
Master thesis

Human-Computer Interaction

Empowering embedded systems developers to reduce the
energy consumption of their software through visualization:

uncovering their information needs

Author:
Mark Rietvelt
Utrecht University

mail@markrietvelt.nl

Daily supervisor:
dr. Bernard van Gastel
Radboud University

bernard.vangastel@ru.nl

Internal supervisor:
dr. Hieke Keuning

Utrecht University

h.w.keuning@uu.nl

Second examiner:
dr. Evanthia Dimara
Utrecht University

e.dimara@uu.nl

July 9, 2024



Abstract

Embedded systems software can be optimized for energy consumption to meet strict energy re-
quirements and reduce greenhouse gas emissions. To support this process, we have investigated
which information embedded systems software developers need when optimizing for energy con-
sumption. For this purpose, we have used an observational method, a semi-structured interview,
and a questionnaire. The existing practices that we identified can help embedded systems software
developers in optimizing for energy consumption and uncover ways in which hardware vendors can
support this process. Furthermore, our findings about how developers want energy measures to be
collected and visualized can aid researchers and tool makers in creating tool support.

1 Introduction

In the past decade, the energy consumption of software has become a concern [1]. Whereas before,
improvements in energy consumption were only expected to come from hardware, recently, the
responsibility of software itself has been recognized.

While the use of software is growing, there are important reasons to restrain its energy usage.
First of all, some software runs on devices that have a battery with limited capacity, such as mobile
devices or some embedded systems [2]. Secondly, the production of electricity that is required to
run software produces greenhouse gas emissions, which should be contained to honor covenants such
as the Paris Agreement to avoid catastrophic effects of global warming [3]. In scientific literature,
different approaches have been chosen to limit the energy consumption of software. Approaches
target different phases of the development life cycle [2], [4] and vary in the extent to which they
take a hardware or software perspective [1].

Many tool prototypes proposed by researchers try to automatically optimize the energy effi-
ciency of software by changing for example the source code itself or its configurations. In their
systematic literature review, Balanza-Martinez et al. [5] refer to these approaches as optimization.
Another popular research avenue instead aims to keep developers in the loop by allowing them to
monitor the energy consumption of their code, which is aptly called monitoring [5]. Even though
past studies have shown gaps in the knowledge of developers of software energy consumption [6],
they also discovered that software developers are eager to learn about it [7], [8].

Unfortunately, tools created for energy consumption monitoring have been lacking [2]. They
have been criticized for being too course-grained because they do not relate energy consumption to
specific enough program abstractions [8], and requiring in-depth knowledge [2], [6]. Furthermore,
software developers have mentioned usability as an important requirement for these tools and have
proposed the use of visualizations to achieve this [9]. Some techniques address this constructive
criticism by monitoring energy consumption on the source code level and using visualizations
to show their results [10]–[13]. Each of these visualizations, however, makes different assumptions
about which information should be shown to developers. Some of these choices have been motivated
by the authors. For example, Klinik et al. [13] estimate and show the power draw of external
devices rather than of the central processing unit. They motivate this decision by stating that
the energy consumption of the central processing unit is sometimes negligible in control software
for embedded systems. However, it is yet unexplored whether choices like these really serve the
information needs of developers when they optimize the energy efficiency of their code.

In this thesis, we have explored which information should be shown to developers of embedded
systems software to aid them in their optimization process. Thus our research question is: “What
do embedded systems software developers need to see to optimize the energy consumption of their
software?”. We focus on the domain of embedded systems specifically, because we hypothesize that
information needs of developers can differ between application domains. For example, as Klinik
et al. argued, embedded systems developers might require energy consumption information about
external devices rather than the central processing unit. Furthermore, the domain of embedded
systems often deals with power constraints [14] and guidelines suggest that sophisticated practices
for optimizing energy consumption already exist and are worthwhile to study [15]. Drawing from
design study methodology [16], we explore our research question by learning about the current
practices, challenges, needs, and reflections of embedded systems performance experts. To this
end, we use three different methods: an observational study, a semi-structured interview, and a
questionnaire.

In section 2 we provide more background information. Next, in section 3, we explain the

1



methodology that we have used to address our research question. After that, we describe our
results in section 4. In section 5, we discuss the limitations of our study, relate our findings to
earlier work, and provide recommendations for future work. Lastly, in section 6 we draw our final
conclusion.

2 Background

In this section we first discuss software energy consumption, the perspectives of developers on it,
and its relation to embedded systems. Next, we give an overview of monitoring techniques that
relate energy consumption back to source code and indicate their differences. Last, we discuss
software performance visualizations, place energy consumption visualizations in this context, and
discuss what information they visualize.

2.1 Software energy consumption

Software energy consumption is a tricky term. Though software certainly is responsible, it is
in reality the hardware that it controls that consumes energy. This is clear when the software
controls an actuator like an LED light or a temperature sensor for example. However, also when
performing simple arithmetic or saving or retrieving values from memory, it is hardware (e.g. the
CPU or memory card) that consumes energy. Furthermore, as Georgiou et al. [4] aptly note in
their literature review, hardware does in fact not consume energy but rather converts electrical
energy to heat.

Software energy consumption is closely related to software performance metrics such as execu-
tion time. This is not surprising, given that energy consumption equals power draw multiplied by
time. Developers have been relying on this relationship to reduce energy consumption. It should
be noted however, that research has shown that reducing metrics such as execution time does
not always result in reduced energy consumption [2]. For example, optimization for other metrics
might result in reduced execution time, but increased power draw.

The energy efficiency of software has only recently been recognized as a concern for software
developers [2]. Hence, it is not yet well-defined as a software quality. In this thesis, we will classify
software consumption as a performance metric. Thus, if we mention performance metrics, we refer
not only to execution time and other established metrics but to energy consumption as well.

2.2 Software developer perspective

There has been earlier work aiming to understand the perspective of software developers on software
energy consumption. Pinto et al. [6] investigated the questions that developers ask about software
energy efficiency and the answers that they receive. Furthermore, Pang et al. [7] investigated
mobile and desktop developers’ awareness of and knowledge about software energy consumption.
Pinto and Castor [2] had a similar objective, but focused only on mobile software developers. Fur-
thermore, Manotas et al. [8] performed a larger study on a broader audience (including embedded
systems developers) investigating existing practices and perspectives of practitioners and taking
into account the full development life cycle. Lastly, Ournani et al. [9] performed a smaller study
focused specifically on developer needs. Ournani et al. not only investigated the awareness and
knowledge of software developers but also identified the hurdles and constraints that developers
encounter and the requirements they have for tooling.

Collectively, these studies diagnosed limited knowledge of developers about software energy
consumption and ways to reduce it. They found that developers have misconceptions about the
topic and that they find it challenging. Fortunately, the work of Pang et al. [7] and Manotas et al.
[8] identified that developers do want to learn about it. All the studies mention monitoring tools
as a limiting factor. Pinto et al. [6] identified a lack of tools, Pang et al. [7] diagnosed difficulties
in measuring and optimizing energy consumption even when tools were available and Pinto and
Castor [2] mention that most monitoring tools are too course-grained for developers. Manotas et
al. [8] corroborate these findings and mention that monitoring tools should be easy to use. Ournani
et al. [9] echo this call for tool usability, identifying integration with existing tool chains as an
important requirement and proposing graphical representations to simplify interaction.

In this thesis, we build upon these findings. We research which information monitoring tool
visualizations should show, such that they can better suit the needs of software developers. Specif-

2



ically, we focus on the application domain of embedded systems which sometimes deal with heavy
power constraints [14]. In doing so we follow the example of these previous studies by involv-
ing embedded systems software developers to learn about their existing practices, challenges, and
needs.

2.3 Embedded systems

An embedded system is a computing system which is designed for specific control functions and is
embedded as part of the complete device which may include hardware and mechanical parts [14].
Using sensors and actuators it interfaces with the physical world. As stated previously, embedded
systems sometimes have to deal with heavy power constraints. For example, they might be powered
using a small battery and are required to function on a single battery charge for multiple years.
Fortunately, vendors have been creating microprocessors that have a low power consumption and
have many options to tweak it [17]. For example, microcontrollers have low power modes in which
their energy consumption is reduced. There are also guidelines for the development of low-power
applications which are communicated in formal education, workshops, blog posts, and books. For
example, it is good practice to turn off peripherals if they are not used [15], [17]. Furthermore,
one could change the clock frequency, select a low-power microcontroller, and use an event-driven
architecture to save energy. Researchers have been looking for and continue to develop new ways
to optimize embedded systems for energy efficiency [14], [18]. However, except for the study of
Manotas et al. [8] (whose sample included embedded systems practitioners), to date we are not
aware of any peer-reviewed work that has investigated how embedded systems software is optimized
for energy consumption in practice.

2.4 Source code monitoring techniques

The most direct way to monitor the energy consumption of software is to measure its energy use
during execution. Measurements can be over time (energy consumption) but also for a specific
moment in time (power draw). In this thesis, we will refer to both measures as “energy measures”.
Historically, measurement required physical power meters [19], but recently hardware manufac-
turers have started to supply APIs for energy measurement [20] (e.g. RAPL from Intel for PCs
and servers and Trepn from Qualcomm for mobile devices). Using these instruments, researchers
have attempted to relate energy consumption to source code [10]–[12], [21]. By taking inspiration
from Spectrum-based Fault Localization (SFL) techniques [22] they have used information about
which program abstractions are executed by which test cases (also called program spectra or code
coverage) to correlate energy consumption measurements to these program abstractions.

Instead of (only) using measurements, other monitoring techniques rely on energy models to
make estimations [23]. These models capture the energy cost of software constructs given specific
hardware [23] and are often calibrated using actual measurements [2]

Some of these estimation-based monitoring techniques use static analysis. They analyze the
code without executing it to provide energy consumption estimations. Others use dynamic analysis
and execute the code to gather run-time measurements. The execution statistics that they gather
are then provided to the energy model to obtain estimations. There are also monitoring techniques
that combine both static and dynamic analysis [2].

All these techniques assign a value of energy consumption or power draw to program abstrac-
tions. They differ, however, in which abstractions they target, what selection of executions they
include, and whether they aggregate over these executions. In section 2.5.2 we will give examples
of different techniques and the aspects in which they differ.

2.5 Visualizations

Visualizations have been used successfully and extensively to aid software developers in their ac-
tivities. The field of software visualization (SoftVis) has even been recognized as a large subfield of
information visualization (InfoVis). One of the software development activities for which visualiza-
tions have been developed is performance optimization. In this section, we will first discuss various
categorizations of performance visualizations. Next, we will discuss four visualizations that have
been created specifically to aid in the optimization of energy consumption. We will discuss what
information these energy visualizations show and we will classify them using the earlier-mentioned
performance visualization categorizations.

3



2.5.1 Performance

In their state-of-the-art report, Isaacs et al. [24] give an overview of performance visualizations
published between 2004 and 2014. Though none of the visualizations that they discuss visualize
energy consumption, they define performance optimization as relating to both improving execution
time and energy consumption.

In their report, the authors identify three subgoals of performance optimization for which visu-
alizations have been created: (1) Global comprehension, (2) Problem detection, and (3) Diagnosis
and attribution. According to their classification, global comprehension involves understanding
the regular performance behavior of the software. Furthermore, the authors describe problem
detection as the identification of erroneous performance behavior. Lastly, with diagnosis and at-
tribution, they refer to the linking of the erroneous performance behavior to its causes. They note
that diagnosis and comprehension might already be captured within problem detection and that
visualizations can aid in multiple of these subgoals.

Isaacs et al. [24] also categorize visualization techniques based on which context(s) they rep-
resent: Hardware, Software, Tasks, or Application. Relevant to the energy consumption visualiza-
tions, which we will introduce shortly, for Software visualization techniques the authors distinguish
between: (A) Serial trace, (B) Call graph, and (C) Code and Code Structure visualizations.

2.5.2 Energy

As far as we know, to date, there are only four visualizations related to energy measures that have
been published in peer-reviewed work. Images of these visualizations can be found in Figure 1.
Here we describe these four visualizations, identify which information they show, and relate them
to the classification of Isaacs et al. [24].

Figure 1a shows a visualization by Li et al. [10]. The authors measure energy consumption
averaged over a select set of executions. They run test cases many times to reliably measure their
energy consumption. They relate this energy consumption back to source code lines. They show
the relative difference in energy consumption by highlighting lines of code. They give code lines
a color on a gradient from blue to red. They highlight the line of code that consumed the least
amount of energy in blue, the line of code that consumed the most amount of energy in red, and
the others in a shade of purple.

Figure 1b shows a visualization by Verdecchia et al. [11]. They also measure energy con-
sumption averaged over a select set of test case executions. They, however, relate this energy
consumption back to source code functions, branches as well as lines. They also show the relative
difference in energy consumption but use a heatmap for this purpose. On this heatmap, they
display the names of the program abstractions in alphabetical order. They color their cells on
a gradient from white to red. They color the function, branch, or line that consumes the least
amount of energy white, the one that consumes the most amount of energy red, and the others a
shade in between.

Figure 1c shows a visualization by Couto et al. [12]. They also measure energy consumption
averaged over a select set of test case executions. They relate this energy consumption back to
methods and propagate this to classes, packages, and projects. They show their involvement in
large energy usage in a sunburst diagram. Program abstractions with low involvement are colored
in green, those with high involvement in red, and those in between in yellow. Unlike Verdecchia et
al., they show the results for all considered program abstractions in one visualization, using their
hierarchical structure.

