
Automated Testing Agent Movement through 3D Environments with
Omnidirectional Movement

Stefan Hoekzema

Master Thesis

Supervisors: Dr. S.W.B. (Wishnu) Prasetya
Dr. J. (Julian) Frommel

July 2024

ABSTRACT
Auto-navigation and exploration are crucial for performing auto-
mated tests. Existing automated testing tools can do this well in 2D
games, but there is no tool yet for 3D games with omnidirectional
movement. We created a new automated testing framework, built
on top of the existing iv4XR framework, that uses an Octree to
store the game world. This Octree data-structure can be used for
pathfinding and can be dynamically updated based on observations.
We show the method works by performing automated tests for
the game Space Engineers and compare the speed and memory
performances with a baseline voxel grid and 3D nav-grid. We con-
clude the Octree to be superior in both overall speed and memory
performance in most use cases.

Contents

Abstract 1
Contents 1
1 Introduction 1
2 Background 2
2.1 Automated Game Testing 2
2.2 3D Path Planning & Exploration 2
2.3 Space Engineers and iv4XR 3
3 Methodology 5
3.1 Abstraction 5
3.2 Pathfinding 5
3.3 Exploration 6
4 Preliminary 2D Implementation 6
4.1 Neighbours 8
4.2 Updating the Quadtree 8
4.3 Conclusion 9
5 Implementation 9
5.1 Octree 9
5.2 Pathfinding 10
5.3 Exploration 12
5.4 Agent Movement 13
5.5 Padding 13
5.6 Updating the Octree 15
5.7 Testing 16
5.8 Voxel Grid 17
5.9 3D NavGrid 19
6 Results 19
6.1 Tests 19
6.2 Metrics 20
6.3 System Specifications 21
6.4 Results 21
6.5 Conclusion 24
7 Discussion and Conclusions 25
7.1 Conclusion 25
7.2 Discussion 25
7.3 Future Work 26
References 27

1 INTRODUCTION
Modern games have complex user interfaces and game interactions,
with often a continuous 2D or 3D virtual world. This makes it hard
to test them. Automated testing tools for games are a bit behind
compared to automation in other fields. Most games are tested with
the use of ‘play-testing’ [30, 31], where human players are asked
to play the game and run through a bunch of test scenarios to find
and report issues. This manual testing process takes a lot of time
and costs a lot of money. Automated play testing is a way to replace
human play-testers by letting an agent take control of the game
and simulating human play-testing for testing purposes. Although
this cannot replace the need for human play-testing in regards to
evaluating user experience, it can replace puzzle solvability and
reachability tests, as well as reduce the need for human play-testers
for finding bugs.

To perform automated tests, auto-navigation and exploration are
crucial. Some games have their own build in auto navigation system.
However, this can not always be used for testing purposes. Which
is where automated testing tools come in. Automated testing tools
provide developers a way to write tests for their games. More than
unit tests, it allows the testing of player interactions and movement.

These tools work well for 2D games as well as 3D games that
take place on the ground, which can be seen as just 2D with added
elevation. Some games, however, take place in full 3D with omnidi-
rectional movement, like with a jetpack, drone or in space. From
what we found, these automated testing tools do not yet provide a
way to efficiently navigate such 3D environments.

The objective of the thesis is to design and create an automated
testing tool capable of navigating in a 3D environment with omni-
directional movement. The tool aims to perform more efficiently
than straightforward extensions of 2D testing approaches into 3D.
The performance of the developed tool will be evaluated and com-
pared against two baselines to demonstrate its effectiveness and
superiority.

To achieve this objective, we propose a 3D space navigation
method using an Octree data-structure that can be expanded and
updated based on observations. We expand the iv4XR [32] frame-
work with this navigation method and use it to perform automated
tests.

We develop an automated testing framework for such 3D games
and show that it works by implementing it for the game Space Engi-
neers [15]. We build this framework on top of the already existing
automated testing framework iv4XR, which has an implementation
for Space Engineers (SE) that can already handle testing SE in 2D.

The rest of the thesis is structured as follows: First, in Section
2, we give an overview of important background information and
literature. In addition to that, we will introduce some related work
about automated testing, pathfinding, and exploration. In Section
3, we explain the underlying logic of our method, explaining the
Octree data structure, how we adapted it to work with exploration
in mind and how the agent can do pathfinding with it. In Section
4, we go over our preliminary 2D Quadtree demo implementation.
We used this demo to test the method in a simpler use case be-
fore implementing it into the more complicated automated testing
framework (iv4XR) on a complicated continuous 3D game (Space

Engineers). Section 5 goes over how we implemented both the
data-structure, updating the data-structure, pathfinding and explo-
ration. We will also go over some test methods we made that can be
used for automated testing. Then, in Section 6, we explain how we
test the performance of our method, compare it with two baseline
methods and show the results. We also explain the possibilities the
method provide for testing and show it working for the game Space
Engineers. Finally, we draw our conclusions from the results and
discuss the limitations and future work in Section 7.

2 BACKGROUND
2.1 Automated Game Testing
Software quality testing is increasingly more important to all busi-
nesses. The gaming industry is no exception. Testing individual
functions is easily done using Unit Tests, howevermore complicated
scenarios are still done by use of ‘play-testing’ [30, 31]. Automated
testing techniques, like Model-based Testing (MBT) [6, 40, 41],
Search-based Testing (SBT) [10, 24] and Symbolic testing [1, 36],
help with this. They are, however, not directly applicable to com-
puter games, because of their fine-grained level of interactivity [34].
Because of this, a level of abstraction has to be applied.

MAuto [39] is an automated testing tool that makes use of the
record & replay technique. It is a testing tool for games on mobile
(android) devices.MAuto uses image recognition to record test cases,
which can then be automatically replayed for testing purposes. This
makes it so that a single recorded test can then be used repeatedly
during development to validate if the tested part still works. These
tests, however, cease to work if the layout of buttons on screen has
been changed, because the recorded actions then do not line up
anymore. Simulating a press on the top-left corner of the screen to
press the back button does not work anymore if the back button
has been moved to the top-right. So although record & replay is
powerful and easy to implement, it is inflexible.

GameDriver1 is another automated testing tool, build for ex-
tended reality systems and games. Just like MAuto, it also works
with record & replay testing and has the same drawbacks. It can
be integrated to Unreal Engine and Unity, and can also be used for
automated testing of virtual reality games.

Unity also has their own testing framework2. This framework
allows users to script their tests, but is mostly for unit testing or
simply automatically testing if the game runs or not. It cannot
replace human play-testing.

Icarus [29] is an advanced automation testing tool for point and
click adventure games, optimized for the Visionaire Studio game
engine3. It represents the game state as a list of actions and keeps
track of reward values for these actions. Using these reward values,
it learns how to solve puzzles. This works great for coarse grained
games, with few possible actions and states, but for fine-grained
precision games, like continuous 2D or 3D games, not so much.

The Intelligent Verification/Validation of Extended Reality Sys-
tems (iv4XR) project4 is an open source agent-based automated

1https://www.gamedriver.io/
2https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/index.
html
3https://www.visionaire-studio.net/
4https://github.com/iv4XR-project

testing framework for extended reality systems, which includes
computer games [32, 33]. It uses Ablib5, also known as iv4XR-core,
which is a Java library providing intelligent agents for automated
testing. One of the games it has a plugin for, to perform automated
tests, is Space Engineers (SE)6 [15]. With the plugin, iv4XR can run
synchronously with SE, retrieving world state observations from
the game and sending instructions to the game. Space Engineers
is a sandbox game about engineering, construction, exploration,
and survival in space and on planets. In SE, the player can switch
between flying mode and walking mode. Walking can be done
when there is gravity or when using the magnetic boots in zero-
gravity. Flying with the jetpack works the same with or without
gravity and allows the player to move freely in all directions. Iv4XR
works with Belief Desire Intent (BDI) agents [13]. For navigation,
the game world is divided into a navigation mesh [16], which is
converted into a nav-graph. On this graph, a graph-based path
finding algorithm, like Dijkstra [7], can be used. The path planning
algorithm implemented in Aplib is A* [12]. The iv4XR SE plugin7
has an implementation for 2D navigation on the ground, but not
for 3D navigating in space.

2.2 3D Path Planning & Exploration
The problem of finding optimal paths in 3D space is computationally
more complex than in a 2D plane. Most path planning algorithms,
such as Dijkstra’s algorithm [7], A* [12] and D* [38] focus on opti-
mizing the path distance, but seldom consider data effectiveness in
high abstraction, creating a bottleneck on algorithmic complexity
when applied to large 3D space [43]. In addition, most path planning
algorithms used for 3D games are just 2D path planning algorithms,
but with added elevation. These work fine for most use cases, but
not for all of them, such as space simulations with omnidirectional
movement. Using an efficient spatial partitioning data-structure
helps reduce this complexity from continuous to discrete space.

AQuadtree is a hierarchical data structure for 2D spaces. It makes
use of recursive decomposition of space [35]. Adding hierarchy
makes searching large 2D spaces faster because it allows it to skip a
large number of nodes when it already determined that the parent
did not contain whatever it is searching for. It also reduces memory
usage because many adjacent same-labeled nodes can be combined
into one node.

Octrees are the 3D version of Quadtrees [18]. Octrees are a way
to add hierarchy to 3D voxel spaces by joining the 8 voxels in a
2 × 2 × 2 grid together into a single node and recursively joining 8
of those together again until all voxels are part of the Octree. Each
Octree node then has a link to their parent-node, to their children
nodes and a label to denote whether they are empty, filled, or mixed.
Just like Quadtrees can be used for hierarchical path planning for 2D
quad grids, Octrees allow hierarchical path planning for continuous
3D voxel grids.

One way to apply Octrees for 3D path planning, is with Sparse
Voxel Octrees (SVO) [3]. Different from a typical Octree data struc-
ture, is that in an SVO, the data is stored in Morton Code order [26]
in memory. The Morton code order flattens the entire 3D Octree

5https://github.com/iv4XR-project/aplib
6https://www.spaceengineersgame.com/
7https://github.com/iv4XR-project/iv4XR-se-plugin

2

https://www.gamedriver.io/
https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.test-framework@1.1/manual/index.html

into a linear, one-dimensional array. Instead of having all Octree
nodes have 8 children, SVO combines 64 voxels in a 4x4x4 grid to-
gether into a single leaf-node. The labels of all 64 leaf-node voxels
are stored as a 64-bit integer, where every bit represent if the corre-
sponding voxel is filled or not. Knowing the label of the leaf-node,
then, is as simple as checking for the 64-bit integer value. If this
value is 0, then all voxels are empty, so the leaf-node is empty. If
this value is 0×FFFFFFFFFFFFFFFF or -1, then all voxels are filled.
Any other value means the leaf-node is mixed. Using pointers to
link to the voxels makes memory usage vary between 32-bit and 64-
bit operating systems. To control memory usage, a subnode index
(which ranges from 0 to 63) is used instead.

Octomap [42] is a technique that also make use of Octrees. How-
ever, as compared to SVO for pathfinding, Octomap is designed
with exploration in mind. It is used for automated robot exploration
in 3D environments by detecting the world through a depth camera,
which updates its world-view with more data from different view-
ing positions. It is however mostly used for mapping 3D worlds
from exploration data.

3D pathfinding techniques are also developed and used for under-
water scenarios. Mangeruga et al. [23] developed a 3D pathfinding
algorithm for underwater navigation for divers. The algorithm first
analyses a 3D underwater model and turns it into a voxel grid.
Given a number of Points Of Interest (POI), it then calculated the
best paths between them, using an A* variation, after which it de-
termines the best path to visit as many of them as possible, using
DFS. Heuristics are used to take oxygen usage, air decompression
cost and distance into account. Kulkarni and Lermusiaux [21] made
a 3D path planning algorithm for in the ocean, that takes the ocean
currents into account in optimizing long distances to travel. Fair-
field et al. [9] developed a Simultaneous Localization And Mapping
(SLAM) method to explore underwater caves and tunnels for an
autonomous hovering underwater vehicle. It uses sonar sensors to
detect obstacles and maps them to a 3D voxel grid. Then it com-
bines nodes with the same label into bigger nodes, making it a more
memory efficient Octree. Where SVO and octomap used Octrees for
pathfinding alone, Fairfield et al. additionally used it for exploration.
To update the Octree during exploration, instead of replacing the
entire Octree, they only remake the branches that were updated
and copy the references to the other nodes.

In the field of robotics, 3D pathfinding is done for planning paths
through the air with the robot’s constraints in mind. Tuovenen et
al. [37] made a way for exploring 3D indoor environments with
a payload constrained autonomous micro-aerial vehicle (MAV).
Dornhege andKleiner [8]made an algorithm for autonomous rescue
robots, with as goal to explore a 3D environment to rescue buried
victims. It uses sensors to detect the world and structures it voxels
into a hierarchical octomap. It extends the well known 2D frontier-
based exploration method towards 3D environments by introducing
the concept of voids—unexplored volumes in 3D that are occluded
or enclosed by obstacles.

All in all, there is quite a lot of research done in 3D path planning,
with many using Octrees in some way. However, these methods
would not work for automated testing with unknown worlds. Ex-
ploration is a big part of automated testing, and most path planning
implementations assume the world is already known. And the ones
that focus on exploring an unknown world, are from a different

research field, like robotics. “In robotics, the emphasis is often on the
motion of a complicated robotic system in a relatively simple environ-
ment. In games, the opposite is true. From a path planning perspective,
the entity can often be modelled as a simple vertical cylinder, while
the environment can be very complicated with tens of thousands of
obstacles” [27]. There is a distinct lack of 3D pathfinding meth-
ods for games and the ones that do exists, do not take exploration
into consideration and thus cannot directly be used for automated
testing purposes.

2.3 Space Engineers and iv4XR
Before we go into our methodology, first we will explain in more
detail how the original 2D iv4XR project works. The project, like
stated before, works with the Belief Desire Intent (BDI) agency
and represents the world as a navigation graph (NavGrid). The
implementation of the tests using BDI is done by use of Goals
and Tactics. The Goals represent the desires, the Tactics represent
the intent and the agent state represents the belief. Using Tactics,
you can create Goals and using Goals, you can create tests for the
automated testing agent. Tests can simply be done by loading in
a game world and creating a test agent, then giving the agent a
GoalStructure to complete and finally activate the update loop.

2.3.1 Goals and Tactics.
When you run a test, you first create an agent and give it a Goal-
Structure. GoalStructures can be combined using combinators like
SEQ, FIRSTof, ANYof. A primitive GoalStructure is composed of a
Goal to complete, for example getting in front of a button, and a Tac-
tic on how to work towards completing said Goal. GoalStructures
can be given a budget, denoting the maximum amount of time it is
allowed to spent on trying to complete it. If no budget is specified,
it is set to infinity. Just like GoalStructures can be combined, so can
Tactics. A primitive Tactic consists of an Action. An Action can be
seen as a pair of guard and effect. The guard is a predicate over the
agent’s state, and the effect part is a program that reads the agent’s
state and the Action’s own state to produce a proposal [2].

As an example. If the goal is to get close to a target location, you
create a GoalStructure that is solved if the current agent position
is close to the target position. It will try to solve the goal using
the navigateTo() Tactic. The guard of navigateTo() is finding a
path towards the goal location using A* pathfinding. If it finds one,
it passes it to the effect, otherwise it fails the guards and therefore
the Tactic. The effect takes the path from the guard and moves
along the path by giving movement instructions to the agent. After
the agent has moved, it will check if the new agent position is close
enough to the target position in the Goal. If so, it will succeed the
primitive GoalStructure, otherwise it will reapply the Tactic until
either the Goal is completed or the guard fails.

For combination GoalStructures (e.g. SEQ), it won’t simply suc-
ceed as with a primitive GoalStructure. A SEQ, needs all GoalStruc-
tures inside it to succeed in order to succeed. It fails once any of
them fails. A FIRSTof will try all GoalStructures inside it in order
and succeed when any of them succeed. If fails if all of them fail.
An ANYof will try all GoalStructures inside it in random order and
succeed when any of them succeed. It fails if all of them fail. A
REPEAT repeats the GoalStructure inside until it succeeds or the
budget runs out. Finally, a SUCCESS always succeeds and a FAIL

3

always fails. Tactics, in addition to having primitive Tactics, also
have combinator Tactics. Just like the GoalStructures, it also has the
SEQ, FIRSTof and ANYof combinators. Unique to Tactics, though, is
the ABORT Tactic, which when selected, aborts the entire current
primitive GoalStructure.

2.3.2 Agent state updates.
After the agent has been created and given a GoalStructure to com-
plete, the update loop begins. If no Goal is currently being pursued,
or the current Goal is marked as completed, failed or aborted, then
the next Goal will be selected based on the GoalStructure com-
binator logic. Otherwise, it will work on completing the current
active Goal. This starts by observing the game environment. This
results in a world object model (WOM) with information of the
agent and all blocks within the viewing range of the agent. Then
this observation is merged with the observation of the previous
iteration (except if it was the first observation). After this, it checks
whether some blocks disappeared and, if so, removes them both
from the WOM and the NavGrid (navigational 2D grid). Then it
checks for new blocks and adds them to the NavGrid. For the dy-
namic door block, it additionally checks if it is open or closed and
sets the corresponding blocking state in the NavGrid. Updating the
NavGrid is done using the addObstacle() and removeObstacle()
methods. Finally, it applies the current active primitive Goal. It se-
lects a primitive Tactic based on the Tactic combinator logic to
apply this iteration. This, as explained before, goes through the
guard, and if it succeeds, the effect and then the Goal. If the Goal
succeeded, then the Goal is marked as completed. If the guard failed
and there is no next Tactic in the logic, then the Goal is marked as
failed. If the current Tactic was the ABORT Tactic, then the Goal is
marked as aborted. Otherwise, the Goal stays in progress for the
next iteration.

The actual movement logic can be found inside some Tactic
effects. For example, the navigateToTAC() Tactic essentially works
as follows [17].

