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Abstract

Individuals with neurological conditions, including brainstem stroke or progressive Amyotrophic
Lateral Sclerosis (ALS), often experience severe speech and motor impairment. In some cases,
this results in a complete loss of the ability to speak, as observed in locked-in syndrome (LIS).
To restore communication abilities for people with LIS, assistive tools such as brain-computer5

interfaces (BCIs), can provide a form of communication. By using signals directly from the brain,
these technologies can serve as a vital communication channel. Direct word decoding can provide
a more natural way of communication by recording brain activity during attempted speech. The
current study investigated speaker generalization using real-time Magnetic Resonance Imaging
(rtMRI) data capturing speech dynamics of the vocal tract. We trained an autoencoder model10

to generate compact representations of rtMRI videos containing individual words from multiple
speakers. Instead of focusing solely on data reconstruction, the compact representations were also
designed to encode phoneme information of the corresponding words. Additionally, we applied a
custom loss function to calculate the phonemic distance, adapted from the Levenshtein distance.
We compared two types of models: the speaker-invariant model, which was trained on data from15

all speakers, and the speaker-specific models, which were trained on data from each individual
speaker separately. The results of this study showed that the speaker-invariant model reduced
the total loss (reconstruction and phoneme loss) by a factor of approximately 10 compared to the
speaker-specific models, accurately reconstructing the data and effectively encoding phoneme in-
formation. Analysis of the compact representations by calculating the Euclidean distance between20

vectors and comparing these distances for each model revealed significant positive correlations.
This suggests similar processing of the word articulations. Another finding was the impact of data
quantity, with weaker correlations between speaker-specific and speaker-invariant models when
participants had less data available. Future research should investigate the relationship between
neural representations and the compact representations of generalized word articulations to better25

understand the connection between articulation patterns and neural activity.
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1 Introduction

1.1 Context

Communication is one of the most important characteristics of humans, allowing us to share
thoughts and express emotions. Humans engage in daily interactions through spoken or sign
language, gestures, and facial expressions. Difficulties with speaking can have a significant impact205

on one’s quality of life, especially for those who lose their ability to communicate effectively.
Patients with vocal fold paralysis, a condition that severely impairs speaking, frequently report
experiencing social isolation and frustration due to the limitations in communication (Francis et
al., 2018). Neurological conditions, such as Parkinson’s Disease (PD), have a high incidence of
speech disorders, with estimates indicating that up to 89% of individuals with PD are affected210

(Trail et al., 2005). Communication impairments in PD are caused by both motor and cognitive
dysfunction, as speech production requires the integration of motor and cognitive processes in real
time (Smith & Caplan, 2018).

A similar pattern is observed in Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative
disorder that primarily affects the motor system (Masrori & Van Damme, 2020). Speech produc-215

tion in ALS is often affected by two conditions: dysarthria (difficulty in articulating speech) and
dysphagia (difficulty in swallowing), as the muscles involved in swallowing, such as the tongue,
are also used for speech (Ruoppolo et al., 2013). These conditions can severely reduce a person’s
ability to speak, potentially leading to a complete inability to communicate (Ceslis et al., 2020).
Surveys such as that conducted by Felgoise et al. (2016) have shown that for individuals with220

ALS, impairments in verbal communication reduced the quality of life. Both ALS and brainstem
strokes can result in the loss of voluntary muscle control and even cause individuals to become
locked-in. In this condition, known as locked-in syndrome (LIS), individuals may retain only
minimal muscle control, which severely limits their ability to communicate independently (Sellers
et al., 2014). LIS is a neurological condition characterized by paralysis of all four limbs and torso,225

along with a complete loss of speech, while preserving consciousness (Lulé et al., 2009). There are
different types of LIS depending on the degree of immobility. In classical LIS, individuals often
retain control over vertical eye movements, which become crucial for communication. Alternative
communication methods involve eye blinks or movements to indicate yes-no responses and to select
letters or symbols on communication boards (Rousseau et al., 2015). These methods can be slow230

and require significant effort. In complete LIS, individuals are unable to communicate due to total
immobility (Halan et al., 2021) (Smith & Delargy, 2005).

Assistive brain-computer interface (BCI) technology can enable communication for people liv-
ing with paralysis (He et al., 2020). A BCI is a system designed to record signals from the brain,
decode the signals, and use them to operate a computer, without relying on muscle control. These235

brain signals can be captured in different ways. Two examples include techniques for capturing
signals from the scalp using electroencephalography (EEG) and from the cortical surface using
electrocorticography (ECoG) (Värbu et al., 2022) (Schalk & Leuthardt, 2011). A more specific
subtype, a speech brain-computer interface (BCI), produces speech output, including words, sen-
tences, or synthesized speech, using the recorded brain signals (Rabbani et al., 2019). The most240

studied BCI application is the BCI-speller, which frequently relies on EEG signal features (Rezeika
et al., 2018). A BCI-speller based on EEG data is noninvasive and improves autonomy, although
the letter-by-letter communication process is slow. A growing body of research focuses on develop-
ing BCIs by investigating the brain regions involved in speech production. Decoding entire words
from brain activity could offer a more efficient approach and enable more natural communication.245

Recent studies in BCI research integrated word decoding with artificial neural networks, effectively
demonstrating the decoding of attempted speech from neural activity in individuals with ALS and
with a brainstem stroke (Metzger et al., 2023) (Willett et al., 2023).
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1.2. PROBLEM DEFINITION CHAPTER 1. INTRODUCTION

1.2 Problem Definition

In recent years, the domain of BCI research has gained significant attention and has demonstrated250

promising results to improve human lives. Advancing our understanding of speech production
can benefit the development of new and advanced BCI applications. Speech production requires
fast and precise movements of the vocal tract articulators (lips, tongue, and jaw) in coordination
with the larynx (voice box) and the respiratory system (Conant et al., 2018). Approximately 100
individual muscles are involved in natural speech production (Simonyan & Horwitz, 2011), and255

the direct link between these movements and speech segments (e.g. words) or even acoustic signal
is highly complex. There are many techniques to record the articulatory movements of speech
production (Toutios et al., 2019). Over the past two decades, real-time Magnetic Resonance
Imaging (rtMRI) has become a significant tool for investigating speech production, effectively
capturing the movements within the vocal tract area during speech (Narayanan et al., 2014).260

Compared to other techniques such as x-ray and electromagnetic articulography (EMA), rtMRI
offers the advantages of being non-invasive and free from ionizing radiation, while still providing
comprehensive dynamic imaging of the midsagittal plane of the vocal tract.

Various studies have employed rtMRI to investigate various aspects of speech, including speech
synthesis (Toutios et al., 2016), articulatory-to-acoustic mapping (Yu et al., 2021), phoneme classi-265

fication (Van Leeuwen et al., 2019), and segmentation of the vocal tract and articulators (Ruthven
et al., 2021). A previous master’s thesis project at the Utrecht-BCI Lab, where the current thesis
is also being conducted, demonstrated the potential of using autoencoders, a specific type of
neural network, to compress rtMRI data of speech production (Stolwijk, 2022). Their focus was
on the reconstruction capacity and phoneme information captured by the learned representations270

of the autoencoder model. The subsequent clustering of these vectors revealed 20 distinct word
articulation patterns, demonstrating the model’s ability to differentiate between various word ar-
ticulations. However, this study was limited by its use of data from a single speaker, which restricts
the generalizability of its findings. Speaker-specific models are often used, as shown in the stud-
ies by Toutios et al. (2016) and Yu et al. (2021), due to the morphological differences in speech275

articulators among different speakers. However, a speaker-invariant model could potentially learn
shared representations across speakers. Generalizing articulatory information aims to benefit a
wider range of users by focusing on shared information that can be applied across different speak-
ers, regardless of individual speech characteristics. These generalized articulation patterns can
contribute to the development of BCIs that decode speech from brain activity in combination280

with deep learning. Generalized articulation patterns could potentially improve neural networks
used for word decoding from attempted speech brain signals.

1.3 Research Questions

Building upon the foundation set by Stolwijk (2022), the primary objective of this thesis is to ad-
vance our understanding of articulation patterns by incorporating data from multiple speakers. By285

applying advanced deep learning techniques, specifically autoencoders, to high-dimensional rtMRI
data, we aim to generate more insightful and dense representations that capture essential features
in a compressed format. Autoencoders encode the input data into a bottleneck, which serves as
the compressed representation of the data. This multi-speaker approach seeks to explore the vari-
ability and complexity introduced by different speakers, thereby investigating the generalization290

of word articulation patterns. The study addresses the following research questions:

Research Question 1 Do speaker-invariant models improve the reconstruction ability
and phoneme encoding of rtMRI speech data using autoencoders compared to speaker-
specific models?

