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Abstract 

Understanding and accurately predicting fertility rates is essential in today’s rapidly changing 

world for addressing demographic shifts, healthcare planning and economic forecasting. 

Using the comprehensive Longitudinal Internet Studies for the Social Sciences (LISS) dataset, 

this research integrates, demographic, socio-economic and environmental factors to develop 

predictive models. Advanced machine learning models, including Logistic Regression, 

Decision Trees, Support Vector Machines, Random Forest and Gradient Boosting Machine, 

are applied. These models are evaluated with metrics such as F1-score, precision, recall, 

accuracy and AUC-ROC. Essential steps in the process include, handling missing data with 

Multiple Imputation by Chained Equations (MICE), feature selection and feature 

transformations. The results conclude that Decision Trees and Gradient Boosting Machines 

models provide the most accurate predictions; however, the Logistic Regression is overall the 

best performing model. This research enhances the understanding of fertility prediction by 

integrating demographic, socio-economic and environmental factors into advanced predictive 

machine learning models. It also contributes to existing literature by using the LISS dataset 

and advanced machine learning algorithms to create accurate fertility prediction models, 

offering new insights and practical tools for policy-making and healthcare planning.  
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1. Introduction 

Fertility, the ability to conceive a child, is a vital aspect of human existence with profound 

implications for nations, societies and individuals. The ability to predict fertility rates 

accurately is of great importance in addressing a numerous of challenges. These challenges 

involve demographic shifts, social development goals, healthcare planning, economic 

forecasting, family planning initiatives and environmental sustainability efforts (Bodin et al., 

2021).  

 Predicting fertility is particularly important and challenging nowadays as fertility rates have 

been experiencing significant changes worldwide, presenting different confronts for 

healthcare providers, decision-makers and individuals alike (Bodin et al., 2021). For instance, 

the issue of ageing societies in South-Korea and Europe demonstrates this phenomenon 

strongly (D’Ambrogio & European Parliamentary Research Service, 2023). With declining 

fertility rates and increased life expectancy, European countries are grappling with the 

implications of an ageing population on retirement and pension systems (D’Ambrogio & 

European Parliamentary Research Service, 2023). The imbalance between the shrinking 

working age population and the growing elderly population, calls for a strategic planning to 

ensure the sustainability of social security programs, possible young migration-workers and to 

address the healthcare needs of ageing individuals (D’Ambrogio & European Parliamentary 

Research Service, 2023). 

Traditionally, predicting fertility rates depend on limited datasets, manual data collection 

processes and simple statistical methods such as, basic linear regression models(Freedman et 

al., 1975). As a result, these methods lacked the ability to capture non-linear, complex 

relationships and were based on simplified assumptions about population dynamics. Data 

collection was time consuming and the analysis was constrained by computational limitations. 

However, recent advancements in data science, computational techniques and statistical 

modelling have revolutionized the field of predicting fertility(APA PsycNet, 2021). Modern 

approaches leverage advanced machine learning algorithms, such as neural networks and 

random forests. These methods are capable of handling large and diverse datasets. In addition, 

the advancements and introduction of cloud computing and parallel processing, have allowed 

access to powerful computing infrastructure. Therefore accelerating the development and 

launch of complex fertility prediction models.  

In addition, the increased availability of large demographic datasets, coupled with 

sophisticated analytical tools, has aided the development of predictive models, and has 

opened new techniques for exploring and forecasting fertility trends. Enabling researchers to 

unravel the complex dynamics underlying fertility patterns, since these predictive models are 

able to capture the complex interaction of socio-economic, biological and environmental 

factors influencing fertility dynamics (APA PsycNet, 2021).  

Building upon this foundation, recent studies delved into the use of advanced deep learning, 

machine learning and ensemble learning techniques in fertility prediction. In papers such as, 

Goyal et al. (2020),  Ahinkorah et al. (2021) and Barnett-Itzhaki et al. (2020) researchers 
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studied a diverse set of machine learning, deep learning and ensemble learning techniques to 

predict fertility. These methods included logistics regression, k-nearest neighbours, 1-D neural 

network, random forest, AdaBoost and voting classifiers. Offering a range of approaches to 

address the complexities of fertility prediction tasks and potentially enhancing the accuracy 

and robustness of the predictive models. 

This research aims to investigate fertility prediction using a comprehensive approach that 

integrates socio-economic, demographic and environmental factors. Building on existing 

research that has highlighted the importance of these factors in influencing fertility. This study 

utilizes the Longitudinal Internet Studies for the Social Sciences (LISS) dataset. By 

employing machine learning algorithms and statistical techniques, the goal is to develop 

robust predictive models capable of forecasting fertility rates with precision and accuracy.  

Additionally, this research aims to advance the current understanding of fertility prediction 

and also take an innovative approach by leveraging the comprehensive and longitudinal 

nature of the LISS data. While there have been many studies on fertility prediction, the 

existing literature often focuses on isolate factors or uses traditional statistical methods, which 

may not capture the full complexity of fertility trends. This leaves a gap in studies that 

integrate multiple socio-economic, environmental and demographic factors using advanced 

predictive techniques. By utilizing machine learning models, this research addresses this 

limitation and makes a significant contribution to the literature. The integration of these 

diverse factors within predictive models may not only enhance the accuracy of fertility 

predictions but could also provide a more holistic understanding of the underlying dynamics. 

This comprehensive approach lays a robust foundation for further research, offering new 

insights and practical tools for policy-making and healthcare planning, especially in the 

context of demographic challenges and ageing populations.  
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2. Data and Methods 

 

2.1. Data 

 
Figure 1: Survey data from the LISS panel used in the data challenge (Sivak et al., 2024). 