1 public static Tactic navigateToTAC(Vec3 destination) {

2 return action("navigateTo")

3 .do2((AgentState state) ->

4 (Pair <List <DPos3 >, Boolean > queryResult) ->

5 {

6 var path = queryResult.fst;

7 var arrivedAtDestination = queryResult.snd;

8
9 if (arrivedAtDestination) {

10 state.currentPathToFollow.clear ();

11 return new Pair <>(state.wom.position ,

12 state.orientationForward ()) ;

13 }

14 state.currentPathToFollow = path;

15
16 var next = state.currentPathToFollow.get (0);

17 var nextPos = state.navgrid.getSqCenterPos(next);

18 if ((nextPos - state.wom.pos). lengthSq () <= DIST_THRESHOLD)

19 {

20 state.currentPathToFollow.remove (0);

21 return new Pair <>(state.wom.pos ,

22 state.orientationForward ());

23 }

24 CharacterObservation obs = null;

25 obs = yTurnTowardACT(state , nextNodePos , 0.8f, 10);

26 if (obs != null) {

27 return new Pair <>(obs.position(), obs.orientationForward ());

28 }

29 obs = moveToward(state , nextPos , 20);

30 return new Pair <>(obs.position(), obs.orientationForward ());

31 })

32 .on((AgentState state) -> {

33 if (state.wom == null) return null;

34
35 var agentSq = state.navgrid.projectedLocation(state.wom.pos);

36 var destSq = state.navgrid.projectedLocation(destination);

37 var destSqPos = state.navgrid.getSqCenterPos(destSq);

38 if ((destSqPos - state.wom.pos). lengthSq () <= DIST_THRESHOLD)

39 {

40 return new Pair <>(state.currentPathToFollow , true);

41 }

42 int pathLength = state.currentPathToFollow.size ();

43 if (pathLength == 0 ||

44 destSq != state.currentPathToFollow.get(pathLength -1))

45 {

46 var path = state.pathfinder.findPath(state.navgrid ,

47 agentSq , destSq);

48 if (path == null) return null;

49 path = smoothenPath(path);

50 return new Pair <>(path , false);

51 }

52 else {

53 return new Pair <>(state.currentPathToFollow , false);

54 }

55 })

56 .lift ();

57 }

The guard is defined in lines 32-56 and the effect part in lines 2-30.
The guard first checks if the state has a world object model (WOM),
meaning it has observed the world (line 33). If not, it fails. Then it
calculates the node the destination is in and the node the agent is
in. If the distance between the center of the destination node and
the agent (not agent node) position is smaller than the distance
between nodes (line 38), then the guard was passed, and it enables
the effect with the current path and a true value denoting that
the destination has been reached (line 41). Otherwise, it checks if
there is no path planned yet or if there is a path, if that path leads
to a different destination (lines 42-44). If so, then we need to plan
a new path, which we do using findPath() (line 46), which uses
the A* search algorithm. If there is no path to the destination, the
guard fails, otherwise it smoothens the path, removing unnecessary
intermediate nodes, and passes the path to the effect part. If we do
not need to plan a path, because the state already has one to the
destination (line 43), we skip pathfinding and simply pass the path
to the effect part (lines 52-53).

The effect is responsible for moving along the path. It first checks
if the guard returned a true value. If so, we reached the destination,
the current path stored in the state is cleared, and we return the
current agent position and orientation for the Goal to check if we
indeed finished the goal (lines 10-11). If not, we need to follow
the path. First, we store the path in the state, so that the guard
can skip pathfinding the next iteration (line 14). Then, if on the
path we reached the next intermediate position, the intermediate
position is removed from the path, and we return the position and
orientation to the Goal (lines 16-21). If the next position on the
path was actually the destination (so not an intermediate position),
then the Goal should be cleared with the returned position and
orientation. If we are not yet at the next intermediate location,
we first check if we need to turn the agent to look in the general
direction of movement. The yTurnTowardsACT() checks this and,
if it needs to, rotates the agent around the y-axis to face the target
direction before returning a new updated agent observation (lines
25). If no observation was returned, then we did not rotate, so then

4

we move towards the next intermediate location (line 29). If we did
rotate, then we will skip movement for this iteration (lines 26-27).
After rotation or movement, we return the new agent position and
orientation to the goal.

3 METHODOLOGY
Automated testing is all about testing if things work as intended,
however to be able to test most scenarios, the player character
needs to be in a certain state. Positioning is crucial for this, so the
agent needs to be able to move to the required position to test
something or to test the movement itself. Just moving towards the
goal location, however, is not enough. There can be obstacles in the
way, so the agent needs to be able to sense the world and navigate
in it.

This navigation problem can be split into three sub-problems.
One, how to find a somewhat optimal path from the current location
to some known goal location. Two, how to explore the world if
the goal location is unknown in order to find said goal. And three,
how to store the world in a memory efficient and path planning
time efficient way. Path planning is crucial for world navigation,
exploration allows path planning for unknown environments and
efficiency makes it usable for large 3D worlds.

3.1 Abstraction
The game world contains too much information, so an abstraction
layer is used to only store the important parts. The agent sees the
world through this abstraction layer. It uses this layer to find paths,
and it must be able to expand the abstract world during exploration.
This abstraction layer will be stored in memory, so we want to
keep the amount of information stored minimal. For path planning,
the agent needs to find a path through the abstract world, so the
abstraction layer must be made in a way that allows the agent to
do this efficiently.

Space engineers is a 3D game with continuous axes, so every
object can be inR3. To reduce this, we can represent the world as
a voxel space, reducing it to Z3. This works fine for small worlds,
however for larger worlds, the memory use is still too big and
pathfinding will also be too slow. To improve this, we can make
use of a different spatial partitioning data-structure—an hierarchi-
cal one. For voxels, the most well known is the Octree [25] data
structure. In an Octree, we divide a node into 0 or 8 child-nodes,
with every child-node being another sub Octree node with again
0 or 8 children. This way, we can group leaf-nodes with the same
occupancy status together into a single, larger, leaf-node, reducing
memory usage. An example of an Octree is visualised in Figure
1. The Octree nodes themselves simply store whether they are
occupied or not.

An alternative way to implement Octrees is Linear Octal Encod-
ing [11]. Instead of storing both open and blocked Octree nodes, it
instead only keeps a list of encoded Octree blocked nodes, without
open nodes. For example, if the nodes 2, 7, 12 and 15, from Fig-
ure 1, are BLOCKED nodes, then the encoded Octree looks like:
{12, 15, 2𝑋, 7𝑋 }. Starting from the root note, every digit, going from
left to right, represents inwhich child-node an object is (so a blocked
node). The digits range from 0 to 7 where the first four are at the
front in ’z’ order with top-left being 0, and the last four in the same

0

2

3

4

5

7

10
11

12
13

14

15

17

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Figure 1: Octree example

order at the back. The 𝑋 means that every child is BLOCKED. This
significantly reduces the memory use even further, because we no
longer store open nodes. However, storing only BLOCKED nodes
would also make exploration more difficult, as we need a way to
known what is and what is not explored yet.

3.2 Pathfinding
For moving through the world, we use a variation of A* that makes
use of the Octree data-structure. Because the goal of our pathfind-
ing algorithm is just to get to some location efficiently, we do not
care about returning a guaranteed shortest path. A* starts with the
starting location (and cost of 0) in its openSet, it then iteratively
picks the location with the lowest cost from the openSet, moves that
location to the closedSet and adds its neighbours and their cost to
the openSet, until it reaches the goal location. Then from the goal
location, it tracks back the way it came, to get, when inverted, the fi-
nal optimal path. What makes it different from Breadth First Search
(BFS), is that it uses a heuristic to guide itself towards more optimal
neighbour choices to inevitably find the goal in less iterations.

This works fine for a normal grid, where getting the neighbours
is trivial, but for an Octree we have to adapt it so that it can find the
right neighbours. We can either store a list of pointers to the neigh-
bours for every node, or use a function to calculate the neighbours
at runtime. Calculating the neighbours is more memory efficient
but takes more time to do. The algorithm to get the neighbours
from an Octree node works as follows:

Algorithm 1 Octree right neighbour
procedure 𝑛𝑜𝑑𝑒.𝑟𝑖𝑔ℎ𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 ()

if 𝑛𝑜𝑑𝑒 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑙𝑒 𝑓 𝑡 then
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 ← 𝑝𝑎𝑟𝑒𝑛𝑡 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[𝑛𝑜𝑑𝑒.𝑐𝑜𝑑𝑒+1] .𝑙𝑒 𝑓 𝑡𝐸𝑑𝑔𝑒-

𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝐿𝑒𝑎𝑓 𝑠 ()††
else if 𝑛𝑜𝑑𝑒 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛𝑟𝑖𝑔ℎ𝑡 then

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 ← 𝑝𝑎𝑟𝑒𝑛𝑡 .𝑟𝑖𝑔ℎ𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 ()
else

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 ← 𝑛𝑢𝑙𝑙

end if
return 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

end procedure

5

A

B1 B2

A BB

Figure 2: Octree neighbours: A is the only left neighbour of
B1, but A has 4 right neighbours in B

As an example, the right neighbour of node B1, in Figure 2, is node
B2. The algorithm checks the code of node B1 and using the code,
knows that its direct parent has the right neighbour as a child, so it
can just retrieve it from the parent. The left neighbour of node B1
is nodeA. The algorithm once again checks the code of node B. The
code is the same, but because it wants the left neighbour, it knows
the direct neighbour cannot give it. Thus, is will recursively call
the algorithm on the parent-node, until it either finds a neighbour
or it reaches the root node (meaning there is no neighbour).

The right neighbour of node A is node B. This node, however, is
not a leaf-node, so instead of returning node B as the right neigh-
bour of node A, we return all the leftmost leaf-nodes of node B.

Getting the right neighbour of a node, that is on the right side
of its parent-node, means that it cannot directly get the neighbour
from its parent. Thus, it will recursively call the get neighbour
method on the parent until it finds one, that is on the left side of its
parent. This one can then return the right neighbour. However, as
we want to return a navigable node, we cannot return itself if it is
not a leaf-node. To get the actual right neighbour of the original leaf-
node, the high order neighbour node needs to return its leftmost
leaf-node adjacent to the original leaf-node. For example, in Figure
??, the right neighbour of node C is node F. Node C first checks B
for a right neighbour, which checks node A in turn. Node A then, a
child on the left side of node R, finds node D as a right neighbour.
Then node D checks the left child adjacent to node B, node E, which
return its left child adjacent to node C, node F.

Diagonal neighbours can simply be calculated by combining two
or three of the cardinal direction neighbour methods.

Using hierarchical A* [14], which does pathfinding at the low-
est resolution and then refines the higher detail levels iteratively,
is another possibility. Hierarchical A* can significantly improve
performance, however it bloats the memory usage significantly,
because it requires knowledge, for every node at every layer, to
which neighbouring nodes that can be reached. Just like with A*
we can calculate the neighbours instead of storing them, but then
it would become slower again and the advantages become unclear.

††leftEdgeChildrenLeafs() recursively goes down the hierarchy, only returning the
leaf-nodes on the left edge, neighbouring the original query node. The explanation for
how this is done can be found in Section 5.2.

RR

AA

BB
CC

DD

EE
FF

Figure 3: Octree neighbours: Node C cannot find a right neigh-
bour in its parent B, so it checks the parent’s parent A, which
also cannot find it, so it checks their parent R. Node A finds
the right neighbour D in R. Then because B in A is top-right-
back, we get E, the top-left-back child of D. Lastly we get the
top-left-front child of E, F as the right neighbour of node C.

3.3 Exploration
Pathfinding can be done if the goal position is known, otherwise the
agent needs to explore to find the goal. The agent has a predefined
viewing distance, which is set in a configuration file. Everything
in this viewing range, the agent observes in the form of a world
object model (WOM). The current implementation of iv4XR for
SE maps the world as a grid of quads and keeps track of what
quads have obstacles in them (BLOCKED) and which ones do not
(OPEN). This grid is just stored in a hashMap, however, the same
cannot be done for the 3D implementation, because it would just
be much too big and slow. This is why the Octree structure from
Section 3.1 is so important. During exploration, the Octree needs to
be expanded and updated. Everything inside the viewing distance
needs to be observed and if some object, for example, is destroyed
or added, then some nodes in the Octree need to be changed to
reflect this change in the game environment. If we explore, then we
will inevitably view parts of the world not yet encapsulated into the
Octree world representation, so we need to be able to expand the
Octree. We expand the Octree by creating a new Octree root-node
and making the old root-node a child of the new one.

4 PRELIMINARY 2D IMPLEMENTATION
Before we started on the full 3D Octree implementation for the
automated testing framework, we first created a simple 2DQuadtree
version. Because our data-structure also needs to be able to be
expended and nodes can have an UNKNOWN label in addition

6

(a) The demo world (b) Fully explored world (c) Unexplored world

(d) Unexplored world, updated path (e) Unknown world (f) Unknown world, expanded Quadtree

Figure 4: Quadtree demo

to OPEN, CLOSED or MIXED, we need to make some alterations
to a normal Octree. Instead of developing it while immediately
integrating it with the complicated iv4XR project for the game
Space Engineers, we decided to first implement the Octree idea in
a simpler environment. For this, we created a 2D version of the
Octree method, which would be a Quadtree. This demo would also
confirm if the Octree method would actually work.

The 2D demo is written in Java. The game world is continuous
2D with a black background and white walls, visualized in Figure 4a.
The player character is a small green cube, and the goal is visualized
as a small yellow cube. Implementing a Quadtree on this world
gives us a Quadtree as visualized in Figure 4b. In the image, red
squares are BLOCKED Quadtree nodes and blue squares are OPEN
Octree nodes. For clarity, only leaf-nodes are visualized. The yellow
line is the path from the player character to the goal. This path
is calculated using Dijkstra’s algorithm. Neighbouring nodes are
calculated using the functions explained in Section 4.1.

If the player does not have an infinite viewing distance, then
we do not know of obstacles outside the viewing distance. Such
a scene is visualized in Figure 4c. In the figure, the cyan squares
are UNKNOWN nodes. When the goal location is known, but it

is inside an UNKNOWN node in the Quadtree, then the path to
the goal avoids known BLOCKED nodes and goes through OPEN
or UNKNOWN nodes. When it follows this path, the player auto-
matically updates the Quadtree with new observations (see Figure
4d). The path will also be updated based on the new information
and plan around known obstacles. This works well, but we cannot
assume to know the size of the world, so we need to be able to
expand the Quadtree. With an unknown world scale, the starting
Quadtree will contain the full viewing range (see Figure 4e), but
when the viewing range exits the Quadtree’s bounding box as in
Figure 4f, then the Quadtree will expand itself, creating a new root
node, with the old root node as one of the children.

The demo simply tests the data-structure’s ability to do pathfind-
ing and updates based on observations. We did not implement any
automation or testing. Instead, the user has full control over the
players (green cube) movement and Quadtree nodes are visualized
on screen and updated at runtime. Additionally, using the mouse,
we made it so that pressing the left mouse button would place a new
wall at the cursors location and pressing the right mouse button
would remove any wall under the cursor. This makes it easy to
visually debug the Quadtree and the pathfinding.

7

4.1 Neighbours
Retrieving the neighbours from a Quadtree node is not a trivial
task. We implement Algorithm 1 as follows.

1 public List <Quadtree > getRightNeighbour(Stack <int > codes)

2 {

3 switch (this.code) {

4 case 0 -> { // top-left

5 return parent.children [1]

6 .leftEdgeChildrenLeafs(codes);

7 }

8 case 1 -> { // top-right

9 codes.push (0);

10 return parent.getRightNeighbour(codes);

11 }

12 case 2 -> { // bottom-left

13 return parent.children.get(3)

14 .leftEdgeChildrenLeafs(codes);

15 }

16 case 3 -> { // bottom-right

17 codes.push (2);

18 return parent.getRightNeighbour(codes);

19 }

20 }

21 return null;

22 }

Every directional get_Neighbour() method is almost exactly the
same, just using different codes. With how often these methods will
be called, adding an additional line to check which neighbour we
want to get every recursive call would make the program unnec-
essarily slower. Thus, we separated them into different methods,
skipping one line of code for recursive call, for every neighbour,
for every node during pathfinding. To get the right neighbour, we
check if the current node is on the left side or right side of its
parent-node by checking the code (line 3). The code is in Morton
code order, so the left side codes are 0 and 2 and the right side
codes 1 and 3. If the current node is on its parent’s right side, then
the parent cannot give the right neighbour, so we recursively call
the function on the parent-node (lines 10 and 18). Eventually the
node is on its parent left side (except if it is on the edge of the
root-node, resulting in zero right neighbours) and it has found a
right neighbour. However, we are not done yet, because the node
has to be a leaf-node. If it is a leaf-node, we are done. Otherwise, we
have to retrieve the children nodes on the left side. If those are not
leaf-nodes, then we once again have to get the left side child-nodes.
Thus, we call the leftEdgeChildrenLeafs() method, which, as
the name suggests, gets a list of all leaf-nodes on the far left edge
of the current node by recursively going down (lines 5 and 13). But
we do not want all of them, because if we recursively went up, then
getting all left edge leaf-nodes of the higher up neighbour node
also returns the right neighbours of some other nodes. For example,
the bottom-right node goes up once to the parent. The parent is on
the left side of their parent and gets the right neighbour. The right
neighbour gets its two left child-nodes. One of these two is the right
neighbour of the original node, but the other is the right neighbour
of the top-right node, the top neighbour of the original node. To
remember the path up and take the corresponding path down, we
added a Stack of codes. Whenever the getRightNeighbour() method
is recursively called (so we go up in the hierarchy), we add the
opposite code of the current node’s code to the stack (lines 9 and
17). The opposite code of 1 for the right neighbour is 0, the code of

its left neighbour. Then when leftEdgeChildrenLeafs() is called, we
give it this stack.

1 public List <Quadtree > getLeftEdgeLeafs(Stack <int > codes)

2 {

3 List <Quadtree > list = new ArrayList <>();

4 if (this.children.isEmpty ()) {

5 if (this.label != BLOCKED)
6 list.add(this);

7 return list;

8 }

9 if (!codes.isEmpty ()) {

10 list.addAll(children[codes.pop()]

11 .getLeftEdgeLeafs(codes));

12 }

13 else {

14 list.addAll(children [0]

15 .getLeftEdgeLeafs(codes));

16 list.addAll(children [2]

17 .getLeftEdgeLeafs(codes));

18 }

19 return list;

20 }

This method, whenever it recursively calls itself (so we go down in
the hierarchy), checks and removes one value from the stack. The
value it retrieves is the code of the child-node it needs to recursively
call (line 10). If the stack is empty, and it still is not a leaf-node,
then the original leaf-node was bigger than the right neighbours,
so it returns all left children leaf-nodes (lines 14-17). If the node
is a leaf-node, it simply returns itself (lines 4-7). Of course, if the
final node selected as a neighbour has the BLOCKED label, we do
not return it, because it is inaccessible. To keep the demo simple
and to increase the ease of visual debugging, we did not implement
diagonal neighbours for the demo.

4.2 Updating the Quadtree
Every frame, every object inside the viewing range of the player
is observed and added to the Quadtree with the update() method.
The update method takes the entire list of walls (both in and outside
viewing range) and an Ellipse2D (from the java.awt.geom package).

