-
ings of the IEEE/CVF international conference on computer vision, 2021,
pp. 1833–1844.

[60] T. Plotz and S. Roth, “Benchmarking denoising algorithms with
real photographs,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 1586–1595.

[61] C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the
dark,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 3291–3300.

[62] Q. Chen, J. Xu, and V. Koltun, “Fast image processing with fully-
convolutional networks,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 2497–2506.

[63] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A
flexible framework for fast and effective image restoration,” IEEE
transactions on pattern analysis and machine intelligence, vol. 39, no. 6,
pp. 1256–1272, 2016.

[64] S. Anwar and N. Barnes, “Real image denoising with feature at-
tention,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2019, pp. 3155–3164.

[65] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H.
Yang, “Restormer: Efficient transformer for high-resolution image
restoration,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2022, pp. 5728–5739.

[66] A. Abdelhamed, S. Lin, and M. S. Brown, “A high-quality denois-
ing dataset for smartphone cameras,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 1692–
1700.

[67] S. McKnight, S. G. Pierce, E. Mohseni, et al., “Gans and alterna-
tive methods of synthetic noise generation for domain adaption of

73

Bibliography

defect classification of non-destructive ultrasonic testing,” arXiv
preprint arXiv:2306.01469, 2023.

[68] K. Zhang, Y. Li, J. Liang, et al., “Practical blind image denoising via
swin-conv-unet and data synthesis,” Machine Intelligence Research,
vol. 20, no. 6, pp. 822–836, 2023.

[69] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep
residual networks,” in Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11–14, 2016, Pro-
ceedings, Part IV 14, Springer, 2016, pp. 630–645.

[70] C. Yang, X. Yu, Z. An, and Y. Xu, “Categories of response-based,
feature-based, and relation-based knowledge distillation,” in Ad-
vancements in Knowledge Distillation: Towards New Horizons of Intel-
ligent Systems, Springer, 2023, pp. 1–32.

[71] J. Lehtinen, J. Munkberg, J. Hasselgren, et al., “Noise2noise: Learn-
ing image restoration without clean data,” arXiv preprint arXiv:1803.04189,
2018.

[72] L. D. Young, F. A. Reda, R. Ranjan, et al., “Feature-align network
with knowledge distillation for efficient denoising,” in Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vi-
sion, 2022, pp. 709–718.

[73] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2018, pp. 4510–4520.

[74] Z. Li, Y. Wang, and J. Zhang, “Low-light image enhancement with
knowledge distillation,” Neurocomputing, vol. 518, pp. 332–343, 2023.

[75] X. Qin, Z. Wang, Y. Bai, X. Xie, and H. Jia, “Ffa-net: Feature fusion
attention network for single image dehazing,” in Proceedings of the
AAAI conference on artificial intelligence, vol. 34, 2020, pp. 11 908–
11 915.

[76] W. Chen, Y. Huang, M. Wang, X. Wu, and X. Zeng, “Tsdn: Two-
stage raw denoising in the dark,” IEEE Transactions on Image Pro-
cessing, 2023.

[77] Y. Chi, A. Gnanasambandam, V. Koltun, and S. H. Chan, “Dy-
namic low-light imaging with quanta image sensors,” in European
Conference, Glasgow, UK, 2020, pp. 122–138.

[78] Y. Jiang, J. Nawala, F. Zhang, and D. Bull, “Compressing deep
image super-resolution models,” arXiv preprint arXiv:2401.00523,
2023.

[79] J. Xie, L. Gong, S. Shao, S. Lin, and L. Luo, “Hybrid knowledge dis-
tillation from intermediate layers for efficient single image super-
resolution,” Neurocomputing, vol. 554, p. 126 592, 2023.

[80] T. Choudhary, V. Mishra, A. Goswami, and J. Sarangapani, “A
comprehensive survey on model compression and acceleration,”
Artificial Intelligence Review, vol. 53, pp. 5113–5155, 2020.

74

Bibliography

[81] Z. Chen, Y. Zhang, J. Gu, y. zhang yongbing, L. Kong, and X. Yuan,
“Cross aggregation transformer for image restoration,” in Advances
in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A.
Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., 2022, pp. 25 478–
25 490.

[82] M. Anderson, R. Motta, S. Chandrasekar, and M. Stokes, “Proposal
for a standard default color space for the internet—srgb,” in Color
and imaging conference, Society of Imaging Science and Technology,
vol. 4, 1996, pp. 238–245.

[83] K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, and Y. Wang, “Transformer
in transformer,” Advances in neural information processing systems,
vol. 34, pp. 15 908–15 919, 2021.

[84] K. Ma and Y. Fang, “Image quality assessment in the modern age,”
in Proceedings of the 29th ACM International Conference on Multime-
dia, 2021, pp. 5664–5666.

