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Abstract

Over the past few decades, probabilistic methods have been one of the popu-
lar approaches for registering point clouds generated by LiDAR systems. Such
methods consist of two major steps, i.e., using probabilistic models to represent
point clouds and finding optimal transformation to align point clouds with the
help of some statistical distances. In this thesis, a theoretical framework of
probabilistic methods is studied, which provides a foundation for understand-
ing and implementing point cloud registration with some specific probabilistic
models and distance measures. Specifically, the concepts of Gaussian Mixture
Models and Kernel Density Estimation are explored, with a detailed discussion
of their practical implementation. Furthermore, Kullback-Leibler divergence
and Wasserstein distance, including the computation of Wasserstein distance
through Kantorovich-Rubinstein duality, are also studied. An approximation
of Wasserstein distance that preserves differentiability through linear program-
ming techniques is proposed, which enables the use of gradient-based methods
on Wasserstein distance to find the optimal transformation that aligns two
point clouds. The algorithms that contribute to a complete procedure for
solving point cloud registration problem with our proposed methods are also
discussed and demonstrated.
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1. Introduction

In recent years, advancements in sensor technology, including Lidar, have
paved the way for innovative applications in various fields. A Lidar system,
which functions as a radar using light, employs a laser to aim at objects, and
times the return journey of the reflected light to calculate the distance between
itself and the target. In detail, a Lidar sensor consists of a transmitter that
emits laser with wavelengths between 250 to 1600 nanometres and a receiver
which can gather, analyse, and compute the reflected signal [1]. As introduced
in paper [2], Lidar sensors are possible to be equipped by smartphones, and
it is already possible to reconstruct small real-world objects and even indoor
environments using Lidar sensors on handheld devices. Three-dimensional re-
construction of indoor objects can be used in many interesting and useful fields,
such as augmented reality (AR), indoor navigation, and blind assistance.

A Lidar system usually can only emit one laser beam at a time, and the
scanning range is expanded by fine-tuning the angle of the laser emission.
The process of obtaining all the information within its field of view (FOV)
through such multiple laser emission and reception processes is considered "a
scan". Such a technique enables the acquisition of high-resolution point clouds
representing (parts of) the objects. However, a single scan may not provide
comprehensive data about an object. For instance, the FOV may be too narrow
to scan an object fully, and because of noise and measurement error, the point
cloud obtained from a single scan is less accurate than the point cloud obtained
from multiple scans followed by noise reduction. Apart from this, to capture
points from all six faces of a cube, intuitively a minimum of two scans from a
single Lidar system would be required.

An important step in reconstructing 3D objects from point clouds produced
by a Lidar system is point cloud registration. In this step, the point clouds are
matched and aligned with each other. The essential concept underlying point
cloud registration is achieving pose alignment between the source and target
point clouds by finding the best transformation [3]. In this project, we focus
exclusively on same-source point cloud registration, indicating that the point
clouds under consideration originate from a single sensor. Consequently, these
point clouds are likely to share specific attributes, such as comparable density

1



Introduction

and similar error distribution patterns. In addition to these assumptions, we
also assume that the Lidar system can only obtain depth information for every
point. In other words, it cannot obtain colour information, nor can it obtain
information from other sensors such as gyroscopes and accelerometers. Such
assumptions can significantly influence the choice of methods. Intuitively, on
one hand, having more detailed information generally makes solving a problem
easier. However, on the other hand, accumulating more information can also
make the problem more complicated.

The goal of point cloud registration is to find accurate point-wise corre-
spondences between two point clouds. The correspondence refers to the re-
lationship between individual points in one point cloud and their equivalent
points in another, i.e., the relationship between corresponding points in two
point clouds, representing the same location on an object or in a scene. A
usual approach is to fix one point cloud and transform the other one so that
the potential corresponding points of the two point clouds are close enough
that the nearest neighbour method can be used to find the correspondences.
For example, as shown in Figure 1.1, given two sets of points {x1,x2,x3} and
{y1,y2,y3}, every point in one set pairs with its nearest neighbour from the
other set. Such an approach forms a well-known chicken-and-egg problem:
the optimal transformation can be calculated easily if the accurate correspon-
dences are known; in contrast, the correspondences can also be readily found
if the optimal transformation is given [4].

x1

x2

x3

y1

y2

y3

Figure 1.1: Pairs of nearest neighbours

In the following section, we will have a general understanding of effective
strategies for resolving the chicken-and-egg paradox in point cloud registra-
tion. Specifically, a brief overview on how to transform a point cloud to align
with other one despite not knowing the point-wise correspondences, or how to
identify the correspondences without first aligning the clouds.

1.1 Related research

In general, currently there are numbers of categories of research direction on
solving the point cloud registration problem. Specifically, we will provide
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1.1 Related research

overviews of feature-based methods, optimization-based methods, and other
approaches, including those that utilize neural networks.

1.1.1 Feature-based methods

Feature-based registration is a crucial approach in point cloud registration,
typically used when aligning two or more 3D point sets. This method can be
broken down into three primary steps: feature detection, feature matching,
and transformation estimation.

Some of the well-known related approaches are 3D SIFT [5], Fast Point
Feature Histograms (FPHF) [6] and Signature of Histograms of Orientations
(SHOT) [7].

