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Abstract

Physical scale experiments improve our comprehension of uvial, tidal, and coastal

processes. However, acquiring accurate, precise, and continuous data on water

depth has been difcult due to the limitations inherent in the measuring equip-

ment.

In this paper, we predicted water depth in a two-fold process using different mod-

els, then tested the accuracy of these models. We used data from a physical scale

estuary experiment using overhead imagery and Digital Elevation Models.

Analogous to real-world estuaries, much of the terrain is above water. This pre-

sented an issue in creating a water depth prediction model, as over 57% of the

training data pixels were calculated to contain no water. First, we address the is-

sue of zero-inated data. We developed a binary classication model that predicts

pixels with no water and with water, then use regression to predict the depth of

pixels with water.

Binary classication models such as Logistic Regression, Random Forests, and

Support Vector Machine Learning (SVM) were compared. These models were

trained using overhead imagery from water depth calibration experiments. The

overhead imagery was overlaid on water depth maps. The water depth maps

were calculated from the calibration experiments using the (DEM) and increasing

weir heights.

In the second step, regression models were developed and compared. Linear re-

gression, Random Forests, and SVM models were trained on the pixels containing

water in the water depth maps. The two-step Random Forest model was selected

and applied to different overhead images under similar experimental conditions,

the resulting predicted water depth maps produced promising results. The devel-

oped model was precise enough to detect geomorphological change by compar-

ing overhead imagery 990 cycles apart.

The implication of the experimental data–model integration is that future experi-

ments can derive water depth from overhead imagery in a simple, affordable, and

labour-efcient manner.
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1. Introduction

Estuaries are coastal ecosystems formed where rivers meet the sea. Inuenced by

tidal movements, estuaries show dynamic patterns of bars and channels. Under-

standing uvial, tidal, and coastal processes is vital for managing these unique

aquatic environments.

Physical scale experiments greatly enhance our understanding of estuarine pro-

cesses, these models are sometimes referred to as umes. Using physical scale mod-

els offers two primary advantages. Firstly, experiments provide precise control

over initial and boundary conditions, facilitating rapid simulation of entire sys-

tems. This stands in stark contrast to the slow and dynamically changing con-

ditions observed in eld settings (where, for instance, a natural tidal cycle spans

approximately 12 hours and 25 minutes apart). Secondly, physical models use real

materials with their inherent laws and properties, in contrast to numerical mod-

els that rely on numerous parameters and approximations to simulate phenomena

such as water ow and sediment transport.

However, acquiring accurate, precise, and continuous data on water depth on

physical scale experiments has been a persistent challenge due to the limitations of

current measuring equipment. This is because, at limited water depths, conduct-

ing owmeasurements using submerged instruments without disturbing sediment

poses signicant technical challenges. This lack of reliable data hinders our ability

to model and predict these complex processes accurately (Weisscher et al., 2020).

The focus of this study is to predict the water depths from overhead imagery.

Focusing on the small depth of water of the physical experiment. In this paper, we

will review how other researchers in the eld have estimated water depth from

similar experiments using overhead imagery and digital elevation models from

laser scanning or stereo photography as described by (Weisscher et al., 2020; Leduc

et al., 2019; Tal & Paola, 2010a; Upson, 2024)

In the world of remote sensing, simple linear models exist for extracting wa-

ter depth from multispectral satellite imagery ((Geyman & Maloof, 2019; Lyzenga,

1978; Stumpf et al., 2003). These models are straightforward and can be accurate
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in shallow depths. However, these models were designed to predict from satellite

imagery (up to 13 bands for Sentinel-2 imagery) not on Red, Green, and Blue (RGB)

channels and these linear algorithms fail to account for the non-linearity in empiri-

cal color-to-depth relationships, which are inuenced by varying bottom types and

greater depths. Part of this research is to determine despite these limitations if lin-

ear models are suitable at predicting water depth in laboratory scale experiments

using overhead RGB imagery.

Machine learning models have been developed to address the issue of non-

linearity in water depth prediction of coastlines, rivers and lakes. The typical ap-

proach is to train machine learning models on an area where satellite imagery is

available and also detailed bathymetric information from LiDAR campaigns. The

machine learning models that have proved more effective than linear prediction in-

clude: Support Vector Machine Learning (SVM) (Vojinovic et al., 2013; Mateo-Pérez

et al., 2021; Yustisi Lumban-Gaol & Peters, 2022), Random Forests (Disanayaka

Mudiyanselage et al., 2022; Zhang et al., 2020; Islam et al., 2023) and Convolutional

Neural Networks (Ai et al., 2020; He et al., 2023) . These performance of these mod-

els vary with the accuracy of training data, difculties in particular water depths

and when water conditions differ. However, they show promise to predict water

depth more accurately than a simple linear regression method. But have not been

applied to laboratory scale experiments.

The purpose of this study is to investigate the possibility of accurately predict-

ing water depth using overhead imagery, in physical scale estuarial experiments by

comparing the performance of linear and non-linear models. We propose a novel

approach that leverages binary classication models (Logistic Regression, Random

Forests, and SVM) to classify if pixels contain water or no water based on the pixels

RGB value. These models were trained using overhead imagery overlaid on water

depth maps. The water depth maps were calculated using calibration data from

Digital Elevation Models (DEM) weir height data.

In the second step of our approach, we develop regression models to predict

water depths. Linear regression, Random Forests, and SVM models were trained

on the pixels containing water and their performances were compared. Our re-

sults indicate that the two-step Random Forest model produces promising results,

closely resembling the overhead imagery and providing accurate water depth pre-

dictions with a mean absolute error of 3.87 mm.
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Introduction

This research is signicant because identifying accurate models to predict water

depth from overhead imagerywould not only expand the possibilities for analysing

temporal changes in water depth but also revolutionize the monitoring of through-

water topography at high resolution and frequency. This advancement allows for

continuous observation of experimental topography without the need to stop the

ow and drain the experiment for topographic scans, enabling the natural evolu-

tion of experimental conditions.
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2. Literature Review

Below, we review the data collection and post-processing methods that are used

to quantify water depth change and morphological changes in tidal ume experi-

ments. In conjunction with their drawbacks and achievable level of accuracy.

2.1 Techniques for measuring bed elevation

Bed elevation can be measured in a number of ways, including point gauge sur-

veys Peakall et al. (2007), scanning (M. G. Kleinhans et al., 2015; Van Dijk et al.,

2014), ultrasonic echo sounding (Hoyal & Sheets, 2009; Stefanon et al., 2012), and

structure-from-motion (SfM) photogrammetry (Weisscher et al., 2020; Leduc et al.,

2019; Leuven et al., 2018), using georeferenced ground control points.

