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Abstract

Bacteraemia is a blood stream infection with a high morbidity and

mortality rate. Accurately diagnosing bacteraemia using blood cul-

tures is a resource-intensive process. Developing a machine learning

model to predict the outcome of a blood culture in the emergency

department has the potential to improve diagnosis and reduce health-

care costs and mitigate antibiotic use. This thesis aims to identify ma-

chine learning techniques to predict bacteraemia and develop a pre-

dictive model using data from the emergency department of St. Anto-

nius Hospital. Based on current literature, CatBoost and random for-

est were selected as the most promising machine learning techniques

for bacteraemia prediction. Model optimisation using Optuna focused

on maximising sensitivity to accurately identify patients with bacter-

aemia. The final random forest model achieved an ROC AUC of 0.78

and demonstrated a sensitivity of 0.92 on the test set. Notably, the

model could accurately identify patients that had a low risk of bacter-

aemia at 36.02%, at the cost of 0.85% false negatives. Based on these

findings, implementing the model into the emergency department

at St. Antonius Hospital could reduce the number of blood cultures

taken as well as lowering healthcare costs and antibiotic treatments.

Further studies could focus on externally validating the model, ex-

ploring advanced machine learning techniques and removing poten-

tial confounders in the data set to ensure the model’s generalisability.
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1 Introduction

1 Introduction

1.1 Background information

Rising trends in antimicrobial resistance are a global concern according to

the World Health Organisation (WHO) [1]. Antimicrobial resistance reduces

the efficacy of drugs used to treat infectious diseases and could lead to an

increase in the spread of diseases and death [1]–[3]. One such condition is

bacteraemia, defined as the presence of bacteria in the bloodstream, which

can lead to severe infections and carries a high morbidity and mortality rate

[4], [5]. Blood cultures (BC) are the gold-standard test used to diagnose

bacteraemia. This is why BC are ordered frequently by healthcare profes-

sionals, despite the time-intensive process of waiting for results, which typ-

ically ranges from several hours to multiple days. Consequently, antibiotics

are prescribed early to reduce mortality risks in suspected cases [6]. The

outcomes of the BC often yield low true positive outcomes and high con-

tamination rates as a result of the large number of tests ordered [7]–[10].

The culture process itself is quite expensive, costing up to 250 euros per or-

der [11]. This, combined with the high contamination rate in the emergency

department (ED), leads to misdiagnoses, resulting in increased follow-up

costs such as prolonged admission and additional medication for patients

suspected of having bacteraemia [12]. Considering the rising threat of an-

timicrobial resistance, it is vital to avoid unnecessary antibiotic use, espe-

cially given the relatively low prevalence of bacteraemia. However, in the

time sensitive ED accurately diagnosing true bacteraemia (TB) is a difficult

task [13]. Therefore, BC continue to be the gold-standard test for identifying

TB, despite its challenges.

Machine learning, a technique that involves computational learning and

statistical models, can make predictions or decisions based on data [14]. The

use of predictive machine learning models could solve the need for more ac-

curate, efficient, and timely diagnostic approaches to improve patient out-

comes, reduce healthcare costs and antibiotic use [10], [15]. By developing a

first line defense using machine learning for decision support, there is a po-
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tential to identify low-risk patients where physicians can refrain from doing

BC testing or administering antibiotics. Utilising hospital data for machine

learning can be highly valuable due to the assortment of variables, such as

patient information and treatment details, as well as the large volume of

data sets available. This abundance allows for broad and extensive analyses

and model training. As such, machine learning is increasingly being ap-

plied across various fields of biomedical research, including but not limited

to classifying breast cancer types [16], diagnosis of Parkinson’s disease [17],

prediction of in-hospital mortality [18] and TB prediction [15], [19]–[26].

Previous studies have used machine learning to predict TB in BC, such

as the Shapiro model [27], MPB-INFURG-SEMES model [23] and the VUMC

model [20]. These studies have shown that predictive models to identify TB

are valuable in clinical practices by identifying low-risk patients that can

forego having BC taken [19], [28]. However, challenges remain in imple-

menting and validating these models, e.g. due to the large number of hos-

pital specific features and variability in patient populations [19], [23].

1.2 Aim of study

Given the previously mentioned challenges of reducing healthcare costs, ris-

ing trends in antimicrobial resistance, and diagnosing bacteraemia, there is

a compelling need to enhance current techniques and diagnostic accuracy.

Currently, blood cultures are routinely ordered for patients with suspected

bacteraemia, leading to substantial healthcare costs and potential overuse

of antibiotics. This study aims to develop a predictive model that improves

the identification of TB cases (high sensitivity) while accepting a higher rate

of false positives. The goal is to minimise unnecessary testing and antibi-

otic use without missing clinically significant cases. This thesis aims to

achieve these objectives by identifying and refining the most effective ma-

chine learning techniques from recent literature to enhance existing TB pre-

diction models for application in the emergency department of St. Antonius

Hospital.
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1.3 Research questions

To fulfill the aim of this thesis, a main research question was formulated

along with two sub questions to provide more detailed answers for the main

question.

• Main Research Question:

How can the most promising machine learning techniques

identified from current literature be applied to develop a

predictive model for true bacteraemia, and how does this

model perform in terms of sensitivity within the emergency

department of St. Antonius Hospital?

• Sub questions:

1. What are the current machine learning techniques used for pre-

dicting true bacteraemia in blood cultures, and which of these

techniques show the most potential for achieving better predic-

tion results?

2. How can the machine learning techniques identified from the lit-

erature be applied to develop a prediction model for true bacter-

aemia, and what is its performance in terms of sensitivity within

the emergency department of St. Antonius Hospital?

1.4 Reading guide

Chapter 2 provides a comprehensive literature study. Chapter 3 outlines

the methodology of this study. In Chapter 4, the results are presented, fol-

lowed by the discussion in Chapter 5. Finally, Chapter 6 offers a conclusive

summary of the study’s findings.
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2 Literature study

2.1 Introduction

The high morbidity and mortality rate of bacteraemia concerns emergency

departments worldwide [4], [5]. Early identification of bacteraemia using

prediction models can optimise resources in healthcare. Machine learning

techniques have shown promise in TB prediction [15], [19]–[26], but their

translation to real-life clinical settings remains a challenge [19], [23], [28].