3D SIFT extends a famous 2D image feature extraction algorithm, called
Scale Invariant Feature Transform (SIFT), to three dimensions. The orienta-
tion invariance and feature selectivity are improved. The modified algorithm
is particularly suited to analysing complex medical imagery where precise, ro-
bust feature matching is critical. FPHF is specifically designed to handle the
challenges of surface registration in the context of robotic manipulation tasks.
It provides a fast and accurate method for matching 3D point clouds. SHOT
encodes local geometric properties by capturing the distribution of normal
vectors within a local neighbourhood. It is not only designed for applications
in matching and comparing 3D models, but also suitable for applications like
object recognition and scene understanding.

[6] also demonstrates a full process of applying a feature-based method on
3D registration. For each point in the point cloud, it starts by computing a
simplified version of the feature histogram (SPFH) based on the relationships
between the point and its immediate neighbours within a specified radius. This
includes calculating angular variations between the normals of the point and its
neighbours. Then, FPFH for each point is obtained by aggregating its SPFH
with those of its neighbours. This aggregation is weighted by the inverse of the
distance between neighbours, effectively smoothing the feature histogram over
a local neighbourhood and capturing more global contextual information. In
the feature matching and transformation estimation step, FPFH features are
used to quickly find correspondences between different sets of point clouds by
matching similar histograms. These correspondences serve as initial guesses
for aligning two datasets. Sample Consensus Initial Alignment (SAC-IA) al-
gorithm further refines the initial alignment. It starts by randomly selecting
a subset of points from the first point cloud. For each of the sampled points,
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SAC-IA searches for corresponding points in the second point cloud based on
the similarity of their FPFH descriptors. Once correspondences are estab-
lished between pairs of points, SAC-IA computes the rigid transformation (in-
cluding rotation and translation) that best aligns these matching point pairs.
Furthermore, the process of selecting samples, finding correspondences, and
calculating transformations is repeated multiple times to improve accuracy.

1.1.2 Optimization-based methods

For the majority of the optimization-based methods, the objective of the opti-
mization problem is some distance between two point clouds. Given dataset of
two point clouds, the distance can be viewed as some function of the transfor-
mation. The goal of the optimization problem is to find an optimal transfor-
mation that minimizes the distance. The mathematical representation of the
optimization problem is

argmin
R∈SO(3),t∈R3

‖d(P , TR,t(Q))‖2, (1.1)

where P ∈ RnP×3 and Q ∈ RnQ×3 are matrices denotes the two point clouds
(nP and nQ denote numbers of points in P and Q respectively), T denotes the
transformation on a point cloud and parametrized by rotation matrix R and
translation vector t, while d is some metric that measures the "distance" be-
tween two point clouds. For example, the average Euclidean distance between
points in P and the geometric centre of Q. When nP = nQ = n, another
example of the distance can be

d(P , TR,t(Q)) =
n∑

i=1

‖xi − (Ryi + t)‖2, (1.2)

where xi ∈ P and yi ∈ Q is a pair of corresponding points. Note that d is
also called projection error in some articles, e.g., [4]. Usually the moving point
cloud Q, is called source, while the fixed point cloud P is called target.

Notice that such an optimization problem also meets the chicken-or-egg
paradox. However, the following methods can break the self-contradictory
chain.

1.1.2.1 ICP and variants

Iterative closest point method (ICP) [8] is one of the most classic and pop-
ular optimization-based point cloud registration methods. It breaks the self-
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contradictory chain by iteratively giving better and better guesses on the re-
lationships between points in two point clouds to achieve better and better
transformation. Given an initial guess on the transformation, ICP iteratively
finds a better transformation to align two point clouds. During each iteration,
the algorithm identifies the closest points in the target set for each point in the
source set. It then computes the optimal transformation that minimizes the
distance between these paired points. This transformation is applied to the
source point set to adjust its position and orientation. The process is repeated
iteratively, with the source point cloud gradually being moved to better align
with the target point cloud until the changes in the transformation parameters
fall below a predefined threshold or after a set number of iterations.

Different from the original ICP algorithm that uses point-to-point distance,
people also tried other distances, such as point-to-plane and plane-to-plane
distances. For example, in [9], the point-to-plane distance evaluates the or-
thogonal distance between a point of a point cloud and the surface normal at
a point in the other point cloud. Estimating the surface normal at a point
involves its neighbouring points. Furthermore, plane-to-plane distance makes
use of surface normals of both point clouds [10].

1.1.2.2 Semi-definite registration

Finding the optimal correspondences is a quadratic assignment problem (QAP)
when considering paired correspondences constraint [4]. QAP is proved to be
strongly NP-hard [11], which indicates that it is intractable to directly solve
when the number of points is large. However, by projecting the problem to
a semi-definite optimization problem (SDP), an approximation to the global
optima is possible and relatively easier to achieve. For example, the corre-
spondence problem is formulated as an optimization problem over permuta-
tion matrices which are difficult to solve directly due to their combinatorial
nature. Then, the problem is "relaxed" into an SDP by replacing the permuta-
tion constraints with semi-definite constraints, making it solvable with convex
optimization techniques. Specifically, in [12], the original problem is finding a
permutation matrix X that best aligns the points in point cloud P to those in
point cloud Q. The optimization problem can be formulated as:

max
X

trace(AX) (1.3)
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subject to

X ∈ {0, 1}N×N , X1 = 1, 1TX = 1T , (1.4)

where A is a matrix of matching potentials, and the constraints ensure that
X is a valid permutation matrix. Specifically, each entry Xij in the matrix X

represents the correspondence between the i-th point in P and the j-th point
in Q; an entry of 1 indicates those two points are matched, and an entry of 0
indicates they are not matched.