Figure 1d shows a visualization by Klinik et al. [13]. They deviate from the previously men-
tioned visualizations by estimating power draw for all possible executions over the code. They
relate this power draw back to code statements by showing the cumulative power draw as lines
next to the source code. Changes in cumulative power draw are represented by horizontal displace-
ment of the lines. All possible executions with different power draw are represented by unique lines
of different colors.

As their introductions reveal, these visualizations make different assumptions about which
information should be shown to developers. An exhaustive list of these assumptions and which
visualizations make them can be found in Appendix A.

Furthermore, these four energy visualizations follow the classifications of Isaacs et al [24]. Li
et al. [10] mention that their work has the potential to “help developers understand the energy
related behavior of their applications.”. Furthermore, Couto et al. [12], Verdecchia et al. [11] and

4



(a) Coloring of source code lines by Li et al.
[10] showing their relative energy consumption.
Reproduced without permission.

(b) Heatmap by Verdecchia et al. [11] show-
ing the relative energy consumption of methods.
Reproduced without permission.

(c) Sunburst diagram by Couto et al. [12] show-
ing the involvement of methods, classes, pack-
ages, and a project in high energy consumption.
Reproduced without permission.

(d) Skylines by Klinik et al. [13] showing the
(changes in) cumulative power draw for all pos-
sible executions of the source code. Reproduced
without permission.

Figure 1: All software energy consumption visualizations published to date in peer-reviewed liter-
ature, as far as we are aware.

Klinik et al. [13] all mention that they envision their work to be used specifically to identify energy
consumption hotspots. Thus, all these visualizations attempt to serve the global comprehension
subgoal of Isaacs et al.

Furthermore, all of these visualizations can be identified as code and code structure software
visualizations. The sunburst diagram from Couto et al. [12] is a code structure visualization.
The source code line coloring of Li et al. [10] and the heatmap of Verdecchia et al. [11] are code
visualization because they visualize the code together with the energy consumption information
by coloring the background of the relevant program abstractions. Lastly, the skylines of Klinik et
al. [13] is a code visualization that shows power draw in close conjunction with the code.

The fact that these energy consumption visualizations do not cover all performance subgoals
and contexts that have been identified by Isaacs et al. [24] might indicate opportunities for future
visualizations. By investigating the existing practices of experts, we can learn whether experts
indeed pursue these different subgoals during their optimization process. If so, we can learn for
each of these subgoals which information sources they already consult, which challenges they face,
and which (information) needs they have. Energy visualizations can then target these specific
subgoals using appropriate contexts to suit experts’ needs.

5



3 Methodology

We have observed and questioned developers who have optimized embedded systems software for
energy consumption, to learn about their current practices, their challenges, and their needs, and
to what extent existing energy monitoring techniques and visualizations suit their needs. In this
section, we will first introduce the design study methodology on which our methodology is based.
Then, we will describe how we recruited participants. Next, we will explain the three methods we
employed: reenactment, semi-structured interview, and questionnaire. After that, we will describe
the data collection and analysis for these methods. Lastly, we will discuss how we preserved ethical
integrity and respected the privacy of participants.

3.1 Design study methodology

In this thesis, we explore the question “Which information do embedded systems software developers
need to optimize the energy efficiency of their software?”. By doing so, we took a first step towards
the creation of problem-driven energy consumption visualizations. Specifically, we engaged in the
discover stage of the nine-stage design study methodology framework prescribed by Sedlmair et
al. [16]. This framework is specifically made for visualization design studies which Sedlmair et al.
define as “a project in which visualization researchers analyze a specific real-world problem faced
by domain experts, design a visualization system that supports solving this problem, validate the
design, and reflect about lessons learned in order to refine visualization design guidelines.” In our
case, the domain experts are embedded systems developers, who face the real-world problem of
optimizing the energy efficiency of their software. The discover stage of the nine-stage framework
of Sedlmair et al. focuses on the analysis of the real-world problem. In this stage, a researcher
investigates the existing processes, challenges, and needs of domain experts to characterize the
problem for which they intend to create a visualization. Therefore, we aimed to answer the
following subquestions (SQ):

SQ1 Which subgoals do embedded systems software developers pursue when optimizing the energy
consumption of their software?

SQ2 Which information do embedded systems software developers already use to optimize the
energy consumption of their software?

SQ3 Which challenges do embedded systems software developers face when optimizing the energy
consumption of their software?

SQ4 Which needs do embedded systems software developers have when optimizing the energy
consumption of their software?

The discover stage requires close involvement with domain experts. Before we elaborate on how
we involved the domain experts, we will describe who they are and how we approached them.

3.2 Participants

We have recruited people who have at least once optimized embedded systems software for energy
consumption. We required this experience of participants so we could learn about their existing
practices. We did not impose a stricter requirement as novice experiences and views would also be
valuable to our research and a stricter requirement would have prevented us from reaching a large
enough sample.

In total, we recruited 9 participants as their participation was quite time intensive for them
as well as for us to analyze. We hoped to be able to reach full saturation within 5 to 10 partic-
ipants. Indeed fewer and fewer novel points were shared by participants, but we did not reach
full saturation. However, after 9 participants we did not deem the novel information important
enough anymore to warrant future time from us and participants. Though the sample size of 9
participants did not allow us to statistically assess the quantitative data gathered, it did provide
us with sufficient examples to identify data trends.

For recruitment we used a combination of self-selection, convenience, and purposive sampling.
We used self-selection sampling by creating a LinkedIn post that explained the study and mentioned
the recruitment criterion that allowed participants to contact us if they wanted to participate. We
shared this post with personal contacts (convenience sampling), but only those whom we expected

6



to have contacts that would meet our recruitment criterion (purposive sampling). From several of
our contacts, we received a list of companies that they deemed likely to have employees that meet
our recruitment criterion (purposive sampling). We then called and/or emailed these companies
to recruit participants. All participants developed embedded systems software professionally, each
working at a different company in The Netherlands.

3.3 Involvement

We asked participants to partake in a single session of one to one and a half hours. These sessions
were held in person at the company of the participant unless they preferred to conduct them using
video calling instead. Five out of the nine participants opted for a video call and the other four
were visited in person. The research was conducted in the mother tongue of the participants, which
was Dutch for all participants. The research was executed by a single researcher to whom we will
from now on refer to as “the researcher”. During the sessions, the researcher followed the protocol
which can be found in the replication package1. This repository also contains all other materials
used during these sessions. We will now introduce the three different methods that we employed
during these sessions: a reenactment, a semi-structured interview, and a questionnaire. See Table
1 for the duration of each method.

Reenactment Interview Questionnaire Session

Min 22 8 18 62
Average 32 11 31 73
Max 38 15 51 93

Table 1: Shortest, average, and longest duration in minutes of the reenactment, semi-structured
interview, and questionnaire (as well as the complete session).

3.3.1 Reenactment

To learn about the current practices of the participants, the researcher asked participants to lead
him through a recent process in which they optimized embedded systems software for energy
consumption. We refer to this method as reenactment.

The researcher steered participants to focus on the part of the process where they optimized
software for energy consumption whilst writing or refining it. However, the researcher also left
them room to share relevant parts of their process prior to this point. Furthermore, if they had
optimized the energy consumption of multiple products the researcher asked them to focus on the
one that they deemed most relevant to share.

The optimization processes that participants explained took between a couple of days up to a
couple of years, often running in parallel with feature development. We indeed anticipated partici-
pants to be involved in the optimization process infrequently and for extended and variable length.
Therefore, we opted for a retrospective inspection. Even though observing the full process in real-
time would probably have resulted in a more detailed understanding, the large time investment
and logistics involved in attending the process from the start made it unfeasible for this thesis.

We invited participants to show source code, tools, and information that they used in the
optimization process while they talked the researcher through it. This bears great similarity to
the retrospective think-aloud methodology which sees great use in Human-Computer Interaction
studies [25], with the exception that there is no recording of the optimization process but instead
the reenactment of the participant of it. Whenever it was unclear why the participant performed a
certain action, the researcher interrupted and asked for clarification. This aspect is borrowed from
contextual inquiry [25], which has proven its usefulness for learning about the existing practices of
domain experts in past design studies [16]. We have coined this method reenactment as it asks the
participant to relive and retell their experience in a realistic manner. Though it can be classified as
a Cognitive Task Analysis [26] or knowledge elicitation technique, we are not aware of the previous
use of this method.

In practice, during the reenactment, participants showed less source code, tools, and other
information and discussed their optimization process more abstractly than we expected. This is

1https://github.com/MarkRietvelt/energy-optimization

7

https://github.com/MarkRietvelt/energy-optimization


probably due to the fact that the optimization processes of the participants were longer than we
anticipated. We had anticipated them to be a couple of hours to a couple of days rather than a
couple of days up to a couple of years as they turned out to be. Likely, this made participants look
at their optimization from a distance and let go of some details.

Observing the reenactment of the optimization process and asking for clarification during it
allowed us to understand the current practices in optimizing the performance of embedded systems
software. Specifically, it helped to learn whether participants perform a clear set of subgoals (SQ1)
and which information participants consult (SQ2).

3.3.2 Semi-structured interview

The reenactment was directly followed by a semi-structured interview. The exact questions asked
during the interview can be found in the protocol in the replication package. In the interview,
the researcher first asked whether the participant had optimized embedded systems software for
energy consumption more often. If they had, the researcher would ask whether these optimization
processes differed from the one they reenacted and if so how. Furthermore, the researcher would
then phrase the remaining three questions to include these other optimization processes to get a
more comprehensive understanding.

In these remaining questions, the researcher respectively asked about their subgoals (SQ1),
challenges (SQ3), and information needs (main research question) whilst optimizing embedded
systems software for energy consumption. Although we could have learned about possible subgoals
during the reenactment, we chose to ask about them explicitly in the semi-structured interview as
well for two reasons. First, participants might be able to identify subgoals in their optimization
process only after fully reenacting it. Second, first asking participants about different optimization
processes that they did allowed them to identify subgoals during these other processes and those
shared between them.

To ensure a high recall rate of subgoals, challenges and information needs the researcher often
prompted participants after they mentioned one subgoal, challenge or information need whether
they could recall more. For challenges we specifically prepared a prompt asking about any long
or difficult parts of the optimization process. For all questions the researcher sometimes listed
the subgoals, challenges or information needs that the participant already expressed during the
interview as a prompt and to clarify the question. For subgoals, the researcher sometimes used the
synonym “interim goals” to clarify the intended meaning.

We only asked about challenges in the semi-structured interview, which followed the reenact-
ment, to avoid the pitfall of focusing only on problematic parts of the workflow (mentioned as
pitfall 15 in [16]). Similarly, we only asked about information needs after the reenactment, to
avoid the pitfall of focussing on possible solutions too soon (mentioned as pitfall 17 in [16]).

3.3.3 Questionnaire

Even without a thorough understanding of the existing practices, challenges, and needs of embed-
ded systems developers when optimizing for energy consumption, earlier work has created tech-
niques to help them in this process. These techniques make assumptions about what information
these developers should see. In an online questionnaire, we aimed to learn whether participants
agree with these assumptions and in which way they believe that energy measures could help
them to optimize embedded systems software. Participants were asked to choose between different
options, indicate their agreement to statements on a 4-point Likert scale, and asked to elaborate
upon their answers in open questions. An even-point Likert scale was chosen to force participants
to select a non-neutral response. Multiple choice questions were accompanied by open questions to
allow participants to add nuance and explain their decision-making process. An exported version
of the online questionnaire can be found in the replication package.

Kind of energy measures Several questions asked participants about what kinds of energy
measures should be collected. Participants were asked whether power draw or energy consumption
measures should collected, if measures should be collected for a single, several, or multiple exe-
cution(s), and if they should be collected for the CPU or external hardware components. These
questions originated from assumptions made in the four energy visualizations described in section
2.5.2. The assumptions that these visualizations make can be found in Appendix A. Based on the
original ideas of one of the authors of this thesis, participants were also asked whether the software

8



they wrote was used on multiple different hardware combinations and executed under different
usage scenarios and if so whether energy measures should be collected for all of them. Lastly,
participants were given the opportunity to list ideas about what other characteristics of energy
measures would be useful or counterproductive.

Relation to source code A couple of other questions asked participants about how energy
measures should be related to the source code. The first of these questions asked participants
to rank program abstractions based on how useful it would be if energy measures are related to
them. The next questions asked whether energy measures should be related to multiple program
abstractions, and assuming so which program abstractions that should be and how they should be
visualized. Again, these questions originated from assumptions made in the four energy visualiza-
tions described in section 2.5.2 and these assumptions can be found in Appendix A.

Subgoals and Challenges Participants were also asked if understanding the energy-related
behavior of embedded systems and finding energy consumption hotspots are useful steps in the
optimization process. These questions were inspired by the goals of the energy visualizations
discussed in section 2.5.2 which serve the first subgoal proposed by Isaacs et al. [24]: Global
comprehension. Furthermore, participants were also invited to provide additional suggestions for
useful subgoals. Lastly, the questionnaire also asked about challenges that energy measures could
help overcome.

Research questions Questions about which kind of energy measures should be collected and
how they should be related to the source code help towards answering the main research question.
Questions about the subgoals and challenges help answer the first and third subquestions (SQ1
and SQ3) respectively.

Procedure Participants were asked to fill in the questionnaire after a 5-minute break following
the interview. Participants were instructed to follow their intuition if they were unsure about their
answers and explain their answers in the open questions. They were invited to keep this explanation
short and to refer to the reenactment and the interview. Furthermore, they were encouraged to ask
questions whenever they had any or when something was unclear. The researcher was available to
answer these questions and resolve any unclarities directly. Due to circumstances, one participant
filled in the survey slightly later and therefore did not have the opportunity to ask questions to
the researcher.