1 public void update(List <Wall > walls , Sphere viewingRange)

2 {

3 if (! viewingRange.intersects(this.boundary)) {

4 return;

5 }

6 if (!this.children.isEmpty ()) {

7 foreach (child in children) {

8 child.update(walls , viewingRange)

9 }

10

11 if (all children labels == BLOCKED) {

12 this.label = BLOCKED;
13 children = new ArrayList <>();

14 }

15 if (all children labels == OPEN) {

16 this.label = OPEN;
17 children = new ArrayList <>();

18 }

19 return;

20 }

21 if (any (wall in walls) contain (this.boundary))) {

22 this.label = BLOCKED;
23 if (! children.isEmpty ()) {

24 children = new ArrayList <>();

25 }

8

26 return;

27 }

28 if (!any (wall in walls) intersects (this.boundary))) {

29 this.label = EMPTY;

30 if (! children.isEmpty ()) {

31 children = new ArrayList <>();

32 }

33 return;

34 }

35

36 if (boundary.height < 2 * MIN_NODE_SIZE) {

37 this.label = BLOCKED;
38 return;

39 }

40 if (this.label != MIXED) {

41 this.subdivide(this.label);

42 this.label = MIXED;
43 }

44 foreach (wall in walls) {

45 if (wall.intersects(this.boundary)) {

46 foreach (child in children) {

47 child.update(walls , viewingRange)

48 }

49 }

50 }

51 if (all (child in children) label == BLOCKED)) {

52 this.label = BLOCKED;
53 children = new ArrayList <>();

54 }

55 }

The method starts at the root-node and recursively goes through
the child-nodes. If the current node is not fully or partially inside
the viewing range, then it does nothing in that node and its children
(lines 3-4). Otherwise, it continues. Lines 6-19 are for nodes with
child-nodes, and lines 21-53 for leaf-nodes. When the current node
has children, it simply recursively calls the update()method for all
children (lines 7-8). After that, it checks if all child-nodes have the
same label and if so, it makes itself a leaf-node by throwing away
the children (overwriting with empty arrayList) (lines 11-17). If
the current node is a leaf-node, it first checks if it is fully inside any
of the walls. If so, it simply becomes a BLOCKED leaf-node (lines
21-24). Then it checks if none of the walls intersect with the node.
If so, it simply becomes an OPEN leaf-node (lines 28-31). Note that
all nodes start with an UNKNOWN label, and only nodes inside
the viewing range will be updated. If neither of these were the case,
then it means one or more walls partially intersect with the node, in
which case we subdivide the node (if it wasn’t already subdivided)
(lines 40-42). However, to prevent nodes from becoming too small
and taking up unnecessary memory space, lines 36-38 check if
the node size after subdivision (so half the current size) will be
smaller than the minimum node size. If so, it will simply be labeled
as BLOCKED and not subdivide. After subdivision, we loop over
all objects and if they intersect the node, we recursively call the
update() method on all child-nodes (lines 44-47). Finally, once all
child-nodes have their label, we once again check if we need to
become a leaf-node if all children are BLOCKED (lines 51-53). This
happens when the quad contains multiple objects, where none of
them fill the entire quad, but they do so together.

4.3 Conclusion
The demo showed that the Quadtree method works in 2D. As the
methods are designed with 3D Octrees in mind, it should theoret-
ically also work in 3D with Octrees. It is just a case of changing
rectangles and circles to cubes and spheres and adding two addi-
tional get neighbour methods. To make it work in 3D, the third
dimension simply had to be added. To make it work for automated
testing for Space Engineers, it has to be incorporated into the iv4XR
project’s structure, replacing the NavGrid with additional changes
to handle expansion and exploration. Finally, as it was a simple
demo, we did not try to optimize its speed and memory efficiency.
So this still has to be done for the final version.

5 IMPLEMENTATION
With the demo done and method working in 2D with Quadtrees, we
could confidently start on the actual Octree implementation. In this
section, we will explain how we implemented the Octree method
from Section 3 and how we incorporated it into the automated
testing framework iv4XR for the game Space Engineers. For this we
will go over the neighbour methods in Section 5.2, the expanding
method in Section 5.3, and the agent movement changes in Section
5.4. To make it so that A* pathfinding can be done, which is a node-
based pathfinding algorithm, we implemented padding, which we
explain in Section 5.5. Then, in Section 5.6, we the changes to
the iv4XR state updating method and introduce some new testing
functions in Section 5.7. We will also explain how we implemented
the VoxelGrid method to use as a baseline. Finally, in Section 5.8
we explain how the VoxelGrid baseline was implemented.

From this point on, whenever wemention a grid (in cursive), then
we mean the spatial partitioning data-structure. This can reference
to the Octree, VoxelGrid or NavGrid, depending on the context.

5.1 Octree
The information an Octree node need to store is as follows:

1 public class Octree {

2 public byte label;

3 public byte code;

4 public Boundary boundary;

5 public Octree [] children;

6 public Octree parent;

7 }

Octree nodes contain a label, which can be one of four possible
types: BLOCKED, OPEN, MIXED or UNKNOWN. This is stored as a
byte, which reserves 8 bits of memory. There is no data type which
reserves less than that, except for a boolean, which reserves just
one bit. Using two booleans instead of a byte would reduce memory
usage, however using a byte makes sure that the data is aligned with
Java’s native data types, which should make retrieving data more
efficient. The code contains a value from 0 to 7, which indicates
which child the node is of its parent-node in Morton code order. The
boundary stores the position and size of the bounding box and con-
tains comparison functions like contains() and intersects().
The link to the parent-node is stored in parent. The child-nodes
are stored in the children array. The array will have a size of 8,
if it has children, or be set to null, if it is a leaf-node. When we
subdivide a node, we simply overwrite the null value of the array to
a new array. When we combine multiple nodes together, we simply

9

set the array to be null, which gets rid of the references to the
child-nodes, freeing up memory.

When observing the world, the agent keeps track of all blocks
inside its viewing range. Every new block inside this range is added
to the Octree using the following Octree method:

1 public void addObstacle(WorldEntity block) {

2 if (this.label == Label.BLOCKED) return;

3
4 var blockBB = blockBB(block.position);

5 if (blockBB.contains(this.boundary)) {

6 this.label = Label.BLOCKED;

7 if (children != null) {

8 children = null;

9 }

10 return;

11 }

12 if (blockBB.intersects(this.boundary)) {

13 if (boundary.size() < MIN_NODE_SIZE) {

14 this.label = Label.BLOCKED;

15 return;

16 }

17 if (this.label != Label.MIXED) {

18 this.subdivide(this.label);

19 this.label = Label.MIXED;

20 }

21 for (Octree node : children) {

22 node.addObstacle(block);

23 }

24 boolean allMatch = true;

25 for (Octree node : children) {

26 if (node.label != Label.BLOCKED) {

27 allMatch = false;

28 break;

29 }

30 }

31 if (allMatch) {

32 this.label = Label.BLOCKED;

33 children = null;

34 }

35 }

36 }

The method will only change nodes into BLOCKED nodes, so al-
ready BLOCKED nodes are ignored at line 2. In line 4, a boundary is
made from the input block, which is then used in line 5 to check if
the Octree node is fully inside this block. If so, the node is set to be
BLOCKED, and it sets the children array to null, if it wasn’t al-
ready. The rest of the code is only called if the node is only partially
inside the boundary (line 12). To prevent nodes from becoming
too small and taking up unnecessary memory space, lines 13-15
check if the node size is smaller than the minimum node size for
subdivision. If so, the node will simply be labeled as BLOCKED and
not subdivide. Otherwise, the node needs to be subdivided. Lines
17-19 make sure, if it wasn’t subdivided already, to subdivide the
node. Then it recursively calls addObstacle() for all child-nodes
(lines 21-22). Finally, once all children have their label, we check
if all children have the same label (BLOCKED). If so, the parent
becomes BLOCKED and throws away the children (lines 24-33).
This can happen when the Octree node intersects with multiple
blocks, where none of them fill the entire boundary, but together
they do. Removing obstacles is done with the identical method
removeObstacle(), but with the OPEN label instead. This method
is called whenever a block is removed within the observation range.
Every iteration, the agent observes the world. The blocks that were
in the previous observation and not in the current one are removed,
but only if they are still inside the observation range, otherwise
we know that they are not in the WOM, because they are too far

away. Whenever a button is pressed, we don’t know if the door will
be open or closed, so we give the corresponding Octree nodes a
UNKNOWN label with another identical method (setUnknown(),
but with the UNKNOWN label. The blockBB() method in line 4,
creates the padded boundary. More on this in Section 5.5.

The subdivide method in line 18 looks as follows:
1 public void subdivide(byte label) {

2 children = new Octree [8];

3 float half = boundary.size / 2;

4 Vec3 position = boundary.position;

5 children [0] = new Octree(

6 new Boundary(position , half),

7 this , 1, label);

8 children [1] = new Octree(

9 new Boundary(position + Vec3(half , 0, 0)), half),

10 this , 2, label);

11 children [2] = new Octree(

12 new Boundary(position + Vec3(0,half , 0)), half),

13 this , 3, label);

14 children [3] = new Octree(

15 new Boundary(position + Vec3(half ,half , 0)), half),

16 this , 4, label);

17
18 children [4] = new Octree(

19 new Boundary(position + Vec3(0, 0,half)), half),

20 this , 5, label);

21 children [5] = new Octree(

22 new Boundary(position + Vec3(half , 0,half)), half),

23 this , 6, label);

24 children [6] = new Octree(

25 new Boundary(position + Vec3(0,half ,half)), half),

26 this , 7, label);

27 children [7] = new Octree(

28 new Boundary(position + Vec3(half ,half ,half)), half),

29 this , 8, label);

30 }

This method fills the children array with 8 new Octree nodes. All
with a boundary half the size of their parent and moved in Morton
code order. So the first child has the same lower boundary, with
the upper boundary at the center of the parent boundary. The
second child has the same y and z coordinates as their parent, but
is moved halfway on the x-axis. All children get a reference to their
parent-node (this), are given a code with the index the child is in
the parent-node’s children array. Lastly, the children are given the
same label as their parent. Whenever we make a fully new Octree
node (so whenever a root node is made), we initiate it with the
UNKNOWN label. Then, when we subdivide, we give the children
the same label as their parent before we change the parent label into
MIXED. We do this, because if for example an OPEN node needs
to be subdivided, because the agent placed a block that intersects
with the node, then we known that the children are either OPEN or
BLOCKED. Setting the new Octree nodes initially to UNKNOWN
would be stupid, because the addObstacle() method only sets the
overlapping nodes to be BLOCKED, which leaves the other child-
nodes with an UNKNOWN label. We can still go over all nodes
inside the viewing range and set any UNKNOWN nodes to OPEN,
but this is unnecessary extra work.

5.2 Pathfinding
Calculating the neighbours of a node can be done using a function
like the following for every direction.

1 public List <Octree > getRightNeighbour(Stack <Integer > codes) {

2 switch (this.code) {

3 case 0 -> { // top-left-front

4 return parent.children [1]. getLeftEdgeLeafs(codes);

10

5 }

6 case 1 -> { // top-right-front

7 codes.push (0);

8 return parent.getRightNeighbour(codes);

9 }

10 case 2 -> { // bottom-left-front

11 return parent.children [3]. getLeftEdgeLeafs(codes);

12 }

13 case 3 -> { // bottom-right-front

14 codes.push (2);

15 return parent.getRightNeighbour(codes);

16 }

17 case 4 -> { // top-left-back

18 return parent.children [5]. getLeftEdgeLeafs(codes);

19 }

20 case 5 -> { // top-right-back

21 codes.push (4);

22 return parent.getRightNeighbour(codes);

23 }

24 case 6 -> { // bottom-left-back

25 return parent.children [7]. getLeftEdgeLeafs(codes);

26 }

27 case 7 -> { // bottom-right-back

28 codes.push (6);

29 return parent.getRightNeighbour(codes);

30 }

31 }

32 return null;

33 }

This function is one of 26 neighbour functions: the right neighbour.
The function is called from a leaf-node to get that node’s right
neighbouring leaf-nodes. Depending on what layer the current
node is, it can have one or more right neighbours. In line 2, we
check what child-node this node is in its parent-node (the code). If
it is the first child (code 0, see Figure 1) then line 5-6 is returned.
In that case, the right neighbour of node 0 (the top-left-front node)
is node 1 (the top-right-front node). However, we are not done
yet, because that node could be split into more children, so instead
of returning child-node 1, we call getLeftEdgeLeafs(), which
returns itself if it has no children, and otherwise it recursively calls
getLeftEdgeLeafs() on all its child-nodes on the left edge (nodes
0,2,4,6). It is even more complicated getting the right neighbour
when the current node is on the right edge of its parent. When
that is the case, it will recursively call the getRightNeighbour()
function on its parent until it reaches a parent-node on the left
edge. Only then will it call getLeftEdgeLeafs(). However, this
time, we do not want to get all left edge nodes, because only a part
of them actually neighbour the original leaf-node. This is where the
stack codes comes into play. Whenever we recursively call get-
RightNeighbour(), we add a code to the stack (lines 8, 16, 24 and
32). Then, when the function getLeftEdgeLeafs() is eventually
called, we pass it to the code stack. This function reads as follows:

1 public List <Octree > getLeftEdgeLeafs(Stack <Integer > codes) {

2 List <Octree > list = new ArrayList <>();

3 if (this.children.isEmpty ()) {

4 if (this.label == Label.OPEN)

5 list.add(this);

6 return list;

7 }

8 if (!codes.isEmpty ()) {

9 list.addAll(children[codes.pop ()]. getLeftEdgeLeafs(codes));

10 }

11 else if (codePopOverwrite != 0) {

12 list.addAll(codePopOverwriteSwitch(codes));

13 }

14 else {

15 list.addAll(children [0]. getLeftEdgeLeafs(codes));

16 list.addAll(children [2]. getLeftEdgeLeafs(codes));

17 list.addAll(children [4]. getLeftEdgeLeafs(codes));

18 list.addAll(children [6]. getLeftEdgeLeafs(codes));

19 }

20 return list;

21 }

Whenever the code stack is not empty (line 8), it means we are
an order higher than the original leaf-node, so we recursively call
getLeftEdgeLeafs() on only the child with the code from the
stack (line 9). Every time we go a layer lower, the stacks get smaller
until we are on the same layer as the original leaf-node. The code-
PopOverwrite line (11) for cardinal directions is always 0, so it never
runs line 12. This will come into play for diagonal neighbours. Then
lines 15-18 recursively calls the method on all left-edge-children
leaf-nodes. If a leaf-node has been reached, then it returns itself, but
only if the leaf-node is OPEN (line 3-6). The explore variant of the
method also allows UNKNOWN nodes to be returned (otherwise it
can never find a path to a UNKNOWN node). Finally, it returns a
concatenated list of all leaf-nodes from the recursive calls.

The neighbour method for the six cardinal directions are very
similar. Diagonal neighbours are also similar, but a bit more com-
plicated. Take the top-right neighbour method for example.

1 public List <Octree > getTopRightNeighbour(Stack <Integer > codes)

2 {

3 switch (this.code) {

4 case 1 -> { // top-left-front

5 return parent.children [1]. getTopNeighbour(codes);

6 }

7 case 2 -> { // top-right-front

8 codes.push (2);

9 return parent.getTopRightNeighbour(codes);

10 }

11 case 3 -> { // bottom-left-front

12 return parent.children [1]

13 .getBottomLeftEdgeChildrenLeafs(codes);

14 }

15 case 4 -> { // bottom-right-front

16 return parent.children [1]. getRightNeighbour(codes);

17 }

18 case 5 -> { // top-left-back

19 return parent.children [5]. getTopNeighbour(codes);

20 }

21 case 6 -> { // top-right-back

22 codes.push (6);

23 return parent.getTopRightNeighbour(codes);

24 }

25 case 7 -> { // bottom-left-back

26 return parent.children [5]

27 .getBottomLeftEdgeChildrenLeafs(codes);

28 }

29 case 8 -> { // bottom-right-back

30 return parent.children [5]. getRightNeighbour(codes);

31 }

32 }

33 return null;

34 }

In here, instead of having four cases, where the neighbour is simply
part of the parent-node, there are only 2 (cases 3 and 7). Also, there
are now only two recursive calls of getTopRightNeighbour()
(cases 2 and 6), leaving four cases that are a bit different. In cases 1
and 5, the method will first take the top neighbour from the par-
ent and then call the getRightNeighbour() method from there.
In cases 4 and 8, the method will call getTopNeighbour() from
its direct right neighbour. This brings a problem to the table. If
we want to get the top-right neighbour of a node, then it is pos-
sible for it to call the getTopNeighbour() method from the right
neighbour. The getTopNeighbour() method eventually calls the

11

getBottomEdgeLeafs() method. However, we originally wanted
the top-right neighbour only, so when the query node is higher
in the Octree hierarchy (bigger) than the leaf-nodes, it can return
nodes that do not diagonally neighbour the original query node.
To fix this, whenever we call a diagonal neighbour method, we
first set the static codePopOverwrite value to the code correspond-
ing with the diagonal direction. Cardinal directions have code 0
and will not do anything. Then any directional get_EdgeLeafs()
method check the codePopOverwrite value and if it is not 0, calls
the codePopOverwriteSwitch() method. This is a giant switch
case of all 20 diagonal neighbour codes. Using this switch case, it
switched from the wrong get_EdgeLeafs() to the right one.

Diagonals like top-right-back are even more complicated, with
only one case where it is directly available and one case where it
recursively calls itself. The other six cases are a getTopNeigh-
bour(), getRightNeighbour(), getBackNeighbour(), get-
TopRightNeighbour(), getTopBackNeighbour() and a get-
RightBackNeighbour().

Every get_Neigbour() method adds some nodes to the neigh-
bours list. The only exception is the root node. If a node is at the
very border of the Octree, then there is a direction with no neigh-
bour. To handle such cases, the function recursively calls itself on
the parent-node until it reaches the root node. The root node is the
only node with a code outside the range [0-7], which results in it
reaching the return null; line of the method. The neighbours()
method, which calls all the directional get_Neighbour()method to
get every neighbour, then checks for null return values. Whenever
null is returned, it ignores it, except if we are doing exploration.
If we are doing exploration and retrieving the neighbours of a
node, then we allow UNKNOWN nodes in addition to OPEN nodes.
And everything outside the root Octree node is UNKNOWN. So
whenever a null value is returned, then we create a new temporary
UNKNOWN Octree node in the corresponding direction and add it
to the neighbours list. This temporary node is automatically thrown
away after exploration.