This study will use data from the LISS panel survey from the years 2007-2020. The LISS 

panel survey is managed by the non-profit research institute Centerdata. It is a comprehensive 

online survey system derived from a probability sample of the Dutch population register, 

supplied by Statistics Netherlands. This panel is representative of the Dutch population and 

uses refreshment samples to correct for any initial selection biases. The LISS panel collect 

data through two main sources: the LISS Core Study and the Background surveys. The Core 

Study is an annual longitudinal survey that includes a variety of topics such as education, 

health, religion, values and personality. The Background survey, which is updated monthly, 

gathers basic socio-demographic data about households and all their members (LISS Panel - 

LISS Panel, 2023) .  

For this data challenge, the goal is to predict fertility outcomes for individuals who were aged 

18-45 in 2020, using data from the Core Study collected from 2007-2020. In addition, this 

dataset contains over 31,000 variables from these modules. The LISS panel began in 2007 

with approximately 8000 individuals (around 5000 households), with an annual dropout rate 

of about 10%. However, this dropout rate is mitigated by recruiting new members every two 

years (Sivak et al., 2024).     

The challenge involves predicting which participants will have a child between 2021 and 

2023. The dataset is divided into a training set, containing 70% of the target group with 

known outcomes and is available to challenge participants. The holdout set, comprising the 

remaining 30% of the target group, is used for evaluation. Although the sample size of about 

1400 respondents with known outcomes is relatively small, it is typical for social science 

research. The rich longitudinal data from the LISS panel still offers a valuable resource for 

this prediction task (Sivak et al., 2024).  
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2.2. features selection 

Feature selection is a pivotal step in the process of constructing predictive models, 

particularly in the realm of data-driven research (Chowdhury & Turin, 2020). This process 

becomes even more critical when dealing with datasets that have many features but a limited 

number of observations such as the LISS dataset, because such scenarios can lead to two 

major challenges in machine learning namely the curse of dimensionality and overfitting.  

This section embarks on the crucial task of identifying and prioritizing a subset of informative 

variables from a large pool of potential predictors. By carefully selecting relevant features, the 

aim is to enhance the interpretability, efficiency and generalization capability of our predictive 

models (Chowdhury & Turin, 2020).  

The initial dataset that was going to be used encompassed an extensive array of variables, 

approximately just over 31000. At first sight, approximately 40 variables were identified for 

potential use. The selection process was informed by domain expertise, extensive literature 

review, Exploratory Data Analysis (EDA) and statistical methodologies to ensure the 

inclusion of relevant features. However, a considerable proportion of these 40 features 

exhibited substantial missingness. Ranging from 50 % to 90% across the sample. Variables 

with more than 50% missingness were excluded from the final feature selection. Making the 

final count of features to be 18. The final set of 18 variables can be found in Table 1. 

Additionally, the rationale for including each variable is explained in detail in Appendix A.1. 

This decision was made to ensure the robustness and reliability of the predictive model (Jäger 

et al., 2021). High levels of missing data can introduce bias, reduce statistical power and 

compromise the validity of the analysis (Kumar et al., 2017). By omitting variables with these 

high percentage of missingness, we enhance the accuracy and interpretability of the model, as 

it focuses on features with more complete and reliable information (Kumar et al., 2017). This 

approach may result in the loss of potentially relevant information, however it is still worth 

doing because the inclusion of variables with substantial missing data can lead to biased 

results and reduce the robustness of the model. By focusing on variables with more complete 

data, we ensure the model’s reliability and validity. Reliability is ensured by minimizing the 

impact of missing or incomplete data, which can introduce biases and inconsistencies. In 

addition, validity is maintained by selecting variables that are well-documented and 

representative of the factors influencing fertility rates. Hence, it became essential to carefully 

select which features to include in the analysis. It was important to focus on variables that had 

both enough data available and were relevant for prediction.  

In the following section, the Exploratory Data Analysis and statistical methodologies used in 

the selection process of the features will be explained.  

Exploratory Data Analysis has been employed as a step in this research, allowing for a 

comprehensive understanding of the dataset’s structure and characteristics. Through 

techniques such as summary statistics, data visualization (e.g., scatter plots, histogram plots), 

and correlation analysis, outliers have been identified, data distribution assessed and potential 
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relationships between variables explored. For example, histogram plots provided insights into 

the distribution of continuous variables, aiding in outlier detection. In addition scatter plots 

facilitated the identification of patterns or associations between variables. EDA offers the 

advantage of uncovering hidden patterns or anomalies in the data, guiding in the selection of 

relevant variables for further investigation.  

Furthermore statistical methodologies have been employed in this research to potentially 

select final features. Techniques such as penalized regression (e.g., Ridge or Lasso regression) 

and stepwise regression were used to identify potential features that were not going to be used 

if they showed no significance in the final models. Penalized regression methods help address 

multicollinearity by shrinking the coefficients of less important variables, while stepwise 

regression simplifies the model by iteratively adding or removing features based on their 

statistical significance. Together, these methods complement each other by enhancing model 

stability and reducing overfitting, ensuring the robustness of the final models.  

The application of these methods did not lead to a decrease in the number of features. Since 

they showed agreement with the initial features selected for logistic regression. Moreover, the 

models did not show any improvement or provide indications that further adjustments were 

necessary. In fact, these methods reduced the performance metrics compared to logistic 

regression, which is why they were ultimately not used in the final models.   

Table 1: selected features 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Label 

nomem_encr Number of household member encrypted 

outcome_available Whether the outcome is available for the respondent 

cf20m024 Do you currently have a partner? 