This combinatorial problem is then relaxed into an SDP by lifting it into
a higher-dimensional space and replacing the binary constraints on X with
semi-definite constraints. The relaxed problem can be written as:

max
X,Y

trace(AY ) (1.5)

subject to 

Y −XXT � 0,

X ∈ [0, 1]N×N ,∑
i

Xij ≤ 1,∑
j

Xij ≤ 1,

trace(Y ) = m,

(1.6)

where Y = XXT and m is the number of correspondences. The semi-definite
constraint Y −XXT � 0 ensures that Y is a valid semi-definite matrix.

While the QAP remains a challenging combinatorial problem, the use of
SDP relaxations provides a powerful tool for approximating solutions in a
computationally feasible manner. Recent advancements have introduced more
complex relaxation techniques that further improve the quality of the solution
and the computational efficiency. For example, the use of dual decomposition,
cutting planes, and other advanced methods has been shown to enhance the
performance of SDP relaxations.

1.1.2.3 Probabilistic methods

The probabilistic methods essentially model point clouds using probability
distributions. In this way, one can employ some "distance measure" (such
as divergence, entropy, likelihood, etc.) in probability theory to evaluate the
difference between two probability distributions representing two point clouds
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to avoid knowing the correct point-wise correspondence in advance. The goal
of such methods is to find an optimal transformation such that the difference
between those two distributions is the smallest. For example, point clouds can
be modelled by Gaussian Mixture Models (GMM). One can use the likelihood
function of GMM to measure whether the positions of X and T (Y ) are close
enough. Given point clouds P and Q, the registration from Q to P can be
transformed into 2-step optimization problem [13]:

Fitting:


Θ∗

P = argmax
Θ

PM(P | Θ)

Θ∗
Q = argmax

Θ
PM(Q | Θ)

; (1.7)

Registration: T ∗ = argmin
T

d[M(Θ∗
P),MT (Θ

∗
Q)]; (1.8)

where Θ denotes the tuple of probability model parameters, PM(· | Θ) denotes
likelihood function of probability model M given the tuple of parameters Θ,
M(Θ) denotes a probability model with some certain tuple of parameters Θ

(in other words, M(Θ) is some certain probability distribution), d denotes
some "distance measure" between two probability distribution, and T denotes
transformation on probability distribution, i.e.,

PMT
(x | Θ) = PM(Rx+ t | Θ), (1.9)

where R is the rotation matrix and t is the translation vector, which will be
described in detail in latter chapter.

Modelling Point clouds
The most popular probabilistic model in point cloud registration problem is
Gaussian Mixture Model (GMM). A GMM is a weighted sum of K Gaussian
distributions,

p(x | Θ) =
K∑
k=1

wkN (x | µk,Σk), (1.10)

where x is a D-dimensional vector representing the point (x ∈ R3 in 3D case),
wk are the mixture weights that satisfy

∑
k wk = 1 and wk ≥ 0, and each

N (x | µk,Σk) is a component that denotes a Gaussian distribution with mean
vector µk and covariance matrix Σk [14]:

N (x | µk,Σk) =
1

(2π)
D
2 |Σk|

1
2

exp

{
−1

2
(x− µk)

⊺Σ−1
k (x− µk)

}
. (1.11)
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In general, since Equation 1.10 is a non-linear function of the parame-
ters, it is impossible to directly maximize the likelihood using given samples
[14]. A common approach to estimate the parameters of GMM is Expectation-
Maximization (E-M) algorithm [15], which iteratively finding the optimal pa-
rameters. The fundamental idea of E-M algorithm is by introducing latent
variables, one can

1. Develop a function that calculates the expected value of the log-likelihood
based on the current estimated parameters during the E-step.

2. Update the parameters to optimize the log-likelihood function in the
M-step.

Given an initial value, and then continuously repeating E-step and M-step,
the likelihood and parameters will converge to their optimal.

Moreover, one has to choose the number of components for GMM. On
the one hand, too few components will make the GMM unable to reflect the
characteristics of the given point cloud well; on the other hand, too many com-
ponents will make the GMM overfit the point cloud. Recently, many model
selection criteria have been proposed to determine the optimal number of com-
ponents (KOPT) for controlling over-fitting and providing a standardized way
to balance sensitivity and specificity via log-likelihood functions with simple
penalties [16]. For example, Bayesian information criterion (BIC) [17] and
Akaike information criterion (AIC) [18] are two wildly used criteria to deter-
mine KOPT.

