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Abstract

This study explores the effectiveness of various clustering algorithms in reducing data
variability in maritime oil barrel pollution analysis. The research investigates four clus-
tering methods - k-Means, Agglomerative, HDBSCAN, and OPTICS - applied to simu-
lated trajectories of oil barrels. The focus is on assessing the reduction in data variabil-
ity using standard deviation and Mean Absolute Deviation (MAD) as reduction rates.
The findings demonstrate that density-based clustering methods, particularly OPTICS,
significantly reduce data variability by categorizing noise effectively. However, this
approach may not be suitable for applications requiring the inclusion of all trajecto-
ries, such as identifying offending ships. In these scenarios, distance-based methods
perform better but offer minimal data reduction. These results underscore the im-
portance of selecting appropriate clustering methods based on specific requirements.
The broader perspective suggests that while clustering can enhance data analysis effi-
ciency, careful consideration of the trade-offs between data reduction and information
retention is essential for reliable maritime pollution tracking.

Key words: Cluster Algorithms, Data Reduction, Trajectory Analysis, Oil Barrel Pollu-
tion, Distance-based Clustering, Density-based Clustering.
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1. Introduction

1.1 Motivation and Context

On the 25th and 26th of February 2023, eleven oil barrels were found along the coast
of Vlieland, Terschelling and Ameland, part of the Wadden Islands in the Netherlands.
The most likely source is a single ship, navigating through the North Sea and discard-
ing the barrels after using the oil, for instance as lubrication for the engine. Currently,
the local municipalities are responsible for cleaning up the mess, but they lack the
resources to investigate who committed this act. The littering of oil barrels into the
North Sea impacts the quality of marine life, contributes to waste on the shoreline and
imposes unforeseen expenditures on municipalities (Bascom, 1974). In order to change
this type of behaviour, it is crucial to track down the vessel responsible for the envi-
ronmental pollution.

1.2 Literature Overview

One way to identify the responsible vessel is by simulating the possible trajectories of
the oil barrels using ocean models. These models are based on observations made by
weather stations and technological institutes and simulate natural phenomena such as
waves, wind, temperature fluctuations, tides and more (BRYAN, 1969). They enable
the simulation of the possible paths the oil barrels might have taken to reach their
locations. Ideally, this process can pinpoint a single ship as the origin of the trajectories
of the barrels. Once identified, this vessel can be considered to be the offending ship,
and municipalities can take further action.

The simulation results in a complex web of spatio-temporal patterns, also defined as
a flock (Gudmundsson & van Kreveld, 2006). Moving objects can exhibit coherent
movements over short distances in time or space. However, in this case, the oil bar-
rels may travel long distances over extended periods, leading to numerous possibili-
ties. Additionally, drifting objects exhibit jibing, the phenomenon of changing direc-
tion from parallel to the wind to either leftward or rightward perpendicular and vice
versa (Breivik et al., 2011). When jibing is accounted for in the simulation, the resulting
data comprises stochastic rather than smooth trajectories, making it more challenging
to comprehend and analyze. The cylindrical shape of oil barrels makes them particu-
larly susceptible to jibing, making it crucial to implement in the simulation so the most
accurate trajectories are obtained.

In order to create more structure within a flock of trajectories and facilitate the analysis
of certain patterns, the data needs to be reduced to counteract the effect of the jibing.
One method to achieve this is by clustering the trajectories, so significantly similar tra-
jectories are grouped together for the investigation into the offending ship. Clustering
can be defined as a method of grouping entities, while maximizing the similarity in
a group and minimizing the similarity between groups (Rokach & Maimon, 2005). In
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1. Introduction 1.2 Literature Overview

the case of moving objects, similarity can be determined by how closely the objects
follow the same trajectories, meaning they are approximately in the same space at each
time instant (Rokach & Maimon, 2005). This type of clustering is often referred to as
distance-based trajectory clustering, as it compares the distance between trajectories
(Giannotti et al., 2008). Another type of clustering is density-based clustering, where
a specific number of trajectories within a certain radius are considered similar (Nanni
& Pedreschi, 2006). Of each type, two cluster algorithms will be highlighted and ex-
plained in detail in sections 1.2.1 and 1.2.2.

1.2.1 Distance-based clustering algorithms

k-Means clustering is a distance-based cluster algorithm that divides a dataset into a
predetermined number of clusters, k. The algorithm (1) aims to minimize the within-
cluster variance by assigning each data point to the cluster with the nearest mean.
Each cluster is represented by its centroid, the mean of all data points assigned to that
cluster. The algorithm begins by randomly initializing k centroids. Each data point is
then assigned to the nearest centroid, forming k clusters. After all points are assigned,
the centroids are recalculated as the mean of the points in each cluster. This process
of assignment and updating continues iteratively until the centroids no longer change
significantly, indicating convergence (Ahmed et al., 2020).

k-Means is highly efficient, making it suitable for large datasets and capable of han-
dling millions of data points effectively. The linear scalability of k-means enhances its
practicality for extensive datasets. Additionally, the algorithm converges quickly, of-
ten requiring only a few iterations to reach stability. k-Means is particularly effective
for datasets with clusters that are roughly spherical and evenly sized (Kanagala & Jaya
Rama Krishnaiah, 2016). The k-means algorithm is visualized in Figure 1.1, where the
centroids are displayed as triangles.

Algorithm 1: k-Means clustering algorithm
Input : Distance matrix D, number of clusters k
Output: Cluster centroids, cluster assignments

1 Initialize k centroids randomly from D;
2 while true do
3 Assign each data point to the nearest centroid;
4 Update each centroid as the mean of the data points assigned to it;
5 if no centroid has changed then
6 Break;
7 end
8 end
9 return Cluster centroids, cluster assignments;
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Figure 1.1: Schematic overview of the k-means algorithm.

Another distance-based clustering approach is the agglomerative clustering algorithm
(2), a hierarchical clustering technique that iteratively merges individual data points
or small clusters into larger clusters based on their pairwise similarities. This method
starts by treating each data point as a separate cluster and then progressively merges
the most similar clusters until all data points belong to a single cluster or until a stop-
ping criterion is met (Murtagh & Contreras, 2011).

Initially, each data point is considered a cluster, forming n clusters, where n is the
number of data points in the dataset. The algorithm then calculates the pairwise dis-
tances or dissimilarities between clusters using a specified linkage criterion, either sin-
gle linkage, complete linkage, or average linkage. Single linkage measures the distance
between the closest points in each pair of clusters. It focuses on merging clusters that
have the closest individual points, often resulting in long, elongated clusters. Com-
plete linkage measures the distance between the farthest points in each pair of clus-
ters. It prioritizes merging clusters whose farthest points are closest to each other, typ-
ically producing compact, spherical clusters. Average linkage calculates the distance
between the centroids (or means) of the two clusters being merged. It computes the
average distance between all pairs of points, one from each cluster. This method pro-
vides a balance between single and complete linkage, resulting in clusters that are less
elongated than those produced by single linkage but not as compact as those produced
by complete linkage (Yim & Ramdeen, 2015; Murtagh & Contreras, 2011).