Among the few models implemented, the Shapiro model, employing mul-

tiple logistic regression, demonstrated initial success with a ROC AUC of

0.80 and a 27% reduction in BC usage [27]. ROC AUC, or area under the

receiving operating curve, is a classification comparison metric frequently

reported in literature [29]. The higher the ROC AUC, the better the model is

at correctly predicting classes—in this case, whether a patient has TB or does

not have bacteraemia. However, the performance of the Shapiro model var-

ied across different studies [23]. This literature study evaluates recent ma-

chine learning approaches for TB prediction, focusing on their ROC AUC

performance and potential for improving prediction.

2.2 Previous studies

This thesis builds upon the foundation set by Boerman et al. (2022), con-

ducted at the VU Medical Centre (VUMC) in the Netherlands [20]. This

study utilised logistic regression (LR) and an extreme gradient boosted tree

model (XGBoost, XGB) to predict the probability of a positive blood cul-

ture test in 4885 adult patients. Both models effectively identified patients

at low risk of bacteraemia, with LR achieving a ROC AUC of 0.78 and XGB

a ROC AUC of 0.77. Subsequent implementation of the XGB model in a

follow-up study by Schinkel et al. (2022) involved training on VUMC data

(N = 6421) and validation across multiple hospitals, yielding ROC AUCs

of 0.81 (VUMC, N = 1606), 0.80 (Amsterdam Academic Medical Centre, N

= 2429), 0.76 (Zaans Medical Centre, N = 5961), and 0.75 (Beth Israel Dea-

coness Medical Centre, N = 27706) [19]. Real-time evaluation at VUMC (N
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= 590) during the same study demonstrated a ROC AUC of 0.76 with the

model and suggested that 30.3% of the BC could have been withheld at a

5% probability threshold [19].

Researchers from St. Antonius Hospital (STA) validated the model fol-

lowing the VUMC implementation study [19], [30]. This resulted in the

following ROC AUC: 0.79 [30], while the original VUMC model achieved a

ROC AUC of 0.77. Given that the St. Antonius Hospital data set comprises

a much larger sample of 27009 patients, there is potential for improved pre-

diction of TB outcomes by employing a different model trained, validated

and tested on this significantly larger data set. While the model of Boerman

et al. (2022) provides a valuable starting point, it is crucial to examine the

range of existing studies and its methodologies.

Roimi et al. (2020) conducted an intensive care unit (ICU) study across

two hospitals, involving 3372 patients to TB [21]. The study used an ensem-

ble of six RF and two extreme gradient boosting models. The ROC AUCs

in cross-validation and internal validation ranged between 0.87 and 0.93.

However, with external validation both models declined to a range between

0.59 and 0.60, further highlighting the difficulty of model implementation.

Garnica et al. (2021) applied machine learning to predict bacteraemia

in BC using a dataset of 4357 patients [15]. They developed six super-

vised classifiers, including support vector machine (SVM), random forest

(RF), and k-nearest neighbours (KNN). Each method generated two mod-

els: one (pre-culture) using features available at blood extraction, and an-

other (mid-culture) incorporating additional post-extraction features. The

RF mid-culture model achieved the highest ROC AUC of 0.93, followed by

SVM’s mid-culture model at 0.88, with all models surpassing a ROC AUC

of 0.85.

Julián-Jiménez et al. (2021) designed a risk model to predict bacteraemia

in ED patients [23]. Data from 71 Spanish EDs were utilised, with a total of

4439 infectious episodes. A LR model was built and achieved a ROC AUC

of 0.924. The aforementioned Shapiro model [27] was tested on the Spanish

data as well and obtained a ROC AUC of 0.752, significantly lower than the
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new model.

Lee et al. (2022) constructed a TB prediction model using data from two

medical centers, consisting of a total of 38752 TB episodes [25]. A multi-

layer feedforward neural network (MLP) with one input layer, two hidden

layers (with 128 nodes), and an output layer was constructed. In addition,

XGB was used for a gradient boosting algorithm. To compare the models a

RF was used as well. The MLP achieved the highest ROC AUC with a ROC

AUC of 0.762, followed by RF with 0.758 and XGB of 0.745.

Choi et al. (2022) investigated two XGB models at the time of triage

(initial patient assessment) and disposition (decision on patient’s next steps)

in the ED, using a data set consisting of 24,786 patients [24]. The study

concluded that both models could be used to identify patients with low risk

of TB and facilitate early ED decisions, with ROC AUCs of 0.718 and 0.853

respectively for the triage and disposition XGB models.

Chang et al. (2023) predicted bacteraemia utilising cell population data

(detailed characteristics of blood cells) and machine learning using a data

set of 20,636 samples [22]. Five machine learning models were utilised:

XGB, light gradient boosting machine (LGBM), categorical boosting (Cat-

Boost, CB), RF, and LR. CB and LGBM yielded the best outcomes with ROC

AUCs of 0.844 and 0.842 respectively.

McFadden et al. (2023) trained and established machine learning models

using data from routinely analysed blood samples to predict the outcome

of BC [26]. With a training data set of 10965 samples, three models were

created, RF, decision trees (DT) and XGB. After 10-fold cross validation, the

XGB and RF were chosen for internal validation and achieved ROC AUCS

of 0.76 (XGB) and 0.82 (RF). The RF was externally validated as well, with a

ROC AUC of 0.76.

2.3 Model discussion

Studies frequently used XGB to predict TB, with 7 out of 9 reviewed studies

employing this technique [19]–[22], [24]–[26]. However, in contrast to the

popularity of XGB, a similar gradient boosting algorithm, CB remains un-



2.4 Conclusion

derutilised. The model’s unique components, including building symmet-

ric trees and ordered boosting, mitigate the risk of overfitting and enhance

running time compared to alternative algorithms [31]. Additionally, CB’s

internal handling of missing data is another advantage in comparison to

other machine learning algorithms such as XGB. Despite its potential, only

a limited number of studies have explored CB for TB prediction, of which

one is a pre-print [22], [32]. This finding along with the aforementioned

unique aspects suggests a potential for the usage of CB in predicting TB. In

addition to the potential of CB, several studies noted the valuable output

of RF [15], [21], [22], [25], [26]. The components of a RF, such as high pre-

dictive accuracy, the resistance to overfitting and the ability to handle large

data sets with decision trees, makes the method a fitting candidate for TB

prediction [33].

2.4 Conclusion

This literature study examined the different methods used in predictive

modelling for bacteraemia. The results of this study ranged from the more

traditional logistic regression, to more advanced techniques such as neural

networks, support vector machines, random forests and gradient boosting.