5.3 Exploration
If we explore, then we will inevitably view parts of the world not
yet encapsulated into the Octree world representation, so we need
to be able to expand the Octree. The following function first checks
if the Octree needs to be expanded and, if so, will proceed to do so.

1 public Octree checkAndExpand(Boundary range) {

2 if (boundary.contains(range)) return null;

3
4 byte oldcode = getOldCode (); // what child position the old rootnode will

have in the new one
5
6 Octree newRoot;

7 Vec3 position = boundary.position;

8 float newSize = boundary.size * 2;

9 float oldSize = boundary.size;

10 switch (oldcode) {

11 case 1 -> newRoot = new Octree(

12 new Boundary(position , newSize),

13 null , 0, Label.MIXED);

14 case 2 -> newRoot = new Octree(

15 new Boundary(position - Vec3(oldSize ,0,0), newSize),

16 null , 0, Label.MIXED);

17 case 3 -> newRoot = new Octree(

18 new Boundary(position - Vec3(0,oldSize ,0), newSize),

19 null , 0, Label.MIXED);

20 case 4 -> newRoot = new Octree(

21 new Boundary(position - Vec3(oldSize ,oldSize ,0), newSize),

22 null , 0, Label.MIXED);

23
24 case 5 -> newRoot = new Octree(

25 new Boundary(position - Vec3(0,0,oldSize), newSize),

26 null , 0, Label.MIXED);

27 case 6 -> newRoot = new Octree(

28 new Boundary(position - Vec3(oldSize ,0,oldSize), newSize),

29 null , 0, Label.MIXED);

30 case 7 -> newRoot = new Octree(

31 new Boundary(position - Vec3(0,oldSize ,oldSize),

32 newSize),

33 null , 0, Label.MIXED);

34 default -> newRoot = new Octree(

35 new Boundary(position - Vec3(oldSize), newSize),

36 null , 0, Label.MIXED);

37 }

38 newRoot.subdivideExpand(this , oldcode);

39 return newRoot;

40 }

Line 2 make sure it only expands the Octree if we explore outside
the root Octree node boundary. Line 4 calculates in what direction
the Octree needs to be expanded and stores that info as a code.
This code will be the new code of the old root node and signify
what child position it will get in the new root node’s children
array. The calculation is done using a big string of if-then-else
statements on the x, y and z-axis differences between the player
position (stored in range) and the center of the root Octree node (the
boundary position). Lines 6-36 then create a new Octree root node,
depending on the code calculated before. Then line 38 subdivides
this new root node, but does not call subdivide(), but instead the
subdivideExpand(). The method subdivideExpand() is similar,
but takes the old root node as input, with the old code, and makes
it the corresponding child-node of the new root-node. This method
looks as follows:

1 public void subdivideExpand(Octree child , byte code) {

2 children = new Octree [8];

3 child.parent = this;

4 child.code = code;

5 float half = boundary.size / 2;

6 Vec3 position = boundary.position;

7
8 for (byte i = 1; i <= 8; i++) {

9 if (code == i) {

10 children[i-1] = child;

11 continue;

12 }

13 Boundary bb;

14 switch (i) {

15 case 1 -> bb =

16 new Boundary(position , half);

17 case 2 -> bb =

18 new Boundary(position + Vec3(half , 0, 0), half);

19 case 3 -> bb =

20 new Boundary(position + Vec3(0,half , 0), half);

21 case 4 -> bb =

22 new Boundary(position + Vec3(half ,half , 0), half);

23 case 5 -> bb =

24 new Boundary(position + Vec3(0, 0,half), half);

25 case 6 -> bb =

26 new Boundary(position + Vec3(half , 0,half), half);

27 case 7 -> bb =

28 new Boundary(position + Vec3(0,half ,half), half);

29 default -> bb =

30 new Boundary(position + Vec3(half ,half ,half), half);

31 }

32 children[i-1] = new Octree(bb, this , i, Label.UNKNOWN);

33 }

34 }

12

This method first sets the old root node’s parent to itself (the new
root node) and changes it code (lines 3-4). Then line 8 loops over
the 8 child codes (the index +1, so 1-8). If the code (i) is equal to
the old code (code), then it adds the old root node as a child (lines
9-11). Otherwise, it creates a new Octree node with half the size
and adds it to the children array (lines 13-32). The switch statement
is the same as the normal subdivide() method.

5.4 Agent Movement
Now that the agent can plan a path to their goal, it just needs a
way to travel along said path. This is done using the primitive
method moveAndRotate(), which takes a 3d movement vector and
two rotation scalars. One for rotating the camera horizontally (yaw
rotation) and one for rotating the camera vertically (pitch rotation).
It also has a roll rotation input value, however it did not work. This
was unfixable, as the implementation of this method is in the SE
plugin, which was made by the developers of SE for the iv4XR
project. The movement vector of moveAndRotate() moves the
agent relative to its own axis system. This axis system is different
from the global axis system and agent orientation. Thus, to move
the agent in the right direction, the movement vector needs to
be translated from global space to local space. Originally, iv4XR
did this by rotating the vector around the y-axis using Rodrigues’
rotation formula [5]. This works fine for 2D movement, but in 3D,
we cannot easily assume the agent’s up orientation is aligned with
the y-axis. Thus, we changed it for our 3D implementation to a
transformation matrix. Instead of expressing it in terms of sin and
cos of angles, we expressed it in terms of dot products between
global and local axis vectors. We derived this formula from [4].

𝑅 =

𝑥 · 𝑥 ′ 𝑥 · 𝑦′ 𝑥 · 𝑧′
𝑦 · 𝑥 ′ 𝑦 · 𝑦′ 𝑦 · 𝑧′
𝑧 · 𝑥 ′ 𝑧 · 𝑦′ 𝑧 · 𝑧′

 (1)

Using 𝑣 ′ = 𝑅 ∗ 𝑣 , we can rotate a vector from global space, with
unit vector coordinates (𝑥,𝑦, 𝑧), to local space, with unit vector
coordinates (𝑥 ′, 𝑦′, 𝑧′).

Now to follow a path, the agent gets the next intermediate stop
in the path and first checks if it is looking in that general direction.
If not, it will rotate around the y-axis using moveAndRotate() and
not move. If it is, it will not rotate, and it will move towards that
direction by passing the transformed vector to moveAndRotate().
Both rotation and movement are done by sending a burst of suc-
cessive rotate or move commands to SE. The burst will stop after
a number of times or if it reached the goal. This continues every
cycle until the end of the path is reached. Then it will check if the
agent indeed is at the desired location to complete a move goal.

5.5 Padding
Paths consist of a list of points that the agent needs to travel through
and most path planning algorithms, including the one we use, are
graph based and consider the agent to be just a single point. How-
ever, the agent is not a single point, but a playable human character
with a height, width, and depth. In SE, the agent has a height of 1.8
units, which are synonymous with meters, and a width and depth of
1.0 units or meters. If we do nothing to address the agent’s dimen-
sions, then when the agent is travelling along its planned path, it

can bump into walls or even get stuck. This is a non-holonomic con-
straint on the movement. This constraint can be taken into account
using corridors [28]. A corridor is a path with a width. The corridor
width is as large as obstacles allow (or its specified maximum size).
With corridors, the agent will move within the corridor around the
path rather than just follow the path. This allows the agent to move
more flexibly and allows the agent to avoid collisions more easily (as
long as the corridor is wide enough). However, this is too costly and
complicated for our program. Corridors allow the agent to handle
many non-holonomic constraints, but for our application, where
the only non-holonomic constraint we need to solve is the agent’s
size, it is inefficient. For static worlds, non-holonomic constraints
can be considered during the pre-processing phase [19, 20].

A much simpler solution is to just pad all obstacles with extra
size, so that we can plan assuming the agent is a single point. When
we update the Octree with a new block, instead of using the block’s
bounding box and making all nodes that are inside it BLOCKED,
we instead create a new bounding box, increase its size a bit and
then use that. Doing this makes it so that the player can be seen
as a single point, because all OPEN nodes have already taken the
player size into account. The padding we add to the bounding box is
𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = (𝑎𝑔𝑒𝑛𝑡 .ℎ𝑒𝑖𝑔ℎ𝑡 −𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑁𝑜𝑑𝑒𝑆𝑖𝑧𝑒)/2. First of all, we
consider only the height, not the agent width, because one, it is
the bigger of the two. And two, because padding is done when the
block is added to the Octree, after which the agent’s orientation can
change. If we first pad one unit in the y-axis and half a unit in the x-
and z-axes, and then the agent rotates so that its up-orientation is
in the x-direction, then the padding would not be enough. Secondly,
we subtract half of the minimum node size. We do this because the
agent always travels to the center of a node, so the distance from
the center to the edge of the node is extra and can be removed from
the padding. Worst case, this distance is half the minimum node size.
In Figure 5, the blue line below the block is the normal size from
the center. The grid shows the minimal nodes. For the example,
we ignore cases where nodes can be combined. The block without
padding will cover C5 and D5 fully. C4, D4, C6 and D6 will also
be labeled as BLOCKED because we do not subdivide smaller than
the minimal node size. When we pad the agent width to it (the red
line), then we see that nodes C3 and D3 would also be BLOCKED,
meaning the agent cannot travel to their center. However, you can
clearly see that the agent can travel to it. So we subtract half the
minimum node size (green line) from the padding, which makes C3
and D3 OPEN. Although the example shows it for the agent width,
the same logic applies to the agent height, which is the one we use.

Padding is done, whenever a block needs to be processed in
the Octree. The methods addObstacle(), removeObstacle() and
setUnknown() all call the method blockBB() for this (see line 5 in
addObstacle() in Section 5.1). This method goes as follows:

1 Boundary blockBB(Vec3 pos) {

2 float vpadding = (AGENT_HEIGHT - MIN_NODE_SIZE) / 2;

3 Vec3 size = new Vec3 (1.25f + vpadding ,

4 1.25f + vpadding ,

5 1.25f + vpadding);

6 return new Boundary(pos - size , pos + size);

7 }

Although padding guarantees it so that the pathfinder never finds
an impossible path to traverse because of player size, it worsens

13

1 2 3 4 5 6 7

𝐴

𝐵

𝐶

𝐷

𝐸

𝐹

a

ba

n

n

Figure 5: Padding: to make sure the agent can always travel
to the center of a node, we pad blocks (with width 2𝑏) with
agent width 𝑎 and then subtract half the minimum node size
𝑛 from it.

another issue. This issue exists because nodes can only be subdi-
vided until the minimum node size. If this minimum node size is
too big, then small hallways in SE, can disappear from theWOM,
because the node(s) between the walls will overlap with part of
the walls and become entirely blocked. This is especially an issue
because of doors. A door is 2.5 units big and will almost always
be surrounded by walls (except the front and back). Another issue
is that when pathfinding from a location, the pathfinding will be
done from the node the agent’s center is located. The minimum
worst case distance from the edge of a block and the center of the
player is half the agent’s height (0.9). Worst case, the node will
just barely overlap with the block and the block will essentially be
larger by the node size (lets call this node rounding). So if we want
the agent’s center to never be allocated to a blocked node, we need
the node size 𝑠 smaller than half the agent’s height 0.9. Now, if we
consider padding, this is not enough anymore. Now we need the
node size 𝑠 with padding 𝑝 smaller than 0.9.

𝑠 + 𝑝 < 0.9

𝑠 + (0.9 − 𝑠

2) < 0.9

𝑠/2 < 0

(2)

Solving for s, we get that the node size needs to be smaller than
0, but it also cannot be negative, so this is impossible. This makes
sense, because the padding is 0.9 minus half the node size, and we
add the node size because we rounded the nodes up. If we round
the nodes down, then it becomes possible, however it would bring
another problem, namely to guarantee the pathfinder will always
find a path without collisions, we would need to add the node size
to the padding.

𝑝 < 0.9

(0.9 − 𝑠

2 + 𝑠) < 0.9
𝑠

2 < 0

(3)

This is the exact same problem. To actually circumvent this problem,
we release the condition of the player never being inside a blocked
node. If we instead allow the agent to start pathfinding inside a
blocked node and just not allow it to travel to one. Then, only when
pathfinding starts in a blocked node, do we need to do something
to guarantee the node the player is in cannot find a neighbouring
OPEN node on the other side of the wall. This can happen if the
nodes are too large, because then the wall and the OPEN area with
the agents center in it can belong to a single blocked node, which
makes it possible to find OPEN neighbours on both the agents side
of the wall and the other side. To guarantee this to never happen
for 1 block wide wall (2.5 game units), we need walls to at least
collide with two nodes. Worst case for this would be if there is no
node rounding going on.

2𝑠 < 2.5 + 2𝑝
𝑠 < 1.25 + 𝑝

𝑠 < 1.25 + (0.9 − 𝑠

2)

1.5𝑠 < 2.15
𝑠 < 1.43333

(4)

So we only need the node size smaller than 1.43333. However, this
will still not guarantee doors to have an OPEN node. To guarantee
this, the distance between two neighbouring padded walls needs
to be large enough to fit at least one node. We once again consider
the worst case scenario of a node entirely being rounded up. The
distance between both walls means that we pad twice, but we do
not add two times node size because of rounding up. If we round
up one wall, then the next wall’s rounding depends on the first one.
For a node size of 1, worst case for one wall is an extra 1 padding.
But the second wall will not add 1, but 0.5, because in a block of
2.5, we can have 3 nodes of size 1. If the first is exactly colliding
with the wall, then the second wall will be exactly halfway to the
third node. So to calculate the required size, we solve for 𝑠 in the
following formula.

𝑠 < 2.5 − (𝑠 + 𝑝 + (2.5 mod 𝑠) + 𝑝)

𝑠 < 2.5 − (𝑠 + 0.9 − 𝑠

2 + (2.5 mod 𝑠) + 0.9 − 𝑠

2)

𝑠 < 2.5 − 𝑠 − 0.9 + 𝑠

2 − (2.5 mod 𝑠) − 0.9 + 𝑠

2
𝑠 < 0.7 − (2.5 mod 𝑠)
𝑠 + (2.5 mod 𝑠) < 0.7

(5)

Let’s say 𝑟 = 2.5 mod 𝑠 . By definition 0 <= 𝑟 < 𝑠 . Worst case
scenario, 𝑟 approaches s, so then we get 𝑠 +𝑠 < 0.7, so 𝑠 < 0.35. Best
case scenario, 𝑟 = 0, so 𝑠 < 0.7. Every value below 0.35 guarantees
doors have an OPEN node, but between 0.35 and 0.7 are still some
possible ranges of values. We ran a simple script to try out all values
between them with a step size of 0.01. The possible ranges are in
intervals 0 < 𝑠 < 5

14 , 0.36 < 𝑠 < 5
12 , 0.45 <= 𝑠 <= 0.5 = 5

10
and 0.6 < 𝑠 <= 0.625 = 5

8 . The pattern being sizes between 0
and 5/14, 9/25 and 5/12, 9/20 and 5/10, 9/15 and 5/8. The largest
possible value that guarantees an OPEN node for doors is thus 0.625.
However, because of floating point arithmetic errors, we decided
to use the node size 0.62. Now that doors will always have at least
one OPEN node and the node size is small enough to guarantee at
least two node thick walls, the problem is fixed for the VoxelGrid

14

data-structure. The node size for Octree nodes are also good, except
if the wall is two nodes thick, then those nodes are probably part of
a group of 8 BLOCKED nodes, which are then combined as a single
larger leaf-node. This makes the wall potentially once again one
node wide. This however is worst case alignment and worst case
combining, making it very improbable. So for Octrees, whenever
we start pathfinding inside a blocked node, we can just temporarily
split up the node again, then do the pathfinding like normal from
its new smaller node and then after pathfinding recombine the split
nodes back together.

5.6 Updating the Octree
All these implementations of pathfinding and exploration for the
Octree data-structure are of course so we can use them for testing
purposes. The iv4XR program already has such an implementation
for this, with its Goals and Tactics. It also has an AgentState which
holds the NavGrid (2D) and the logic to update it. We split this
AgentState up into an AgentState2D and an AgentState3D. The data
and methods that they both share, they inherit from the now ab-
stract AgentState. The AgentState3D is also abstract and holds the
generic methods and data for both the AgentState3DOctree and the
AgentState3DVoxelGrid.

