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Abstract

In the coming years, the LIGO and Virgo gravitational wave interferometers are
planned to undergo a number of detector upgrades which will improve the detector sen-
sitivity, and together with the construction of next-generation detectors like Einstein
Telescope and Cosmic Explorer this should lead to more frequent and louder detec-
tions of binary neutron star inspirals. To increase the information gained from these
observations, we want to study the inspiral and merger directly with electromagnetic
telescopes, which requires us to detect and localize these signals before their merger.
Current state-of-the-art localization algorithms rely on matched filtering frameworks,
which can introduce biases and only provide point estimates of intrinsic parameters. In
this work, we present a normalizing flows based framework that can provide pre-merger
sky location, in addition to estimating other parameters relevant for follow-up study,
such as the component masses, luminosity distance and inclination angle. We train net-
works for different maximum frequencies, corresponding to a different time-to-merger.
The parameter estimations are better constrained when a larger part of the signal is ob-
served and when the signal is louder, but the networks can also produce well-constrained
localizations for smaller parts and quieter signals. The sky localizations produced by
the networks are regularly accurate enough to enable follow-up studies.
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1 INTRODUCTION 1

1 Introduction

Gravitational waves (GWs) are perturbations in the fabric of spacetime. They were first
theoretically described by Albert Einstein in 1916 [1], as a consequence of his famous work
on General Relativity [2]. GWs provide an additional method of observing the cosmos;
until then we were only able to see the universe using electro-magnetic (EM) emissions, but
GWs would allow us to observe the continuous GW emission of asymmetrical neutron stars,
study the stochastic GW background, GW bursts emitted by supernovae and the GW chirps
emitted by the inspiral of super dense stellar objects [3]. The first indirect observation of
GWs was done by Russel Hulse and Joseph Taylor, when they studied the orbital period of
a binary pulsar system, and found the orbit decaying due to losing energy to gravitational
radiation [4]. Since then, the field of GW science has gained more and more traction with the
first direct observation of GWs, named GW1509141 [5] by the LIGO [6] GW interferometers.
Currently, the LIGO and Virgo [7] detector network has made a total of 90 GW detections,
with 85 binary black holes (BBHs), 3 black hole neutron star (BHNS) and 2 binary neutron
stars (BNS) detections [8]. With planned detector upgrades and upcoming construction
of Einstein Telescope [9] and Cosmic Explorer [10], the detector sensitivity will increase
significantly.

One of the most interesting detections by the LIGO and Virgo detectors is the first
confirmed detection of a BNS inspiral, GW170817 [11]. Later searches revealed that the
Fermi Gamma-Ray-Burst Monitor [12] and the INTEGRAL satellites [13] had observed a
gamma ray burst (GRB) coming from the same location [14] about two seconds later. This
was followed up by multiple EM telescopes, and the aftermath of the merger was observed
by 70 observatories across the EM spectrum from radio to X-ray wavelengths. The detection
opened up the field of multi-messenger astronomy (MMA), which can combine observations
of high-energy neutrinos, ultra high energy cosmic rays, gamma rays, other EM channels and
GW data from a single source [15]. The GW170817 detection lead to a lot of discoveries,
including but not limited to: an independent measurement of the Hubble constant [16],
further constraints on the neutron star equation of state [17], and a comparison between the
speed of light and speed of gravity [18].

While GW170817 lead to a plethora of discoveries, we could do even better by directly
observing other parts of the inspiral in the EM band. If we can observe and locate the source
of a BNS signal before the merger, we could observe part of the inspiral and merger directly
with EM telescopes. This would provide several interesting opportunities; for example to
study the pre-merger magnetosphere interactions between the neutron stars [19], further
investigations of the r-process nucleosynthesis which produces heavier elements [20], and
observing the X-ray emissions at the merger to determine the state of the remnant object
[21].

Several studies have already shown the ability to provide early warnings for BNS inspirals
using the LIGO-Virgo detector network at design sensitivity. Some rely on the matched
filtering technique, which is partly used to claim GW detections [22–24]. Others rely on
machine learning (ML) techniques like convolutional neural networks to produce triggers
[25, 26]. These triggers would allow for follow-up investigations to estimate the sky location.

1GW observations get named with the date of discovery, so GW150914 corresponds to a GW observation
on the 14th of September 2015.
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The biggest hurdle to provide pre-merger sky localizations is the stringent speed require-
ments: the sky location needs to be estimated as fast as possible to ensure the follow-up
observations have enough time to find the source before the signal ends. These requirements
disqualify classical parameter estimation methods like Markov chain Monte-Carlo (MCMC)
[27] and nested sampling [28], since they require a large amount of time to estimate the
sky location. Therefore, frameworks specialized in rapid sky localization like BAYESTAR [29]
and GWSkyLocator [30] use alternative methods to find the sky location. The first uses the
matched filtering output and marginalized Bayesian parameter estimation to estimate the
sky location and luminosity distance. The second also relies on the matched filtering output,
but uses a neural network-based framework to provide sky localizations. While efficient, both
of these frameworks rely on the matched filtering pipeline to produce results. However, the
matched filtering pipeline uses a template bank which is discretely populated with template
waveforms. Thus, these can only give a point estimation of the intrinsic parameters of the
waveforms which can introduce biases.

ML applications have recently gained increased prominence in GW science. Specifically
in GW parameter estimation, multiple studies have used normalizing flow (NF) based frame-
works [31–35], because they are fast compared to classical methods with similar accuracy
[34].

In this work, we develop a NF based framework capable of rapidly inferring the sky
location and other parameters relevant for EM follow-up observations, such as the component
masses, luminosity distance and inclination angle, using a pre-merger BNS inspiral. The
framework does not require information from other pipelines such as matched filtering based
ones, being able to produce sky estimations using only the detector strains. Additionally,
because it is an ML-based approach, the majority of the computational cost is up-front,
resulting in sub-second parameter estimation.

This work is structured as follows. Sec. 2 introduces the reader to the theory behind
GWs, waveform models, the detection of GWs and neutron star multi messenger astronomy.
In Sec. 3, we introduce the ML framework used to analyse the BNS inspiral signals. We
discuss the implementation and operation of the network in Sec. 4. In Sec. 5 we present the
results obtained from our investigations in the accuracy of the framework. Finally, in Sec. 6
we summarize and discuss the results and discuss possible applications.
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2 Gravitational waves

2.1 Introduction to gravitational waves

We start the theoretical discussion in this thesis the with a short introduction to General
Relativity (GR), with a focus on linearized gravity in order to jump straight to GW theory.
In this section, we roughly follow the derivation of Antelis et al. [36] and Chris Van Den
Broeck [37].

2.1.1 Einstein equations

In general relativity, a ‘gravitational field’ is described by a spacetime metric. A metric
describes how particles in a gravitational field move around spacetime. For example, the
Minkowksi metric, which describes empty space, is given by ηµν = diag(−1, 1, 1, 1). In GR
this is called a ‘flat spacetime’. From a metric, the behaviour of particles in the spacetime
can be calculated. The relation between the spacetime metric and matter is given by the
Einstein field equations [2],

Gµν =
8πG

c4
Tµν , (1)

with Gµν the Einstein tensor, G the gravitational constant, c the speed of light and Tµν the
energy-momentum tensor. In this equation, Gµν depends on the spacetime metric and its first
and second derivatives. Because of the complex dependency on the metric and its derivatives,
the calculation the spacetime metric is only analytically possible with a few simple matter
distributions. However, we can do a simple approximation to arrive at an expression that
describes the existence of GWs.

2.1.2 Linearized gravity

To describe GWs, we use an approximation called linearized gravity. Consider small per-
turbations a on the Minkowski metric labelled by hµν . The spacetime metric can then be
expressed as

gµν = ηµν + hµν , ∥hµν∥ ≪ 1 (2)

This metric can be used to define an invariant line element

ds2 = gµνdx
µdxν (3)

with ds2 the invariant spacetime distance. In this context, invariant means that this distance
is the same for each observer in the spacetime. In essence, Eq.(3) tells us that the metric
effects the observed spacetime distance between two events. We will return on what this
means in section 2.3.1, when we discuss the affects of GWs on matter.

If we insert the expression for gµν from Eq.(2) in Eq.(1) and impose the Lorentz gauge
invariance of the metric to eliminate some derivatives, we arrive at the linear Einstein field
equations2 given by

□h̄µν = −16πG

c4
Tµν , (4)

2Follow [37] for a more in-depth derivation.
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with □ the d’Alambertian operator and h̄µν = hµν − 1
2
ηµνh

α
α. If we look at this equation in

vacuum (Tµν = 0), it reduces to

□h̄µν = 0,(
− ∂2

c2∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
h̄µν = 0.

(5)

This equation allows for wave solutions for h̄µν . These waves are perturbations of the space-
time metric, and we call them gravitational waves. This equation can be solved by a plane
wave solution of the form

h̄µν = Cµν exp(iκλx
λ), (6)

with Cµν a symmetric, transverse traceless polarization tensor that contains the amplitudes
of the GWs, and κλ is the propagation vector. If we assume that our source of GWs is in
the xy-plane and the waves are travelling along ẑ, the polarization tensor reduces to

hTT
µν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 cos(ω(t− z/c)), (7)

with h+ and h× the plus and cross polarization of the gravitational wave, which we explain
in more detail later. hTT is called the Transverse-Traceless gauge (TT gauge) because hii = 0
and κµCµν = 0, where κµ is the propagation vector of the GW.

2.1.3 Multipole expansion

Now that we have established the existence of GWs, we derive how they are created. GWs
are emitted by the movement and deformation of matter distributions, so we consider a
matter distribution at the source of the GW. The matter distribution and its properties
are contained in the energy-momentum tensor, Tµν . If we look at Eq.(4) and use a Green’s
function to express it in integral form, we get

h̄µν(t,x) = −16πG

c4

∫
V

d4x′G(x− x′)Tµν(x
′),

G(x− x′) = −δ(tret − t′)

4π|x− x′|
,

(8)

with V the volume of the source that generates the GWs and G(x− x′) a Green’s function
dependent on the retarded time tret. The retarded time is the time a GW needs to arrive
from a certain position x′ at the observer at position x, defined as tret = t − |x−x′|

c
. If we

apply the Green’s function to the energy-momentum tensor and integrate the time integral,
Eq.(8) reduces to

h̄µν(t,x) =
4G

c4

∫
V

d3x′Tµν(t− |x− x′|/c,x′). (9)

With appropriate gauge transformation choices, we can set h̄0µ = 0 outside the source, so
we can focus on the spatial components. Far away from the source at a distance r, we can



2 GRAVITATIONAL WAVES 5

approximate |x − x′| ≈ r to simplify the expression. With these approximations, Eq.(9)
becomes

h̄ij(t,x) =
1

r

4G

c4

∫
V

d3x′Tij(t− r/c,x′). (10)

We can use gauge transformations to convert this to the TT gauge using a linear operator,

hTT
µν = Λijkl(n̂)h̄

kl, (11)

with Λijkl(n̂) the operator that converts to the TT gauge and n̂ a unit vector in the direction
of propagation3. Using Λijkl(n̂), Eq.(10) can be expressed as

hTT
ij (t,x) =

1

r

4G

c4
Λijkl(n̂)

∫
V

d3x′T kl(t− r/c,x′). (12)

Now, using Tij = δki δ
l
jT

kl = (∂kxi)(∂
lxj)T

kl and the conservation law ∂µT
µν = 0 we can use

partial integration to arrive at the expression

hTT
ij (t,x) =

1

r

2G

c4
Λijkl(n̂)M̈

kl(t− r/c), (13)

with M̈kl the second order time derivative of the mass multipole moment

M ij ≡ 1

c2

∫
d3xT 00xixj. (14)

If we choose n̂ = ẑ and write out the expression for hTT
ij , we arrive at the expressions of h+

and h× in terms of the mass multipole moment, given by

h+ =
1

r

G

c4

(
M̈11 − M̈22

)
,

h× =
2

r

G

c4
M̈12.

(15)

This approximation looks reasonably compact, but it is only a first order approximation, so
it must be taken with a pinch of salt.

2.1.4 Circular orbit

Now that we have an expression for the plus and cross polarizations, we can calculate the
GWs originating from two orbiting point particles.

The particles have mass m1 and m2, with a distance of 2R between them. If we choose
the origin to be at the center of mass, we can define a unit vector ê(t) that points from the
origin to the first particle. The positions of the particles can then be expressed as

x1(t) =
µ

m1

Rê(t),

x2(t) =− µ

m2

Rê(t),
(16)

3The Λijkl(n̂) operator is constructed from a combination of projection operators Pij(n̂) ≡ δij − ninj .



