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Abstract

Forecasting fertility trends is crucial for understanding demographic shifts and

their societal implications. However, accurately predicting fertility patterns re-

mains a challenge due to the complex interplay of economic, social, and individ-

ual factors. This study, part of the PreFer Data challenge, proposes a data-driven

framework to predict fertility trends in the Netherlands. Leveraging the large-

scale longitudinal LISS dataset, this research explores the dataset’s suitability for

predicting fertility by identifying key attributes related to demographic informa-

tion, household characteristics, income, employment, and health metrics. Multiple

models, including neural network, random forest, and linear regression classifiers,

were trained and evaluated. The methodology involved initial stratified k-Fold

Cross-Validation to find ideal hyperparameter combination, followed by boot-

strap resampling to assess the impact of training data size and model robustness.

The results demonstrate that AI-driven methods can effectively capture the un-

derlying patterns in fertility data, with models achieving an average F1 score of

0.7 and showing strong 95% confidence interval (CI) values within 0.01, indicat-

ing reliable and consistent performance. This provides insights into the predic-

tive potential of the LISS dataset. However, further research is needed to validate

these findings across different data sources and incorporate additional relevant

attributes to enhance predictive accuracy.
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1. Introduction

Understanding and predicting fertility trends is key to grasping demographic changes

and their impact on societies. By accurately forecasting these trends, we gain in-

sights into future shifts in population dynamics, allowing for better preparation

and adaptation to forthcoming changes. These trends shape the age distribution of

a population, influencing everything from workforce dynamics to economic poten-

tial. A youthful, working-age majority can drive economic growth through a "de-

mographic dividend" enhancing productivity and prosperity. On the other hand,

a higher proportion of dependents, whether young or elderly, can strain the econ-

omy and challenge those in the workforce.[1].

Forecasting when and which people might be getting children is not all about pre-

dicting economic gains, either. Forecasting these trends can inform policies related

to education, employment, and healthcare. For example, countries with declining

fertility rates may need to adjust their policies to address potential labor short-

ages and increased demand for elderly care. Conversely, countries with high fer-

tility rates may focus on expanding education and job opportunities to harness the

potential of a growing young population[1]. By anticipating these demographic

shifts, we can create societies that are better prepared and more adaptable, where

resources are managed efficiently, and where people of all ages can benefit.

1.1 Postponement

No society or time period is the same, making forecasting a continuous challenge.

In the case of fertility specifically, advanced societies have experienced a signifi-

cant postponement transition over the past decades, characterized by a delay in

childbearing age leading to low fertility rates [2]. This phenomenon has sparked

extensive research interest for several reasons. Scholars aim to understand the un-

derlying causes of this shift, which include changes in societal norms, economic

conditions, and individual life choices. By examining these factors, researchers seek

to explain how and why this postponement of fertility behaviours has evolved over

time. [3].
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1.1 Postponement

The study of postponement transitions has made significant scientific contributions

to the field of demography and related disciplines. Researchers have developed

sophisticated models to analyze the tempo and quantum effects of fertility post-

ponement [4]. These models have enhanced our understanding of how delayed

childbearing affects period fertility rates and cohort completed fertility. Addition-

ally, scholars have explored the biological and social mechanisms underlying the

postponement phenomenon, shedding light on the complex interplay between in-

dividual decisions and societal trends [5]. This body of research has advanced theo-

retical frameworks and improved methodological approaches for studying fertility

patterns in societies.

Scholars are also interested in the postponement transition to devise effective pol-

icy responses. By understanding the factors leading to delayed childbearing, pol-

icymakers can design interventions that support family planning and address po-

tential negative consequences of low fertility, such as population aging and labor

shortages. In this way, the research on postponement transitions not only con-

tributes to academic knowledge but also informs practical solutions for societal

challenges.

Understanding the postponement of childbearing is crucial because it affects pop-

ulation dynamics and has long-term implications for economic and social policies.

For example, delayed childbearing can lead to lower overall fertility rates, impact-

ing population growth and age structure. This, in turn, influences the planning and

sustainability of social security systems, healthcare, and labor markets. Some Eu-

ropean formerly lowest-low-fertility countries are witnessing increases in fertility

rates, particularly as the transitory effects of delayed childbearing diminish[6], this

shows that the fertility landscape remains dynamic and multifaceted. In Europe,

subtle differences in total fertility rates (TFRs) carry profound implications for the

long-term trajectory of population decline, highlighting the complexity of fertility

dynamics [7].

Predicting fertility accurately is more important now than ever, particularly in

Western countries, due to the phenomenon of postponement. The relatively new

nature of this phenomenon means that traditional methods of predicting fertility
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Introduction

may no longer be adequate. This necessitates rethinking how we predict fertility,

as accurate predictions have strong implications for fertility rates and the planning

of social and economic policies. Particularly in the Dutch context, it is crucial to

understand and address the postponement transition for developing informed and

effective policy responses.

1.2 Prediction efforts

Despite longstanding efforts to predict birth rates dating back to the post-World

War II era [8], accurate forecasts remain elusive due to the intricate interplay of

economic, social, and individual factors. Early attempts relied on simplistic extrap-

olations of past trends or adjusted models based on changes in demographic com-

position [8]. Subsequently, more recent refinements incorporated socio-economic

considerations in explanatory modelling[9][10]. While these explanatory models

have advanced our understanding by providing theoretical mechanisms, their pre-

dictive accuracy or power remains rather low[11][12]. This is partly due to chal-

lenges such as overfitting, where a model captures idiosyncrasies of the data that

fail to generalize[11].

1.3 Goal of research

With the advent of artificial intelligence (AI) and applied data science, new data-

driven opportunities asire to extend upon these theoretical models[12] and to ad-

dress the complexities of predicting fertility. In this paper, as part of the PreFer data

challenge [13], I propose a fully data-driven approach to predict fertility trends

in the Netherlands. Leveraging the large-scale longitudinal LISS dataset, which

encompasses a diverse array of variables on Dutch households. The goal of the

research is to explore the suitability of the LISS dataset to predict fertility in the

Netherlands, from a data-centric perspective. This is done by identifying and pro-

cessing relevant attributes, then trying multiple prediction models such as neural

network, random forest and linear regression Classifiers. Finally, guided by sensi-

tivity analyses, the models are evaluated to propose a suitable and robust approach

to predicting fertility. This can then be incorporated into the overall findings of the

PreFer Data challenge to enhance the understanding of the predictive modelling of

fertility.
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1.3 Goal of research

By utilizing AI and data science techniques, this approach aims to explore meth-

ods that could provide new ways to predict fertility trends compared to tradi-

tional methods, by incorporating and examining the predictive potential of the LISS

dataset. Accurate fertility forecasts are essential for planning and policy-making,

particularly in areas such as social security, healthcare, and labor markets. Sec-

ondly, this research will help identify the most relevant socio-economic and de-

mographic factors influencing fertility in the Netherlands, offering insights that

can inform targeted interventions and policies. Additionally, these insights could

contribute to theoretical advancements in understanding fertility dynamics. By un-

covering new predictors that may not have been previously theorized, this research

could lay the groundwork for developing new theories or refining existing ones.