The update method inside the AgentState3DOctree works as
follows:

1 public void updateState(String agentId) {

2 super.updateState(agentId);

3 WorldModel newWom = env(). observe ();

4 WorldModel gridsAndBlocksStates = env(). observeBlocks ();

5 for(var e : gridsAndBlocksStates.elements.entrySet ()) {

6 newWom.elements.put(e.getKey(), e.getValue ()) ;

7 }

8 if (wom == null) {

9 wom = newWom ;

10 grid.initializeGrid(wom.pos , OBSERVE_RADIUS);

11 for(var block : getAllBlocks(gridsAndBlocksStates)) {

12 addToOctree(block);

13 }

14 grid.updateUnknown(centerPos(), OBSERVE_RADIUS);

15 }

16 else {

17 var changes = wom.mergeNewObservation(newWom);

18 Octree newRoot = grid.checkAndExpand(wom.pos);

19 if (newRoot != null) grid = newRoot;

20
21 List <String > tobeRemoved = wom.elements.keySet (). stream ()

22 .filter(id -> !newWom.elements.containsKey(id))

23 .collect(Collectors.toList ());

24 for(var id : tobeRemoved) wom.elements.remove(id) ;

25
26 for(var gridNew : changes) {

27 var gridOld = gridNew.getPreviousState ();

28 if (gridOld == null) continue;

29
30 tobeRemoved.clear ();

31 tobeRemoved = gridOld.elements.keySet (). stream ()

32 .filter(blockId -> !gridNew.elements.containsKey(blockId))

33 .collect(Collectors.toList ());

34
35 boolean rebuild = false;

36 for (var blockId : tobeRemoved) {

37 var block = gridOld.elements.get(blockId);

38 if (Vec3.dist(block.pos , newWom.pos) < OBSERVE_RADIUS) {

39 grid.removeObstacle(block);

40 rebuild = true;

41 }

42 }

43 if (rebuild) {

44 for (var block : getAllBlocks(gridsAndBlocksStates)) {

45 addToOctree(block);

46 }

47 }

48 else {

49 List <String > tobeAdded = gridNew.elements.keySet (). stream ()

50 .filter(id -> !gridOld.elements.containsKey(id))

51 .toList ();

52 for (var blockId : tobeAdded) {

53 addToOctree(gridNew.elements.get(blockId));

54 }

55 }

56 }

57 }

58 }

This update method first updates the environment (env). This is
done inside the updateState() method in the parent class, so line
2 handles this. Next, the World Object Model (WOM) and the SE
grids and blocks states are observed. TheWOM holds all important
player data. Then lines 5-6 add all grids and blocks states to this
WOM. In SE, all connected blocks are grouped together in grids.
The WOM we observe at the start, we name newWOM, because we
will compare it with the previous one. If this is the first time we
run this method, the old WOM, henceforth just WOM, will be null.
If so, we set the WOM to the newWOM, initialize the Octree with a
root-node that encompasses the entire viewing range and then add
all observed blocks to the Octree (lines 9-12). Lastly, because all
Octree nodes are initialized as UNKNOWN and because when we
update it with the block states, we only set nodes to the BLOCKED
state, this means there are no OPEN nodes yet. updateUnkown()
fixes this by setting all UNKNOWN nodes inside the viewing range
to OPEN (line 14). If this is not the first time we run the method,
then we run the rest of the method. First we merge the new and
the oldWOM (line 17). This adds new observed grids and adds new
observed blocks to their corresponding grids. Note that it only adds
new grids or overwrite old ones with a newer state. The method
returns a list of differences between the new and oldWOM. Next,
before we try to add anything to the Octree, we first check to see if
the observation radius is still fully inside the root Octree node. If
not, we expand the Octree so it is (line 18-19). See Section 5.1 for
how this works. Lines 21-24 make sure theWOM (nowmerged) gets
rid of any grids that are not in the newWOM, meaning they are now
outside the viewing range. Lines 26-53 loop over the changes line 17
returned. These changes are in the form of a list of grids of changed
(added or removed) blocks. First in the loop, we get the previous
state of the changed grid and if it doesn’t have one, it means it was
added, so we skip the rest of the loop. Otherwise, we get a list of
all blocks inside the viewing range in the grid that were in the old
state, but not in the new. Then we loop over the removed blocks
and check if they are inside the viewing range (lines 36-40). If they
are inside, that means the blocks are removed from the SE world
and should be removed from the Octree. If they are outside, that
means the block is removed from theWOM, but probably still exists
inside the SE world. It is now outside viewing range, so we do not
update the Octree. After checking for all blocks, if any block was
removed from the Octree, then we have a small problem, caused by
padding. The area we made OPEN by removing the block is padded
just like when we added the block, but the Octree nodes that are
now OPEN could have intersected with multiple blocks, so it may
still need to be BLOCKED. Because of this, we go over all blocks
inside viewing range and re-add all of them to the Octree (lines

15

43-45). This makes sure any nodes that were incorrectly changed
from BLOCKED to OPEN, are changed back. This is very expensive,
but not a big problem, because it almost never happens. If no block
was removed, then we get a list of all blocks that are in the new
grid, but not in the old one. So for all newly observed blocks, we
add them to the Octree (lines 49-53).

5.7 Testing
With the spatial partitioning data-structure in place, a way to update
it based on observations and the ability to plan a path through it
and a way to give the agent in SE movement commands, we only
need to create the actual test methods that can be used to use them
for testing purposes. The GoalStructures we slightly altered are:

(1) closeTo(Vec3 target)
(2) closeToBlock(Function selector, BlockSide side)

And the GoalStructures we added are:
(1) smartCloseToBlock(Function selector, BlockSide side)
(2) exploreTo(Vec3 target)
(3) explore()
(4) exploreToFind(Function selector, BlockSide side)
(5) closeToButton(int buttonNr)
Some goals require some information about the world that is

unavailable before running the test. In these cases, instead of sim-
ply adding a GoalStructure to the test, we instead add a function
that takes the agent state and insert a new GoalStructure after the
current one. So instead of a test looking like:
GoalStructure G = SEQ(closeTo(door),

faceTowards(door)

);

It will look like:
GoalStructure G = SEQ(DEPLOYonce(agent ,closeTo(door)),

DEPLOYonce(agent ,faceTowards(door))
);

When G is created, all the test goals are created immediately, which
is a problem when we want to wait until we need to perform the
test goals so that we can observe the world in that instance. So
if a goal is to get close to a door, then we do not want to look if
there is a door and create a goal to go to that location immediately.
Especially considering we create the root GoalStructure G before
the agent even gets to observe the game world. So we instead use a
DEPLOYonce goal, that when activated does not test anything, but
instead creates a new goal using the current state and inserts it after
itself. Then the DEPLOYonce goal is solved, and it will switch to the
next goal, which is the newly inserted goal. DEPLOYonce removes
itself from the goal structure, so it can only activate once. If you
want to deploy a goal multiple times (in a REPEAT combinator),
then you can use DEPLOY.

The Goal closeTo() takes a target location and simply tries to
go there using pathfinding.

1 public Function <AgentState ,GoalStructure > closeTo(Vec3 target)

2 {

3 return (AgentState state) -> {

4 Vec3 targetSq = state.getBlockCenter(target);

5 GoalStructure G = goal()

6 .toSolve ((Pair <Vec3 ,Vec3 > posAndOrientation) -> {

7 var agentPos = posAndOrientation.fst ;

8 return (targetSq - agentPos). lengthSq () <= DIST_THRESHOLD;

9 })

10 .withTactic(FIRSTof(navigateToTAC(target), ABORT ()))

11 .lift ();

12 return G;

13 };

14 }

The function takes the state, which contains the Octree (or an-
other spatial partitioning data-structure). Given a target location,
it checks what node it is in and then creates the goal to get close to
the center of that node. Lines 7-8 check if the Goal is solved. Line
10 defines what Tactics the GoalStructure uses to solve itself. The
Tactic being used is first trying to navigate to the target location. If
the Tactic is not enabled (failed the guard), then it switches to the
ABORT Tactic, which makes the Goal fail. If the Tactic is enabled,
then it returns an updated position and orientation, which are used
to check if the Goal is solved. The only changes we made to this
method from the original iv4XR implementation were taking the
center of a 3D node instead of the center of a 2D node in line 4 and
changing the inner workings of the navigateToTAC() Tactic.

The Tactic navigateToTAC() goes as follows:
1 public Tactic navigateToTAC(Vec3 destination) {

2 return action("navigateTo")

3 .do2((AgentState state)

4 -> (Pair <List <DPos3 >, Boolean > queryResult) -> {

5 var path = queryResult.fst;

6 var arrivedAtDestination = queryResult.snd;

7
8 if (arrivedAtDestination) {

9 state.currentPathToFollow.clear ();

10 return Pair <>(state.pos(), state.orientationForward ());

11 }

12 state.currentPathToFollow = path;

13
14 var next = state.currentPathToFollow.get (0);

15 var nextPos = state.getBlockCenter(nextNode);

16 if ((nextPos - state.pos ()). lengthSq () <= DIST_THRESHOLD) {

17 state.currentPathToFollow.remove (0) ;

18 return Pair <>(state.pos(), state.orientationForward ());

19 }

20 CharacterObservation obs;

21 obs = yTurnTowardACT(state , nextNodePos , 0.8f, 10) ;

22 if (obs != null) {

23 return Pair <>(obs.position(), obs.orientationForward ());

24 }

25 obs = moveToward(state , nextNodePos , 20);

26 return Pair <>(obs.position(), obs.orientationForward ());

27 })

28 .on((AgentState state) -> {

29 if (state.wom == null) return null;

30 var agentNode = state.getGridPos(state.pos ());

31 var destNode = state.getGridPos(destination);

32 var destNodePos = state.getBlockCenter(destNode);

33 if ((destNodePos - state.pos ()). lengthSq () <= DIST_THRESHOLD)

34 return Pair <>(state.currentPathToFollow , true);

35
36 int pathLength = state.currentPathToFollow.size ();

37 if (pathLength == 0 ||

38 destNode != state.currentPathToFollow.get(pathLength -1))

39 {

40 var path = state.pathfinder.findPath(state.getGrid(),

41 agentNode , destNode);

42 if (path == null) return null;

43 path = smoothenPath(path);

44 return Pair <>(path , false);

45 }

46 else {

47 return Pair <>(state.currentPathToFollow ,false);

48 }

49 })

50 .lift ();

51 }

16

The guard is defined in lines 28-47 and the effect part in lines 3-26.
The Tactic has also been slightly altered from the original iv4XR
implementation (see Section 2.3.2). Instead of using the NavGrid
(2D version) to get the nodes (lines 15 and 30-32), we use a generic
reference to the generic grid class. If, for example, this Tactic is
ran with the Octree, then the getGridPos() method of the Octree
will be called. Also, the yTurnTowardsACT() and moveTowards()
method from lines 21 and 25 were changed to work regardless of
orientation. This change was explained in Section 5.4.

The goal closeTo() can also be done with a specified block
type as the target instead of a location. This is the closeToBlock()
GoalStructure. Instead of taking a Vec3 as a target, it takes a se-
lector function and block side as parameters. Using the selector
function, it then tries to find a block inside the WOM that satisfies
the selector condition and calculates the block’s position. From that
point on, the GoalStructure works the same as a regular closeTo()
GoalStructure.

In addition to the normal closeToBlock() GoalStructure, we
also made a more intelligent one, capable of exploring and press-
ing a (single) button to potentially find a way to a goal. This
smartCloseToBlock() goal is defined as follows:

1 public Function <AgentState ,GoalStructure > smartCloseToBlock(

2 Agent agent ,

3 Function <AgentState , Predicate <WorldEntity >> selector ,

4 BlockSide side)

5 {

6 return (AgentState state) -> {

7 Function <Void , GoalStructure > G = (unused) -> goal()

8 .toSolve ((Pair <Vec3 ,Vec3 > posAndOrientation) -> {

9 var block = findClosestBlock(state.wom ,

10 selector.apply(state));

11 if (block == null) return false;

12
13 Vec3 targetPos = getSideCenterPoint(block , side);

14 Vec3 targetSq = state.getBlockCenter(targetPos);

15
16 var agentPos = posAndOrientation.fst ;

17 return (targetSq - agentPos). lengthSq () <= DIST_THRESHOLD;

18 })

19 .withTactic(

20 FIRSTof(navigateToBlockTAC(selector , side), ABORT ()))

21 .lift() ;

22
23 return FIRSTof(

24 SEQ(G.apply(null),

25 DEPLOYonce(agent , faceTowardBlock(selector))

26),

27 SEQ(explore(selector , side).apply(state),

28 G.apply(null),

29 DEPLOYonce(agent , faceTowardBlock(selector))

30),

31 SEQ(DEPLOYonce(agent , closeToButton (0)),

32 pressButton (0),

33 explore(selector , side).apply(state),

34 G.apply(null),

35 DEPLOYonce(agent , faceTowardBlock(selector))

36)

37);

38 };

39 }

This GoalStructure is similar to the closeToBlock() GoalStruc-
ture. The goal G it creates in lines 7-21 is the same closeToBlock()
goal, but it takes the current state to create itself and it itself to the
SEQ GoalStructure combinator. The smartCloseToBlock() Goal-
Structure is a combinator of the goal G and some others. It uses a
FIRSTof to first try to find a path to the goal in the currentWOM

(lines 23-24). If it succeeds the goal G, then it follows it up with
a faceTowardsBlock() goal (line 25). If it fails, because it cannot
find the target block or if no path to the target block is possible,
then it goes to the explore() goal (line 27). The explore() goal
explores the world until there are no more reachable unknown
nodes. If it finishes, then it tries goal G (go to goal block) once again
(line 28). The reason we made G a function that creates a GoalStruc-
ture is because we want to create it to use the newly updated state.
So we apply the function to create a fresh instance of goal G. If the
goal G fails again, then we try to go to a button (line 31). If there is
a button, then after getting to it, we switch to the pressButton()
goal (line 32). The pressButton() goal, presses the button and sets
all nodes that collide with a door to be UNKNOWN again. Thus,
after succeeding in pressing a button, we can explore again. Finally,
after exploring for the last time, we try to go to the goal block one
final time (line 34). If at any point in the final SEQ (lines 31-35) any
goal fails, then the whole smartCloseToBlock() GoalStructure
fails.

The exploreTo() GoalStructure does pathfinding to some tar-
get location, but once it finds a node neighbouring an unknown
node, it returns a path to that node. The GoalStructure repeats
this until it finds a path to the node containing the target location.
The explore() GoalStructure repeatedly goes to the closest node
neighbouring an unknown node until the entire navigable world
is known. The exploreToFind() GoalStructure does the same as
explore(), except it early outs whenever it finds a path to some
goal block. Lastly, the closeToButton()GoalStructure simply goes
to a button.

5.8 Voxel Grid
With the Octree fully working, we will explain how we made the
simpler data-structure, which we will use as a baseline to compare
the Octree with. This data-structure is the VoxelGrid, which as
the name implies is simply a 3D grid of voxels. The 3D grid is
implemented as follows:

1 ArrayList <ArrayList <ArrayList <Voxel >>> grid;

With a Voxel being defines as follows:

1 public class Voxel {

2 public byte label;

3

4 public Voxel() {

5 this.label = Label.UNKNOWN;
6 }

7 public Voxel(byte label) {

8 this.label = label;

9 }

10 }

A voxel only contains a single piece of data, namely its label. Just
like the Octree, the label can be one of the same four possible
types: BLOCKED, OPEN, MIXED or UNKNOWN. Voxels have two
constructor methods. One with a provided label and one without.
With a label provided, the voxel will simply start with that label.
With no label provided, the voxel will get the UNKNOWN label. This
is used whenever the VoxelGrid needs to be expanded in order to
contain the whole viewing range of the agent.

17

Whenever the agent observes an object, the VoxelGrid will up-
date the labels of the voxels that overlap with the object. This is
done using the following addObstacle() method:

1 public void addObstacle(WorldEntity block) {

2 List <DPos3 > obstructedVoxels = getObstructedVoxels(block);

3 for (var voxel : obstructedVoxels) {

4 get(voxel).label = Label.BLOCKED;

5 }

6 }

First, in line 2, getObstructedVoxels() will calculate which (po-
tential) voxels overlap with the block. This is in the form of a list
of 3d integer coordinates. The x,y,z parts of the coordinates can
then be used as indices in the 3D grid to get the corresponding
voxel. Then it loops over all the voxel coordinates and sets their
labels to be BLOCKED. Adding an obstacle to the grid cannot be
done if the obstacle is outside of it. To ensure there are no errors,
we use the expand method to expand the grid so that the viewing
range is always inside the grid. That way, whenever we observe
and add an obstacle to the grid, we can know for sure that the
obstructed voxel coordinates are all inside the grid. The method
getObstructedVoxels() works as follows:

1 List <DPos3 > getObstructedVoxels(WorldEntity block) {

2 List <DPos3 > obstructed = new LinkedList <>() ;

3
4 Vec3 maxCorner = SEBlockFunctions.getBaseMaxCorner(block);

5 Vec3 minCorner = SEBlockFunctions.getBaseMinCorner(block);

6
7 float vpadding = new Vec3((AGENT_HEIGHT - voxelSize) / 2);

8 minCorner = minCorner - padding;

9 maxCorner = maxCorner + padding;

10
11 var corner1 = gridProjectedLocation(minCorner) ;

12 var corner2 = gridProjectedLocation(maxCorner) ;

13 for(int x = corner1.x; x <= corner2.x; x++) {

14 for (int y = corner1.y; y <= corner2.y; y++) {

15 for (int z = corner1.z; z <= corner2.z; z++) {

16 var voxel = new DPos3(x,y,z) ;

17 obstructed.add(voxel) ;

18 }

19 }

20 }

21 return obstructed ;

22 }

Given a block, it gets the minimum and maximum corners of the
block (lines 4-5). Then it pads them with some extra distance to
make it so that the agent can consider itself a single point dur-
ing pathfinding. Padding is explained in Section 5.5. After that, it
projects the minimum and maximum corners to VoxelGrid coor-
dinates. This projection subtracts the VoxelGrid position from it,
to make the position relative to the VoxelGrid (with (0,0,0) being
the bottom-left-front corner). Then it divides the relative position
by the voxel size and rounds the value down to the nearest integer,
to get the x,y,z coordinates in the 3D grid. After projection, lines
13-17 add all voxels between the minimum and maximum corners
to the list of obstructed voxels. Finally, it returns this list.