2 GRAVITATIONAL WAVES 6

with µ = m1m2/(m1+m2) the reduced mass, ê(t) = (cos(ωt), sin(ωt) cos(ι), sin(ωt) sin(ι)). ω
is the orbital frequency and ι is the inclination of the orbital plane with respect to a normal
vector in the direction of the source4. Now we calculate the mass multipole moment of this
matter distribution from Eq.(14) and substitute it in Eq.(15) to get the polarizations. The
equations we get are

h+ =− 4

r

(
GMc

c2

)5/3 (ω
c

)2/3 1 + cos(ι)

2
cos(2ωtred),

h× =− 4

r

(
GMc

c2

)5/3 (ω
c

)2/3
cos(ι) cos(2ωtred),

(17)

with Mc =
(m1m

3/5
2 )

(m1+m2)1/5
the chirp mass. We used Kepler’s law to substitute R =

(
GM
ω2

)1/3
.

These equations describe circular motion, but if two particles on a circular orbit emit GWs,
they must also lose orbital energy equal to the energy emitted by the GWs. This is included
in the next section.

2.1.5 Quasi-circular inspiral

To describe the inspiral, we need to include the time dependence of the frequency due to the
energy loss of emitted gravitational radiation. This energy loss manifests in a reduction in
the orbital frequency5, given by the equation

ḟgw(tred) =
96

5
π8/3

(
GMc

c3

)5/3

f 11/3
gw (tred), which gives

fgw(t) =
1

π

(
GMc

c3

)−5/8(
5

256

1

τ(t)

) (18)

with fgw = πω and τ = tc − t, with tc the time of coalescence. The coalescence time is the
time where the frequency diverges. In reality, the inspiral stops earlier around the innermost
stable circular orbit (ISCO) distance RISCO ∼ 6GM/c2, after which the object plunge into
each other and the inspiral stops. If we assume a quasi-circular inspiral6, we can include the
time dependence in Eq.(17) by substituting ω → ω(tred), ωtred → Φ(tred), with Φ the angular
velocity. When we include all these expressions and approximations, the equation for the
polarisations is given by

h+ =− 4

r

(
GMc

c2

)5/3(
πfgw(tred)

c

)2/3
1 + cos(ι)

2
cos(Φgw(tred)),

h× =− 4

r

(
GMc

c2

)5/3(
πfgw(tred)

c

)2/3

cos(ι) cos(Φgw(tred)).

(19)

with

Φgw(tred) = −2

(
5GMc

c3

)−5/8

τ 5/8(t) + Φc, (20)

4Fig(5) illustrates the definition of the inclination angle.
5See section VIII B from [37].
6We assume R to be approximately constant over a single orbit.



2 GRAVITATIONAL WAVES 7

Figure 1: Figure illustrating the different parts of a CBC. Figure taken from [40].

where Φc is the phase of coalescence. We now have a first approximation of the GWs emitted
by two inspiraling point particles. This is the simplest approximation for a waveform7, but it
includes a lot of approximations that limit its accuracy. In the next section we will not do full
derivations, but rather describe the process and idea behind more accurate approximations.

2.2 Waveform models

In GR, there are no analytical solutions to the two body problem. Therefore, if we want to
achieve more accuracy for our waveform model, we consider pertubative and numerical meth-
ods. We briefly discuss the post-Newtonian (PN) [38] and the self force perturbation theory
(SFPT) [39] and their respective domains of applicability, in addition to a numerical method
called numerical relativity (NR). Afterwards, we discuss how to combine these approxima-
tions into a usable waveform model. In the rest of this section we work in geometrized units,
i.e. c = 1 and G = 1.

2.2.1 Post-Newtonian approximation

From the perspective of waveform modelling, the compact binary coalescence (CBC) of two
objects can be divided into three distinct parts: the inspiral, merger and ringdown (see Fig.1).
During the inspiral, the separation between the two objects is large with respect to their size.
In this part, the dynamics can be modelled using the PN approximation to GR. We assume

v ≪ 1,
M

R
∼ (v)2 ≪ 1, (21)

meaning that the bodies in the system are moving slowly with respect to the speed of light.
Additionally we assume that the gravitational field is ‘weak’, which is indeed what we expect
during the inspiral phase because the objects are still far away from eachother. In the PN

7We use the definition for the term waveform for a specific equation for h+, h× depending on the source
parameters.
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approximation, the GW polarizations have the following general structure [38]

h+,× =
2µv2

r

∑
p≥0

vpH
(p)
+,× +O

(
1

r2

)
(22)

where we redefine the variable v as a frequency related parameter using Kepler’s law:

v2 ≡ (Mω)2/3 =
M

R

{
1 +O

(
1

c2

)}
. (23)

The parameter H in Eq.(22) contains the different expansion coefficients. The leading order
term reads

H
(0)
+ = −(1 + cos2(ι)) cos(ψ), H

(0)
× = −2 cos(ι) sin(ψ) (24)

and has similar terms to Eq.(19), except now we also introduce the “tail-disordered” phase
ψ = Ψgw(tred)− 6v3 ln(v) where the extra term comes from the scattering of the GW off the
static curvature of the binary system. For GW data analysis, having a high precision in the
phase is significantly more important than the precision in the amplitude because the latter
scales with the luminosity distance when the waveform is projected onto the detector frame.
So, commonly only the leading order term in amplitude H

(0)
+,× is retained, while the PN

corrections to the orbital phase evolution are included. The orbital phase can be expanded
in the general structure

Φ(v) = − 1

32η

1

v5
{
1 +O(v2) +O(v3) +O(v4) + ...

}
, (25)

with η = (m1m2)/(m1 + m2)
2 the symmetric mass ratio. The general structure of the PN

expansion can be iterated upon and more terms can be added to give the desired accuracy.
How many terms you include in this expansion is called the used PN order. We will not
discuss the higher order approximations because it is beyond the scope of this work. We
refer the reader to [41] for a more complete derivation with the relevant coefficients.

2.2.2 Self force perturbation theory

Another important part of the puzzle in waveform modelling is black hole perturbation theory
[39], which allows for more accurate modelling of small mass ratio systems. In this setup,
the ‘zeroth-order’ system is that of a test particle (the lighter object) moving along a path
in a fixed background spacetime of the heavier object. This situation is then expanded
by including corrections order by order in the mass ratio. At first order, the gravitational
field of the small object is a linear perturbation on top of the background spacetime. This
correction gives rise to a gravitational self force which gradually diverts the object from its
initial path. Therefore, this approximation is called self force perturbation theory (SFPT).
In this approximation, it is the gravitational self force that is responsible for the decaying
orbit. The theoretical description of gravitational self force is quite involved, so we refer the
interested reader to [39].
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2.2.3 Numerical relativity

In some regions of parameter space and some parts of the signal, the approximations men-
tioned before are no longer valid. The PN and SFPT approximations break down when the
objects are very close together during the merger phase as defined in Fig.(1). For these re-
gions, we need a different way to find solutions to the Einstein equations: numerical relativity
(NR). Here we give a brief introduction into the basis of NR. For a more concrete formulation
we would like to refer the reader to the work of C. Palenzuela [42].

To evolve a numerical solution of a spacetime manifold, we need to calculate the compo-
nents of the spacetime metric gµν and evolve them in time. A priori, we have 16 different
equations to solve. We can reduce this by using the Bianchi identities from differential
geometry, defined by

∇µG
µν =0 → ∇µT

µν = 0, with

∇µT
µν =∂µT

µν + Γµ
µαT

αν + Γν
µαT

µα,

Γα
µν =

1

2
gαβ(∂µgνβ + ∂νgµβ − ∂βgµν),

(26)

with ∇µ the covariant derivative8 and Γα
µν the Christoffel symbols. By using Eq.(26) we

reduce the degrees of freedom to 8; four coordinates and four constraints. These can then be
described using the so-called 3 + 1 decomposition to split the space and time components.
These components can then be integrated using the 3+1 formulation of the Einstein equation
to get the dynamics. For a more in-depth description, we refer the reader to [42].

One of the drawbacks of using NR to describe the spacetime metric is the immense
computational cost, requiring supercomputers to complete the simulations. Because of this,
the use of NR is constrained to modeling only part of the CBC signal and cannot efficiently be
used to calculate full waveforms for multiple source parameters. However, the NR simulations
are still useful to waveform modelling by calibrating or fitting different types of models to
NR results. Due to this, the accuracy of these simulations is very important for conventional
waveform models like the IMRPhenom waveforms [43].

2.2.4 Combining different approximations

As mentioned, the discussed approximations hold in different regimes of parameter space
and different parts of the signal. The PN approximation focuses on low-velocity bound
state systems while the SFPT approximation focuses on low mass systems. Fig.(2) shows a
comparison between the parameter regimes of the approximations discussed so far.

In practice, the results from the different theories are usually combined to create a wave-
form model. One option is the so-called effective one body (EOB) waveform [45]. This
waveform is constructed by recasting the two-body problem given by PN theory into sim-
pler one-body dynamics. The waveform obtained extends the domain of validity of the PN
approximation and can then be fitted to the NR waveforms [45]. There is a significant down-
side however: EOB waveforms can be slow to evaluate, and to do parameter estimation one
needs to evaluate a lot of waveforms for different parameters, which takes a long amount of

8The covariant derivative is a generalization of the partial derivative on a manifold.
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Figure 2: Figure showing the parameter regimes for PN, SFPT and NR theories in the CBC
case depending on the symmetric mass ratio and the average velocity. Figure taken from
[44].

time. Because of this, we use a different waveform model: the phenomenological inspiral-
merger-ringdown (IMRPhenom) waveform. The philosophy for these waveform models is to
interpolate between the NR and PN simulations by modelling simple fit functions for the
frequency domain behaviour of the GWs [46]. The IMRPhenom models are faster to evaluate
than the EOB models with a comparable precision, which makes them ideal for parameter
estimation [46].

2.2.5 IMRPhenomD waveform

In the IMRPhenom waveform family there are still multiple options to choose from depending
on what type of systems one wants to study. In this work, we use a IMRPhenomD waveform
modified to include tidal deformability. It is constructed out of different parts used to fit to
the EOB and NR waveforms. Here we discuss a short description of the constituent parts of
the waveform. For a more complete description please refer to [47, 48].

The waveform depends on the intrinsic GW parameters, which are the masses of the
objects and their spins. The IMRPhenomD waveform assumes that the spins of the object
are aligned and non-precessing. To model the waveform, we need to construct a fitting
function for the phase and the amplitude in each region: the inspiral, the merger and the
intermediate region. The waveform also contains a ringdown region, which is calculated with
a perturbation on the resulting object which is then evolved over time. The ringdown region
for BNS inspirals is tapered away because the frequency of this part of the waveform is higher
than the detectors maximum detectable frequency, so we will not go into details here about
this part. The inspiral can be described with a PN waveform called TaylorF2 [49] which is
fitted to the EOB waveform. The phase is given by

Φins = ΦF2 +
1

η

(
α0 + α1f +

3

4
α2f

3/4 +
3

5
α3f

5/3 +
1

2
α4f

2

)
, (27)
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with ΦF2 the TaylorF2 phase, η = m1m2/(m1 +m2)
2 the symmetric mass ratio and αi the

fitting parameters. The inspiral amplitude is given by

Ains = AF2 + A0

3∑
i=1

ρif
6+i
3 , (28)

with APN the amplitude obtained from the PN expansion, and ρi fitting parameters account-
ing for effects not included in the PN formalism. The other parts of the model are obtained
by constructing an ansatz on the derivative of the phase to remove ambiguity on the refer-
ence phase [47]. We discuss the results of the integrations to gain some intuition on how the
waveforms are constructed.

The characteristic feature in the merger and ringdown part of the GW is a dip in the
phase derivative. This can be modelled by adding a damping term dependent on the ringdown
frequency fRD and its damping frequency fdamp. This results in the equation

ηΦMRD = β0 + β1f
−14

3
+ β2f

1 + β3f
3/4 + β4 + arctan

(
f − β5fRD

fdamp

)
(29)

with β0 a integration constant, β1 a time shift (which will be determined when we impose
smooth transitions between the waveform regions) and the other β parameters are fitting
parameters. The amplitude is given by a mixture of a Lorentzian and decreasing exponential:

AMRD = A0γ1
γ3fdamp

(f − fRD)2 + (γ3fdamp)2)
exp(

γ2(f − fRD)

γ3fdamp

) (30)

with the γ terms fitting parameters.
The transition region has a dominant phase derivative evolution of f−1 with an added

corrective term in f−4 to account for observed deviations. The phase in the intermediate
region is given by

ηΦint = δ0 + δ1f + δ2 ln(f)−
δ3
3
f−3, (31)

with δ0 an integration term and δ1 a time shift term. The rest are fitting parameters. The
amplitude in this region is represented by a forth order polynomial whose boundary conditions
are fixed by requiring matching amplitudes with the merger and the inspiral:

Aint = A0(ϵ0 + ϵ1f + ϵ2f
2 + ϵ3f

3 + ϵ4f
4), (32)

where the ϵ coefficients are fixed with the boundary conditions.
Now that we have the expressions for the phase and amplitude of each part, the full

waveform can be constructed by ‘stitching’ together the expressions for each part. To get
waveforms that are valid for binary neutron star (BNS) systems, we also need to include tidal
effects due to the gravitational interaction between the two stars.