  

cf20m030 Are you married to this partner? 

ci20m383 Primary occupation 

ch20m133 
How often did you have a drink containing alcohol 
over the last 12 months? 

ch20m160 Soft drugs (such as hashish, marijuana) 

ch20m161 XTC (such as MDMA) 

ch20m163 Hard drugs (such as stimulants, cocaine, heroin) 

ch20m270 Laughing gas 

cr20m162 
To what extent would you describe yourself as a 
religious person?  

cw20m000 
Respondent has paid work (according to household 
box data) 

gender_bg Gender 

migration_background_bg Origin 

age_bg Age of the household member on December 2020 

nettohh_f_2020 Net household income in Euros 

oplmet_2020 Highest level of education with diploma 

new_child Whether respondent had a child in 2021-2023 
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2.3. Handling missing data 

 

Figure 2: Missing percentages of selected features from 2020 

 

Handling missing data is a critical step in any research, particularly when dealing with 

datasets that have varying degrees of missingness across different features, such as the LISS 

panel (Jäger et al., 2021). In our dataset ,as can be seen in Figure 3, there are two variables: 

‘married to partner’ and ‘partner’s gender’ ,which had substantial amount of missing data, 

with 33.23% missing values each. Other variables like ‘paid work presence’ and ‘primary 

occupation’ also showed significant missingness, with 19.15% and 14.18% respectively. To 

address these gaps effectively and ensure robust analysis, the MICE ( Multiple Imputation by 

Chained Equations) package was used, which is well-regarded for its ability to handle 

different types of missing data by specifying appropriate imputation methods for each 

variable (Van Buuren & Groothuis-Oudshoorn, 2011).  

 

Figure 3: Main steps in MICE (Van Buuren & Groothuis-Oudshoorn, 2011) 
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The main steps in MICE are summarized in Figure 4. MICE operates by iteratively imputing 

missing values through a series of conditional models. It begins by initializing missing entries 

with placeholder values such as the median or mean. Then, it cycles through each variable 

with missing data, treating it as the dependent variable in a regression model with all other 

variables as predictors. For continuous variables, predictive mean matching is used, while 

logistic regression is applied for binary variables. Categorical variables, both ordinal and 

nominal, are imputed using multinomial logistic regression or predictive mean matching, 

depending on their nature (Van Buuren & Groothuis-Oudshoorn, 2011).  

Mathematically, if 𝑋𝑗 is the variable being imputed, MICE models 𝑋𝑗 = 𝑓(𝑋−𝑗) + 𝜀, where 

𝑋−𝑗 represents all other variables in the dataset and 𝜀 is the error term. This process is 

repeated multiple times to create several imputed datasets, which are then analysed separately 

and pooled. The Pooling uses Rubin’s Rules to combine estimates, accounting for both 

within-imputation and between-imputation variability1: 

�̅� =
1

𝑚
∑ 𝑄𝑖

𝑚

𝑖=1

 

𝑇 = �̅� + (1 +
1

�̅�
) 𝐵 

Where �̅� is the pooled estimate, 𝑚 is the number of imputations, 𝑄𝑖 is the estimate from the i-

th imputation, �̅� is the average within-imputation variance, and 𝐵 is the between-imputation 

variance. This method provides robust and reliable estimates, ensuring that the imputed values 

reflect the underlying data structure and variability (Van Buuren & Groothuis-Oudshoorn, 

2011).  

Using MICE, the selected features were assigned to their corresponding imputation methods, 

ensuring that the imputed values were coherent with the nature of the data. For instance, 

continuous variables like ‘nettohh_f_2020’, which had a missingness rate of 11.35% were 

imputed using predictive mean matching. Binary variables such as ‘Partner status’ were 

imputed using logistic regression models. Categorical variables, both ordinal and nominal, are 

imputed using multinomial logistic regression. By carefully selecting the imputation methods 

based on variable types, we mitigated the potential biases and inaccuracies that could arise 

from improper handling of missing data (Van Buuren & Groothuis-Oudshoorn, 2011).  

 

 

 

 
1 Within-imputation variability arises from the random component of the imputation model. Even with a well-
specified model, the imputed values will exhibit some natural variation around the estimated mean. Between-
imputation variability captures the uncertainty introduced by the missing data itself. Since multiple imputed 
datasets are created, estimates such as the mean, will vary across them.  
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Figure 4: Trace Plots of MICE for Partner status (cf20m030) and Partner Gender (cf20m032) 

In the context of multiple imputation, trace plots as seen in figure 3, serve as critical tools for 

assessing the reliability and convergence of imputed values across iterations. The criteria for a 

good trace plot, include minimal fluctuation and convergence of the imputed values and 

standard deviations across iterations.   

This research, utilized trace plots to monitor the imputation process for all features that were 

employed for the machine learning models. In figure 3, the trace plots for 2 variables, which 

had the highest percentage of missingness, are illustrated.  The trace plots illustrated 

consistent trends: as the number of iterations increased, the mean imputed values and the 

standard deviations for both variables stabilized, converging towards a steady estimate. 

Therefore, these variables demonstrated the criteria for a good trace plot, thereby indicating 

robustness in the imputation process. Such stability ensures that the imputed values accurately 

reflect the underlying patterns in the original data. Thus, enabling reliable subsequent 

analyses. Trace plots for all features can be found in Appendix A.3.  
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2.4. Variable transformations 

In this section, binary encoding has been implemented as an essential technique for 

transforming categorical variables such as ordinal and nominal into a binary presentation. 

Binary encoding, which is a widely-used method in machine learning and data analysis, 

converts categorical variables into binary vectors (Dahouda & Joe, 2021). Effectively 

capturing their underlying information without introducing high dimensionality. For this 

research, the data already included categorical variables that were mostly integers. We used 

binary encoding to transform these categorical features into binary features. Specifically, for 

each original feature, we created one binary feature. For example, the ‘educational level’ 

feature originally had 9 values (integers ranging from 1 to 9). This feature then is transformed 

into a binary feature, where 0 represented a low educational level and 1 represented a high 

educational level. The split between 0 and 1 was based on theoretical knowledge and 

statistical analyses, examining the relationship between the original 9 values and the outcome. 