The questionnaire was very valuable in testing existing solution ideas but was intentionally
preceded by the reenactment and semi-structured interviews to prevent initial conversations from
being steered by these ideas (see pitfall 17 in [16]).

3.4 Piloting

All methods were refined in a pilot phase with three pilot participants (Pi1-3). The reenactment
and the semi-structured interview were piloted with Pi1 and Pi2. The questionnaire was piloted
with Pi2 and Pi3

Pi1 reenacted an optimization process from about 5 years ago and recalled it surprisingly
well. Based on this, the criterion that the optimization process had to be performed in the last 2
years was relaxed to needing to be recalled with sufficient detail. Pi2 did not have one concrete
optimization process to reenact, which made the reenactment unfocused. This emphasized the
criterion of having a concrete optimization process for the reenactment. Based on the pilot with
Pi1, the interview questions were also written out in full to ensure consistency.

During the pilot, both Pi2 and Pi3 were asked to verbally explain their reasoning process. This
uncovered unintended interpretations of several questions, based on which these questions were
rephrased. These verbal explanations also provided useful contributions toward answering the
research questions. Therefore, open-ended elaboration questions were made mandatory instead of
optional.

9



3.5 Analysis

Now we will describe which data we collected during the methods, how we processed it, and how
we have analyzed the processed data.

3.5.1 Reenactment & Semi-structured interview

An audio recording was made of the reenactment as well as the semi-structured interview which
was transcribed automatically but corrected manually using Microsoft Word 3652. Furthermore,
the optimization process of each participant was summarized. Participants were asked if they
would like to receive this summary. Four participants expressed their liking and were sent the
summary. These four participants were also given the opportunity to indicate and correct any
erroneous information which led to a couple of minor adjustments.

The transcripts were coded manually using NVivo3. Prior to the data collection, a set of a
priori codes was derived from the study objectives. These codes and their descriptions can be
found in Table 2. These codes were intended as top-level codes in the code hierarchy. Future
coding was intended to be emergent in the sense that interesting concepts or ideas in the data that
were related to these top-level codes could be coded as subcodes. For example, if a participant
would express that they designed the hardware in an energy-efficient way this could be coded as
“Hardware Design” as a subcode of “Subgoal”.

Code Description

Task An action performed by a participant to optimize embedded systems software for
energy consumption

Subgoal A partial goal towards the optimization of embedded systems software for energy
consumption

Tool A physical or software tool used in optimizing embedded systems software for
energy consumption

Information Information relevant to optimizing embedded systems software for energy con-
sumption

Visualization A visual representation of some Information
Challenge A difficulty a participant faces while optimizing embedded systems software for

energy consumption
Need A need a participant has while optimizing embedded systems software for energy

consumption

Table 2: A priori defined codes that match the objectives of the study.

A first part of the coding was assisted by an HCI researcher who was unrelated to this research
and had experience in qualitative methods. This dual coding part consisted of three rounds.
In each round, both researchers separately coded two 5-minute excerpts from the transcripts of
a participant, one 5-minute excerpt from the reenactment and one 5-minute excerpt from the
interview. To cover a large variety of topics, the 5-minute excerpts were taken from the beginning
of the reenactment and interview in round 1, from the middle in round 2, and from the end in
round 3.

For the first round, both researchers were supplied with a codebook containing the a priori
defined codes. After each round, the researchers went chronologically through the excerpts, dis-
cussing each coded part until reaching consensus. The resulting updated codes and codebook
provided the start of the next round. This iterative process for example resulted in the merging of
the codes for “Task” and “Subgoal” as it turned out that a specific subgoal could be formulated for
every task. The remainder of the coding was performed solely by the researcher involved with the
research, starting with the codebook produced after reaching consensus after the last dual coding
round.

2https://www.office.com
3https://lumivero.com/products/nvivo/

10

https://www.office.com
https://lumivero.com/products/nvivo/


3.6 Ethics and privacy

Next, we will discuss how we preserved ethical integrity and respected the privacy of participants
all the way from the recruitment until the finalization of the study.

After participants showed interest in participating in the study, they received an email contain-
ing an explanation of the study. The email explicitly explained the use of an audio recording and
invited participants to ask any questions they still have by email, phone call or before the start
of the study. Attached to this email, participants received an information sheet and consent form
which can be found in the replication package. Participants were invited to read these documents
and were given the option to send a filled-in consent form back to confirm their participation.
If they did not do so before the start of the study, they were asked to read the documents, ask
any questions they still had, and fill in the consent form at that moment. If the participant was
visited in person, paper versions of these documents were provided and they filled in one additional
consent form for their own record.

The information sheet explains the study and states that participation is voluntary and that the
participant may withdraw at any time without providing a reason for withdrawal. Furthermore, it
explains that participants can ask for the deletion of their data until it is anonymized. Additionally,
it explains that the participants will be asked whether they consent to their anonymized data being
shared with other researchers for dissemination and future research purposes. Lastly, it informs
participants that they can ask any questions they still have via email or at the start of the study.
The consent form asks the participants for explicit consent for participation in this research and
the use of their data.

The reenactment and the questionnaire were preceded by an explanation which can be found in
the replication package. The explanation preceding the reenactment reiterated that participation
is voluntary and that the participant could withdraw from the study at any time without reason.
Furthermore, after both explanations, participants were asked whether anything was still unclear
or whether they had any more questions.

Furthermore, participants were assigned an identifier, which they entered in their questionnaire
response. This allowed us to link their questionnaire response to their reenactment and interview
without them having to submit personally identifiable information.

This thesis was screened beforehand by the Ethics and Privacy Quickscan and found to be low
risk. A submitted version of this document can be found in the replication package.

4 Results

In this section, we will discuss the results from the reenactment, interview, and questionnaire. We
will first discuss the sample of participants and then discuss the results pertaining to each sub
research question as well as the main research question. Most results are from the reenactments or
interviews and we explicitly mention when results are from the questionnaire. We always mention
which participant raised a certain point and sometimes use their quotes4 if these are illustrative or
to highlight subtleties in their responses. If a participant is not mentioned it does not imply that
they did not experience or agree with the matter. It simply means that the topic was not raised
in the reenactment, interview, or open questionnaire responses5.

4.1 Participants

Overall, participants reported that they sometimes optimize the energy consumption of embedded
systems software. On a 4-point scale from never to often, P3 and P6 answered ’rarely’, P7 answered
’often’ and all other participants responded ’sometimes’. Overall the participants optimized the
performance of embedded systems software a bit more, with five participants (P2,5,6,7,9) respond-
ing ’sometimes’ and the other four participants answering ’often’. Only P7 showed the opposite
trend, which suggests that they do not consider energy consumption as a type of performance.

Participants had varying years of experience in developing software for embedded systems,
ranging from three to 26 years6. Their job titles and roles mentioned that four participants were

4Quotes were originally in Dutch but have been translated to English
5For the multiple choice questions we have responses from all participants
6For the three participants that reported part-time, school, or non-professional years of experience, these years

were fully included.

11



engineers, four were architects (with one being both) and the titles of eight of them explicitly
included the word software or firmware. One participant was an intern, the others either were a
lead, senior, or principal or had around 20 years of experience.

Participants also optimized embedded systems software for various applications in various sec-
tors. However, the sample might not be fully representative as all embedded systems of which the
participants described their optimization process were relatively complex (e.g. use an OS or have
communication functionality). This might be caused by the fact that all participants worked at a
company in The Netherlands.

Energy Performance Experience Job

P1 Sometimes Often 25 Embedded firmware architect
P2 Sometimes Sometimes 3 Lead engineer
P3 Rarely Often 3 Intern / Embedded Software Engineer
P4 Sometimes Often 26 Senior Software Architect
P5 Sometimes Sometimes 8 Senior Embedded Software Engineer
P6 Rarely Sometimes 18 Principal engineer, System and software architect
P7 Often Sometimes 10 Teamlead embedded firmware
P8 Sometimes Often 19 Software Architect
P9 Sometimes Sometimes 11 Embedded tech lead, mostly developing firmware

Sector Application

P1 Industry, Automotive, Airfield Industry, Automotive, Airfield, RFID
P2 Medical, HVAC systems Medical, Room thermostat
P3 Agriculture and karting Low-power sensors, Rev limiter
P4 Consumer Electronics Electrified gear change for bicycles
P5 Building Management/Real Estate IoT Sensors
P6 Battery powered consumer devices Door lock, Air quality measuring
P7 Logistics, Heating Asset tracking
P8 Sensing, industrial and consumer Mostly measuring equipment
P9 IoT Battery operated radio devices

Table 3: Table with the experience of participants with developing and optimizing embedded
systems software.

Our sample consists of a representative group of participants with sufficient to much experience
in software development for complex embedded systems for various applications in various
sectors. The majority of our participants sometimes optimize for energy consumption.

To summarize

4.2 Subgoals

We will now discuss the results that pertain to the sub research question: Which subgoals do
embedded systems software developers pursue when optimizing the energy consumption of their
software?

4.2.1 Workflow

About their optimization process, P8 mentioned that “in general, this is a trajectory where we are
very systematic. Because, as I mentioned, you don’t design low power consumption in afterward,
so it really has to be an integral part of the product.”. From the reenactments and interviews, we
could indeed identify a systematic trajectory for embedded systems software developers who are
optimizing for energy consumption using an energy requirement. We have visualized this workflow
in Figure 2 and will explain it step by step.

12



Figure 2: Workflow of embedded systems software developers who are optimizing for energy con-
sumption using an energy requirement.

Energy consumption requirement Except for P1, all participants started their optimization
process with a requirement on the energy consumption of their embedded system. Except for
the system of P3, all these systems were battery-powered and required to function for a certain
amount of time on a single battery charge. The system developed by P3 was instead constrained
by a limited power supply. Similarly, P8 mentioned an example of a solar-powered device in which
the requirement entailed maximum power consumption. Also, one of the two embedded systems
discussed by P6 could recharge its battery using a solar panel to a limited extent. P1 did not have
a requirement for energy consumption specifically. However, it did have standards for the amount
of disturbance the product can create and the speed with which it reacts, which in turn limits its
energy consumption.

It does not appear to be a coincidence that only participants developing an embedded system
without plenty or continuous power (e.g. battery-powered systems) have an energy consumption
requirement. Statements of P3, P6, P7, P8, and a colleague of P5 all suggest that, currently, only
these systems have an energy consumption requirement.

Hardware design With the exception of P1, all participants mentioned the design of the hard-
ware as a first and important step towards meeting their energy consumption requirement. They
all indicated that components were selected to ensure low energy consumption and P8 noted in the
questionnaire that “usually a lot of preliminary research is done for that”. P2 and P6 specifically
mentioned that it was checked which sleep modes their components could go into. P4 and P5
remarked that hardware components were chosen that supported the existing low-energy commu-
nication protocols BLE and LoRa respectively. P3, P7, and P9 even went beyond sleep modes and
designed their hardware in such a way that they could turn off different components by turning
off their power supply using so-called power domains. Lastly, P1 and P8 mentioned that spe-
cialized hardware could be faster and more energy efficient than software that supports the same
functionality. P8 even once worked on a product for which separate chips for communication and
calculations were chosen which lowered the energy consumption but increased software complexity.
P6 also considered adding a specialized cryptography chip to their PCB to lower energy consump-
tion but decided against it to limit complexity and cost. Similarly, P4 questioned the decision
to include an expensive motion sensor. They argued that the energy consumption of the motion
sensor diminished the energy it saved by allowing a microcontroller to sleep.

P2, P3, and P5 explained that a use case was calculated to ensure that the hardware they
selected could meet their energy consumption requirement. P2 and P6 mentioned using their
use duration requirement to calculate how much power their embedded system could consume on
average. P6 then created a power budget in which they prescribed for each peripheral how long it
may be active.

Software design Except for P1, all participants used an event-driven architecture in which they
put components to sleep or turned them off when they were not needed and used interrupts to
activate them again. P6 mentioned specifically choosing an OS to support this sleep functionality.
P2 used the same OS and mentioned researching which power optimizations it supports. P2 also
mentioned that if no such OS were used, they would have to think and decide for themselves when
the system would go to sleep.

13



Implementation P1, P3, and P8 mentioned that they first implemented their software while
paying little to no attention to its energy consumption to first get a working implementation.
As P2 and P4 were adapting the software of an existing embedded system, they also started
their optimization process with a working implementation. To determine whether they needed
to optimize this working implementation for energy consumption, P2 measured its initial energy
consumption. Once they have completed their implementation, P3 intends to do the same thing.
Next, P3 and P8 will apply/applied the optimizations that they conceived one by one. In contrast,
P2 isolated different parts of the functionality to measure their energy consumption and optimize
it.

Other participants did not postpone energy consumption optimization until after creating a
working implementation. P5 explained that they thought in advance about how to smartly im-
plement the desired functionality to limit its energy consumption. P8 also mentioned that their
low-power communication protocol has been designed early on. Furthermore, P6 and P9 mentioned
that they optimized for energy consumption whilst implementing functionality.

P2, P3, P4, P5, P7, and P8 all mentioned that they measured the energy consumption after
applying an optimization. Table 4 shows the optimizations that participants mentioned.

Optimization Participant(s)

Event-driven architecture Use sleep modes P2-9
Use low power modes P3,4,7-9
Turn off component P3,4,7,9
Turn off energy supply P3,7,9
OS with automatic sleep functionality P2,6

Change configurations Lower clock speed P3
Configure peripherals P3,5
Configure registers P5
Other P7

Sensing Optimize measurement interval P5,8
Lower sampling rate P8

Data analysis Analyze data on device P5
Compress data early P8
Create efficient algorithms P8

Communication Tweak communication parameters P2,4,6,9
Write custom communication protocol P8,9
Buffer data before sending P5,8

Software engineering optimization Minimize duplication, reuse P8
Swap loops or if statements P8
Write out loops P8

Table 4: Table with optimization which participants used or planned to use in the optimization
process that they described or in another optimization process that they mentioned. Some opti-
mizations are left out because they are very specific to the application at hand.