The merging process continues iteratively by selecting the pair of clusters with the
smallest distance according to the chosen linkage criterion and merging them into a
single cluster. This step reduces the total number of clusters by one in each iteration,
gradually forming a dendrogram or tree structure that illustrates the hierarchical re-
lationships between clusters. The stopping criterion for agglomerative clustering can
vary depending on the application. In this research, the algorithm stopped when the
predetermined number of clusters k was reached (Murtagh & Contreras, 2011). The
agglomerative cluster algorithm is visualized in Figure 1.2.
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Algorithm 2: Agglomerative clustering algorithm
Input : Distance matrix D, number of clusters k
Output: Cluster assignments

1 Initialize each data point as a single-point cluster;
2 Initialize distances between clusters based on chosen linkage criteria;
3 while number of clusters is not k do
4 Merge the two closest clusters;
5 Update the distance matrix;
6 end
7 return Cluster assignments;

Figure 1.2: Schematic overview of the agglomerative clustering algorithm.

1.2.2 Density-based clustering algorithms

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise)
is a density-based clustering algorithm that builds upon the DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) framework by introducing a hierarchi-
cal approach (Rahman et al., 2016). This enhancement allows HDBSCAN to identify
clusters of varying densities, making it more flexible and robust in comparison to older
cluster methods. HDBSCAN relies on the concepts of core distance and mutual reach-
ability distance, as shown in Algorithm 3. The core distance for each point is defined
as the distance to its m-th nearest neighbor, where m is a user-defined parameter. This
metric serves as an indicator of the local density surrounding an observation. The mu-
tual reachability distance is determined between two points as the maximum of their
respective core distances and the direct distance between them. This distance metric
effectively smooths the distance landscape by incorporating density information (Ad-
vances in Knowledge Discovery and Data Mining, 2013; Rahman et al., 2016).

To build the hierarchical structure, HDBSCAN constructs a MST (Minimum Spanning
Tree) using the mutual reachability distances as edge weights. This tree captures the
hierarchical nature of the data by representing the density-based connectivity between
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points. From the MST, a condensed cluster tree is created, which represents clusters
at different density levels. This tree encapsulates the hierarchy of clusters, merging
clusters as the density threshold decreases, thereby illustrating the clustering struc-
ture from the finest to the coarsest scale. The algorithm then extracts a flat clustering
from the condensed cluster tree by selecting the most stable clusters. Stability is as-
sessed based on the persistence of clusters across a range of density levels; more stable
clusters are considered more significant. This approach allows HDBSCAN to automat-
ically determine the optimal number of clusters without requiring the user to specify
this parameter (Advances in Knowledge Discovery and Data Mining, 2013; Rahman et al.,
2016).

One of the primary advantages of HDBSCAN is its ability to handle clusters with vary-
ing densities, which is a limitation in traditional DBSCAN. Additionally, HDBSCAN
automatically identifies noise points, enhancing the quality of clustering by excluding
outliers (Stewart & Al-Khassaweneh, 2022). The HDBSCAN algorithm is visualized in
Figure 1.3.

Algorithm 3: HDBSCAN clustering algorithm
Input : Distance matrix D, minimum number of points m
Output: HDBSCAN hierarchy

1 Extract the core distance w.r.t. k for all data objects using D;
2 Compute a MST of Gk, the Mutual Reachability Graph;
3 Extend the MST to obtain MSText by adding for each vertex a "self edge" with the

core distance of the corresponding object as weight;
4 Extract the HDBSCAN hierarchy as a dendrogram from MSText;
5 while MSText is not empty do
6 Remove all edges from MSText in decreasing order of weights;
7 Set the dendrogram scale value of the current hierarchical level as the weight

of the removed edge(s);
8 Assign labels to the connected component(s) that contain(s) the end

vertex(-ices) of the removed edge(s) to obtain the next hierarchical level;
9 Assign a new cluster label to a component if it still has at least one edge, else

assign it a null label ("noise");
10 end

7



1. Introduction 1.2 Literature Overview

Figure 1.3: Schematic overview of the HDBSCAN algorithm.

Another density-based clustering algorithm is OPTICS (Ordering Points To Identify
the Clustering Structure)(4), designed to identify clusters of arbitrary shape and size
in large datasets (Ankerst et al., 1999). At the core of OPTICS lies the concept of
reachability distance, a metric used to gauge the local density surrounding individ-
ual data points. This distance between two points signifies the furthest reach at which
one point can be deemed reachable from another, all while adhering to a predefined
density threshold. In OPTICS, the parameter ε establishes this maximum distance for
reachability, concurrently upholding a specified density threshold. This threshold m
denotes the minimal number of points necessary to constitute a cluster. By adjust-
ing ε, the neighborhood size considered during reachability distance computation can
be modified, consequently shaping the granularity of the resulting clustering arrange-
ment (Ankerst et al., 1999).

The algorithm calculates the reachability distance for each point with respect to its
neighbors. This process generates a reachability plot, which orders the points based
on their reachability distances. The reachability plot provides valuable insights into
the clustering structure of the dataset, revealing clusters as regions of low reachability
distances separated by areas of high reachability distances (Ankerst et al., 1999).

One of the key advantages of OPTICS is its ability to handle datasets with varying
densities and noise effectively. By considering the local density of points, OPTICS can
adapt to clusters of different shapes and sizes, making it robust to outliers and capable
of identifying clusters embedded within clusters (Kanagala & Jaya Rama Krishnaiah,
2016). The OPTICS algorithm is visualized in Figure 1.4, where the core points are
displayed as triangles.
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Algorithm 4: OPTICS clustering algorithm
Input : Distance matrix D, minimum number of points m, ε-neighborhood radius
Output: Cluster ordering, Reachability plot

1 Initialize core distances to undefined, reachability distances to undefined,
processed to empty set, and cluster order list to empty;

2 for each unprocessed point p in X do
3 if p is not a core point then
4 Mark p as processed;
5 Continue to the next point;
6 end
7 if p is not yet in the cluster order list then
8 ExpandClusterOrder(p);
9 end

10 end
11 Function ExpandClusterOrder(p)
12 Add p to the cluster order list;
13 for each q in ε-neighborhood of p do
14 if q is not processed then
15 Calculate r as the maximum of core distance of p and distance between

p and q;
16 if q is not in the cluster order list then
17 Add q to the cluster order list;
18 if q is a core point then
19 ExpandClusterOrder(q);
20 end
21 end
22 end
23 end
24 return Cluster ordering, Reachability plot;

Figure 1.4: Schematic overview of the OPTICS algorithm.
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1.3 Research Question

Systematic randomness is introduced into the simulation by the process of jibing, which
is modeled by incorporating many ensemble members. This method captures the non-
linear effects caused by ocean currents and atmospheric drag. However, this approach
also generates a large amount of data that needs to be assessed. Hence, the research
question of this project is:

How much data reduction is possible when simulated trajectories are clustered, while maintain-
ing fidelity?