Moreover, the innovative use of the LISS dataset and advanced modelling tech-

niques can set a precedent for future fertility research, demonstrating the potential

of AI-driven methods when applied to traditional social science data sources such

as longitudinal surveys. This study, along with other research in the PreFer data

challenge, contributes to the overall findings of the challenge. It enhances the un-

derstanding of predictive modelling of fertility and provides a framework that can

be adapted and applied to other countries and datasets. This could potentially lead

to global improvements in fertility prediction and policy planning.
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2. LISS Dataset

The LISS (Longitudinal Internet Studies for the Social Sciences) panel is a high-

quality online survey infrastructure managed by the non-profit research institute

Centerdata and based on a traditional probability sample drawn from the Dutch

population register by Statistics Netherlands. The representativeness of the LISS

panel is comparable to traditional surveys that use probability sampling, with ini-

tial selection biases corrected through periodic refreshment samples[13].

The LISS panel began in 2007 with approximately 5,000 households, including 8,000

individuals aged 16 and older (about 6,000 aged 18–45). With an annual attrition

rate of about 10%, new panel members are recruited every two years to maintain

representativeness. By 2020, around 10,000 people aged 18–45 had been part of the

panel at some point, with about 6,900 participating in at least one Core survey from

2007 to 2020.

2.1 Data sources

The LISS panel comprises two main sources of data[13]. The first source is the LISS

Core Study, which is a longitudinal study conducted annually. This study encom-

passes a set of ten modules that cover a wide range of topics, including income,

education, health, values, religion, personality, and fertility behavior (such as fer-

tility intentions).

The second source is the Background Survey. This survey is completed by a house-

hold’s contact person upon joining the panel and is updated monthly. It collects ba-

sic socio-demographic information about the household and all its members, even

those who do not participate in the Core surveys.

2.2 Structure and Scope

The Core Study modules and their various waves are stored separately. In the

context of PreFer, to measure fertility outcomes, a merged dataset from all Core
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2.3 Outcome variable

Study modules from 2007 to 2020 was constructed by the organizers of the PreFer

data challenge, comprising over 30,000 variables. The dataset aims to predict who

will have a child between 2021 and 2023 based on data from previous years. The

target group consists of individuals who were between 18 and 45 years old in 2020

and participated in at least one Core study between 2007 and 2020[13].

2.3 Outcome variable

Despite most of the target group dropping out by 2021–2023, an outcome variable

could be created for about 1,400 respondents, almost all of whom participated in at

least one Core study in 2019–2020. The binary outcome variable indicates whether a

respondent had a child between 2021 and 2023. For participants in the PreFer data

challenge, a dataset containing 987 outcome variables is available, the remaining

labels of the 1400 respondents are holdout and only available to the challenge orga-

nizers for further validation. In this dataset, approximately 25% of this group had

a positive outcome (i.e., they had a child), while 75% had a negative outcome (no

child). This sample size, while small, is typical for social science datasets with rep-

resentative samples and provides a unique longitudinal dataset for research pur-

poses.

2.4 Missing Data

Upon analyzing the PreFer dataset, which contains 31,635 attributes (excluding

background data), several key statistics regarding missing data were identified.

2.4.1 Overall Missingness

The core dataset exhibits a high degree of missingness:

• Total Missing Values (All Data): approximately 180 million

• Percentage of Missing Values (All Data): 88.52%

A subset of the data, filtered based on the availability of the outcome variable (hav-

ing a new child or not), resulted in 987 records. The missing data statistics for this

subset are:

• Total Missing Values (Labelled Data): 24.3 million

• Percentage of Missing Values (Labelled Data): 77.82%
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LISS Dataset

2.4.2 Columns with High Missingness

The proportion of columns with significant missing data was also examined:

2.4.2.1 Entire Dataset

• Columns with <10% Missing: 5 (0.015%)

• Columns with <20% Missing: 6 (0.019%)

• Columns with <30% Missing: 6 (0.019%)

2.4.2.2 Subset of Entire Dataset with available outcome labels

• Columns with <10% Missing: 275 (0.869%)

• Columns with <20% Missing: 788 (2.49%)

• Columns with <30% Missing: 1550 (4.90%)

These statistics underscore the significant extent of missing data in the core dataset.

This high degree of missingness can be attributed to several factors, such as the

design of aggregating surveys, where each column often represents an individual

question from a specific wave of the survey, resulting in different columns for dif-

ferent waves of the same question. Consequently, there are no prevalent attributes

(with more than 70% availability) in the full dataset. The few columns with less

than 30% missing data are primarily IDs and label indicators, which are not partic-

ularly relevant for in-depth analysis.

In contrast, when examining the labelled subset, which consists of records suit-

able for prediction due to the presence of outcome labels, the availability of data

within attributes improves significantly. Although the data remains quite sparse,

there are many attributes that are available for a large portion of the labelled data,

making this subset more viable for predictive analysis.

Overall, the analysis highlights the challenge posed by the extensive missing data

and the sparseness in the core dataset used for PreFer, particularly in the context

of its sparse variables. For the sake of the data challenge, this underscores the im-

portance of focusing on the already widely available attributes in regarding to the

entries that have an outcome variable, for any meaningful predictive modelling.

10



3. Method

In this chapter, I outline the methodological approach employed in this study to

address the task of predicting whether an individual in the Netherlands will have

a(nother) child or not within the next 3 years. This includes feature selection strate-

gies and handling missing data, preprocessing steps, creation of training data, and

model selection and training techniques. The methods chosen are designed to ac-

count for the class imbalance present in the dataset and to provide robust assess-

ments of model performance.

3.1 Data Selection and imputation

As described in Section 2.4, the core dataset contains a substantial amount of miss-

ing and widely dispersed data. To address this, I select attributes with high avail-

ability (75%+ for labelled data rows) and impute missing values to make the data

usable for prediction models. I then preprocess the data by normalizing and trans-

forming the attributes, ensuring consistency. Finally, I use RandomForestClassifier

as a feature selection method, to identify the best attributes for prediction, based

on feature importance for predicting the outcome variable of having a new child or

not.

3.1.1 Handling and imputing Missing Data

To manage missing data effectively, I first set a threshold for missingness at 75%

within the section where outcomes are available. This threshold is based on the

analysis in Section 2.4. The 75% threshold was chosen after careful consideration

of data availability across different percentages. Any attribute with less than 75%

value availability for labelled entries, as well as those containing indexes, IDs, or

directly related to the outcome label, was excluded from further analysis, reducing

the number of dimensions from 31,635 to 872.

For the remaining columns, I utilized the IterativeImputer from the scikit-learn

library to impute missing values in numerical columns and the SimpleImputer to
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Method

impute missing values in categorical columns. Imputation was based on the en-

tire dataset, including entries that do not have outcome labels. IterativeImputer

operates by iteratively estimating missing values for each numerical feature using

the observed values of other numerical features[14]. It models each feature with

missing values as a function of other features and uses this model to predict miss-

ing values. This iterative process continues until convergence, effectively imputing

missing data.