The point gauge survey technique was found to produce the most accurate,

achieving precision up to (±0.1mm) Peakall et al. (2007), andworkswith an undrained

bed, but it has the disadvantage of being slow to measure. Scanning and ultrasonic

echo can achieve accuracies of (±0.5 to 1mm) and require a drained bed.

This is not ideal as bed topography may be disrupted during the draining

and lling of the ume. Structure-from-motion (SfM) photogrammetry has been

adopted in recent measurements of bed elevation, achieving accurate results within

1mm, this method also requires a drained bed (Weisscher et al., 2020; Leduc et al.,

2019; Leuven et al., 2018).

2.2 Techniques for colour extraction of overhead imagery

To extract water depth from colour saturation, it can be benecial to rst transform

the overhead imagery into a different colour space to augment the differences in

colour saturation. An effective technique employed in literature, is to convert the

RGB overhead imagery to the CIELAB L*a*b* colour space . Where L* is a scale for

luminosity, a* is a scale from green to red, and b* is a scale from blue to yellow (Tal

& Paola, 2010a; Leuven & Kleinhans, 2019).

Other colour transformations are possible. such as the HSV (Hue, Saturation
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Literature Review

and Value) colour space which has been employed in RGB imagery of water, as

performed by Champion et al. (2017). Both techniques can be effective at removing

noise such as shadows and improve water depth prediction.

2.3 Techniques for water depth measurement in umes

Water depth prediction can be derived from the dyed water colour saturation or

from measured water levels. Previous studies have tried to extract water depth

from colour saturation of dyedwater (Upson, 2024; Leuven et al., 2018; Carbonneau

et al., 2006; Tal & Paola, 2010b). Themethod involved using the correlation between

water depth with the blueness derived from overhead imagery.

The method used by Leuven et al. (2018) was to fully submerge the sediment

bed and capture overhead images. Following this, a Digital ElevationModel (DEM)

was generated after the bed was drained slowly. The overhead images were con-

verted to the CIELAB colour space and the B-band was extracted. A predictive

relationship for water depth as a function of the B-band was developed. The re-

sults yielded a correlation between the B-band and water depth to approximately

1–5 mm, the MAE was not reported. So far the methods to predict water depth in

ume experiments have only used linear regression methods.

An alternative technique to prediction water depth from overhead imagery is

employing instrumentation such as an ultrasonic echo sounder, as performed by

Tambroni et al. (2005) but this requires specialised instrumentation or using SfM

photogrammetry to derive water depth, performed by Leduc et al. (2019). This

technique was was accurate up 1mm but this system was implemented for unidi-

rectional ow ume and a considerable disadvantage of requiring long processing

times (5 hours for one image).

2.4 Machine learning models for water depth prediction

Machine learning models have been developed to address the challenge of non-

linear water depth prediction applied to remote sensing data. This paper focuses

on two machine learning methods, Random Forest and SVM.

In remote sensing, these models predict water depth by combining satellite im-

agery with water depth estimations, derived from a method that involves subtract-

ing the surface water level from the bathymetric data obtained through LiDAR
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2.4 Machine learning models for water depth prediction

campaigns. The machine learning models consistently outperform linear regres-

sion in water depth prediction (Vojinovic et al., 2013; Mateo-Pérez et al., 2021; Dis-

anayaka Mudiyanselage et al., 2022; Zhang et al., 2020; Ai et al., 2020; He et al.,

2023).

2.4.0.1 Random Forest

As described by Islam et al. (2023), a Random Forest is an ensemble learningmethod

used for classication and regression tasks. A Random Forest is simply a collection

of decision trees, each trained on a random subset of the data. A decision tree is a

model that makes predictions by recursively splitting the data into subsets based

on the value of input features, leading to a tree-like structure of decisions. In a Ran-

dom Forest, the nal prediction is made by averaging the predictions of individual

trees (in regression) or by taking a majority vote (in classication). One can ad-

just the number of trees in the forest to balance between bias and variance, thereby

optimizing performance .

2.4.1 Support Vector Machine Learning

Support Vector Machine (SVM) learning is a supervised machine learning algo-

rithm used for classication and regression tasks. It works by nding the optimal

hyperplane that best separates data points of different classes in a high-dimensional

space, maximizing the margin between the closest points of the classes, known as

support vectors. When data is not linearly separable, SVM can use kernel func-

tions to transform the data into a higher-dimensional space where a linear separa-

tor can be found. A kernel function computes the dot product of data points in this

higher-dimensional space without explicitly performing the transformation. Com-

mon kernel functions include linear, polynomial, and radial basis function (RBF).

The performance of an SVM can be tuned by adjusting parameters such as the

regularization parameter (C) and the choice of kernel function, As described by

Mateo-Pérez et al. (2021).

2.4.2 Logistic Regression

Logistic regression is a statistical method used for binary classication problems,

where the output represents probabilities that must lie between 0 and 1. By apply-

ing thresholds to these probabilities, the outcomes are classied as 0 or 1.

Logistic regression utilizes the sigmoid function, which is tted using training
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Literature Review

data. Once trained, the model converts inputs into probabilities. By applying a

threshold to these probabilities (commonly 0.5), the model classies the output as

either 0 or 1.

2.5 Research question

Recent studies have established a correlation between the intensity of dyed water

in a ume environment and the color saturation observed in overhead imagery

(Leduc et al., 2019). Simultaneously, while linear models have demonstrated the

capability to predict water depth from satellite imagery in remote sensing applica-

tions, non-linear models consistently achieve more accurate predictions.

Given these advancements, our research question emerges: To what extent can we

accurately predict water depth from overhead images using linear and non-linear methods?
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3. Data

3.1 Design of the Metronome facility

The Metronome is a ume set up in a laboratory designed to simulate tidal sys-

tems. It is unique among umes worldwide as it is designed to periodically tilt,

analogous to the ebb and ow of the tides. The system is permanently located at

the Earth Simulation Laboratory of Utrecht University (UU).

The Metronome tilts periodically to simulate tidal movements that transport

sediment and shape tidal morphologies. Its tilting axis is strategically positioned

directly beneath the steel oor to minimize longitudinal motion. Four actuators

operate in pairs to tilt the ume, with motion mirrored across the tilting axis. The

Metronome is divided into riverside and seaward sections, as illustrated in Figure

3.1.

Figure 3.1: a) Example of a typical Metronome experiment. (b) Overhead image (with
a blueness map applied for visualisation) of the experimental set-up (Leuven et al.,
2018)
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Data

The Metronome is constructed with a steel basin that is 20 metres long and 3

metres wide, made from 4mm stainless steel. The side walls of the Metronome are

folded to allow a bridge to smoothen the bed .