The method checkAndExpand(), which is responsible for mak-
ing sure no observed blocks are outside the VoxelGrid, is as follows:

1 public void checkAndExpand(Boundary range , AgentState state) {

2 if (boundary.contains(range))

3 return;

4
5 if (range.pos.x < boundary.lowerBounds.x) {

6 DPos3 gridSize = size ();

7 int diff = ⌈ boundary.lowerBounds.x - range.pos.x⌉;
8 for (int x = 0; x < diff; x++) {

9 ArrayList <ArrayList <Voxel >> newX =

10 Stream.generate (() -> Stream.generate(Voxel::new)

11 .limit(gridSize.z)

12 .collect(Collectors.toCollection(ArrayList ::new)))

13 .limit(gridSize.y)

14 .collect(Collectors.toCollection(ArrayList ::new));

15 grid.add(0, newX);

16 }

17 boundary.lowerBounds.x -= voxelSize * diff;

18 state.currentPathToFollow.forEach(DPos3 -> DPos3.x += diff);

19 }

20 else if (range.upperBounds ().x > boundary.upperBounds.x) {

21 DPos3 gridSize = size ();

22 int diff = ⌈range.upperBounds.x - boundary.upperBounds.x⌉;
23 for (int x = 0; x < diff; x++) {

24 ArrayList <ArrayList <Voxel >> newX =

25 Stream.generate (() -> Stream.generate(Voxel::new)

26 .limit(gridSize.z)

27 .collect(Collectors.toCollection(ArrayList ::new)))

28 .limit(gridSize.y)

29 .collect(Collectors.toCollection(ArrayList ::new));

30 grid.add(newX);

31 }

32 boundary.upperBounds.x += voxelSize * diff;

33 }

34 if (range.pos.y < boundary.lowerBounds.y) {

35 DPos3 gridSize = size ();

36 int diff = ⌈ boundary.lowerBounds.y - range.pos.y⌉;
37 for (int x = 0; x < gridSize.x; x++) {

38 for (int y = 0; y < diff; y++) {

39 ArrayList <Voxel > newY = Stream.generate(Voxel::new)

40 .limit(gridSize.z)

41 .collect(Collectors.toCollection(ArrayList ::new));

42 grid.get(x).add(0, newY);

43 }

44 }

45 boundary.lowerBounds.y -= voxelSize * diff;

46 state.currentPathToFollow.forEach(DPos3 -> DPos3.y += diff);

47 }

48 else if (range.upperBounds.y > boundary.upperBounds.y) {

49 DPos3 gridSize = size ();

50 int diff = ⌈range.upperBounds.y - boundary.upperBounds.y⌉;
51 for (int x = 0; x < gridSize.x; x++) {

52 for (int y = 0; y < diff; y++) {

53 ArrayList <Voxel > newY = Stream.generate(Voxel::new)

54 .limit(gridSize.z)

55 .collect(Collectors.toCollection(ArrayList ::new));

56 grid.get(x).add(newY);

57 }

58 }

59 boundary.upperBounds.y += voxelSize * diff;

60 }

61 if (range.pos.z < boundary.lowerBounds.z) {

62 DPos3 gridSize = size ();

63 int diff = ⌈ boundary.lowerBounds.z - range.pos.z⌉;
64 for (int x = 0; x < gridSize.x; x++) {

65 for (int y = 0; y < gridSize.y; y++) {

66 for (int z = 0; z < diff; z++) {

67 grid.get(x).get(y).add(0, new Voxel ());

68 }

69 }

70 }

71 boundary.lowerBounds.z -= voxelSize * diff;

72 state.currentPathToFollow.forEach(DPos3 -> DPos3.z += diff);

73 }

74 else if (range.upperBounds.z > boundary.upperBounds.z) {

75 DPos3 gridSize = size ();

76 int diff = ⌈range.upperBounds.z - boundary.upperBounds.z⌉;
77 for (int x = 0; x < gridSize.x; x++) {

78 for (int y = 0; y < gridSize.y; y++) {

79 for (int z = 0; z < diff; z++) {

80 grid.get(x).get(y).add(new Voxel ());

81 }

82 }

83 }

84 boundary.upperBounds.z += voxelSize * diff;

85 }

86 }

18

Although the code is optimized Java code, the idea is simple and
works in any language. Lines 5-18 are for expanding to the right
(positive x), 20-32 for expanding to the left (negative x), 34-46 for
expanding downwards (negative y), 48-59 for expanding upwards
(positive y), 61-72 for expanding to the front (negative z) and 74-84
for expanding to the back (positive z). All the negative directions
update the VoxelGrid’s minimum position (lower boundary) and
update the currentPathToFollow too (lines 17-18, 45-46 and 71-
72). Because we store the state’s current path it is following as a list
of node coordinates, we have to update the coordinates if the mini-
mum position has changed. For example, position DPos3(2,0,0)
would be two voxelSize units to the right of the lower boundary.
So if we expanded to the left, the lower boundary has moved diff
units to the left, so the path’s coordinates all need to be moved
diff units to the right. Positions are calculated using the lower
boundary, so if we expanded in a positive direction, we do not need
to update the currentPathToFollow. At the start of every expan-
sion direction is calculating how much needs to be expanded (diff
in lines 7, 22, 36, 50, 63 and 76). Then for the x-axis, we generate
an ArrayList of ArrayLists of Voxels with lengths size.y and
size.z. Lines 9-14 (lines 24-29 are the same) is an efficient method
to do this in Java. Then we add this at x-index 0 of the grid if we
expand to the left (line 15) or at the end if we expand to the right
(line 30). For the y-axis, we basically do the same, except we loop
over the x-array of the 3d array and generate an ArrayList of
Voxels instead. Then for every x in the 3D array, we add the new
y-array at the end or at index 0. For the z-axis, we loop over the
x-array, then loop over the y-array and simply add a new voxel at
the end or at index 0. All of these together make addObstacle()
work. removeObstacle() and setUnknown() work the same way,
but instead of making voxel labels BLOCKED, they make them OPEN
and UNKNOWN respectively.

Given a VoxelGrid node, which you can easily get by projecting
the agent’s position to the VoxelGrid, you have the coordinates
of its voxel, so you can easily get its neighbours by checking the
voxels neighbouring the coordinates (+1 or -1 for x,y,z).

5.9 3D NavGrid
The original iv4XR implementation used a 2D NavGrid as its data
partitioning data-structure. To be able to compare our Octree imple-
mentation with the original implementation, we need to upgrade
the 2D NavGrid to 3D. We decided to keep the changes as minimal
as possible and follow the same design structure as the original.
This however, meant that it would not be possible to do explo-
ration with it, as the original 2D implementation could also not do
it. Adding exploration functionality the same way as done for the
Octree and VoxelGrid was also not possible, because they do so
with a label. The NavGrid, by nature, does not store a label, as it
only stores BLOCKED nodes. Changing the 2D NavGrid to 3D was
simple, requiring just an additional axis to be stored and used for
querying.

6 RESULTS
With the Octree, VoxelGrid and 3D NavGrid implemented, we need
to test how efficient the Octree is compared to the baseline Voxel-
Grid and 3D NavGrid. In this section, we will test the performance

Figure 6: Test world 1

of our Octree data structure for both speed and memory efficiency.
We will compare the performance of the method in four test sce-
narios with two baseline methods.

6.1 Tests
The test worlds in which we will run the program are as follows:

Test world 1. A simple small world with a little room for moving
around, one closed door, a button which opens said door and a goal
past the door. This test world is the same as one from the original
iv4XR test worlds, but fully enclosed, so the 3D pathfinder cannot
reach the goal without going through the door, and with a button
to open the closed door. This test shows our method can be used
for basic level tests. Figure 6 shows the layout of the test world,
with the roof removed for visibility. The (red) walls also have been
reduced to just 1 block high. The door (blue block in the center) is
initially closed and can be opened by pressing the button on the
(blue) button-panel at the top-right. The green block on the left is
the goal to reach. The agent starts at the bottom right and has to
get in front of the green block. To solve this test goal, we use the
smartCloseTo() GoalStructure. It will first fail to find a path to
the goal. Then it will explore all nodes it can reach. For a viewing
range of about 20 units, this will have the agent end up just around
the corner, between the door and button panel. After that, it will go
to the button panel and press it. Then, once more, it will fail to find
a path to the goal, because the area behind the door was outside
the viewing range. This, the agent will explore again and end up
just behind the door. From there, it will find a path to the goal, so it
stops exploring and directly go towards it.

Test world 2. A complicated small world with three doors and
four buttons. The layout can be seen in Figure 7. Just like the pre-
vious figure, we once again removed the roof and shortened the
wall heights. All three (blue) doors start closed. Button 1 (at the
top-left) toggles door 1, button 2 (in the middle) also toggles door 1
and button 3 (at the bottom-left) toggles all three doors. The order
the agent has to take to reach the goal is: first, press button 1 to
open door 1, then press button 3 to open the door to the goal, but
also closes door 1, then press button 2 to once again open door 1,
finally go to the goal. This test is the exact same test as CR3_3_3_M
from the lab recruits game testing contest 2021 [22], but with a
roof. This test shows our method can be used for complicated test
scenarios. It is possible to create a GoalStructure smart enough to

19

Figure 7: Test world 2

solve the test world without providing information on what the
buttons do or in what order to press them. However, we decided to
just provide the button order and test if the agent can complete the
test with knowledge of the puzzle solution. The GoalStructure we
used is defined as follows:

1 GoalStructure G = SEQ(
2 DEPLOYonce(agent , closeToButton (0)),

3 pressButton (0),

4 DEPLOYonce(agent , closeToButton (2)),

5 pressButton (2),

6 DEPLOYonce(agent , closeToButton (1)),

7 pressButton (1),

8 DEPLOYonce(agent , close3DTo(

9 agent , "TargetDummy",

10 SEBlockFunctions.BlockSides.BACK ,

11 50f, 0.5f))

12);

Just like in test world 1, the viewing range was also set to 20 units,
but this time, the world is small enough for the agent to never need
to explore.

3. Glass box. A very large and very empty world. The world is
a giant enclosed glass cube to prevent the agent from going too
far away from the important locations. Inside the glass cube is
a building where the agent starts, another unconnected building
floats some distance away with the goal inside, but the door is
closed. The button to open the door much higher, some distance
away. Just like in test 1, the agent has to press the button to open
the door, to reach the goal. This test, shows the method works for
large open 3D spaces and allows us to measure how the different
techniques work in such environments. We originally planned to
test it using the smartCloseTo() method. However, we found that
for such large open spaces, that the exploration method for the
VoxelGrid and NavGrid was very time-consuming. So we split the
test for this test world up into two separate tests. Test 3a is almost
the same as the original, however we skip any exploration steps and
make sure the entire world is explored by setting the observation
radius to encompass the entire test world. Test 3b simply measures
the time it takes to complete a single explore call. We position the
agent at the center of the test world. We measure the time it takes
for exploration to the closest unknown node for the viewing ranges
10 to 70 with every multiple of 10 in between. Figure 8 shows the
test world from multiple angles. The first (top-left) image shows
the zoomed out layout. The second image shows the building in

which the agent starts the test. The third image shows the building
in which the goal is. The closed door is marked in blue. The button
to open the door is shown in the fourth image (bottom-left). The
button is also marked blue, and you can see the blue door in the
background. The final image shows the goal (marked green) behind
the glass inside the building in the third image.

The final test world, test world 4 is the same as test world 3,
but with a lot of added extra obstacles to fill the empty space. This
test allows us to measure the difference empty space makes on
the memory and time efficiency of the Octree compared to the
baseline VoxelGrid and NavGrid data structures. Figure 9 shows
this test world from the same angles as those in Figure 8. The
original buildings, doors, and buttons have not changed, so the test
plays out the same, except the agent has to plan around a lot of
additional obstacles.

6.2 Metrics
To show how effective our Octree data-structure is for testing,
we will compare our method in multiple ways. We will measure
the total time it takes the tests from start to finish, as well as the
time spent on some sub-tasks. These sub-tasks include: the travel
time, pathfinding time, exploration time, expanding the ‘grid’ (Oc-
tree/VoxelGrid/NavGrid), adding to or removing obstacles from the
‘grid’, retrieving the neighbouring nodes from a node and initializ-
ing the ‘grid’. Initializing the grid is only done once, so the time it
takes has no significant impact on the performance, as long as it
doesn’t take too long. Every update, the agent observes the world
and all new obstacles are added to the grid. We measure the time
it takes to add all new obstacles as a group in a single observation
and take the average over the observations for the addToGrid()
time. When the grid has to be expanded, we measure the time it
takes to do so and take the average of all expanding times. Every
time pathfinding to some location is done, we measure the time it
took and take the average. Pathfinding is done using the A* search
algorithm, with as heuristic the Euclidean distance to the target.
Although more expensive, we chose the Euclidean distance over the
Manhattan distance to reduce the amount of nodes the pathfinder
has to go through, as this is quite a large difference in 3D. Once a
path has been found, pathfinding will not be done again until the
agent has reached the end of the path. Every time exploration is
done, which is just pathfinding, but going to no specific location
and thus expanding out in every direction all at once, we measure
the time and record the average. Exploration is done using A*, but
without a heuristic, making it effectively equivalent to Dijkstra’s
algorithm. Pathfinding using A* uses the GetNeighbour() method
to get the neighbours, which is the second biggest difference in
time efficiency between the different methods. Just like for the
pathfinding time, the exploration time does not include travel time,
only the time it takes to find a path. The biggest difference being
the number of nodes that need to be traversed. So we also measure
the average time it takes for one GetNeighbour() call. Finally, we
also measure the total time spent on moving around in the game
world. This allows us to see if the difference in total time is due to
an overall more time efficient data structure, or because the test
took longer because the agent just moved slower.

20

Figure 8: Test world 3

Figure 9: Test world 4

We also measure the memory usage of the data structures in all
four test worlds. We used a viewing range of 20 for the two smaller
test worlds: 1 and 2. For test worlds 3 and 4 we used a viewing range
of 50 to reduce the time it takes to measure it. We measure the
memory usage by exploring the world until all reachable locations
are explored. For the Octree, this means we have to explore the
whole world. For the VoxelGrid, we have to go to the two furthest
corners of the map. And for the NavGrid, we just need to have
observed all blocks, which we do by having the viewing range
encompass the entire test world. To measure memory usage, we
use IntelliJ Ultimate’s profiler to take a memory snapshot after
exploring the world or filling the ‘grid’. To measure the time for
tests, we simply start a timer at the start of the code we want
to measure and end it at the end. For code that generally takes
longer, we measure the time in milliseconds, the rest we measure
in nanoseconds.

6.3 System Specifications
The desktop PC we used for our performance measurements has
the following hardware and software specifications.

(1) Processor (CPU): Intel(R) Xeon(R) W-2125, 4 cores, 4.00GHz,
4.01 GHz

(2) Memory (RAM): 32.0 GB (31.7 GB usable) DIMM, 2666 MHz
(3) Caches: L1: 265 KB, L2: 4.0 MB, L3: 8.2 MB
(4) Graphics Processing Unit (GPU): NVIDIA Quadro P4000, 8

GB GDDR5
(5) Operating System: Windows 10 Pro, version 22H2
(6) Java Version: Jetbrains Runtime 17.0.9 (jbr-17)

6.4 Results
In this section, we will show the resulting statistics that came out of
the tests. We split the results into memory usage, speed and testing
capabilities and will go over them one by one.

21

Table 1: Memory usage of data-structures per test

Memory Test 1 Test 2 Test 3 Test 4
Octree 4.97 MB 2.90 MB 88.90 MB 107.15 MB
VoxelGrid 19.02 MB 16.81 MB 309.23 MB 310.48 MB
NavGrid 2.26 MB 1.37 MB 77.26 MB 102.43 MB

6.4.1 Memory.
In Table 1 you can see the amount of memory is used for tests 1 to 4.
In all tests, the NavGrid uses the least amount of memory, with the
Octree a close second place. The VoxelGrid uses significantly more
memory than the other two. Test 3 and 4 have the same dimensions,
but test 4 has significantly less empty space in it. For the VoxelGrid,
this just means that some open nodes will be blocked. The memory
usage will stay the same. The small difference in the table is because
of semi-random exploration, expanding the grid slightly differently.
The 3D grid in test 3 had size (253x272x217), whilst the grid in test
4 had size (254x273x216). For the Octree, a more filled world means
that a lot of large fully empty nodes have to be split up, going
from around 1.27 million nodes to 1.53 million. So for more full
worlds, the Octree will have to store more nodes, which takes more
memory space. The NavGrid only stores BLOCKED nodes, so more
obstacles in the world results in more blocked nodes, which takes
more memory. All in all, the NavGrid is the most memory efficient
data-structure of the three based on the test worlds, with the Octree
a close second place. However, the test worlds all use walls of a
single block wide, never having large areas of BLOCKED nodes
grouped together. So the Octree will mostly combine OPEN nodes
or UNKNOWN nodes together at large scales. In worlds with more
obstacles close together than open areas, then the Octree will stay
equally memory efficient, but the NavGrid will be far worse. Thus
even though the NavGrid is slightly more memory efficient for most
scenarios, the Octree, being slightly slower in such scenarios, is in
our opinion still the better data-structure memory wise, because it
is more consistently memory efficient across all scenarios. It is still
theoretically possible to have a world where the VoxelGrid is more
memory efficient than both the Octree and NavGrid. This is the
case for a world with alternating obstacles and open space. Every
Octree node uses 32 bytes, while a VoxelGrid node only uses 16
bytes. The VoxelGrid also has a lot of memory overhead because
of storing the voxels in a 3D arrayList. This overhead is about 8
bytes per voxel. A single NavGrid node uses 56 bytes, excluding the
overhead. So for a world where the Octree can minimally optimize
nodes together into a single parent-node and where there are more
BLOCKED nodes than OPEN nodes, the VoxelGrid should be more
memory efficient than the Octree and NavGrid. This however is
very unlikely in any 3D world to happen, so we can safely say the
VoxelGrid method is still the worst data-structure for testing in 3D
worlds of unknown size.

A short explanation on the memory usage values is as follows.
For Octrees the memory usage of a single Octree node is 32 bytes
shallow size in Java. Shallow size is just the memory used by the
Object, including the memory used by references to other Java
Objects. The memory used of the referenced Objects is not included.
The retained memory size is an Object’s shallow size + all the
memory used by Objects it is referencing to. An Octree node holds

1 byte for the code, 1 byte for the label, 3*4 = 12 bytes for the
references to the parent, children array and the boundary. Lastly,
the Octree node Object header is another 16 bytes. In total, it uses
2+12+16 = 30 bytes, which is padded to 32 bytes to be a multiple of 8.
The Boundary holds a position and a size for a total of 4 floats, which
is 16 bytes. Add the Object header of another 16 bytes for exactly
32 bytes. The parent is not counted as part of the retained size of a
node, because it is part of another node. The same counts for the
children references in the array. Although the actual Octree nodes
aren’t counted towards the retained memory size, the array that
holds them is. The array’s overhead is 16 bytes and then another 4
bytes for the 8 references to the children, for a total of 48 bytes. If
the node is a leaf-node, then the memory usage for the array is 0
bytes, because it will be null. The ration parent-nodes to leaf-nodes
will start at 1:1 with a single leaf-node and with increasing tree
size approach 1:8 The total (retained) memory usage𝑚 for 𝑛 Octree
nodes is then approaching𝑚 = 𝑛 ∗ 64 + 𝑛 ∗ 48.

For the VoxelGrid, the memory usage of a single Voxel is 16
bytes. This is because although it holds only a single byte of data,
the Voxel is a Java Object and is thus padded to be its minimum
size of 16 bytes. We need it to be an Object to be able to use it as a
node in our 3D grid, which is a 3D ArrayList. It is possible to only
use a single byte with a 3D array, but expanding an array during
exploration would be too time-consuming. The shallow memory
usage is the number of nodes 𝑛 ∗ 16 bytes. The retained memory
includes the ArrayLists extra memory usage is the overhead of 24
bytes and the backing array. An ArrayListwhenever it is expanded,
expands its size with more than 1, so that we do not need to change
the size too often. The extra unused size is the backing array and
only uses the reference memory size. The reference size is 8 bytes,
but for references to Objects with small memory consumption,
compressed OOP (ordinary object pointer) is done to reduce it to
4 bytes per reference. For the VoxelGrid, this compression is done
for the z-axis arrayList, because the Objects it references are just
16 bytes. The y-axis and z-axis do not use compression, because
the y-axis arrayList references a whole z-axis arrayList and the
x-axis arrayList references a whole y-axis arrayList of z-axis
arrayLists.