For the categorical attributes, I employed the SimpleImputerwith the most_frequent

strategy. This method fills in missing values with the most frequent (mode) value of

each categorical column. This approach is relatively robust due to the high avail-

ability (greater than 75%) of data for each categorical attribute, ensuring that the

imputed values accurately reflect the existing data.

After imputation, I filtered the dataset to include only those rows where the out-

come variable (having a new child) is present, ensuring that the dataset used for

further analysis is complete and appropriate for predictive modelling.

3.1.2 Preprocessing

After imputation, the dataset undergoes preprocessing to prepare it for modelling.

Numerical variables are transformed using the QuantileTransformer from scikit-learn.

This transformation maps the data to a Gaussian distribution with values ranging

approximately between 0 and 1, reducing the impact of outliers and ensuring a

more uniform scale across features [15]. This step is crucial for enhancing the ro-

bustness of machine learning models to variations in data distribution, particularly

benefiting distance-based models.

Following the transformation of numerical variables, categorical variables are en-

coded using one-hot encoding. This technique converts categorical variables into

binary vectors, where each category is represented as a binary feature[16]. This

approach preserves the categorical nature of the variables while making them suit-

able for machine learning algorithms that expect numerical input.

One-hot encoding is typically applied before feature selection to ensure that all cat-

egorical levels are considered during the feature selection process. By representing
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3.1 Data Selection and imputation

each category as a separate binary feature, one-hot encoding allows the machine

learning algorithm to assess the importance of each individual category in relation

to the target variable[16]. This approach was chosen to ensure comprehensive con-

sideration of all categorical levels in the predictive modelling process.

In some cases, one-hot encoding might be applied after feature selection. This ap-

proach could be chosen if the initial dataset contains a large number of categori-

cal variables, and feature selection aims to reduce dimensionality by focusing on

the most relevant features regardless of their original form. Nevertheless, for this

particular analysis, I opted to apply one-hot encoding before feature selection to

ensure comprehensive consideration of all categorical levels in the predictive mod-

elling process. This means that for categorical features, some category values may

not be included after feature selection. This doesn’t imply that those values are

disregarded entirely; rather, it indicates that knowing the presence or absence of

a strong predictor category is sufficient, regardless of the other specific categories

represented.

3.1.3 Feature Selection

To identify the most relevant variables for predicting the outcome of having a new

child or not, I employed a RandomForestClassifier from scikit-learn for feature

selection with n_estimators = 1000. RandomForestClassifier measures feature

importance by the reduction in impurity, specifically the Gini index, brought by

each feature across all 1000 decision trees in the forest[17].

To determine the optimal number of features, I used the feature_importances_ at-

tribute[18] of RandomForestClassifier and manually set a Gini importance thresh-

old of 0.0025. This threshold was chosen based on an analysis of feature impor-

tances plotted in Figure 3.1, to retain features that significantly contribute to pre-

dicting the target variable while excluding less informative ones.

Figure 3.1 shows the feature importances, with the chosen threshold of 0.0025 in-

dicated by the red dashed line. This threshold represents a fine balance for feature

selection. A higher threshold of 0.005 would exclude more features where the first

significant dip starts and a lower threshold of 0.002 would include more features

extending into a long tail. After testing the remaining part of the pipeline for these
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Method

Figure 3.1: Top 200 Feature Importances with Threshold Line at 0.0025 Gini impor-
tance

three thresholds, the threshold of 0.0025 appears to be optimal in general, ensur-

ing that only the most influential variables are retained, reducing overfitting and

improving the model’s generalization capability.

3.1.3.1 Introduction to Random Forest Classifier and Gini Importance

A Random Forest Classifier works by constructing a multitude of decision trees

during training and outputting the class that is the mode of the classes of the indi-

vidual trees. Each tree is constructed using a random subset of features and sam-

ples, a technique known as bootstrap aggregating or bagging. This process helps

in reducing the variance of the model and improving its robustness[17].

Feature selection in a Random Forest is based on the concept of Gini importance.

The Gini index measures the impurity of a node, whereas a lower Gini index indi-

cates a purer node. During the construction of each tree, splits are made to decrease

this impurity. The Gini importance of a feature is computed as the total reduction

of the Gini index brought by that feature, averaged over all trees in the forest[16].

Features that lead to greater reductions in impurity (higher Gini importance) are

considered more important.
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3.2 Creating Training Data

3.2 Creating Training Data

The final training dataset is a composite of attributes with high availability, selected

based on their variation in relation to the outcome variable, and preprocessed to be

imputed, normalized and usable for prediction models. When creating the training

dataset to use on the prediction models, I focused on addressing the class imbalance

issue present in the dataset. The outcome variable in the LISS dataset consists of 987

instances, with a distribution of approximately 1/4 positive (New child) outcomes

and 3/4 negative (No new child) outcomes. There are many methods to combat

this class imbalance and facilitate robust model training[19], I employ two distinct

methods: stratified sampling and random over-sampling.

3.2.1 Stratified Test Split

Initially, I performed a stratified 80/20 train-test split on the dataset. This involves

partitioning the data into a training set, which constitutes 80% (789) of the 987 total

instances, and a test set, which comprises the remaining 20% (198). The stratified

approach ensures that the distribution of positive and negative outcomes remains

consistent across both the training and test sets, thus maintaining the integrity of

the dataset’s original distribution.

3.2.2 Training sets

After generating the stratified test split, two separate training sets will be employed

to mitigate the class imbalance observed within the training data. Both sets will be

utilized in training the models.

• Stratified Training Set: This approach utilizes the 80% stratified training set

generated earlier, maintaining the original class proportions.

• Random Over-sampling: In addition to the stratified training set, I create an

oversampled version where the positive outcomes are artificially increased

to match the number of negative outcomes. Random over-sampling involves

randomly duplicating instances from the minority class (positive outcomes)

until the class distribution is balanced. This can provide the model with more

instances of the minority class, potentially improving its ability to learn pat-

terns and make accurate predictions for positive outcomes[19].

These two methods offer complementary approaches to address class imbalance,
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each with its advantages. The stratified training set maintains the original data

distribution, ensuring that the model is trained on a representative sample of the

overall dataset. On the other hand, the random over-sampling technique artificially

balances the classes by increasing the number of samples in the minority class. This

approach can potentially enhance the model’s performance on the minority class by

providing more instances of rare outcomes for the model to learn from. The differ-

ence in class distribution between the two methods can be seen in Figure 3.2.

Figure 3.2: Bar plots showing the distribution of classes ("No new child" and "New
child") for the 789 instances in the Stratified training set (left) and the same training
set with exaggerated "New Child" due to Random Over-Sampling (ROS) (right).

During validation, models trained using these different training sets are compared

to assess the impact and efficacy of the methods in enhancing the model’s perfor-

mance on the test split. This comparison helps determine which method better

addresses class imbalance and improves overall model accuracy and reliability.

3.3 Model Selection and Training

In this section, I detail the process of selecting and training various models, fol-

lowed by cross-validation and bootstrap resampling to evaluate their performance.