In order to answer this question, the trajectories are simulated forward in time, mean-
ing that in the simulation, the barrels are thrown off a vessel and their trajectories are
obtained. Next, the trajectories are simulated backward in time, called an inverse sim-
ulation, meaning that from the site location of a barrel, the inverse trajectories are sim-
ulated. These two types of simulations are clustered using both distance- and density-
based cluster techniques, namely k-means, agglomerative clustering, HDBSCAN and
OPTICS, and compared to determine the extent to which the data can be reduced. The
data reduction will be quantified in terms of variability.
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2. Data

For the simulations, three categories of data were essential. Firstly, data on the site
locations of the oil barrels were required. Secondly, data regarding the navigation of
ships around these site locations were necessary. Finally, oceanographic models were
utilized to simulate the potential trajectories of the oil barrels.

2.1 Oil barrel data

The site locations of the oil barrels were sourced from several entities, including the po-
lice department of Terschelling and local residents(Politiebureau Terschelling, 2024).
As shown in Figure 2.1, the barrels were sited at locations on Terschelling, Richel,
Robbenbank and Ameland.

Figure 2.1: Site locations of the oil barrels at the Wadden Islands.

The exact times when the oil barrels drifted ashore are uncertain. Two barrels were
found on February 25th at 15:00 and 18:00 UTC (Coordinated Universal Time). The re-
maining barrels were discovered on February 26th between 10:00 to 14:00 UTC. How-
ever, the barrels could have drifted ashore hours or days before being found. The exact
site locations are also imprecise. The sources provided vague descriptions, such as
"near beach pole 20", which were then converted to coordinates with uncertain accu-
racy.
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2.2 Ship data

The ship data, often referred to as AIS (Automatic Identification System) data, was
obtained through Kpler, a company specializing in global trade intelligence (Marine
Digital, 2024; Kpler, 2024). The AIS data consists of the latitudes and longitudes of
ships along with the corresponding timestamp. The query to Kpler was specified to
include only vessels navigating through latitude range 53.4 - 54.7 and longitude range
5.0 - 7.5 between 2023-02-23 00:00 and 2023-02-26 23:59, UTC. This area was chosen
based on the northeast wind at the time the barrels were found, suggesting that the
origin ship of the oil barrels was navigating northeast of the site locations. The time
range was selected due to the uncertainty regarding when the barrels drifted ashore.

The AIS data also includes information such as the MMSI (Maritime Mobile Service
Identities) and IMO (International Maritime Organization) numbers, which identify
the ship and the owner, respectively (MMSI, 2022; IMO, 2024). In total, the AIS data
consisted of 160,794 different coordinates, belonging to 1,029 MMSIs. These ships were
associated with 879 unique IMOs and navigated under 51 different flags. Appendix 7.1
includes an overview of each attribute and its corresponding statistics. The coordinates
of the vessels at different timestamps were combined to determine their trajectories, as
shown in Figure 2.2.

Figure 2.2: AIS trajectories of ships navigating through latitude range 53.4 - 54.7 and lon-
gitude range 5.0 - 7.5 between 2023-02-23 00:00 and 2023-02-26 23:59, UTC.

12



2. Data 2.3 Oceanographic data

2.3 Oceanographic data

The simulations were conducted using oceanographic models, specifically an atmo-
spheric model, a wave model and an ocean model. The wave model, SWAN (Simulat-
ing WAves Nearshore), was developed at Delft University of Technology and provides
estimations of wave conditions during specific times (“The SWAN team: SWAN - Sci-
entific and technical documentation SWAN Cycle III version 41.20A”, n.d.). This model
covers the North Sea and part of the northeast Atlantic, with a horizontal resolution
of approximately 5 kilometers (Sterl & Ministry of Infrastructure and Water Manage-
ment, 2019). The atmospheric model, Harmonie, originates from the KNMI (Royal
Netherlands Meteorological Institute) (KNMI, 2024; Sterl & Ministry of Infrastructure
and Water Management, 2019). Harmonie covers the same domain as SWAN with a
higher horizontal resolution of 2.5 kilometers (Sterl & Ministry of Infrastructure and
Water Management, 2019). For the ocean model, the 3D DCSM-FM (three-dimensional
Dutch Continental Shelf Model - Flexible Mesh), version 6, was used, designed by RWS
(Rijkswaterstaat) and Deltares (RWS & Deltares, 2022; RWS, 2024; Deltares, 2024).

2.4 Cluster data

The research conducted by Van der Minnen (2024) focused on identifying the vessel
responsible for littering the oil barrels by simulating their trajectories and intersecting
them with AIS trajectories (Van der Minnen, 2024). From Van der Minnen’s list of the
ten most likely suspects, two vessels were chosen for the forward simulation. Figure
2.3a shows the simulated trajectories of the oil barrels if they were littered from the
vessel with MMSI 246553000, an oil and chemical tanker called STELLA ORION, nav-
igating under the Dutch flag (kpler, n.d.-b). The forward simulation using STELLA
ORION consists of 4000 trajectories each with 500 timestamps. Due to hardware com-
putation limitations, a selection was made of 667 trajectories by including every sixth
trajectory. Figure 2.3b shows the simulated trajectories of barrels if they were littered
from the vessel with MMSI 218854000, a container ship called SANTOS EXPRESS, nav-
igating under the German flag (kpler, n.d.-a). The forward simulation using SANTOS
EXPRESS consists of 3720 trajectories each with 500 timestamps. A selection of 620
trajectories was made by including every sixth trajectory. Both simulations had a max-
imum time span of 38 hours, with a timestamp interval of 5 minutes for each trajectory.
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2. Data 2.4 Cluster data

(a) STELLA ORION

(b) SANTOS EXPRESS

Figure 2.3: The forward simulated trajectories using vessels STELLA ORION and SANTOS
EXPRESS with their AIS represented as a black line. The colors represent the progression
of time, where light indicates the start of the trajectory and dark indicates the end.

The inverse simulation of the trajectories of two barrels, identified as 4 and 9, were
used for clustering. Barrel 4 was found at Ameland, north of Balm, on February 25th

around 15.00 UTC. Barrel 9 was sited at Terschelling "around beachpole 20.7" on Febru-
ary 26th. These barrels were chosen because they were found on different days and
islands, maximizing the spatio-temporal spread. Barrel 4’s and 9’s inverse simulated
trajectories are shown in Figure 2.4a and 2.4b, respectively. The inverse simulation
using Barrel 4 consists of 500 trajectories, each with 1050 timestamps and a maximum
time span of 85 hours and the simulation using Barrel 9 consists of 500 trajectories, each
with 1300 timestamps and a maximum time span of 106 hours. Both simulations were
run with a timestamp interval of 5 minutes for each trajectory. The two simulations did
not need a pre-selection since they contained a relatively small number of trajectories.
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2. Data 2.4 Cluster data

(a) Barrel 4

(b) Barrel 9

Figure 2.4: The inverse simulated trajectories of Barrel 4 and 9, with the barrels repre-
sented as dots. The colors represent the progression of time, where light indicates the start
of the trajectory and dark indicates the end.