Research Question 2 How do the bottleneck representations of word articulations295

differ between speaker-specific models and speaker-invariant models?
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CHAPTER 1. INTRODUCTION 1.4. THESIS OUTLINE

To address these questions, we will use the rtMRI videos from the publicly available USC-
TIMIT speech database (Narayanan et al., 2014). The videos consist of midsagittal frames of
the vocal tract from 10 American English speakers articulating phonetically balanced sentences.
We will apply the autoencoder architecture developed by Stolwijk (2022), which combines three-300

dimensional convolutions and recurrent neural networks, to reduce the dimensionality of the rtMRI
videos. Two types of autoencoder models will be designed: a speaker-invariant model and a
speaker-specific model. The speaker-invariant model will be trained on data from all speakers
collectively, while the speaker-specific models will be trained on data from each individual speaker
separately.305

This study serves as a preliminary effort to demonstrate the feasibility of using rtMRI and deep
learning to map articulation patterns, potentially enabling future research to link these patterns
to brain activity and contribute to advancements in BCI research. By exploring the variability and
complexity introduced by multiple speakers, this research aims to enhance the generalizability of
autoencoder models, paving the way for more effective speech production analysis and applications310

in BCI research.

1.4 Thesis Outline

The structure of this thesis is as follows: First, in Section 2, we describe insights from other
studies that this thesis builds upon. Then, in Section 3, we discuss the methodology, including
data description, preprocessing steps, model architecture, and experimental setup. In Section 4,315

the results are presented. Section 5 interprets the results, answers the research questions, compares
the current study to related work, discusses the limitations, and outlines future work. Finally,
Section 6, the Conclusion, summarizes the thesis findings.
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2 Related Work
In this section, we provide a review of relevant literature to support our research. This background320

knowledge includes studies on BCI technology, advanced techniques for recording speech produc-
tion, and analyzing rtMRI data with deep learning. Subsequently, we will explore the findings
from a previous project conducted at the same Utrecht-BCI lab, which this thesis builds upon.

2.1 Brain-computer Interface

Given that movements are decoded in the motor cortex, which plays a key role in coordinating325

voluntary muscles, much of BCI research is centered around this region. We will begin by discussing
the significance of BCI technology for individuals with Locked-In Syndrome (LIS), followed by an
exploration of several motor-based BCI studies and applications.

LIS is a rare neurological condition, mentioned before in Section 1.1, characterized by motor
paralysis, which can result in the inability to speak (Bruno et al., 2009). Limited communication330

sometimes is possible through eye movements, such as answering closed questions by blinking. The
use of BCI technology can further assist in communication. In a study by Vansteensel et al. (2016),
a method for communication in locked-in individuals with late-stage ALS was described, involving
the control of a computer typing program based on attempted hand movements. A recent study
conducted by Moses et al. (2021) integrated BCI technology with deep learning techniques to335

decode attempted speech from recorded cortical activity of the sensorimotor cortex in individual
with anarthria, the loss of speech. Direct word decoding offers a more natural an faster form of
communication. While the primary focus of communication restoration is on speech output (e.g.,
words), another important goal is to restore facial movements related to speaking. Metzger et al.
(2023) developed a facial-avatar animation for controlling facial gestures. Animating a facial avatar340

to accompany synthesized speech can lead to more natural communication. This was achieved by
decoding articulatory and orofacial representations from the speech-motor cortex.

2.2 Techniques for Capturing Speech

Various measurement techniques are available to capture the movements of (parts of) the vocal
tract during speech production. Ultrasound imaging utilizes sound waves to capture real time345

images of the whole tongue, spanning from the tip to the root (Wilson, 2014). This technique
is especially suited for recording the shapes and movements of the tongue during speech, making
it particularly well-suited for tongue shape analysis (Dawson et al., 2016). Another technique,
known as electromagnetic articulography (EMA), utilizes alternating electromagnetic fields to re-
cord the real-time movements of speech articulators, including the tongue, lips and jaw. Sensors350

are strategically placed on these articulators for precise data capture (Katz et al., 1999) (Rebernik
et al., 2021). Magnetic Resonance Imaging (MRI) produces detailed images of internal structures,
applying large magnets to create a strong magnetic field. Protons in the body align with this field,
and radio frequency pulses disturb their alignment. When the pulses cease, the returning signals
from aligned protons are detected and used to construct an image (Berger, 2002). Real-time Mag-355

netic Resonance Imaging (rtMRI) directly acquires moving image data in contrast to the term
dynamic MRI, which relates to the source, such as creating images from an actively articulating
subject rather than a static postural source. This distinction underscores the emphasis on acquis-
ition of dynamic movements in real time (Narayanan et al., 2004). In speech production research,
rtMRI offers dynamic insights from the complete midsagittal plane of a speaker’s upper airway,360

or other planes of interest, providing continuous utterances without the need for repetitions. The
midsagittal rtMRI allows for capturing the motion of the vocal tract during speech, encompassing
the velar and pharyngeal regions. The velar region is located near the soft part of the roof of the
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mouth, known as the soft palate, while the pharyngeal region is located in the pharynx, the cavity
behind the nose and mouth leading to the larynx. These areas are not captured by EMA (Toutios365

& Narayanan, 2016) (Kim et al., 2014).

2.3 Applying Deep Learning to rtMRI Data

A substantial body of literature explores speech production using deep learning, with studies
relying on midsagittal rtMRI data of the vocal tract area. This technique is particularly well-
suited for studying the dynamic aspects of speech, benefiting from its capacity for continuous370

image acquisition. The USC-TIMIT dataset is a popular and freely available multi-speaker rtMRI
speech database (Narayanan et al., 2014). A detailed description of this dataset is provided in
Section 3.1.

Deep learning has significantly reshaped various domains, for example, computer vision, lan-
guage understanding and speech recognition. Over the past decade, the predominant approach to375

training machine learning models has been the implementation of deep neural networks (Menghani,
2023). Deep learning employs multi-layered computational models with non-linear transforma-
tions to automatically acquire increasingly abstract data representations, facilitating the learning
of complex functions (LeCun et al., 2015). While there are numerous deep learning architectures,
most architectural designs can be adapted for a wide range of tasks, some architectures are op-380

timized to specific data types such as time series or images. These variations are characterized by
the types of layers, neural units, and connections they employ.

The study conducted by Kose and Saraclar (2021) explored multiple experiments using the
USC-TIMIT dataset, extracting features from the rtMRI videos and corresponding speech data.
Deep neural networks, consisting of convolutional and long short-term memory (LSTM) layers,385

were trained for both unimodal (audio-only or video-only) and multimodal (audio and video)
approaches. These experiments covered phone classification, phone recognition, and word dis-
crimination task. Notably, the findings revealed that employing compressed dimensional video
representations not only reduced computational complexity but also enhanced the outcomes of
the phone recognition task when compared to audio-only approaches. The lowest accuracy was390

found for the solely video input. Additionally, the study identified speaker variability as a factor
contributing to errors in the word discrimination task. Another notable finding from the phone
classification experiment was that most errors occurred with phones that have similar vocal tract
shapes.

Another study by van Leeuwen et al. (2019) also investigated speech classification, specifically395

focusing on vowels, consonants, and phonemes in American English. They trained a convolu-
tional neural network (CNN) to classify these speech components using rtMRI images of the vocal
tract. To enhance image feature extraction and address the limited speech data, the model was
pretrained on the CIFAR-10 dataset (Krizhevsky, Hinton et al., 2009), which consists of 60,000 im-
ages. Additionally, data augmentation techniques such as zoom, rotation, and shift were employed400

to further increase the dataset. Vowel classification achieved the highest accuracy of 70.7%, con-
sonant classification reached 61.7%, and phoneme classification was just above chance level with
an accuracy of 57%.

A great deal of previous research in speech production has focused on articulatory-to-acoustic
mapping. This technique is used to predict acoustic signals from speech movements, using data405

acquired through methods such as rtMRI or standard video. The study by Csapó (2020) demon-
strated the potential of using rtMRI from the USC-TIMIT speech database for this purpose. They
utilized data from four speakers and trained various deep neural networks: fully connected, convo-
lutional neural network (CNN), and RNN. Their findings showed that combining a convolutional
neural network (CNN) with LSTM units was more effective for processing rtMRI images than410

using a convolutional neural network (CNN) alone. Their methods included a speaker-specific
approach, training a separate model for each participant, using data consisting of full sentences.

Similar to Csapó (2020), the study by Yu et al. (2021) employed speaker-specific models to
account for the anatomical differences between speakers. They used deep neural networks, com-
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bining convolutional neural network (CNN), and RNN layers, to reconstruct speech signals from415

rtMRI images, training separate models for each speaker. The study evaluated the performance
using Mean Absolute Error, and found large differences between speakers. The output of the
networks consisted of spectral vectors, which were reconstructed into speech signals.

2.4 Speaker-independent Approach

While rtMRI studies focus on speaker-specific models due to the detailed anatomical different420

between individuals, speaker-independent approaches are crucial for applications like speech re-
cognition and text-to-speech synthesis, where generalizability is essential. Research focused on
improving these applications often favors speaker-independent approaches to ensure effective user
interaction.