2.2.6 Tidal waveforms

In comparison to BBH inspirals, the BNS inspirals have some additional complexity which
is not included in the waveforms discussed so far. Because neutron stars consist of matter,
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the gravitational field of nearby objects leads to deformations, just like the presence of the
moon affects the tides of the ocean on earth. These tidal deformations can leave an imprint
on the GWs generated by BNS inspirals. In waveform generation, this effect can be included
by adding a perturbation on the regular BBH waveform [50]. Since this work focuses on BNS
inspirals, the waveform we use includes such a tidal deformability perturbation.

Adding tidal effects to the waveform mainly affects the GW phase. To describe the phase
effects of including tidal parameters in the waveform, we work with the phase as a function
of the dimensionless GW frequency ω̂ = M∂tϕ(t). Then we split the GW phase into three
parts:

Φ(ω̂) = Φ0(ω̂) + ΦT (ω̂) (33)

with Φ0(ω̂) the phase of the original waveform and ΦT (ω̂) the phase contribution due to the
tidal effects. The leading-order contribution of the phase reads [51]

ΦT (ω̂) = −kTeff
cNewtx

5/2

XAXB

(1 + c1x) (34)

, with x = (ω̂/2)2/3, XA, XB parameters related to the spins of the neutron stars, kTeff the
effective tidal coupling constant, cNewt = −13/8, and c1 = 1817/364. A complete description
of these parameters falls outside of the scope of this work, so we refer the interested reader
to [51] and its cited articles.

In addition to the phase contributions, the NRTidalv2 perturbation also includes addi-
tional tapering in the ringdown part of the signal. Since we do not use this part of the signal
in the rest of this work, this is not relevant for us.

In this work, we use NRTidalv2 developed by Dietrich et al. [52] to implement the tidal
deformabilities. As a basis waveform for the NRTidalv2 waveform, we use IMRPhenomD,
thus limiting ourselves to aligned spin waveforms. This simplification is sufficient for this
proof-of-concept work. We use the waveform implemented in the Ripple package [53].

2.3 Detection of gravitational waves

Now that we have discussed the source and modelling of gravitational wave signals, we
move on to detecting GWs on Earth by discussing the effects of GWs on matter, the GW
interferometers that can be used to detect them and a short introduction on GW parameter
estimation.

2.3.1 Gravitational waves and matter

To discuss the effects of a passing GW on matter, we return to the metrics discussed in
section 2.1, in particular Eq.(3). We start with a simple example: the interaction of a plane
wave solution with matter. We recall the plane wave solution from Eq.(7):

hTT
µν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 cos(ω(t− z/c)) (35)
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Figure 3: Illustration of the effect of a plane wave coming from the z direction on a ring of
particles in the x, y plane. Figure taken from [54]

If we insert this metric into the Eq.(3) we get an expression for the line element:

ds2 =− c2dt2 + (1 + h+ cos(ω(t− z/c))) dx2 + (1− h+ cos(ω(t− z/c))) dy2

+2h× cos(ω(t− z/c))dxdy + dz2.
(36)

If we take h× = 0 and h+ ̸= 0 the x and y direction will stretch and squeeze periodically.
We can illustrate this by considering this effect on a ring of particles, like in Fig.(3). First
the ring of particles will be stretched in the x direction and squeezed in the y direction, and
one period later they will be squeezed in the x direction and stretched in the y direction,
making a + shape. This effect is illustrated in the first row of Fig.(3). Next we consider the
case where h+ = 0 and h× ̸= 0. If we rotate the x, y axis by 45◦ the deformation will happen
in the same way along the rotated x, y axis, therefore it will make a × shape, as shown in
the second row of Fig.(3). So, in conclusion, the effect of a passing GW is that the distance
between points contracts and expands periodically. If we want to measure the passing of a
GW, we need to measure the distance between two points very exactly.

2.3.2 Gravitational wave interferometers

To measure GWs in practice, we use something called an interferometer. An interferometer
is a detector that uses light to measure the difference in travel time between the two detector
arms. This is equivalent to measuring the length difference between the two arms by using
light to measure the distance. In small scale, interferometers can be used to measure the
breaking index of materials and were used in the famous experiment by Michelson and Morley
to detect the presence of the ‘aether’, a hypothetical medium through which electromagnetic
radiation travels but its existence was partly disproved by their experiment [55].
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The general idea behind an interferometer is quite simple. A laser is sent onto a mirror
that splits it between two arms. At the end of the arms, the light is reflected by a mirror
and it travels back to a light detector. If the length of the two arms is identical, no light
is detected since it interferes destructively at the detector. If there is a difference in the
arm length, there will be a phase difference between the different light beams arriving at the
detector and thus it will not interfere destructively and the detector produces an output. We
call this output the strain h of the detector.

On Earth, there are a few interferometers used to detect GWs. The first GW detector
constructed was the GEO600 detector [56] in Germany, to be used as a testbed for further
detector development. The GW detections made so far were done with the LIGO Hanford
and LIGO Livingston [6] detectors in the US and the Virgo [7] detector in Italy. The KAGRA
[57] detector in Japan is undergoing calibration and is expected to join the fifth observing
run in 2025. Upcoming next generation detector constructions include Einstein Telescope [9]
and Cosmic Explorer [10], and are planned to be operational around 2035. In addition to
this, there are also plans to build a space-based GW interferometer called LISA [58], focused
on low frequency (O ∼ 0.1 mHz− 1.0 Hz) detections.

In the rest of this work, we focus on the LIGO and Virgo detectors, since those are
the ones that are currently in operation. These detectors differ slightly in construction:
the LIGO detectors have a arm length of 4 km, while Virgo has arms with a length of 3
km, with different installed components. Fig.(4a) shows a schematic representation of the
interferometer setup.

To be able to measure a GW, the interferometers need to measure length differences of
O ∼ 10−18 meters. For reference, this is about 1000 times smaller then the radius of a proton.
To make a instruments that are sensitive enough to measure this, a number of methods are
employed9:

• The interferometers arms are long: the LIGO detectors have an arm length of 4 km
and the Virgo detector has an arm length of 3 km.

• To further increase the light travel time along the detector arms, the detectors also
include Fabry-Perot light cavities [59]. These cavities reflect the light in the arms
multiple times which increases the light travel time, which increases the effective arm
length .

• Seismic vibrations are reduced by using a seismic isolation system and a quadruple
suspension system which mount the mirrors and detector components [6].

• The whole apparatus is contained within a ultra-high vacuum chamber to make sure
other particles cannot interfere with the laser beam [60].

• To decrease lost laser power from light travelling back to the laser from the beam
splitter, a power recycling mirror is used. This mirror fully transmits the light from
the laser but reflect the light from the other side back towards the detector [61, 62].

• The sensitivity of the detector is enhanced further by using a signal recycling mirror
which can be used to enhance the sensitivity of the detector in a specified bandwidth by

9Not every GW detector mentioned has these technologies installed.
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(a) Basic Michelson interferometer with power
recycling and Fabry-Perot cavities. Figure from
[64]

(b) An aerial photo of the Virgo detector in Italy.
This interferometer has an arm length of 3 km,
which is further extended by light storage arms.
Picture from [65].

Figure 4

arranging both the laser light and GW-induced sideband to be resonant in the optical
system [63].

For a more complete description of the construction and components of the modern GW
detectors, please refer to the aLIGO [6] and Virgo [7] papers.

2.3.3 Detector response

To see how an interferometer responds to a passing GW, we will determine the length dif-
ference between the two arms, which corresponds to the strain it measures. Consider a
interferometer in the origin with arms of length L along the x and y axis. A plane GW
coming from the z axis passes the detector. To measure the length of the detector arms, we
can use the equation

L =

∫ L

0

√
ds2, (37)

with ds2 given by Eq.(3). We want to calculate the physical length of the x arm, so dt =
dy = dz = 0. We define h+(t) = h+ cos(ωt). This results in

Lx =

∫ L

0

√
1 + h+(t)dx = L

√
1 + h+(t) ≈ L(1 +

h+ cos(ωt)

2
) (38)

Now we can calculate the length difference,

δLx = Lx − L = h+(t)
L

2
. (39)

We get a similar expression if we instead consider the lenght difference along the y arm:

δLy = −h+(t)
L

2
. (40)
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Figure 5: Illustration of the different angles used in the antenna pattern functions F+,×.
The left figure is in the detector frame, where the x and y axis are the detector arms. The
middle figure is in the radiation frame, where the x axis is perpendicular to the y axis of
the detector frame, and n is the vector from the detector to the source. The vector (J) is
angular momentum of the inspiral. The right figure is in the source frame. The relevant
angles defined here are the sky angles θ, ϕ, the inclination angle ι, the polarization angle ψ
and the reference phase ϕ0 Figure from [66].

The measured strain is then given by

h(t) =
δLx − δLy

L
. (41)

In this configuration, we only measure h+(t). If we rotate the detector arms by 45◦ we would
measure h×. In a more realistic scenario, the detector orientation and the source location
is arbitrary. Then we measure a superposition of h+ and h× scaled with so-called antenna
pattern functions F+,×:

h(t) = F+h+(t) + F×h×(t). (42)

To determine F+,× we need to consider the relative orientations of the detector and GW. The
angles we need to use are defined in Fig.(5).

If we use the angles as defined in the figure, we can use projection operators to arrive at
the antenna pattern functions:

F+(θ, ϕ, ψ) =
1

2
(1 + cos(θ)2) cos(2ϕ) cos(2ψ)− cos(θ) sin(2ϕ) sin(2ψ),

F×(θ, ϕ, ψ) =
1

2
(1 + cos(θ)2) cos(2ϕ) sin(2ψ) + cos(θ) sin(2ϕ) cos(2ψ).

(43)

If we combine Eq.(42) and Eq.(43) we arrive at the generic expression for GW strain, including
all the relevant parameters. The expression we end up with is

h(t) = F+(θ, ϕ, ψ)h+(θin, t) + F×(θ, ϕ, ψ)h×(θin, t), (44)

with θ the additional parameters of the inspiral. These additional parameters include the
component masses, spin vectors, tidal deformabilities, phases and luminosity distance of the
source. Usually, one makes the distinction between the intrinsic and extrinsic parameters
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of the source. The intrinsic parameters include the source properties, which are the masses,
the tidal deformabilities, and the spins. The extrinsic parameters include the additional
parameters which are not intrinsic to the source, such as the sky angles, luminosity distance,
inclination angle and the phases.

2.3.4 Detecting gravitational waves

An important quantity in claiming detections in GW science is the signal-to-noise ratio (SNR)
[67]. This quantity is used to quantify how ‘loud’ a given signal is compared to the noise
in the detector. First, we define an inner product between two arbitrary functions â(f) and
b̂(f) that will be useful in defining the SNR:

⟨a | b⟩ =
∫ ∞

−∞

â∗(f)b̂(f) + â(f)b̂∗(f)

Sn(f)
df,

= 4Re

∫ ∞

0

â∗(f)b̂(f)df

Sn(f)
,

(45)

with Sn(f) the power spectral density of the noise. This quantity is dependent on the
detector, and tells us how sensitive it is to a certain frequency. We can also consider only a
specific range in frequency space by replacing 0 → fmin and ∞ → fmax. fmin and fmax refer
to the minimum and maximum frequencies seen by the detector. Now we define the SNR
[67] as

ρ =
⟨d | h⟩√
⟨h | h⟩

(46)

with d the data from the detector and h a template waveform with certain parameters. The
tildes represents a Fourier transform and ∗ represents a complex conjugation. Sn(f) is the
noise power spectral density (PSD), which describes the power of the noise of the detectors
at different frequencies. The minimum frequency is the lowest sensitive frequency of the
detector and the maximum frequency is the maximum frequency reached by the template.
If the waveform is the same as the signal found in the data, i.e. d = h + n where n is the
noise, the SNR is expected to be high. If we use a template that is different to the signal in
the data or if there is no signal at all, the SNR is low.

If we consider a network of detectors, the total SNR of the network is defined by the
quadratic sum of the detector SNRs:

ρnet =

√√√√Ndet∑
i=1

ρ2i (47)

with ρnet the network SNR, ρi the SNR of a single detector and Ndet the number of detectors
in the network. In practice, the SNR is in part used to claim detections by utilizing a so-called
template bank [68]. This consists of multiple template signals, which are then matched with
the detector output to calculate the SNR of each template. An example template bank is
shown in Fig.(6). If the SNR of a template matching with the data is higher than a certain
value (usually 4), we calculate other detection statistics, which are different for each detection
pipeline. This detection algorithm is also called matched filtering.
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Figure 6: Representation of a template bank as used by [69]. Each point represent a signal
template, classified by their component masses. The colours represent the sub-banks the
template bank is divided into, corresponding to the numbers in the plot. The BNS range has
a more dense population of templates because BNS signals are longer, which means that small
phase differences between signals have more time to accumulate, increasing the mismatch. A
template is mismatched if a template matches with a signal with significantly different source
parameters.