[85] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,”
Journal of machine learning research, vol. 9, no. 11, 2008.

[86] L. Van Der Maaten, “Accelerating t-sne using tree-based algorithms,”
The journal of machine learning research, vol. 15, no. 1, pp. 3221–3245,
2014.

[87] M. Wattenberg, F. Viégas, and I. Johnson, “How to use t-sne effec-
tively,” Distill, vol. 1, no. 10, e2, 2016.

[88] Y. Li, Y. Zhang, R. Timofte, et al., “Ntire challenge on image de-
noising: Methods and results,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2023, pp. 1904–
1920.

[89] X. Chen, Q. Cao, Y. Zhong, J. Zhang, S. Gao, and D. Tao, “Dearkd:
Data-efficient early knowledge distillation for vision transform-
ers,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2022, pp. 12 052–12 062.

[90] S. S. Stevens, “On the psychophysical law.,” Psychological review,
vol. 64, no. 3, p. 153, 1957.

[91] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato, “Raise:
A raw images dataset for digital image forensics,” in Proceedings of
the 6th ACM multimedia systems conference, 2015, pp. 219–224.

[92] V. Bychkovsky, S. Paris, E. Chan, and F. Durand, “Learning photo-
graphic global tonal adjustment with a database of input / output
image pairs,” in The Twenty-Fourth IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2011.

[93] K. Cabello-Solorzano, I. Ortigosa de Araujo, M. Peña, L. Correia,
and A. J. Tallón-Ballesteros, “The impact of data normalization on
the accuracy of machine learning algorithms: A comparative anal-
ysis,” in International Conference on Soft Computing Models in Indus-
trial and Environmental Applications, Springer, 2023, pp. 344–353.

75

Bibliography

[94] N. Anantrasirichai and D. Bull, “Artificial intelligence in the cre-
ative industries: A review,” Artificial intelligence review, vol. 55, no. 1,
pp. 589–656, 2022.

[95] B. Mildenhall, P. Hedman, R. Martin-Brualla, P. P. Srinivasan, and
J. T. Barron, “Nerf in the dark: High dynamic range view synthesis
from noisy raw images,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp. 16 190–16 199.

[96] H. Qassim, A. Verma, and D. Feinzimer, “Compressed residual-
vgg16 cnn model for big data places image recognition,” 2018,
pp. 169–175. DOI: 10.1109/CCWC.2018.8301729.

[97] D. Theckedath and R. Sedamkar, “Detecting affect states using
vgg16, resnet50 and se-resnet50 networks,” SN Computer Science,
vol. 1, no. 2, p. 79, 2020.

[98] S. Guo, Z. Liang, and L. Zhang, “Joint denoising and demosaick-
ing with green channel prior for real-world burst images,” IEEE
Transactions on Image Processing, vol. 30, pp. 6930–6942, 2021.

[99] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Decon-
volutional networks,” in 2010 IEEE Computer Society Conference on
computer vision and pattern recognition, IEEE, 2010, pp. 2528–2535.

[100] X. Wang, L. Xie, C. Dong, and Y. Shan, “Real-esrgan: Training real-
world blind super-resolution with pure synthetic data,” in Proceed-
ings of the IEEE/CVF international conference on computer vision, 2021,
pp. 1905–1914.

[101] A. Khattar and S. Quadri, ““generalization of convolutional net-
work to domain adaptation network for classification of disaster
images on twitter”,” Multimedia Tools and Applications, vol. 81, Sep.
2022. DOI: 10.1007/s11042-022-12869-1.

[102] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[103] A. Bagaskara and M. Suryanegara, “Evaluation of vgg-16 and vgg-
19 deep learning architecture for classifying dementia people,” in
4th International Conference of Computer and Informatics Engineering
(IC2IE), IEEE, 2021, pp. 1–4.

[104] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in Computer Vision–ECCV: 14th
European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part II 14, Springer, 2016, pp. 694–711.

[105] T. Wu, Q. Huang, Z. Liu, Y. Wang, and D. Lin, “Distribution-balanced
loss for multi-label classification in long-tailed datasets,” in 16th
European Conference, Proceedings, Part IV 16, Springer, 2020, pp. 162–
178.

[106] A. Horé and D. Ziou, “Image quality metrics: Psnr vs. ssim,” 2010,
pp. 2366–2369. DOI: 10.1109/ICPR.2010.579.

[107] S. Mehta, C. Paunwala, and B. Vaidya, “Cnn based traffic sign clas-
sification using adam optimizer,” in international conference on in-

76

https://doi.org/10.1109/CCWC.2018.8301729
https://doi.org/10.1007/s11042-022-12869-1
https://doi.org/10.1109/ICPR.2010.579

Bibliography

telligent computing and control systems (ICCS), IEEE, 2019, pp. 1293–
1298.