Another possible choice for modeling point clouds is Kernel Density Esti-
mation (KDE). Compared to GMM, KDE is a non-parametric method to esti-
mate the probability density function. In other words, the probability density
can be estimated without knowing what kind of distribution the population is,
which is exactly the case for the point cloud registration problem. KDE can
be expressed as

p̂(x) =
1

nhD

n∑
i=1

K
(
x− xi

h

)
, (1.12)

where p̂ is the estimated density function for an unknown distribution with n

samples denoted by xi ∈ RD, K : RD 7→ R is a smooth function as known as
the kernel function, and h > 0 denotes the smoothing bandwidth [19].

A commonly used kernel is Gaussian kernel, which is the probability density
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function for Gaussian distribution,

KN = N (x | µ,Σ), (1.13)

with a usually choice of the parameters µ = 0 and Σ = I.

Distances for probability distributions
Up to now, numerous metrics have been developed to measure the discrepancy
between two probability distributions. For examples, likelihood, Kullback-
Leibler divergence (K-L divergence) and its variants, Bhattacharyya distance,
and Wasserstein distance.

We can prove that likelihood and K-L divergence are equivalent in the
point cloud registration problem, which will be discussed in a later chapter.
Given probability density functions p(x) and q(x) for two multi-dimensional
continues probability distributions P and Q, the K-L divergence is

KLD(P,Q) =

∫
x∈RD

p(x) log

(
p(x)

q(x)

)
dV, (1.14)

In general, the Kullback-Leibler divergence and its variants measure the
difference between two probability distributions by integrating the relative
entropy (logarithmic ratio) over their support. Since K-L divergence is non-
symmetric, Jensen-Shannon Divergence is preferred over it when symmetric
property is required:

JSD(P,Q) =
1

2
KLD(P,M) +

1

2
KLD(Q,M), (1.15)

where M = 1
2
(P +Q) is a mixture distribution of P and Q.

Wasserstein distances are metrics on probability distributions inspired by
the problem of optimal mass transportation [20]. Research on it has become
popular in recent years due to active studies on machine learning and neu-
ral networks, for example, Wasserstein GAN [20]. Unlike K-L divergence and
many other distance measures, Wasserstein distance is an optimization prob-
lem:

Wp(µ, ν) = inf
γ∈Γ(µ,ν)

(∫
RD×RD

d(x,y)p dγ(x,y)

)1/p

, (1.16)

where µ and ν are probability measures on RD, p ∈ [1,+∞], Γ(µ, ν) denotes
the set of all couplings of µ and ν, and d is some metric defined on RD.
A coupling is joint probability distributions that connect two given marginal
probability distributions, which means that the marginal distribution of γ ∈ Γ
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over its first factor is µ, while the marginal distribution over its second factor
is ν.

Wasserstein distance for p = 1 is also known as Earth Mover Distance
(EMD). Intuitively, dγ(x,y) can be interpreted as a small shovel of earth
moving from x to y. Using Euclidean distance, d(x,y) quantifies the distance
over which the mass is moved. Integrating these differential transfers over all
possible pairs of source and target locations provides a measure of the total
work required to transport mass distribution µ to mass distribution ν. Con-
sequently, the objective of the optimization is to determine the transportation
plan that minimizes this total work.

However, although there is already a closed-form solution for Wasserstein
distance in one-dimensional probability measures, it is much more complex to
obtain solutions in multidimensional cases. There are rare cases where closed-
form solutions exist for it. Evaluating multidimensional Wasserstein distance is
numerically intractable in general [21]. Some approximations to it are studied,
such as wavelet EMD [22], sliced-Wasserstein distance and its variants [21],
and neural network approximation [23].

Different combinations of probabilistic models and distance mea-
sures
Table 1.1 shows some key corresponding works on some popular probabilistic
models and some distance measures.

Distance measure

Articles probabilistic model
GMM KDE Other

models

Log-likelihood [13], [24] [25]
K-L divergence [26] [27]
Wasserstein distance [28]

Table 1.1: Different choices for probabilistic models and distance measures

1.1.3 Other methods

There has been substantial research on the problem of 2D image registra-
tion, leading to the development of numerous effective 2D registration algo-
rithms. Therefore, researchers have begun exploring methods to project 3D
point clouds onto 2D spaces so that 2D image registration algorithms can be
applied. For example, [29] proposed a method that transforms the point clouds
into 2D bearing angle images and then uses the 2D feature-based matching
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method, Speeded-Up Robust Features (SURF) [30], to identify corresponding
pixel pairs between the resulting 2D images. The optimal transformation to
align the 3D point clouds can be inferred from the established 2D image pixel
correspondences.

Methods based on end-to-end neural networks would be more straightfor-
ward for users. Different from previous approaches, the inputs of the neural
network are point clouds, and the outputs are optimal transformations that
align the input point clouds [31] or correspondences of (key) points [32].

There are also researchers looking for hybrid methods that complement
each others strengths and weaknesses. For instance, some hybrid methods in-
tegrate neural network-based feature extraction with traditional optimization
techniques. This combination allows for efficient feature learning while lever-
aging the robustness of traditional optimization algorithms. For example, [33]
uses AlexNet to learn features and find key points, then match the key points
and calculate the transformation with some other methods like random sam-
ple consensus (RANSAC) algorithm [34]. [35] uses neural networks to evaluate
"feature-metric" that measures the proximity of point clouds’ location and po-
sition. This hybrid approach can enhance the accuracy and efficiency of the
correspondence problem-solving process. Another kind popular hybrid meth-
ods involve integrating end-to-end neural networks with traditional registration
methods. The neural network provides an initial estimate of the transforma-
tion or correspondences, which are then refined using traditional optimization
techniques.