Parrot et al. (2020) investigated the reconstruction of articulatory trajectories from acoustic425

signals, with a primary focus on achieving speaker independence. They found that the speaker-
independent condition, where one speaker is held out during training, resulted in lower reconstruc-
tion accuracy compared to the speaker-specific setting. This highlights the challenge of maintaining
high accuracy in speaker-independent models. The ABX phone discrimination task, which evalu-
ates a model’s ability to distinguish between different phonetic units, provided additional insights.430

This evaluation method showed that the speaker-independent model not only retained linguist-
ically relevant information but also improved the reconstruction of the articulatory information.
This improvement was not evident through reconstruction accuracy alone, highlighting the value
of the ABX phone discrimination measure for assessing model performance.

The process of voice conversion, where the voice of a speaker is transformed to sound like435

another speaker, is especially interesting for personalized text-to-speech systems. This is another
example where speaker-independence is of importance. Mohammadi and Kain (2014) demon-
strated this by training an autoencoder model on multiple speaker (11 participants) to create
a speaker-independent model for compressed representations of speech spectral features. This
method significantly improved the ability to convert voices across different speakers, highlighting440

the effectiveness of using a speaker-independent autoencoder model for voice conversion purposes.

2.5 Preceding Study Insights

As briefly mentioned in Section 1.2, the master’s thesis project by Stolwijk (2022) forms the
foundation for the current study, both conducted in collaboration with the Utrecht-BCI Lab. In
this section, we will describe the context of the previous project and highlight its important and445

relevant findings, in addition to what was already described in the previous section.

The aim of the study was to identify 20 words that had the most distinct articulation patterns.
These patterns were extracted from midsagittal rtMRI videos from the USC-TIMIT (Narayanan
et al., 2014) speech database. To effectively cluster the words, the study reduced the dimension-
ality of the data using two autoencoder architectures. The first architecture, Three-dimensional450

Convolutional Neural Network (3D-CNN), employed three-dimensional convolutions, while the
second, Convolutional Gated Recurrent Unit (ConvGRU), combined three-dimensional convolu-
tions with recurrent neural networks. After reducing each word to a representative vector, the
vectors are clustered into 20 groups. The representatives of these clusters are presented as the 20
most distinct words.455

Reviewing the autoencoder architectures, the main difference lies in the layers used: recurrent
layers work well with sequential data and do not require padding, while 3D-CNN requires a
fixed input size, necessitating padding due to the varying lengths of the data. Additionally,
these models were trained on data from a single participant. This approach was chosen due to
anatomical differences between participants, a factor highlighted in previous research that also460

employed speaker-specific methods (Csapó, 2020) (Yu et al., 2021).
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Furthermore, to incorporate linguistic information into the model, the corresponding phonemes
of each word were one-hot encoded. This one-hot encoding was provided to autoencoders. To
measure the differences between word pronunciations, the Levenshtein distance was adapted to
the Phonemic Levenshtein Distance (PLD), measuring the distance based on phonemes. The465

custom loss function included the reconstruction loss (MSE) and Phonemic Levenshtein Distance
(PLD). The latter minimized the phonemic distance between word articulations during training.
A more detailed explanation is described in Section 3.4.4.

In evaluating the performance of the autoencoder architectures, the ConvGRU model, which
combines convolutional and recurrent layers, demonstrated lower reconstruction loss compared470

to the 3D-CNN model. One possible explanation for this difference is that the 3D-CNN model
required padding due to the varying lengths of the data, and this padding comes with a cost.
Another experiment focused on cross-participant transferability by training the model on parti-
cipant F1 and testing it on other participants. Fine-tuning the model by adding data from the
unseen participant improved the reconstruction loss, with the lowest loss observed when adding475

500 data samples. Overall, the ConvGRU model demonstrated better reconstruction performance
and generalizability across participants.
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3 Methodology

As previously mentioned, this thesis builds on the work by Stolwijk (2022), which applied a con-
volutional recurrent autoencoder architecture to compress high-dimensional rtMRI data of word480

articulations. However, unlike the previous study that focused on data from a single participant,
we trained our model using data from ten speakers. This section discusses the methods used to
address the research questions, with a main focus on the performance differences between speaker-
specific models and a speaker-invariant model. The following subsections provide details of the
data, explain the preprocessing steps, describe the network architecture and settings, outline the485

experimental setup, and present the evaluation methods.

3.1 Data Description

The publicly available USC-TIMIT speech production database (Narayanan et al., 2014) from the
University of Southern California was used in this work. The dataset contains rtMRI recordings
from ten speakers (five female and five male) of American English, providing 1.5-T images of490

the midsagittal plane of the vocal tract. The images have a resolution of 68 × 68 pixels and a
frame rate of 23.18 frames per second. Figure 1 shows a single rtMRI frame of each participant,
highlighting the variability between speakers (Toutios & Narayanan, 2016). Simultaneous audio re-
cordings were also collected, featuring 460 sentences from the MOCHA-TIMIT database (Wrench,
2000). The MOCHA-TIMIT corpus features phonetically balanced sentences, as it was originally495

designed to record EMA data for training an automatic speech recognition system. Notably, these
sentences were written in British English, whereas the participants in the USC-TIMIT dataset
spoke American English. In Table 3.1, three sentences are illustrated with examples of British
English spellings. The dataset also includes transcription files that provide detailed information
about the start and end times when each sentence was spoken, as well as the individual words500

and phonemes within those sentences. In our experiments, we used the rtMRI video data without
audio from all ten participants.

Figure 1: Example frames from the rtMRI videos of the USC-TIMIT
database, including ten speakers: 5 male (top row) and 5 female

(bottom row). Figure from Toutios and Narayanan (2016).
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Example Sentences American English Spelling

411: Those musicians harmonize marvellously. marvelously
433: I honour my mum. honor
438: We apply auditory modelling to computer speech recognition. modeling

Table 3.1: Three sentences from the MOCHA-TIMIT corpus (Wrench,
2000), indicated by their order number. Words in bold are examples of

British English spellings, with their American English spellings
provided in the second column.

3.2 Data Preprocessing

The preprocessing pipeline included data segmentation, frame processing, and data filtering. These
steps were crucial for preparing the data to be suitable as input into a neural network. Another505

important step was adding phoneme encodings to the rtMRI videos to correspond to word artic-
ulation.

3.2.1 Data Segmentation

The original dataset consisted of 460 sentences per participant, with each video containing five
sentences. These videos were segmented into individual words based on transcription files. The510

segmentation was done by selecting the frames corresponding to the start and end times of each
word as indicated in the transcription files. Although this preprocessing step was performed by
a colleague, it is important to note that the data available for each participant varied. See Table
3.3 in Section 3.2.3 for the number of data points per participant. Participants F4 and M5 had
approximately 1,000 fewer data points due to missing frames in the videos before segmentation.515

Participant F4 had missing frames in 35 videos, resulting in 175 fewer sentences, while participant
M5 had missing frames in 24 videos, resulting in 120 fewer sentences. Since the length of these
sentences varies, the number of missing words also varies.

3.2.2 Frame Processing

To prepare the data for the model experiments, several processing steps were applied to the video520

frames. Although the videos were in black and white, the frames were stored with three RGB color
channels, which did not provide additional information. Therefore, we converted the frames from
RGB to grayscale, reducing the three color channels (red, green, and blue) to a single intensity
channel. To further reduce the model complexity, we applied pixel normalization by rescaling
the pixel values from the range 0-255 to 0-1. High numbers increase computational complexity, so525

normalization makes computation more efficient by allowing the neural network to process smaller,
more manageable values.

In Figure 1, it can be observed that the frames contain many black pixels outside the vocal
tract area. These pixels do not provide useful information regarding word articulation. Therefore,
each video frame was cropped from its original resolution of 68 × 68 pixels to smaller dimensions530

of 47 × 47 pixels. Following the methods described by Stolwijk (2022), a standard frame size
across participants was calculated. This process involved creating pixel-variance heat maps of the
data per participant. The border positions (top, bottom, left, and right) were then calculated to
include all pixels with above-average variance. The top and left border positions were used as
anchors for cropping, reducing the number of pixels per frame from 4624 to 2209 by excluding535

non-informative pixels. Figure 2 shows an example of frame cropping using a video frame from
participant F1.
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Figure 2: An example of frame cropping: Left the original frame (68 x
68 pixels). Right: the cropped frame (47 x 47 pixels), maintaining the

informative pixels for word articulation.