For the NavGrid, the memory usage of a single node is 56 bytes.
A node contains a key, a value, hash of a key and a pointer to the
next node. The key is a pointer to a DPos3, which takes 24 bytes,
the pointer takes 4 bytes. The value, although unused, still takes 16
bytes. The hash takes 4 bytes, and the pointer to the next node also
takes 4 bytes. The node itself is padded to 32 bytes (4+16+4+4=28).
With the DPos3 added, a single node takes 56 bytes. Unoccupied
HashSet entries reserve 4 bytes for the pointer to a node whenever
it gets added. So for a HashSet of size 𝑛 with a capacity of 𝑐 , the
retained memory usage could be calculated using the formula 𝑛 ∗
56 + 𝑐 ∗ 4. This would be correct for a HashMap, but a HashSet uses
a bucket structure and replaces some nodes with tree-nodes. This is
done to improve the time it takes to do lookups. Tree-nodes contain
a key, a value, hash of a key and pointer to the next node just like
the normal node. However, it also contains a pointer to the previous
node, parent-node, right and left nodes, before and after nodes, and
a boolean. These add another 6*4+1=25 bytes to the original 28
bytes, bringing it to 53 bytes. Then it is padded to 56 bytes, which
together with the DPos3 makes a single tree-node take 80 bytes.

22

Figure 10: Visualisation of all accessible OPEN VoxelGrid
nodes, with on the left all doors closed and on the right all
doors open.

For only tree-nodes, the formula would then be 𝑛 ∗ 80 + 𝑐 ∗ 4. From
our observations, the ratio of tree-nodes to normal nodes seems to
be around 3:2.

6.4.2 Speed.

In Table 2 you can see the time it took each test in total and for
some important parts individually. Table 3 shows the number of
agent turns each test took. For tests 1 and 2, we used a viewing
range of 20 units. For test world 2, this means exploration is never
done, which is why it is missing in the table. For test world 1, there is
exploration, which the NavGrid cannot do. So to circumvent this, we
took the resulting location from the VoxelGrid explore call andmade
it so that the NavGrid does pathfinding towards this location instead
of using the explore method. This does however skew the average
pathfinding result of the NavGrid, making it less comparable with
the other two. For tests 3a and 4a, we used a viewing range of 120
units, which is just enough for the agent to always have their next
goal in their viewing range. The total time for each test is similar
for the Octree, VoxelGrid and NavGrid in tests 1 and 2. In tests 3a
and 4a, the total time of the Octree is significantly lower than both
the VoxelGrid and NavGrid. The difference between the VoxelGrid
and NavGrid is insignificant. The average pathfinding time in test
1 is a bit longer for the VoxelGrid than the Octree. The NavGrid
is a bit slower than the VoxelGrid, however, as mentioned before,
this could be skewed. Theoretically it should be very similar to the
VoxelGrid, and based on a lower GetNeighbour() time, it should
be a little faster. Removing the pathfinding time that replaced the
exploration call from the average gets us an average time of 19.9
ms, which is, just like theorized, a little faster than the VoxelGrid
is, but still slower than the Octree. This is because the Octree has
combined multiple open nodes together, reducing the number of
nodes that need to be traversed. In test 2, the reverse is happening,
with the Octree taking a bit longer on average. This is because
in test 2, as visualised in Figure 10 every space is exactly 1 node
wide, so no open nodes in the Octree could be combined, making
the amount of nodes to traverse the same for both the Octree and
VoxelGrid. The NavGrid is a bit slower than the VoxelGrid, because
the time it takes to get a node’s neighbours is a bit longer. The
VoxelGrid has the lowest GetNeighbour() time in all tests. This
also explains the faster pathfinding speed for the VoxelGrid in test
2. The GetNeighbour() function is significantly slower for the
Octree compared to the other two, which is no surprise, because
it has to calculate the neighbours with a complicated recursive
method instead of simply retrieving them. Initializing the grid for

Table 2: Time spent on different sections for tests 1-4. Tests 1
and 2 have a viewing range (VR) of 20 units, tests 3a and 4a
have a VR of 120. Except for the total tests time, total move
time and initialize grid time, every other time is an average.

Test 1 Octree VoxelGrid NavGrid
Total test time 50.8 s 48.6 s 52.5 s
Total move time 26.3 s 24.1 s 22.7 s
Pathfinding 16.5 ms 22.7 ms 26.9 ms**
Exploration 21.4 ms 24.9 ms
GetNeighbour 6.5 µs 1.1 µs 0.6 µs
Initializing grid 1.0 ms 44.9 ms
Adding to grid 312.3 µs 141.0 µs 253.1 µs*
Expanding grid 1.0 ms 2.5 ms
Test 2 Octree VoxelGrid NavGrid
Total test time 89.2 s 77.3 s 79.1 s
Total move time 47.8 s 45.0 s 44.1 s
Pathfinding 16.0 ms 11.2 ms 14.5 ms
GetNeighbour 18.9 µs 1.1 µs 1.6 µs
Initializing grid 1.0 ms 23.9 ms
Adding to grid 234.7 µs 344.7 µs 270.0 µs*
Expanding grid 1.0 ms 3.2 ms
Test 3a Octree VoxelGrid NavGrid
Total test time 777.1 s 1384.4 s 1136.2 s
Total move time 70.2 s 63.2 s 63.7 s
Pathfinding 0.4 s 410.7 s 293.6 s
GetNeighbour 24.3 µs 5.7 µs 12.0 µs
Initializing grid 4.0 ms 1911.4 ms
Adding to grid 417.7 µs 492.1 µs 2498.5 µs*
Expanding grid 1.0 ms 63.8 ms
Test 3b Octree VoxelGrid
VR 10 2.0 ms 0.9 s
VR 20 4.0 ms 35.6 s
VR 30 15.0 ms 543.6 s
VR 40 8.0 ms 1889.8 s
VR 50 66.0 ms 9561.4 s
VR 60 18.9 ms 15919.2 s
VR 70 3974.2 ms 28395.2 s
Test 4a Octree VoxelGrid NavGrid
Total test time 1313.3 s 2598.8 s 2394.8 s
Total move time 74.8 s 68.7 s 68.3 s
Pathfinding 1.3 s 691.2 s 564.3 s
GetNeighbour 34.6 µs 7.8 µs 19.8 µs
Initializing grid 2.0 ms 2044.1 ms
Adding to grid 2.9 ms 4.4 ms 32.8 ms*
Expanding grid 1.3 ms 76.0 ms
Test 4b Octree VoxelGrid
VR 10 13.0 ms 0.5 s
VR 20 81.8 ms 12.8 s
VR 30 698.1 ms 222.3 s
VR 40 2074.3 ms 1075.0 s
VR 50 2005.6 ms 3620.2 s
VR 60 10234.8 ms 14457.4 s
VR 70 56182.5 ms 30144.5 s
* includes expanding time.
** includes fake exploration, 19.9 ms without it.

23

Table 3: Number of agent turns per test.
Test world 1 2 3 4
Octree 283 461 661 868
VoxelGrid 291 367 455 728
NavGrid 342 390 460 747

the Octree always takes around the same amount of time, regardless
of viewing range. The differences between tests is purely because
of PC performance fluctuations. The VoxelGrid’s initialize time
is significantly higher than the Octree and increases even further
with larger viewing ranges. The NavGrid doesn’t need to initialize
itself, neither does it need to expand. It stores all data in a single
HashSet. This does however mean that whenever a node is added
to a full HashSet, that it has to expand it there. So the expand time
is incorporated in the adding to grid time. This makes the average
Adding to grid time significantly higher for theNavGrid. Comparing
the adding to grid time for the NavGrid with the combined time of
Adding to grid and Expanding grid of the Octree and the VoxelGrid
better shows the difference. Doing this, we can see that the Octree
is still the fastest, taking 1.2–4.2 milliseconds. The NavGrid is the
next best, with between 0.3–32.8 milliseconds. The VoxelGrid takes
between 3.5–80.4 milliseconds. Adding a new obstacle to the grid
takes longer for the Octree than for the VoxelGrid. Expanding the
Octree, however, is much faster than the VoxelGrid, taking the
same amount of time, regardless of test or viewing range, whereas
the VoxelGrid’s increases with the size of the world. Continually
expanding will take longer and longer. For test 3b, we can see that
even for a viewing range as low as 10, the VoxelGrid still takes about
500 times as long for a single explore call. For test 5b, for a viewing
range of 10, the VoxelGrid takes about 38 times as long for a single
explore call. This huge difference increases even more for larger
viewing ranges, and decreases slightly with more added obstacles
in the world. Where the VoxelGrid’s time consistently increases
with the viewing range, the Octree has a general increase with
some fluctuations. Especially, the drop-down from 15 milliseconds
for test 3b’s viewing range 30 to 8 ms for viewing range 40 seems
weird. However, this can be explained with the amount of steps it
takes to find a path to a node neighbouring an unexplored node.
In an Octree, similar nodes are combined into a single larger node.
The path found for VR 40 simply was able to travel along a gigantic
open node and quickly find an unexplored node. This giant open
node could not be combined into one yet for VR 30, because it
was partially unexplored, so it was still split into multiple open
nodes. The giant node however neighbours a lot of smaller nodes of
different labels. If even one of those many neighbours is unexplored,
then we can already stop the exploration, making it faster than the
one with a smaller viewing range. The same explanation can be
given for VR 60.

6.4.3 Testing.
In test world 1, we prove that our testing framework can do reach-
ability tests in a simple scene where a door is blocking the way,
but a button can open the door. Test world 2, proves reachability
tests can be done in more complicated test worlds with a puzzle on
how to open the final door. In test worlds 3 and 4, we prove that
our method can do testing in large 3D environments. This includes
button-door logic. All our tests showcase reachability tests, how-
ever the program can do a lot more. We adapted iv4XR to work in

3D, but almost all testing functionality was left intact. This means
the following things still can be tested, but now in 3D.

(1) Reachability.
(2) Removing or placing blocks.
(3) Using toolbar items (like the grinder to destroy blocks).
(4) Activating blocks (like a button panel).

To do this, you can simply add a corresponding GoalStructure after
a closeTo() Goal. For example, in test 1, the test currently tests if
the battery block is reachable by going there. At the end of the goal,
the agent will be in front of and facing towards the battery block.
So you can simply add a new goal to the SEQ using the grinded()
GoalStructure. You can also add a check before the grinding goal to
check if the block is intact with the targetBlockOK() GoalStruc-
ture. Everything iv4XR was able to do in SE before in 2D, it can now
do in 3D. We also made it possible to do exploration in the game
world to find objectives outside the viewing range. This makes it
possible to test larger worlds, where observing everything at once
with a very large observation radius is not recommended. Setting
the observation radius in a large world with many blocks makes the
programmuch slower and take more memory. This is because every
time we update the state, we observe the world inside the viewing
range and check for differences with the previous observation. This
is stored in theWOM, and with a larger viewing range, the amount
of memory used by theWOM is also larger. With more observed
blocks, merging the previous and currentWOM and checking the
differences also takes longer. Not to mention the time it takes to
simply observe all the blocks in SE inside the viewing range. Thus
setting the observation radius smaller not only makes testing in
large worlds more human-like, because the agent has to explore to
find the objective(s), it also reduces the time spent on observing
the world and merging the observations. For testing purposes, both
the Octree and VoxelGrid can do all the above. The NavGrid can
do all of it, except for exploration.

6.5 Conclusion
All in all, we can see from the results that as far as memory is con-
cerned, the VoxelGrid is by far the worst way to go about storing the
world. Both the NavGrid and Octree use significantly less memory,
with the Octree taking slightly more memory than the NavGrid
for all test worlds. The test worlds however only show realistic
world scenarios for a 3D open world game. Worst case scenario for
the Octree is a big world with alternating empty and open space.
This would mean the Octree has almost no nodes to combine. This
presumably would make the amount of memory the Octree uses
similar to the VoxelGrid. It would still be able to combine some
nodes though, because the padding makes it so that with a good
node size (see Section 5.5) obstacles are always multiple nodes wide.
Thus, even in such a scenario, we presume the Octree would still
use a little less memory than the VoxelGrid. The worst case for the
NavGrid is if the entire world is filled with obstacles. This would
make it even worse than the VoxelGrid. So as long as the world has
a lot more empty space than obstacles, then the NavGrid uses the
least amount of memory space, with the Octree a close second. In
all other scenarios, the Octree uses the least amount of memory.

As far as speed is concerned. TheOctree is slower in returning the
neighbours of a node than both the VoxelGrid and the NavGrid. For

24

almost all test scenarios, the Octree is faster than both the VoxelGrid
and NavGrid for pathfinding and exploration. However, for worlds
with only 1 block wide spaces, where the Octree cannot combine
open nodes, the Octree is actually slower than the VoxelGrid and
NavGrid. Initializing the Grid for all three data structures takes
an insignificant amount of time. But of them, the VoxelGrid is
the slowest. Adding blocks to the grid is a little slower for the
Octree than for the VoxelGrid or NavGrid. The reverse is true for
expanding the grid, where the Octree takes a consistent amount
of time regardless of grid size, but the VoxelGrid takes longer for
larger worlds and shorter for small worlds. For very small worlds
like test 1 and 2, expanding is thus better for the VoxelGrid, but for
medium or large worlds, the Octree is significantly faster.

For testing purposes, both theOctree andVoxelGrid can complete
the same amount of testing tasks, making them equally good if we
disregard time and memory efficiency. The NavGrid, with how
we implemented it, cannot do exploration, restricting its testing
capabilities around exploring unknown worlds.

Overall, the Octree is a significantly better data structure both
in terms of memory and speed than the VoxelGrid baseline, with
the only exception being small worlds with little room for moving
around. It is also significantly faster and has more testing capabili-
ties compared to the NavGrid.

7 DISCUSSION AND CONCLUSIONS
7.1 Conclusion
In this thesis, we created an efficient automated testing framework
for 3D games with omnidirectional movement. To do this, we ex-
tended the iv4XR project to work in 3D. The iv4XR project already
had the automated testing capabilities necessary for 2D use cases,
using a NavGrid to store a plane of the gameworld intomemory.We
created three different spatial partitioning data-structures (grids)
to store the full 3D game world in memory, and a way to navigate
this game world by planning in the stored grid. We created an Oc-
tree data-structure that hierarchically stores OPEN, BLOCKED or
UNKNOWN nodes and can be extended and updated at runtime.
We created two baseline methods to compare against. A simple 3D
grid of Voxels (VoxelGrid) and a 3D version of the original NavGrid,
adapted to work the same way as the Octree and VoxelGrid. To be
able to do testing based on the data stored in the data-structures,
all grids have a way to add or remove blocks from the game world
to the grid. They also have a way to extend the bounds of the data-
structure and manage which nodes are known or still unknown.
To be able to do pathfinding, all grids have their own method of
finding the corresponding nodes of in-game locations and a func-
tion to retrieve or calculate the neighbouring nodes. We adapted
some goal-structures and tactics from iv4XR to be usable in 3D,
and created some new goal-structures and tactics that can be used
for automated testing tasks. We created 4 test worlds for the game
Space Engineers to measure the testing capabilities, memory effi-
ciency and speed of the Octree method and compared the results
with the two baselines. From the results, we conclude that the Oc-
tree is significantly faster in almost all test scenarios compared to
the baselines, VoxelGrid and NavGrid. memory wise, it is signifi-
cantly more memory efficient than the VoxelGrid, but slightly less
memory efficient than the NavGrid. For worlds with larger fully

filled areas, the Octree becomes more memory efficient than the
NavGrid. The 3D implementation is able to do any testing task the
original 2D implementation of the iv4XR project could do, but now
it can additionally do so in 3D and it can do exploration.

7.2 Discussion
From our results, we conclude that our Octree implementation is
superior to the baseline VoxelGrid and NavGrid implementations.
However, there remain some negatives in how we approached the
problem and compared the different methods.

First, we only ran every test once, taking the average over parts
of the code that ran multiple times. This made the results more
prone to CPU fluctuations, making it harder to draw conclusions
from small differences in speed values. This is especially a problem
for the total test time and initializing grid time, which are only
measured once per test.

Second, Space Engineers’ movement in 3D is done by flying
using a jetpack. Whenever the program instructs the agent to move
forward, it gives it a few short bursts of speed in the corresponding
direction. This is equivalent to shortly holding the forward key in-
game. Holding forward, slowly increases the speed until it reaches
its maximum velocity and when no velocity is added in a direction,
the agent will automatically slow down until it stops. However,
the precise calculations for the speed are calculated by SE and the
program cannot access this data. This makes it hard to control the
speed, which is a problem, when we want to efficiently move. If we
add too much velocity, then the agent may overshoot its target, and
it would have to move back to the target location. If we add too
little velocity, then the agent takes a very long to reach its target
location. This is made worse with continuously adding velocity.
If we add too much, the agent will continue to gather speed. For
a short distance, this may be fine, but then at a longer distance,
it will have too much speed. If we add too little, it will lose its
speed and not accumulate any. Then there is the problem how long
a state update cycle takes. Update cycles take around the same
amount of time, with the exceptions being whenever a new path
has to be planned or the Goal has to be changed. There is however
one exception: the observation. Given a viewing range, everything
within that range to the agent in the environment is observed. This
observation is done every cycle and takes a large amount of time for
larger observations. With a larger viewing range, more blocks will
be observed, taking more time. With more blocks in the world, more
blocks will be observed, taking more time. And with more passed
time for a cycle, because the automated testing framework and the
game run asynchronously, the movement velocity is being lost. So,
for larger observations, the agent will fly slower, more frequently
undershooting target positions. For smaller observations, the agent
will fly faster, more frequently overshooting target positions. In
our tests, we saw both happen. In test 1 and 2, with a viewing
range of 20, it would pick up speed very fast, overshooting quite
often. In tests 3 and 4, with a viewing range of 120, it would take
too long to re-add velocity, losing its speed before adding more,
undershooting quite often. In test 4, where a lot more blocks are,
this would happen even more often than in test 3. When update
cycles are short, velocity is added a fast intervals, picking up speed.
Travelling in a straight line means the agent will gain speed for

25

longer, increasing the chance to overshoot. For the VoxelGrid and
NavGrid, all nodes are aligned in a simple grid structure, so often
a lot of points on the path can be removed as they are lie on the
line between two other nodes in the path. This creates many long
straight line, resulting in higher chances of overshooting. Octree
nodes can have different sizes and because the point on the path are
the centers of nodes, where certain nodes were removed from the
path for the VoxelGrid or NavGrid, for the Octree they sometimes
are not, because their center does not lie on the line between them.
This makes the Octree paths often consist of more midway points,
resulting in less long straight lines and more shorter ones, reducing
the chances of overshooting. Whenever we saw undershooting
happen (so very slow movement), we manually added a little extra
velocity (in the same direction) to speed up the test. We tried to do
this as consistently as possible for all tests, but it does influence the
time results. Thankfully, the only time it influences is the total test
time. As the paths in a test are almost the same for all methods, the
movement time should also be almost the same. So by looking at the
difference in total movement time between the Octree, VoxelGrid
and NavGrid, we can estimate the difference the manually added
speed made on the total test time.