As an overview, the two AIS trajectories for the forward simulation and the two barrels
for the inverse simulation are displayed together in Appendix B in Figure 7.1. The
input parameters for the forward and inverse simulations are detailed in Appendix B
as Table 7.2. The standard deviation and mean absolute difference (MAD) of all four
simulations are provided in Appendix B as Table 7.3 (Song et al., 2003). The simulations
of the remaining eight AIS trajectories of Van der Minnen’s list and the remaining nine
barrels were clustered as a reference.
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3. Methods

3.1 Pre-processing

The computation of cluster centers and prediction of cluster indexes for each trajectory
required a distance matrix as input. This distance matrix was obtained by first trans-
forming the trajectories into a three-dimensional array with the following dimensions:

(No trajectories, No observations, 2)

This array represents the coordinates of each observation of a trajectory. Due to the
nature of the simulations, each trajectory had the same amount of observations, each
made with the same time interval. The distance matrix was obtained by calculating
the average Euclidean distance between the trajectories, as defined with Formula 3.1
(Krislock & Wolkowicz, 2012). Between two trajectories, the distance was determined
by averaging the Euclidean distance between coordinate pairs. These pairs share the
same index within the trajectory; hence, the distance was calculated only between the
first and first coordinate observation, second and second, and so on. In this way, the
temporal component was taken into account, making the distance measure based on
how well the trajectories follow the same path over time. Any missing data was disre-
garded in this calculation, so if a trajectory started later or ended earlier by stranding
on a shore, only the overlapping part of the two trajectories in time was considered.

D(p, q) =

√
n

∑
i=1

(pi − qi)2 (3.1)

where p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) are the coordinates of the obser-
vations in the n-dimensional space. This method was performed for each simulation,
both forward and inverse.

3.2 Input Parameters

Four cluster algorithms were implemented on each simulation: two distance-based
clustering approaches, k-means and agglomerative clustering and two density-based
clustering approaches, HDBSCAN and OPTICS. The cluster algorithms were all in-
cluded in the Scikit-learn Python package (Pedregosa et al., 2011).

The k-means input parameter for the number of clusters k, was varied between 2 and
10, as recommended by Ahmed et al. (2020). The complete, average and single linkage
were implemented for the agglomerative clustering approach. For all three linkage
methods, the number of clusters k was varied between 2 and 10, as recommended
by Yim and Ramdeen (2015). For HDBSCAN, the input parameter for the minimum
number of observations in a cluster, m, was varied between 5 and 75, in increments
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3. Methods 3.3 Comparison

of 5, as recommended by Rahman et al. (2016). The minimal number of points in
a cluster m for OPTICS was again varied between 5 and 75, in increments of 5, as
recommended by Ankerst et al. (1999). The neighborhood radius ε ranged between
0 and 1, in increments of 0.1. Of each clustering approach, the silhouette score was
calculated for every parameter setting with Formula 3.2.

Of each model, the silhouette score (S) was calculated according to Formula 3.2 (Rousseeuw,
1987).

S =
1
N

N

∑
i=1

Dmin
i − D̄i

max{D̄i, Dmin
i }

(3.2)

where N is the number of observations, D̄i is the average Euclidean distance (3.1) from
the ith observation to other observations in the same cluster, and Dmin

i is the smallest
average distance from the ith point to points in a different cluster. The silhouette score
can range between −1 and 1, where a negative value indicates that the clusters have a
greater dissimilarity within a cluster than between clusters (Rousseeuw, 1987). A high
positive value for S, indicates that the observations have a great chance to be clustered
correctly (Shutaywi & Kachouie, 2021) (Rousseeuw, 1987). There is a consensus that a
clustering approach should have a silhouette score higher than 0.5 to be considered as
well-performing (Rousseeuw, 1987).

3.3 Comparison

For each clustering approach, the parameter settings that yielded the highest silhou-
ette score, and thus the best performance, were selected for further implementation
(Rousseeuw, 1987). The clusters were then presented along with their medoids, facil-
itating an understanding of the central tendency of trajectories within clusters, which
is essential for gaining insights into the underlying structure of the trajectory data
(Estivill-Castrol & Murray, 1998). The medoid of a cluster (M) was defined as shown
in Formula 3.3 (Jimoh et al., 2022).

M = min
T

∑
j=1

D(M, tj) (3.3)

where T is the number of trajectories in the cluster and D the Euclidean distance (3.1)
between M and tj, the jth trajectory of the cluster.

The data reduction was quantified by comparing the variability of the data before and
after clustering. The general equation used is Formula 3.4.
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3. Methods 3.3 Comparison

R = (1 − varbefore

varafter
) ∗ 100% (3.4)

where R is the reduction in percentage and varbefore
varafter

the ratio of a variability measure be-
fore and after clustering. The standard deviation and the MAD were used as measures.
The standard deviation was calculated by first determining the average standard de-
viation within a cluster and then averaging these values (Formula 6.3). This was also
done using the weighted average standard deviation (Formula 6.4) where the average
standard deviation within a cluster was weighted based on the number of trajectories
in the cluster.

Since the standard deviation squares the differences between points and the mean,
giving more weight to outliers and noise, the average MAD was used as a second, more
robust measure of variability (Formula 6.6) (Pastor & Socheleau, 2012). This process
was repeated using the weighted average MAD, where the average MAD within a
cluster was weighted with the number of trajectories in the cluster (Formula 6.7). These
four approaches lead to the following measures of data reduction:

1. RV using the average standard deviation (Formula 6.8)

2. Rweighted
V using the weighted average standard deviation (Formula 6.9)

3. RMAD using the average MAD (Formula 6.10)

4. Rweighted
MAD using the weighted average MAD (Formula 6.11)

These measures indicate how well the variability was reduced using clustering tech-
niques. A high reduction metric suggests homogeneity within the clusters and dis-
tinctiveness between the clusters. Therefore, a high reduction value indicates that the
medoids are effective for representing the clusters and reducing the data. It is expected
that the clustering methods that perform the best will also show the most reduction.
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4. Results and Analysis

4.1 Cluster Performance

In Appendix B, the change in silhouette scores during the parameter tuning is shown
for all simulations. For the STELLA ORION simulation (Figure 7.2), k-Means reached
its peak silhouette score with 3 and 4 clusters, after which the silhouette score de-
creased with increasing k. The average and complete linkage methods for agglomer-
ative clustering showed relatively consistent silhouette scores around 0.50. The single
linkage method had a high silhouette score for 2 clusters, but the scores became nega-
tive as the number of clusters increased. The highest silhouette score for the complete
linkage method was 0.610 with 3 clusters. HDBSCAN displayed consistent silhouette
scores for minimum cluster sizes ranging from 0 to 60. OPTICS exhibited no variation
in silhouette scores for different values of ε, achieving the highest silhouette scores
for minimum cluster sizes of 40, 50, 55, 65, and 70. The highest silhouette score for
HDBSCAN and OPTICS were both 0.532. Since all silhouette scores were above the
threshold of 0.50, these four clustering approaches can be considered to perform well
based solely on the silhouette score (Shutaywi & Kachouie, 2021).