1.2 Outline and contributions

In this thesis, we focus on probabilistic methods for point cloud registration
problem. A concise introduction to the point cloud registration problem and
its relevant research has already been presented in chapter 1. In chapter 2, rele-
vant theories of probabilistic methods will be introduced. First, two probabilis-
tic models for point cloud modelling are discussed, specifically the Gaussian
Mixture Model and the Kernel Density Estimation. Algorithms for estimating
the parameters and the number of components in the Gaussian Mixture Model
will also be addressed. For Kernel Density Estimation, we utilize Gaussian ker-
nel and introduce a methodology for setting the bandwidth. Subsequently, the
theoretical foundations of Kullback-Leibler (K-L) divergence and Wasserstein
distance will be introduced. We propose that minimizing the K-L divergence
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in point cloud registration is equivalent to maximizing the likelihood function,
providing an intuitive proof of the intrinsic connection between them. Next,
relevant theories of the Wasserstein distance and its dual problem, namely the
Kantorovich-Rubinstein Duality, will be introduced along with their mathe-
matical formulations. An approach to approximate Wasserstein distance by
transforming Kantorovich-Rubinstein Duality into a linear programming prob-
lem is proposed. We also prove that such approach this approach preserves the
gradients with respect to the transformation, and thus gradient-based methods
can be applied.

In chapter 3, discussions on relevant algorithms and their implementation
details will be presented. The chapter 4 showcases some representative ex-
periments, from which conclusions are drawn that the proposed method is
effective when point clouds are relatively close and have limited degrees of
freedom (one or two degrees of freedom) in transformation. The experiments
empirically demonstrate that the method preserves gradients and can correctly
compute them, as proved in the theoretic part. However, due to the limita-
tions of the proposed basis functions, the problem is not strictly convex and
possesses many stationary points (local optima), making the proposed algo-
rithm ineffective when the point clouds are more distant or when there are
more degrees of freedom.

Overall, in this thesis, by addressing the practical issue of the point cloud
registration problem, we proposed a novel method that approximates the
Wasserstein distance between two probability measures while preserving its
differentiability with respect to transformation on one of the probability mea-
sure. Both theoretical analysis and practical experiments demonstrate the
effectiveness of this approach to a certain extent. Furthermore, we hypothe-
size that the quality of approximation and its applicability could be enhanced
by identifying better basis functions.

12



2. Theory

2.1 Gaussian Mixture Model

2.1.1 E-M algorithm

Recall the Gaussian Mixture Model in subsubsection 1.1.2.3, an iterative al-
gorithm called Expectation-maximization algorithm is commonly applied to it
to determine parameters for the components. The algorithm iterates through
two main steps to find the parameters that maximize the likelihood of the
observed data:

1. Expectation Step (E-step): Calculate the expected value of the log-
likelihood function with respect to the conditional distribution of the
latent variables given the observed data and the current estimate of
the parameters. This involves computing the responsibility γ(znk) that
component k has for observation n:

γ(znk) =
wkN (xn|µk,Σk)∑K
j=1 wjN (xn|µj,Σj)

, (2.1)

where N (xn|µk,Σk) is the probability density of the n-th data point
given the k-th component. γ is also called responsibility, which reflects
how likely a data point belongs to a particular component of the mixture.

2. Maximization Step (M-step): Update the parameters to maximize
the expected log-likelihood found in the E-step. The new parameters are
calculated as follows:

• Update the mixing weights:

wnew
k =

1

N

N∑
n=1

γ(znk). (2.2)

• Update the means:

µnew
k =

∑N
n=1 γ(znk)xn∑N
n=1 γ(znk)

. (2.3)

13



Theory

• Update the covariances:

Σnew
k =

∑N
n=1 γ(znk)(xn − µnew

k )(xn − µnew
k )T∑N

n=1 γ(znk)
. (2.4)

These steps are repeated until the convergence criteria are met, usually
when the change in log-likelihood or in the parameter values falls below a
threshold.

2.1.2 Estimate number of components

As discussed before, many model selection criteria have been proposed to de-
termine the optimal number of components KOPT, such as AIC and BIC.

An alternative criterion is silhouette score [36], which is usually used for
cluster quality analysis. The silhouette score is simply the mean of silhou-
ette coefficient of all samples. For a point i, the silhouette coefficient can be
calculated by

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, (2.5)

where a(i) is mean intra-cluster distance for point i and b(i) is the mean
nearest-cluster distance for point i [36], supposing the point i is assigned to
cluster A. The detailed explanation of a(i) and b(i) can be seen in [37].

Then, the silhouette score of a GMM fitted by point cloud P can be ex-
pressed as

sc(GMMP) =
1

n

n∑
i=1

s(i), (2.6)

where n is the number of points in P . Note that in the concept of clustering
in GMMP , the centers of clusters are determined by µ, and the points are
registered to their closest clusters.

To determine the optimal K using the silhouette score, one effective method
is to perform a linear search across all possible K values and select the one
with the highest silhouette score as the optimal value. The algorithm is shown
in Algorithm 1. This method is simple and effective, but has a potential
disadvantage: the computation time depends on the time consumed by the
E-M algorithm of GMM, which can become time-consuming as the dataset
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grows larger.