We decided to limit rotation to be only around the agent y-axis.
Everything works regardless of agent orientation, but we decided to
only do yaw rotations. This decision is because of two reasons. First,
the plugin used to send commands to SE does have a parameter
for all rotation axis’s, however, the roll parameter did not work.
Second, although changing it to rotate around all axis’s would make
the movement feel more human, this is not as relevant to our thesis,
so we decided against it.

Finally, the test worlds we created show the differences between
techniques for small worlds, with test 1 being a bit more open than
the very tightly filled test 2. Test 3 was extremely open, which for
the game Space Engineers is a quite realistic scenario. Test 4 was
supposed to show how the Octree takes more memory and time if
the same world was more filled with obstacles. It is, however, still
very open, which makes it skewed towards better results for the
Octree and NavGrid than the VoxelGrid. It would have been better
to add another test world, with it being so full, the Octree can hardly
combine any nodes. This would allow us to see the statistics of a
world which is worst case for the Octree. In such a test world, the
VoxelGrid method may very well be the best choice. Even if such
a test world would be the outlier of test worlds you actually want
to use for automated testing. Additionally, we used the Euclidean
distance for A*, because it would reduce the amount of node to go
through for pathfinding. For exploration, this does not reduce the
amount of node to traverse. This causes the pathfinding to do an
unnecessary more expensive calculation for every node to traverse,
causing all results of test 3b and 4b to be significantly slower than
could be. Changing this distance calculation to Manhattan distance
would make the explore method for all grids much faster, but also
decrease the difference between the Octree and VoxelGrid times.
This is because the VoxelGrid has to traverse many more nodes
than the Octree, hence the large difference between times. If the cal-
culation is faster for all nodes, then the VoxelGrid will benefit more
from this speedup. This would make the slower getNeighbour()
speed play a bigger role in the comparison. Still, with how large

the difference is, this would not change the result that the Octree
is significantly faster at exploration.

7.3 Future Work
There is still some room for improvements on the current work as
well as possible future works. In this section, we will go over a few
of them.

First of all, the NavGrid only stores blocked nodes, so it cannot
differentiate between OPEN and UNKNOWN nodes. This means
exploration cannot be implemented the same way it was done as for
the Octree and VoxelGrid. Keeping track of frontier nodes makes
it possible to do exploration with a NavGrid, but would also make
it less memory efficient and a little slower. Implementing this and
comparing it to the Octree and VoxelGrid methods is future work.

Next, the Octree currently calculates the neighbours by recur-
sively checking the parent for the neighbour, essentially going up
before going back down. An alternative way to get the neighbours
is taking a position just a small distance from the edge of the current
node in some direction, and then checking in what leaf-node that
position is. This starts from the root-node and recursively checks
in which child it is until it finds the neighbour. It remains to be seen
if this is faster or slower.

Every Octree node stores its position, whilst the VoxelGrid nodes
do not do this. They only store a label and the position can be calcu-
lated because the node size and the corners of the grid are known.
Doing the same for Octree nodes would reduce the memory needed,
but couldmake it a little slower. The VoxelGrid can also be improved
memory wise, because it currently uses an arrayList, which uses
16 bytes minimum per node, whilst only 1 byte is used for the label.
Finding out a better way to store the labels without significantly
complicating the expanding process can still be researched. These
optimizations can change the pros and cons of the methods. Just
like Sparse Voxel Octrees (SVO) [3], implementing our Octree im-
plementation with a similar sparse layout could potentially improve
the method.

For the testing parts of the project. A lot of extra logic, goal-
structures and tactics can be added and researched. For example,
figuring out a good way to go about testing test world 2, without
explicitly stating the order the buttons need to be pressed, but
making it possible for the agent to figure out the puzzle itself.
Also, we only tested the method on the game Space Engineers. The
method is created for SE and tested on it. So, testing its effectiveness
on other similar omnidirectional 3D games is still future work.

Space Engineers has gravity shoes, allowing you to walk on
any surface at any orientation. An interesting thing to research
would be how to make navigation in 3D space more human, by
setting it so that the agent, when close to a surface, prefers to
rotate and land on the surface to walk short distances. Figuring
out how to implement the switch between landing an taking off
would encompass detecting close surfaces, rotating so the agent
so the up orientation is on the surface normal, flying down (agent
orientation) until the feet touch the surface and then turning off the
jetpack. Then a decision has to be made on when the agent should
decide to land. Being grounded, means having more precise control
over the movement, but also losing free movement up and down or
gaining very fast speed for longer distances. If there is gravity, then

26

landing is much easier and the agent can jump once the jetpack is
off. All in all, this would make for some interesting research for
more human-like space engineer or astronaut behaviour.

REFERENCES
[1] Saswat Anand, Edmund K Burke, Tsong Yueh Chen, John Clark, Myra B Cohen,

Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil McMinn, Antonia
Bertolino, et al. 2013. An orchestrated survey of methodologies for automated
software test case generation. Journal of systems and software 86, 8 (2013), 1978–
2001.

[2] aplib: Action.java 2021. https://github.com/iv4xr-project/aplib/blob/master/src/
main/java/nl/uu/cs/aplib/mainConcepts/Action.java

[3] Daniel Brewer. 2019. 3d flight navigation using sparse voxel octrees. In Game AI
Pro 360: Guide to Movement and Pathfinding. CRC Press, 273–282.

[4] Douglas Cline. 2017. 19.5: Appendix - Coordinate transformations.
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_
Principles_in_Classical_Mechanics_(Cline)/19%3A_Mathematical_Methods_
for_Classical_Mechanics/19.05%3A_Appendix_-_Coordinate_transformations

[5] Jian S. Dai. 2015. Euler–Rodrigues formula variations, quaternion conjugation
and intrinsic connections. Mechanism and Machine Theory 92 (2015), 144–152.
https://doi.org/10.1016/j.mechmachtheory.2015.03.004

[6] Arilo C Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H Travas-
sos. 2007. A survey on model-based testing approaches: a systematic review.
In Proceedings of the 1st ACM international workshop on Empirical assessment of
software engineering languages and technologies: held in conjunction with the 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE)
2007. 31–36.

[7] Edsger W Dijkstra. 2022. A note on two problems in connexion with graphs. In
Edsger Wybe Dijkstra: His Life, Work, and Legacy. 287–290.

[8] Christian Dornhege and Alexander Kleiner. 2013. A frontier-void-based approach
for autonomous exploration in 3d. Advanced Robotics 27, 6 (2013), 459–468.

[9] Nathaniel Fairfield, George Kantor, and David Wettergreen. 2007.
Real-Time SLAM with Octree Evidence Grids for Exploration in
Underwater Tunnels. Journal of Field Robotics 24, 1-2 (2007), 03–
21. https://doi.org/10.1002/rob.20165 arXiv:https://onlinelibrary-wiley-
com.proxy.library.uu.nl/doi/pdf/10.1002/rob.20165

[10] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

[11] Irene Gargantini. 1982. Linear octtrees for fast processing of three-dimensional
objects. Computer Graphics and Image Processing 20, 4 (Dec. 1982), 365–374.
https://doi.org/10.1016/0146-664X(82)90058-2

[12] Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics 4, 2 (1968), 100–107.

[13] Andreas Herzig, Emiliano Lorini, Laurent Perrussel, and Zhanhao Xiao. 2017.
BDI logics for BDI architectures: old problems, new perspectives. KI-Künstliche
Intelligenz 31 (2017), 73–83.

[14] Robert C Holte, Maria B Perez, Robert M Zimmer, and Alan J MacDonald. 1996.
Hierarchical A*: Searching abstraction hierarchies efficiently. In AAAI/IAAI, Vol.
1. 530–535.

[15] Keen Software House. 2019. Space Engineers.
[16] John Funge Ian Millington. 2019. Artificial intelligence for games (3 ed.). CRC

Press.
[17] iv4xr-se-plugin: UUTacticLib.java 2021. https://github.com/iv4xr-project/iv4xr-

se-plugin/blob/uubranch3D/JvmClient/src/jvmMain/java/uuspaceagent/
UUTacticLib.java

[18] Chris L Jackins and Steven L Tanimoto. 1980. Oct-trees and their use in repre-
senting three-dimensional objects. Computer Graphics and Image Processing 14, 3
(1980), 249–270.

[19] L. Kavraki and J.-C. Latombe. 1994. Randomized preprocessing of configuration
space for path planning: articulated robots. In Proceedings of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS’94), Vol. 3. 1764–1771
vol.3. https://doi.org/10.1109/IROS.1994.407619

[20] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. 1996. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation 12, 4 (Aug. 1996), 566–580. https:
//doi.org/10.1109/70.508439

[21] Chinmay S. Kulkarni and Pierre F.J. Lermusiaux. 2020. Three-dimensional time-
optimal path planning in the ocean. Ocean Modelling 152 (2020), 101644. https:
//doi.org/10.1016/j.ocemod.2020.101644

[22] Lab Recruits Game Testing Contest 2021 2021. https://github.com/iv4xr-project/
JLabGym/blob/master/docs/contest/contest2021.md

[23] Marino Mangeruga, Alessandro Casavola, Francesco Pupo, and Fabio Bruno. 2020.
An Underwater Pathfinding Algorithm for Optimised Planning of Survey Dives.
Remote Sensing 12, 23 (2020). https://doi.org/10.3390/rs12233974

[24] Phil McMinn. 2004. Search-based software test data generation: a survey. Software
testing, Verification and reliability 14, 2 (2004), 105–156.

[25] Donald Meagher. 1982. Geometric modeling using octree encoding. Computer
Graphics and Image Processing 19, 2 (1982), 129–147. https://doi.org/10.1016/0146-
664X(82)90104-6

[26] GuyMMorton. 1966. A computer oriented geodetic data base and a new technique
in file sequencing. (1966).

[27] Dennis Nieuwenhuisen, Arno Kamphuis, Marlies Mooijekind, and Mark H Over-
mars. 2004. Automatic construction of roadmaps for path planning in games. In
International Conference on Computer Games: Artificial Intelligence, Design and
Education. Citeseer, 285–292.

[28] Mark H Overmars. 2005. Path planning for games. In Proc. 3rd Int. Game Design
and Technology Workshop. 29–33.

[29] Johannes Pfau, Jan David Smeddinck, and Rainer Malaka. 2017. Automated game
testing with icarus: Intelligent completion of adventure riddles via unsupervised
solving. In Extended abstracts publication of the annual symposium on computer-
human interaction in play. 153–164.

[30] Cristiano Politowski, Yann-Gaël Guéhéneuc, and Fabio Petrillo. 2022. Towards
automated video game testing: still a long way to go. In Proceedings of the 6th
International ICSE Workshop on Games and Software Engineering: Engineering
Fun, Inspiration, and Motivation (GAS ’22). Association for Computing Machinery,
New York, NY, USA, 37–43. https://doi.org/10.1145/3524494.3527627

[31] Cristiano Politowski, Fabio Petrillo, and Yann-Gaël Guéhéneuc. 2021. A Survey of
Video Game Testing. In 2021 IEEE/ACM International Conference on Automation
of Software Test (AST). 90–99. https://doi.org/10.1109/AST52587.2021.00018

[32] Rui Prada, I. S. W. B. Prasetya, Fitsum Kifetew, Frank Dignum, Tanja E. J. Vos,
Jason Lander, Jean-yves Donnart, Alexandre Kazmierowski, Joseph Davidson,
and Pedro M. Fernandes. 2020. Agent-based Testing of Extended Reality Systems.
In 2020 IEEE 13th International Conference on Software Testing, Validation and
Verification (ICST). 414–417. https://doi.org/10.1109/ICST46399.2020.00051

[33] ISWB Prasetya, Mehdi Dastani, Rui Prada, Tanja EJ Vos, Frank Dignum, and
Fitsum Kifetew. 2020. Aplib: Tactical agents for testing computer games. In
International Workshop on Engineering Multi-Agent Systems. Springer, 21–41.

[34] I. S. W. B. Prasetya, Maurin Voshol, Tom Tanis, Adam Smits, Bram Smit, Jacco van
Mourik, Menno Klunder, Frank Hoogmoed, Stijn Hinlopen, August van Casteren,
Jesse van de Berg, Naraenda G.W.Y. Prasetya, Samira Shirzadehhajimahmood,
and Saba Gholizadeh Ansari. 2020. Navigation and exploration in 3D-game
automated play testing. In Proceedings of the 11th ACM SIGSOFT International
Workshop on Automating TEST Case Design, Selection, and Evaluation (Virtual,
USA) (A-TEST 2020). Association for Computing Machinery, New York, NY, USA,
3–9. https://doi.org/10.1145/3412452.3423570

[35] Hanan Samet. 1988. An Overview of Quadtrees, Octrees, and Related Hierarchical
Data Structures. In Theoretical Foundations of Computer Graphics and CAD (NATO
ASI Series), Rae A. Earnshaw (Ed.). Springer, Berlin, Heidelberg, 51–68. https:
//doi.org/10.1007/978-3-642-83539-1_2

[36] Koushik Sen and Gul Agha. 2006. CUTE and jCUTE: Concolic Unit Testing and
Explicit Path Model-Checking Tools. In Computer Aided Verification, Thomas
Ball and Robert B. Jones (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
419–423.

[37] Shaojie Shen, Nathan Michael, and Vijay Kumar. 2012. Autonomous indoor 3D
exploration with a micro-aerial vehicle. In 2012 IEEE International Conference on
Robotics and Automation. 9–15. https://doi.org/10.1109/ICRA.2012.6225146

[38] A. Stentz. 1994. Optimal and efficient path planning for partially-known envi-
ronments. In Proceedings of the 1994 IEEE International Conference on Robotics
and Automation. 3310–3317 vol.4. https://doi.org/10.1109/ROBOT.1994.351061

[39] J Tuovenen, Mourad Oussalah, and Panos Kostakos. 2019. MAuto: Automatic
mobile game testing tool using image-matching based approach. The Computer
Games Journal 8 (2019), 215–239.

[40] Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A taxonomy of
model-based testing approaches. Software testing, verification and reliability 22, 5
(2012), 297–312.

[41] Tanja Vos, Paolo Tonella, Wishnu Prasetya, Peter M Kruse, Alessandra Bag-
nato, Mark Harman, and Onn Shehory. 2014. FITTEST: A new continuous and
automated testing process for future internet applications. In 2014 Software Evo-
lution Week-IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE). IEEE, 407–410.

[42] Kai M Wurm, Armin Hornung, Maren Bennewitz, Cyrill Stachniss, and Wolfram
Burgard. 2010. OctoMap: A probabilistic, flexible, and compact 3D map represen-
tation for robotic systems. In Proc. of the ICRA 2010 workshop on best practice in
3D perception and modeling for mobile manipulation, Vol. 2. 3.

[43] Zhenjie Zheng, Mi Pan, and Wei Pan. 2020. Virtual Prototyping-Based Path Plan-
ning of Unmanned Aerial Vehicles for Building Exterior Inspection. Kitakyushu,
Japan. https://doi.org/10.22260/ISARC2020/0004

27

https://github.com/iv4xr-project/aplib/blob/master/src/main/java/nl/uu/cs/aplib/mainConcepts/Action.java
https://github.com/iv4xr-project/aplib/blob/master/src/main/java/nl/uu/cs/aplib/mainConcepts/Action.java
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/19%3A_Mathematical_Methods_for_Classical_Mechanics/19.05%3A_Appendix_-_Coordinate_transformations
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/19%3A_Mathematical_Methods_for_Classical_Mechanics/19.05%3A_Appendix_-_Coordinate_transformations
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Variational_Principles_in_Classical_Mechanics_(Cline)/19%3A_Mathematical_Methods_for_Classical_Mechanics/19.05%3A_Appendix_-_Coordinate_transformations
https://doi.org/10.1016/j.mechmachtheory.2015.03.004
https://doi.org/10.1002/rob.20165
https://arxiv.org/abs/https://onlinelibrary-wiley-com.proxy.library.uu.nl/doi/pdf/10.1002/rob.20165
https://arxiv.org/abs/https://onlinelibrary-wiley-com.proxy.library.uu.nl/doi/pdf/10.1002/rob.20165
https://doi.org/10.1016/0146-664X(82)90058-2
https://github.com/iv4xr-project/iv4xr-se-plugin/blob/uubranch3D/JvmClient/src/jvmMain/java/uuspaceagent/UUTacticLib.java
https://github.com/iv4xr-project/iv4xr-se-plugin/blob/uubranch3D/JvmClient/src/jvmMain/java/uuspaceagent/UUTacticLib.java
https://github.com/iv4xr-project/iv4xr-se-plugin/blob/uubranch3D/JvmClient/src/jvmMain/java/uuspaceagent/UUTacticLib.java
https://doi.org/10.1109/IROS.1994.407619
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/70.508439
https://doi.org/10.1016/j.ocemod.2020.101644
https://doi.org/10.1016/j.ocemod.2020.101644
https://github.com/iv4xr-project/JLabGym/blob/master/docs/contest/contest2021.md
https://github.com/iv4xr-project/JLabGym/blob/master/docs/contest/contest2021.md
https://doi.org/10.3390/rs12233974
https://doi.org/10.1016/0146-664X(82)90104-6
https://doi.org/10.1016/0146-664X(82)90104-6
https://doi.org/10.1145/3524494.3527627
https://doi.org/10.1109/AST52587.2021.00018
https://doi.org/10.1109/ICST46399.2020.00051
https://doi.org/10.1145/3412452.3423570
https://doi.org/10.1007/978-3-642-83539-1_2
https://doi.org/10.1007/978-3-642-83539-1_2
https://doi.org/10.1109/ICRA.2012.6225146
https://doi.org/10.1109/ROBOT.1994.351061
https://doi.org/10.22260/ISARC2020/0004

	Abstract
	Contents
	1 Introduction
	2 Background
	2.1 Automated Game Testing
	2.2 3D Path Planning & Exploration
	2.3 Space Engineers and iv4XR

	3 Methodology
	3.1 Abstraction
	3.2 Pathfinding
	3.3 Exploration

	4 Preliminary 2D Implementation
	4.1 Neighbours
	4.2 Updating the Quadtree
	4.3 Conclusion

	5 Implementation
	5.1 Octree
	5.2 Pathfinding
	5.3 Exploration
	5.4 Agent Movement
	5.5 Padding
	5.6 Updating the Octree
	5.7 Testing
	5.8 Voxel Grid
	5.9 3D NavGrid

	6 Results
	6.1 Tests
	6.2 Metrics
	6.3 System Specifications
	6.4 Results
	6.5 Conclusion

	7 Discussion and Conclusions
	7.1 Conclusion
	7.2 Discussion
	7.3 Future Work

	References