3.2.3 Data Filtering

The words spoken in the rtMRI videos varied in length, ranging from 1 to 15 characters. The
time required to pronounce these words depends not only on their length but also on the speech540

tempo of the participants. The number of frames in the videos corresponds to the duration of
the spoken words, with longer words or slower speech tempos resulting in more frames. Figure
3 shows the frame distribution of the videos available for participant F1. The frame distribution
for other participants was similar, with higher outliers for participants F3, F4, F5, and M4. The
highest frame count, 99 frames, was found in the data of participant F5. See Appendix A for545

the frame distribution histograms of the other participants. Also, considering the video rate of
23.18 frames/sec, videos with a low number of frames may not contain sufficient information to
represent the word articulation. In accordance with Stolwijk (2022), video data was selected
with a minimum of 5 frames. We considered frames above 35 to be incorrectly processed during
segmentation, given that the longest words consist of 15 characters.550

For each video, the phonemes of the corresponding word label were extracted. We used the
North American English CMU Pronouncing Dictionary (CMUDict) (Carnegie Mellon University,
1998), accessed via the Natural Language Tool-Kit (NLTK) library (Bird et al., 2009). There are
a total of 39 phonemes in the CMUDict corpus, as shown in Table 3.2. To store the phoneme
information, we applied a one-hot encoding representation of 15 by 39, representing the maximum555

number of phonemes and the number of phonemes in the CMUDict corpus, respectively. Because
the original words were spelled in British English, a small set of words was not recognized by the
CMUDict. Table 3.1 provides three spelling examples. To extract the phoneme information, we
first needed to convert these words to American English spelling.

Finally, as previously mentioned, we filtered the data to include only videos with a frame count560

between 5 and 35. Additionally, the words in these videos needed to be present in the CMUDict
corpus. Table 3.3 presents the number of videos after data filtering, with a total of 21,777 videos
including data from all participants.
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Figure 3: Histogram showing the distribution of frame counts for
participant F1. Bars highlighted in blue and positioned between the
red lines represent the number of videos with frame counts between 5

and 35.

Phoneme Example Translation Phoneme Example Translation

AA odd AA D L lee L IY
AE at AE T M me M IY
AH hut HH AH T N knee N IY
AO ought AO T NG ping P IH NG
AW cow K AW OW oat OW T
AY hide HH AY D OY toy T OY
B be B IY P pee P IY
CH cheese CH IY Z R read R IY D
D dee D IY S sea S IY
DH thee DH IY SH she SH IY
EH Ed EH D T tea T IY
ER hurt HH ER T TH theta TH EY T AH
EY ate EY T UH hood HH UH D
F fee F IY UW two T UW
G green G R IY N V vee V IY
HH he HH IY W we W IY
IH it IH T Y yield Y IY L D
IY eat IY T Z zee Z IY
JH gee JH IY ZH seizure S IY ZH ER
K key K IY

Table 3.2: Phoneme set, table adapted from the CMU Pronouncing
Dictionary (Carnegie Mellon University, 1998).
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Participant Number of videos

F1 2181
F2 2410
F3 2319
F4 1358
F5 2362
M1 2494
M2 2455
M3 2204
M4 2518
M5 1478

Total 21 777

Table 3.3: Number of rtMRI videos per participant in the dataset after
preprocessing: word labels recognized by the pronouncing dictionary

and with frame counts between 5 and 35.

3.3 Model Architecture

Following the approach by Stolwijk (2022), we employed the Convolutional Gated Recurrent Unit565

(ConvGRU) autoencoder architecture due to its low reconstruction loss and greater generalizab-
ility across participants compared to the completely convolutional architecture. Since we aim to
investigate word articulations in video data, the ConvGRU is well suited for this task. It combines
convolutional and recurrent layers, effectively leveraging their strengths for processing sequential
image data.570

3.3.1 Autoencoders

An autoencoder is a type of neural network used in unsupervised learning, designed to learn ef-
ficient data representations. Figure 4 shows a simple autoencoder architecture. The architecture
consists of two main parts: an encoder, which compresses input into a low-dimensional represent-
ation (or bottleneck), and the decoder, which reconstructs the original input from this bottleneck.575

Within the network’s internal structure, the hidden layer h encodes the bottleneck representation
using the encoder function, h = f(x), and the decoder reconstructs the input using the function,
r = g(h) (Goodfellow et al., 2016).

3.3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs), introduced by LeCun et al. (1998), are specialized neural580

networks for processing grid-like data structures such as images (Goodfellow et al., 2016). Unlike,
fully connected neural networks, CNNs retain the spatial information of the input data. Instead
of connecting every single neuron to the next layer, CNNs connect subsections of the input, known
as patches, to the next layer. This approach leverages the fact that pixels that are close to each
other are more likely to be similar than those farther apart. The main mathematical operation of585

CNNs, is the convolution, which involves element-wise multiplication of a specific filter (kernel),
that moves across the input image. This process generates a feature map that includes specific
features of the previous layer.

For image data, two-dimensional convolutions are appropriate because they handle the spa-
tial dimensions of width and height. However, video data contains a third dimension: temporal590

information across multiple frames. Three-dimensional convolutions extend two-dimensional con-
volutions by adding this extra temporal dimension to capture both spatial and temporal features
(Ji et al., 2013).
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Figure 4: Simplified autoencoder architecture with the following
components: the encoder f , the bottleneck h and the decoder g. The

input is represented by x, and the output (reconstruction) is
represented by r.

3.3.3 Recurrent Neural Network

In a neural network, the hidden layer transforms input data by computing a weighted sum of595

its inputs and subsequently applying an activation function, creating a new representation of the
input. In a recurrent neural network (RNN), the hidden layer forms a cycle, allowing the network
to retain memory of past inputs. This cyclic structure enables the hidden layer’s activation to
depend not only on the current input but also on its activation from the previous time step.
Memory retention is crucial for tasks involving sequential data (Jurafsky & Martin, 2024).600

RNNs are trained through backpropagation. However, they often encounter two challenges: the
vanishing gradient problem, where gradients become extremely small, and the exploding gradient
problem, where gradients become too large. These problems can make it challenging for the
network to capture long-term dependencies in sequential data (Bengio et al., 1994). A variant
of the RNN, known as the Gated Recurrent Unit (GRU) has been introduced to address these605

problems (Cho et al., 2014). It employs a gating mechanism that enables selective updates and
resets of the hidden state, providing improved control over long-term dependencies. Notably,
the GRU architecture, which is less complex than the Long Short-Term Memory (LSTM) RNN
variant, achieves computational efficiency while delivering robust performance in tasks requiring
memory retention.610

3.3.4 ConvGRU Architecture

The Convolutional Gated Recurrent Unit (ConvGRU) architecture was inspired by the convolu-
tional autoencoder proposed by Chong and Tay (2017). As illustrated in Figure 5, the encoder
consists of two three-dimensional convolutional layers and one recurrent layer, while the decoder
consists of one recurrent layer and two transposed convolutional layers. The input tensor has615

a size of 1 x (5 x 47 x 47), where 1 is the input channel, 5 is the number of frames, and 47 x
47 is the image height and width. In the encoder, each three-dimensional convolutional layer is
followed by a rectified linear unit (ReLU) activation function to introduce non-linearity. In the
first convolutional layer, the input tensor is transformed to an output tensor with dimensions 128
x (5 x 23 x 23). This transformation involves applying 128 filters, each with a kernel size 1 x620

3 x 3 and a stride of 1 x 2 x 2. In the second convolutional layer, this output tensor is further
transformed to dimensions 32 x (5 x 11 x 11). This transformation involves applying 32 filters,
using the same kernel size and stride as the previous layer.

The layers in blue represent the encoder, the rectangle in red indicates the bottleneck of
vector size 100, and the layers in purple illustrate the decoder. The recurrent layers, part of both625

the encoder and decoder (see green arrows), handles temporal dependencies and is composed of
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convolutional GRU cells. The hidden states of these GRU cells are important for temporal feature
learning.

Additionally, the phonemes sequence is illustrated in orange. Initially, this sequence has a
shape of 15 x 39 and is flattened to a vector of size 585. The hidden state of the GRU cell, are630

flattened from 32 x 11 x 11 to a vector of size 3872. These two flattened vectors are concatenated
to a vector of size 4,457 and passed through a linear layer, reducing its dimensionality from 4,457
to 100.

Subsequently, the 100-dimensional vector (the bottleneck) is passed through another linear
layer with a Tanh activation function, expanding it to a size of 3872. The output from this linear635

transformation, together with the output from the first ConvGRU layer (32 x (5 x 11 x 11)), is then
passed through a second ConvGRU layer. This is followed by the two three-dimensional transposed
convolutional layers with ReLU activation functions, producing the reconstructed output with the
same dimensions as the original input.

5640

Figure 5: The architecture of the ConvGRU autoencoder. Adapted
from Fig 5 in Stolwijk (2022). Blue blocks represent the encoder,
processing input data through a series of layers. The red rectangle

indicates the bottleneck. Purple blocks illustrate the decoder,
reconstructing data from the bottleneck representation. The phoneme

sequence is highlighted in orange.

3.4 Experimental Setup

In this section, we describe the experimental design, training details, phoneme information, and
evaluation metrics.