These methods are chosen for their ability to provide robust assessments of model

performance, particularly in the context of class imbalance and varying training

dataset sizes. By systematically evaluating multiple models and utilizing these val-

idation techniques, a greater understanding of the effectiveness of the models on

the selected features is gained.
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3.3 Model Selection and Training

3.3.1 Selection of Models

In this study, a variety of common classification models from the scikit-learn

library are employed to predict the outcome variable. The selection includes a mix

of both simple and complex models to ensure a comprehensive evaluation of their

performance. The chosen classification models are:

• Logistic Regression: A linear model that predicts the probability of a binary

outcome based on input features, using a logistic function.

• Random Forest: An ensemble learning method that constructs multiple deci-

sion trees during training and outputs the mode of the classes of the individ-

ual trees.

• Gradient Boosting: Another ensemble technique where models are added

sequentially, each correcting errors made by the previous one, optimizing a

specified loss function.

• Support Vector Machine (SVM): A discriminative classifier that finds the hy-

perplane which best separates classes in a high-dimensional space, maximiz-

ing the margin between classes.

• K-Nearest Neighbors (KNN): A non-parametric method used for classifica-

tion. It assigns new data points a value based on the majority value or average

of its k-nearest neighbors.

• Gaussian Process Classifier: A probabilistic model that defines a distribution

over functions, allowing for uncertainty estimates and non-linear decision

boundaries.

• Naive Bayes: A simple probabilistic classifier based on applying Bayes’ the-

orem with strong independence assumptions between features.

• Neural Network: A computational model inspired by biological neural net-

works. It consists of layers of interconnected neurons that process input data

and learn to recognize patterns using weight and biases.

Additionally, scikit-learn Dummy Classifiers based on simple rules are used as a

baseline to provide a point of reference. They use simple strategies such as always

predicting the most frequent class (No new child) or probabilistically predicting the

outcome using the distribution of the outcome variables.
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3.3.2 k-Fold Cross-Validation

To assess the performance of the selected models, Stratified k-Fold Cross-Validation

(SKCV) with 5 folds will be employed. This technique involves partitioning the

training data into k-stratified subsets, or folds, and iteratively training the model

on k-1 folds while using the remaining fold for validation. This process is repeated

k times, with each fold used exactly once as the validation data[20].

The evaluation metric used for optimization will be the F1 score1, with a focus

on maximizing it, as this is the main metric used in the PreFer data challenge[13].

Furthermore, different sets of hyperparameters will be explored for each model

during the SKCV process using gridsearchCV[21]. This approach acknowledges

that different models may benefit from distinct configurations of hyperparameters

to achieve optimal performance. For instance, while one model might require a

larger regularization parameter to prevent overfitting, another might perform bet-

ter with a different learning rate or a specific kernel type. By conducting model-

specific hyperparameter tuning via grid search within SKCV, it is ensured that each

model’s performance is maximized under its optimal configuration, thereby im-

proving the overall robustness and reliability of the results.

The detailed hyperparameter search spaces for each model can be found in Ap-

pendix B.

3.3.3 Bootstrap Resampling

Following each SKCV optimized model will undergo further evaluation using boot-

strap resampling. Bootstrap resampling is a robust technique involving the re-

peated sampling of observations with replacement from the dataset to create mul-

tiple bootstrap samples [20]. These samples are utilized to estimate the variability

of model performance metrics, specifically focusing on the F1 score in this study.

Bootstrap resampling will be performed across a range of dataset sizes, varying

1The F1 score is a metric that combines precision (the accuracy of positive predictions) and re-
call (the ability to correctly identify positive instances) into a single value. It provides a balanced
measure of the accuracy of predicting whether someone will have a child, considering both the
completeness and correctness of the predictions.
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3.3 Model Selection and Training

from 0.5 to 1.2 times the size of the entire dataset (987 instances), in increments of

0.02. Each size will undergo 1000 iterations, ensuring robust statistical analysis.

This methodology allows for an assessment of how changes in training data size

and different splits influence model performance and examines the sensitivity of

models to variations in the training dataset.

As a result of bootstrap resampling, 95% confidence intervals (CI) will be com-

puted for the F1 scores based on the bootstrap samples. These intervals provide a

range of plausible values for the true model performance metrics, accounting for

the variability introduced by sampling from the dataset.
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4. Results

In this chapter, I present the results of the study aimed at predicting fertility trends

in the Netherlands using various machine learning models. The results are struc-

tured around the key steps outlined in the methodology (Chapter 3), including fea-

ture selection outcomes, performance metrics of different models, and an analysis

of class imbalance handling strategies.

4.1 Feature Selection Outcomes

Using the RandomForestClassifier with 1000 estimators and a Gini index thresh-

old of 0.0025 for feature selection, as described in Section 3.1.3, resulted in the iden-

tification of 44 key attributes or a total of 48 when including different answers to the

same categorical question. These key attributes have significant predictive power

for determining the likelihood of having a new child. The feature importance scores

from the classifier helped isolate variables that substantially contributed to the pre-

diction model, providing insights into the factors influencing fertility trends. Be-

fore feature selection, categorical attributes were one-hot encoded to consider the

impact of individual values. All selected attributes are from studies conducted in

2019-2020. Most likely due to having both high availability (sample criteria of par-

ticipating in a 2019-2020 core study) and relevance due to being recent.

I manually categorized the 48 attributes into meaningful groups to facilitate a clearer

understanding of their distribution. The distribution can be seen in Figure 4.1. The

categories generally include demographic information, household characteristics,

income and employment information, health metrics and media usage. In the fol-

lowing sections, I will go through each category to quickly review the selected at-

tributes and discuss their relevance in predicting the likelihood of having a new

child. The full distribution of categories is visible in Figure 4.1 and a full list ex-

plaining and giving the score for each attribute is available in Appendix A.
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4.1 Feature Selection Outcomes

Figure 4.1: Distribution of attribute categories, for attributes selected during feature
selection. The bar chart shows the gini importance for the selected attributes (code-
book in Appendix A) and their respective category. The pie chart shows the relative
proportions of different attribute categories, with percentages and counts displayed
for each category

4.1.1 (Not) Wanting a child

The feature selection process identified several key attributes as the most influential

predictors of having a new child. That said, the single most significant feature,

with an importance score of ±0.018, was the response "Yes" to the question "Do you

think you will have [more] children in the future?". This was by far the strongest

predictor, indicating a high degree of self-awareness among respondents regarding

their fertility intentions. This variable alone had a notably higher importance score

compared to others, with the remaining top features (Including the answer "No")

all leaning around ±0.010 scores, highlighting its critical role in forecasting fertility

trends. The score difference can be seen in Figure 3.1 and Appendix A.

4.1.2 Age

Among the selected features, age-related attributes emerged as highly relevant.

Multiple (sometimes duplicate) variables related to the respondent’s age and birth
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year were selected from different datasets with scores around 0.010. These age-

related variables included not only the respondent’s current age but also the in-

dividual ages of both parents, with the scores for mother and father being nearly

identical at ±0.0047.