This transformation is particularly useful because many machine learning models, such as 

linear regression and support vector machines, cannot handle categorical data directly and 

require numerical input. By representing categories with binary values (0 or 1), the models 

can incorporate these features into their computations, thereby handling categorical data 

effectively without treating them as purely numerical values.  

Compared to other methods like one-hot encoding, binary encoding creates a more compact 

representation of the data. One-hot encoding converts each category of a categorical variable 

into a separate binary feature, which can result in a large number of features and sparseness 

when dealing with many categories. This compactness from binary encoding improves the 

computational efficiency and performance of machine learning models by reducing the 

complexity and the amount of memory required. Furthermore, binary encoding helps preserve 

the ordinal relationships within the data, when applicable. For example, for the ‘educational 

level’ feature, where the values ranged from 1 (low education) to 9 (high education), binary 

encoding can group these into a binary feature that reflects an ordinal split, such as 0 for low 

education (1-4) and 1 for high education (5-9). This maintains the integrity of the underlying 

information and ensures that the encoded data still reflects the inherent order of the original 

categories.  

An illustrative example supporting the use of binary encoding based on the religiousness 

variable and its relationship with the outcome variable (having a child) is provided in 

Appendix A.2   

Additionally, the continuous predictor ‘Net household income’ undergoes Standardization Z-

score normalization to ensure compatibility with statistical modelling techniques. Z-score 

normalization transforms the distribution of a feature to have a mean of 0 and standard 

deviation of 1 by subtracting the mean and dividing by the standard deviation (Nogueira & 

Munita, 2020). This process effectively scales the data, enabling different features to be 

compared on a common scale without being influenced by their original status. The 

advantages of this approach are particularly useful in this research, since all the other features 

are transformed into binary variables, ensuring that each feature contributes proportionately to 
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the analysis, regardless of its scale. Thereby enhancing the robustness and reliability of the 

statistical models used.  

Furthermore, Z-score normalization facilitates the convergence of gradient-based optimization 

algorithms, such as those used in logistic regression and neural networks, which are utilized in 

this research by providing a more stable and consistent gradient. Overall, this approach 

ensures that the standardized continuous variable aligns with the binary-encoded categorical 

variables, contributing to a balanced and effective analytical framework.  

 

2.5. Models  

In this research, several advanced machine learning models have been developed to analyse 

and predict the occurrence of having a new child within 2021-2023. These machine learning 

models include Logistic Regression, Decision Trees, Support Vector Machine, Random Forest 

and Gradient Boosting Machine. Each model provides distinct benefits and perspectives on 

the data. Enabling a thorough examination of the factors affecting the outcome variable. In 

addition, performance metrics such as F1-score, precision, recall, accuracy and the Area 

Under the Receiver Operating Characteristic Curve (AUC-ROC) have been used to evaluate 

the effectiveness of these different machine learning models. These metrics offer valuable 

insights into the predictive abilities of the models and aid in evaluating their performance 

across various assessment criteria.  

In this analysis the Logistic Regression is the baseline model due to its simplicity and 

interpretability. It simply models the probability of a binary outcome using a logistic function 

(Hosmer et al., 2013). Mathematically, the logistic regression model is expressed as: 

 𝑃(𝑌 = 1 | 𝑋) = 
1

1+ⅇ−(𝛽0+𝐵1+⋯+𝐵𝑝𝑥𝑝)
 , 

where P is probability of the target variable being 1, 𝛽0 is the intercept and 𝛽𝑖 are the 

coefficients for the predictor variables 𝑋𝑖 (Hosmer et al., 2013).  

Following the Logistic Regression, Decision Trees offer a non-parametric approach, 

providing a hierarchical model that splits the data based on certain variable values 

(Bonaccorso, 2018). Each node in the tree represents a decision rule, splitting the data into 

branches. Eventually leading to further nodes or terminal leaves. The training of the decision 

tree model is based on using the Cart algorithm, which minimizes the entropy or Gini 

impurity at each split (Bonaccorso, 2018). This research experimented with different possible 

hyperparameters such as complexity parameter (cp), maximum depth and minimum samples 

per split, to prevent overfitting and ensure generalization. For instance, this research 

experimented with maximum depth ranging from 3 to 30 and cp values from 0.001 to 100. 

The best performing model was selected based on accuracy and other metrics on the 

validation set.  

In addition, Support Vector Machine has also been used for this research. Support Vector 

Machine is a powerful classification machine learning model that finds the optimal 
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hyperplane by separating the classes in a high dimensional feature space, which can be seen in 

figure 4 (Mohammed et al., 2016). 

 

Figure 5: An illustration of Support Vector Machine (Elhamraoui, 2021) 

  

It then uses a kernel function to transform the input features into a higher dimension where a 

linear separator between the features can be found (Mohammed et al., 2016). In this research, 

the radial basis function (RBF) kernel was used, which is defined as:  

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

), 

where 𝛾 is a hyperparameter that determines the influence of individual training examples 

(Mohammed et al., 2016). For this research, hyperparameters such as 𝛾 and the penalty 

parameter C, were tuned to balance the trade-off between minimizing the classification error 

and maximizing the margin.  

Finally, this research employs two ensemble methods: Random Forest and Gradient Boosting 

Machine. These are both ensemble methods that leverage multiple models to enhance 

prediction accuracy and control overfitting.  