2.2 Kernel Density Estimation

In this section, we will first briefly explore the selection of kernel functions
for Kernel Density Estimation. Then, we will select the standard Gaussian
kernel and determine how to set the bandwidth, especially using the standard
Gaussian kernel.

2.2.1 Kernel functions

[38] mentioned some commonly used kernel functions in the one-dimensional
case, as shown in Table 2.1.

Kernel K(x)
Uniform 1

2
(|x| ≤ 1)

Triangle (1− |x|) (|x| ≤ 1)
Epanechnikov 3

4
(1− x2) (|x| ≤ 1)

Biweight 15
16
(1− x2)2 (|x| ≤ 1)

Gaussian 1√
2π

exp
(
−x2

2

)
Table 2.1: Some common choices of the kernel [38]

Gaussian kernel is a popular choice [38]. For multidimensional cases, the
formula for it is shown as follow

KN (x) =
1

(2π)
D
2

exp

(
−‖x‖

2
2

2

)
. (2.7)

There are multiple reasons that we also use the Gaussian kernel in our
approach. One of the reasons is that the support of the Gaussian kernel is
RD without any constraint, which is different from other kernels in Table 2.1.
Such property makes it easier to implement in practice. Another reason is
that it is well studied and there is a good result that is beneficial to use
in choosing bandwidth practically. Furthermore, by using Gaussian kernel,
KDE and GMM arrive at the same destination through different paths. KDE
can be regarded as a special GMM, or vice versa. More preciously, KDE
can be viewed as the GMM that has the same number of components as the
number of points in point cloud, where each component is a standard Gaussian
distribution scaled by a factor.
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2.2.2 Choosing bandwidth

The quality of the estimator depends more on the choice of the bandwidth than
the choice of the kernel [38]. A common criterion used to select bandwidth is
the mean integrated squared error:

MISE(p̂) = E
[∫

RD

(p̂(x)− p(x))2 dV

]
, (2.8)

where p̂ is the estimated density function and p is the real (but usually un-
known) density function.

Referring to [38], one can derive that by minimizing the asymptotic MISE
(AMISE) which is related to MISE. The optimal bandwidth would be

hopt = n− 1
5

[∫
‖x‖2K(x) dV

]− 2
5
[∫
K(x)2 dV

] 1
5
[∫
‖p′′(x)‖2 dV

]− 1
5

, (2.9)

where n denotes the number of samples.
However, since p is unknown, it is difficult to analytically obtain hopt via

this approach in practice. Refers to [39], under the assumption that the kernel
is Gaussian, the optimal bandwidth hopt for KDE can be approximated by the
following formula:

hopt = 1.06n− 1
5 Σ̂, (2.10)

where Σ̂ represents the observed standard deviation of the sample data. For
multidimensional data, Σ̂ can take the average of standard deviation of each
dimension.

2.3 K-L divergence

As mentioned in subsubsection 1.1.2.3, we claim that
Claim 1. Kullback-Leibler divergence and likelihood are equivalent in the con-
text of probabilistic methods for point cloud registration problem.

Proof. Suppose we have two point clouds P and Q, the i-th point in the
point clouds is denoted by xi ∈ P or yi ∈ Q. The probability density of
some probabilistic model given some parameter θ can be denoted by P(· | θ).
Then the problem of registering Q to P can be expressed as finding the best
transformation T : RD 7→ RD such that Q is as similar to P as possible after
applying the transformation to all points in Q.

Therefore, given θP the parameter that modelling P , we have the following
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two optimization problems.
1. Using likelihood:

T̂ = argmax
T

1

N

N∑
i=1

P(T (yi) | θP). (2.11)

2. Using K-L divergence:

T̂ = argmin
T

N∑
i=1

P(xi | θP) log
P(xi | θP)

P(T (yi) | θP)
. (2.12)

Notice that

T̂ = argmax
T

1

N

N∑
i=1

P(T (yi) | θP), (2.13)

= argmax
T

1

N

N∑
i=1

P(T (yi) | θP), (2.14)

= argmax
T

[
1

N

N∑
i=1

logP(T (yi) | θP)−
1

N

N∑
i=1

logP(xi | θP)

]
, (2.15)

= argmax
T

1

N

N∑
i=1

log
P(T (yi) | θP)
P(xi | θP)

, (2.16)

= argmax
T

N∑
i=1

P(xi | θP) log
P(T (yi) | θP)
P(xi | θP)

, (2.17)

= argmin
T

N∑
i=1

P(xi | θP) log
P(xi | θP)

P(T (yi) | θP)
, (2.18)

thus via either likelihood or K-L divergence, the estimated optimal transfor-
mation T̂ remains the same.

Therefore, since calculating likelihood involves either using samples from
the dataset or sampling from probability distributions, using K-L divergence
can potentially reduce computational complexity if there are analytical forms
for the probability density functions.