4.1.3 Income and job status

Income-related attributes also featured prominently among the selected predictors,

ranking after wanting a child and Age in a range of ±0.0045. Variables related to

both personal and household income from 2019 and 2020, such as net and gross

monthly income, were found to be important, suggesting that economic stability

and financial considerations play a crucial role in the decision to have (more) chil-

dren. The preloaded variable: "paid job or not" was also selected, indicating that

whether an individual has a paid job might be a significant factor in understanding

family planning decisions.

4.1.4 Health

Another relatively strong predictor is the use of a gynaecologist with both answers

"Yes" and "No" having score of ±0.004. In addition to the use of a gynaecologist,

the importance of health-related variables is further underscored by other selected

attributes. The involvement with an acupuncturist (score ±0.0029) and the respon-

dent’s weight (score ±0.0025) also emerged as notable predictors. These attributes

suggest that specific health practices and general health status are influential in

family planning decisions.

4.1.5 Household

Household-related variables also play a crucial role in predicting the likelihood

of having a child. The most significant attribute in this category is whether the

respondent speaks Dutch with their partner (score ±0.0053), specifically the an-

swer "Not applicable". This answer might indirectly indicate the absence of a part-

ner. Other influential variables include the respondent’s current partnership status,

with "No" (score ±0.0048) and "Yes" (score ±0.0036) being key indicators. Civil sta-

tus variables, such as being married (score ±0.0046) and never having been married

(score ±0.0037), also rank highly. Furthermore, the domestic situation, specifically

(un)married co-habitation without children (score ±0.0028), is a relevant predictor.

These findings suggest that marital status and cohabitation arrangements are con-
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4.1 Feature Selection Outcomes

nected to family planning.

4.1.6 Media usage

Variables related to media usage, though not as highly ranked as health and house-

hold attributes, still show some relevance. The average number of hours per week

spent on computer or laptop use at work (score ±0.0027), listening to music (score

±0.0026), and watching online films or TV programs (score ±0.0026) are included

among the selected features. This indicates that digital engagement and media

consumption patterns may have a minor influence on decisions regarding having

children.

4.1.7 Questionnaire (Speed)

The duration it took respondents to complete the questionnaire is another category

that emerged in the feature selection process. Multiple variables measuring dura-

tion in seconds were identified, with scores ranging from ±0.0026 to ±0.0037. The

inclusion of these variables might reflect the thoroughness or decisiveness of the

respondents’ answers, potentially correlating with their clarity or conviction about

family planning. One questionable selected attribute is the year and month of field-

work period of an economic survey. From feature selection alone it is unclear why

this might be related to the outcome variable. This variable could potentially reflect

broader economic or societal conditions during the time of the survey, influencing

respondents’ outlook on starting or expanding a family.

4.1.8 Overview Feature Selection

The feature selection process reveals that the decision to have more children is in-

fluenced by a combination of health practices, household dynamics, media con-

sumption, and the nature of the survey response itself. The strongest predictors are

the direct inquiries about future childbearing intentions and age-related factors.

Economic stability, as indicated by income and job status, also plays a significant

role. This multifaceted approach underscores the complexity of fertility decisions,

encompassing a range of personal, social, and economic factors.
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4.2 Stratified Cross Validation Results

In this study, I utilized two different training sets: a normal stratified set and one

with additional Random Over Sampling (ROS). For both training sets, I applied

Stratified K-Fold Cross Validation (SKCV) with 5 folds to determine the optimal

hyperparameters for each model. Additionally, I used the models to score a strat-

ified holdout set (198 entries) and included a dummy classifier with SKCV as a

baseline for comparison. The full results of the models, including accuracy, bal-

anced accuracy, precision, recall and best hyperparameters for each model can be

found in Appendix C.

4.2.1 Stratified Training Set Results

The performance of the models trained on the normal stratified set showed vary-

ing degrees of effectiveness. This is visible in Figure 4.2. The best dummy classifier,

serving as the baseline, had an average SKCV F1 score of 0.2752 and a slightly

higher F1 score on the test data of 0.3077, indicating its poor predictive power.

Figure 4.2: Barchart comparing average F1 score during SKCV and f1 score on test set
data for each model with hyperparameters optimized on the stratified training set

Among the more sophisticated models, the Neural Network achieved the high-

est test F1 score of 0.8235, indicating its robust ability to capture the underlying

patterns in the data. The proximity-based K-Nearest Neighbors (KNN) followed

closely with a test F1 score of 0.7895. The Support Vector Machine (SVM) also per-
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4.2 Stratified Cross Validation Results

formed relatively well, achieving a test F1 score of 0.75, reflecting its strength in

finding optimal decision boundaries.

Other models, such as GaussianProcessClassifier (test F1 score 0.7467), Gradient

Boosting (test F1 score 0.7368), and Random Forest (test F1 score 0.72), also showed

strong performance, confirming their capabilities in handling complex datasets.

Logistic Regression (test F1 score 0.6234) and Naive Bayes (test F1 score 0.6667) had

relatively lower scores but still outperformed the dummy classifier significantly,

suggesting they were able to capture some meaningful relationships in the data.

4.2.2 ROS Training Set Results

Using ROS noticeably influenced the models’ performance, generally resulting in

slightly higher F1 scores. The dummy classifier with ROS had a test F1 score of

0.3172, remaining the least effective model.

Figure 4.3: Barchart comparing average F1 score during SKCV and f1 score on test set
data for each model with hyperparameters optimized on the ROS training set

As visible in Figure 4.3 the SVM model achieved the highest test F1 score of 0.7912,

followed closely by Gradient Boosting at 0.7848 and the GaussianProcessClassifier

at 0.7778. The Logistic Regression and Neural Network also showed strong perfor-

mance, with F1 scores of 0.74 and 0.7234, respectively.
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Interestingly, while the Random Forest model had one of the highest SKCV F1 score

of 0.9514, its test F1 score was 0.7143, suggesting potential overfitting or sensitivity

to the specific test split. Similarly, the KNN model, despite having a high SKCV F1

score of 0.9055, achieved a lower test F1 score of 0.7184 compared to its stratified

version.

4.2.3 Interpretation and Comparisons

The scores on the test data are notably high, especially for the stratified test dataset

when compared to SKCV, which might indicate an overestimation due to a favor-

able test split. This is a common issue for train/test splits, where the test set may

not always be representative of the overall data distribution, by being slightly eas-

ier to predict due to less variance. This potential bias underscores the importance of

using bootstrapping to validate the robustness of the model performance, as SKCV

and the stratified test split provide only an initial indication of the best or near-best

hyperparameters but may not fully account for variability in the data.

Figure 4.4: Barchart comparing performance on test set data for models optimised on
either the Stratified or ROS training set. Also showing a dotted average line compar-
ing the two methods

Comparing the results between the normal stratified and ROS techniques in Figure

4.4 reveals that ROS generally enhances model performance on the test data. The

average test F1 score for all models (excluding the dummy classifier) was 0.685 for

the stratified set and 0.693 for the ROS set. This suggests that addressing class im-
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4.3 Bootstrap Resampling Analysis

balance through oversampling can lead to better predictive accuracy and reliability.