Identify problems P6 expressed that “during software development, you find out that cer-
tain things may or may not function or consume more power than they should.”. Indeed, many
participants raised problems that they identified during their optimization process.

For two participants, the identification of problematically high energy consumption was the
reason for their optimization process. P2 found the initial energy consumption of their embedded
system to surpass their energy consumption requirement and the company of P4 was asked to
change the software as the battery life of the embedded systems of their client was too low and
varied greatly. Other problems were identified during development. P3, P5, P6, P7, and P9 all
mentioned that they at some point discovered that the actual energy consumption surpassed their
expectations. Furthermore, while tweaking parameters, P1 discovered that the hardware was not
fast enough. Similar to why P4 was asked to change the software, P7 identified a low battery
life only after their product was already out in the field. To catch these issues early, P6 and P7
validate the energy consumption of their system before each software release. Similarly, P1 and
P5 mentioned validating the energy consumption after a new hardware iteration.

14



Locate cause When they discovered problems, many participants tried to locate their cause. P2,
P3, P5, P6, and P7 mentioned trying to look for causes of high energy consumption. Furthermore,
P7 and P9 also described locating causes of unexpected and undesired behavior. Contrarily, P4
did not attempt to locate the cause of the low battery life but instead changed the software such
that the system could only wake up from local electrical signals which eliminated the cause and
successfully solved the issue. P5 located causes together with their hardware supplier. In this
process, P5 identified where in the code too much energy is consumed. Their hardware supplier
then located the cause of the issue in the hardware.

P5, P6, and P7 explained that in this locating process, they isolated components to measure
their energy consumption. In the questionnaire, P5 also mentioned this as a subgoal. To do so,
P5 and P6 turned off parts in the software. If that did not work, P6 resorted to “soldering a
jumper between the power supply and the chip”. Furthermore, P7 measured voltage at different
places. In contrast, P9 expressed that “they never did a real component by component analysis”.
They reasoned that hardware components can already be recognized sufficiently well from a power
consumption measurement of the whole system over time due to the difference in magnitude and
timing of their power consumption. They for example rely on the knowledge that communication
consumes most power. A piece of knowledge which P2, P5, P6, P7, and P8 mentioned as well.
They acknowledged that this only allows peripherals other than the radio to be recognized when
the radio and microcontroller are in sleep mode, but stated that their energy consumption would
be relatively insignificant if these components were awake.

P6 mentioned that sometimes an identified problem was only investigated and resolved later.
By postponing this, more urgent problems, which for example require a hardware change that
involve long lead times, could be located first.

Solve problems Many problems that participants encountered were related to the hardware.
See Table 5 for the causes of and solutions to the problems that participants mentioned.

P1, P4, and P5 mentioned that changes in the hardware design were made during the de-
velopment. P5, P6, P7, and P8 mentioned changes in the wiring of the hardware components.
Furthermore, P6 mentioned the replacement of a component that had no sleep functionality due
to a mistake in the bill of materials. No mentions were made of components being changed within
the development of a product to solely benefit energy consumption. When asked about this, P8
answered that this did happen between product iterations but that “usually hardware choices are
not adjusted anymore, just because the lead time is too high” and that changes were therefore too
expensive.

Some problems were instead solved in the software. P6 chose to fix an issue through software
to save on costs, mentioning that “a solution in software is often cheaper, but often not the most
optimal solution”. Furthermore, P7 fixed an issue in software as they already had products out
in the field. P1 however expressed that “It is always a dialogue between the hardware and the
firmware. The firmware alone cannot solve the problem”.

Problem Solution Participant(s)

Hardware not fast enough Change hardware design P1
Sensor too sensitive Tweak sensor parameters P4
Wrong resistor value Change resistor value P5
Switch working badly Solution not mentioned P5
Pin set differently in software than hardware Change assignment in software P5,7
Pin set differently in software than hardware Change hardware wiring P6
Initialization too energy intensive Keep component awake P6
Wrong hardware component ordered Replace hardware component P6
Timers prevent OS from going in sleep mode Change timer type P6
Undocumented hardware bug Workaround in software P6,9
Random behavior due to slow drop in voltage Keep buck-boost converter on P7
Random behavior when turned off Put flash chip in sleep mode P7
Random behavior when turned off Put flash chip in low power mode P9

Table 5: Table with causes of and solutions to problems that participants encountered during the
optimization process that they described or another optimization process that they mentioned.

15



End P2, P4, P8, and P9 mentioned that their optimization processes came to an end when it
was determined that no further energy consumption saving was needed. P8 and P9 explicitly
mentioned that it was the company that changed their priorities which shifted towards creating
new features or products. P2, P5, P7, and P8 all mentioned using a long-term test to evaluate
the energy consumption of the embedded system. For this long-term test, P2 measured the energy
consumption over a day and extrapolated that measurement to estimate the battery life. P8
mentioned using power measurements and measuring how long the system could function on one
battery charge (which was feasible as it was around 6 hours). P5 and P7 mentioned collecting
battery level measurements reported by the system through server logs.

To determine that no further energy consumption saving was needed, P4 created a use case.
They determined relevant scenarios of the system, measured their energy consumption, and calcu-
lated how many times or for how long they could be executed on one battery charge. Then, using
estimations of their typical frequencies/durations they estimated the battery lifetime which was
found to be sufficient. In the questionnaire, they mentioned determining relevant scenarios as a
specific subgoal.

4.2.2 Global comprehension

The questionnaire also specifically asked about subgoals related to the Global comprehension sub-
goal of Isaacs et al. [24].

Understanding energy-related behavior P8 and P9 somewhat agreed, and all other par-
ticipants strongly agreed, that understanding the energy-related behavior of embedded systems
software is a useful step in the process of optimizing its energy consumption. It is good to note
however that the depth to which participants go to understand the energy-related behavior of
their system probably differs. As will be mentioned in section 4.6.1, P1 expressed desiring better
insight into CPU power usage even though it does not use the majority of the energy consumption
in their project. Later in the questionnaire P1 also states that “insights are always good”. This
contrasts with a comment of P9 that “the effort you put into the measurements need to be able
to be justified against the winnings”.

Finding energy consumption hotspots All participants strongly agreed (except for P8 who
somewhat disagreed) that finding energy consumption hotspots is a useful step. P2 and P9 men-
tioned that optimizing “the most power hungry parts” i.e. “hotspots” gains the most energy
savings. P8, however, disagrees and mentions that “in many cases the hotspots are driven by spe-
cific hardware needs and there’s little you can do about those”. Interestingly, however, P8 noted
earlier that it would be counterproductive to focus “on irrelevant parts (ie a part that only uses 1%
of the power to begin with)”. Furthermore, P3 mentions “finding hotspots by measuring energy
consumption of peripherals inside the MCU” as another subgoal, but P4 warns that “knowing
what parts of a system consume energy is not trivial”. Furthermore, P1 notes that embedded
firmware engineers require in-depth hardware knowledge to optimize for energy consumption and
P7 says that “usually it is very logical to start with the low hanging fruit and work your way up
from there”.

We can conclude that, in practice, embedded systems developers optimize software to meet an
energy consumption requirement and that currently this requirement is only set for systems
that have a limited or fluctuating power supply. When such a requirement is set, it is taken
into account extensively during the whole development process. The hardware design is a
first and important step towards meeting this energy consumption requirement. Furthermore,
developers often design the software using an event-driven architecture in which components
are put to sleep or turned off and interrupts are used to wake the system. Next, they either first
implement the system’s functionality and apply optimizations later or they already make the
first implementation energy efficient. In any event, they measure energy consumption after
applying optimizations to see if these meet their desired effect. When aiming for ultralow
power, problems are bound to occur. These problems can be spotted during development or
even after release (though this can be prevented by validation before each release). When
problems are discovered, their causes are often located by isolating components. Many of

To summarize

16



these causes are hardware-related. Changes to hardware design to solve these problems are
not uncommon. However, to avoid lead times and save on costs, many problems are fixed using
a less ideal solution in the software. Though hardware redesigns currently do not happen solely
to improve energy consumption, they are used for future product iterations. Optimization
is stopped when the energy consumption requirement is met. Long-term tests or use cases
are used to determine if this is the case. Lastly, almost all developers find understanding the
energy related behavior of and finding energy consumption hotspots in embedded systems
software a useful step in optimizing its energy consumption.

4.3 Information

We will now discuss the results that pertain to the sub research question: Which information
do embedded systems software developers already use to optimize the energy consumption of their
software?

4.3.1 Information seeking subgoals

Many subgoals generate information which is then subsequently used in other subgoals. Partici-
pants measured the energy consumption of the system or its components in order to learn about
the initial energy consumption or the effect of an optimization. Furthermore, they compared it
to expected energy consumption to determine whether further energy consumption improvements
were needed, to locate the cause of an issue, or to find an opportunity to save energy. Partici-
pants also looked up or estimated energy consumption of components, and of the whole system
by calculating a use case, to select hardware that meets the energy consumption requirement, to
be able to identify problematically high energy consumption and/or determine whether further
energy consumption improvements are needed.

We will list information sources that participants consulted that directly result from the afore-
mentioned subgoals as well as others. We first discuss information sources that participants used
to obtain energy measures. Next, we discuss other information sources that participants use when
optimizing embedded systems for energy consumption.

4.3.2 (Energy) measures

Almost all participants often use energy measures and also deem them very useful. In the ques-
tionnaire, P7 somewhat agreed and all other participants strongly agreed with the statement that
“Energy estimations or measurements are useful for optimizing energy consumption of embedded
systems software”. Participants deem both estimations and measurements to be useful, though
measurements seem to be favored. P4 states that measurement is “very good”, “useful” and claims
that it is “most important” as it “gives hard data”. P8 mentions that measuring gives “an indi-
cation of future development” and P2 states that measurement equals knowledge and that some
form of measurement is always needed for power-critical applications. Furthermore, P4 expresses
that estimations can help to identify scenarios with high energy consumption and P9 mentioned
that relying on estimations is very helpful to keep up the development pace when the full setup
cannot be run.

Datasheets and estimations All participants except for P1 and P8 mentioned consulting
datasheets during their optimization process. P6, P7, and P9 remarked consulting datasheets
to learn about the intended working of the component. P6 and P9 specifically looked up how a
component could be put to sleep. P2, P3, P5, P6, and P9 mentioned using datasheets to check the
energy consumption of hardware components. P2, P3, P5, and P6 remarked that they used this in-
formation during the hardware design process. P5 and P9 mentioned using the energy consumption
reported in the datasheets to validate energy consumption measurements. In the questionnaire,
P5 explains using it for this purpose because “hardware often behaves different than theoretically
designed”. P6 instead used their power budget (which they created using estimations) to validate
energy consumption measurements. In contrast, P7 admitted that they never adjusted the goals
they set based on the use case that they created and forgot about them.

In another project, P2 selected a processor by taking into account the sleep modes it could go
into. P6 also mentioned taking possible sleep modes into account for choosing a microprocessor

17



and for other components as well. P2 also mentioned the use of a tool to estimate the power
consumption of a chip which could prove useful in hardware selection. Similarly, P3 plans to use a
tool to estimate the expected power consumption in a personal project. Lastly, P1 also mentions
using datasheets and estimation tools in the questionnaire.

Measurements and visualizations All participants used power measurements during their
optimization process. To obtain these measurements, P1 and P8 mentioned using a power meter
and P5, P6, and P7 said that they used a multimeter. Furthermore, P1, P3, and P7 mentioned
using an oscilloscope and P7 mentioned specifically using a logic analyzer. P7 used the logic
analyzer to measure energy consumption over time of different components simultaneously and to
interpret protocols to learn about the inner state of their embedded system. Lastly, P2, P4, P6,
P7, and P9 all used Nordic’s Power Profiler Kit (PPK) to measure power consumption over time.
P4 specifically mentioned using its first version and P7 and P9 using its second version.

P4 and P9 both mentioned using the PPK to learn how much power was consumed on average
over a period of time. P2, P4, and P9 also mentioned learning about the duration of high power
consumption using the PPK. Similarly, P1 used data loggers and long-term loggers on an oscillo-
scope to derive timing information. To learn about timing, P7 and P9 indicated using server logs
of the embedded system. Server logs were also used by P5 and P7 to obtain battery level measures.
P7 automatically created a line graph from these battery level measurements to show its decline
over time. Furthermore, as previously mentioned in section 4.2.1, P8 used measurements of how
long the system could function on one battery charge.

P8 also ran data processing algorithms on a PC to check whether changes to them would reduce
their execution time and therefore make them consume less energy. P8 also used unit tests to obtain
these measurements. P1 also mentioned using unit tests, but instead to check the workings of the
software. Along those lines, P7 and P9 mentioned using a debugger. Lastly, P3 planned to use a
code analysis tool that provides suggestions to reduce power consumption.

4.3.3 Optimization resources

P6 mentioned checking the documentation of multiple Real-Time Operating Systems (RTOS) to
choose between them. P2 mentioned researching which optimizations their RTOS supported and
mentioned consulting a former colleague with experience with that RTOS and energy consumption
optimization.

To optimize Bluetooth parameters, P2 and P4 checked the Bluetooth communication parameter
standard of Apple. P2 also mentioned checking a less stringent standard earlier on.