3.4.1 Experimental Design

To investigate speaker generalization using autoencoders, we employed two categories of models:645

speaker-specific and speaker-invariant. The speaker-specific models were trained and validated on
data from individual participants, while the speaker-invariant model was trained and validated on
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data from multiple participants. In total, we trained 10 speaker-specific models and one speaker-
invariant model. To compare the results, we evaluated the speaker-invariant model using the same
test set as the speaker-specific models, ensuring the test data was specific to each participant.650

3.4.2 Training Details

Each model was trained for a maximum of 200 epochs. Early stopping was applied if the validation
loss did not improve after 15 consecutive epochs. For training, the Adam optimizer (Kingma &
Ba, 2014) started with an initial learning rate of 0.0003. A dynamic learning rate decay technique
was applied using the ReduceLROnPlateau method (factor = 0.8 and patience = 10), based on655

the validation loss. Similar to the study by Stolwijk (2022), a weight decay of 10−8 was used to
reduce the risk of overfitting. After the pre-processing steps, the data was randomly split into a
ratio of 8:1:1, where 80% was training data, 10% was validation data, and 10% was test data. All
the models were implemented in PyTorch (Paszke et al., 2017), using a single NVIDIA GeForce
RTX 2080 Ti GPU for training.660

For all experiments, the mini-batch training method was employed with a batch size of 10.
This approach was chosen due to the variability in data size, as the data consists of different frame
lengths. Additionally, RNNs require the same input dimensions at each time step for proper
sequence processing. By using mini-batches, the model processes batches with the same number
of frames, ensuring consistent training. When a group of data points with the same frame count665

exceeds 10, multiple mini-batches are created. Each mini-batch contains up to 10 data points,
except for the last batch, which may contain fewer than 10 data points if the total number is not
a multiple of 10. This strategy ensures that all data is utilized effectively, without dropping any
smaller batches.

The validation loss was used to save the best-performing model. After each epoch, the val-670

idation loss was compared with the loss of the last saved best-performing model. The model’s
parameters were adjusted based on the training data. The validation set helped monitor and
select the best-performing model without directly updating the parameters. However, using the
validation set for model selection can introduce bias, as the model may become tuned to perform
well on the validation data rather than generalizing to new, unseen data. The selected model was675

then used to test performance on the test set and assess how well it generalized to new data. In
the results section, the evaluation metrics refer to the average batch performance on the test set.

3.4.3 Phoneme information

The objective of traditional autoencoders is to minimize the reconstruction error between the
original input and the reconstructed output. This forces the model to learn a compressed and680

meaningful representation of the input data. For the current study, we are specifically interested
in the representation learning of word articulations in rtMRI videos. To improve these repres-
entations, we incorporated a second data stream containing the phonemes of the words spoken in
the videos. Phonemes are the smallest units of sound that distinguish words. By combining this
linguistic information with the articulation patterns observed in the rtMRI videos, the model can685

learn more informative features. As mentioned in Section 3.2.3, for each data point, we extracted
the phonemes of the word label and encoded these phonemes using one-hot encoding.

3.4.4 Evaluation Metrics

To evaluate the performance of the models, we computed two metrics: the reconstruction loss and
the Phonemic Levenshtein Distance (PLD) loss, which incorporates the phoneme information.690

These metrics were combined into a single total loss value during training and validation. The
reconstruction loss, specifically the mean squared error (MSE) between the input videos and the
reconstructed videos, was defined as follows:
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MSE =
1

n

n∑
i=1

(yi − ŷi)
2

with yi representing the ground truth, ŷi representing the predicted output by the autoencoder,

and n being the number of data points in the batch. The loss was calculated across all elements695

in a batch, providing an average batch loss.
Following the methodology of Stolwijk (2022), we adopted a custom loss function inspired by

the Levenshtein distance metric (Levenshtein et al., 1966). This specific distance metric calculates
the difference between two string sequences based on the minimum number of operations needed to
convert one word to the other. There are three edit operations: insertion, deletion, or substitution,700

of a character. In Figure 6, we show an example of calculating the Levenshtein distance between
the words ‘brain’ and ‘rain’. There is one edit needed, namely the deletion of the character ‘b’.

Figure 6: Levenshtein Distance Example: The difference between
‘brain’ and ‘rain’ is one edit (one deletion).

The PLD applies this concept of Levenshtein distance to phonemes. The difference between
the phonemes of two words is calculated by counting the number of edit operations. Figure 7
shows an example with the words ‘pear’ and ‘pair’. Because these words consist of the same705

phonemes, the PLD is zero. We employed the custom loss function by first calculating the PLD
between all words in a batch. Then, the Euclidean distance was computed between the generated
bottleneck representations for each word. Finally, we calculated the MSE between these two
distance matrices. Combining the two loss functions, we end up with the following total loss
function:710

Loss = R+ wP

Here, R represents the reconstruction loss, and P is the PLD loss scaled by a weight w. We used
a weight of 0.006, consistent with the findings of Stolwijk (2022).

Figure 7: Phonemic Levenshtein Distance Example: The difference
between ‘pear’ and ‘pair’ is zero because the words consist of the same

phonemes.
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3.4.5 Model Performance Visualization

To evaluate and compare the performance of the speaker-specific and speaker-invariant models,
we conducted two main analyses by visualizing the reconstructed outputs and bottleneck repres-715

entations.

Reconstruction of Individual Data Points
We reconstructed individual data points from each participant in the test set and visualized
one frame from each video. This visualization consisted of the original frame, the reconstructed720

frame, and the difference between them. This analysis was done for both the speaker-specific
model and the speaker-invariant model to make the results more interpretable and to compare the
reconstructions between these models. An example of this visualization is shown in Figure 8.

The colorbar of Figure 8c is different from those in Figures 8a and 8b. In this plot, the values
were scaled to highlight the differences between the original frame and the reconstructed frame.725

Since the differences are small, the colorbar is scaled to the highest pixel value to clearly illustrate
the difference. This example visualization shows the speaker-invariant model after training for one
epoch.

(a) Original frame (b) Reconstructed frame (c) Difference

Figure 8: Example visualization of input reconstruction: Frames
originally from a video of participant F1. The MSE of the pixel values

between the original and reconstructed frame was 1.8× 10−3.

Similarity Matrices
Furthermore, we generated similarity matrices using the Euclidean distance between data points.730

The bottleneck representation, a compressed representation of a word articulation as a 100-
dimensional vector (1 x 100), allows for efficient distance computation between these vectors.
These distances were visualized in a heatmap, enabling a comparison between the speaker-specific
model and the speaker-invariant model based on their bottleneck vectors. This comparison was
performed using the test set, which contained approximately 200 data points per participant.735

Through pairwise comparison, around 19,900 unique comparisons were obtained per participant,
excluding the diagonal which compares the same data points. Further analysis included visu-
alizing repeated words and short words. Finally, the upper triangle of the Euclidean distance
matrices, excluding the diagonal, was flattened for each participant. These vectors were then cor-
related between the speaker-specific and speaker-invariant models using the Spearman rank-order740

correlation coefficient.
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4 Results
In this study, we trained speaker-specific and speaker-invariant models to reduce high-dimensional
rtMRI videos of word articulations to representative vectors that encode the phonemes of the
spoken words. First, we will discuss the model performance and illustrate the reconstruction ability745

with a sample frame from participant F1. Second, we will compare the bottleneck representations
of the different models with the data from participants F1 and M5.

4.1 Reconstruction and Phoneme Loss

The models were trained for different epochs, as we implemented early stopping. Consequently,
the training duration for the speaker-specific models varied, ranging from 30 minutes to 4 hours.750

The speaker-invariant model took around 12 hours to train. Table 4.1 shows the epoch at which
the validation loss was the lowest for each model. The speaker-invariant model was trained on all
data, so it has only one best epoch value.

Model F1 F2 F3 F4 F5 M1 M2 M3 M4 M5 Invariant

Best Epoch 93 124 86 130 114 194 197 194 191 134 88

Table 4.1: Best epoch for speaker-specific models (indicated with the
participant number), and speaker-invariant model.

As described in Section 3, we compared model performance by evaluating the models based on
the MSE loss and PLD loss. Figures 9 and 10 present the average MSE and PLD loss, respectively,755

on the test set per participant for each model: speaker-specific and speaker-invariant. From these
results, we can see that the performance of the speaker-invariant model shows lower loss values
for both MSE and PLD loss. Applying the non-parametric Wilcoxon signed-rank test, we found
a significant difference between the two model categories (speaker-specific and speaker-invariant)
when comparing the average test loss per participant for both MSE (p = 0.002, Wilcoxon statistic760

= 0.0) and PLD (p = 0.002, Wilcoxon statistic = 0.0). It is also apparent from Figures 9 and 10
that participants F4 and M5 have the highest loss values, which is likely because these subject
have less data available (see Table 3.3). The specific loss values plotted in Figures 9 and 10 are
provided in Appendix B.