Most models showed an improvement or similar performance with ROS, except for

the Neural Network and KNN, whose performance decreased. This highlights that

while ROS can be beneficial, its impact can vary depending on the model architec-

ture and the nature of the data.

In conclusion, SKCV is a valuable tool for hyperparameter tuning and initial model

evaluation. The results indicate that ROS can improve model performance by ad-

dressing class imbalance. However, the subsequent use of bootstrapping will be

essential to confirm these findings and ensure that the models’ high performance

is not merely due to favorable test splits or the limitations of cross-validation. This

comprehensive approach will help identify the most robust and reliable models for

predicting future outcomes.

4.3 Bootstrap Resampling Analysis

This section analyses the results of model performance for bootstrap resampling

performed on the dataset. Bootstrap resampling involves creating a training set by

randomly sampling with replacement from a training split. This was conducted

1000 times for each dataset size X, ranging from 0.5 (±500) to 1.2 (±1200) times the

size of the entire dataset (987 instances). Each iteration trained the model on a new

bootstrap resample of a random training split, using the best parameters identified

from Section 4.2 obtained through SKCV.

Every iteration the dataset was initially randomly (not stratified) split into 80%

(789 instances) training data and 20% (198 instances) test data. For each bootstrap

resample, the model was trained on a sample of size X drawn with replacement

from the training data and always tested on a random test set of size 198. Never

seeing any test data during training.

To address class imbalance, alternatively, ROS was applied on random training

splits before bootstrap resampling and training the model. This technique equalizes

the distribution between the outcome variables ’No new child’ and ’New child’, po-

tentially enhancing model performance as introduced in Section 3.2.2.
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4.3.1 Results and model comparison

Figure 4.5 summarizes the comparative results of all models used. Overall, the

models showed high F1 scores, ranging around 0.68 to 0.72. The 95% CI for the

F1 scores across the 1000 runs for each step is relatively narrow, indicating reliable

and consistent performance of the models. All models consistently outperformed a

dummy classifier (F1 ±0.3) across the 1000 random test splits, demonstrating their

predictive efficacy. A significant observation is the marked improvement in model

performance when ROS was applied, evident across all dataset sizes and nearly

all models. Particularly noteworthy were the Gradient Boosting, GaussianProcess-

Classifier and Neural Network models, generally achieving F1 scores above 0.70

on all data sizes, indicating their overall high predictive capabilities.

Figure 4.5: Chart comparing the mean F1 score and 95% Confidence interval (CI) for
each model on different random split bootstrap data sizes while using ROS or not.
Each data point represents the average result over 1000 runs each with a random
train-test split of 80%-20%.

Random Forest, KNN, Gradient Boosting and GuassianProcessClassifier exhibited

comparable performance across different sample sizes, suggesting robustness to

variations in dataset size. Even performing relatively well on smaller training sets.

For KNN and Naive Bayes using ROS does not appear to increase performance.
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4.3 Bootstrap Resampling Analysis

For the distance-based KNN, this might be due to there being less meaningful sep-

aration between classes after oversampling, which can lead to noise and reduced

effectiveness in capturing the true class boundaries. In the case of Naive Bayes,

the assumption of feature independence may not hold well with the synthetic data

generated by ROS, leading to suboptimal performance. These observations suggest

that while ROS can be beneficial for many models, its impact can vary depending

on the specific characteristics and assumptions of each model.

In conclusion, this bootstrap resampling analysis demonstrates that all evaluated

models outperform the Dummy Classifier and generally benefit from ROS. The

Logistic Regression and Neural Network models are particularly notable for their

high performance. The stability of models like Gradient Boosting and Gaussian

Process Classifier across different data sizes underscores their robustness in han-

dling variations in training data size. However, the KNN and Naive Bayes models

highlight that the benefits of ROS are not universal and depend on the nature of

the model and the data. Importantly, the relatively narrow 95% confidence inter-

vals observed across all models indicate that the models’ performance is highly

robust and reliable on the PreFer data.
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5. Conclusion

This study aimed to predict household fertility in the Netherlands using a fully

data-driven approach leveraging the large-scale longitudinal LISS dataset. By em-

ploying many processing techniques and various machine learning models such

as Neural network, random forest, and linear regression classifiers, the research

explored the predictive potential of the dataset and identified the most relevant

socio-economic and demographic factors influencing fertility.

The feature selection process highlighted key predictors, including respondents’

future childbearing intentions, age, income, job status, health metrics, household

dynamics, and media usage patterns. Notably, the intention to have more children

emerged as the most significant predictor, underscoring the self-awareness of indi-

viduals regarding their fertility decisions. This was followed by age and income as

important predictors.

The hyperparameter evaluation of different models through Stratified K-Fold Cross

Validation and the application of Random Over Sampling (ROS) to address class

imbalance revealed insightful results. Models like Neural Networks, Support Vec-

tor Machines, and Gradient Boosting demonstrated strong performance with high

F1 scores (0.7+), indicating their robust ability to capture underlying patterns in the

data. The results also underscored the benefits of ROS in improving model perfor-

mance, although its impact varied across different models.

Bootstrap resampling further validated the consistency and reliability of the mod-

els. The analysis confirmed that all evaluated models well outperformed the dummy

classifier, with particularly high performance observed in Gradient Boosting and

Gaussian Process Classifiers. The stability of these across different data sizes high-

lighted their robustness in handling variations in training data.

While the current results are promising, there remains significant potential for fur-

ther refinement and expansion. Future research could explore additional variables
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and the aggregation of surveys, more advanced machine learning techniques, or in-

tegration with other data sources to improve predictive accuracy and broaden the

scope of insights generated. This ongoing development underscores the dynamic

nature of AI-driven fertility prediction and highlights the need for continued inno-

vation.

In summary, this research successfully demonstrated the potential of AI-driven

methods to predict fertility trends using the LISS dataset. The findings contribute

to the PreFer data challenge by enhancing the understanding of predictive model-

ing of fertility. By showcasing the effectiveness of data-centric methodologies, this

study offers a framework that can be adapted and applied to other countries and

datasets or change the focus questions during data collection, potentially leading

to global improvements in fertility prediction and policy planning.
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6. Discussion

This research presents a data-driven approach to predict fertility trends in the Nether-

lands using machine learning models and the extensive longitudinal LISS dataset.

The study identified and processed relevant attributes, then evaluated various pre-

diction models. The results demonstrate the potential of AI-driven methods in

fertility prediction, but several methodological choices and limitations warrant fur-

ther discussion.

Dataset size

A critical discussion point is the limited number of outcome labels available for

analysis, totaling 987 in this study. Given the strong predictive influence observed

for variables such as desire for a child, age, and income, there remains a need for

a larger dataset to accurately assess the predictive power of the other selected at-

tributes. The smaller sample size of outcome labels may have influenced the ability

to fully capture the potential predictive value of lesser-known factors or less fre-

quently occurring variables. Increasing the dataset size could provide more robust

insights into the relative importance and contribution of these additional attributes

towards predicting fertility outcomes.