It is also useful to define the optimal SNR to characterize the loudness of a signal without
injecting it into the noise. The optimal SNR is found by matching the template with itself
and is given by

ρopt =
√

⟨h | h⟩ (48)

In essence, this boils down to neglecting the noise effects on the SNR, which makes the
calculation of it easier.

2.3.5 Partial inspiral detection

In this work, we would like to characterize pre-merger BNS signals. Therefore, the full SNR
of the signal is not useful to characterize the loudness, but we instead use the partial inspiral
SNR (PISNR) as defined by G. Baltus et al. in [70, 71]. Instead of integrating over the full
frequency range like in Eq.(48), the PISNR uses the same equation but integrated until a
specific maximum frequency called the cut frequency, fcut.

The frequency evolution is described up to first order by Eq.(18), shown in Fig.(7). The
cut frequency corresponds to the maximum frequency reached by the signal at a certain time
before the merger. Because the components of the signal are not evenly distributed along
the frequency space, the PISNR is not linearly dependent on the frequency. Fig.(8) shows
the normalized PISNR dependent on the frequency10. As we will discuss in more detail in
section 4, we train neural networks on constant cut frequencies.

10The figure focuses on the frequency range considered in this work.
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Figure 7: Frequency evolution of the first order approximation of a waveform with Mc =
1.8M⊙ as described in Eq.(18). t = 0 corresponds to the time where the approximation
breaks down.
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total SNR, which happens at about 40, 70 and 100 Hz respectively.
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2.3.6 Parameter estimation

If a detection happens, we want to estimate the parameters of the signal as well as possible.
To do this, we use Bayes’ theorem. Bayes’ theorem is given by

p(A | B) =
p(B | A)p(A)

p(B)
. (49)

where p(A | B) is defined as the probability of event A given event B. This theorem can
be used to define conditional probabilities that can be used to estimate the properties of a
signal in noise. In Bayesian parameter estimation, we would like to calculate the probability
of observing a signal with certain parameters θθθ given the data d and assuming the signal
is from a certain type of source, such as a BNS (which we call the hypothesis H). This
is equivalent to calculating p(θθθ | d,H). This probability distribution is called the posterior
probability distribution or the posterior for short. By using Eq.(49) we find the expression

p(θθθ | d,H) =
p(d | θθθ,H)p(θθθ | H)

p(d | H)
. (50)

p(d | θθθ,H) is called the likelihood, which is still unknown. p(θθθ | H) is the prior probability
distribution, which can be described as the probability that a certain parameter set θθθ is found
under a certain hypothesis. Generally, the priors are taken to be as agnostic as possible to
avoid biasing the results on assumptions, but they do depend on the hypothesis. For example,
if we expect the signal source to be a BNS, we do not expect the chirp mass to be higher
than 2.21M⊙, since this is the maximum chirp mass limit for BNS signals. p(d | H) is the
evidence for the hypothesis H. It plays the role of a normalization factor. From now on we
will drop H from the expression for convenience. Next, we want find an expression for the
likelihood. We do this by investigating the composition of the data in question.

The data we want to investigate is of the form d = h(θθθ) + n with h(θθθ) the signal with
parameters θθθ and n the noise.

The detector outputs a digitized strain. The output of the detector in frequency domain
in absence of a signal is

(n̂0, n̂1, n̂2, · · · , n̂N) (51)

with n̂i = n̂(fi) the discrete Fourier transform of the noise. If we take the continuum limit
and assume the noise is (colored) Gaussian noise, we can use the definition of the inner
product in Eq.(45) to find the probability of observing a certain noise realization as

p[n] = N e−
1
2
⟨n|n⟩ (52)

with N the normalization factor and Sn(f) the noise power spectral density (PSD). If we
now use the expression n = d− h(θθθ) and insert it into Eq.(52) we get the expression for the
likelihood:

p(d | θθθ,H) = N e−
1
2
⟨d−h(θθθ;f)|d−h(θθθ;f)⟩. (53)

This equation allows us to evaluate the likelihood of a single point in the parameter space.
In order to map out the likelihood fully, one needs to calculate this integral to map out
the multidimensional parameter space. Because of the high dimensionality of the parame-
ter space, this is prohibitively expensive to calculate in every point of the parameter space.
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Instead, techniques like nested sampling [28] and Markov chain Monte Carlo [27] are used
to increase the efficiency of exploring the parameter space while retaining accuracy. These
methods are then used by estimation software such as LALInference [72], PyCBC inference

[73] and Bilby [74] to estimate the parameters of a GW signal. LALInference is a pioneering
software package that implements nested sampling and MCMC in the context of GW param-
eter estimation, while Bilby is a more modern user-friendly implementation. However, even
with optimizations it can still take weeks to explore the likelihood for a single signal fully.
Because of this, we instead employ a ML algorithm to approximate the posterior directly,
which we will introduce in section 3.

2.4 Multi messenger astronomy

Now that we have discussed the general concepts of GW generation and detection, we focus
more on the specific science case we want to investigate, namely , multi messenger astron-
omy (MMA) using GW sources. This section is organized as follows: first we give a short
description of neutron stars in GW science, then we discuss the GW170817 detection and
its contributions to the scientific community. Next we discuss early detection and fast sky
localization of BNS signals and then we motivate using ML for sky localization.

2.4.1 Neutron stars

Neutron stars are stellar objects which remain after a super giant star collapses at the end
of its life cycle [75]. They are very compact: neutron stars have a radius of O ∼ 10 km and
a mass on the order of O ∼ 1.5M⊙ [76]. Most models imply that they are composed almost
entirely of neutrons, because the extreme pressure of the formation caused the electrons and
protons to fuse together into neutrons. These stars are protected from further collapse by
neutron degeneracy pressure and strong force interactions [77].

The equation of state (EOS) of neutron stars is still a much discussed field of research
[78]. Because of the extremity of the matter in question, one needs to include both nuclear
interactions and general relativity to be able to describe the forces that hold them together
and keep them from collapsing. There are a number of different EOS theories that lead
to different observable quantities, like the speed of sound, mass, radius and Love number
(which relates to the tidal properties [79]) of neutron stars. Experimental observations, from
for example the Neutron star Interior Composition ExploreR (NICER) telescope [80] and the
GW observatories, can provide constraints to the EOS theories.

Obtaining more information about the EOS of neutron stars gives us a unique insight
into their formation and composition, allowing us to probe one of the most extreme forms
of matter in the universe. Because of the extreme mass of neutron stars, they can serve as a
natural laboratory to test theories on quantum gravity [81].

2.4.2 Example: GW170817

On the 17th of August 2017, the LIGO and Virgo detectors observed a signal originating
from a BNS inspiral. 1.7 seconds later, the Fermi Gamma-Ray-Burst Monitor [12] and
the INTEGRAL satellite [13] observed a gamma ray burst (GRB) coming from the same
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Figure 9: Follow-up observation timeline of the GW170817 detection. Figure taken from [82].

location [14], which was found out in an archival search. About 5 hours later, the LIGO and
Virgo collaboration published the estimated sky location of the BNS signal which allowed
for multiple electromagnetic follow-up studies. Fig.(9) shows a timeline of the detection
and the follow-up studies. This detection opened up the field of MMA, which can combine
observations of high-energy neutrinos, ultra-high energy cosmic rays, gamma ray bursts, other
EM channels and GW observations [15]. We will now discuss some of the scientific progress
made following the GW170817 detection.

One significant contribution of the GW170817 detection was a independent measurement
of the Hubble constant [16]. This quantity is of fundamental importance to astrophysics since
it sets the local expansion rate of the universe. So far, there have been a number of distinct
measurement techniques for finding the Hubble constant. One technique calculates it using
the cosmic microwave background [83]. Another technique involves using type Ia supernovae
[84]. Both these methods are reasonably accurate, but they produce significantly different
measurements of the Hubble constant.

The measurement done with GW170817 combines the distance to the source inferred for
the gravitational wave measurement with the recession velocity inferred from measurements
of the redshift using EM data to find the Hubble constant. The measurement of the Hubble
constant from this source is still a bit inaccurate, but it shows reasonable promise since it
will improve with more simultaneous observations of GW and GRB from neutron stars [16].

The GW170817 detection also contributed to constraining the EOS for neutron stars
because it allowed for a independent measurement of the radii of the neutron stars. The
measured radii of the neutron stars are R1 = 10.8+2.0

−1.7km for the heavier star and R2 =
10.7+2.1

−1.5km for the lighter star from the LIGO and Virgo data alone [17]. This, combined
with the measured masses of the neutron stars provides additional constraints to EOS models
because they need to predict the existence of neutron stars with these masses and radii.
Because of this, some neutron star EOS theories were already excluded.

Another application of the GW170817 detection is a independent measurement of the
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speed of gravity compared to the speed of light. Since we can estimate at which time the
BNS merger should emit a gamma ray, depending on the EOS model, the time-of-arrival
difference between the GW and the gamma ray burst provides us with a measurement of the
speed of gravity [14].

The GW170817 detection has provided us with a lot of new insight, but we can do better
in the future. The delays between the detection and the sky localization means that we did
not observe the merger directly in the EM spectrum. If we can observe the BNS inspiral
before the merger, we can do a lot of additional science with the observation.

2.4.3 Early detection

To discover even more interesting physics from BNS detections, we want to create techniques
that can detect and localize the BNS inspiral before the merger. This will allow us to study
additional physics, which we will discuss now.

In addition to possessing some of the highest densities of material, neutron stars also have
some of the strongest magnetic fields in the universe. During the merger, these fields can
interact non-trivially and establish a nearly force-free magnetosphere [85] filled with pair-
plasma at the time of merger, which can lead to the emission of pulsar-like radio emissions
[86], in addition to other interactions. Numerical simulations have already been done on this
subject [19], which can be validated with real observations.

BNS mergers are also thought to be a astrophysical source for rapid neutron-capture (r-
process) nucleosynthesis [87, 88], which is a process responsible for creating nuclei heavier
than iron [89]. During BNS mergers, these elements can be created and emit spectral lines
that can be observed. The GW170817 observation provided us with measurements of this.
Since these emissions fade over time, early detection can provide us with more data [20].

In some cases, a BNS merger can produce a stable massive NS remnant (called a magnetar)
instead of a black hole [21, 90–92]. These objects would then emit X-ray and optical signals
that could be detected at the merger, which could then help us determine the state of the
remnant object [93].

In conclusion, if we can do early detection, we can do even more new physics one could
not do without early detection.

2.4.4 Pre-merger sky localization

The first part of doing pre-merger sky localization is detecting the inspiral before it happens
via an early alert11. Multiple studies have shown the ability to provide early alert for BNS
inspirals at design sensitivity using the LIGO and Virgo detector network. Some of these
studies rely on a matched-filtering based approach [94–96] , while others use convolutional
neural networks to produce triggers [70, 71, 97]. These studies can provide early alerts up to
several minutes before the merger. In our work, we consider the scenario where a detection
has been made by one of these early alert frameworks. We then want to rapidly estimate
the sky location to give the follow-up EM telescopes a location to start the search for a EM
counterpart.

11With early alerts we refer to a trigger that is issued while a BNS signal is in the sensitivity band.
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There are already a number of studies that create a framework to do rapid sky localization.
We will discuss the most relevant ‘competitors’ and talk about the challenges and differences
with our framework.

The first framework we want to discuss is called BAYESTAR [29]. This framework is
a matched-filtering based approach that uses the output of the template bank, namely rela-
tive SNRs, relative arrival times, and relative phases at arrival to do marginalized Bayesian
parameter estimation to rapidly estimate the sky location of BNS signals. The framework
is nominally used for complete signals but it can also be adapted to produce skymaps when
only part of the signal is observed [29].

The second relevant framework is called GWSkyLocator [30]. This framework also
uses the SNR time series of the best-matched template from the template bank and the
intrinsic parameters. This information is then given to a neural network which estimates the
sky location. This gives comparable results to BAYESTAR, but because it also uses the
template bank as input it has some of the same challenges.

Both frameworks rely on a matched filtering based approach. For these methods to work
optimally, the best-matched signal needs to be very close to the real signal. However, because
the template bank consist of discrete points in the mapped parameter space, the best-matched
signal is never exactly the same as the real signal. Also, the best-matched templates can be
off due to non-Gaussianities in the noise, but this is a problem that arises with multiple
frameworks. Matched filtering only gives a point-estimate of the intrinsic parameters which
does not account for the inherent uncertainty in the estimation which can be very large in
the early phase of the inspiral.

To address these challenges, we construct a ML based framework that can estimate the
sky location from the data directly without requiring the input of a template bank, in addition
to estimating other intrinsic parameter useful for the EM follow-up, such as the component
masses, inclination angle and luminosity distance.



3 MACHINE LEARNING 25

3 Machine learning

In this work, we use a machine-learning (ML) to do neural posterior estimation (NPE). NPE
is a subclass of ML methods that is used to do parameter estimation by learning patterns
in a dataset that can be used to estimate the parameters of a signal; for example using a
GW data strain to estimate the chirp mass, mass ratio etc. ML methods are implemented
by creating a neural network (NN), which we explain in more detail later.