When the Metronome is not tilting, weirs are used to control the water eleva-

tion. A weir, which is effectively a small-scale dam, can be moved up or down

precisely to regulate the water level on the upstream side, as water ow overtops

the weir. The weir positioned on the seaward side is 3 metres wide and broad-

crested, with a length of 0.06 meters and rounded edges resulting from the folded

steel plate construction. Small actuators control the up and down movement of

these weirs (M. G. Kleinhans, Leuven, et al., 2017). There is a slight overow effect

that occurs on top of the weir, resulting in the water elevation being slightly higher

than the weir height. This is caused by the pumps pumping water into the seaward

side, while the weirs maintains the water level.

To set up the experiment, water lls the system, controlled by adjusting the weir

position. Once the metronome is lled, tilting is activated through the actuators,

resulting in the simulation of tidal cycles that drive themorphological development

of the sand.

3.2 Design of the experiment

Various setups are possible for theMetronome. In this thesis, data was available for

one specic experiment, referred to as Experiment 062, which is described hereafter.

Details of Experiment 062, are summarised in Table 3.1.

Parameter Value Unit

Tilting period 40 s
Maximum tilt gradient 0.008 m/m
Median sand grain size (D50) 0.52 mm
Sediment density (ρs) 2650 kgm−3

Table 3.1: Experimental parameters for tidal current generation.

In experiment 062, an initial simple channel shape was carved between rough

industrial sand paper (median grain size of 0.7 mm) referred to as dikes. The dikes

starting narrow and gradually widening to the width of the Metronome (see Fig-

ure 5.1). This initial setup facilitates the ow from the riverside boundary to the

seaward side and back.
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3.2 Design of the experiment

The sand is placed on top of a mat with articial grass in the basin. Articial

grass is used as, past experiments by M. G. Kleinhans, Leuven, et al. (2017) showed

that the smooth bottom surface of umes increases downward erosion, forming

scours. Implementing uniform roughness is essential to prevent scours across the

Metronome.

The articial grass was measured by M. Kleinhans et al. (2016) to be approxi-

mately 14 mm in height. The grass was glued in place and further secured with

a layer of sand. Its stiffness ensures minimal bending even under the strongest

experimental ows. The glue application prevents water from owing under the

grass (M. G. Kleinhans, Leuven, et al., 2017). The articial grass contributes to the

considerably darker color of the seaoor section (see Appendix 8.1).

To facilitate visualization of bar and channel morphology from overhead im-

ages, Brilliant Blue FCF colorant (E113) was used to dye thewater. This organic dye,

commonly employed as a food additive due to its non-toxic nature ( EFSA, 2013),

allows for clear distinction of features. However, determining the optimal dye con-

centration presents a challenge: too little dye results in minimal variation in water

color across the experimental depth range, while excessive dye reduces light trans-

mission through the water column, thereby compromising visibility for measuring

bed topography (Leenman & Eaton, 2024). Past experiments by Huang et al. (2010)

observed that beyond a certain depth, water color intensity plateaus regardless of

depth, a threshold that decreases with higher dye concentrations. Thus, excessive

dye concentration can compromise the accuracy of depth prediction methods, a

factor essential for understanding water depth limits achievable with this dye con-

centration.

The concentration of the dye can be assumed to be consistent for both the exper-

iments described in this paper at 5 mg/l. Maintaining this constant concentration is

crucial, as uctuations due to evaporation or water loss may necessitate recalibra-

tion of the depth-color relationship during or between experiments (Upson, 2024).

3.2.1 Calibration Experiments

This paper discusses Experiment 062, which is divided into two distinct parts: the

calibration experiment and the operational experiment.

The calibration experiment begun after cycle 9000 in experiment 062. Where the

bed was drained, then relled incrementally to 4 different weir heights (the heights
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Data

can be found in Table 4.1). The metronome was not titled during the lling pro-

cess and was level for this experiment. Each time the weir height was increased,

overhead cameras captured images of the Metronome. Notably, small clumps of

oating sand were observed on the water’s surface during the experiment see Fig-

ure in Appendix 8.4.

3.2.2 Operational Experiments

The Operational Experiment refers to cycles 3499-4499 of Experiment 062. During this

phase, images were captured between every tilting cycle, when the bed was level.

However, due to the movement of water, ripples on the surface of the water were

present in the captured images.

3.3 Data collection

3.3.1 Orthomosaisc

An orthomosaic is a seamlessly stitched image product created through photogram-

metric orthorectication of a collection of images. This process corrects geometric

distortions and balances colors to produce an accurately aligned mosaic dataset.

As described by Weisscher et al. (2020), seven industrial CMOS MAKO colour

cameras capture the image data, that is processed into an orthomosaic. The place-

ment of the cameras is illustrated in Figure 3.2. The cameras were positioned to be

between 3.99-4.05 m from the co-aligned reference height of 0 (approximately the

steel basin). Each camera has a dimension of 2,048 by 2,048 pixels.

Figure 3.2: A top-down view of the CMOS MAKO camera placement and a side pro-
le of the metronome showing the actuators placement. (M. G. Kleinhans, Leuven, et
al., 2017)

According to Nota (2024a), the focal length of the cameras were calibrated in

14



3.3 Data collection

the photogrammetry software to be between 2194-2239 pixels providing a spatial

pixel resolution of 1.5–2 mm on the sediment surface of the Metronome.

Converting these seven images into one orthomosaic that can be accurately aligned

with the Digital ElevationModel presents a challenging problem. This is due to im-

age overlap ( 20%), lens distortion, color correction and alignment.

This challenge was addressed using a technique known as co-alignment with

ground control points applied in research performed by Nota et al. (2022). Co-

alignment refers to aligning multiple cameras at once instead of separately.

As described by Nota et al. (2022) photogrammetry refers to the process of

aligning multiple images taken from different positions and angles into a unied

coordinate system. Nota et al. (2022) found that the combined use of co-alignment

and ground control points in photogrammetry is an effective method for achieving

high relative and absolute accuracy. When this photogrammetric method is applied

to orthomosaics in the Metronome, it produces images that can be aligned with the

Digital Elevation Model.

Accurate alignment of images is just one aspect of producing reliable ortho-

mosaics. When dealing with multiple orthomosaics to derive water height from

imagery, maintaining consistent lighting conditions is crucial. The ume was illu-

minated at approximately 600 lux using daylight-colored uorescent lights directed

upward at a white, diffusive ceiling located about 4.5 meters above the ume oor.

To minimize light reection from the water surface in the photographs, a white

photography backdrop cloth was placed between the ceiling and the ume.

3.3.2 Digital Elevation Model (DEM)

A laser camera was mounted on the gantry. The laser scanner registers the position

of the laser line during a laser line procedure. The DEM is derived using Matlab

software (Nota, 2024b).

It is challenging to precisely quantify the accuracy of the DEM model, as it is

inuenced by several factors including imperfect calibration, positioning, and ori-

entation, with assumptions of constant roll, pitch and yaw positions, none of which

are. It is expected that the errors in the DEM models will impact the accuracy of

the water depth predictions.