Feature selection on dataset

One key methodological choice was the selection of attributes with a high avail-

ability (75%+). This approach was deemed appropriate based on the analysis in

section 2.4. However, this decision might have overlooked valuable predictive in-

formation due to not directly taking into account surveys that have been performed

over multiple waves, thus having the same question count as a different attribute

reducing the availability of the question on an attribute level. This means some

survey questions might not have been selected, simply due to the survey being

split into multiple smaller waves. Future research could benefit from first aggre-

gating these survey questions spanning multiple waves to one question variable to

include or reveal new questions and interest areas with strong predictive power.

This would ensure a more comprehensive analysis.
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The selected attributes in this study represent only the tip of the iceberg, by only

including the ones that were easily available within the dataset, serving as a proof

of concept for the potential of data-driven fertility prediction. This is also the case

for filtering or aggregating identical attributes that are available via multiple sur-

veys. For instance, during feature selection, the model uses multiple similar age

and income attributes which could be simplified to make more way for other non-

duplicate attributes.

Preprocessing steps

As an alternative method lagged time attributes were only experimented with but

not included in the main study. These attributes, which consider past values and

changes within them to predict future outcomes, could significantly enhance the

model’s predictive power. Future research should explore the integration of lagged

variables to capture temporal dynamics more effectively.

Another important consideration is data imputation. In this study, all data was

imputed together, which, while avoiding data leakage, could impact accuracy. Ide-

ally, the entire data processing pipeline should be tested within the bootstrap re-

sampling framework to ensure robustness, by imputing test data on an imputer

fitted on training data, rather than all data.

Scores and bias with small sample size

While bootstrap resampling was used to mitigate potential biases and check for ro-

bustness, the model scores might still be exaggerated due to the small sample size

or underlying bias in the data. These scores should be seen as an indication of what

is possible within the current dataset, rather than definitive performance metrics.

Further testing with independent datasets is necessary to validate these findings.

SKCV provided an initial indication of the best or near-best hyperparameters, but

bootstrap resampling was the real test of model performance.

These methodological considerations and limitations highlight the complexity of

data-driven fertility prediction and the used dataset, and underscore areas for fu-

ture research. While this study demonstrates the potential of AI-driven approaches,

it also reveals the need for ongoing refinement and validation of these methods.
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A. Feature selection

Below are the detailed tables of the selected features, categorized by their impor-

tance scores and grouped by relevant attributes such as health, household, income,

job status, media usage, and questionnaire speed. First Figure A.1 showing the

difference in gini importance for the selected attributes.

Figure A.1: Barchart of gini importance for selected attributes

Table A.1: Feature Selection for Predicting Childbirth

individual_attribute score var_label categorical_-

value

Category

cf20m128_1.0 0.017982 Do you think you will

have [more] children in

the future?

Yes Wanting a child

cf20m128_2.0 0.009958 Do you think you will

have [more] children in

the future?

No Wanting a child

Continued on next page
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Feature selection

Table A.1 continued from previous page

individual_attribute score var_label categorical_-

value

Category

cw20m002 0.010841 Respondent’s year of

birth

- Age

birthyear_bg 0.010467 Year of birth [imputed

by PreFer organisers]

- Age

cf20m004 0.010291 Preload variable: Age

respondent

- Age

cv20l160 0.01026 Preloaded variable: age

- part 2

- Age

ci20m002 0.010187 Age respondent - Age

cw20m003 0.010025 Respondent’s age - Age

ca20g082 0.009948 Age respondent - Age

age_bg 0.00985 Age of the household

member on December

2020 [imputed by PreFer

organisers]

- Age

ch20m002 0.009577 preloaded variable: age - Age

ci20m326 0.009505 Year of birth respondent - Age

cf20m009 0.004753 What is the year of birth

of your mother?

- Age

cf20m005 0.004688 What is the year of birth

of your father?

- Age

ch20m219_1.0 0.004216 gynaecologist Yes Health

ch20m219_0.0 0.004043 gynaecologist No Health

ch20m213 0.002873 acupuncturist - Health

ch20m017 0.002506 How much do you

weigh, without clothes

and shoes?

- Health

cr20m093_4.0 0.005266 Do you speak Dutch

with. . . your partner?

"not applicable" Household

cf20m024_2.0 0.004812 Do you currently have a

partner?

No Household

Continued on next page
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Table A.1 continued from previous page

individual_attribute score var_label categorical_-

value

Category

burgstat_2020_1.0 0.004606 Civil status Married Household

burgstat_2020_5.0 0.00372 Civil status Never been

married

Household

cf20m024_1.0 0.003576 Do you currently have a

partner?

Yes Household

woonvorm_2020_2.0 0.002802 Domestic situation (Un)married

co-habitation,

without

child(ren)

Household

nettohh_f_2020 0.005655 Net household income

in Euros

- Income

brutohh_f_2020 0.00513 Gross household in-

come in Euros

- Income

netinc_2020 0.00503 Personal net monthly

income in Euros

- Income

nettoink_f_2020 0.004771 Personal net monthly

income in Euros, im-

puted

- Income

cw20m576 0.004738 Current income per

month, based on values

from the Core Question-

naire Income

- Income

nettoink_2019 0.004515 Personal net monthly

income in Euros (incl.

nettocat)

- Income

brutoink_f_2020 0.004419 Personal gross monthly

income in Euros, im-

puted

- Income

nettoink_2020 0.004197 Personal net monthly

income in Euros (incl.

nettocat)

- Income

Continued on next page
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Table A.1 continued from previous page

individual_attribute score var_label categorical_-

value

Category

nettoink_f_2019 0.004048 Personal net monthly

income in Euros, im-

puted

- Income

brutoink_f_2019 0.003845 Personal gross monthly

income in Euros, im-

puted

- Income

nettohh_f_2019 0.003805 Net household income

in Euros

- Income

brutohh_f_2019 0.003800 Gross household in-

come in Euros

- Income

ch20m003 0.002911 preloaded variable: paid

job or not

- Income

cs20m243 0.002678 computer or laptop

use, average number

of hours per week: at

work

- Media usage

cs20m231 0.002602 listening to music, aver-

age time expenditure on

days that apply, hours

- Media usage

cs20m437 0.002577 average number of

hours per week spent

on: watching online

films or TV programs

- Media usage

cf20m397 0.003657 Duration in seconds - Questionnaire (Speed)

ci20m322 0.003285 Duration in seconds - Questionnaire (Speed)

cv20l301 0.002879 Duration in seconds -

part 1

- Questionnaire (Speed)

cp20l193 0.002855 Duration in seconds - Questionnaire (Speed)

ca20g_m 0.002794 Year and month of field

work period

- Questionnaire (Speed)

Continued on next page
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Table A.1 continued from previous page

individual_attribute score var_label categorical_-

value

Category

cv20l302 0.0027 Duration in seconds -

part 2

- Questionnaire (Speed)

cw20m505 0.002666 Duration in seconds - Questionnaire (Speed)

cr20m120 0.002586 Duration in seconds - Questionnaire (Speed)
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B. Model hyperparameter search spaces