Despite the predictive potential of complex techniques like neural networks,

there is a need for model explainability, especially in clinical settings where

users may lack machine learning expertise. Based on the specific advan-

tages offered by CB and RF, these methods showed the most potential and

were chosen as the machine learning techniques for this thesis. By explor-

ing and comparing these two methods, CB and RF, this thesis is expected to

provide new insights that may contribute to a better understanding of TB

prediction.
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3.1 Introduction

This chapter outlines the methodology used to address the main research

question and sub questions of this study, which were previously detailed in

Section 1.3.

3.2 Data collection

Data for this thesis was collected using electronic health records (EHR) in a

retrospective observational study. Records were gathered between January

2018 and July 2023 at the ED of St. Antonius Hospital in the Netherlands.

The St. Antonius Hospital, known for its expertise in cardio-thoracic treat-

ments, cancer, orthopedics, and neurology among other, provided a diverse

patient population in the dataset [34].

The population consisted of 27009 adult patients (aged ≥ 18 years) in the

ED that had a BCs taken. If multiple BC were taken, only the first BC was

considered for the data set. A BC was taken if bacteraemia was suspected,

or the presence of bacteria in the bloodstream. Patients with neutropenia

(low levels of white blood cells) were excluded from the data set to avoid

confounding factors, as it makes patients more susceptible for infections.

Variables concerning the presence of a central venous line, prosthetic ma-

terial or suspicions of certain diagnoses, such as endocarditis (infection of

the heart) were not extractable from the hospital system and therefore not

included as exclusion criteria. The data set contained the results of the BC,

which could take one of two values, negative (0) or positive (1) for bacter-

aemia. As well as 25 categorical variables indicating whether specific values

were measured and 25 continuous variables, providing a comprehensive

overview of the population’s demographic and clinical characteristics. Ta-

ble 7 in Appendix 7.1 was created to provide context on the continuous vari-

ables of the data set, particularly for readers without a medical background.

Table 1 in Chapter 4 was created for an overview of the characteristics of the

data set. The outcome in this study was to predict the presence of TB in BC
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taken in the ED.

Literature was collected to compare existing machine learning techniques

to predict TB, including two papers from VUMC that served as starting

points [19], [20]. Recent peer-reviewed papers published within the last 5

to 10 years were gathered using Google Scholar and PubMed in April and

May 2024, employing the following keywords: bacter(a)emia, blood stream

infection, blood culture, machine learning, prediction, emergency depart-

ment, catboost, random forest.

3.3 Evaluation metrics

Evaluating the performance of TB prediction models required a comprehen-

sive set of metrics to ensure robust and clinically meaningful results. Due

to the high stakes associated with bacteraemia, both sensitivity and speci-

ficity were critical, but other metrics provided valuable insights into model

performance as well.

Sensitivity (Recall or True Positive Rate) is the proportion of actual pos-

itive cases correctly identified by the model. In the context of bacteraemia,

high sensitivity is crucial as it minimises the risk of missing true positive

cases, which could be fatal:

Sensitivity =
True Positives

True Positives + False Negatives
(1)

Specificity is the proportion of actual negative cases correctly identified

as negative. This metric is important to reduce the number of false positives,

preventing unnecessary treatments and reducing healthcare costs:

Specificity =
True Negatives

True Negatives + False Positives
(2)

Accuracy measures the overall correctness of the model by evaluating
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the proportion of true results (both true positives and true negatives) among

the total number of cases. While accuracy gives a general performance

overview, it can be misleading in imbalanced data sets. In such datasets,

a model can achieve high accuracy by simply predicting the majority class,

ignoring the minority class entirely:

Accuracy =
True Positives + True Negatives

Total Number of Cases
(3)

Precision (Positive Predictive Value) is the proportion of true positive

predictions among all positive predictions made by the model. Precision

is crucial in reducing false positives, ensuring that positive predictions are

reliable:

Precision =
True Positives

True Positives + False Positives
(4)

F1 Score is the harmonic mean of precision and sensitivity, offering a

single metric that balances the two. This is particularly useful in scenarios

with class imbalance:

F1 Score = 2 × Precision × Sensitivity
Precision + Sensitivity

(5)

Area Under the Receiver Operating Characteristic Curve (ROC AUC)

measures the model’s ability to discriminate between positive and nega-

tive cases. A higher ROC AUC value indicates better overall model perfor-

mance.

Area Under the Precision-Recall Curve (PR AUC) focuses on the trade-

off between precision and recall (sensitivity), particularly valuable for im-

balanced data sets where the number of negative cases far exceeds the pos-

itives. A high PR AUC indicates that the model maintains high precision
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and recall, even when the positive class is rare.

These metrics and their equations collectively provide a comprehensive

evaluation of the model’s performance. To maximise sensitivity in predict-

ing bacteraemia, this study focused on minimising false negatives, which

could potentially increase false positives. This approach was chosen to en-

sure that patients who truly required blood cultures were identified, even if

it meant a trade-off in specificity.

3.4 CatBoost, random forest and Optuna

CatBoost (CB) is a powerful gradient boosting machine learning technique

developed by Yandex in 2017 [35]. The algorithm stood out due to its unique

aspects, including the handling of categorical features, missing data, and

class weights. By eliminating the need for missing data imputation and

handling class imbalance, CB simplified the preprocessing, reduced the risk

of biases and improved the model robustness. These advantages made CB

a prime candidate for the methods of this thesis.

Random forest (RF), a well-known machine learning technique, has been

around for more than 20+ years and was established by Leo Breiman [33].

By incorporating multiple decision trees it provided improved prediction

accuracy, producing a robustness against overfitting. The beneficial compo-

nents of a RF, such as the handling of large data sets, number of features

and missing data, made RF an excellent choice for the prediction of TB in

this thesis.

Optuna was employed to optimise the hyperparameters of the CB and

RF models. By utilising Bayesian optimisation, which, through trial and

error, found the hyperparameters that ensured the best performance for the

models [36]. It applied its past experiences and knowledge of the trials to

adjust the next value of the hyperparameters, also called the define-by-run

principle [36].
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3.5 Model development

The data set included two variables, the probability and prediction of the

VUMC model on the STA data set, as well as the patient IDs, all of which

were removed as they were not useful for building the models. Since CB

and RF handle missing data internally, there was no need for imputation

[35], [37].

The data was split in training (80%), testing (10%) and validation (10%)

sets to develop the models, with a fixed random seed. The splitting of the

data was stratified on the outcome to maintain the class distribution, which

can be seen in Figure 1.