In this section we give a basic introduction to the theory behind the implementation
of ML networks. Next we introduce normalizing flows as a method to model probability
distributions. Then we discuss methods for dimensionality reduction to preprocess the data
given to the flow network. We end the chapter with a general overview of NPE, how it is
used in GW science.

3.1 Introduction to machine learning

Before we discuss our implementation, we explain the basics of the construction and operation
of ML networks. ML networks are implemented in structure called a neural network (NN).
To produce the desired output, a NN needs to be trained to minimize a loss function with a
backward pass. We explain these concepts in more detail in the coming sections.

3.1.1 Neural networks

A NN is an artificial model inspired by the structure of a brain. They consist of connected
nodes, called neurons, which transfer information to other neurons to generate the desired
output. This is inspired by the function of synapses in a biological brain. Neurons are grouped
together in layers, with neurons from the first layer typically passing inputs to neurons of the
second layer and so forth. In a NN, the signals transferred between neurons are (typically)
real numbers, which are processed by the neurons and send to the next layer. Neural layers
are grouped into three distinct types:

• Input layers are the interface between the input data and the neural network; they
process the input data and pass it to the hidden layers.

• Hidden layers are the layers in between the input and output layers. They are called
hidden layers because their interactions are usually not visible. They usually make up
the bulk of the network structure.

• Output layers give the output of the network, depending on the requirements. For
example: if one builds a neural network to classify a cat or a dog, the output layer can
consist of two neurons. These neurons then output the estimated probability of the
input being either a cat or a dog.

Fig.(10) shows a illustration of these layers and the connections between them. Each of
the connections between neurons have an associated weight and bias and are processed with
an activation function, which we discuss shortly.
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Figure 10: Structure of a simple neural network, divided in input, hidden and output layers.
The circles represent the neurons, and the lines between them represent the connections
between the neurons. The connections have weights associated with them represented by by
wi

jk Figure taken from [98].

3.1.2 Forward pass

To describe the flow of data through a neural network, we need to define how the neurons
interact with each other. The transfer of information between the neurons from input to
output is called a forward pass. The goal of our neural network is to produce a result t from
input values x. The output of a specific neuron, y(x) is depended on the input from the
previous neuron layer and the weights and biases associated with the connections between
the previous neural layer and the neuron in question:

y(x) =
D∑
i

wixi + bi, (54)

where D is the dimension of the previous neuron layer, wi are the weights and bi are the
biases associated with neuron connection. To increase the expressive power of the network it
is crucial include non-linearity in the transformations, otherwise the network can only model
linear transformations. This is done by including a activation function f . The output of the
activation function is then passed to the neuron. This can be expressed as

y(x) = f

(
D∑
i

wixi + bi

)
. (55)

Including an activation function in the regression allows the network to achieve a non-linear
mapping from the input to the output layers [99]. There are multiple choices one can make
for what activation function to use, in our work we use the GELU [100] and the RELU [101]
activation functions, given by

fGELU(x) =x
1

2

(
1 + erf

(
x√
2

))
fRELU(x) =

{
x if x > 0,

0 otherwise,

(56)
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Figure 11: Comparison of the GELU and RELU activation functions and their derivatives.

with erf the Gaussian error function. The functions and their derivatives are compared in
Fig.(11). As shown, the GELU function and RELU function are similar, but GELU is also
continuous in its derivative, which RELU is not.

The output of the neural network can be calculated simply by repeating the operation
of Eq.(55) for each neuron layer. To initialize the NN, one usually draws random values for
the weights and biases. At this point the output will be nonsense; to make it more useful we
need to train the network.

3.1.3 The loss function

Before we can actually train our network, we need to specify what we want it to learn. This
is done by defining a loss function. The idea behind a loss function is to attribute a numerical
value to the performance of the network, which it should try to minimize. The choice of loss
function is dependent on the application you want the network to fulfill.

The goal of the NN used in this work is to do maximum likelihood estimation; i.e. estimate
the parameter set with the highest likelihood as given by Eq.(50). This corresponds to finding
the most probable posterior. We want to find

θ̂θθ ≡ argmaxθθθ∈ΘΘΘ log p(θθθ | d), (57)

which can be interpreted as the value of θθθ for which the observed d is the most probable. ΘΘΘ
refers to the allowed set of parameters for θθθ. If we can assume that all the training samples are
independent and identically distributed over the parameter space, we can define the negative
log-likelihood as

L(ϕϕϕ) ≡ −
N∑
i

log p(θθθi | di,ϕϕϕ) (58)

with N a summation over the samples i, and ϕϕϕ the collection of network parameters that
we wish to optimize. We use this function as the loss function of our network. To find the
parameters with the highest likelihood, we then have to minimize the loss function. The loss
function is minimized with a backward pass through the network, which we discuss next.
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3.1.4 Backward pass

To optimize the output of the network, we want to change the weights and biases to a certain
value that minimizes the loss function. The parameter space of the loss function depends
on all the weights and biases in the network and is therefore quite large. In this section we
consider a unspecified loss function.

To initialize the network, one usually assigns a random variable drawn from a normal
distribution to each weight and bias. Then we start the first training loop; we perform a
forward pass with a batch of samples from the data and calculate the loss of the network
according to the results. We then want to update the weights and biases to minimize the loss.
The loss function can be visualised as a hyper-dimensional plane12 with multiple minima and
maxima. The goal is to update the network such that the overall loss of the network decreases
and we find one of the minima of the loss function. This is illustrated in Fig.(12) with a 2
dimensional example. In reality, the dimensionality of the loss function is way bigger. We
update the weights and biases by doing a backward pass. During a backward pass, we update
the network parameters by employing a optimizer. A widely used optimizer is stochastic
gradient descent [102], given by

wi+1 = wi −
α

n

n∑
j=1

∇Lj(wi), (59)

where wi represents the weights at training step i, α is the learning rate and n the amount of
samples in a batch. The derivative of the loss of each sample is with respect to the weights.
The same function also applies for the other network parameters, such as the biases. The
learning rate and the batch size are both hyperparameters that we must choose ourselves.
The learning rate parameterizes how ‘fast’ the network moves through the hyperplane. If we
choose a learning rate that is too large, we can ‘overshoot’ the minima of the loss function
and hinder convergence. If we choose as learning rate that is too small, we can more easily
get stuck in local minima.

Optimizers are used to increase the efficiency of the gradient descent process, by helping us
avoid local minima in the hyperplane of the loss function. An optimizer works by modifying
Eq.(59) to increase the training efficiency. There are a number of optimizers we can choose
from, but in this work we work with the Adam optimizer [104].

The Adam optimizer is based on the concept of estimating the ‘momentum’ of the gradient
descent algorithm, which we can explain with an analogue. If we consider a ball rolling down a
bumpy hill, the future location of the ball depends on the current location, current momentum
and current acceleration. Because the ball has a nonzero momentum and acceleration it will
not get stuck on small potholes in the way, but continue rolling down the hill. If we consider
the normal gradient descent algorithm, the ball would roll down the hill a bit, stop, and
roll again. This makes it way more likely to get the ball stuck in a hole. This concept
of momentum is implemented by the Adam optimizer by estimating and implementing the
momentum of the descent.

12Each network parameter is one dimension of the network. The loss function is a function of all the
network parameters, so it is a very high-dimensional function
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Figure 12: Representation of the process of gradient descent. The loss function J(θ0, θ1)
depends on two parameters: θ0 and θ1. The x, y values of the black dot at the top of the hill
represent the network parameters, and the height represents the value of the loss function at
the start of training. After each training loop, we update the parameters iteratively, ending
up in a minimum of the loss function. The figure shows this as the dots that follow the first
one: each dot represents a different value of the network parameters, which descend along
the hill of the loss function. Figure taken from [103].

3.2 Normalizing flows

To create NN that can estimate probability distributions, we use a ML framework called
normalizing flows (NFs) [105]. A NF operates by modelling invertible transformation func-
tions that iteratively transform samples from a simple distribution to the desired complex
distribution. In the following sections we discuss the constituent parts of a NF network and
how they operate.

Since we get a bit deeper into the mathematical expressions we want to clarify the nota-
tion: in the coming sections an capital letter X refers to a matrix, and a bold letter x refers
to a vector of some kind.

3.2.1 Transformations

To start our discussion on NFs, we need to talk about the type of transformations the
networks are based on. For a more in-depth discussion, we refer the reader to [106]. We will
start with a mathematical description of the transformation we want to implement. Let x
be a D-dimensional real vector with elements from the allowed parameter space. We want
to create a joint distribution over x, called px(x). The main idea of a flow-based model is
sample from this joint distribution by using a transformation T of a real vector u sampled
from a distribution pu(u)

x = T (u) with u ∼ pu(u). (60)

We define pu(u) as the base distribution. T depends on the network parameters ϕϕϕ.
In NFs, we require the transformation T to be invertible and both T and T−1 need to be

differentiable. If these conditions are met, the probability distribution px(x) is well defined
and can be found by a change of variables

px(x) = pu(u)|detJT (u)|−1 where u = T−1(x) (61)



3 MACHINE LEARNING 30

We can also write px(x) in terms of the Jacobian of T−1

px(x) = pu
(
T−1(x)

)
|detJT−1(x)| (62)

The Jacobian matrix JT (u) is defined as

JT (u) =


∂T1

∂u1
· · · ∂T1

∂uD
...

. . .
...

∂TD

∂u1
· · · ∂TD

∂uD

 (63)

The idea behind a NF model is to parameterize the transformations T (or T−1) with a
neural network and choosing pu(u) to be simple distribution, usually a multivariate Gaussian
distribution.

The transformation function T can be interpreted as a warping of the space RD which
is conditioned such that samples of pu(u) transform into samples of px(x). The absolute
Jacobian determinant |detJT (u)| quantifies the relative change in volume of a small neigh-
bourhood around u due to T . Because the probability mass of the samples is conserved, the
transformation can only change the probability density in the RD. The inverse transformation
T−1 instead transforms samples of px(x) into samples of pu(u)

13.
Another important property of invertible and differentiable transformations is that they

are composable, which means that a chain of transformations, T2 ◦ T1, is also invertible and
differentiable. The inverse and the determinant of the Jacobian are given by

(T2 ◦ T1)−1 = T−1
1 ◦ T−1

2

detJ(T2◦T1)(u) = detJT2(T1(u)) · detJT1(u)
(64)

These properties allow us to link simple transformations together to increase the expressive
power of the NFs. This results in a transformation chain T = TK ◦ · · · ◦ T1 where each Tk
transforms zk−1 into zk assuming z0 = u and zK = x. As discussed before, the inverse flow
T−1
1 ◦ · · · ◦ T−1

K transforms samples from px(x) into samples from pu(u).
In practice, the flow model has two modes: 1) sampling from the distribution modelled

by the NF via Eq.(61) and 2) calculating the likelihood of samples using Eq.(62), which
is used in training the network. These modes have different computational requirements.
Sampling requires us to sample from pu(u) and compute the forward transformation by
using T . Evaluating the model requires us to compute the inverse transformation T−1 and
its Jacobian, and evaluate the density of pu(u). As we will discuss later, these modes are the
sampling and training modes. The construction of the transformations therefore affects the
efficiency of the training and sampling of the network. In our work, we would ideally like
both to be reasonably fast; we the training to be fast, but we also want efficient sampling. In
the next section we discuss how to implement the transformations of a NF in practice.

3.2.2 Flow structure

To implement Tk or T−1
k we use a model with parameters ϕk, which we will denote as fϕk

.
The choice of which transformation to implement is dependent on the intended usage. In

13As we will discuss later, the inverse transformation is used in training the NF.
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our work we implement the inverse transformation to make training more efficient. In any
case, we need to make sure that the calculation of the determinant of the Jacobian of Tk and
T−1
k is tractable14, which restricts our choice of how to implement fϕk

. In our work, we use
a coupling flow [107] to additionally ensure that the sampling and training is fast. This is
done by placing certain requirements on the structure of the determinant.

To simplify the notation a bit, from now on we drop the dependence of the model param-
eters on k, refer to the input of the model as z and the output as z′.

In general, the flow layers are implemented by specifying fϕ to have the form

z′i = τ(zi; ci(z<i)), (65)

where τ is called the transformer and ci the i-th conditioner. The transformer is a monotonic
function of zi (which makes it invertible) and parameterized by ci(z<i). The transformer
specifies how the flow acts on zi to produce the output z

′
i. We discuss our choice of transformer

in section 3.2.3. The conditioner is a function with the constraint that the i-th conditioner
can only depend on the variables with a dimension index of less than i.

In our work, we use a coupling flow conditioner. This conditioner is computationally
symmetric, i.e. equally fast to evaluate or invert. This is implemented by choosing an index
d (typically D/2, with D the total amount of transformed samples). The coupling layer splits
z into two parts {z≤d, z>d}. Then, the conditioner is designed such that

• The conditioners ci≤d are identity functions, so they do not depend on z.