Random Forest does this by building multiple decision trees and combining their results, each 

tree being trained on a bootstrap sample of the training data (Bonaccorso, 2018). Furthermore, 

a subset of the variables is randomly selected at each split to ensure diversity among the trees 

(Bonaccorso, 2018). In this research, 500 trees were used and mtry, which is the number of 

features considered at each split was set to 3, to optimize performance.  

On the other hand, Gradient Boosting Machine builds models sequentially, with each new 

model correcting the errors of its predecessor (Natekin & Knoll, 2013). GBM uses gradient 

descent to reduce a differentiable loss function, typically the deviance in classification 

problems(Natekin & Knoll, 2013). Important hyperparameters include the depth of 

interactions, the number of trees, the learning rate and the fraction of data used for each base 

learner. This research selected an interaction depth of 3, a learning rate of 0.01 and 500 trees, 

which was based on cross-validation results. GBM’s ability to capture complex relationships 

in the data makes it a robust choice for classification tasks (Natekin & Knoll, 2013).  
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3. Results  

This research evaluated the performance of five machine learning models: Logistic 

Regression, Decision Tree, Support Vector Machine, Random Forest and Gradient Boosting 

Machine for predicting the target variable of having a child within 2021-2023. In doing so, the 

dataset was split into training and testing sets with a 70-30 ratio. Specifically, 70% of the data 

was used to train the model, while the remaining 30% was used to test and evaluate its 

performance. Each model’s performance was assessed using accuracy, precision, recall, F1-

score and the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) 

curve. Accuracy measures the proportion of correct predictions out of all predictions. 

Precision indicates the proportion of true positives among the predicted positives. Recall, or 

sensitivity, measures the ability to identify all actual positive cases. The F1-score is the 

harmonic mean of precision and recall, providing a balance between the two. The AUC of the 

ROC curve evaluates the model’s ability to distinguish between positive and negative classes, 

with higher values indicating better performance. Table 2 summarizes the metrics for each 

model, while Figure 4&5 present the feature importance and figure 6 presents a combined 

Roc curve plot for visual comparison.  

3.1 Feature importance 

 

 

Figure 6: Random Forest Feature Importance 

Figure 7: Feature importance GBM model 
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Feature importance in machine learning models provide insight into which variables are most 

influential, in this context, in making predictions. In Random Forests, feature importance can 

be explained as follows: it is assessed through the mean decrease in accuracy or the mean 

decrease in impurity, when the variable’s values are permuted. In GBM, feature importance is 

calculated based on how often a feature is used for splitting the data across all the trees and 

the reduction in error it achieves. Higher importance scores indicate that the feature 

significantly contributes to the model’s predictive power. In Support Vector Machines, feature 

importance revolves around the coefficients assigned to each feature in the hyperplane that 

separates different classes or predicts probabilities. Features with larger coefficients exert 

more influence on the decision boundary, therefore playing a crucial role in classification 

tasks. Lastly, in Decision Tree models, feature importance is evaluated based on how much 

each feature contributes to splitting nodes and organizing the data. Features that lead to 

significant reductions in impurity or entropy are considered more important as they better 

define different classes or outcomes.  

For the GBM and Random Forest model, the features age, household income, partner status 

(cf20m024_binary) and partner gender (cf20m030_binary) emerged as the most important 

features. Suggesting that these variables play an important role in determining the likelihood 

of having a child within 2021-2023. This important role can be explained per feature. Age is 

often associated with fertility and life stage, while household income reflects financial 

stability and therefore also the ability to support a child. Partner status and partner gender 

most likely influence family planning decision and social-biological dynamics. Analysing the 

importance of these variables helps in interpreting the machine learning model’s decisions and 

provide valuable visions into the underlying factors that influence the target variable. Since 

this reveals which features are prioritized and contribute most significantly to predicting the 

outcome.  

 

 

Figure 8: Feature importance of Decision Tree Model 

Additionally, the feature importance of the Decision Tree model reveals several essential 

predictors influencing the likelihood of having a child between 2021-2023. Age emerges as 

the most significant feature, highlighting its dominant role. Features such as partnership status 
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(‘cf20m024_binary) and educational attainment (‘only_highschool’) also exhibit substantial 

predictive power. Household-income (‘nettohh_f_2020_z’) and employment status also show 

a significant contribution to the model. These findings are also consistent with the logistic 

regression model and the Support Vector Machine model. Thereby emphasizing the robust 

impact of demographic and socio-economic features on predicting the outcome.  

 

3.2 Model’s performance  

 

Model Accuracy Precision Recall F1-Score AUC 

Logistic 
Regression 

0.7643 0.7708 0.9823 0.8638 0.7713 

Decision Tree 0.8283 0.4789 0.7083 0.5714 0.8461 

SVM 0.7677 0.0423 0.7500 0.0800 0.7897 

Random Forest 0.7912 0.2535 0.6667 0.3673 0.8314 

GBM 0.8277 0.4507 0.7273 0.5565 0.8591 

Table 2: Performance results per machine learning model 

The models assessed for predicting the occurrence of having a child within 2021-2023 

exhibited distinct strengths and weaknesses across different performance metrics. Both the 

Gradient Boosted Machine and Decision Tree models distinguished themselves with high 

accuracies of 0.8277 and 0.8282, respectively. The Decision Tree’s ability to capture complex 

data relationships contributed to its competitive accuracy, although with potential variability 

in F1-score and precision on unseen data. Also, the GBM’s ensemble learning approach 

iteratively improved predictions, illustrating strong performance in accuracy and AUC. 

However, other performance metrics such as F1-score and precision, indicate possible areas 

where further optimization could enhance performance.  

This discrepancy of the GBM can be attributed to its iterative nature, which focuses on 

minimizing prediction errors overall rather then specifically optimizing for precision or 

minimizing false positives. As GBM build successive models to correct errors made by 

previous models, it may prioritize improving overall accuracy and AUC, which are crucial for 

general predictive performance.  