Complete STA data set
N = 27009

Training set
N = 21607 (80%)

Validation set
N = 2701 (10%)

Test set
N = 2701 (10%)

Positive BC
outcome
N = 2298
(10.6%)

Negative BC
outcome

N = 19309
(89.4%)

Negative BC
outcome
N = 2414
(89.4%)

Positive BC
outcome
N = 287
(10.6%)

Positive BC
outcome
N = 287
(10.6%)

Negative BC
outcome
N = 2414
(89.4%)

Figure 1: Overview of data sets after splitting

Optuna was used to fine-tune the hyperparameters of the CB and RF

models in 30 trials, with a focus on maximising the sensitivity. Hyperparam-

eters were selected for the tuning of the CB and RF model, all to mitigate the

under- and overfitting. Class weights were added to the hyperparameters

to reward the minority class for both models and penalise the majority class,

improving the model’s ability to detect the positive cases. The input values

of the Optuna search space and the final chosen hyperparameter values can

be found in Appendix 7.3.

The test set was used to evaluate the performance of the tuned models.

The evaluation included confusion matrix results (e.g. accuracy, sensitivity

and specificity) and F1 score, ROC AUC and PR AUC. Of all these perfor-

mance metrics, sensitivity was the most important metric, as a high sensitiv-
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ity measures how well the model can indicate the TB cases. Thresholds were

set in place to ensure a high sensitivity, which was adjusted by consulting

plotted histograms with the probability distributions. The best threshold

was chosen based on the sensitivity and specificity trade-off rather than us-

ing the same threshold for both models. Graphs of the ROC AUC and PR

AUC were plotted to visualise the results. Additional SHAP (SHapley Ad-

ditive exPlanations) summary plots were generated for feature importance

inspection.

3.6 Statistical analysis

To provide a better understanding of the relationship between the indepen-

dent variables and the outcome of BC (positive or negative) a statistical anal-

ysis, specifically a Mann-Whitney U test, was performed. The distributions

of the independent continuous variables between the two outcome groups

were compared. A p-value of < 0.05 was considered to be significant. Due

to the presence of missing values, rows with missing values were deleted,

as well as the existing probability and prediction variables from the external

validation of the VUMC model. The results were presented in Appendix 7.5

in Table 12 and discussed in Section 5.4, with an asterisk (*) indicating any

not significant results.

3.7 Software

Data preprocessing, analyses and modeling were performed using the Python

programming language (version 3.12.3) [38] within the Spyder application

(version 5.5.1) [39]. Packages used included pandas (version 2.2.2) [40],

Matplotlib (version 3.8.4) [41], Seaborn (version 0.13.1) [42], SHAP (version

0.45.1) [43], Scikit-learn (version 1.4.2) [44], CatBoost (version 1.2.5) [35]

and Optuna (version 3.6.1) [36]. All code is available in a GitHub repository.

https://github.com/EvaTezeta/ADSthesis
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3.8 Ethical considerations

Data was pseudonymised on the patients admission number to ensure pa-

tient confidentiality. Patients were given the option to opt out of having

their data being collected for scientific research. This approach was based

on implicit consent, where data continued to be collected unless the patient

chose to opt out. The local Medical Ethics Review Committee waived the

necessity for formal approval of the study as well as the need for informed

consent (reference Z23.042). Additionally, the data set was stored on the

hospital’s protected workspace, which was accessed via a VPN. Download-

ing the data to personal laptops was prohibited, and all analyses were there-

fore conducted within the secure workspace environment.
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4.1 Patient characteristics

The data set consisted of 27009 BC samples between January 2018 and July

2023 in the ED of St. Antonius Hospital. Positive BC samples were found

in 2872/27009 (10.6%) and negative samples in 24138/27009 (89.4%). The

median age of all of the patients was 69 (IQR 55 - 78) and 45.3% was female.

The median age of patients that had a positive BC was slightly higher with

73 (IQR 64 - 81), and the median age of patients with a negative BC was

slightly lower with 68 (IQR 54 - 78). Additionally, certain laboratory pa-

rameters such as CRP, creatinine, and bilirubin levels were notably higher

in patients with positive BC samples, suggesting a possible association with

the severity of the infection. Table 1 shows the characteristics of the study

population and distribution of the available variables in the data set.

4.2 Model performances

The performance metrics of the final CatBoost (CB) and random forest (RF)

models can be seen in Table 2.

RF demonstrated a higher accuracy (0.458) compared to CB (0.416), in-

dicating better overall performance in correctly classifying TB. Both models

exhibited high sensitivity, with RF outperforming CB (0.920 vs. 0.916), in-

dicating its ability to detect positive cases. The RF model showed higher

specificity (0.403) compared to CB (0.357) as well, suggesting it is better at

correctly identifying negative cases. In terms of precision, RF had a higher

value (0.155) compared to CB (0.145), implying its positive predictions were

more reliable. The F1 Score (0.265) of RF exceeded CB’s (0.250), indicat-

ing a better balance between precision and recall. And lastly, RF exhibited

slightly higher ROC AUC (0.782) and PR AUC (0.342), which can be seen

in Figure 3, compared to CB, 0.767 and 0.304, as seen in Figure 2. Indicat-

ing better overall classification performance and ability to identify positive

cases effectively for RF.
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Table 1: Characteristics of the data set

Variable Positive Cultures (N = 2872) Negative Cultures (N = 24138) Total (N = 27009)

Sex (n)

Female (1) 1139 11089 12228
Male (0) 1733 13048 14781

Age (n)

18-27 48 919 967
28-37 62 1498 1560
38-47 99 1726 1825
48-57 231 2960 3191
58-67 503 4485 4988
68-77 895 6353 7248
78-87 804 4883 5687
88-97 225 1294 1519
98-105 5 19 24

Variable Median (IQR)