The hyperparameter settings used when performing gridsearchCV, which tries all

combinations of given parameters for each model

• Logistic Regression

– Parameters:

C: [0.001, 0.01, 0.1, 1.0, 10.0, 100.0]

penalty: [’l1’, ’l2’]

solver: [’liblinear’, ’saga’]

• Random Forest

– Parameters:

n_estimators: [100, 300, 500, 800, 1000]

max_depth: [None, 10, 30, 50]

min_samples_split: [2, 5, 10]

min_samples_leaf: [1, 4, 8]

max_features: [’auto’, ’sqrt’, ’log2’]

• Gradient Boosting

– Parameters:

n_estimators: [100, 500]

learning_rate: [0.01, 0.1]

max_depth: [3, 5]

subsample: [0.5, 1.0]

min_samples_split: [2, 5]

min_samples_leaf: [1, 2]

max_features: [’auto’, ’sqrt’]

• SVM
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– Parameters:

C: [0.1, 1.0, 10.0, 100.0]

kernel: [’linear’, ’poly’, ’rbf’, ’sigmoid’]

gamma: [’scale’, ’auto’]

degree: [2, 3, 4, 5]

• K-Nearest Neighbors

– Parameters:

n_neighbors: [3, 5, 7, 9, 11, 13, 15, 17, 19]

weights: [’uniform’, ’distance’]

algorithm: [’auto’, ’ball_tree’, ’kd_tree’, ’brute’]

• GaussianProcessClassifier

– Parameters:

max_iter_predict: [100, 200, 300, 400, 500, 1000]

• Naive Bayes

– No hyperparameters to tune.

• Neural Network

– Parameters:

hidden_layer_sizes: [(50,), (100,), (200,), (100, 100)]

activation: [’logistic’, ’tanh’, ’relu’]

solver: [’lbfgs’, ’adam’]

alpha: [0.0001, 0.001, 0.01]

learning_rate: [’constant’, ’adaptive’]

batch_size: [32, 64]

beta_1: [0.9, 0.95]

beta_2: [0.999, 0.9999]
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C. SKCV results

Below is the table of the full SKCV results and selected attributes for each model

with the highest average SKCV F1 score.

Table C.1: SKCV results for each model and training set

Model Training

set

F1

SKCV

F1

test

Accur-

acy

B_-

Accu-

racy

Precis-

ion

Recall Params

Neural

Network

Stratified 0.7247 0.8235 0.9242 0.8844 0.8333 0.8140 {’activation’: ’tanh’, ’alpha’:

0.01, ’batch_size’: 32, ’beta_-

1’: 0.9, ’beta_2’: 0.999, ’hid-

den_layer_sizes’: (100,), ’learn-

ing_rate’: ’constant’, ’solver’:

’adam’}

SVM Stratified 0.7219 0.7500 0.8990 0.8263 0.8108 0.6977 {’C’: 100.0, ’degree’: 2, ’gamma’:

’auto’, ’kernel’: ’rbf’}

K-Nearest

Neighbors

Stratified 0.7183 0.7895 0.9192 0.8392 0.9091 0.6977 {’algorithm’: ’auto’, ’n_neigh-

bors’: 17, ’weights’: ’uniform’}

Gaussian

Process

Classifier

Stratified 0.6931 0.7467 0.9040 0.8127 0.8750 0.6512 {’max_iter_predict’: 100}

Gradient

Boosting

Stratified 0.6893 0.7368 0.8990 0.8095 0.8485 0.6512 {’learning_rate’: 0.01, ’max_-

depth’: 3, ’max_features’: ’sqrt’,

’min_samples_leaf’: 1, ’min_-

samples_split’: 2, ’n_estima-

tors’: 500, ’subsample’: 1.0}

Random

Forest

Stratified 0.6800 0.7200 0.8939 0.7978 0.8438 0.6279 {’max_depth’: 10, ’max_fea-

tures’: ’log2’, ’min_samples_-

leaf’: 1, ’min_samples_split’: 10,

’n_estimators’: 100}
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Table C.1 continued from previous page

Model Training

set

F1

SKCV

F1

test

Accur-

acy

B_-

Accu-

racy

Precis-

ion

Recall Params

Naive

Bayes

Stratified 0.6699 0.6667 0.8283 0.8147 0.5763 0.7907 {}

Logistic

Regression

Stratified 0.6511 0.6234 0.8535 0.7468 0.7059 0.5581 {’C’: 100.0, ’penalty’: ’l1’,

’solver’: ’liblinear’}

Dummy

Classifier

Stratified 0.2752 0.3077 0.5000 0.5042 0.2200 0.5116 {’strategy’: ’uniform’}

Gradient

Boosting

ROS 0.9533 0.7848 0.9141 0.8443 0.8611 0.7209 {’learning_rate’: 0.1, ’max_-

depth’: 5, ’max_features’: ’sqrt’,

’min_samples_leaf’: 2, ’min_-

samples_split’: 2, ’n_estima-

tors’: 500, ’subsample’: 1.0}

Random

Forest

ROS 0.9514 0.7143 0.8788 0.8134 0.7317 0.6977 {’max_depth’: None, ’max_-

features’: ’log2’, ’min_samples_-

leaf’: 1, ’min_samples_split’: 2,

’n_estimators’: 1000}

Neural

Network

ROS 0.9437 0.7234 0.8687 0.8405 0.6667 0.7907 {’activation’: ’relu’, ’alpha’:

0.001, ’batch_size’: 32, ’beta_1’:

0.95, ’beta_2’: 0.9999, ’hidden_-

layer_sizes’: (100, 100), ’learn-

ing_rate’: ’constant’, ’solver’:

’adam’}

SVM ROS 0.9369 0.7912 0.9040 0.8799 0.7500 0.8372 {’C’: 10.0, ’degree’: 2, ’gamma’:

’scale’, ’kernel’: ’rbf’}

Gaussian

Process

Classifier

ROS 0.9306 0.7778 0.8990 0.8683 0.7447 0.8140 {’max_iter_predict’: 100}

K-Nearest

Neighbors

ROS 0.9055 0.7184 0.8535 0.8560 0.6167 0.8605 {’algorithm’: ’auto’, ’n_neigh-

bors’: 3, ’weights’: ’distance’}

Logistic

Regression

ROS 0.8428 0.7400 0.8687 0.8657 0.6491 0.8605 {’C’: 100.0, ’penalty’: ’l2’,

’solver’: ’saga’}
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SKCV results

Table C.1 continued from previous page

Model Training

set

F1

SKCV

F1

test

Accur-

acy

B_-

Accu-

racy

Precis-

ion

Recall Params

Naive

Bayes

ROS 0.8314 0.6667 0.8182 0.8251 0.5538 0.8372 {}

Dummy

Classifier

ROS 0.4806 0.3172 0.5000 0.5126 0.2255 0.5349 {’strategy’: ’stratified’}
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