For the SANTOS EXPRESS simulation (Figure 7.3), k-Means showed a smooth decrease
in silhouette scores to 0.512 as k increased, with the the highest silhouette score of 0.628
achieved at the minimal value of k, 2. As with STELLA ORION, the single linkage
method for the agglomerative yielded negative silhouette scores while complete and
average had relatively consistent scores around 0.50. The highest silhouette score was
0.628, obtained with the average linkage method and 2 clusters. HDBSCAN resulted
in only one cluster for several values of the minimum cluster size. As the silhouette
score requires at least two clusters, complete data on silhouette score changes during
parameter tuning could not be obtained. Only parameters resulting in more than one
cluster were considered for this research, since it is focused on data reduction through
clustering. The highest silhouette score for HDBSCAN fulfilling this requirement was
0.318. OPTICS again showed no variation in silhouette scores for different values of
ε, with positive silhouette scores for minimum cluster sizes of 25 and 40, the latter re-
sulting in the highest score of 0.437. For the SANTOS EXPRESS, only k-means and ag-
glomerative clustering exceeded the threshold silhouette score of 0.50, indicating good
performance for these methods, whereas OPTICS and HDBSCAN did not perform as
well (Shutaywi & Kachouie, 2021).

The inverse simulations of Barrel 4 and 9 (Figure 7.4 and 7.5) encountered similar issues
with HDBSCAN as with SANTOS EXPRESS, with several parameter settings resulting
in only one cluster. These outcomes were disregarded. The highest silhouette scores
with HDBSCAN for Barrel 4 and 9 were 0.09 and 0.052, respectively. Variation in ε

for OPTICS did not result in different silhouette scores for either barrel. Barrel 4 had
the highest, although still negative, score of -0.353 with a minimum cluster size of 5.
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Higher parameter settings resulted in a silhouette score of -1.00. Barrel 9 followed a
similar pattern, with the highest silhouette score of -0.226 at a minimum cluster size of
15. Both barrels showed similar trends in silhouette scores for agglomerative clustering
and k-means. With 2 clusters and average linkage approach, agglomerative clustering
achieved the highest silhouette scores of 0.428 and 0.421 for Barrels 4 and 9, respec-
tively. For, k-means, the silhouette scores peaked at the minimal value of k, 2, resulting
in scores of 0.436 and 0.438 for Barrels 4 and 9, respectively. None of the clustering
methods for the inverse simulations achieved a silhouette score exceeding the thresh-
old of 0.50, indicating poor performance across all methods (Shutaywi & Kachouie,
2021).

There is a clear distinction visible between the distance-based and density-based ap-
proaches. For all simulations, the distance-based approaches performed better, even
though they are theoretically less robust for noise and outliers (Kanagala & Jaya Rama
Krishnaiah, 2016). The forward simulations were, in general, better suited for cluster-
ing than the inverse simulations. This can be attributed to the data structure of the
trajectories. The flocks of the forward simulations were initially more stretched out in
the longitude direction, as can be seen in their initial standard deviation, Appendix 7.3.
The inverse simulated flocks had almost double the standard deviation in the latitude
direction but a smaller one in the longitude direction, Appendix 7.3. This difference
leads to a more chaotic flock for the inverse simulations, making them harder to clus-
ter (Nanni & Pedreschi, 2006).

4.2 Data Reduction

In Figure 4.1, the clusters and their medoids are plotted for the forward STELLA ORION
simulation. HDBSCAN and OPTICS yielded identical cluster results. The distinct
group of trajectories on the right was clustered together, containing 113 trajectories.
The remaining 554 trajectories were grouped into a single cluster. Agglomerative clus-
tering and k-means also clustered the right group of 113 trajectories together. However,
they differed in how they clustered the remaining trajectories. Agglomerative cluster-
ing divided the remaining trajectories into two clusters of 298 and 256 trajectories,
respectively, from left to right. In contrast, k-Means divided the remaining trajectories
into three clusters of 194, 185 and 175 trajectories, from left to right. Since k-means had
the highest performance based on the silhouette scores, the medoids of these clusters
are considered the most effective for data reduction.
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Figure 4.1: The clustering results of STELLA ORION, with each cluster plotted in a differ-
ent color. The medoid of each cluster is visualized as a black line.

In Figure 4.2, the clusters and their medoids are depicted for the forward SANTOS
EXPRESS simulation. The four clustering methods divided the trajectories into two
groups. HDBSCAN and OPTICS have considered 147 and 84 trajectories as noise, re-
spectively, which are represented in Figure 4.2 as black clusters. HDBSCAN’s clusters
contained 99 and 374 trajectories, from left to right, while OPTICS’ clusters contained
163 and 373 trajectories. Agglomerative clustering and k-means produced similar re-
sults, with k-means clusters having sizes of 286 and 334, and agglomerative clusters
having sizes of 292 and 328. Since both methods achieved the highest silhouette scores,
the medoids from either method can be considered effective for data reduction.
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Figure 4.2: The clustering results of SANTOS EXPRESS, with each cluster plotted in a dif-
ferent color. The medoid of each cluster is visualized as a black line and the noise trajecto-
ries as thin, dashed black lines.

In Figure 4.3, the clusters for the inverse Barrel 4 simulation are shown, with their
medoids highlighted in black. Due to overlapping and noise, these plots are relatively
difficult to interpret, so the clusters are also plotted separately in Appendix 7.4. k-
Means and agglomerative clustering appeared to have the same medoids although
their clusters are not exactlty the same. Agglomerative clustering resulted in clusters
of 280 and 220 trajectories from left to right, whereas k-means resulted in clusters of
290 and 210 trajectories. HDBSCAN displayed similar cluster patterns with 142 and
151 trajectories, while 202 trajectories were considered noise. The OPTICS algorithm
resulted in 11 clusters, each ranging in size from 5 to 11 trajectories. More than 80% of
the data was considered noise, amounting to 407 trajectories.
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Figure 4.3: The clustering results of Barrel 4, with each cluster plotted in a different color.
The medoid of each cluster is visualized as a black line and the noise trajectories as thin,
dashed black lines.

Figure 4.4 shows the clusters of the inverse Barrel 9 simulation, with the separate clus-
ters plotted in Appendix 7.4. k-Means and agglomerative clustering again displayed
the same cluster medoids, with sizes of 364 and 136 for k-means and 351 and 149 for
agglomerative clustering. HDBSCAN identified relatively similar clusters with sizes
of 305 and 50 trajectories, a third small cluster containing 5 trajectories and 140 noise
trajectories. OPTICS, similar to its performance with Barrel 4, identified a high percent-
age of noise, amounting to 450 trajectories, and three small clusters, each containing
around 16 trajectories.
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Figure 4.4: The clustering results of Barrel 9, with each cluster plotted in a different color.
The medoid of each cluster is visualized as a black line and the noise trajectories as thin,
dashed black lines.