[108] K. Janocha and W. M. Czarnecki, “On loss functions for deep neu-
ral networks in classification,” arXiv preprint arXiv:1702.05659, 2017.

[109] X. He and J. Cheng, “Revisiting l1 loss in super-resolution: A prob-
abilistic view and beyond,” arXiv preprint arXiv:2201.10084, 2022.

[110] D. R. I. M. Setiadi, “Psnr vs ssim: Imperceptibility quality assess-
ment for image steganography,” Multimedia Tools and Applications,
vol. 80, no. 6, pp. 8423–8444, 2021.

[111] A. Acharya and J. Ortner, “Progressive learning,” Econometrica,
vol. 85, no. 6, pp. 1965–1990, 2017.

[112] G. W. Anderson and D. J. Castano, “Measures of fine tuning,”
Physics Letters B, vol. 347, no. 3-4, pp. 300–308, 1995.

77

A. Data Selection Results

A.1 Separate Datasets Single Frame

(a) All (b) Input image

(c) HDR+ (d) SIDD

(e) See In Dark (f) Raise

(g) Flickr2k (h) Mit5k

Figure A.1: Separate U-net trained models tested on target test set with single
frames containing 60 db noise

78

A.2 Separate Datasets Averaged

A.2 Separate Datasets Averaged

(a) All (b) HDR+

(c) SIDD (d) SeeInDark

(e) Raise (f) Flickr2k

(g) Mit5k

Figure A.2: Separate U-net trained models tested on target test set averaged
over 100 frames with 60 db noise.

79

B. Grid Artifact Abblation

(a) ReLu1_2 (b) ReLu2_2

(c) ReLu3_4 (d) ReLu4_4

(e) ReLu5_4

Figure B.1: SCUNet trained with separate layers for perceptual loss, based on
63db noise

80

C. Teacher Ablation Qualitative Results for
Restormer-based Models

Figure C.1: R01: Baseline Restormer model with Conv transpose upsampling,
progressive learning. Result on 32dB noise real sensor data.

Figure C.2: R02: Restormer model with the loss based on SCUNet loss, with
Conv transpose upsampling, progressive learning. Result on 32dB noise real
sensor data.

81

Teacher Ablation Qualitative Results for Restormer-based Models

Figure C.3: R03: Restormer model with the overall skip connection, the loss
based on SCUNet loss, Conv transpose upsampling, progressive learning. Re-
sult on 32dB noise real sensor data.

Figure C.4: R04: Restormer model without progressive learning, with the
loss based on SCUNet loss, with Conv transpose upsampling. Result on 32dB
noise real sensor data.

82

Figure C.5: R05: Restormer model with the noise trained until 1024, the loss
based on SCUNet loss, Conv transpose upsampling, progressive learning. Re-
sult on 32dB noise real sensor data.

Figure C.6: R06: Restormer model with wgan as adversarial loss, the loss
based on SCUNet loss, Conv transpose upsampling, progressive learning. Re-
sult on 32dB noise real sensor data.

83

Teacher Ablation Qualitative Results for Restormer-based Models

Figure C.7: R01: Baseline Restormer model with Conv transpose upsampling,
progressive learning. Result on 45dB noise real sensor data.

Figure C.8: R02: Restormer model with the loss based on SCUNet loss, with
Conv transpose upsampling, progressive learning. Result on 45dB noise real
sensor data.

84

Figure C.9: R03: Restormer model with the overall skip connection, the loss
based on SCUNet loss, Conv transpose upsampling, progressive learning. Re-
sult on 45dB noise real sensor data.

Figure C.10: R04: Restormer model without progressive learning, with the
loss based on SCUNet loss, with Conv transpose upsampling. Result on 45dB
noise real sensor data.

85

Teacher Ablation Qualitative Results for Restormer-based Models

Figure C.11: R05: Restormer model with the noise trained until 1024, the loss
based on SCUNet loss, Conv transpose upsampling, progressive learning. Re-
sult on 45dB noise real sensor data.

Figure C.12: R06: Restormer model with wgan as adversarial loss, the loss
based on SCUNet loss, Conv transpose upsampling, progressive learning. Re-
sult on 45dB noise real sensor data.

86

Figure C.13: R01: Baseline Restormer model with Conv transpose upsampling,
progressive learning. Result on 63dB noise real sensor data.

Figure C.14: R02: Restormer model with the loss based on SCUNet loss, with
Conv transpose upsampling, progressive learning. Result on 63dB noise real
sensor data.

87

Teacher Ablation Qualitative Results for Restormer-based Models

Figure C.15: R03: Restormer model with the overall skip connection, the loss
based on SCUNet loss, Conv transpose upsampling, progressive learning. Re-
sult on 63dB noise real sensor data.