Age 73 (64 - 81) 68 (54 - 78) 69 (55 - 78)
Alkaline_phosphatase 98.0 (75.0 - 160.0) 84.0 (66.0 - 112.0) 86.0 (67.0 - 116.0)
Basophils 0.03 (0.02 - 0.05) 0.03 (0.02 - 0.05) 0.03 (0.02 - 0.05)
Bilirubin 13.0 (9.0 - 23.0) 9.0 (6.0 - 14.0) 9.0 (6.0 - 14.0)
Creatinine 100.0 (76.0 - 143.75) 82.0 (65.0 - 109.0) 83.0 (66.0 - 112.0)
CRP 106.0 (39.0 - 213.0) 61.0 (20.0 - 139.0) 65.0 (21.0 - 147.0)
Eosinophils 0.01 (0.0 - 0.04) 0.03 (0.01 - 0.11) 0.03 (0.01 - 0.1)
Gamma_GT 59.0 (29.0 - 158.0) 41.0 (23.0 - 83.0) 42.0 (24.0 - 88.0)
Glucose 7.6 (6.4 - 9.9) 6.9 (5.9 - 8.7) 7.0 (6.0 - 8.8)
Hemoglobin 7.7 (6.7 - 8.6) 8.0 (7.0 - 8.8) 8.0 (7.0 - 8.8)
Hematocrit 0.36 (0.32 - 0.4) 0.38 (0.34 - 0.42) 0.38 (0.34 - 0.41)
Leukocytes 12.5 (8.5 - 17.475) 10.5 (7.3 - 14.6) 10.7 (7.4 - 14.9)
Lymfocytes 0.64 (0.38 - 1.01) 1.06 (0.69 - 1.56) 1.02 (0.65 - 1.52)
Monocytes 0.71 (0.38 - 1.07) 0.79 (0.53 - 1.12) 0.78 (0.52 - 1.11)
Neutrophils 10.73 (7.65 - 14.57) 8.28 (5.58 - 11.82) 8.515 (5.72 - 12.12)
Potassium 4.0 (3.7 - 4.5) 4.1 (3.8 - 4.4) 4.1 (3.8 - 4.4)
Sodium 136.0 (132.0 - 138.0) 136.0 (134.0 - 139.0) 136.0 (134.0 - 139.0)
Thrombocytes 212.0 (159.75 - 279.0) 242.0 (185.0 - 315.0) 239.0 (182.0 - 311.0)
Urea 7.9 (5.7 - 12.1) 6.1 (4.4 - 8.9) 6.3 (4.5 - 9.3)
Heart_rate 100.0 (85.0 - 114.0) 95.0 (81.0 - 108.0) 95.0 (82.0 - 109.0)
Systolic_blood_pressure 123.0 (106.0 - 142.0) 131.0 (116.0 - 148.0) 130.0 (115.0 - 147.0)
Diastolic_blood_pressure 67.0 (58.0 - 79.0) 74.0 (65.0 - 85.0) 74.0 (64.0 - 84.0)
Temperature 38.28 (37.39 - 39.0) 37.78 (36.99 - 38.61) 37.89 (36.99 - 38.61)
Respiratory_rate 20.0 (16.0 - 24.0) 18.0 (16.0 - 24.0) 19.0 (16.0 - 24.0)
Saturation 96.0 (94.0 - 98.0) 96.0 (94.0 - 98.0) 96.0 (94.0 - 98.0)

Table 2: Performance metrics of the final CatBoost and Random Forest mod-
els.

Metric CatBoost Random Forest

Accuracy 0.416 0.458
Sensitivity 0.916 0.920
Specificity 0.357 0.403
Precision 0.145 0.155
F1 Score 0.250 0.265
ROC AUC 0.767 0.782
PR AUC 0.304 0.342
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(a) ROC AUC (b) PR AUC

Figure 2: ROC AUC and PR AUC of final CatBoost model.

(a) ROC AUC (b) PR AUC

Figure 3: ROC AUC and PR AUC of final random forest model.

4.3 Confusion matrices and thresholds

The confusion matrices and histograms in this section show the distribution

of predicted and actual cases for both models on the test sets.

4.3.1 CatBoost model

The CB model predicts that with the threshold set at 0.4, 861 (31.9% of the

total) of the BC can be withheld, at the expense of 24 false negatives (0.89%).

The confusion matrix in Figure 4a visually represents these predictions. Fig-

ure 5a displays the distribution of predicted probabilities, illustrating the

threshold effect at 0.4.
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4.3.2 Random forest model

The RF model, at a threshold of 0.3, identifies 973 cases (36.02%) where the

BC can be omitted, with 23 false negatives (0.85%). The confusion matrix

in Figure 4b visually presents these results. Figure 5b complements this

analysis by illustrating the probability distribution and the impact of setting

a threshold at 0.3.

(a) CatBoost - threshold = 0.4 (b) Random forest - threshold = 0.3

Figure 4: Comparison of confusion matrices for CatBoost and random forest
models.

(a) CatBoost - threshold = 0.4 (b) Random forest - threshold = 0.3

Figure 5: Comparison of probability thresholds for CatBoost and random for-
est models.
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4.4 Feature importance

To visualise the feature importance, SHAP (SHapley Additive exPlanations)

plots were generated for both the CB and RF models, highlighting the top 20

predictors for predicting TB. Figures 6a and 6b illustrate these plots, where

red indicates features with the highest impact on TB predictions, and blue

indicates features with the lowest impact.

Lymphocytes are the most influential predictor for both CB and RF. Other

notable predictors contributing significantly to both models include biliru-

bin, neutrophils, urea, eosinophils and temperature.

(a) CatBoost (b) Random forest

Figure 6: SHAP-plots of the feature importance of the CatBoost and random forest models, showing
the 20 most important variables for predicting TB.
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5 Discussion

5.1 Introduction

This thesis aimed to identify the most promising machine learning tech-

nique to predict TB and develop a more sensitive TB prediction model. Cat-

Boost (CB) and random forest (RF) were selected based on their potential for

developing sensitive and specific prediction models, as evidenced in recent

literature. These methods were applied to data from St. Antonius Hospital’s

emergency department electronic health records.

5.2 Validity of the study and methods

The data set consisted of patients already suspected of having bacteraemia,

which resulted in a BC being collected. This could have introduced a poten-

tial bias towards bacteraemia because clinical suspicion influenced the se-

lection criteria. To ensure consistency in data collection, BC were collected

using a standardised protocol (Section 7.2).

The VUMC model’s use of median imputation for missing data may

have distorted their data set and underestimated its variance [45]. Addi-

tionally, the VUMC data set had a significantly higher amount of missing

data compared to that of St. Antonius Hospital, with 22% missing data ver-

sus 5%, respectively. In contrast, this study did not require imputation for

missing data, as the CB and RF models managed missing data internally.

The use of Optuna for the hyperparameter tuning resulted in an efficient

search for the best hyperparameters. The possibility of maximising the sen-

sitivity ensured that both models were significantly improved. In compari-

son to, for example, the in-house but inefficient randomised and grid search

methods of CB, Optuna’s ability to take its previous tuning insights allowed

for more effective and productive tuning.

Overall, the validation steps undertaken in this study, including the use

of Optuna for the hyperparameter tuning and the stratified data split on

the outcome, were crucial for ensuring the reliability and robustness of the
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methods and findings, providing a solid foundation for interpreting the re-

sults.