• The conditioners ci>d are functions that only depend on z≤d, so ci>d(z≤d).

The samples z≤d are transformed element-wise and do not depend on any other samples,
but the transformation of the samples z>d depends on ci>d(z≤d). Because the conditioners
ci<d do not depend on the samples it transforms, it can be evaluated in parallel for each
sample. If we additionally fix the transformers for the samples z≤d to the identity function,
we can express the flow functions as

z′i = zi for i ≤ d,

z′i = τ(zi; ci(z≤d)) for i > d.
(66)

The inverse is then given by

zi = z′i for i ≤ d,

zi = τ−1(z′i; ci(z≤d)) for i > d.
(67)

These transformations are illustrated in Fig. (13). This flow structure has a Jacobian of the
form

Jfϕ =

(
I 0

∂τ(zi>d;ci(z≤d))

∂zj≤d

∂τ(zi>d;ci(z≤d))

∂zj>d

)
(68)

14Some clarification of a ‘tractable’ Jacobian determinant calculation: any Jacobian with a dimension ofD×
D can be calculated normally in O

(
D3
)
operations. For most flow based models, the Jacobian computation

time should be at most O (D). This can be achieved by making specific choices for the implementation of
fϕk
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Figure 13: Illustration of the transformations done by a coupling flow layer. On the left, we
show a forward transformation, and on the right we show an inverse transformation.

where I is a (D − d) × (D − d) dimensional identity matrix. The determinant of the Jaco-

bian is then simply the product of the diagonal elements of
∂τ(zi>d;ci(z≤d))

∂zj>d
. The log-absolute

determinant of the Jacobian can then be expressed as

log |detJfϕ| =
D∑
i=d

log

∣∣∣∣∣ ∂τ∂zi (zi; ci(z≤d))

∣∣∣∣∣. (69)

This makes the evaluation of the Jacobian very fast: onlyO(D−d) calculations needed, which
is the same for the inverse. This efficiency does come at a cost to expressive power: we need
to chain together multiple coupling layers to increase the expressivity. When constructing
a flow with multiple coupling layers, the elements of z need to be permuted so that every
sample will be transformed by the flow as well as interact with each other.

At this point, the conditioner ci is still an arbitrary function depending on the input
parameters z≤d. This function is implemented as a neural network, which can then be
trained to produce the desired outputs.

3.2.3 Bernstein polynomials

One key challenge of using NFs for probabilistic modelling is the dealing with the noise
inherent in the data. Because NFs are a nonlinear model, they can be susceptible to numerical
instabilities; some noise features might be amplified which causes the output of the model
to be nonsensical. This can result in the amplifying of initial errors, out-of-distribution
sample generation or poor generalization to unseen data. To combat this issue, we implement
Bernstein-type polynomials as a transformer function, based on the work of S. Ramasinghe
et al. [108]. The robustness of Bernstein-type NFs follows from the optimal stability of the
Bernstein basis [109, 110]. We now give the definition of the Bernstein polynomial basis and
list some of its features.

A n-th degree Bernstein polynomial is defined as

Bn(x) =
n∑

k=0

αk

(
n
k

)
xk(1− x)n−k with x ∈ [0, 1] , (70)
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Figure 14: Illustration of the transformations done in a conditional coupling flow layer. On
the left, we show a forward transformation, and on the right we show an inverse transforma-
tion.

where αk, 0 ≤ k ≤ n are some real constants. In practice, using a higher degree of Bernstein
polynomial increases the expressive power of the network.

The Bernstein polynomials are only defined with an input range of [0, 1], so they are
paired with a linear map from the desired interval to [0, 1].

To make sure our Bernstein polynomial is invertible, we need to ensure that the Bernstein
polynomial is monotonically increasing. This can be ensured by using a specific choice for
the shape of the αk parameters. In our work, we define the parameters as

αk = |v1|+ · · ·+ |vk|, (71)

with vi trainable parameters and α0 = 0. The Bernstein polynomial consists of a summation
of functions, so the first function will have a prefactor of |v1|, the second one |v1| + |v2| etc.
After each iteration, we linearly scale αk such that αn = 1.

Once we ensure the inverability, we can calculate the inverse; at each iteration, given x
we solve for z ∈ [0, 1]

Bn(z) =
n∑

k=0

αk

(
n
k

)
zk(1− z)n−k = x⇔

n∑
k=0

(αk − x)

(
n
k

)
zk(1− z)n−k = 0 (72)

This equation can be solved by employing a root-finding algorithm, and with this we have
everything we need to use the function as a transformer in our NF.

3.2.4 Conditional normalizing flows

So far, we have discussed a framework that can model a probability distribution by taking
samples from the base distribution and transforming them into the desired probability dis-
tribution. However, in our work we want to create a conditional probability distribution; i.e.
a distribution that depends on the input BNS strain. To model this, we create a conditional
normalizing flow. Define the condition d and the target parameters x. The NF is trained
to represent the likelihood px|d(x|d) using a base distribution pu(u) and the transformation
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functions fϕ, modelled by the NF and conditioned on d. The likelihood can then be expressed
as

px|d,ϕ(x|d) = pu(fϕ(u|d))

∣∣∣∣∣∂fϕ(u|d)∂x

∣∣∣∣∣. (73)

In practice, the conditioning of the NF is implemented by simply giving the conditioner and
transformer d as an additional input. This is illustrated in Fig.(14) Because the input data
is strain is quite long and noisy, it is inefficient to directly input the unprocessed strain in
the network. To reduce the dimensionality and reduce the noise, we use a context network
that extracts the most important features of the data stream. Next section goes into detail
about this context network and its operation.

3.3 Context network

Before we pass the generated strain into the network for conditioning, we give it to the
context network for some preprocessing. The output of the context network is called the
context used by the NF. The first part of the context network is a method called Singular
Value Decomposition (SVD), which extracts important features of the data. The second part
is a residual network, which provides some additional dimensionality reduction of the features
provided by the SVD.

3.3.1 Singular Value Decomposition

In order to reduce the dimensionality and reduce noise, we want to find a more efficient
representation of the BNS signals. To do this, we use a technique called Singular Value
Decomposition (SVD). SVD was first introduced by V. Klema et al. [111]. The idea behind
it is to provide a analogue to the eigenvalue decomposition of a N × N sized matrix and
generalize it to N ×M matrices.

To create a SVD decomposition that captures the important features of the BNS signals,
we must first compose a template matrix H that contains an accurate representation of the
signals. To do this, we generate 10000 template signals with the expected variations in the
signal parameters, without any noise. The template matrix is then of the form

H = {h1, h2, · · · , hM} (74)

Each signal hi is a complex-valued noiseless waveform in frequency domain. We choose
M = 10, 000 to ensure that we have a good representation of the possible waveforms. Using
SVD, we can factor H as

Hij =
N∑
k=0

vikσkukj. (75)

Here, vik is a orthogonal matrix of reconstruction coefficients, σk is a vector, whose elements
are the singular values ranked in order of importance. ukj is a matrix of orthonormal bases,
whose rows are the basis vectors u⃗k. The initial basis vectors have larger ‘eigenvalues’ and thus
represent a large variety of the data, because the template signals have a similar structure.
So, to reduce the dimensionality, we can choose to include the basis vectors that contain the
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Figure 15: Residual layer. Figure taken from [112].

majority of the structure of the template signals. We use the basis vectors up to a certain
limit N ′ < N . The representation of the template matrix then becomes

Hij ≈ H ′
ij :=

N ′∑
k=0

vikσkukj (76)

We refer to the collection basis vectors we use as the SVD kernels. The amount of SVD
kernels that are necessary to represent the data accurately is dependent on the dimension of
the waveforms h, so if we use a different waveform length we also need to adjust the amount
of SVD kernels used.

To use the chosen SVD kernels for dimensionality reduction, we take the complex inner
product between the SVD kernels and the input strain signal. The result of this inner product
can be interpreted as the ‘strength’ of the feature represented by the SVD kernel in the signal.
Since this results in a complex number, we separate the real and complex parts and pass it
to the next part of the context network.

3.3.2 Residual Network

After using the SVD kernels to more efficiently represent the waveforms, we want to do
some additional processing to further reduce the dimensionality of the data before giving
it to the flow network. To do this, we pass the data through a residual network (ResNet).
This network is composed of multiple layers of residual blocks [112]. Next, we give a short
explanation on the concept behind residual layers and why we use them.

Suppose we want a neural network to approximate a certain function H(x), with x the
input of the neural network. If H(x) is sufficiently complex, we need to add a increasing
number of layers to the neural network to maintain the accuracy. However, at some point
we run into an issue: adding more layers gives diminishing returns in increasing the accuracy
[113, 114]. This is known as degradation. To avoid this problem, we use a ResNet.

A ResNet works as follows: instead of learning H(x) directly, the network learns the
residual, F(x) = H(x) − x. Fig.(15) shows an illustration of a simple residual layer. The
weights layers contain the trainable weights that approximate the function F(x). After
the weight layers, we add x again so we end up with H(x). Using this layer construction
ensures that the deeper layers of the network receives information on the original input, which
increases the expressive power of the network [112].
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Figure 16: ResNet block scheme we use in this work.

The ResNet used in our work is implemented with an ‘accordion’ shape, which is con-
structed as follows. Each ResNet block is constructed as seen in Fig.(16). First, the array
signal (of length D) is processed by a GELU activation function. Then it passes through
layer normalization [115]; we calculate the mean and standard deviation of the input array,
and normalize the array with the calculated mean and standard deviation, which helps with
stabilizing the signal. Next the signal passes through a linear layer with an output dimension
of 4D. After that, it once again passes through a GELU activation and layer normalization.
Then it passes through another linear layer, but this time with an input dimension of 4D
and an output dimension of D. The complete ResNet is constructed out of multiple ResNet
blocks. By repeatedly expanding and contracting the dimensionality, the accordion shape
helps the ResNet extract important features from the data .

3.3.3 Simulation-based inference

In recent times, the field of simulation-based inference has gained increased prominence as a
application of ML in science [116]. In Bayesian parameter estimation, the goal of simulation
based inference is to approximate the posterior distribution p(θθθ|dobs). Classical methods
such as MCMC [27] and nested sampling [28] explore the posterior distribution by directly
calculating the likelihood of points in the posterior distribution, and usually try to map the
parameter space with the maximum likelihood to approximate the posterior. In cases where
the parameter space is high-dimensional, such as in GW parameter estimation, this method
can take days to weeks to complete. In cases where we want to find the posterior as fast as
possible, such as with pre-merger sky localization, these classical methods become unusable.

With simulation-based inference, we can simulate the posterior distribution from Bayes’
theorem to draw samples from the posterior directly. In particular, in neural posterior esti-
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mation (NPE) we use neural networks as a surrogate model to simulate the posteriors. The
goal of NPE is to create a network that approximates a probability distribution

qϕ(θθθ|d) ≈ p(θθθ|d), (77)

where qϕ(θθθ|d) is the probability distribution modelled by the network, dependent on the
network parameters ϕ, and p(θθθ|d) is the posterior distribution. In NPE, the neural network
learns a mapping from given data d to approximate qϕ(θθθ|d). To approximate the posterior

correctly, the network needs to be trained to find the best-fit network parameters ϕ̂. Given
we have a sufficiently expressive network that is trained on enough data, the approximated
posterior should converge to the real posterior.

In principle, any density estimation model that can return a likelihood can be used in
NPE. In this work, we choose to use a conditional NF network. In GW science, ML has been
used in a lot of different contexts, from glitch classification to detection [117, 118]. NPE in
particular has seen a increasing amount of attention in data analysis tasks [31, 32, 34, 35].
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Figure 17: Network structure and operation for the training and estimation sequences.

4 Methodology

In this section, we give the details on the structure, data generation and training of our
conditional normalizing flows network.

4.1 Framework implementation

The parameter estimation is handled by a conditional NF network consisting of permuted
coupling layers to ensure a high training and inference speed. Fig.(17) shows an illustration
detailing the structure and information flow in the training and estimation sequences of
the network. The network will be trained to approximate the posterior distribution p(θθθ|d)
where θθθ = {Mc, q, ϕ, θ, dL, θJN}, containing the chirp mass, mass ratio, sky angles, luminosity
distance and inclination angle. The most important ones for this work are the sky angles, but
the other parameters can also provide information that is useful for astronomers searching for
a EM companion. For example, knowing information about the masses helps with estimations
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of what objects emit the GWs, and knowing the inclination angle gives information about
what kind of EM companion to expect. Having the luminosity distance in addition to the
sky angles helps localize the signal to find the source galaxy.

Because the input size of the signal depends on the cut frequency used, we train a
diffent network at each cut frequency. The cut frequencies we train a network for are
fcut ∈ {40, 70, 100} Hz. The higher cut frequency networks require a larger amount of SVD
kernels to be used, since the frequency range seen by that network is larger. The rest of the
network structure is the same for each network.