Figure C.16: R04: Restormer model without progressive learning, with the
loss based on SCUNet loss, with Conv transpose upsampling. Result on 63dB
noise real sensor data.

88

Figure C.17: R05: Restormer model with the noise trained until 1024, the loss
based on SCUNet loss, Conv transpose upsampling, progressive learning. Re-
sult on 63dB noise real sensor data.

Figure C.18: R06: Restormer model with wgan as adversarial loss, the loss
based on SCUNet loss, Conv transpose upsampling, progressive learning. Re-
sult on 63dB noise real sensor data.

89

D. Teacher Comparison Qualitative Results

(a) U-net based denois-
ing result on 45dB sensor-
specific noise

(b) Restormer denoising re-
sult on 45dB sensor-specific
noise

(c) SCUNet denoising re-
sult on 45dB sensor-specific
noise

(d) U-net zoomed denois-
ing result on 45dB sensor-
specific noise

(e) Restormer zoomed de-
noising result on 45dB
sensor-specific noise

(f) SCUNet zoomed denois-
ing result on 45dB sensor-
specific noise

Figure D.1: Teacher comparison results on 45dB sensor-specific data

90

(a) Unified testset input image containing
45dB noise

(b) U-net denoising result on 45dB of noise
added to unified testset

(c) Restormer denoising result on 45dB of
noise added to unified testset

(d) SCUNet denoising result on 45dB of
noise added to unified testset

Figure D.2: Teacher comparison results on unified testset with 45dB noise

91

Teacher Comparison Qualitative Results

(a) U-net based denois-
ing result on 63dB sensor-
specific noise

(b) Restormer denoising re-
sult on 63dB sensor-specific
noise

(c) SCUNet denoising re-
sult on 63dB sensor-specific
noise

(d) U-net zoomed denois-
ing result on 63dB sensor-
specific noise

(e) Restormer zoomed de-
noising result on 63dB
sensor-specific noise

(f) SCUNet zoomed denois-
ing result on 63dB sensor-
specific noise

Figure D.3: Teacher comparison results on 63dB sensor-specific data

92

(a) Unified testset input image containing
63dB noise

(b) U-net denoising result on 63dB of noise
added to unified testset

(c) Restormer denoising result on 63dB of
noise added to unified testset

(d) SCUNet denoising result on 63dB of
noise added to unified testset

Figure D.4: Teacher comparison results on unified testset with 63dB noise

93

E. Student Ablation Qualitative Results us-
ing Knowledge Distillation

Figure E.1: KD01: Compressed SCUNet model using 2 blocks for each resolu-
tion step, trained from scratch. Result on 32dB noise real sensor data.

Figure E.2: KD02: Compressed SCUNet model using 1 blocks for each resolu-
tion step, trained from scratch. Result on 32dB noise real sensor data.

94

Figure E.3: KD03: Compressed SCUNet model using 2 blocks for each resolu-
tion step, with response-based knowledge distillation (w=1) from S05. Result
on 32dB noise real sensor data.

Figure E.4: KD04: Compressed SCUNet model using 1 blocks for each resolu-
tion step, with response-based knowledge distillation (w=1) from S05. Result
on 32dB noise real sensor data.

95

Student Ablation Qualitative Results using Knowledge Distillation

Figure E.5: KD05: Compressed SCUNet model using 2 blocks for each resolu-
tion step, with feature-based knowledge distillation (w=1) from S05. Result on
32dB noise real sensor data.

Figure E.6: KD06: Compressed SCUNet model using 2 blocks for each resolu-
tion step, with feature-based knowledge distillation (w=1) from S05. Result on
32dB noise real sensor data.

96

Figure E.7: KD07: Compressed SCUNet model using 2 blocks for each res-
olution step, with feature-based and response-based knowledge distillation
(w=10) from S05. Result on 32dB noise real sensor data.

Figure E.8: KD08: Compressed SCUNet model using 2 blocks for each res-
olution step, with feature-based and response-based knowledge distillation
(w=0.1) from S05. Result on 32dB noise real sensor data.

97

	Introduction
	Motivation and Context
	Research Goal
	Outline

	Related Work
	Traditional Denoising
	Deep Learning for Image Denoising
	Knowledge Distillation

	Method
	Overview
	ISP Blocks
	Raw Image Denoising Dataset
	Teacher Model for Raw Denoising
	Distilling Knowledge to the Student

	Experiments and Results
	Dataset Selection
	Teacher Network Optimization
	Student Network Learning via Knowledge Distillation

	Conclusion
	Discussion and Future Work

	Bibliography
	Data Selection Results
	Separate Datasets Single Frame
	Separate Datasets Averaged

	Grid Artifact Abblation
	Teacher Ablation Qualitative Results for Restormer-based Models
	Teacher Comparison Qualitative Results
	Student Ablation Qualitative Results using Knowledge Distillation