4.1.1 Visualization of reconstruction performance765

To illustrate the difference in reconstruction ability between the speaker-specific and speaker-
invariant models, we present sample reconstruction plots in Figures 11 and 12, showing the re-
construction of a single frame from a video in the test set. The same data point was used, where
participant F1 spoke the word ‘Puree’. The original frames, which are the same in both figures,
are shown in Figures 11a and 12a. For this particular frame, the MSE was 0.00032 for the speaker-770

specific model and 0.000019 for the speaker-invariant model. The videos consisted of grayscale
pixels, with pixel intensities ranging from 0 to 1. To enhance the visibility of pixel differences, we
used a more distinguished colormap for plotting the frames. Additionally, because the differences
in pixel values are small, the colorbars in Figures 11c and 12c are scaled from 0 to the max-
imum difference value, which was found in the speaker-specific model plot, ensuring a consistent775

colorbar. From Figures 11b and 12b, we can observe that the reconstructed frames from both
models are very similar to the original frame. Figures 11c and 12c demonstrate the difference
between the original frame and the reconstructed frame, showing higher pixel differences for the
speaker-specific model.
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CHAPTER 4. RESULTS 4.1. RECONSTRUCTION AND PHONEME LOSS

Figure 9: Average MSE loss on the test set: speaker-specific results are
shown in blue, and speaker-invariant results are shown in orange.

Figure 10: Average PLD loss on the test set: speaker-specific results
are shown in blue, and speaker-invariant results are shown in orange.
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(a) Original frame (b) Reconstructed frame (c) Difference

Figure 11: Visualization of reconstruction performance of the
speaker-specific model on a single frame from participant F1. The

MSE of the pixel values between the original and reconstructed frame
was 3.2× 10−4.

(a) Original frame (b) Reconstructed frame (c) Difference

Figure 12: Visualization of reconstruction performance of the
speaker-invariant model on a single frame from participant F1. The
MSE of the pixel values between the original and reconstructed frame

was 1.9× 10−5.

4.2 Bottleneck Representations780

To gain better insight into the bottleneck representations from the autoencoder models, we gener-
ated 100-dimensional vectors representing word articulations for all rtMRI videos from the test set.
Although we generated these vectors for all participants, in this section, we highlight the results of
participants F1 and M5, demonstrating the impact of data availability, with participant M5 having
less data. We highlight these results because they are representative of the similar overall results785

across all participants. In addition, we compare all vectors by correlating the speaker-specific and
speaker-invariant distance vectors per participant, as described in Section 3.4.5. The similarity
matrices for other participants are included in Appendix C.

Figures 13 and 14 compare the similarity matrices of participants F1 and M5, respectively,
showing the speaker-specific model on the left and the speaker-invariant model on the right. The790

x and y axes represent the indices of the generated vectors. From these similarity matrices, it is
evident that for both participants, the vectors show a similar structure. What stands out in the
speaker-invariant similarity matrices is a wider range of distance values, with vectors either show-
ing larger distances (yellow) or smaller distances (dark blue) than the speaker-specific similarity
matrices. Since the test set per participant does not include the same data points, we cannot com-795

pare the similarity matrices between participants directly. Therefore, the similarity matrices can
only be compared between speaker-specific and speaker-invariant models for the same participant,
but not between different participants.
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(a) Speaker-Specific F1 (b) Speaker-Invariant F1

Figure 13: Similarity matrices of bottleneck representations from
participant F1: Each data point in the test set is compressed to a

100-dimensional vector. Distances between all vectors are calculated
using Euclidean distance.

(a) Speaker-Specific M5 (b) Speaker-Invariant M5

Figure 14: Similarity matrices of bottleneck representations from
participant M5: Each data point in the test set is compressed to a
100-dimensional vector. Distances between all vectors are calculated

using Euclidean distance.
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The correlation between the speaker-specific and speaker-invariant Euclidean distance vectors
was tested for each participant using the Spearman rank-order correlation coefficient, as the data800

was not normally distributed. Positive correlations were found for each participant. Figure 15
presents the correlation coefficients for each participant, ranging from 0.63 (participant F4) to
0.93 (participant M4). The corresponding p-values for each correlation were significant (p <
0.001), with p-values very close to 0.0 due to the large number of data points in the Euclidean
distance vectors (over 10,000 points). Interestingly, these correlations are related to the number805

of data points available. The lowest correlation was found for the Euclidean distance vectors of
participant F4, who had the fewest videos available. Conversely, the highest correlation was found
for participant M5, who had the most videos available, with 1,358 rtMRI videos for participant
F4 and 2,518 rtMRI videos for participant M5 (See Figure 3.3 in Section 3.2.3).

Figure 15: Correlations between speaker-specific and speaker-invariant
similarity matrices per participant. The correlation coefficients are

presented above each bar.

Furthermore, Figures 16 and 17 show specific bottleneck vectors for words that have multiple810

instances, meaning the same words were pronounced in different rtMRI videos. First, the same
trend as before can be observed, namely that the bottleneck vectors show smaller and larger
distances in the speaker-invariant similarity matrices (see Figures 16b and 17b). Specifically, the
bottleneck vectors representing the same words have a small Euclidean distance that is close to zero
(dark blue). A closer inspection of the words present in these figures shows that longer words, such815

as ‘animals’ (from participant F1) and ‘sculpture’ (from participant M5) have a large Euclidean
distance compared to the other words, which is not observed in the speaker-specific similarity
matrices for both participants. Another data point, ‘morning’ (see Figures 16a and 16b), can also
be considered a long word. Although this word does not show a large difference in Euclidean
distance between the two model categories, it does illustrate a smaller Euclidean distance for the820

same word instances. Additionally, what stands out in Figures 17a and 17b is that short words
(3 characters) have a smaller Euclidean distance in the speaker-invariant model compared to the
speaker-specific model. Figures 18 and 19 show the similarity matrices for bottleneck vectors
of short words consisting of three characters. Again, these similarity matrices show that short
words have a smaller Euclidean distance when trained with the speaker-invariant model. What825

is interesting about this comparison is that there is more variance in Euclidean distance between
vectors in the speaker-specific model (see Figures 18a and 19a). These results suggest that the
bottleneck vectors are less generalized based on word length in the speaker-specific model.
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(a) Speaker-Specific F1 (b) Speaker-Invariant F1

Figure 16: Similarity matrices of bottleneck representations
(zoomed-in) from participant F1: Euclidean distance between

bottleneck vectors representing the same word label.

(a) Speaker-Specific M5 (b) Speaker-Invariant M5

Figure 17: Similarity matrices of bottleneck representations
(zoomed-in) from participant M5: Euclidean distance between

bottleneck vectors representing the same word label.
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(a) Speaker-Specific F1 (b) Speaker-Invariant F1

Figure 18: Similarity matrices of bottleneck representations
(zoomed-in) from participant F1: Euclidean distance between

bottleneck vectors representing short words.

(a) Speaker-Specific M5 (b) Speaker-Invariant M5

Figure 19: Similarity matrices of bottleneck representations
(zoomed-in) from participant M5: Euclidean distance between

bottleneck vectors representing short words.
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5 Discussion
In speech research, rtMRI has proven to be a promising and effective method for recording speech830

production data. This technique provides dynamic information of articulation movements dur-
ing running speech production. However, data obtained from rtMRI can be complex and high-
dimensional, making it challenging to analyse. This complexity is known as the ‘curse of dimension-
ality’, because when the number of dimensions (or features) increases, the difficulty in analyzing
and interpreting the data also increases. To address this issue, we employed autoencoders to835

produce more compact feature vectors representing individual word articulations.
Another challenge in speech research is speaker specificity. Individuals differ in vocal tract

morphology, with variations in shape and size of the lips, tongue, jaw, nasal cavity, and vocal cords.
These anatomical differences affect how words are articulated. Due to this speaker variability,
previous studies employing deep learning for rtMRI data have trained neural networks using a840

speaker-specific approach, meaning a separate model for each speaker (Csapó, 2020) (Yu et al.,
2021) (Stolwijk, 2022). However, a speaker-invariant approach supports speaker generalization by
learning representations that capture features consistent across different speakers. Building on the
work by Stolwijk (2022), this project aimed to investigate speaker generalization by comparing
speaker-specific and speaker-invariant autoencoder models for reconstructing word articulations845

using rtMRI videos of the vocal tract.

5.1 Model Performance

The ConvGRU autoencoder architecture was able to effectively compress high-dimensional rtMRI
data. After preprocessing, the data was reduced from 68 x 68 pixels per frame to 47 x 47 pixels per
frame. The third dimension, representing the number of frames in a video, ranged from 5 to 35,850

resulting in at least 11,045 pixels (treating each pixel as a feature). This data was then compressed
into a bottleneck vector of 1 x 100. The average MSE loss on the test set demonstrated that
the autoencoder architecture effectively reconstructed the data for speaker-specific and speaker-
invariant models for all ten participants. This finding highlights the compatibility of convolutional
layers for handling image data and recurrent layers for processing sequential data.855

Another important finding was that the speaker-invariant model improved the reconstruction
performance and phoneme encoding for all ten participants. From the total loss values reported
in Appendix B, it is evident that the speaker-invariant model reduces the total loss by a factor
of approximately 10 compared to the speaker-specific models. The total loss values include both
MSE and PLD loss values. These significant improvements in performance can be attributed860

to two main factors. First, the speaker-invariant model is trained on a much larger dataset,
increasing from approximately 2,000 data points to 20,000 data points. Second, the inclusion of
data from different speakers introduces more variation, allowing the model to generalize better
across different individuals. Although the speaker-invariant model was tested on data specific to
individual participants, the increased data and variation improved its generalizability to unseen865

data.