Furthermore, the Random Forest model achieved an accuracy of 0.7912, with a precision of 

0.2535, recall of 0.6667, and F1-score of 0.3673. Random Forest demonstrated trade-offs 

typical of ensemble methods, which are also mentioned for the GBM model. Namely, its 

ensemble of decision trees allows it to capture complex data interactions effectively, leading 

to competitive recall and accuracy. However, the lower precision suggests that while Random 

Forest identifies many actual positive cases, it also predicts a significant number of false 
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positives. This trade-off arises because individual decision trees within the ensemble may 

independently make errors, which are then aggregated in the final prediction.  

Additionally, the Support Vector Machine model achieved an accuracy of 0.7677 with a recall 

of 0.7500 indicating its effectiveness in identifying individuals likely to have another child. 

However, its precision 0.0423 and F1-score of 0.0800 were notably lower compared to other 

models, highlighting SVM’s challenge in simultaneously achieving high precision and recall 

due to its sensitivity to kernel selection and data distribution. SVM’s approach involves 

separating classes with a hyperplane, making it effective in recall but less so in precision, due 

to its inherent difficulty in correctly classifying positive cases while avoiding false positives. 

Highlighting the importance of selecting the correct model based on specific application 

requirements and understanding the nuances of model performance across the different 

evaluation metrics.    

The Logistic regression exhibited robust performance across multiple evaluation metrics. It 

produced an accuracy of 0.7643, precision of 0.7708, recall of 0.9823 and a F1-score of 

0.8638. The high recall of 0.9823 showed that the model effectively identified almost all 

individuals who actually had a child. Also the high F1-score of 0.8638 reflects a balanced 

performance between the precision and recall. Logistic regression’s ability to perform well 

across these metrics can be attributed to its linear nature and suitability for binary 

classification tasks. Furthermore, highlighting its capacity to balance between minimizing 

false positives and capturing all positive instances in prediction the outcome of having 

a(nother) child within 2021-2023.  
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Figure 9: ROC curve for each machine learning model 

In evaluating the model’s predictive performance, the ROC curve and the AUC provide 

insightful metrics. The ROC curve shows the trade-off between sensitivity (True Positive 

Rate) and False Positive Rate (1-specificity) across different thresholds. Among the examined 

models, the GBM model illustrated the highest discriminatory ability with an AUC of 0.8591. 

Indicating that the GBM model is adept at distinguishing between individuals likely to have a 

child and those who are unlikely. Also, the Support Vector Machine demonstrated a 

competitive performance with an AUC of 0.7897.  

Additionally, the Random Forest and Decision Tree exhibited competitive performance with 

AUC values of 0.8314 and 0.8461, respectively. These models leverage ensemble learning 

techniques, which enable them to capture potential complex interactions and nonlinearities in 

the data. Therefore, contributing to their strong discriminatory power. The Logistic 

Regression model, while more straightforward in its approach, also showed respectable 

performance with an AUC of 0.7713. 

In summary, the models evaluated in this research each demonstrate unique strengths and 

considerations for predicting the occurrence of having a child within 2021-2023. For 

accuracy, the Decision Tree and Gradient Boosted Machine performed notably well, each 

achieving accuracies above 0.82. For precision, Logistic Regression outperformed other with 

a score of 0.7708, indicating its proficiency in minimizing false positives. Also, when 
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prioritizing recall, which measures the ability to identify all actual positive cases, Logistic 

Regression also demonstrated high performance of 0.9823. Once again, for the F1-score, 

Logistic Regression also outshone the other models, with a score of 0.8638. GBM emerged as 

the top performer with an AUC of 0.8591, indicating its effectiveness in distinguishing 

individuals likely to have a child from those who are not.  
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4.Discussion  

4.1 Evaluation of predictive models and key fertility features 

This research, aimed at predicting fertility outcomes, specifically the likelihood of having a 

child within 2021-2023 in the Netherlands, using advanced machine learning models. These 

models include Gradient Boosted Machines, Random Forests, Logistic Regression, Support 

Vector Machines and Decision Trees. Each model illustrated varying degrees of predictive 

capability, with feature importance analysis revealing key insights into the features 

influencing fertility.  

Overall, while the GBM model exhibits the highest AUC, indicating strong overall 

discriminative ability, the Logistic Regression model demonstrates the best average 

performance across multiple metrics, particularly excelling in recall and F1-score. Therefore, 

considering both discriminative ability and balanced predictive performance, Logistic 

Regression would be the most reliable model for predicting whether an individual will have a 

child in this context.   

The Random Forest and GBM models identified several critical features that significantly 

impacted the prediction having a child within 2021-2023. The Logistic Regression, SVM and 

Decision Tree models provided complementary perspectives on this feature importance.  

Among these, age, household income, partner status, and partner gender emerged as the most 

important variables. 

Age was the most influential feature, illustrating its important role in fertility decisions. 

Recent studies have consistently highlighted age as a critical determinant influencing fertility 

choices. Adsera and Ferrer (2013) investigated the impact of age at migration on fertility 

decisions among immigrants in Canada, highlighting age as a pivotal factor in reproductive 

timing and family formation (Adsera & Ferrer, 2013). This resonates with this research’s 

findings, which also emphasize the significance of age in shaping fertility preferences and 

outcomes.  

 Additionally, household income was another significant feature, highlighting the economic 

considerations in family planning. Income disparities have emerged as a key area of 

investigation in fertility research. Birdsall and Jamison (1983) examined income effects on 

fertility rates in China, illustrating how economic stability influences reproductive decisions 

(Birdsall & Jamison, 1983). Aligning with this research’s exploration of socio-economic 

factors and their role in shaping fertility preferences among the individuals. Higher household 

income often correlates with better access to education, healthcare and resources which can 

influence the decision to have children.  