The network consists of two parts: a context network and a conditional NF network.
The context network uses SVD kernels to extract important features from the data, which
then get processed by a residual network to reduce dimensionality and get a more efficient
representation of the data. This is then passed to the conditional NF to estimate the posterior
of the signal.

To use the network, we train it on simulated BNS inspirals generated from the prior
function and data generation. To do posterior estimation, we invert the flow network and
condition it on the signal we want to estimate. Using the conditioned flow network, we then
transform samples from a normal distribution into the estimated posterior distribution. This
is illustrated in Fig.(17).

We implement the neural network framework using the JAX python package [119]. This
package allows for automatic parallelization, using vmap, and just-in-time (jit) compilation
of functions to speed up the training and sampling process compared to other neural network
frameworks. We use the equinox [120] and flowjax [121] packages to implement the neural
network structures used in this work.

4.2 Data generation

The data generation is divided in two parts: generating parameters from the priors and
using these parameters to generate the data. In this work we use the LIGO Hanford, LIGO
Livingston and Virgo detectors at design sensitivity [6, 7].

4.2.1 Priors

To generate the waveform, we draw the signal parameters from the priors shown in table
1. To make the sampling more efficient, we generate a batch of 1,000 signals every time we
take a sample from the prior. These batches are then used to generate signal batches used
in training.

The conditional prior used for Mc and q is a uniform prior with the condition that
the component masses cannot be lower than 0.85M⊙. The PISNR is drawn from a Beta
distribution. The luminosity distance is then scaled to match the PISNR. Since the PISNR
determines how well-detectable the signal is, we use it to do curriculum learning, which makes
it easier for the network to train on more difficult signals. In section 4.3.2 we go into more
detail about this.
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Parameter Prior type Minimum Maximum
Chirp mass Mc Condition on minimum mass 0.75M⊙ 2M⊙
Mass ratio q Condition on minimum mass 0.125 1
Sky angle θ Cosine −π/2 π/2
Sky angle ϕ Uniform 0 2π

Spin magnitude χ1 Uniform 0.0 0.5
Spin magnitude χ2 Uniform 0.0 0.5
Coalescence time tc Uniform −0.05s +0.05s

Phase Φ Uniform 0 2π
Inclination angle θJN Sine 0 π
Polarization angle ψ Uniform 0 π

PISNR Beta 5 50

Table 1: Table summarizing the prior distributions used to generate signals.

4.2.2 Data generation process

After we generate a batch of signal parameters, we generate the corresponding signals using
a data generator. This process generates signals in parallel for the whole batch, and is fully
coded in the JAX framework to make use of jit compiling. Because we are restricted to
waveforms that have been coded in JAX, we are restricted to frequency domain waveforms. If
we want to make sure we only use a pre-merger signal, we cannot perform Fourier transforms
because location of the merger time then depends on how long we choose the signal to
be. Thus, we decided to stay in frequency domain and use data up to a certain maximum
frequency to make sure we only use pre-merger data. The data generation is divided in the
following steps:

1. We generate the polarizations, h+ and h× using the source parameters and the waveform
generator. We use IMRPhenomD NRTidalV2 [52], as implemented in the Ripple package
[53]. The waveform is generated in the frequency domain with a minimum frequency
of 20 Hz and a maximum frequency of 256 Hz.

2. Next, we project the generated waveform polarizations into the detector frame and
calculate the detector response, depending on the signal parameters.

3. The detector strain is then scaled with the PISNR of the signal and whitened with the
detector amplitude spectral density (ASD). The PISNR scaling is done by masking out
the frequencies above the cut frequency used by the network, calculating the PISNR
and then rescaling the masked frequency strain to have the correct PISNR. We use the
Advanced Virgo and Advanced LIGO ASD curves from Bilby [74] to whiten the signal.

4. We then add Gaussian noise to the complete frequency strains: since we already
whitened the strains we add whitened noise to the strains. The strains are now ready
to be used.

The data generator creates frequency strain data containing the waveform together with noise
up to the specified cut frequency, after which it only contains noise. This allows us to use the
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same data dimensions for each network. The noise above the cut frequency is automatically
filtered out by the SVD kernels, because they contain only zeros above the cut frequency, so
the inner product with the SVD kernels and the noise above the cut frequency is zero.

4.3 Training the network

The network is trained in a training loop. Training a network takes about one week, with
the network being trained on around 2,000,000,000 unique signals. To make it easier to train
the network, we make use of curriculum learning.

4.3.1 Training loop

The training loop consists of a training and validation step, which we describe shortly. Each
iteration of the training and validation loops is called an epoch. During each epoch, the
network sees 10 batches of 1000 signals. The network is trained on 8 batches and validated
on 2 other batches during the curriculum learning process. Once we reached the desired
PISNR distribution, we train the network with 15 training batches and 5 validation batches
in each epoch to increase the training efficiency.

We start the training loop by generating a batch of data with the data generator. The
batch is then used to do a training step; this involves passing the data through the network,
calculating the loss, and training the network by back propagation of the loss to optimize
the network parameters to minimize the loss. This is repeated for 8 batches.

In the validation loop, we again generate a batch of unseen data and calculate the loss of
the network, but we do not train the network with back propagation. The validation loop
is used to see the network performance on unseen data, and see if that has improved since
the last training loop. If the validation loss is lower than the previous validation loss, we use
the new network parameters. Otherwise we continue with the parameters with the lowest
validation loss.

We stop the training when we reach the maximum amount of epochs (100,000), or when
we the loss does not decrease over a certain amount of epochs, called the max patience. In
practice the network usually reaches the maximum patience before reaching the maximum
amount of epochs.

4.3.2 Curriculum learning

To train the network more efficiently, we make use of a training scheme called curriculum
learning. The idea behind this is to start the training with easier data, and ramp up the
difficulty once the network has converged.

The signal’s PISNR is the main parameter that determines how well-detectable a signal
is. Therefore, to put curriculum learning into practice, we start training the network on
signals with a higher PISNR and lower it over time. We keep the minimum and maximum
of the distributions constant during the first steps of the curriculum learning process, with
a minimum of 10 and a maximum of 50, and change the temperature and peak of the
distribution to focus the network on a certain region in the distribution. The curriculum
learning process can be summarized in the following steps:
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• We start the training process by drawing the PISNR samples from a beta distribution
with a temperature of 35 and a peak of 40.

• Once we reach the maximum patience or of the network, we change the temperature
to 25 and the peak to 30.

• When the loss stabilizes again, we lower the temperature to 15 and peak to 20.

• In the final step of the curriculum learning process, we lower the minimum PISNR to
5, the temperature to 10 and the peak to 15. Then, we let the network train without
the maximum patience for about 1.000.000 epochs, where we also increase the number
of training batches to 15 and number of validation batches to 5. This is done to allow
the network to fully converge to the desired accuracy.

During this process, we set the maximum patience to 500 epochs. After the network has been
trained to use the desired PISNR distribution, we can continue training it for the desired
number of epochs. Fig.(18) shows the PISRNs used in the curriculum learning process.
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Figure 18: Normalized samples from the PISNR distributions used in this work. The figure
shows the PISNR distribution steps used in the curriculum learning.

4.3.3 Network dimensions

The networks use a different number of SVD kernels depending on the cut frequency. The
number of SVD kernels used are 500, 850 and 950 for the 40, 70 and 100 Hz cut frequency
networks respectively. The ResNet consists of 5 blocks, each with a width of 1024. This
network condenses the input signal to a dimension of 256, which is then passed to the flow
network. The later consists of 4 flow layers, each with a width of 50 and a depth of 1,
transformed by Bernstein polynomials of order 64.

The waveform generator generates 1000 signals with a 20481 samples in frequency space,
with a minimum of 20 Hz and a maximum of 256 Hz. Initially, the samples contain the full
signal, but when we take the inner product of the signals with the SVD kernels, the signal
will be masked with the correct cut frequency, depending on which network we use. This
means that we can pass the exact same signal to the different networks to compare them
without any additional computations.
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5 Results

Now that we discussed the construction and operation of our network, we move on to dis-
cussing the results. First we discuss the accuracy of the network. Then we do a more detailed
investigation of posteriors produced by the network, before moving on to produce posteriors
for events with parameters like those that have already been observed, such as GW170817
and GW190425.

5.1 Network accuracy

First of all, we want to investigate the accuracy of the trained networks. The first step is to
look at the posterior estimations generated by the networks resulting from the analysis of a
signal. Fig.(19) shows an example of a signal analysed by the 40, 70 and 100 Hz networks,
with a fixed PISNR. This is done to provide a fair comparison and avoid the broadening of
the posteriors due to total PISNR of the same signal decreasing when we lower the maximum
frequency. Nevertheless, we observe that the recovered posteriors are broader for a lower cut
frequency network. This is expected, as these networks see less cycles in their sensitivity band
and have less information to estimate the signal. The posteriors estimated by the networks
properly recover the true values for the sky location and the other parameters relevant for
EM follow-up.

To further verify the reliability of the networks, we investigate if there is bias present
in the estimations done by the networks. To do this, we generate probability-probability
plots (PP-plots). These show the fraction of injections for which the true value falls within
a given confidence interval. If the posterior estimations show no bias, the lines representing
the different parameters align along the diagonal. Fig.(24) shows the PP-plots generated for
the 40 and 100 Hz networks. The p-values next to the parameters measure the probability
of obtaining the observed results for the parameter. These results do not guarantee that the
networks are unbiased, but it is a necessary condition for the networks to be trustworthy.
With these tests we can conclude that the networks have the expected statistical behaviour
for a large number of events, and we can continue with a more detailed analysis of the network
performance.
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Figure 19: Corner plot representing the posterior estimations generated by the networks
for a inspiraling BNS signal, containing the posterior estimations for the 40, 70 and 100Hz
networks. The contours contain the 90% confidence intervals. To compare the networks
fairly we scale the signals seen by the networks such that they all have a constant PISNR of
13.5. This means that the signals seen by the networks have a different luminosity distance:
the dotted line, the dashed line and the solid line indicate the true value for the luminosity
distance for the 40, 70 and 100 Hz networks respectively. For all the maximum frequencies
the networks recover the posterior correctly, but the posteriors become broader for the lower
frequency networks. This is expected, because the lower frequency networks observe less
cycles of the signal in their sensitivity band.
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Figure 20: PP plots for the 40Hz network (left) and the 100Hz network (right). The numbers
behind the parameters are the p-values of that number. The grey area around the diagonal
is the 99% confidence interval. The lines closely follow the diagonal, suggesting that the
networks are unbiased.

5.2 Investigation of the inference results

To investigate the network results further, we focus on the sky locations estimated by the
networks. Fig.(21) shows evolving skymaps for two situations: one with a constant PISNR
for all the detectors, and one with a constant luminosity distance, mimicking a real detection.

In the left figure, all parameters are the same except the luminosity distances, since the
PISNRs are kept constant across networks. This again shows that the performance of the
high cut frequency networks is better due to the signal having more cycles in their sensitivity
band, improving observations of the dephasing and time delay difference which allows the
network to better reconstruct the origin of the signal. The improvement is the same for
other recovered parameters, except for the chirp mass. It seems the quality of the chirp mass
estimation mainly depends on the relative amplitude of the noise and the signal, which is
smaller when in the low cut frequency networks to maintain a constant PISNR.

The right figure shows the sky estimation of a signal with a constant luminosity distance
across the networks, corresponding to a more realistic scenario. The sky map evolves as
expected, with the largest estimated sky area for the lowest maximum frequency. Here, the
difference in performance is bigger since the low cut frequency networks also have a lower
PISNR. Due to this, the earliest obtained skymaps may not be good enough to accurately
locate the host galaxy before the merger in some of the scenarios. This has also been observed
in previous studies [29, 30], so this effect is to be expected. The other estimated parameters
can produce usable results, even if the skymap is not good, see for example Fig.(26).

For the constant luminosity distance estimation, the total SNR of the signal needs to be
around 30 to be loud enough to have the PISNRs of 8.9, 14.6 and 17.1. Such loud BNS signals
have only been observed once, with the GW170817 detection, but are expected to increase
in detection rate with coming detector upgrades. This also increases the rate of detection for
high PISNR signals: for example, if we were to observe GW170817 with upgraded detectors,
the SNR would be around 80, which is more than enough to produce a skymap usable for
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EM follow-up.
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Figure 21: Evolving skymaps estimated by the networks. The darker areas are the 90%
confidence intervals, and the lighter areas are the 90% confidence intervals. The left figure
is generated with a constant PISNR of 17.1 across the networks. This shows that the sky
area estimated by the lower frequency networks is larger than the sky area estimated by
the higher frequency networks. On the right, we have a more realistic scenario; these sky
locations were estimated at a constant luminosity distance across the networks. The PISNRs
in the networks are 8.9, 14.6 and 17.1. In this case, the difference between the networks is
larger since the lower frequency networks also have a lower PISNR.