Before the calibration experiments began, the dry bed of the Metronome was
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Data

screed to process a Digital Elevation Model (DEM), referred to as the calibration

DEM, which was used for subsequent analyses. Throughout the experiment, the

Metronome was not tilted and water was gradually lled. Maintaining a reason-

able assumption that the calibration DEM remains consistent across the four water

depths.
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4. Method

4.1 Preparation of the data

The following steps outline the method of preparing the data: removing shadows

from the orthomosaics, stacking the data, estimating the offset in the water depth

maps, explaining the method used to estimate the water depth in the calibration

experiments, explaining how the water height is predicted and comparing the water

height predicted using the operational images.

4.1.1 Shadow Removal

There are visible shadows on the water surface of the orthomosaics in both cali-

bration and operational orthomosaics. Due to the gantry and the actuators. These

shadows can interfere with the accuracy of water depth models. To mitigate this

issue, as demonstrated by Leuven et al. (2018), the orthomosaics were converted to

LAB (CIELAB) color space images. The shadows are quite well isolated to the L*

Band and are largely gone from the other two bands.

To remove shadows, Leuven et al. (2018) extracted the B band of the L*A*B

colour space to predict water depth. In this experiment, to preserve as much data

as possible, the L band was set to 127 (the constant middle point of the L* band)

and subsequently converted back to the RGB color space. These colour transforma-

tions were performed in Python using the OpenCV (Open Source Computer Vision

Library) (Bradski, 2000) and converted to a "Tagged Image File Format" to allow for

stacking onto the NetCDF (Network Common Data) le format of the DEM. The

orthomosaics that have a attened L* band and converted back to RGB values are

hereby referred to as converted orthomosaics.

4.1.2 Stacking

The four converted orthomosaics from the calibration experiment were converted to a

dataframe consisting of 2,400,000 rows with an x, y and three RGB columns. The

calibration DEM was imported, ipped and converted to a dataframe (2,400,000

rows). The orthomosaic dataframe was then converted to the same dimensions of
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Method

the the DEM. A stack could be developed by merging the dataframes based on x, y

coordinates, without data loss.

4.1.3 Offset Calculation

The method described is to calculate an estimation of water depth for each pixel

in the four calibration stacks. This is done using the known weir heights as listed in

Table 4.1.

Weir Height Value Offset

Depth 0 46.36mm 27.0mm
Depth 1 75.70mm 36.5mm
Depth 2 82.73mm 35.5mm
Depth 3 94.95mm 39.0mm

Table 4.1: Weir heights and corresponding values with offsets.

Before detailing the process used to calculate water height, it is crucial to note

that the weir height does not directly correspond to the absolute water height from

the ume oor. An offset exists, likely due to the presence of articial grass and

water overow atop the weir. The specic offset values for each depth are listed in

Table 4.1 were determined through an iterative trial-and-error process.

This involved plotting water depth maps with varying offset values, comparing

through visual inspection the water depth map at each depth with the respective

overhead image at each depth, until a high degree of resemblance was achieved.

While this method produced water maps with a close resemblance, it introduced a

source of potential inaccuracy. Refer to Figure 5.1b.

4.1.4 Water Depth Calculation

Algebraic expressions to estimate water height on a pixel by pixel basis. Using the

following equations in mm:

The relationship between H, zw, and k is given by:

H = zw − k (4.1)

Here, H represents the total height from the steel oor to the top of the water
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4.2 Approach to zero-inated data

level, zw is the water height of the weir, and k is combined offset caused by weir, the

correction from visual inspection and the height of the articial grass on the seabed

lying.

The relationship between h and H, where zb denotes the bed height, can be

expressed as:

h = H − zb (4.2)

In this equation, h denotes the water depth from the terrain of the Metronome

to the top of the water level at that pixel, and zb is the height of the terrain at the

pixel (DEM).

Further preprocessing includes incorporating conditional expressions to con-

vert all negative water measurements to zero. This allows for the creation of a

binary classication map distinguishing pixels as either wet or dry.

Water height = 0 (dry)

Water height > 0 (wet)

The area of interest lies between the dikes. A mask was drawn of this area and

used to extract the area of interest.

To use this data in a machine learning model, the data had to be restructured

into a long format where all four depths are appended onto each other along with

their respective RGB values for each pixel. Where, for each pixel, there are four

water depth values and four sets of RGB values.

4.2 Approach to zero-inated data

Initial preprocessing revealed that the data was heavily imbalanced. When all four

calibration experiments were stacked, 57.8% of the rows were found dry. A heavily

imbalanced dataset can impact the accuracy of regression models. To address this

issue, a two-step approach was developed.

Each analysis method (Linear Analysis, Random Forest, and SVM) was split

into two models. The rst model uses all four water depth stacks to train a binary

classier (Logistic Regression, Random Forest and SVM) to determine whether

there is water or not, we refer to these models as binary regression models. The sec-
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ond set of models we refer to as regression models (Linear Regression, Random Forest

and SVM). The regression models aim to to predict the depth of wet pixels (predicted

from the binary classication models) using the inputs of RGB columns.

4.3 Models

Efforts were made to compare the models as fair as possible. For each model the

same training and testing dataset were used. With the exception of the SVMmodel

which used a smaller proportion of the training data due to computational limita-

tions.

Model Binary Classication Model Regression Model
Training Testing Training Testing

Linear Model 768,000 117,596 11,745 73,237
Random Forest 768,000 117,596 223,707 73,237
SVM 76,800 117,596 22,370 73,237

Table 4.2: Number of samples used in training and testing linear and non-linear mod-
els. The linear model refers to the logistic regression and linear extrapolation tech-
nique.

4.3.1 Logistic Regression and Linear regression

The linear regression model was trained using a balanced training set consisting

of 96,000 randomly sampled pixels from four water depth stacks. The set was bal-

anced with 50% wet pixels and 50% dry pixels, each represented by RGB values for

classication. The binary classication data was split into 80% training and 20%

testing datasets (768,000 and 117,596 pixels, respectively). A random seed was set

to ensure reproducibility across all subsequent random samplings.

The data was trained using the "lm" function as part of the base R package ((R

Core Team, 2023)). Where the probability threshold was set at default (0.50).

For the linear regression model, only depth 1, depth 2 and depth 3 were used.

Depth 0 is not used for regression training as it contains the most dry cells and

due to the offset used (27.0mm) used in calculating to calculate H, is considerably

lower compared to the other 3 depths (36.5mm, 35.5mm and 39.0mm), it would

likely impact the results.