Partner gender and partner status also played vital roles in predicting the outcome, reflecting 

the social and relational aspects of fertility decision. Research by Sturm et al. (2023) provides 

further validation, emphasizing how partnership status significantly shapes fertility intentions 

across various European countries. Their findings highlight that individual’s decisions 

regarding family planning are linked to the quality and nature of a possible relationship.  
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Moreover, machine learning methodologies have revolutionized fertility research by 

integrating diverse socio-economic and behavioural predictors. Barnett-Itzhaki et al. (2020) 

demonstrated the efficacy of machine learning in predicting IVF outcomes, emphasizing 

variables such as age, lifestyle factors and ovarian reserve (Barnett-Itzhaki et al., 2020). These 

findings are similar to this research, where similar features emerged as influential factors in 

understanding fertility outcomes.  

In line with these studies, this research confirms the relevance of these factors In predicting 

fertility outcomes. The consistency of this thesis findings with existing literature improves the 

validity of the results and emphasizes the utility of machine learning models in demographic 

research. Furthermore, this research extends the existing body of knowledge by incorporating 

a comprehensive set of features, including the use of laughing gas, partner status, partner 

gender, which have been less frequently examined in previous research.  

Furthermore, the findings of this research have several implications for policy and practice, 

particularly in understanding the key factors of influencing fertility. The models illustrated 

age, household income, partner status and partner gender as significant predictors of fertility 

outcomes. For instance, policymakers could develop age-sensitive policies that provide 

tailored support, such as educational programs for younger couples and accessible fertility 

treatments for older future parents. Economic stability, indicated by the significance of 

household income, suggests the need for financial incentives, subsidies for childcare and 

accessible housing and healthcare, to lessen the economic burden of raising children. Also, 

recognizing the importance of partner status and gender, policies should support diverse 

family structures and provide if necessary, relationship counselling and education. Promoting 

work-life balance through parental leave, flexible working hours, and family-friendly 

workplace environments can help individuals manage career and family aspiration. By 

implementing these interventions, policymakers can create a supportive and more safe 

environment that addresses the complex challenges of fertility, promoting healthier and more 

stable family structures.  

 

4.2 Limitation and further research  

While this study provides important insights, it is not without limitations. Firstly, the data set 

used was relatively small, comprising only 987 individuals. This limited sample size may 

affect the generalizability of the results to a broader population. Also, the data used in this 

research may not capture all relevant factors influencing fertility. Which may lead to 

unobserved variables that could affect the outcomes and therefore bias the results. 

Additionally, the machine learning models were used and trained on specific datasets, and 

their generalizability to other populations or contexts should be validated through further 

research.  

In addition, the machine learning models used in this research, while powerful, are not 

without their limitations. For example, while Random Forests and GBM are robust in 

handling non-linear relationships and complex interactions, they can be computationally 
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intensive and may require substantial tuning to achieve optimal performance. Also, the 

interpretation of these models can be challenging compared to simpler models like Logistic 

Regression.  

Future research should explore larger and more diverse data sets with a relative low amount of 

missingness, to validate these findings and improve their generalizability. Additionally, 

integrating more complete longitudinal data could provide deeper insights into the temporal 

dynamics of fertility decisions. Additionally, researchers should also consider developing 

more interpretable models or enhancing the interpretability of complex models to facilitate 

their application in policy-making and practical settings. Future research could also explore a 

wider range of machine learning models beyond those used in this research. Techniques such 

as neural networks or more sophisticated deep learning models might provide additional 

insights or improve predictive accuracy. By utilizing a broader spectrum of machine learning 

models, future studies can further enhance our understanding of the complex factors 

influencing fertility outcomes and develop more robust predictive frameworks.  

Also incorporating advanced statistical techniques, such as causal inference methods or 

Bayesian approaches, could offer deeper insights into the causal relationships underlying 

fertility decisions. By systematically controlling for confounding variables and exploring  

causal mechanisms, researchers can strengthen the robustness of their findings and inform 

more effective policy interventions. Additionally, working together with experts in sociology, 

anthropology and public health, can help researchers better understand the social and cultural 

factors that affect fertility decisions. Using qualitative research methods like in-depth 

interviews or focus groups can also add valuable insights by capturing detailed personal 

experiences and perspectives that numerical values alone might miss.  

Furthermore, using spatial analyses and geographic information systems (GIS) can show 

differences in fertility rates across different areas and identify regions that need specific 

policy actions. Mapping fertility trends at various levels can give important insights into 

where reproductive health issues are most pronounced and help direct resources to where they 

are needed most.  

4.3 Conclusion 

This research demonstrates that fertility can be predicted with a reasonable degree of accuracy 

using machine learning (ML) approaches. The performance of these models however, varies 

significantly depending on the specific algorithm employed. Among the models tested, the 

Gradient Boosted Machine (GBM) exhibited the highest Area Under the Curve (AUC), 

indicating strong overall discriminative ability, whereas the Logistic Regression model 

showed the best average performance across multiple metrics, particularly excelling in recall 

and F1-score. While this research is not without its limitations, it does offer interesting 

insights into the potential of Machine Learning models in demographic studies and public 

policy planning. The research highlights how different ML algorithms can capture complex 

patterns to predict fertility, providing a more nuanced understanding of demographic trends.  
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Appendices 

 

A.1 Feature selection  

Current Partner (cf20m024): This variable denotes whether the respondent is currently in a 

relationship, providing insights into their interpersonal dynamics and familial structure. 

Partnerships often symbolize a desire for companionship and stability. These factors 

significantly shape decisions concerning family planning and the prospect of raising children 

(Birdsall & Jamison, 1983).  