In Table 4.1, the reduction in variability based on the average and weighted average
standard deviations are shown. For the forward STELLA ORION dataset, clustering
methods demonstrated limited effectiveness, yielding reductions in variability rang-
ing from near zero to very small negative values (approximately -0.003% to -0.72%).
The SANTOS EXPRESS simulation showed a negative reduction, indicating an in-
crease in variability for the density-based approaches. However, when considering the
weighted reduction in variability, these methods showed relatively good results, with
reductions around 20% and 12%. This difference is due to the noise trajectories, which
decrease the standard deviation within the clusters, thereby reducing the overall vari-
ability. For the forward SANTOS EXPRESS simulation and the inverse simulations for
Barrel 4 and 9, the distance-based approaches again showed reductions near zero for
both RV and Rweighted

V . In contrast, the density based approaches showed high reduc-
tions for the inverse simulations. OPTICS, in particular, showed values around 80%
and 90% for Rweighted

V . These values are to be expected, since OPTICS filtered more
than 80% of the trajectories by considering them as noise. In general, the variability
was more effectively reduced in the latitude direction then in the longitude.
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Table 4.1: Reduction of variability based on the average and weighted average standard
deviations.

Simulation Cluster method RV (%) Rweighted
V (%)

Longitude Latitude Longitude Latitude

Forward
STELLA
ORION

k-Means 0.000 -1.192 E-05 3.838 E-06 -1.610 E-05
Agglomerative 1.192 E-06 -1.192 E-05 4.112 E-06 -2.347 E-05

HDBSCAN 1.192 E-05 -1.192 E-05 1.156 E-05 -1.566 E-05
OPTICS 1.192 E-05 -1.192 E-05 1.156 E-05 -1.566 E-05

Forward
SANTOS
EXPRESS

k-Means 2.384 E-05 1.192 E-05 2.298 E-05 9.604 E-06
Agglomerative 3.576 E-05 1.192 E-05 3.034 E-05 1.663 E-05

HDBSCAN -4.464 -0.651 20.30 23.21
OPTICS -2.635 -0.030 11.27 13.52

Inverse
Barrel 4

k-Means 0.000 7.153 E-05 -5.304 E-06 6.795 E-05
Agglomerative 0.000 7.153 E-05 -9.430 E-07 7.332 E-05

HDBSCAN 0.1778 4.468 41.50 44.02
OPTICS -16.42 4.823 78.35 82.30

Inverse
Barrel 9

k-Means -7.153 E-05 -3.576 E-05 -6.658 E-05 -3.284 E-0
Agglomerative -7.153 E-05 -3.576 E-05 -6.122 E-05 -3.539 E-05

HDBSCAN 0.332 4.523 28.24 31.27
OPTICS 4.008 7.901 90.40 90.79

Table 4.2 shows the reduction of variability based on the MAD and weighted MAD.
For the forward STELLA ORION simulation, the weighted averages indicated a slight
improvement in clustering effectiveness when considering the entire dataset, with
weighted average reductions in variability ranging from approximately 0.089% to 0.298%.
The SANTOS EXPRESS simulation showed negligible reduction for the distance-based
approaches and relatively good results for the density-based approaches, considering
the Rweighted

MAD . The same patterns were visible for the two inverse simulations. HDB-
SCAN showed the best results for SANTOS EXPRESS, whereas OPTICS displayed the
highest reduction for the inverse simulations. These results are expected since HDB-
CAN had the largest noise cluster for SANTOS EXPRESS and OPTICS for the inverse
simulations. The variability was again more reduced in the latitude direction then in
the longitude, although the differences were small.
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Table 4.2: Reduction of variability based on the MAD and weighted MAD.

Simulation Cluster method RMAD (%) Rweighted
MAD (%)

Longitude Latitude Longitude Latitude

Forward
STELLA
ORION

k-Means 0.180 0.424 0.089 0.298
Agglomerative 0.428 0.568 0.218 0.229

HDBSCAN 0.715 0.986 0.021 0.290
OPTICS 0.715 0.986 0.021 0.290

Forward
SANTOS
EXPRESS

k-Means 0.179 0.038 0.002 0.0003
Agglomerative 0.132 0.025 -0.003 -0.001

HDBSCAN -3.508 0.101 21.98 23.57
OPTICS -0.931 0.232 12.62 13.53

Inverse
Barrel 4

k-Means 3.823 0.387 1.008 0.102
Agglomerative 2.872 0.314 0.940 0.103

HDBSCAN 2.008 0.527 43.06 41.81
OPTICS -13.43 -1.009 79.58 81.52

Inverse
Barrel 9

k-Means 0.011 -0.059 -0.001 0.006
Agglomerative 0.0422 -0.072 -0.006 0.010

HDBSCAN 0.595 -0.603 27.94 28.08
OPTICS -0.638 -0.519 89.93 89.95
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5.1 Discussion

The answer to the research question, to what extent the data can be reduced through
clustering, depends on whether or not you want to include every trajectory of the data.
The general observation is that the inverse simulations showed the highest reduction in
variability. The density-based approaches showed significantly better results than the
distance-based methods. However, this is a direct result of their ability to categorize
trajectories as noise (Kanagala & Jaya Rama Krishnaiah, 2016). This is not favored for
every implementation. In the case of identifying the offending ship, excluding more
than 80% of the possible trajectories could lead to very different results and, in worst
case, wrong accusations. Therefore, if it is crucial to include all the trajectories, OPTICS
and HDBSCAN should not be used. In that case, the answer to the research question
is that the variability of the data in terms of standard deviation could not be reduced
and in terms of the MAD only with a maximum of 0.229 %. It can be questioned if this
number is worth the trouble of clustering the data. If it is not crucial to include every
trajectory or maybe even favored, OPTICS and HDBSCAN should be used. Then,
the data can be reduced significantly with the best results obtained with the OPTICS
algorithm.

In this research, the cluster performance is only expressed in terms of the silhou-
ette score. Since the score uses the distance between observations in the cluster, the
score always favors cluster approaches that minimizes the distance between points in
a cluster (Rousseeuw, 1987). This was also observed in the results; Purely based on
the silhouette score, the distance-based approaches always performed better than the
density-based methods. In order to measure the performance of a cluster method un-
biased, it is preferable to use several performance measures. For spatio-temporal data,
the performance metrics that can be used for unsupervised learning are all using dis-
tance values. Other performance metrics such as CHI (Calinski-Harabasz Index) or
DBI (Davies-Bouldin Index) are not applicable to spatio-temporal data (Wang & Xu,
2019; Petrovic, 2006). Therefore, a ground truth of the clusters should be implemented
to enable the use of measures such as the mean squared error or Adjusted Rand Index
(Santos & Embrechts, 2009; Rezaie & Saunier, 2021). Due to time limitations, this was
not done during this research. However, it is recommended for future studies to iden-
tify a certain ground truth of clusters. This can be done, for instance, by clustering the
trajectories based on the starting time of the trajectory for the forward simulations, or
the length of the trajectory for the inverse simulations (Rezaie & Saunier, 2021).