For the linear regression model, lines were generated for each pixel correspond-

ing to three increasing water depths. The correlation coefcient (R2) and slope were

computed iteratively for each line, then plotted against the blue band.
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4.3 Models

Initial plots of the blue-band versus water height showed signicant noise,

prompting subsequent ltering. This study aims to evaluate the presence of a ro-

bust linear relationship. Therefore, pixels were ltered to include only those with

R2 > 0.80 and slopes less than 10 (as slopes exceeding this threshold were likely

attributable to noise).

The equation of the line was tted on the ltered data and used as a simple

linear predictionmodel that could input a blue-light band value and output a water

depth prediction.

4.3.2 Random Forest

The R Ranger package by (Wright & Ziegler, 2017), was used for the Random Forest

models. For the Random Forest binary classication model. The data (768,000 and

117,596 pixels) was the same train/test data as the logistic regression model. The

model was grown using 500 trees set as a classication Random Forest.

For the Random Forest regression model, pixels with depth 0 were excluded,

and dry pixels were ltered out. A total of 296,944 pixels were randomly selected.

Eighty percent (223,707 pixels) of the datawere used for training, and the remaining

20 percent (73,237 pixels) were used for model evaluation. To build the regression

Random Forest 500 trees were grown.

Feature importance was calculated for Random Forest Model. Feature impor-

tance is a technique used to understand which variables (features) in the dataset

have the most inuence on the model’s predictions. The importance is typically

measured by how much each feature contributes to decreasing the Gini impurity

when building the decision trees. Gini impurity measures the degree or probability

of a particular element being wrongly classied when it is randomly chosen.

4.3.3 Support Vector Machine

The R Caret package was used for the SVMmodels (Kuhn, 2008). Only 10% (76,800

pixels) of the same training data used for the Random Forest and Logistic Regres-

sion was used in the training dataset due to computational resource constraints.

The binary classication model was specied as type-C classication and used the

linear kernel. Where type-C classication specically refers to a scenario where the

goal is to mean shape of the decision boundary used to separate classes was linear.

To compute the SVM regression models, only 10% (76,800 pixels) of the same
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training data used for the Random Forest was used. The choice of using a radial

basis function (RBF) kernel with a gamma value of 0.1 in our SVM regression model

was aimed at balancing model complexity and generalization. The RBF kernel is

well-suited for capturing non-linear relationships in data, making it effective for

our task. A gamma value of 0.1 indicates a moderate level of model complexity,

allowing the SVM to generalize well while still capturing intricate patterns in the

data. To optimize the gamma value, experimentation and cross-validation can be

done to rene the model, but was not done here.

4.4 Evaluation of model performance

The binary and regression models were evaluated using different methods.

4.4.1 Evaluation of binary classication models

For the evaluation of the classication models, all models were assessed using the

same test data. Each classication model was evaluated using accuracy and a confu-

sion matrix. Accuracy is dened as the number of correct predictions divided by the

total number of predictions.

A =
1
n

n

∑
i=1

I(ŷi = yi) (4.3)

Where, I(ŷi = yi) will be 1 if the predicted label ŷi matches the actual label yi, and

0 otherwise.

A confusion table shows the counts of true positive (TP), true negative (TN),

false positive (FP), and false negative (FN) predictions.

Predicted

Actual Positive Negative

Positive TP FN
Negative FP TN

Table 4.3: Confusion matrix showing the counts of true positive (TP), false negative
(FN), false positive (FP), and true negative (TN) predictions.
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4.4 Evaluation of model performance

The recall (or sensitivity) of a classication model is dened as:

Recall =
True Positives (TP)

True Positives (TP)+ False Negatives (FN)
(4.4)

4.4.2 Evaluation of regression models

To evaluate the performance of each model, MAE (Mean Absolute Error), MedAE

(MedianAbsolute Error), MSE (Mean Squared Error), and RMSE (RootMean Squared

Error) are used. All metrics are calculated using the same test data across the three

models.

Mean Absolute Error (MAE) is dened as the average of the absolute differences

between the predicted and actual values. Where yi represents the actual values, ŷi

represents the predicted values, and n is the number of samples.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (4.5)

The Median Absolute Error(MedAE) is the median of the absolute differences be-

tween predicted values and actual values. We can use it as a bias metric partner to

the MAE to see if the is overestimating or underestimating the predictions.

MedAE = median (|yi − ŷi|) (4.6)

Bias Metric Partner = −1 ∗MedAE (4.7)

A positive bias metric suggests the model is overpredicting, while a negative

value suggests it is underpredicting.

Mean Squared Error (MSE) is dened as the average of the squared differences
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between the predicted and actual values.

MSE =
1
n

n

∑
i=1

(ŷi − yi)2 (4.8)

Root Mean Squared Error (RMSE) is dened as the square root of the average of the

squared differences between the predicted and actual values.

RMSE =


1
n

n

∑
i=1

(ŷi − yi)2 (4.9)

The predicted results were plotted against the observed calculated values in the

test set.

Furthermore the MEC was used to evaluate the performance of a predictive

model, it measures how well the model’s predictions match the observed calcu-

lated data. An MEC of 1 indicates perfect predictions. An MEC of 0, indicates the

predictions have the same variance as the observed data (Nussbaum et al., 2023) .

The Model Efciency Coefcient (MEC) is dened as:

MEC = 1− ∑n
i=1(Oi − Pi)2

∑n
i=1(Oi − Ō)2

(5.1)

where:

• MEC is the Model Efciency Coefcient.

• Oi are the observed values.

• Pi are the predicted values.

• Ō is the mean of the observed values.

• n is the number of observations.
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4.5 Prediction error maps

4.5 Prediction error maps

To evaluate all three regression methods, we applied their respective binary clas-

sication and regression models to calibration image 2. Prediction error maps were

generated for each model by subtracting predicted water heights from actual wa-

ter heights for every cell, enabling us to compare their results. Calibration image 2

was chosen because it has clearly dened dry and wet sections, facilitating easier

visualization and comparison.

For the Random Forest model, prediction error maps were generated for all 3

depths.

4.6 Applying models to operational images

The two-step Random Forest model was selected to predict water depth on opera-

tional images. A subset of the operational images was selected. Images were chosen

from tidal cycles (3509-4499). To reduce processing time, every tenth image from a

total of 990 tidal cycles was selected, resulting in a subset of 99 images.

Each image underwent the same preprocessing steps as the calibration images.

First, the images were scaled to match the metronome dimensions. Next, they were

transformed into the LAB color space, where the L band was xed at 127 to stan-

dardize brightness. Subsequently, the images were converted back to the RGB color

space.

After preprocessing, a Random Forest Binary Classication Model was em-

ployed to predict whether each cell in the image was wet or not. Following this

classication, a regression model using the RGB values was applied to predict the

water depth for each cell.

This iterative process was repeated for all 99 images, allowing us to systemati-

cally assess the model’s performance across different tidal cycles.