Many subgoals that developers pursue are ways to uncover information. When optimizing
for energy consumption, developers deem energy measures to be very useful. They heavily
use datasheets when optimizing for ultralow power but are also sometimes hindered by the
inaccuracies in them. Moreover, few developers use estimation tools, but all collect power
measurements using physical measurement tools. Some also use these and other tools (e.g.
server logs) to obtain timing information and use server logs also for battery measurements.
Lastly, RTOS documentation and Bluetooth communication parameter standards help devel-
opers apply optimizations using their respective technology.

To summarize

4.4 Challenges

We will now discuss the results that pertain to the sub research question: Which challenges do
embedded systems software developers face when optimizing the energy consumption of their soft-
ware?

4.4.1 Tooling

Several participants expressed challenges related to tooling. P1 and P8 expressed criticism of
simulation tools, stating that theory does not match well enough with practice which has interrupts
and other disturbances. P8 mentioned that simulations “can help to take first steps” but also
stated that they cost a lot of time to create and maintain, are not cost-efficient, and that there are

18



other tools that measure performance that provide more insight. P1, P4, P5, and P7 expressed
challenges related to measurement tools. P1 and P4 expressed that specific tools are needed to
measure wide power ranges. P4 used the PPK from Nordic and stated that it could accurately
measure between 0,01 microampère and 20 miliampère which perfectly suited their case, but that
other tooling would be needed in projects where hundreds of watts would need to be measured.
P1 also stated that a regular multimeter would be unable to (precisely) measure the high power
consumption that they were dealing with. Similarly, P5 mentioned that a regular multimeter
would not allow them to find the cause of an issue and that the multimeter that they used could
measure up to single microampères, which limited their precision, and that their hardware supplier
had more advanced tooling. In the questionnaire P5 also mentioned that “low power applications
are continually getting ‘lower power’” and therefore measuring “tends to get harder and special
equipment is needed”. Furthermore, P4 and P7 mentioned that some tooling is very expensive and
P4 added that it is sometimes difficult to find where they are sold. Lastly, P4 expressed that the
first version of Nordic’s PPK crashed often but that the second version is a lot more trustworthy.
However, P7 reported that if the second version is used for a longer time it can still miss samples
or stop drawing a graph at all.

4.4.2 Testing

P1 and P6 mentioned that software is needed to assess the hardware design. P5 and P7 indicated
that it is difficult to draw conclusions from the battery level reported by their product and that
measurements can fluctuate. P5 mentioned that conclusions can be drawn only over longer periods
of time and P7 said that it only reliably tells them when the battery is almost empty as the curve
then drops sharply. P5 explained that they perform a calculation to try to account for this non-
linearity and P7 is still thinking of something similar. P8 mentioned that battery charge capacity
also varies and thus affects battery life.

P7 and P9 mentioned that the connection with a debugger breaks when the power supply is
turned off or the microcontroller is put into a deep sleep mode, which prevents them from debugging
during these behaviors. Furthermore, P4 called it a challenge to devise of which behaviors the
energy consumption should be measured to calculate a use case. P1, P4, P7, and P9 all experience
problems with their current test setups. P4 would prefer a real-life setting to their current artificial
test setups. Along similar lines, P9 mentioned that some variables such as which LTE mast
their product connects to are constant during development, and field tests are needed to test
their influence. During field tests, P7 misses detailed power measures over time such as they
would get from Nordic’s PPK during development. They reiterate this point in the questionnaire.
Furthermore, P1 would prefer more automated testing to improve consistency and documentation.
They admit that only for some tests it would be cost-efficient to automate them. Similarly, P6
mentioned that they chose not to automate their version testing as that would be too time-intensive.
Lastly, P8 expressed that it is more difficult to locate a component that consumes a lot of energy
in an embedded system than on a PC. P8 explained that you can alter software that runs on a
PC easily to obtain timing information, but that this cannot be done as easily on an embedded
system as that would interrupt the timing which it relies on.

4.4.3 Optimization and hardware

P4 and P9 expressed that if you “go all out” and “try to push your hardware to extremes”
you “encounter more hardware bugs” and that “even though things meet certain standards in
theory, they go less smoothly in practice.”. Indeed many participants encountered challenges
whilst optimizing.

Many participants encountered problems in deactivating and reactivating hardware compo-
nents. P7 and P9 had to give up on turning off a flash chip and P4, P6, and P9 encountered sleep
issues. The causes and solutions to these and other problems can be found in Table 5. Lastly, P7
also noted that the creation of an automatic way to turn off component energy supply was difficult
to get completely right.

P4, P8, and P9 encountered difficulties whilst optimizing the communication of their embedded
system. P4 needed to set up a Bluetooth connection with another module as well as a phone and
could not change the parameters for both types of connections separately. Therefore, they had
to conform to Apple’s Bluetooth communication standard for both connections which prevented
further energy consumption savings. Furthermore, P8 and P9 encountered some issues whilst

19



creating a custom communication protocol and P8 tried to bundle the revision of their protocol in
a single update to minimize time investment for their clients.

As already mentioned in section 4.2.1, P6 voiced that unexpected issues are identified during
the optimization process. P4 shared this view and emphasized the necessity of measurement. P3
added that the feasibility and effect of optimizations is also uncertain. Furthermore, P4 mentioned
in the questionnaire that knowing what parts of a system consume energy and evaluating the result
of an improvement are both not trivial. In the questionnaire, P1 and P8 mention that measurement
is essential to know the effect of optimizations. Lastly, P8 mentioned that sometimes companies
stop the optimization process early, even though a need for further energy saving is expected in
the near future, and continuing the process a bit longer would have been more efficient.

As mentioned earlier in section 4.2.1, P6 and P8 noted that specialized hardware makes the
embedded system more complex. P6 mentioned that this in turn complicates validating the power
consumption of the system and P8 mentioned that it increases the chance of something going wrong
of which the cause would be difficult to find. Furthermore, P4 discovered that Electro Static
Discharge (ESD) can increase power leakage which significantly affect battery life in low-power
systems. P8 also noted that prototypes can also easily break because of short-circuiting which
further problematizes a shortage of prototypes and measurement tools which they experienced in
the companies they worked at. Though this can be solved by buying more measurement tools and
hardware components, P5 and P7 indicated that shortages of components are another challenge
in developing embedded systems with low energy consumption. P1 raised that components also
show slight deviations and P6 and P8 mentioned that long lead times are another limiting factor
during development.

4.4.4 Conflicting goals

P9 mentioned that “everything is of course always a tradeoff” and indeed optimizing for energy
consumption can also conflict with other goals during the development of an embedded system.
Participants mentioned that it could conflict with minimizing cost, pursuing simplicity and main-
tainability, and maximizing user experience. As already mentioned in section 4.2.1, P6 decided
against including a specialized hardware component to maintain simplicity and reduce develop-
ment costs. P6’s quote that “a solution in software is often cheaper, but often not the most
optimal solution” also implies that cost prevents making hardware changes to optimize for energy
consumption. A sentiment that P8 agreed with when stating that, due to costs, they had never
seen hardware changes being made solely to optimize energy consumption. P1, P4, P7, and P8,
however also raised that energy consumption optimization can lower cost. P7 and P8 mentioned
that costs can be reduced by reducing the number of batteries or size of batteries and/or solar
panel (in the case of an energy harvesting device). P7 also reiterated this in the questionnaire.

P8 also raised that applying software engineering optimizations can make code faster but also
less readable and maintainable. Lastly, P4, P5, and P6 raised that optimizing for energy consump-
tion can negatively impact other performance measures and therefore user experience. Optimiza-
tions can destabilize connections (P2), lengthen response delays (P4,6), make data less real-time
(P5,6), and lower output frequencies (P8). Conversely, P4 raised that optimizing for energy con-
sumption can also enhance user experience by reducing the number of times that batteries need to
be recharged or replaced.

Developers currently experience challenges whilst optimizing embedded systems software for
energy consumption. Some developers find simulation tools too time-intensive and inaccurate
to use. Additionally, some developers regret that measurement tools support only narrow
power ranges. Furthermore, some developers experience difficulties with current test setups
and desire ones that cost less manual effort and provide more ecologically valid and detailed
data. Lastly, according to some developers, lower energy consumption may come at the cost
of simplicity and maintainability as well as increase cost and negatively affect user experience.
However, some expressed that it might also decrease cost and enhance user experience.

To summarize

20



4.5 Needs

We will now discuss the results that pertain to the sub research question: Which needs do embedded
systems software developers have when optimizing the energy consumption of their software?

As already mentioned in section 4.4.2, P7 expressed a need for detailed power measures over
time such as they got from Nordic’s PPK during development. Furthermore, P4, P8, and P9
would ideally like to see for every component how much power it draws or energy it consumes.
P8 mentioned that knowing how much time a piece of code costs to execute is already valuable
information. P9, however, notes that measuring for every component how much power it draws
or energy it consumes would require extensive hardware support which is difficult and probably
not worth the trouble. As already explained in detail in section 4.2.1, they state that it depends
on how low the energy consumption should be, but that hardware components can already be
recognized sufficiently well from a power consumption measurement of the whole system over time
due to the difference in magnitude and timing of their power consumption. Ideally, P1, P4, and
P7 would like power/energy not to be measured by external tools but by the embedded systems
itself. This would allow P4 and P7 to test their product with realistic parameters in the field
whilst getting detailed measurements without using artificial test setups. Ideally, P4 would like
to see these measurements be used to detect high-energy events which could trigger an alert in
safety critical systems as something might be broken. Similarly, P1 would like these measurements
to allow the embedded system to do a self-check and even calibrate itself automatically to deal
with deviations in components. In the questionnaire, P4 added the condition that these in-product
measurements should not only be possible without additional hardware but also without additional
cost or performance loss.

As already discussed in section 4.4.2, P1 would prefer more automated testing to improve
consistency and documentation. P8 also expressed a desire for more systematic testing, but as a
way to compare the performance of different algorithms. Lastly, a couple of positive and negative
experiences of P1, P5, and P6 indicated a need of them to have good communication between the
producers of the hardware and the software of the embedded system.

Some participants want measurements of individual components as well as in-product mea-
surements.

To summarize

4.6 Energy measure needs

We will now present our results regarding what kind of energy measures participants desire to be
collected and how they want them to be related to the source code. Though related to SQ2 (which
was addressed in section 4.3) and SQ4 (which was addressed in section 4.5), these questionnaire
results more directly aim to answer the main research question.

4.6.1 Kind of energy measures

In the questionnaire, participants were asked various questions about which kind of energy measures
should be collected.

Power or energy When asked whether measures of power draw or energy consumption are
more useful when optimizing, many participants favored energy consumption measures. P5 and
P8 found measures of power draw to be slightly more useful, whereas P1, P2, P4, and P9 considered
energy consumption to be slightly more useful and P3, P6, and P7 found energy consumption to
be much more useful.

P1 expressed that both measures are almost equally important. P4 mentioned that energy
consumption often suffices, but that power is also very relevant in many cases (e.g. to avoid high
temperatures or deal with power supply limits). In contrast, P8 expressed that, for the full product,
energy consumption is more important. P9 mentioned that energy consumption is more accurate
and P3 and P7 explained that for battery powered devices the consumption over a long period of
time is most relevant. Furthermore, P7 expressed that “power usage over time is critical, because
peaks in consumption might otherwise not be visible”. P2, P8, and P9 acknowledge, however, that
power draw is measured more easily and P2 mentioned that energy consumption can be calculated

21



from power draw. P5 even advocated measuring voltage and current separately to know which one
is off, in case of an anomaly, and be able to benchmark against rated current values which come
with components and datasheets. P5 also repeated their desire for current measures later on in
the questionnaire.

Executions When asked whether energy measures should be collected for a single, several, or
all possible execution(s), 6 participants (P2,3,4,5,8,9) selected “several” and the remaining three
participants (P1,6,7) selected ”all possible”. P1, P6, and P9 expressed that they ideally want
energy measures for all possible code paths. P4, P6, and P8 however, mention that this would be
too impractical. P8 states that “best practice is to generate a set of relevant test cases that cover
(80%?) of the normal use cases” and that “the outliers typically also benefit from optimizations
in these cases”. Furthermore, P9 mentions that for “exceptional code paths” they “only need to
validate that eventually it’ll get back to a reasonable state”. In contrast, P6 says that “due to
budget constraints, only high risk use cases are verified”. P2 also mentions that “you select for
scenarios which theoretically cost the most power” and that “also edge cases need to be taken into
account”. However, P2 also expresses that “simulations of normal use are most useful if you want
to validate the energy consumption”. Furthermore, P5 mentioned to “take an average of multiple
runs to account for fluctuations outside of your control” and P7 expressed that it is better to have
more samples because “there are always slight variations in power consumption across multiple
products in the field”. Lastly, P4 mentioned that energy measures from a single execution are only
useful if the worst case is known à priori. This lack of preference for collecting energy measures for
a single execution is surprising. Given that during their reenactment and/or interview P4 as well
as P2 and P9 showed that they already collect energy measures for single executions. To locate
the cause of abnormally high energy consumption or to calculate the use case, they let the system
execute a part of its functionality and use the Power Profiler Kit to see the change in power over
time. So this question was possibly a little too abstract to uncover this information.

CPU When asked whether energy measures for the central processing unit or external hardware
components would be more useful, participants seemed quite divided. P4, P8, and P9 slightly
favored CPU, P2, and P6 slightly favored external hardware components, and P1, P3, P5, and P7
strongly favored external hardware components.