5.3 Interpretation of results

The two machine learning methods, CB and RF, both demonstrated promis-

ing predictive capabilities, with ROC AUCs of 0.77 and 0.78 respectively.

The ROC AUCs are an indication of how well the model can correctly pre-

dict the outcome classes, in this thesis negative and positive BC. The higher

the ROC AUC, the better the prediction.

5.3.1 Model performance evaluation

While maximising sensitivity was essential for this study, given the critical

need to avoid missing positive cases in bacteraemia, specificity was an im-

portant factor as well. Reducing the number of BC testing by correctly iden-

tifying patients who do not need a BC, would reduce unnecessary antibiotic

treatments. This would be beneficial in light of the increase of antimicrobial

resistance and reducing costs.

The RF model predicted 12.9% more true negatives compared to CB, sug-

gesting it as the best model for TB prediction due to its balance of sensitivity

and specificity. This higher true negative rate suggests that RF is more ef-

fective at correctly identifying patients who do not have bacteraemia.

The components of RF, such as high predictive accuracy, resistance to

overfitting and internal handling of missing data, contributed to the robust-

ness of the model and a fitting technique for TB prediction. By implement-

ing this model into clinical practice, it has the potential to aid physicians in

clinical decision making by identifying patients that have no bacteraemia

and reducing unnecessary treatment and costs.

5.3.2 Random forest interpretation

In line with previous studies by Garnica et al. (2021) and McFadden et al.

(2023), the findings of this study support RF as highly effective for TB pre-

diction. Table 3 presents a comparison of the different performance metrics
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across the three RF models. While Garnica et al. (2021) and McFadden et

al. (2023) showed higher accuracy and specificity, their models had lower

sensitivity compared to this study [15], [26]. However, this study outper-

forms the two models with a substantially lower percentage of false nega-

tives (0.85% versus 6.31% and 15.33%, respectively). This comparison high-

lights the robust performance of the RF model in this study, particularly in

achieving high sensitivity and minimising false negatives, critical for effec-

tive TB prediction.

Table 3: Performance metrics comparison of random forest models. (TN =
True Negatives, FN = False Negative)

Metric This study’s RF Garnica et al. McFadden et al.

Accuracy 0.458 0.859 0.694
Sensitivity 0.92 0.874 0.664
Specificity 0.403 0.844 0.723
ROC AUC 0.78 0.93 0.82
TN % of Total 36.02% 42.1% 39.3%
FN % of Total 0.85% 6.31% 15.33%
Total Test Set 2701 871 3875

5.3.3 CatBoost interpretation

Although initial expectations suggested that CB would significantly im-

prove TB prediction (Section 2.3), it was not the chosen final model. This

study prioritised sensitivity over specificity, which was not the focus of

Chang et al. (2023) and Bopche et al. (2024) [22], [32]. Table 4 compares

the different performance metrics of the three CB models and the number

of true and false negatives [22], [32]. While the models from Chang et al.

(2022) and Bopche et al. (2024) reported high percentages of true negatives,

this study’s CB outperforms on the low number of false negatives (0.89%

versus 2.71% and 3.32%, respectively). These results highlight the need for

a more balanced approach between sensitivity and specificity.

5.3.4 Comparison with VUMC model

The VUMC model from Boerman et al. (2022) was the starting point of this

thesis, as well as the external validation of the VUMC model on St. Anto-
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Table 4: Performance metrics comparison of CatBoost models. (TN = True
Negatives, FN = False Negative)

Metric This study’s CB Chang et al. Bopche et al.

Accuracy 0.416 0.844 0.853
Sensitivity 0.916 0.715 0.627
Specificity 0.357 0.826 0.875
ROC AUC 0.77 0.84 0.82
TN % of Total 31.9% 74.7% 79.7%
FN % of Total 0.89% 2.71% 3.32%
Total Test Set 2701 3143 13195

nius Hospital data [20], [30]. Table 5 shows the results of this study with the

two previous studies. The percentage of unnecessary BC using the VUMC

model is 37.1%, whereas in the STA validation, this percentage was 34.9%.

This study’s CB and RF account for 31.9% and 36.02% of unnecessary BC,

respectively. The RF is slightly lower than the original VUMC model, but

higher than the STA validation. In contrast, this study’s CB and RF misiden-

tify 0.89% and 0.85% of the positives, respectively, while the VUMC does

that for 1.02% of their samples, and the STA validation for 0.79%. Overall,

this study’s final RF model performed better than the VUMC model and

STA validation combined.

Table 5: Performance metrics comparison of this study, the VUMC model and
the STA validation. (TN = True Negatives, FN = False Negative)

Metric This study’s CB This study’s RF Boerman et al. STA validation

Accuracy 0.416 0.458 0.481 0.447
Sensitivity 0.916 0.920 0.916 0.925
Specificity 0.416 0.403 0.422 0.39
ROC AUC 0.77 0.78 0.77 0.79
TN % of Total 31.9% 36.02% 37.1% 34.9%
FN % of Total 0.89% 0.85% 1.02% 0.79%
Total Test Set 2701 2701 1277 27009

5.3.5 Optional thresholds

Both Boerman et al. (2022) and the STA validation used a probability thresh-

old of 5%, enforcing stricter criteria for positive cases [20], [30]. This study

also evaluated the 5% threshold, but as can be seen in Figure 5, there are al-

most no probabilities below that threshold. Therefore, the thresholds were
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set at 40% for CB and 30% for RF, optimising for the best balance between

true and false negatives for each individual model, which is crucial for clin-

ical utility.

For both models, optional thresholds of 0.3 for CB and 0.4 for RF were

tested and are visualised in the Figure 7 and Figure 8. With the threshold

at 0.3, the CB model predicts that 489 (18.1%) of the BC can be omitted, at

the cost of 9 (0.33%) false negatives. This is a significantly lower number of

false negatives, compared to the 0.4 threshold with 0.89%. However, it also

reduced the number of true negatives by almost half in comparison to the

0.4 threshold (31.9%). In conclusion, the CB model could further eliminate

false negatives, but this would significantly increase the false positives to

such a degree that implementation of the model would not be useful in a

real clinical setting.

Having a threshold of 0.4 for the RF model resulted in higher percentage

of true negatives, 51.98% versus the 36.03% with the threshold at 0.3. How-

ever, this drastically increased the false negatives rate from 0.85% with the

threshold at 0.3, to 1.89%. Adjusting the threshold for the RF would allow

for more negatives to be predicted correctly, but at the cost of more than

double the false negatives.