Using the time step of 990 cycles. A water prediction map of cycle 4499 was

subtracted from cycle 3509. To illustrate if the model is precise enough to detect

water depth change.
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5. Results

5.1 Water depth maps

Four water depth maps were calculated; an example of water depth 2 is shown in

Figure 5.1a. A binary wet/drymap is shown in Figure 5.1b, which lters out the dry

pixels and keeps allwet pixels as a binary 1. It is then overlaid onto the orthomosaic

of calibration image 2.

(a) Depth 2 water depth calculated using weir height and the digital elevation model.

(b) Calculated dry and wet cells where water depth is ≤ 0 mm, overlaid onto the RGB image.

Figure 5.1: Example of water depth maps for water depth 2

It is clear from Figure 5.1b that there is a correctly identied dry area, but it

incorrectly identies some areas where there is visually water as dry.

5.2 Binary classication Results

The results of classication models using Logistic Regression, Random Forest and

SVM are shown two fold. First the results are presented with confusion matrices,

MAE. Second the error map of calibration image 2. As mentioned, the SVM model

was trained on 10% of the training the other models used.
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5.2 Binary classication Results

5.2.1 Model Performance

To evaluate the performance of the binary classication models, confusion matri-

ces were generated for each algorithm. Confusion matrices are essential tools for

assessing the effectiveness of classiers by summarizing their predictions against

actual class labels. Each matrix visualizes the counts of true positives (TP), false

positives (FP), true negatives (TN), and false negatives (FN).

(a) Confusion Matrix for Logistic Re-
gression

(b) Confusion Matrix for Random For-
est

(c) Confusion Matrix for SVM

Figure 5.2: Confusion Matrices for the binary classier

5.2.2 Error prediction maps

The Random Forest binary predictor model was used to predict wet and dry cells

and compared to the calculated wet and dry cells. The results were overlaid on the

original RGB image.

The model incorrectly classies some areas as dry in Figure 5.1b, which are actu-

ally wet. Although the model correctly predicts these pixels as wet from their RGB

values, they are evaluated as false positives. Dikes and borders of the Metronome

(specically the bridge on the upstream side, the elevation sensors and the wave-

maker on the downstream side) are also evaluated as incorrect predictions. These
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Figure 5.3: Incorrectly predicted pixels using the Random Forest model were mapped
back onto the original orthomosaic. Red indicates an incorrectly predicted pixel.

borders can be removed by future masking so are of little concern.

5.3 Regression Results

The results of the regression can be compared using the MAE, Bias Partner Metric,

RSME and MSE values of each model. The models are tested on the same data. But

SVM was trained on 10% of the training data of the RF model due to time required

for model training.

Model MAE(mm) Bias Metric (mm) RMSE(mm) MSE(mm2)
Linear extrapolation 10.38 3.50 16.09 263.58
Random Forest 3.87 0.44 6.53 42.64
SVM 5.77 -0.63 12.33 152.23

Table 5.1: Performance Metrics of Depth Prediction Models tested using 73,237 pixels

The negative bias metric suggests that the SVM model underpredicts, while the

other models overpredict. All models seem to be affected by large errors (high

MSE), and Random Forest has the lowest MAE.

5.3.1 Linear Regression

Part of this research is to establish if there is a linear relationship that exists between

colour intensity and height and can this relationship be used to accurately predict

water height.

Using the initial predictions ofwet and dry cells from the linear regressionmodel.

The predicted wet cells were selected. The intensity of colour at each band (RBG)

was plotted against their water height increase over the 3 cycles.

The resulting lines were calculated, and their coefcients were tted. The initial

plots of band-to-water height exhibited signicant noise and were subsequently

ltered out. This research aims to assess the presence of a robust linear relationship.

Therefore, pixels were ltered to include only those with a (R2 > 0.80) and slopes
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less than 10 (as slopes greater than this were likely due to noise).

Figure 5.4: Plot of pixel depth with RGB-B band values

The graph was plotted this way for visualisation purposes. To form a simple us-

able linear extraction the equation of the line of best t can be rewritten as Equation

5.1.

Using the linear model. The predicted water depths were compared to the cal-

culated water depths in the test dataset, then the distribution of the residuals were

plotted. Additionally, the distribution of residuals greater than ±2σ (standard de-

viations) from the mean were highlighted.

h =
B− 114.03

1.09
(5.1)
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(a) Scatter plot of Results, with line of best t

(b) Histogram of residuals showing the dis-
tribution of errors

(c) Distribution of residuals greater than
±2σ from mean error

Figure 5.5: Comparison of histograms and poor predictions

A low MEC (Model Efciency Coefcient) indicates that the linear regression

model performs poorly. The positive skew in the distribution of errors suggests

that the model tends to underpredict. It also overpredicts as the tail of the distribu-

tion extends, it highlights the limitations of the linear assumption, with the errors

becoming increasingly spread out.

5.3.2 Random Forest

The Random Forest model predicted versus calculated water heights were plotted.

Then the residuals were plotted. As was feature importance.
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5.3 Regression Results

(a) Scatter plot of results, with line of best t

(b) Histogram of residuals showing the dis-
tribution of errors

(c) Distribution of residuals greater than
±2σ from mean error

Figure 5.6: Comparison of histograms and poor predictions

The scatter plot and the distribution of residuals showing both overpredictions

and underpredictions indicate that while the model is generally accurate, it does

have instances where it deviates from the actual values. The MAE of 3.87 quanti-

es the average magnitude of the errors in the model’s predictions, without con-

sidering their direction. This value provides a sense of how much, on average, the

predictions deviate from the observed values. The MSE of 42.64 indicates that the

model’s errors are relatively large in magnitude, as MSE amplies the impact of
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larger errors by squaring them. This means that although the MEC is high, sug-

gesting a generally good model t, there are signicant outliers where the model

prediction errors are substantial. When we consider c) the distribution of residuals

greater than ±2σ from mean error. It indicates that the model has high prediction

errors particularly at very low and very high water depth.

Figure 5.7: Feature Importance of RGB Colour bands in the Random Forest Model for
predicting water height.

The G band of the converted orthomosaics is the most important feature in the

RGB band in predicting water height.

5.3.3 SVM

The SVM model predicted versus calculated water heights were plotted. Then

residuals were plotted.
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5.3 Regression Results

(a) Scatter plot of results, with line of best t

(b) Histogram of residuals showing the dis-
tribution of errors

(c) Distribution of residuals greater than
±2σ from mean error

Figure 5.8: Comparison of histograms and poor predictions

An MEC of 0.58 suggests that the model has a moderate level of accuracy in

predicting the observed data. This value indicates that while the model captures

some of the underlying patterns in the data, there are still considerable discrepan-

cies between the predicted and observed values.

The distribution of residuals, particularly the negative skew in residuals greater

than ±2σ from the mean error, suggests that large errors of the model occur for
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deep water depths. This means the model tends to underpredict or overpredict

signicantly at these depths, leading to the larger errors observed.