Married to Partner (cf20m030): Marriage is a significant life event associated with family 

formation and long-term commitment. This variable captures respondent’s marital status, 

reflecting long-term relationship commitment. It influences family planning decisions due to 

societal and legal expectations associated with marriage (Birdsall & Jamison, 1983).  

Partner’s Gender (cf20m032): Understanding respondents partners genders sheds light on 

relationship dynamics influencing family planning. Gender roles and expectations vary, 

affecting decision-making regarding parenthood and family roles. This variable adds depth to 

fertility prediction models by accounting for relational dynamics. 

Primary Occupation (ci20m383): Respondents’ primary occupations revel socioeconomic 

status, stability and lifestyle choices. Career-focused individuals may delay parenthood for 

professional growth, while others prioritize family. Occupation influences fertility decisions, 

reflecting individuals’ life goals and priorities (Birdsall & Jamison, 1983).  

Alcohol Consumption (ch20m133): Alcohol habits impact various aspects of life, including 

family planning. Excessive consumption may signal lifestyle choices affecting fertility. 

Therefore monitoring alcohol use allows for a holistic assessment of factors influencing 

fertility intentions and outcomes (Sharma et al., 2013).  

Soft Drugs Usage, XTC Usage, Hard Drugs Usage & Laughing Gas Usage (ch20m160, 

ch20m161, ch20m163 & ch20m270): Usage of substances like soft drugs, XTC, hard drugs, 

and laughing gas provides valuable insights into individuals decision-making processes and 

lifestyle choices, impacting family planning readiness and attitudes towards risk-taking 

(Sharma et al., 2013). Soft drug use, such as marijuana, may reflect a preference for personal 

freedom over traditional values. Thereby influencing fertility decisions. Similarly, the use of 

substances like XTC(MDMA) and hard drugs like heroin or cocaine may prioritize immediate 

pleasure-seeking tendencies over long-term commitments (Sharma et al., 2013). In addition, 

despite the perception of being less harmful than the before, laughing gas usage may indicate 

a propensity for altered states of consciousness, influencing fertility planning approaches  

(Van Amsterdam & Van Den Brink, 2022). Thus, understanding the collective impact of drug 

and alcohol usage adds nuance to fertility prediction models, reflecting the complexities of 

individual behaviours and preferences in family planning.  
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Religiousness (cr20m162): Religious beliefs shape values, morals, and life choices, including 

family planning. More religious individuals may adhere to specific doctrines, affecting 

fertility intentions. Religiousness reflects cultural norms and personal beliefs, influencing 

fertility decision-making (McQuillan, 2004).  

Paid Work Presence (cw20m000): Employment status is closely linked to financial stability, 

independence, and social status, all of which affect family planning decisions. Stable 

employment provides security, making individuals more ready to start a family. Employment 

status also reflects societal norms and expectations, making it relevant for predicting fertility 

outcomes (Birdsall & Jamison, 1983).  

Migration Background (migration_bg): Cultural and migration backgrounds shape values, 

beliefs, and attitudes towards family and parenthood. Immigrants and individuals from diverse 

backgrounds have unique perspectives on family planning. Understanding migration 

background contributes to a comprehensive understanding of fertility dynamics (Sharma et 

al., 2013).  

Age on December 2020 (age_bg): Age is fundamental in fertility decisions, with rates 

varying across age groups. Younger individuals may prioritize education, while older ones 

face biological limitations. The age of an individual at a particular moment is indicative of 

their current life phase and where they stand in terms of their reproductive journey (Adsera & 

Ferrer, 2013).  

Net Household Income (nettohh_f_2020): Household income reflects financial resources, 

stability and socio-economic status, influencing family planning. Higher incomes provide 

access to healthcare, education and childcare, impacting fertility outcomes. Lower incomes 

may constrain family planning options, affecting fertility intentions (Skakkebaek et al., 2016).  

Education Level (oplmet_2020): Education is tied to socio-economic factors influencing 

fertility decisions, Higher education delays childbearing and influences family size 

preferences. It also reflects cognitive abilities and exposure to diverse perspectives, shaping 

attitudes towards family formation (Adsera & Ferrer, 2013).  
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A.2 Illustration binary encoding 

 

Figure 3: Relationship between Categorical Predictor and Outcome 

Figure 5 illustrates the relationship between an ordinal predictor variable ‘cr20m162’ and the 

outcome variable ‘new_child’ by showing the average outcome value within each category of 

the predictor. Each category represents an amount of religiousness. Each bar represents the 

mean outcome value for a specific category of the predictor, with error bars indicating the 

variability around the mean. This visualization helps to assess whether there are significant 

differences in the mean outcome value across different categories of the predictor.  

 

Figure 4: Visualizing the Effect of Binary Encoding on Categorical Predictors 

In Figure 6, the outcome of binary encoding applied to the ordinal variable 

‘religiousness’(Variable name: cr20m162) is presented, contrasting with Figure 5. This 

variable originally encompassed responses ranging from 1 to 4, each representing different 

degrees of self-described religiosity: 1 denoting ‘certainly religious, ‘ 2 indicating ‘somewhat 

religious,’ 3 representing ‘barely religious,’ and 4 signifying ‘certainly not religious.’ Through 

binary encoding, values 1 and 2 were transformed into 1, while values 3 and 4 were converted 
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to 0. Thereby dichotomizing the variable based on the level of religiosity reported by the 

certain individual.  

The resulting binary representation facilitates a simplified interpretation of religiousness, 

distinguishing between individuals identifying as religious (assigned a value of 1) and those 

identifying as less religious or non-religious (assigned a value of 0). This transformation 

enables clearer delineation of religious and non-religious categories for analytical purposes.  

 

 

A.3 Trace plots of MICE 
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