Table 6: Performance metrics of the final CatBoost and random forest models
with the optional thresholds of 0.3 (CB) and 0.4 (RF). (TN = True Negatives,
FN = False Negative)

Metric CatBoost Random forest

Accuracy 0.284 0.607
Sensitivity 0.969 0.822
Specificity 0.203 0.582
FN Percentage 0.33% 1.89%
TN Percentage 18.1% 51.98%

5.4 Statistical analysis and feature importance

The results of the Mann-Whitney U test revealed statistically significant dif-

ferences in almost all variables between the two outcome groups, as can be

seen in Appendix 7.5. These significant results imply potential indicators
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for the prediction of TB. The variable respiratory_rate showed the only p-

value above the threshold of significance (p > 0.05), suggesting there is no

significant difference in respiratory rate between the positive and negative

BC groups. Saturation had a p-value of 0.047, which is just below the sig-

nificance threshold, and could potentially suggest that there is only a very

slight difference between the outcome groups.

The SHAP plots of the CB and RF models from this study, Figure 6, are

similar to the plot from Boerman et al. (2022) [20]. The highest predictors

revealed by the SHAP plots are plausible results, reflecting the importance

of these variables as key indicators of the patient’s immune response and

infection status [46].

Looking at the results from the Mann-Whitney U test and the SHAP

plots, both respiratory rate and saturation did not make it to the top 20 in

both the CB and RF models. Whereas the other variables that did make

it in the SHAP plots all have significant differences between the outcome

groups, indicating their predictive value.

5.5 Limitations

5.5.1 Contamination rates

Despite the standardised BC protocol (Appendix 7.2), potential for false pos-

itives in BC remains due to contamination [7]–[10], which could lead to un-

necessary antibiotic treatment for non-existent bacteraemia. This further

emphasises the need for sensitive and specific predictive models, like those

proposed in this study. Implementing the model in clinical practice could

reduce the number of BC ordered, as well as potentially lowering the con-

tamination rates, antibiotic use and healthcare costs.

5.5.2 Edge cases

As mentioned in Section 3.2, it was not possible to filter out patients that had

a central venous line, prosthetic material or suspicions of certain diagnoses,

such as endocarditis. There is a chance that these patients had endocardi-

tis or infection from artificial material. These are dormant infections that
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do not always meet the standard characteristics of a bacteraemia. There-

fore, keeping these cases in the data set could potentially skew the model

training and testing. However, edge cases were present in the VUMC data

set as well, which makes comparing the two studies more reliable. If the

model were to be implemented, these patients would not be subjected to an

algorithm and a BC will always be done, to avoid missing these cases.

5.5.3 Class imbalance

Class imbalance is a common problem in medical data, where one class,

often the outcome of interest, is significantly less frequent than the other

class [47]. In the case of this thesis, it was the positive outcomes of the BC

that were the minority class. To mitigate the class imbalance, class weights

were incorporated in the hyperparameters. This penalised the majority class

more heavily than the minority class, improving the model’s ability to detect

positive cases. Addressing class imbalance is crucial as it directly impacts

model performance metrics such as sensitivity, specificity, and overall accu-

racy, which are essential for reliable predictions in clinical settings. There are

many other methods to account for this imbalance and they are addressed

in the work of colleague student Jos Perdeck [48].

5.6 Recommendations

5.6.1 Implementation and external validation

Based on the results and findings of the thesis, it is recommended to perform

a prospective real-time evaluation, similar to Schinkel et al. (2022) [19]. Con-

ducting a pilot study by integrating the RF model into the electronic health

system of the hospital would allow the model to predict the probability of

patients suspected of having a bacteraemia, without yet impacting clinical

decisions.

In line with the implementation of the model into a pilot study, assessing

the generalisability of the model by performing external validation would

ensure the model’s robustness. Collaborating with other hospitals and test-

ing the model’s performance on new data is important to confirm the model’s
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ability to detect TB.

5.6.2 Trade-offs in model performance

While the final model achieved high sensitivity with a low rate of missed

TB cases, it also exhibited a higher rate of false positives. This trade-off was

deliberate to ensure that patients at risk were not overlooked, aligning with

current clinical practices where blood cultures are often overutilised. Future

studies should explore ways to mitigate false positives without compromis-

ing sensitivity.

5.6.3 Enhancing data quality

As mentioned previously, patients who are potential edge cases were not

filtered out of the current hospital system. Identifying these cases by their

admission number, verifying their diagnoses to confirm non-bacteraemia

status, and subsequently removing them from the dataset could enhance

model accuracy. However, this process is time-intensive and requires med-

ical expertise to ensure accurate classification of cases. It is recommended

to conduct a thorough review of false negatives identified during the study

to determine if they represent edge cases misclassified as negative. Based

on this analysis, adjusting the RF model’s threshold to potentially increase

sensitivity and specificity could improve the detection of true negatives.

5.6.4 Software

Due to the sensitive nature of the data, analyses and model building had

to be conducted on a protected workspace and a separate server where

the applications were stored, as they were too specialised for the hospi-

tal workspace. However, since this server was from 2012, it resulted in

some difficulties with the usage of the applications and downloading cer-

tain packages, thereby limiting the exploration of more advanced models

like neural networks, which have shown promise in TB prediction [25].

Upgrading the environment where the analyses take place would allow

for the exploration of more advanced techniques. Modern technologies such
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as neural networks and deep learning can detect complex patterns and po-

tentially enhance the performance of predictive models. Therefore, it is rec-

ommended for future studies to transition to an up-to-date server infras-

tructure to ensure that all available methods can be thoroughly investigated

and implemented effectively.