2.4 Wasserstein distance

Consider a metric space (M,d) that is also a Radon space. Let p ∈ [1,+∞] be
a real number. Given two probability measures µ and ν on M , the Wasserstein
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1-distance between µ and ν, denoted as W1(µ, ν), is defined as

W1(µ, ν) = inf
γ∈Γ(µ,ν)

∫
M×M

d(x, y) dγ(x, y), (2.19)

where Γ(µ, ν) is the set of all couplings between µ and ν. A coupling γ is a
joint probability measure on M ×M such that its marginals on the first and
second factors are µ and ν, respectively. Formally, a measure γ is a coupling
if it satisfies ∫

M

γ(x, y) dy = µ(x), (2.20)∫
M

γ(x, y) dx = ν(y). (2.21)

In the limit as p approaches infinity, the Wasserstein distance W∞(µ, ν) is
defined as

W∞(µ, ν) = lim
p→∞

Wp(µ, ν), (2.22)

which can be interpreted as a supremum norm.
In the one-dimensional case and d(x, y) := |x− y|, the Wasserstein metric

has the following closed form solution ([28]):

Wp(µ, ν) =

(∫ 1

0

|F−1
µ (t)− F−1

ν (t)|p dt
) 1

p

, (2.23)

where Fµ and Fν are cumulative distribution functions for µ and ν respectively.
However, evaluating Wasserstein distance between multidimensional mea-

sures is numerically intractable in general [21]. In higher dimensional cases, an
approach called sliced-Wasserstein distance (SWD) projects the problem to 1D
and use the closed form solution. The concept of SWD involves projecting the
target probability distributions, µ and v, in a specific direction, θ, on the unit
sphere, resulting in two projected measures: πθµ and πθv. Specifically, the
SWD averages Wasserstein distances of these projections over every possible
θ. When p ≥ 1, the sliced Wasserstein distance of order p can be expressed as:

SWp(µ, ν) =

(∫
Sn−1

W p
p (π

θµ, πθν)dθ

) 1
p

(2.24)

One way to approach Equation 2.19 is using Monte Carlo simulation for
the integral, combining with gradient descent for the infimum. However, the
computational complexity will become very high with this approach.
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2.4.1 Kantorovich-Rubinstein Duality

Kantorovich-Rubinstein Duality [40] provides a better tool for calculating the
high dimensional Wasserstein distance for d(x, y) = ||x− y||2 and p = 1:

W1(µ, ν) = sup
||h||L≤1

[
E

x∼µ
[h(x)]− E

x∼ν
[h(x)]

]
, (2.25)

where ||h||L denotes the best Lipschitz constant for h and ||h||L ≤ 1 implies h

being 1-Lipschitz.
The problem now is to find an optimal 1-Lipschitz function that maximizes

the objective. However, this remains infeasible because it is impossible to
search over all 1-Lipschitz functions.

Below, we propose a method for approximating W1 using a parameterized
approximation of 1-Lipschitz functions.

Since 1-Lipschitz functions are continues, we can approximate them using
sum of some basis functions ϕi(x):

h(x) ≈
∑
i

ciϕi(x). (2.26)

Note that we have many options for choosing the basis functions. For
example, when considering one-dimensional case, some of the common choices
are shown in Table 2.2.

ϕi(x) Description
xi Taylor series
sin(x) and/or cos(x) Fourier series
Chebyshev polynomials Chebyshev approximation

. . .

Table 2.2: Some of the common choices for basis functions in 1D

In a multidimensional case, constructing the basis function is a more com-
plex task. With the help of good properties of the sin function, we are able
to construct the basis functions and impose constraints on the coefficients
to guarantee that the approximating function belongs to a set of 1-Lipschitz
functions. As the starting point, define

ϕijk(x) = sin(2πix1) sin(2πjx2) sin(2πkx3), (2.27)

as the basis function that maps R3 to [−1, 1], where i, j, k are indexes and
(x1, x2, x3) denotes the Euclidean coordinates of the 3D point x. Note that
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the gradient of such ϕijk(x) is bounded, i.e.,

∇ϕijk(x) ∈ [−1, 1]× [−1, 1]× [−1, 1].

Then, assume that we approximate the 1-Lipschitz function with a weighted
sum of basis functions, i.e.,

ĥ(x) :=
∑

i+j+k≤s

cijk sin(2πix1) sin(2πjx2) sin(2πkx3), (2.28)

where
∑

i+j+k≤s denotes sum over all possible combinations of i, j, k where
i, j, k ∈ N, s ∈ N+ and i + j + k ≤ s. By giving different s, we could
have different numbers of terms in the sum. Although intuitively, the more
terms there are, the better the approximation, this claim does not always hold
and depends on the approach to encode the constraints of the optimization
problem, which will be discussed in the following text.