5.2 Reconstruction Performance from Literature

The previous study conducted by Stolwijk (2022) for their master’s thesis, discussed in Section 2.5,
employed the ConvGRU autoencoder model with a speaker-specific approach using rtMRI data
from participant F1. In this study, one experiment focused on cross-participant transferability,870

meaning the model was trained on data from a specific participant (F1) and tested on data from
other participants (F1 to F5 and M1 to M5). Initial testing showed poor performance on the
reconstruction loss, with loss values five times higher compared to participant F1. To improve
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the reconstruction performance, the speaker-specific model, initially trained on data from F1, was
fine-tuned by adding data from the specific participant being tested. This fine-tuning improved875

the model’s reconstruction loss to be almost similar to that of participant F1 (loss: 10), with
loss values ranging from 8.78 (M1) to 22.23 (M5). Since the pixel values of the rtMRI videos
in these experiments were not normalized, direct comparison with the loss values is not possible.
Additionally, the test set of these experiments may have included other rtMRI videos, and thus,
other word labels.880

However, we can make relative comparisons between the previous and current studies. The
previous study showed that participant M5 had the highest reconstruction loss when testing the
speaker-specific model trained on data from F1. After fine-tuning by adding data from participant
M5, the loss decreased but was still the highest compared to other participants. The same pro-
cedure was applied to other participants, where the model was initially trained with data from885

participant F1 and then fine-tuned by adding data from the specific participant being tested.
In the current study, we trained speaker-specific models for all participants. Consistent with

the previous study (see Appendix B), the model performance of participant M5 showed the highest
reconstruction loss compared to the other participants. For the speaker-invariant model, which
combines data from all participants, it was still observed that the reconstruction loss for participant890

M5 was the highest among participants. However, the loss was substantially lower, decreasing from
3.7×10−4 for the speaker-specific model to 5.3×10−5 for the speaker-invariant model. As discussed
by Stolwijk (2022), this could be due to noise in the data of participant M5. Furthermore, there was
less data available for participant M5 compared to other participants, except for participant F4 (see
Table 3.3). Since participant F4 also had less data available, we observed that the reconstruction895

loss of participant F4 was the second highest for the speaker-specific model, but this was not the
case for the speaker-invariant model.

5.3 Bottleneck Representations

The bottleneck representations are a compressed form of word articulations in the rtMRI videos.
These 100-dimensional vectors provide insights into how different models process and encode900

speech data. We computed the Euclidean distance between each bottleneck vector in the test
set and plotted the results as similarity matrices. The most notable finding from the comparison
between the speaker-specific and speaker-invariant models was that the similarity matrices showed
similar structures, with the speaker-invariant model having both smaller and larger Euclidean
distance values. The correlation between the speaker-specific and speaker-invariant models for905

each participant revealed significant positive correlations, indicating a high degree of similarity in
the processing and representation of word articulations. These strong correlations suggest that
both models capture the essential features of the speech data.

A possible explanation for the difference in model performance is the difference in Euclidean
distances observed in the similarity matrices. Bottleneck vectors representing the same words910

but from different data points (repeated words) showed low to zero Euclidean distances in the
speaker-invariant model. Data points representing the repeated words and short words showed
greater similarity in the speaker-invariant model compared to the speaker-specific model. Since the
speaker-invariant model is trained on almost ten times more data, it can better learn to represent
similar words consistently. We focused on short words of three characters because the similarity915

matrices of the repeated words indicated that short words had smaller Euclidean distances than
longer words in the speaker-invariant model.

Another finding from the correlations between the similarity matrices of speaker-specific and
speaker-invariant models is the impact of data quantity. The strength of correlations varied with
the data quantity. Specifically, the correlations were weaker when less data were available, as920

observed for participants F4 and M5 in Figure 15. The bottleneck representations also include
the phonemes of the words spoken in the rtMRI videos. Participants F4 and M5 had the highest
PLD loss among all participants for the speaker-specific model (see Figure 10). When training
with much more data, the PLD loss significantly decreased to the second lowest and lowest loss
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values, respectively, for F4 and M5 (shown in Appendix B). This highlights the importance of925

data quantity.

5.4 Limitations

5.4.1 Data

The USC-TIMIT database originally consisted of rtMRI videos of sentences, which were then
segmented into individual words. A limitation of this method is that the words in these sentences930

are dependent on each other, introducing coarticulation effects. Consequently, the pronunciation
of a word is affected by the words spoken before and after it. Another detail of the segmentation
method is that the transcription files, which consist of the start and end times of when specific
words were spoken, are not always precise. These times were recorded with only two decimal places
and may be affected by the frame rate of 23.18 frames per second. This limited temporal resolution935

can cause overlap, especially with short words, leading to parts of a word’s articulation being
incorrectly assigned to the wrong video segment. Higher frame rates and more precise transcription
could improve the word segmentation. Another solution would be to record individual words to
prevent coarticulation.

Another limitation is the data quality. Specifically, the videos of participant M5 showed noise940

in the frames. Manually checking the videos would be very time-consuming, as there are approx-
imately 20,000 videos in total. An interesting and possible solution would be to apply denoising
autoencoders to improve the data quality. In addition to the noise in the video frames, there were
also transcription errors, as mentioned by Stolwijk (2022). These errors were difficult to manually
check both because of the size of the dataset and due to the low audio quality. This issue arose945

because the audio was acquired in a MRI scanner.

Two participants had less data available due to missing frames in the videos. This highlights
the impact of data quantity. For future research, it might be possible to apply data augmentation.
This involves creating new training data by transforming the existing data. Specific transformation
operations include shifting the video frames slightly in different directions (left, right, up, or950

down) and zooming in or out. These transformations help the model by exposing it to different
perspectives and scales of the same data, thereby improving its ability to generalize.

5.4.2 Model Training

Since this study builds on the foundation of a previous master’s thesis project by Stolwijk (2022),
we adopted a similar experimental setup, given that the same autoencoder architecture was used.955

Consequently, similar hyperparameters were employed for model training, including weight decay,
batch size, and the scaling weight for PLD loss.

However, because the current study employed a speaker-invariant approach and normalized
pixel values in the video data, we adjusted certain hyperparameters such as the number of epochs
and the learning rate. We also implemented a learning rate scheduler, with the initial learning960

rate determined through hyperparameter optimization on the validation loss. Additionally, we
employed early stopping to halt training when the validation loss did not decrease, ensuring
efficient training and preventing overfitting.

In addition to these adjustments, hyperparameters such as the PLD weight and batch size for
mini-batch training could still be optimized for the current experimental setup. The PLD weight965

is particularly important because it influences how much phoneme information the model encodes.
Optimizing this weight could improve the model’s ability to capture phonetic details. Similarly,
adjusting the batch size could enhance model performance, especially since the speaker-invariant
model trains on a much larger dataset than the speaker-specific models. Due to time constraints,
it was not possible to explore these optimizations in the current study. However, future research970

should consider optimizing these hyperparameters to further enhance model performance.
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5.5 Future Work

In future investigations, the speaker-invariant model could potentially be extended to other lan-
guages. Currently, the experimental setup uses phonemes from American English, so adjustments
would be necessary for other languages. This master’s thesis project was conducted in collabor-975

ation with the Utrecht-BCI Lab, making it particularly beneficial to use a Dutch dataset, given
that the BCI research is primarily aimed at Dutch speakers. The speaker-invariant model trained
on American English words could serve as a pre-trained model for a Dutch dataset, as both lan-
guages share similarities in phonemes. Specifically, both Dutch and (American) English include
a set of common phonemes, which means the model’s learned features for these phonemes can be980

beneficial for processing Dutch phonemes. However, Dutch has unique phonemes that the model
might not fully capture initially. Therefore, while the pre-trained model offers a strong foundation
and can reduce the time required for training, some fine-tuning with Dutch data may be necessary
to adjust for these language-specific differences.

An important detail is that although Dutch rtMRI data was available from the Utrecht-BCI985

Lab, it had not yet been preprocessed as thoroughly as the USC-TIMIT dataset. Due to time
constraints, we were unable to include the Dutch dataset in this project.

Another way to include more variability in word articulations is by including speech data
that expresses different emotions, as speech movements are dependent on the emotion conveyed.
The study by Pandey and Arif (2021) found that different regions of the vocal tract are affected990

by various emotions, such as neutral, happy, angry, and sad. By adding more variation in the
data, the model is exposed to a wider range of articulation patterns, which can improve feature
representation and model generalization.