5.6.5 Feature selection

Incorporating feature selection in the model might enhance the performance

and prediction of TB. The Mann-Whitney results showed that there were

few significant differences in respiratory rate and saturation between out-

come groups. This suggests a potential for exploring variables that have the

most significant differences between groups, as well as different combina-

tions of features and their effect on TB prediction. It can also be considered

to focus on a subset of the variables, combining the Mann-Whitney and

SHAP results and incorporating only the most important predictive vari-

ables into a model. Enlisting the help of a physician to discuss the most im-

portant variables and their implications on the model performance would

ensure that important variables are not missed. This collaborative approach

between data scientists and medical experts can optimise the model’s effec-

tiveness in clinical settings, balancing complexity with interpretability.
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This thesis aimed to find an answer to the question: “How can the most

promising machine learning techniques identified from current literature be applied

to develop a predictive model for true bacteraemia, and how does this model perform

in terms of sensitivity within the emergency department of St. Antonius Hospi-

tal?”. This was executed by employing a data set of 27009 patients with

blood culture results. CatBoost and random forest were chosen as most

promising machine learning techniques based on current literature. The fi-

nal selected model, random forest, achieved a ROC AUC of 0.78, indicating

its ability to effectively predict bacteraemia. The model predicted that for

973 (36.02%) of the patients blood cultures could have been withheld, with

only 23 missed cultures (0.85%). Implementing this model could lead to sig-

nificant reductions in unnecessary testing, antibiotic treatments, and related

healthcare costs, while maintaining high sensitivity in identifying patients

at risk of bacteraemia. It is important to note that while the model may

increase false positives, this is mitigated by current clinical practices where

blood cultures are routinely ordered for suspected cases. By identifying true

cases, this study contributes to the crucial effort of preventing antimicrobial

resistance. Future research should focus on validating this model using ex-

ternal data and clinical pilot studies to prepare for real-world implemen-

tation. Enhancing the data quality and exploring advanced techniques us-

ing updated software could further improve the accuracy and utility of the

model. This study aims to improve predictive abilities to help physicians

make better decisions and improve patient outcomes in managing bacter-

aemia.
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7.1 Continuous variables explanations

Table 7: Explanation of the continuous variables in the data set

Variable Explanation

Alkaline_phosphatase Liver enzyme indicator
Basophils Type of white blood cell percentage
Bilirubin Pigment in bile produced by the liver
Creatinine Waste product from muscle metabolism
CRP Marker of inflammation
Eosinophils Type of white blood cell percentage
Gamma_GT Liver enzyme indicator
Glucose Blood sugar level
Hemoglobin Oxygen-carrying protein in red blood cells
Hematocrit Volume percentage of red blood cells in blood
Leukocytes White blood cell count
Lymfocytes Type of white blood cell count
Monocytes Type of white blood cell count
Neutrophils Type of white blood cell count
Potassium Electrolyte level in blood
Sodium Electrolyte level in blood
Thrombocytes Platelet count
Urea Waste product from protein metabolism
Heart_rate Beats per minute of the heart
Systolic_blood_pressure Pressure in arteries when the heart beats
Diastolic_blood_pressure Pressure in arteries when the heart rests
Temperature Body temperature
Respiratory_rate Breaths per minute
Saturation Oxygen saturation level in the blood

7.2 Blood culture protocol

A blood culture involves an aerobic and an anaerobic medium containing

BHI broth, resin beads, and growth factors. It is incubated for five days, with

the incubator periodically measuring the color change of a CO2 indicator at

the bottom of the medium. A positive blood culture turns from green to

yellow due to CO2 production.

Four bottles are collected from the patients: two with a green cap (aero-

bic bacteria) and two with an orange cap (anaerobic bacteria). These bottles

are incubated, with the incubator monitoring CO2 levels. When sufficient
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growth occurs, the culture becomes ’positive’, and the microbiologist noti-

fies the physician to begin empirical treatment. The whole culture is con-

sidered to be positive when one or more bottles are positive, as long as the

identified bacteria is not part of the list of contaminated bacteria.

Identifying the bacteria requires spreading a sample from the bottles on

a culture plate for further incubation. Analysts examine these plates daily,

and based on the colonies’ appearance, they can often identify the bacteria.

For confirmation, the spectrometer is used to precisely identify the species

and check for antibiotic resistance, facilitating the optimal treatment of the

patients.

7.3 Hyperparameter tuning details

7.3.1 Hyperparameters used for tuning

Table 8: Hyperparameters used for tuning with Optuna for CatBoost

Hyperparameter Range
Learning rate 1 × 10−3 to 0.1 (log scale)
Depth 1 to 10
Subsample 0.05 to 1.0
Colsample by level 0.05 to 1.0
Minimum data in leaf 1 to 100
Class weight (1) 1 to 12
Iterations 1000 (fixed)

Table 9: Hyperparameters used for tuning with Optuna for random forest

Hyperparameter Range/Options
n_estimators 50 to 300
max_depth 2 to 32 (log scale)
min_samples_split 2 to 16
min_samples_leaf 1 to 16
max_features {‘sqrt’, ‘log2’, None}
bootstrap {True, False}
criterion {‘gini’, ‘entropy’}
class_weight {None, ‘balanced’, ‘balanced_subsample’, ‘custom’*}
max_samples 0.5 to 1.0 (if bootstrap is True)
* For custom class weight, 1 to 11
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7.3.2 Best hyperparameters found

Table 10: Best hyperparameters found using Optuna for CatBoost

Hyperparameter Value
Learning rate 0.003
Depth 4
Subsample 0.398
Colsample by level 0.605
Minimum data in leaf 78
Class weight (1) 11.957
Iterations 1000 (fixed)

Table 11: Best hyperparameters found using Optuna for random forest

Hyperparameter Value
n_estimators 153
max_depth 8
min_samples_split 2
min_samples_leaf 12
max_features sqrt
bootstrap False
criterion entropy
class_weight balanced
max_samples 0.963

7.4 Optional thresholds

(a) CatBoost - threshold = 0.3 (b) Random forest - threshold = 0.4

Figure 7: Comparison of confusion matrices for CB and RF models with op-
tional thresholds.
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(a) CatBoost - threshold = 0.3 (b) Random forest - threshold = 0.4

Figure 8: Comparison of probability thresholds for CB and RF model.

7.5 T-test results

Table 12: Results of Mann-Whitney U test for blood culture outcome with p-
values (p < 0.05). Asterisk (*) indicates a not significant p-value.

Variable P-Value

Age 3.63132e-32
Sex 2.68946e-09
Alkaline_phosphatase 6.4138e-37
Basophils 3.10109e-05
Bilirubin 2.47765e-89
Creatinine 1.98531e-31
CRP 1.13412e-23
Eosinophils 2.77477e-50
Gamma_GT 4.76017e-39
Glucose 7.87327e-26
Hemoglobin 1.31397e-08
Hematocrit 1.68843e-10
Leukocytes 1.36369e-25
Lymfocytes 5.33583e-120
Monocytes 4.30952e-11
Neutrophils 4.66592e-52
Potassium 0.00431216
Sodium 2.65448e-06
Thrombocytes 1.64344e-22
Urea 5.87107e-34
Heartrate 9.37253e-12
Systolic_blood_pressure 8.24811e-14
Diastolic_blood_pressure 1.0586e-31
Temperature 5.57477e-49
Respiratory_rate 0.303355*
Saturation 0.0474665
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