To further investigate the accuracy of the skymaps generated by the networks, we calcu-
lated skymap area estimated by the networks for 1000 samples using the HEALPix15 skymap
estimation software [122]. The cumulative density plots obtained from there results are shown
in Fig.(22). These figures confirm the expected behaviour; overall, the high cut frequency
networks perform better than the low cut frequency networks. In the upper right of the plot,
the 40and 70 Hz networks seem to outperform the 100 Hz network. This can indicate that
the 100 Hz network requires more training time, since the 40 and 70 Hz networks showed
this behaviour too when they were less well-trained. The results shown are similar to those
obtained by previous studies [29, 30]16, but we want to stress that our approach does not
rely on matched filtering and can estimate posteriors for other parameters relevant for the
EM follow-up.

The sky areas estimated are regularly good enough to enable follow-up studies: for exam-
ple, the GRANDMA telescope network [123], which has already done follow-up studies in the
third LIGO-Virgo observing run, had a average coverage of 183 deg2 per observation. The

15HEALPix website: http://healpix.sourceforge.net
16The PISNR distributions used in this study and the previous studies are not the same, so this makes a

quantative comparison harder.

http://healpix.sourceforge.net
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100 Hz network estimations of the 50% confidence interval is below this limit in about 40%
of the estimated signals, while the 90% confidence interval estimations reach this in about
10% of the estimated sky areas for the same network. Depending on the type of follow-up
study, the coverage of the telescopes can be larger. For example, the Fermi Gamma-Ray
Space Telescope’s Large Area Telescope [124] has a coverage of about 25920 deg2. Most of
the 90% confidence intervals estimated by the networks fall below this value.
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Figure 22: Cumulative density functions for the log of the estimated sky areas in degrees
squared. The left figure shows the area of the 50% confidence interval, while the figure on the
right shows the area of the 90% confidence interval. As observed earlier, the general trend
is that the high cut frequency networks produce better results than the low cut frequency
networks, in most of the cases. This is discussed further in the discussion in section 6.1.2.
As a reference, we included the 90% confidence interval sky areas obtained for a few GW
observations: GW170817 [11] and GW190425 [125] are two BNS observations, GW200115
[126] is a NSBH merger, and GW170814 [127] was the first BBH merger observed with all 3
detectors active. Note that these results were obtained with parameter estimation after the
full signal was observed.

5.3 Analysis of realistic events

To further evaluate the network performance, we analyse realistic events in the pre-merger
phase. In particular, we analyse GW170817 [11] and GW190425 [125] like events. We take
the median values of the parameters reported in the observation papers, and inject those
values into noise generated using the detector ASDs used in this work. Fig.(23) shows the
resulting skymaps. We use all three detectors, while GW190425 was observed by only the two
LIGO detectors. For the GW170817-like event, we scaled the luminosity distance such that
we obtain a total SNR which is similar to the observed SNR of GW170817. The GW190425
event does not use a scaled luminosity distance. The full corner plots can be found in the
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appendix, in Fig.(25) and Fig.(26).
For the GW170817-like event, the 40 and 70Hz max frequencies perform poorly, but the

50% confidence interval of the latter is reasonably well constrained. The 100Hz sky location
is good enough for EM follow-up. However, this is fairly late in the merger, so this might
not result in pre-merger localization, but it can facilitate a fast follow-up.

The GW190425-like sky estimations are better in the 70Hz frequency range, which is
more likely to result pre-merger EM follow-up observations.

Thus, we have shown that the framework can produce skymaps useful for EM follow-
up with reasonable signals without relying on matched filtering, with the required detector
upgrades.
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Figure 23: Skymaps generated for realistic events. The darker areas are the 50% confidence
intervals, and the lighter areas are the 90% confidence intervals. The left figure shows the
skymap for a GW170817-like event, with comparable sky position, source parameters and
observed SNR. The PISNRs in this case are 15.0, 19.2 and 22.5 for the 40, 70 and 100Hz
networks respectively. The 40Hz skymap does not allow for EM follow-up, but the 50%
confidence interval for 70Hz is usable, and the 100Hz skymap is reasonably good. The right
figure shows the results for the GW190425-like injection. The PISNRs are 10.0, 16.7 and
19.6 for the 40, 70 and 100Hz maximum frequencies respectively. Again, the 40Hz results are
not great, but the 70 and 100Hz networks recover a usable sky location.
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6 Discussion, conclusion and outlook

6.1 Discussion

In this work, we developed a conditional normalizing flows framework capable of pre-merger
sky localization of BNS signals, in addition to estimating other parameters relevant for EM
follow-up. We train the framework to estimate the sky location, component masses, lumi-
nosity distance and inclination angle of pre-merger BNS inspiral signals with a minimum
frequency of 20 Hz and a constant cut frequency. The framework produces posteriors for
the sky angles, chirp mass, mass ratio, luminosity distance and inclination angle. These pa-
rameters are the most relevant to EM follow-up observations, because they give information
about the probability of observing follow-up signals, but other parameters could also be es-
timated by increasing the network expressivity. The networks were trained with a maximum
frequency of 40, 70 and 100 Hz. We investigated the performance by examining the posteriors
estimated by the networks and confirmed that the networks have no bias by investigating PP
plots produced by the networks. Then we closely examined the sky localizations produced
by the network for simulated events and events that have already been observed.

6.1.1 Network design and performance

The maximum frequencies used in this work were chosen as a proof-of-concept, and can
be chosen to have a more continuous frequency range to create a more continuous evolving
skymap. The maximum frequencies chosen in this work are relatively high because enough
cycles of the signal need to be observed to produce a usable skymap. For some signals, the
PISNRs obtained for the low frequency networks are not high enough to produce usable sky
estimations, note however that other parameters can have a reasonable posterior estimation.
Even if the sky location is not known exactly, it can be useful to know if the inclination
angle of a merger is face-on, which increases the likelihood of observing a GRB, since those
are emitted perpendicular to the orbital plane [128]. Knowing the luminosity distance also
lets us estimate if the merger is close enough (dL < 80 Mpc) to produce an observable GRB
[128].

The exploratory nature of this research required a quick iteration of network design, which
resulted in less time being available to let the networks converge properly by training them
longer. In principle, the results could be improved upon by enhancing the training scheme
and training the networks for more epochs. Further improvements can be done by optimizing
the hyperparameters such as the batch size, number of batches in a epoch, and testing
different network dimensions to find the best-performing network. Such a hyperparameter
optimization is very time-consuming but a good way to optimize the performance.

6.1.2 Area cumulative density functions

The cumulative density functions of the area estimations in Fig.(22) show a peculiar feature:
on top right of the figure, the performance of the 70 Hz and 40 Hz network seems to be better
then the performance of the 100 Hz network, because the 100 Hz network dips below the other
networks. We think this means that the 100 Hz network has not trained enough, because
the 40 Hz and 70 Hz network had these same features in a earlier stage of the training. This



6 DISCUSSION, CONCLUSION AND OUTLOOK 50

problem could be mediated by training the network for longer, but due to the limited time
frame of this work, we leave this to future investigations.

6.1.3 Detector sensitivity

The networks were trained with the current detector low frequency cutoff of 20 Hz. Since BNS
signals spend a lot of time (up to 1.5 hours) in the 5-20 Hz frequency range, the performance
of the networks could be improved further by lowering the used minimum frequency. This
would also drastically increase the size of the strain that the network needs to analyse, but
this can be mitigated by using adaptive frequency resolution [129] or relative binning [130] to
reduce the size of the input data. The current detectors are not sensitive enough to produce
usable data in the 5-20 Hz frequency range, but planned detectors like the Einstein telescope
or Cosmic Explorer will have a better sensitivity in the low frequency range. If we consider
signals with a minimum frequency of around 5 Hz, it would be critical to account for the
Earth’s rotation due to the length of the observed signals. This could also improve the
localization capabilities, since the modulation of a signal with the Earth’s rotation provide
information about the signal’s source location [131].

6.1.4 Framework comparison

To compare our framework to the BAYESTAR [29] and GW-SkyLocator [30] frameworks, we
consider a number of differences. The main differences between our network and the previous
frameworks are as follows:

1. The network developed in this work does not rely on matched-filtering based ap-
proaches.

2. Our framework can provide estimations of intrinsic parameters in addition to the sky
location and luminosity distance.

3. The framework can provide parameter estimations for signals where the detector PISNR
is below 4 in at least a single detector. The previous frameworks disregard these signals
their analysis.

Due to the differences with previous frameworks, our framework could be expanded to in-
clude better waveform models to increase the accuracy with respect to real data and estimate
additional intrinsic parameters such as the neutron star spins.

6.1.5 Sample leakage for chirp mass

In some corner plots, the posterior estimations for the chirp mass seem to be very peaked
around the estimated value. This is a issue with plotting, but also a sign of sample leakage:
the bins are equally distributed between the minimum and maximum of the samples, so if a
estimation has a few samples far away from the bulk of the estimated samples, the bins will
be very wide, and the bulk of the samples will fall into a few bins, such as the 70 Hz network
in Fig.(25) and the 40 Hz network in Fig.(26). This issue can indicate that the network has
not converged fully yet, and could be solved with more training time.
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6.2 Conclusion

This work presents conditional normalizing flows neural networks capable of estimating the
sky location, the component masses, luminosity distance and inclination angle for EM-follow
up from pre-merger BNS inspirals. The sky localizations by the network are regularly good
enough for pre-merger follow-up observations. While more work needs to be done to develop
the framework into a complete detection pipeline, it presents an interesting avenue for future
pre-merger parameter estimation frameworks for inspiraling signals with EM counterparts.

6.3 Outlook

6.3.1 Non-Gaussian noise

To investigate the robustness of the network to non-Gaussian noise, we can investigate the
performance if we inject irregular noise, such as glitches. Non-Gaussian noise bursts can be
very detrimental to matched filtering based approaches, since they can have similar shape to
parts of the inspiral, which can then provide high SNR triggers on mismatched templates.
These can be generated [132] and injected into the strain to see how resilient the network is
with respect to non-Gaussian noise bursts. If this is successful, it would give this approach
an additional edge over previous studies.

If we want the framework to be usable in real data, we also need to consider the effect of
variations in the detector PSDs. These shifts can lead to variations in detector sensitivities
which could affect the performance of the network. This problem has been investigated
before by the DINGO framework [33], where they also trained the network on sampled PSD
distributions. This could be implemented in our framework as well to solve this issue.

6.3.2 Detection pipeline

One interesting future opportunity of the framework developed in this work is to adapt it
into a single-framework detection pipeline. One could use the output of the trained context
network as input for a binary classification neural network [133], which could provide trig-
gers when a signal is present in the data. This would enable the framework to be a single
framework detection and characterization pipeline, as far as we know the first of its kind.
This would aid in reducing the latency further since it would require less communication
with other pipelines.

7 Laymen summary

Zwaartekrachtsgolven zijn kleine trillingen in de ruimtetijd die worden gegenereerd door
extreme-massa systemen, zoals binaire neutronensterren die gaan fuseren. Zo’n systeem
van binaire neutronensterren is al geobserveerd in de GW170817 detectie. Bij deze detectie
hebben we de kans gekregen om veel interessante observaties te doen, maar we hebben wel
10 uur aan data verloren omdat de locatie pas een paar uur na de detectie bekend was. Om
meer interessante dingen te weten te komen, willen we graag voor de fusering van de sterren
de bron localizeren. In dit werk hebben we een netwerk ontwikkeld dat binnen een paar
seconden de locatie van de bron kan bepalen. Ook kan het netwerk de intrinsieke parameters
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van het signaal inschatten, zoals de massas van de neutronensterren, zonder dat het netwerk
afhankelijk is van andere detectie algoritmes zoals matched filtering.
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Figure 24: PP plots for the 70Hz network. The numbers behind the parameters are the
p-values of that number. The grey area around the diagonal is the 99% confidence interval.
The lines closely follow the diagonal, suggesting that the networks are unbiased.
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Figure 25: Corner plot of the estimated posteriors of the GW170817-like event. The PISNRs
are 15.0, 19.2 and 22.5 for the 40, 70 and 100Hz networks respectively. The contours contain
the 90% confidence intervals. The parameters are recovered reasonably well by all the net-
works.



A ADDITIONAL RESULTS 63

1.5

3.0

4.5

6.0

10
0

20
0

30
0

40
0

d L

1.2

1.5

1.8

2.1

2.4

c

0.2

0.4

0.6

0.8

q

0.8 1.6 2.4

0.8

1.6

2.4

JN

1.5 3.0 4.5 6.0 10
0

20
0

30
0

40
0

dL

1.2 1.5 1.8 2.1 2.4

c

0.2 0.4 0.6 0.8

q

0.8 1.6 2.4

JN

100Hz cut freq
70Hz cut freq
40Hz cut freq

Figure 26: Corner plot of the estimated posteriors of the GW190425-like event. The PISNRs
are 10.0, 16.7 and 19.6 for the 40, 70 and 100Hz maximum frequencies respectively. The
contours contain the 90% confidence intervals. The chirp mass estimations are alright for all
the networks, and the 100 Hz network is also able to find the inclination.
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