5.4 Comparing errors

To visually compare how the models are performing the models (binary and re-

gression) were reapplied to the calibration 2 image and overlaid with the original

RGB image. The error was calculated on all 4 depths for the RF model and can be

found in Appendix 8.3.

(a) Prediction error of Random Forest model

(b) Prediction error of SVM

(c) Prediction error of Linear Extrapolation

Figure 5.9: Comparison of Prediction Errors

5.5 Applying the Random Forest model to operational im-

ages

The two-step Random Forest model is applied to the operational images. Below are

three images: one taken at the beginning, one in the middle, and one at the end of

the process. The respective orthomosaics and water depth predictions are shown.

An accompanying video is included See Supplementary Video in the supporting

information of this document showing the 99 images.
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5.5 Applying the Random Forest model to operational images

(a) Orthomosaic at cycle 3509

(b) Water depth prediction at cycle 3509

(c) Orthomosaic at cycle 4029

(d) Water depth prediction at cycle 4029

(e) Orthomosaic at cycle 4489

(f) Water depth prediction at cycle 4489

Figure 5.10: Orthomosaic and corresponding water depth predictions at cycles 3509,
4029, and 4489

5.5.1 Visualising morphological change using water depth predictions

It becomes important to determine if the predictions of the Random Forest pro-

duces results that are precise enough to detect change.
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Figure 5.11: The difference in water predictions of cycle 4489 and 3509

The green color on the map indicates predicted deeper water depths, which

may suggest scour development, while red indicates shallower water depths, po-

tentially indicating sand deposition
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6. Discussion

6.1 Water depth calibration

The accuracy of the predictions depends signicantly on the precision of the cali-

bration dataset. If the height of the DEM is not accurate, neither is the calculated

depth of the water. These depths are what the model is trained on, so the accuracy

of the DEM is crucial for accurate predictions.

The calibration DEM used to calculate bed height zb introduces potential errors

due to lens distortions, positional variations, and orientation inaccuracies. As the

same DEM is used consistently, these errors remain temporally uniform across the

entire calibration dataset, affecting the overall accuracy of the predictions. But spa-

tially the errors in the DEM are dependant on the laser camera intrinsics and ex-

trinsics. Future developments of the software used to compute these DEM models

could reduce the error.

To compute the water depth, the weir height zw, was adjusted by a value k, to

account for both the weir overow and articial grass offset. The accuracy of this

offset is also crucial to water depth prediction. This offset was subtracted from the

weir height.

A nonlinear value of k between the values of 27.0 to 39.0 mm across four calibra-

tion images was deemed too large for effective model training. To minimize errors,

images 1 to 3, with offsets of 36.5 to 39.0 mm, were used for regression training.

However, since precise height measurement is less critical for binary classication,

image 0 was also included in the training dataset for that purpose.

For this experiment the value of k was essentially estimated (through a visual

trial and error process) which in turn introduces another source of error into the

water depth predictions. Experiments could be done to measure the overow

height above the weir at different weir heights and explore relationship between

weir overow and weir height. The resulting misalignment between the calculated

water height map and orthomosaic is evident in Figure 5.1, where certain sections

of water are not adequately covered.
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6.2 Binary Classication

This misalignment primarily accounts for the main source of error in the binary

classication of "wet" and "dry" pixels. As depicted in Figure 5.3, the model cor-

rectly identies certain cells as "wet" based on RGB values of the converted ortho-

mosaics, but due to calibration issues, these cells are incorrectly classied as "dry".

Misclassication of dikes, specic seaoor areas, and Metronome borders also oc-

cur however, these are less concerning as they can be ltered out in subsequent

experiments using a more rened vector mask.

All three models perform satisfactorily in this task, aiming to lter out dry cells

without losing any wet cells. In this context, missing a positive prediction (false

negative) is more critical than falsely predicting a positive outcome (false positive).

Therefore, recall is the most important metric.

Logistic Regression, Random Forest, and SVM achieve Recall scores of 0.91,

0.90, and 0.87, respectively, indicating their effectiveness in minimizing false nega-

tives by accurately identifying most "wet" cells. This high Recall ensures that these

models are reliable for predicting "wet" cells, with misclassied cells primarily be-

ing false positives.

However, the misalignment in calibration images might affect the models’ relia-

bility and transferability. Given the promising regression results, future calibration

experiments can address and rene these issues to enhance model performance.

6.3 Regression results

The Random Forest model was chosen to predict on the operational images. This

was due to the low MAE 3.87 mm compared to 10.38mm and 5.77mm (linear ex-

trapolation and SVM).

For the linear regression technique, the technique was investigated as it offers

the advantage of being computationally efcient and easy to implement.

However, under these conditions, the results are unacceptably unreliable. A lin-

ear relationship between the B-band and water depth appears to exist (in particular

depths), but extracting this relationship is challenging due to data noise and depth

limits where linearity holds and it appears limited to a narrow range of depth. Be-

yond a depth of 40 mm, water depth increases without a proportional increase in
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B-band intensity. While marginal improvements might be possible with different

bands or band indices (Lyzenga, 1978), there are inherent limitations.

The results indicate that despite being previously used for water depth predic-

tion (Upson, 2024; Leuven et al., 2018) (MAE not reported), the model achieves

visually similar water depth prediction maps to the overhead imagery. However,

given the reported MAE of (10.38 mm) at this concentration of water dye, a linear

assumption of water depth should not be considered accurate.

Thus, the research focused on predicting water depth using non-linear meth-

ods, concluding that linear models are not suitable for this task with overhead pho-

tos. Consequently, the rest of this discussion focuses on non-linear methods.

6.3.1 SVM and Random Forest

Considering the SVM model, the Metronome generates a substantial volume of

images, necessitating consideration of computational efciency. While SVM was

explored in this study, compromises were necessary due to computational con-

straints. The SVM model was trained on one-tenth of the dataset used for other

models but was tested on the same test set. Although the results themselves do not

necessarily disqualify SVM, the unequal comparison and the computational time

required for training and prediction were prohibitive. Therefore, Random Forest

(RF) was selected for predicting operational images.

The results indicate that the regression models performwell overall, despite the

high RMSE and MSE (Table 5.1). RMSE, and MSE are particularly sensitive to out-

liers. These outliers may stem from various sources, such as measurement errors

from the mask capturing border areas and dikes, model inaccuracies, imperfec-

tions in the orthomosaics, the dye reaching the upper limit to colour change with

increasing depth.

The Random Forest model shows the lowest MSE (42.64 mm). However, due

to the narrow ranges of the Metronome, it is critical to identify outliers and under-

stand their distribution across different water depths. Analysis of the histogram

of errors suggests a normal distribution. Filtering the residuals and plotting errors

greater than 2 standard deviations reveals that shallow depths and deep depths

exhibit the highest errors.