A second effect of the limited time frame of this research was that only four cluster-
ing mechanisms have been implemented. These were deliberately chosen, based on
literature research. However, there are more methods that could show interesting re-
sults. For instance, a third clustering technique, model-based, could show different
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results. Model-based clustering aims to cluster data based on their probability distri-
bution (Bouveyron & Brunet-Saumard, 2014). Although this method is mostly used
on one-dimensional data, studies are expanding the use of existing software to high-
dimensional data, making it an interesting option to include in future studies (Bouvey-
ron & Brunet-Saumard, 2014).

As a third limitation due to time shortage, the data reduction was only expressed in
two variability measures, standard deviation and MAD. Based on these two metrics, a
conclusion was drawn on whether or not clustering was effective for data reduction.
Implementing more measures, such as the interquartile range, could offer different
perspectives on the reduction of variability of the data.

There are three additional methods that should be considered in future research re-
garding the distance matrix. Firstly, the distance measure used does not scale the lon-
gitude and latitude according to the curvature of the Earth. Given that the simulations
cover a relatively small portion of the Earth’s surface and are situated far from the
poles, it is unlikely that this omission would significantly impact the results. The effect
of the Earth’s curvature is anisotropic, causing distortion primarily in the east-west di-
rection rather than the north-south direction. Therefore, it is important to implement
longitude scaling for more extensive simulations or for those conducted at different lat-
itudes. This would ensure accuracy in distance measurements, particularly for larger
geographic areas or locations closer to the poles. Next, the distance measure is estab-
lished by defining the Euclidean distance between coordinate pairs within a trajectory
(see Chapter 3). This method bases the distance between trajectories on the moment of
barrel release for the forward simulations. By subtracting the mean position of the tra-
jectories from the coordinates, trajectories following the same path will yield a smaller
distance measure, indicating greater similarity. This approach should be implemented
in future research, as it will likely result in different clusters, which could be useful
for further data reduction. Lastly, only the Euclidean distance metric was used in this
study. Incorporating other metrics, such as the Hausdorff or Fréchet distance, could
provide additional insights into cluster patterns and would be a valuable addition to
future analyses (Wai & Nwe, 2017).

If all these enhancements are fulfilled, it is unlikely that the answer to the research
question will be significantly different. Additional performance measures could lead
to a more reliable insight into whether the medoid can be used as a form of data re-
duction. Within the scope of this research, representing the data of the forward sim-
ulation of STELLA ORION as two medoids would probably not be useful for investi-
gating whether the eleven oil barrels originated from STELLA ORION. Even if another
clustering approach and more variability measures are implemented, the clusters are
only useful if they can help in identifying the vessel responsible for the pollution. The
number of clusters for the distance-based approaches can be specified and in this re-
search, they showed acceptable results for ten clusters, Appendix 7.3b. Subsequently,
the medoids of the ten clusters could be used as a form of data reduction. As stated
in Chapter 3, it was expected that if a method had a higher silhouette score, it would
reduce the variability more. This was proven for the distance-based approaches, but
not for the density-based models due to the bias in the silhouette score. The distance-
based methods with 10 clusters performed worse than the models discussed in Chap-
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ter 4. Hence, the reduction in variability is expected to be lower, even closer to zero.
Therefore, it is debatable whether data reduction through clustering will yield useful
results for this specific type of application.

Future research should incorporate AIS trajectories of vessels located further from the
shoreline and perform simulations for the inverse models using longer trajectories.
These modifications will result in larger and more chaotic flocks. Conversely, shorten-
ing the time span should also be explored, as it will produce smaller and less chaotic
flocks. The density-based approaches demonstrated poor performance for the inverse
simulations, and shortening the time span while maintaining a large group of inliers
could be a potential solution. Implementing various time spans could help identify the
optimal duration for simulations. For example, determining the time span that yields
the best clustering performance in inverse runs could guide a subsequent simulation.
In conclusion, varying the simulation settings will likely provide valuable insights into
where data reduction through clustering has the most potential.

5.2 Conclusion

The research concludes that the effectiveness of data reduction through clustering de-
pends on the specific requirements of the analysis. Density-based methods like OP-
TICS and HDBSCAN are highly effective in reducing data variability but may exclude
significant trajectories, potentially leading to incomplete or inaccurate results in critical
applications. Distance-based methods, although less effective in data reduction, ensure
that all data points are considered, making them more suitable for tasks requiring com-
prehensive analysis. The study highlights the need for further research to implement
multiple performance measures and explore additional clustering techniques to im-
prove the reliability and applicability of data reduction methods in maritime pollution
analysis.
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6. Formula list

The formula for the standard deviation σ:

σ =

√√√√ 1
N − 1

N

∑
i=1

(xi − µ)2 (6.1)

where:

• N is the number of data points,

• xi represents each data point,

• and µ is the mean of the data points.

The formula for the average standard deviation across all trajectories σ̄:

σ̄ =
1
T

T

∑
j=1

σj (6.2)

where:

• T is the total number of trajectories,

• σj is the standard deviation of the j-th trajectory, calculated with Formula 6.1.

The formula for the average standard deviation across clusters σ̄
weighted
clusters :

σ̄
weighted
clusters =

1
∑k∈U,k ̸=−1 |Ck| ∑

k∈U,k ̸=−1
∑

j∈Ck

σj (6.3)

where:

• U is the set of unique clusters,

• Ck represents the k-th cluster,

• |Ck| is the number of trajectories in cluster Ck,

• σj is the standard deviation of the j-th trajectory in cluster Ck, calculated with
formula 6.1,
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• ∑k∈U,k ̸=−1 |Ck| is the total number of trajectories across all clusters.

The formula for the weighted average standard deviation across clusters σ̄cluster:

σ̄weighted =
∑k∈U,k ̸=−1 (σ̄k · |Ck|)

Ntotal
(6.4)

where:

• U is the set of unique clusters,

• |Ck| is the number of points in cluster Ck,

• σ̄k is the mean standard deviation for cluster k, using formula 6.2,

• Ntotal is the total count of points across all clusters, defined as Ntotal = ∑k∈U,k ̸=−1 Nk.

The formula for the average absolute difference MAD:

MAD =
1
A

A

∑
i=1

|xi − xi−1| (6.5)

where:

• A is the total number of differences calculated,

• xi represents the i-th data point in a trajectory,

• xi−1 represents the (i − 1)-th data point in a trajectory,

• |xi − xi−1| is the absolute difference between consecutive data points.

The formula for the average absolute difference within clusters MADcluster:

MADcluster =
1
G

G

∑
k=1

∆̄k (6.6)

where:

• G is the number of clusters,

• MADk is the average absolute difference for the k-th cluster, calculated with for-
mula 6.5.