From their explanation in the open question, it became clear that all participants who indicated
a slight preference actually felt that the answer heavily depends on the project. P2, P6, P8, and
P9 all expressed that measures should be obtained for all energy-intensive components. Along
similar lines, P7 expressed that “all components that draw power from the battery are important
to optimize energy consumption” and, as alluded to in section 4.2.2, P1 explained that in their
project, most power is consumed by the external hardware. Later in the questionnaire, however,
P1 states that they would still find it nice to have better insight in the power usage of the CPU. P1
and P3 both stated that the CPU is running at constant speed and therefore consumes a relatively
constant amount of power. P3 repeats this point several times in the questionnaire, also mentioning
that therefore optimizing code does not always lead to less energy consumption. P5 mentions that
the consumption of the CPU probably closely matches what is described in the datasheet and P4
and P5 both state that its energy consumption is easily validated. Lastly, P3 and P5 mention that
the impact of external components on energy consumption is less straightforward as they can be
enabled or disabled (P3) and can have different applications/electric schematics (P5).

Hardware combinations P1, P6, and P8 indicated that the software they write always needs to
function on one specific hardware combination. P2 and P3 indicated that it should often function
on one specific hardware combination and P4, P5, and P7 answered that it should often function on
multiple different hardware combinations. P3 and P4 strongly agreed that seeing energy measures
for different hardware combinations would be useful and P2, P5, P7, and P8 somewhat agreed to
this statement.

P2 mentioned that due to shortages sometimes components are replaced. Similarly, P7 ex-
pressed that seeing measures for different combinations is especially useful when having multiple
hardware revisions. P3 raised that software is largely reused for different hardware combinations.
Furthermore, P4 and P5 indicated that having these measures beforehand would be useful. Scat-
tered across multiple points in the questionnaire, P4 explains that hardware has a large influence

22



on energy consumption and therefore simulating up front without owning the hardware could influ-
ence hardware decision-making given that these simulations/estimations match with reality. Also,
P5 expressed doubts about estimation quality, stating that they still want measurements to vali-
date the energy consumption on the actual hardware. Lastly, P9 explained that they try to create
different modules and that measures could be collected for them. Still, they consider it useful to
validate the specific combination of modules using measurement.

Usage scenarios P3, P5, and P9 indicated that the software they write should often work under
one usage scenario. P7 and P8 indicated that it should often work under multiple different usage
scenarios and P1, P2, P4, and P6 answered that it should always work under multiple different
usage scenarios. P5, P8, and P9 somewhat disagreed that seeing energy measures for different for
different usage scenarios would be useful, whereas the other participants strongly agreed with the
statement.

P5, P8, and P9 as well as P3 expressed that it depends on the project. P3 mentioned that when
multiple scenarios are relevant, energy consumption should be monitored if it impacts usability.
P5 and P9 stated that most projects only have a single scenario. P8 mentioned that only in a few
cases they experienced “that a specific scenario deviated far enough from the mean that it warrants
specific optimization attention” and that “in many cases the shared components are the dominant
factor”. The other participants focused on the fact that multiple different scenarios were relevant
in their projects. P4 reiterated that the use case plays a major role in their products and P7
mentioned that in their case the outside environment heavily impacted the energy consumption.
P1 stated that their embedded systems are used in “many different scenarios (environments)”
and that “energy measures are important for all these different scenarios”. In contrast, P6 gave an
example from their own product to illustrate that power usage is more important for more frequent
scenarios. Lastly, P2 argued that multiple different scenarios are always relevant by stating that
“expecting a user to do only one thing with your software/hardware is the worst thing one can
do”.

Developers indicated preferences for certain kinds of energy measures. They indicated that
power draw is more easily measured, but overall seem to favor energy consumption measure-
ments as it includes the time dimension. Though some developers prefer energy measures to
be collected for all possible code paths, most want energy measures to be collected for several
executions as they either believe that collecting measurements for all possible code paths is
impractical or that not all code paths are necessary or relevant to consider. According to
most, it depends on the project whether energy measures of the CPU or external hardware
components are more relevant. However, energy measures for external hardware components
seem to be more relevant for most projects. For developers dealing with multiple different
hardware combinations, energy measures for these different combinations seem promising.
According to some developers, this could guide the initial hardware design as well as hard-
ware revisions provided that the measures are accurate. Lastly, embedded systems seem to
regularly need to work under different scenarios and if so, developers deem it useful to have
energy measures for these different scenarios.

To summarize

4.6.2 Relation to source code

In the questionnaire, various questions were also asked about how energy measures should be
related to the source code

Abstractions Figure 3 shows how every participant ranked 6 different program abstractions
in descending order of how useful it would be if energy measures were related to them when
optimizing.

23



Figure 3: Response of every participant to the question: “Please rank the following program
abstractions in descending order of their usefulness for optimizing the energy consumption of
embedded systems software.”

Most participants deem it more useful when energy measures are related to low-level program
abstractions (code statements, branches, and functions) than to high-level program abstractions
(source code files, the complete project, libraries).

P4, P7, and P8 clearly favor functions. P4 mentioned that functions are a sweet spot, providing
enough level of detail as well as being sufficiently informative. P7 agreed that functions are not
too big and stated that they can be optimized individually. Lastly, P8 mentioned that “organizing
your code to work efficiently is done by measuring function times”. P1, P3, and P5 clearly favor
code statements. They stated in their explanation that optimizing starts with the smallest piece
of code (P1), that measures provided at this “lowest level” make it easier to tune the power
consumption of a MCU (P3), and that “Most of the time, you can save on energy on the smaller
things. Like configuring a peripheral or register slightly different.” (P5). Other participants rank
code statements quite low. In their explanation, P6 mentioned that “premature optimization” on
code statement level should be prevented (which they also reiterate later on in the questionnaire)
and P8 raised that “individual statements are typically optimized by a compiler”. In explaining
their answer to a later question, P6 did mention that “power usage by code statements is useful
when it can detect while(true) loops requiring 100% CPU”. Code branches are consistently ranked
quite high, but it is unclear why, as only P8 mentioned branches in their explanation, stating that
reducing them helps for modern CPUs. Lastly, P2 mentioned that code blocks or configurations
are disabled to isolate components during optimization and P5 raised that even though energy can
be saved on the smaller things, “it all starts with a well thought out design”.

High-level program abstractions (source code files, the complete project, and libraries) are often
ranked below low-level ones. With respect to libraries, P1 mentioned that they hardly use them
as the internal code is unknown. P7 however expressed that libraries and especially third-party
ones are “quite overlooked” which explains why they ranked them second. Though P3 ranks
libraries second to last here, they are more enthusiastic about relating energy measures to them
after being given the option to relate energy measures to multiple abstractions and have them be
shown simultaneously using their hierarchical relation. They then state that libraries are inefficient
but fast to implement and that workarounds can be programmed more easily if problems can be
traced back to statements in libraries. It is unclear why P2 ranked libraries so high (especially
because they did not select them in a next multiple-choice question). P6 might have ranked the
complete project as well as libraries high due to their top-down strategy and the ranking of P9
should be interpreted with caution as they later admit that they found it difficult to rank the
program abstractions. We will discuss both these points later on. Lastly, with respect to the full

24



project, P8 stated that it is “the ultimate test of how things fit together”.

Multiple abstractions Participant’s responses centered around “somewhat agree” when pre-
sented with the statement that it would be useful if energy measures were related to multiple
different program abstractions. P1 and P2 somewhat disagreed with this statement, P5, P6, P7,
and P8 somewhat agreed and P3, P4 and P9 strongly agreed.

Figure 4 shows which program abstractions the participants would want energy measures to be
related to. P4 chose all abstractions and P6 only selected the complete project and libraries. The
selections of the other participants appear quite consistent with the ranking that they gave before.
Again, low-level program abstractions (especially functions) seem more popular than high-level
ones.

Figure 4: Response of every participant to the multiple choice question: “If the energy measures
are related to multiple different program abstractions, these should be:”

When asked whether it would be useful if the energy measures related to these multiple program
abstractions were shown simultaneously using their hierarchical relation, P2, P5, and P6 agreed
somewhat and the others agreed strongly.

P4 and P6 explained their answers by reiterating the explanation which they gave for their
ranking. Namely, that they want to take a top-down approach. Selecting all abstractions allows
P4 to “start at the top abstraction level” and “drill down to the lowest level”. In contrast, P6
explained that they “start by selecting hardware and software components suitable for low power
management” for example a RTOS. Similar to P4, P5 wants to “narrow down where the (excessive)
energy consumption is occurring”. However, they selected only code statements, code branches,
and functions because they believe that energy consumption measurements related to higher levels
would be meaningless because “it also incorporates code that might not be used in the project but
are part of a library for instance.”.

P2 mentions that this splitting into components can be easily done if “the program is set up so
that each class or code block has a clear and single responsibility”. Later they state that this split
can be done on a higher level given a clear separation of concerns in the code and that therefore a
“good architecture helps”. They clarify that for them “having a view on what the power draw is
when bluetooth is enabled with the potentiostat enbled and with the potentiostat disabled would
be most useful, any lower level then that is overkill”. P9 seems to desire energy measures on a
similar level. Stating that they selected libraries, but would rather have energy measures related
to a ‘system’ e.g. one that controls the radio or the accelerometer. They state that this “may go
across the bounds of the abstractions ... mentioned” but state that systems have a dependency on

25



one another and that therefore “showing a hierarchy is probably good”. P1 mentioned seeing this
dependency between the listed abstractions.

P3, P7, and P8 are positive in their explanation. P7 expressed that they think that “giving
an hierarchical relation would make for an easy to understand overview on where the most power
is consumed in the firmware” and P3 stated that “this makes it easy to find the problems and
tune these”. P8 mentioned that “this helps a lot” and mentioned that a tool called Performance
Validator does the same thing for PC software times.

Show with source code In contrast to the previous questions/statements about relating en-
ergy measures to program abstractions, responses to the next statement are very divided. When
presented with the statement that when optimizing it would be useful if the energy measures are
shown close to or in conjunction with the source code in a code editor, P1, P5, and P6 strongly
disagree, P2 somewhat disagrees, P4, P7, P8, and P9 somewhat agree and P3 strongly agrees.
Some positive comments and criticisms are clearly specifically related to this statement. Others
seem to regard the idea of relating energy consumption to program abstractions which underlies
this as well as previous questions/statements.

P1, P6, P8, and P9 make comments about the feasibility of relating energy measures to program
abstractions. P1 mentions that they “can not think of a way this should work” which would also
explain their somewhat disagreement to a previous statement about relating energy measures to
multiple different program abstractions. P8 is also critical, stating that “it’s very hard to connect
energy consumption to a few specific lines of code”. Similarly, P9 states that in embedded systems
a lot of power draw is not directly related to the code statement by statement. They also mentioned
that they found it difficult to rank the program abstractions as their perspective is “really on the
hardware” and from that perspective it is not the function but the hardware component that
consumes power. Lastly, they raise the question of how power draw would be attributed if a
function turns on a piece of hardware but does not shut it down. P6 also comments on the
feasibility, stating that in the case of a RTOS, code power usage “would require the simulation
of the entire application in order to deduce CPU usage of software components”. They mention
that “most RTOS’s support this type of runtime view” and that for example “Segger systemviewer
shows CPU usage per task”. Despite their criticism, P8 mentions that “it would be nice” and P9
states that they think that in embedded systems it is less useful in general, but it is still useful in
specific cases. Also P7 is somewhat enthusiastic, saying that it is a “nice to have”.

Other comments seem to pertain more specifically to how energy measures are shown. P3, P4,
and P7 make positive remarks. P3 mentions that “this makes it easy to create a overview of the
current state and factors that can be tuned for the programmer”, P7 says that “it could give a
clear insight on what operations are the most expensive” and P4 calls it “a user friendly solution”.
P7 expresses some criticism, however, stating that “it would be nice to see some sort of heat map
of your source code, but this doesn’t necessarily have to be in the same editor that you use to
code”. Lastly, though P4 called it a user-friendly solution, they also stated that other solutions
may be more effective. Specifically, they mention that source code is very flat and has no time axis
and that they think that much data could better be presented in a graphical way.

P8 also hinted towards potentially more effective solutions, stating that “typically the relevant
thing is the change in energy consumption following a change in code, not the absolute numbers”
(they repeat this statement later in the questionnaire). P5 and P6 also mention that other steps
in the optimization process, namely upfront design, may be more important. P5 already ended
their explanation after the abstraction ranking question by stating that “it all starts with a well
thought out design” and answered here that “software cannot dictate actual power consumption”
and that “a strong factor is hardware, circuitry and component selection”. Similarly, P6 stated
that “in general, most benefits can be made by upfront hardware and software design” and later
mentioned again that “design for low power in hardware and software” is useful.

Alternative abstractions Some participants introduced alternative abstractions for which en-
ergy measures might be collected. As already explained in sections 4.6.1 and 4.6.2, P9 wants energy
measures to be collected for modules or related to ’systems’ which each control one hardware com-
ponent. This might be related to the higher level on which P2 wants to split (as mentioned in
section 4.6.2). Furthermore, P3 would find it useful when power consumption was monitored for
the different sleep modes of the MCU and the different power domains of for instance the UART,
RF, and Timers since, according to P3, these domains can often be tuned.

26



When energy measures are related to source code, most developers prefer them to be related
to low level abstractions and especially to functions. Developers also deem it somewhat
useful if energy measures are related to multiple program abstractions and somewhat to very
useful if they are shown simultaneously using their hierarchical relation. Developers are quite
divided about whether it would be useful if these energy measures are shown close to the
source code. Some expect it to give a clear overview whereas others expect other efforts
to be more worthwhile. The strong disagreement of some also seems to be caused by their
skepticism of the underlying assumption that energy measures can be reliably related to
program abstractions of embedded systems source code.

To summarize

5 Discussion

In this discussion section, we first identify the limitations of our study. Then, we relate our findings
to earlier work whenever applicable. Last, we give recommendations to researchers, tool makers,
vendors, and embedded systems software developers.