Examining the error map of the Random Forest prediction on calibration image

2 (Figure 6.1), highlights specic regions where the model’s predictions diverge
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signicantly from actual depths.

Figure 6.1: The difference in water predictions of cycle 4489 and 3509. Riverside open-
ing (a), section in the middle (b, upper right (c), and on the seaoor (d)

The error in (d) is not concerning, as the seaoor depth does not affect the

changing morphological features of the Metronome. It can be effectively masked

out in future applications. Similarly, the area near the river mouth (a) can also be

masked out.

To explain the under-prediction in (b) and (c), we referred to the calculated

water depth maps and compared the areas of large errors with the calculated depth

in those regions, as detailed in in Appendix section 8.2. It was observed that these

under-predictions begin when the calculated depth exceeds 30 mm. In these cases,

the model predicts approximately 10 mm or less water depth at the same pixel,

suggesting that > 30 mm threshold, the calibration experiment can under-predict

depth. Another consideration is colour preprocessing technique used in creating

the orthomosaics (Weisscher et al., 2020) is not optimised, this could contribute to the

underpredictions, due to inconsistent colouring. Future research will likely resolve

this issue by applying white balancing to all overhead cameras.(Nota, 2024c).

The issue of under-prediction may be partially addressed by repeating the ex-

periment with a lower concentration of dye. However, this effect is observed only

in certain pixels, and overall, the predictions performwell, withMAE values of 3.87

mm. It is difcult to compare the performance of this model with other research.

As no other research was found on the topic of using machine learning models to

predict water depth in laboratory umes. But this research does indicate that the

method applied successfully in remote sensing (Vojinovic et al., 2013; Mateo-Pérez

et al., 2021; Disanayaka Mudiyanselage et al., 2022; Zhang et al., 2020) can be ap-

plied successfully to laboratory scale experiments. Meaning future research could

also apply more advanced models such as Convolutional Neural Networks (Ai et

al., 2020).
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6.4 Application to operational imagery

The model, when applied to operational images, demonstrates precision in depict-

ing changes in water depth in moving images. This promising capability suggests

that future research could utilize this model for channel emergence, scour detec-

tion, and monitoring sand bar deformation.

By examining areas where water height increase greater than 10 mm (Figure

5.11), a scour (dark green) is notably emerging at the seabed entrance after just 990

cycles. This observation is supported by the orthomosaic from cycle 4489 (Figure

5.10f).

Conversely, water height decrease, can be used to detect sand deposition. A

sand bar is observed to be growing in the top right corner of the image, evidenced

by a decrease in water depth (red), indicating sediment deposition over tidal cycles.

These changes are more discernible using water depth change maps compared to

orthomosaics. With an extended timescale, these ndings are expected to become

even more pronounced.

The experiment demonstrates promising results that can potentially be applied

to other experimental orthomosaics, provided consistent preprocessing steps are

undertaken (such as LAB transformation and pixel alignment), along with main-

taining uniform dye concentration and lighting conditions. Building upon and im-

proving the techniques preformed by Weisscher et al. (2020).

Further improvements could include repeating the calibration and model train-

ing with a broader range of depths, using a weaker concentration of dye, ensuring

removal of oating sand particles from the calibration imagery, rening the mask

to exclude narrower areas (such as removing the dikes and seaoor), accurately

determining weir height offsets at different depths, and enhancing the calibration

of the Digital Elevation Model (DEM).

Future applications could include implementing edge detectionmethods (Pirzada

& Siddiqui, 2013) to delineate estuary water boundaries and identify shapes of

continuous channels. Additionally, smoothing techniques using K-Nearest Neigh-

bours (Milan et al., 2016) could enhance the visualization of longer and continuous

water channels.
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7. Conclusion

This project aimed to develop and apply linear and non-linear models to derive

water depth data from overhead imagery in the Metronome. By utilizing DEM

data and known weir height increases in calibration experiments, we generated es-

timations of water depth per pixel. We overlaid the pixel values in the converted

orthomosaics onto the water depths and evaluated several machine learning models

for predicting water depth.

The results indicate that Random Forest exhibited the most promising perfor-

mance in predicting water depth, achieving a superior MAE of 3.87 mm with a

recall of 0.90 for wet cells, compared to Support Vector Machine (MAE: 5.77 mm,

recall: 0.87). Random Forest also demonstrated signicantly better computational

efciency.

It was found that linear extrapolation of depth produced an inaccurate results

as the dataset method is more prone to noise and the linear relationship is limited

to depth (max 40mm).

The application of the Random Forest model to operational images shows promise

in change detection, scour identication, sand bar deformation, feature analysis

and water height analysis. Future research could further enhance this by edge de-

tection and K-Nearest Neighbour methods.

Challenges for the Random Forest model included its sensitivity to outliers.

(MSE: 42.64mm), and the model is prone to under-predicting depth larger then

30mm. This could be addressed in future experiments by using a weaker dye con-

centration and adding more depths to the calibration images. Addressing these

issues could lead to more accurate predictions and broader applicability.

Overall, this study contributes to challenge of predicting water depth from

overhead imagery. By leveraging the method described in this paper, researchers

can advance the understanding of scaledmorphological features of Metronome un-

der different conditions.
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8. Appendix A

8.1 Calibration RGB orthomosaics

Figure 8.1: Calibration Orthomosaic depth at weir height 46.36 mm. Red box identify-
ing seabed area.

Depth 1

’

Figure 8.2: Calibration Orthomosaic depth at weir height 75.70mm

Depth 2

’

Figure 8.3: Calibration Orthomosaic depth at weir height 82.73mm
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Figure 8.4: Zoom of depth 2 image to show visible oating sand clumps

Depth 3:

’

Figure 8.5: Calibration Orthomosaic depth at weir height 94.85mm

8.2 Random Forest Predictions water depth on calibration

images:

Depth 1

’

Figure 8.6: Random Forest Water Depth Prediction for image 1

Depth 2

’

Figure 8.7: Random Forest Water Depth Prediction for image 2
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8.3 Random Forest Prediction error on calibration images:

Depth 3:

’

Figure 8.8: Random Forest Water Depth Prediction for image 3

8.3 Random Forest Prediction error on calibration images:

Depth 1:

’

Figure 8.9: Random Forest Prediction error at weir height 75.70mm

Depth 2:

’

Figure 8.10: Calibration Orthomosaic depth at weir height 82.73mm

Depth 3:

’

Figure 8.11: Calibration Orthomosaic depth at weir height 94.85mm
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8.4 Water depth prediction on operational images using Ran-

dom Forest

Figure 8.12: Water height density distribution curvees.

Figure 8.13: Predicted water height decrease between 4489 and 3509.
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