The formula for the weighted average absolute difference within clusters MADweighted
cluster :
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MADweighted
cluster =

∑G
k=1 (MADk · Tk)

Ttotal
(6.7)

where:

• G is the number of clusters,

• MADk is the average absolute difference for the k-th cluster, calculated with For-
mula 6.5,

• Tk is the number of trajectories in cluster k,

• Ttotal is the total number of trajectories across all clusters.

The formula for the reduction in variability based on the average standard deviation
(RV):

RV =
(

1 −
σavg

σ

)
∗ 100 (6.8)

where:

• σavg is the average standard deviation within clusters, calculated using formula
6.3,

• σ is the standard deviation before clustering, calculated using Formula 6.2.

The formula for the reduction in variability based on the weighted average standard
deviation (Rweighted

V ):

Rweighted
V =

(
1 −

σ
weighted
avg

σ

)
∗ 100 (6.9)

where:

• σ
weighted
avg is the weighted average standard deviation within clusters, calculated

using Formula 6.4,

• σ is the standard deviation before clustering, calculated using Formula 6.2.

The formula for the reduction in variability based on the average mean absolute dif-
ference (RMAD):

RMAD =

(
1 −

MADavg

MAD

)
∗ 100 (6.10)
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where:

• MADavg is the average mean absolute difference within clusters, calculated using
Formula 6.6,

• MAD is the mean absolute difference before clustering, calculated using Formula
6.5.

The formula for the reduction in variability based on the weighted mean absolute dif-
ference (Rweighted

MAD ):

Rweighted
MAD =

(
1 −

MADweighted
avg

MAD

)
∗ 100 (6.11)

where:

• MADweighted
avg is the weighted average mean absolute difference within clusters,

calculated using Formula 6.7,

• MAD is the mean absolute difference before clustering, calculated using Formula
6.5.
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7. Appendices

7.1 Appendix A - Data exploration

Table 7.1: Exploration of attributes from AIS data.

Attribute Number of unique values Number of NULL Data type
MMSI 1029 0 Integer
IMO 879 0 Integer

Vessel name 1019 0 Object
Vessel type 85 0 Object
Length (m) 643 0 Float

Flag 51 276 Object
Status 15 0 Integer

Speed (knots x10) 327 38 Float
Longitude 104631 0 Float
Latitude 53278 0 Float
Course 360 7649 Float

Heading 360 36432 Float
Timestamp (UTC) 126757 0 Object

7.2 Appendix B - Simulations

Table 7.2: Input parameters for the wind model (Breivik et al., 2011).

Parameter Value in cm/s
Downwind 0.011

Standard deviation downwind 0.031
Crosswind - Left -0.0062

Standard deviation crosswind - Left 0.046
Crosswind - Right 0.0086

Standard deviation crosswind - Right 0.041

Table 7.3: Statistics of simulated trajectories.

Simulation type σlongitude σlatitude MADlongitude MADlatitude
Forward STELLA ORION 0.065 0.051 0.002 0.001

Forward SANTOS EXPRESS 0.068 0.055 0.002 0.001
Inverse Barrel 4 0.126 0.032 0.002 0.001
Inverse Barrel 9 0.195 0.045 0.002 0.001
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Figure 7.1: AIS trajectories of ships STELLA ORION (MMSI: 246553000) and SANTOS EX-
PRESS (MMSI: 218854000), where the light color indicates the start of their trajectories and
the dark color the end. Barrels 4 and 9 were displayed as red dots.

7.3 Appendix C - Silhouette scores

(a) k-Means (b) Agglomerative

(c) HDBSCAN (d) OPTICS

Figure 7.2: The silhouette scores with different parameter settings for the four cluster
methods for STELLA ORION.
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(a) k-Means (b) Agglomerative

(c) OPTICS

Figure 7.3: The silhouette scores with different parameter settings for the four cluster
methods for SANTOS EXPRESS.

(a) k-Means (b) Agglomerative

(c) OPTICS

Figure 7.4: The silhouette scores with different parameter settings for the four cluster
methods for Barrel 4.
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(a) k-Means (b) Agglomerative

(c) OPTICS

Figure 7.5: The silhouette scores with different parameter settings for the four cluster
methods for Barrel 9.

Table 7.4: Overview of the highest silhouette scores.

Simulation Cluster method Silhouette score

Forward
STELLA
ORION

k-Means 0.612
Agglomerative 0.610

HDBSCAN 0.532
OPTICS 0.532

Forward
SANTOS
EXPRESS

k-Means 0.628
Agglomerative 0.628

HDBSCAN 0.318
OPTICS 0.437

Inverse
Barrel 4

k-Means 0.436
Agglomerative 0.428

HDBSCAN 0.09
OPTICS -0.353

Inverse
Barrel 9

k-Means 0.438
Agglomerative 0.421

HDBSCAN 0.052
OPTICS -0.226
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7.4 Appendix D - Cluster results

Table 7.5: Average standard deviation and MAD within clusters.

Simulation Cluster method σ̄cluster (%) MAD
Longitude Latitude Longitude Latitude

Forward
STELLA
ORION

k-Means 0.065 0.051 0.002 0.001
Agglomerative 0.065 0.051 0.002 0.001

HDBSCAN 0.065 0.051 0.002 0.001
OPTICS 0.065 0.051 0.002 0.001

Forward
SANTOS
EXPRESS

k-Means 0.068 0.055 0.002 0.001
Agglomerative 0.068 0.055 0.002 0.001

HDBSCAN 0.070 0.055 0.002 0.001
OPTICS 0.069 0.055 0.002 0.001

Inverse
Barrel 4

k-Means 0.126 0.032 0.002 0.001
Agglomerative 0.126 0.032 0.002 0.001

HDBSCAN 0.126 0.030 0.002 0.001
OPTICS 0.147 0.030 0.002 0.001

Inverse
Barrel 9

k-Means 0.195 0.045 0.002 0.001
Agglomerative 0.195 0.045 0.002 0.001

HDBSCAN 0.194 0.043 0.002 0.001
OPTICS 0.187 0.041 0.002 0.001

Figure 7.6: The clustering result of Barrel 4 using k-means. The medoid of each cluster is
visualized as a black line.
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Figure 7.7: The clustering result of Barrel 4 using agglomerative clustering. The medoid of
each cluster is visualized as a black line.

Figure 7.8: The clustering result of Barrel 4 using HDBSCAN. The medoid of each cluster
is visualized as a black line, with cluster 0 containing the noise.
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Figure 7.9: The clustering result of Barrel 4 using OPTICS. The medoid of each cluster is
visualized as a black line, with cluster 0 containing the noise.

Figure 7.10: The clustering result of Barrel 9 using k-means. The medoid of each cluster is
visualized as a black line.
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Figure 7.11: The clustering result of Barrel 9 using agglomerative clustering. The medoid
of each cluster is visualized as a black line.

Figure 7.12: The clustering result of Barrel 9 using HDBSCAN. The medoid of each cluster
is visualized as a black line, with cluster 0 containing the noise.
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Figure 7.13: The clustering result of Barrel 9 using OPTICS. The medoid of each cluster is
visualized as a black line, with cluster 0 containing the noise.
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