Lastly, additional research is needed to better understand the relationship between articulation
patterns and neural representations. The obtained bottleneck vectors of word articulations could995

be compared with the corresponding neural representations, specifically neural activity from the
sensorimotor cortex representing movements of the vocal tract during speech production (Chartier
et al., 2018).
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6 Conclusion
This project was undertaken to design a speaker-invariant model to investigate speech production1000

of individual words. The high-dimensional rtMRI video data were compressed using a convolu-
tional and recurrent autoencoder architecture. The model was evaluated based on its reconstruc-
tion performance and phoneme encoding, compared to a speaker-specific model. To further ana-
lyze the obtained bottleneck vectors generated by the autoencoder, the Euclidean distance between
these vectors was calculated, resulting in more interpretable similarity matrices. This study has1005

identified that the speaker-invariant model leverages two key aspects: higher data quantity and
increased data variability. These aspects result in lower reconstruction loss and more accurate
phoneme encoding, as demonstrated by the significantly reduced PLD loss.

A limitation of this study is that the data were originally recorded as sentences rather than
individual words. This required preprocessing steps to split the videos into individual words, which1010

possibly introduced errors into the data. The model’s performance could be improved by using
more reliable transcription methods to ensure that the video frames accurately correspond to the
correct word labels, without interference from frames including other words.

The findings from this study are relevant to the development of speech-BCIs that focus on
word decoding from brain activity of attempted speech in combination with deep learning. A1015

natural progression of this work is to analyze neural representations of articulatory movements
and compare these representations to word articulations. Neural networks have been increasingly
utilized in recent studies to analyze brain data and advance the development of BCI for more
natural and efficient communication. Therefore, as data dimensionality increases in this field,
autoencoder architectures that rely on convolutional and recurrent layers can be effectively applied1020

to reduce dimensionality in both image and sequential data.
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Acronyms
3D-CNN Three-dimensional Convolutional Neural Network. 6, 7

ALS Amyotrophic Lateral Sclerosis. ii, 1, 4

BCI brain-computer interface. 1–4, 28, 291025

BCIs brain-computer interfaces. ii, 1, 2, 29

CMUDict CMU Pronouncing Dictionary. 10
CNN convolutional neural network. 5, 6
CNNs Convolutional neural networks. 12
ConvGRU Convolutional Gated Recurrent Unit. vi, 6, 7, 12–14, 251030

ECoG electrocorticography. 1
EEG electroencephalography. 1
EMA electromagnetic articulography. 2, 4, 5, 8

GRU Gated Recurrent Unit. 13, 14

LIS locked-in syndrome. ii, 1, 41035

LSTM long short-term memory. 5

MRI Magnetic Resonance Imaging. 4
MSE mean squared error. vi, viii, 7, 15–20, 25, 40

NLTK Natural Language Tool-Kit. 10

PD Parkinson’s Disease. 11040

PLD Phonemic Levenshtein Distance. vi, viii, 7, 15, 16, 18, 19, 25–27, 29, 40

ReLU rectified linear unit. 13, 14
RNN recurrent neural network. 5, 6, 13
RNNs recurrent neural networks. 13, 15
rtMRI real-time Magnetic Resonance Imaging. ii, vi–viii, 2–6, 8–10, 12, 15, 18, 20, 22, 25–29,1045

36–39
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A Frame distribution histograms

Figure 20: Frame distribution histogram of rtMRI data from
participant F2.

Figure 21: Frame distribution histogram of rtMRI data from
participant F3.
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Figure 22: Frame distribution histogram of rtMRI data from
participant F4.

Figure 23: Frame distribution histogram of rtMRI data from
participant F5.

Figure 24: Frame distribution histogram of rtMRI data from
participant M1.
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APPENDIX A. FRAME DISTRIBUTION HISTOGRAMS

Figure 25: Frame distribution histogram of rtMRI data from
participant M2.

Figure 26: Frame distribution histogram of rtMRI data from
participant M3.

Figure 27: Frame distribution histogram of rtMRI data from
participant M4.
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Figure 28: Frame distribution histogram of rtMRI data from
participant M5.
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B Reconstruction and Phoneme Loss

Speaker-specific Speaker-invariant

Participant Total MSE PLD Epoch Total MSE PLD Epoch

F1 0.0068 0.00030 0.0065 93 0.000662 0.000021 0.00064 -
F2 0.0071 0.00017 0.0070 124 0.000690 0.000032 0.00066 -
F3 0.0074 0.00018 0.0072 86 0.000660 0.000027 0.00063 -
F4 0.0092 0.00033 0.0089 130 0.000650 0.000026 0.00063 -
F5 0.0083 0.00016 0.0081 114 0.000690 0.000024 0.00067 -
M1 0.0050 0.000066 0.0049 194 0.000810 0.000019 0.00079 -
M2 0.0053 0.00014 0.0051 197 0.000680 0.000029 0.00066 -
M3 0.0062 0.000080 0.0061 194 0.000950 0.000025 0.00092 -
M4 0.0043 0.00012 0.0042 191 0.000830 0.000024 0.00080 -
M5 0.0110 0.00037 0.011 134 0.000670 0.000053 0.00062 -
All - - - - - - - 88

Table B.1: Speaker-Specific and Speaker-Invariant Results: Average
MSE and PLD loss values tested specific to a participant. The epochs
listed indicate when the validation loss reached its lowest point; this

model was used to test the performance on unseen data.
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C Bottleneck Representations1210

(a) Speaker-Specific F2 (b) Speaker-Invariant F2

Figure 29: Similarity matrices of bottleneck representations
(zoomed-in) from participant F2: Euclidean distance between

bottleneck vectors representing the same word label.

(a) Speaker-Specific F2 (b) Speaker-Invariant F2

Figure 30: Similarity matrices of bottleneck representations
(zoomed-in) from participant F2: Euclidean distance between

bottleneck vectors representing short words.
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(a) Speaker-Specific F3 (b) Speaker-Invariant F3

Figure 31: Similarity matrices of bottleneck representations
(zoomed-in) from participant F3: Euclidean distance between

bottleneck vectors representing the same word label.

(a) Speaker-Specific F3 (b) Speaker-Invariant F3

Figure 32: Similarity matrices of bottleneck representations
(zoomed-in) from participant F3: Euclidean distance between

bottleneck vectors representing short words.

(a) Speaker-Specific F4 (b) Speaker-Invariant F4

Figure 33: Similarity matrices of bottleneck representations
(zoomed-in) from participant F4: Euclidean distance between

bottleneck vectors representing the same word label.

42 UU Master’s Thesis



APPENDIX C. BOTTLENECK REPRESENTATIONS

(a) Speaker-Specific F4 (b) Speaker-Invariant F4

Figure 34: Similarity matrices of bottleneck representations
(zoomed-in) from participant F4: Euclidean distance between

bottleneck vectors representing short words.

(a) Speaker-Specific F5 (b) Speaker-Invariant F5

Figure 35: Similarity matrices of bottleneck representations
(zoomed-in) from participant F5: Euclidean distance between

bottleneck vectors representing the same word label.

(a) Speaker-Specific F5 (b) Speaker-Invariant F5

Figure 36: Similarity matrices of bottleneck representations
(zoomed-in) from participant F5: Euclidean distance between

bottleneck vectors representing short words.
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(a) Speaker-Specific M1 (b) Speaker-Invariant M1

Figure 37: Similarity matrices of bottleneck representations
(zoomed-in) from participant M1: Euclidean distance between

bottleneck vectors representing the same word label.

(a) Speaker-Specific M1 (b) Speaker-Invariant M1

Figure 38: Similarity matrices of bottleneck representations
(zoomed-in) from participant M1: Euclidean distance between

bottleneck vectors representing short words.

(a) Speaker-Specific M2 (b) Speaker-Invariant M2

Figure 39: Similarity matrices of bottleneck representations
(zoomed-in) from participant M2: Euclidean distance between

bottleneck vectors representing the same word label.
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(a) Speaker-Specific M2 (b) Speaker-Invariant M2

Figure 40: Similarity matrices of bottleneck representations
(zoomed-in) from participant M2: Euclidean distance between

bottleneck vectors representing short words.

(a) Speaker-Specific M3 (b) Speaker-Invariant M3

Figure 41: Similarity matrices of bottleneck representations
(zoomed-in) from participant M3: Euclidean distance between

bottleneck vectors representing the same word label.

(a) Speaker-Specific M3 (b) Speaker-Invariant M3

Figure 42: Similarity matrices of bottleneck representations
(zoomed-in) from participant M3: Euclidean distance between

bottleneck vectors representing short words.
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(a) Speaker-Specific M4 (b) Speaker-Invariant M4

Figure 43: Similarity matrices of bottleneck representations
(zoomed-in) from participant M4: Euclidean distance between

bottleneck vectors representing the same word label.

(a) Speaker-Specific M4 (b) Speaker-Invariant M4

Figure 44: Similarity matrices of bottleneck representations
(zoomed-in) from participant M4: Euclidean distance between

bottleneck vectors representing short words.
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