5.1 Limitations

5.1.1 Self-reporting of past events

As explained in section 3.3.1, to allow the feasibility of the study, a retrospective approach was
taken to learn about the current practices of embedded systems software developers when opti-
mizing for energy consumption. This retrospective approach also helps participants to put their
experiences into perspective and focus on the most important parts. Unfortunately, it might have
also introduced inaccuracies. Participants might have disproportionally emphasized non-frequent
or emotion-laden (e.g. frustrating) events or only given examples that fit with their views. Given
our interest in the perspectives of developers themselves as well as the challenges they faced, this
is not very problematic. Lastly, as we already touched upon in section 3.3.1 the unexpected longer
duration of the optimization processes might have concealed some important details. Therefore,
future work could try to use observational methods to falsify or verify the results from this study.

5.1.2 Abstract questioning

To prevent participants from focusing on visualization design ideas, care was taken not to present
any graphical representations. However, as we have already pointed out in section 4.6.1, this
might have made the question about the number of executions for which energy measures should
be collected vague and difficult to imagine. Future work might try to make prototypes or even fully
functional techniques for these different options to make them more concrete. Having these proof
of concepts could then also take away worries of participants regarding the feasibility of relating
energy measures to source code.

5.1.3 Response bias

Though response bias cannot be completely ruled out, extra care was taken to increase the chance
of truthful and accurate responses. Participants were put at ease and given many opportunities
to ask questions. Though interview and questionnaire questions were evaluated to ensure that
they were not leading, some statements in the questionnaire could have been made more neutral.
Fortunately, this did not seem to have led to acquiescence bias, as disagreement was also expressed
by participants. The use of other multiple-choice as well as open questions also aimed to relieve this
possible issue. Lastly, questions were carefully ordered to prevent answers to previous questions
from distorting answers to future questions. For example, general questions such as whether energy
measures are useful in general preceded specific questions such as if energy measures for the CPU
or external components would be most useful.

5.1.4 Sampling

Sample size The aforementioned conclusions have to be taken with caution. As already men-
tioned in section 3.2, saturation was not fully reached and other alternative views might have been

27



left undiscovered. As also already mentioned in section 3.2, the sample size did not allow for a sta-
tistical analysis of the quantitative results. However, as predicted, trends could be identified quite
well and most importantly also participants’ reasoning was uncovered. Clear hypotheses could be
formulated using the results of this study which future work could seek to test statistically

Population Though the experiences and perspectives of embedded systems software develop-
ers might overlap with software developers in other application domains, our findings cannot be
generalized to this larger group of software developers due to the strong focus on hardware when
optimizing embedded systems for energy consumption. Furthermore, our findings suggest a dis-
tinction between the development of embedded systems with an energy requirement (e.g. because
the system is battery-powered) and those without such a requirement (e.g. because the system has
a constant power supply). Thus in the latter case, the experiences and perspectives of embedded
systems software developers might differ from our findings. Lastly, the fact that all participants
described the optimization of relatively complex embedded systems indicates that our findings
might not generalize to the optimization of relatively simple embedded systems.

5.2 Relation to earlier work

Next, we relate our findings to earlier work where possible.

5.2.1 Workflow

The findings of our study are consistent with earlier work on the workflow of embedded systems
software developers. Manotas et al. [8] mentioned that, for embedded systems, many practitioners
rely on the hardware, not the software to reduce energy consumption. Indeed we found that
embedded systems software developers believe that the selection of hardware is an important step
toward optimizing energy consumption. Furthermore, many of the steps that we identified that
embedded systems software developers take in practice are also mentioned in existing guidelines
that we described in section 2.3. Lastly, our findings that embedded systems regularly need to
work under different scenarios and that if so, developers deem it useful to have energy measures
for these different scenarios fits well with the finding of Manotas et al. [8] that developers often
consider usage scenarios when evaluating energy usage.

5.2.2 Subgoals and visualization contexts

Some of our findings can be related to the subgoals and visualization contexts of Isaacs et al. [24].
As a first, developers consider understanding the energy related behavior of embedded systems
software and finding energy consumption hotspots in it useful steps in optimizing its energy con-
sumption. This provides evidence for the global comprehension subgoal of Isaacs et al. [24] in the
context of energy consumption optimization of embedded systems software. Furthermore, the fact
that embedded systems software developers use (component) energy measures to find problems and
locate their causes also shows potential for visualizations of these measures to aid in the Problem
detection and Diagnosis and attribution subgoals of Isaacs et al. [24]. Lastly, P4’s comments that
“source code is very flat and has no time axis” and that they think that “much data could better
be presented in a graphical way” suggest that non-software contexts might also be considered for
visualizations of energy measures. For example, a hardware context might be considered which fits
with the hardware perspective that P9 usually takes.

5.2.3 Challenges and tools

Previous work that studied the perspective of software developers concluded that optimizing for
energy consumption is challenging [2], [6]–[9]. Our results reinforce this notion for embedded
systems software development specifically and reveal specific challenges that these developers face.
From our findings, the lack of tools which Pinto et al. diagnosed [6] seems less of an issue for
embedded systems developers. This might be due to the history of the embedded systems domain
which has long dealt with power constraints and heavily relied on measurement tools. However,
this issue might have also been alleviated more recently as many of the tools identified in this
study (especially software-based ones) were available only after the paper of Pinto et al. [6] was
published. The fact that optimizing for energy consumption remains challenging even in the

28



presence of measurement and other tools corroborates the findings of Pang et al. [7]. However,
the observation of Pinto and Castor that tools are course grained [2] still seems to be relevant as
we found that developers manually isolate components to measure their energy consumption.

Furthermore, usability remarks in our findings (criticism about measurement tools crashing
and positive remarks about visualization ideas) fit with the call for usability by Manotas et al. [8]
and Ournani et al. [9]. Interestingly however, though Ournani et al. [9] and Hindle [27] advocated
integration within IDEs, a comment of P7 revealed that not all developers require energy measure
visualizations to be in the same editor that they use to code. Furthermore, the comment of P8
that the change in energy consumption following a code change is typically relevant and not the
absolute numbers, reinforces the view of Ournani et al. [9] and Hindle [27] who advocate following
the evolution of energy consumption through commits using multi-version analysis. The finding
that many developers measure energy consumption after applying optimizations to see whether
energy consumption has decreased, further strengthens this view. Lastly, it is interesting to note
that the transition from external to internal energy measurements which we described for PCs and
mobile devices in section 2.4, is also desired for embedded systems by at least some developers.

5.2.4 Objectives and knowledge

Though Manotas et al. [8] found that in software development energy consumption requirements
are often desires and not specific targets and often are not stated in terms of energy consumption
or battery-life, our findings suggest that the development of battery-powered embedded systems
is an exception to this. Furthermore, our findings corroborate the conclusion of Manotas et al. [8]
that energy consumption requirements or goals are not set for embedded systems with a constant
and unlimited power supply. Combined with our finding that company priorities shift once energy
consumption objectives are met, this explains why developers have advocated for these objectives
in the study by Ournani et al. [9]. Furthermore, our finding that developers use datasheets
and sometimes also other forms of documentation or consult colleagues, reinforces the findings of
Manotas et al. [8] that developers believe they can learn about energy consumption from these
sources. Whereas previous studies [2], [6]–[9] diagnosed low awareness of energy consumption
of software developers, our findings suggest that embedded systems software developers are an
exception as they have an extensive process for optimizing for energy consumption and know
which components are most energy intensive.

5.3 Recommendations

Last, we provide recommendations for researchers, tool makers, vendors, and embedded systems
developers.

5.3.1 For researchers

Investigate currently used tools Future work could seek to investigate tools that embedded
systems software developers currently use when optimizing for energy consumption (see Table 7
in Appendix B for all tools identified in this study). Researching how these tools are used, could
reveal additional requirements and functionality about what information developers consult and
how this is visualized. This work could investigate tools that collect energy measures such as the
Power Proflier Kit or simulation tools such as the power optimizer, but also recommender tools
like the ULP Advisor.

Create prototypes Future work could also create prototypes for monitoring tools using our
findings about what type of energy measures should be collected and how these should be visualized.
Testing multiple prototype alternatives with participants could help to refine knowledge about
different aspects that did not become completely clear from our questionnaire. For this purpose,
also new ways could be created to collect energy measures and reliably relate them to the source
code. Having proof of concepts would help to alleviate concerns of developers about the feasibility.
Alternatively, these prototypes could also explore non-software contexts (e.g. a hardware context)
for visualizations. Furthermore, these prototypes could display the change in energy consumption
rather than the absolute values.

29



5.3.2 For tool makers

Creators of existing measurement and simulation tools can aim to address the problems with their
tools identified in our study. Furthermore, like researchers, tool makers can use our findings about
what type of energy measures should be collected and how these should be visualized to guide the
development of their tools.

5.3.3 For vendors

Embedded system vendors can aim to reduce the number of hardware bugs that hinder the
optimization for energy consumption. Documentation of hardware bugs or other limitations in
datasheets would also help developers to diagnose and resolve these problems more quickly. Addi-
tionally, making the energy consumption measurements in datasheets more realistic could help to
better manage developers’ expectations. Lastly, by reducing lead times, vendors can help enable
hardware redesigns for reduced energy consumption.

5.3.4 For embedded systems software developers

embedded systems software developers that wish to optimize for energy consumption can adopt
the workflow and suggestions documented in this study. When little time is available, using sleep
modes and optimizing the most energy-intensive components could already help to greatly reduce
the energy consumption of embedded systems. If more time is available, hardware and software
can be carefully chosen, optimizations can be devised and energy measures can be estimated or
measured in advance and measured after each implementation and optimization to track the energy
consumption during the optimization process.

6 Conclusion

In this thesis, we have tried to take a first step towards problem-driven energy visualizations to
support embedded systems software developers in optimizing for energy consumption. As explained
in section 3.1, we have specifically engaged in the discover stage of the nine-stage design framework.
We have uncovered which information embedded systems software developers need when optimizing
for energy consumption as well as which subgoals they pursue, which information they currently
use, which challenges they face, and which other needs they have.

The reenactments and interviews gave us insight into the current workflow of embedded systems
software developers: their current subgoals, challenges, information, and needs. However, except
for showing that energy measures are important, these methods did not directly give us many
insights for visualizations. As explained in section 5.1.1, we might have missed visualization-
relevant details due to our choice of methods as well as the length of the optimization processes
that participants reenacted. Furthermore, as explained in section 5.1.4, it is important to note
that, without further research, the uncovered workflow can only be generalized to the development
of complex embedded systems that have a set energy consumption requirement.

In contrast to the reenactments and interviews, the questionnaire found clear preferences for
what kind of energy measures should be collected (see section 4.6.1) and how they should be
related to source code and visualized (see section 4.6.2). As discussed in sections 5.3.1 and 5.3.2,
researchers and tool developers can create prototypes of energy consumption visualizations to verify
and refine these preferences and take away skepticism about the possibility of relating energy
measures to program abstractions. As discussed in section 5.2.2, these prototypes could also
experiment with other visualization contexts and subgoals as the reenactments and interviews
indicated their possible usefulness.

The insight of the reenactments and interviews in the current workflow of developers also
provided recommendations for hardware vendors as well as embedded systems software developers
themselves (see sections 5.3.3 and 5.3.4). Furthermore, as discussed in section 5.2, the workflow
revealed that these developers have more knowledge and tools than previously expected and our
other findings are very consistent with earlier work. Lastly, the workflow which we identified is
also important for energy visualizations as these tools should be integrated well into this current
workflow to ensure their adoption.

Thus, by uncovering the existing practices and information needs of embedded systems software
developers, we have been able to give recommendations to researchers, tool makers, vendors, and

30



developers themselves to help embedded systems meet stricter energy consumption requirements
and have lower greenhouse gas emissions.

Acknowledgements

We would like to thank Fernando Castor for our early conversations and his thought-provoking
questions. Furthermore, we want to thank Evanthia Dimara for her guidance with respect to the
methodology. We want to thank Bram Abbekerk, Gido Hakvoort and especially Johan Korten for
sharing their expert knowledge and contacts. Additionally, we wish to thank Lauren Beehler and
Roy Schoonwater for their feedback and assistance. Lastly, we want to thank all the participants
who took part in our study for sharing their time and perspectives.

References

[1] C. Marantos, L. Papadopoulos, C. P. Lamprakos, K. Salapas, and D. Soudris, “Bringing En-
ergy Efficiency Closer to Application Developers: An Extensible Software Analysis Frame-
work,” IEEE Transactions on Sustainable Computing, vol. 8, no. 2, pp. 180–193, Apr. 2023,
Conference Name: IEEE Transactions on Sustainable Computing, issn: 2377-3782. doi: 10.
1109/TSUSC.2022.3222409.

[2] G. Pinto and F. Castor, “Energy efficiency: A new concern for application software develop-
ers,” en, Communications of the ACM, vol. 60, no. 12, pp. 68–75, Nov. 2017, issn: 0001-0782,
1557-7317. doi: 10.1145/3154384.

[3] C. Freitag, M. Berners-Lee, K. Widdicks, B. Knowles, G. S. Blair, and A. Friday, “The real
climate and transformative impact of ICT: A critique of estimates, trends, and regulations,”
Patterns, vol. 2, no. 9, p. 100 340, Sep. 2021, issn: 2666-3899. doi: 10.1016/j.patter.
2021.100340.

[4] S. Georgiou, S. Rizou, and D. Spinellis, “Software Development Lifecycle for Energy Effi-
ciency: Techniques and Tools,” ACM Computing Surveys, vol. 52, no. 4, 81:1–81:33, Aug.
2019, issn: 0360-0300. doi: 10.1145/3337773.

[5] J. Balanza-Martinez, P. Lago, and R. Verdecchia, “Tactics for Software Energy Efficiency:
A Review,” en, in Advances and New Trends in Environmental Informatics 2023, V. Wohlge-
muth, D. Kranzlmüller, and M. Höb, Eds., Cham: Springer Nature Switzerland, 2024, pp. 115–
140, isbn: 978-3-031-46902-2. doi: 10.1007/978-3-031-46902-2_7.

[6] G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about software energy consumption,”
in Proceedings of the 11th Working Conference on Mining Software Repositories, ser. MSR
2014, New York, NY, USA: Association for Computing Machinery, May 2014, pp. 22–31,
isbn: 978-1-4503-2863-0. doi: 10.1145/2597073.2597110.

[7] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What Do Programmers Know about Soft-
ware Energy Consumption?” IEEE Software, vol. 33, no. 3, pp. 83–89, May 2016, Conference
Name: IEEE Software, issn: 1937-4194. doi: 10.1109/MS.2015.83.

[8] I. Manotas, C. Bird, R. Zhang, et al., “An empirical study of practitioners’ perspectives on
green software engineering,” in Proceedings of the 38th International Conference on Software
Engineering, ser. ICSE ’16, New York, NY, USA: Association for Computing Machinery,
May 2016, pp. 237–248, isbn: 978-1-4503-3900-1. doi: 10.1145/2884781.2884810.

[9] Z. Ournani, R. Rouvoy, P. Rust, and J. Penhoat, “On Reducing the Energy Consumption of
Software: From Hurdles to Requirements,” in Proceedings of the 14th ACM / IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM), ser. ESEM
’20, New York, NY, USA: Association for Computing Machinery, Oct. 2020, pp. 1–12, isbn:
978-1-4503-7580-1. doi: 10.1145/3382494.3410678.

[10] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan, “Calculating source line level energy in-
formation for Android applications,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ser. ISSTA 2013, New York, NY, USA: Association for Com-
puting Machinery, Jul. 2013, pp. 78–89, isbn: 978-1-4503-2159-4. doi: 10.1145/2483760.
2483780.

31

https://doi.org/10.1109/TSUSC.2022.3222409
https://doi.org/10.1109/TSUSC.2022.3222409
https://doi.org/10.1145/3154384
https://doi.org/10.1016/j.patter.2021.100340
https://doi.org/10.1016/j.patter.2021.100340
https://doi.org/10.1145/3337773
https://doi.org/10.1007/978-3-031-46902-2_7
https://doi.org/10.1145/2597073.2597110
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1145/3382494.3410678
https://doi.org/10.1145/2483760.2483780
https://doi.org/10.1145/2483760.2483780


[11] R. Verdecchia, A. Guldner, Y. Becker, and E. Kern, “Code-Level Energy Hotspot Localiza-
tion via Naive Spectrum Based Testing,” en, in Advances and New Trends in Environmental
Informatics, H.-J. Bungartz, D. Kranzlmüller, V. Weinberg, J. Weismüller, and V. Wohlge-
muth, Eds., ser. Progress in IS, Cham: Springer International Publishing, 2018, pp. 111–130,
isbn: 978-3-319-99654-7. doi: 10.1007/978-3-319-99654-7_8.

[12] M. Couto, T. Carção, J. Cunha, J. P. Fernandes, and J. Saraiva, “Detecting Anomalous En-
ergy Consumption in Android Applications,” en, in Programming Languages, F. M. Quintão
Pereira, Ed., ser. Lecture Notes in Computer Science, Cham: Springer International Publish-
ing, 2014, pp. 77–91, isbn: 978-3-319-11863-5. doi: 10.1007/978-3-319-11863-5_6.

[13] M. Klinik, B. v. Gastel, C. Kop, and M. v. Eekelen, “Skylines for Symbolic Energy Consump-
tion Analysis,” en, in Formal Methods for Industrial Critical Systems, M. H. ter Beek and D.
Ničković, Eds., ser. Lecture Notes in Computer Science, Cham: Springer International Pub-
lishing, 2020, pp. 93–112, isbn: 978-3-030-58298-2. doi: 10.1007/978-3-030-58298-2_3.

[14] S. Mittal, “A survey of techniques for improving energy efficiency in embedded computing
systems,” International Journal of Computer Aided Engineering and Technology, vol. 6, no. 4,
pp. 440–459, Jan. 2014, Publisher: Inderscience Publishers, issn: 1757-2657. doi: 10.1504/
IJCAET.2014.065419.

[15] H. Roebbers, “Achieving Ultra Low Power in Embedded Systems Understand where your
power goes and what you can do to make things better,” en. [Online]. Available: https:
//www.researchgate.net/publication/332878839_Achieving_Ultra_Low_Power_in_

Embedded_Systems_Understand_where_your_power_goes_and_what_you_can_do_to_

make_things_better_2019.

[16] M. Sedlmair, M. Meyer, and T. Munzner, “Design Study Methodology: Reflections from the
Trenches and the Stacks,” en, IEEE Transactions on Visualization and Computer Graphics,
vol. 18, no. 12, pp. 2431–2440, Dec. 2012, issn: 1077-2626. doi: 10.1109/TVCG.2012.213.

[17] K. Tanaka, Ed., Embedded Systems - Theory and Design Methodology, en. InTech, Mar. 2012,
isbn: 978-953-51-0167-3. doi: 10.5772/2339.

[18] M. Pedram, “Power optimization and management in embedded systems,” in Proceedings of
the 2001 Asia and South Pacific Design Automation Conference, ser. ASP-DAC ’01, New
York, NY, USA: Association for Computing Machinery, Jan. 2001, pp. 239–244, isbn: 978-
0-7803-6634-3. doi: 10.1145/370155.370333.

[19] K. Georgiou, S. Xavier-de-Souza, and K. Eder, “The IoT Energy Challenge: A Software
Perspective,” en, IEEE Embedded Systems Letters, vol. 10, no. 3, pp. 53–56, Sep. 2018, issn:
1943-0663, 1943-0671. doi: 10.1109/LES.2017.2741419.

[20] A. Noureddine, “PowerJoular and JoularJX: Multi-Platform Software Power Monitoring
Tools,” in 2022 18th International Conference on Intelligent Environments (IE), ISSN: 2472-
7571, Jun. 2022, pp. 1–4. doi: 10.1109/IE54923.2022.9826760.

[21] R. Pereira, T. Carção, M. Couto, J. Cunha, J. P. Fernandes, and J. Saraiva, “SPELLing
out energy leaks: Aiding developers locate energy inefficient code,” Journal of Systems and
Software, vol. 161, p. 110 463, Mar. 2020, issn: 0164-1212. doi: 10.1016/j.jss.2019.
110463.

[22] H. A. de Souza, M. L. Chaim, and F. Kon, Spectrum-based Software Fault Localization: A
Survey of Techniques, Advances, and Challenges, Nov. 2017. doi: 10.48550/arXiv.1607.
04347.

[23] K. Eder and J. P. Gallagher, “Energy-Aware Software Engineering,” en, in ICT - Energy
Concepts for Energy Efficiency and Sustainability, G. Fagas, L. Gammaitoni, J. P. Gallagher,
and D. J. Paul, Eds., InTech, Mar. 2017, isbn: 978-953-51-3012-3. doi: 10.5772/65985.

[24] K. E. Isaacs, A. Giménez, I. Jusufi, et al., “State of the Art of Performance Visualization,”
en, 2014. doi: 10.2312/EUROVISSTAR.20141177.

[25] A. Blandford, D. Furniss, and S. Makri, Qualitative HCI Research: Going Behind the Scenes,
en. Morgan & Claypool Publishers, Apr. 2016, isbn: 978-1-62705-760-8. [Online]. Available:
https://dx.doi.org/10.1007/978-3-031-02217-3.

32

https://doi.org/10.1007/978-3-319-99654-7_8
https://doi.org/10.1007/978-3-319-11863-5_6
https://doi.org/10.1007/978-3-030-58298-2_3
https://doi.org/10.1504/IJCAET.2014.065419
https://doi.org/10.1504/IJCAET.2014.065419
https://www.researchgate.net/publication/332878839_Achieving_Ultra_Low_Power_in_Embedded_Systems_Understand_where_your_power_goes_and_what_you_can_do_to_make_things_better_2019
https://www.researchgate.net/publication/332878839_Achieving_Ultra_Low_Power_in_Embedded_Systems_Understand_where_your_power_goes_and_what_you_can_do_to_make_things_better_2019
https://www.researchgate.net/publication/332878839_Achieving_Ultra_Low_Power_in_Embedded_Systems_Understand_where_your_power_goes_and_what_you_can_do_to_make_things_better_2019
https://www.researchgate.net/publication/332878839_Achieving_Ultra_Low_Power_in_Embedded_Systems_Understand_where_your_power_goes_and_what_you_can_do_to_make_things_better_2019
https://doi.org/10.1109/TVCG.2012.213
https://doi.org/10.5772/2339
https://doi.org/10.1145/370155.370333
https://doi.org/10.1109/LES.2017.2741419
https://doi.org/10.1109/IE54923.2022.9826760
https://doi.org/10.1016/j.jss.2019.110463
https://doi.org/10.1016/j.jss.2019.110463
https://doi.org/10.48550/arXiv.1607.04347
https://doi.org/10.48550/arXiv.1607.04347
https://doi.org/10.5772/65985
https://doi.org/10.2312/EUROVISSTAR.20141177
https://dx.doi.org/10.1007/978-3-031-02217-3


[26] L. G. Militello and R. J. B. Hutton, “Applied cognitive task analysis (ACTA): A practitioner’s
toolkit for understanding cognitive task demands,” Ergonomics, vol. 41, no. 11, pp. 1618–
1641, Nov. 1998, Publisher: Taylor & Francis eprint: https://doi.org/10.1080/001401398186108,
issn: 0014-0139. doi: 10.1080/001401398186108.

[27] A. Hindle, “Green Software Engineering: The Curse of Methodology,” in 2016 IEEE 23rd In-
ternational Conference on Software Analysis, Evolution, and Reengineering (SANER), vol. 5,
Mar. 2016, pp. 46–55. doi: 10.1109/SANER.2016.60.

Appendices

A Assumptions

Table 6 lists all assumptions that the visualizations of Li et al. [10], Verdecchia et al. [11], Couto
et al. [12] and Klinik et al. [13] make with respect to which information is visualized.

Category Assumptions [10] [11] [12] [13]

EC or Power draw Energy Consumption ✓ ✓ ✓
Power draw ✓

Executions Averaged over a fixed set of executions (de-
rived from test cases)

✓ ✓ ✓

All possible executions ✓
CPU or External CPU energy measures ✓ ✓ ✓

External component energy measures ✓
Code proximity Energy measures should be shown close to or

in conjunction with the source code in a code
editor

✓ ✓

Program
abstractions

Code statements ✓ ✓
Branches ✓
Methods ✓ ✓
Classes ✓
Packages ✓
Application ✓

Multiple Multiple program abstractions ✓ ✓
Hierarchy information ✓

Table 6: All assumptions that the visualizations of Li et al. [10], Verdecchia et al. [11], Couto et
al. [12] and Klinik et al. [13] make with respect to which information is visualized.

B Tools

Tool Brand Tool type Participant

SDM 3065x digital multimeter Siglent Measurement P6
Logic 8 Logic analyzer Saleae Measurement P7
Power Profiler Kit Nordic Measurement P2,4,6,7,9
Power Profiler Kit 1 Nordic Measurement P4
Power Profiler Kit 2 Nordic Measurement P7,9

Power consumption calculator STM32 Estimation P3
Communication power consumption estimator Nordic Estimation P2
ULP Advisor Texas Instruments Recommender P3
Zephyr integrated in nRF SDK Nordic OS P2,6

Table 7: Tools mentioned by at least one participant

33

https://doi.org/10.1080/001401398186108
https://doi.org/10.1109/SANER.2016.60
https://www.siglenteu.com/digital-multimeters/sdm3065x-6-%c2%bd-digits-dual-display-digital-multimeters/
https://www.saleae.com/products/saleae-logic-8
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit
https://docs.nordicsemi.com/bundle/ug_ppk/page/UG/ppk/PPK_user_guide_Intro.html
https://www.nordicsemi.com/Products/Development-hardware/Power-Profiler-Kit-2
https://www.st.com/en/development-tools/stm32cubemx.html
https://devzone.nordicsemi.com/power/w/opp
https://www.ti.com/tool/ULPADVISOR
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/latest/zephyr/

	Introduction
	Background
	Software energy consumption
	Software developer perspective
	Embedded systems
	Source code monitoring techniques
	Visualizations
	Performance
	Energy


	Methodology
	Design study methodology
	Participants
	Involvement
	Reenactment
	Semi-structured interview
	Questionnaire

	Piloting
	Analysis
	Reenactment & Semi-structured interview

	Ethics and privacy

	Results
	Participants
	Subgoals
	Workflow
	Global comprehension

	Information
	Information seeking subgoals
	(Energy) measures
	Optimization resources

	Challenges
	Tooling
	Testing
	Optimization and hardware
	Conflicting goals

	Needs
	Energy measure needs
	Kind of energy measures
	Relation to source code


	Discussion
	Limitations
	Self-reporting of past events
	Abstract questioning
	Response bias
	Sampling

	Relation to earlier work
	Workflow
	Subgoals and visualization contexts
	Challenges and tools
	Objectives and knowledge

	Recommendations
	For researchers
	For tool makers
	For vendors
	For embedded systems software developers


	Conclusion
	Assumptions
	Tools