The partial derivative is bounded as

∂ĥ

∂x1

=
∑

i+j+k≤s

2πicijk cos(2πix1) sin(2πjx2) sin(2πkx3), (2.29)

≤
[

max
i+j+k≤s

cijk

]
·
∑

i+j+k≤s

2πi cos(2πix1) sin(2πjx2) sin(2πkx3). (2.30)

There are 1
6
(s + 1)(s + 2)(s + 3) terms in the sum. Notice that if i >

(s − 2), then either j or k or both will be 0, resulting in making the term
2πi cos(2πix1)sin(2πjx2) sin(2πkx3) equals to 0. Combining with the fact that
sine and cosine functions are bounded by [−1, 1], we have

2πi cos(2πix1)sin(2πjx2) sin(2πkx3) ≤ 2π(s− 2). (2.31)

Since there are totally 1
6
(s+1)(s+2)(s+3) number of i, j, k combinations,

continue on Equation 2.30, we have

∂ĥ

∂x1

≤
[

max
i+j+k≤s

cijk

]
· 1
6
(s+ 1)(s+ 2)(s+ 3) · 2π(s− 2). (2.32)

Rearranging Equation 2.32 we have

∂ĥ

∂x1

≤ π(s+ 1)(s+ 2)(s+ 3)(s− 2)

3
· max
i+j+k≤s

cijk. (2.33)
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With similar derivations we could also have

∂ĥ

∂x2

≤ π(s+ 1)(s+ 2)(s+ 3)(s− 2)

3
· max
i+j+k≤s

cijk, (2.34)

∂ĥ

∂x3

≤ π(s+ 1)(s+ 2)(s+ 3)(s− 2)

3
· max
i+j+k≤s

cijk. (2.35)

Note that with the definition of 1-Lipschitz function,

||∇ĥ(x)|| ≤ 1 (2.36)

should holds for every x.
Thus, if we could make sure

∣∣∣ ∂ĥ∂xd

∣∣∣ ≤ √
3
3

for d = 1, 2, 3, i.e.,

max
i+j+k≤s

|cijk| ≤
√
3

π(s+ 1)(s+ 2)(s+ 3)(s− 2)
, (2.37)

⇒ |cijk| ≤
√
3

π(s+ 1)(s+ 2)(s+ 3)(s− 2)
∀i, j, k, (2.38)

then we could ensure that ĥ(x) being 1-Lipschitz and write

h||h||L≤1(x) ≈ ĥ(x) =
∑

i+j+k≤s

cijk sin(2πix1) sin(2πjx2) sin(2πkx3). (2.39)

Now, recall the Kantorovich-Rubinstein Duality (Equation 2.25), let p(x)

and q(x) denotes probability density functions (PDF) of µ and ν respectively,
we can write

Ex∼p[h(x)] =

∫
R3

p(x)h(x) dV (2.40)

≈
∫
R3

p(x)ĥ(x) dV (2.41)

=

∫
R3

p(x)
∑

i+j+k≤s

cijkϕijk(x) dV (2.42)

=
∑

i+j+k≤s

cijk

∫
R3

p(x)ϕijk(x) dV, (2.43)
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Ex∼qT [h(x)] =

∫
R3

q(x)h(x) dV (2.44)

≈
∫
R3

q(x)ĥ(x) dV (2.45)

=

∫
R3

q(x)
∑

i+j+k≤s

cijkϕijk(x) dV (2.46)

=
∑

i+j+k≤s

cijk

∫
R3

q(x)ϕijk(x) dV. (2.47)

Hence,

Ex∼µ[h(x)]− Ex∼ν [h(x)] ≈
∑

i+j+k≤s

cijk

∫
R3

p(x)ϕijk(x) dV

−
∑

i+j+k≤s

cijk

∫
R3

q(x)ϕijk(x) dV, (2.48)

=
∑

i+j+k≤s

cijk

∫
R3

[p(x)− q(x)]ϕijk(x) dV. (2.49)

Together with Equation 2.38 the constrains on coefficients, the problem in
(2.25) now becomes

W (µ, ν) ≈ max
c

[ ∑
i+j+k≤s

cijk

∫
R3

[p(x)− q(x)]ϕijk(x) dV

]
,

subject to: |cijk| ≤
√
3

(s+ 1)(s+ 2)(s+ 3)(s− 2)π
∀i, j, k,

(2.50)

where c denotes a vector contains cijk with some certain order and the con-
straint of i+ j + k ≤ s, i.e.

c = [c0 0 0, c0 0 1, c0 0 2, . . . , c0 0 s, c0 1 0, . . . , cs 0 0]
T . (2.51)

Assume that p(x) and q(x) are known, then optimization problem (2.50) is
a linear programming, where cijk are decision variables and

∫
R3 [p(x)− q(x)]ϕijk(x) dV

are coefficients.
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2.5 Gradient-based methods to optimize the
transformation

2.5.1 Problem formulation

In our method, Euler angles are used to describe rigid body rotations, rotations
around axes x, y and z with angle θ can be represented by the following rotation
matrices:

Rx(θ) =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 , (2.52)

Ry(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 , (2.53)

Rz(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 . (2.54)

Then, multiply them to get the complete rotation matrix around the origin
(i.e. the point [0, 0, 0]):

R(α, β, γ) = Rz(γ)Ry(β)Rx(α) (2.55)

=

cos γ − sin γ 0

sin γ cos γ 0

0 0 1


 cos β 0 sin β

0 1 0

− sin β 0 cos β


1 0 0

0 cosα − sinα

0 sinα cosα

 ,

(2.56)

=

cos γ cos β cos γ sin β sinα− sin γ cosα cos γ sin β cosα + sin γ sinα

sin γ cos β sin γ sin β sinα + cos γ cosα sin γ sin β cosα− cos γ sinα

− sin β cos β sinα cos β cosα

 .

(2.57)

For a given vector x ∈ R3, using the right-hand rule to determine positive
direction, first rotate it around the x-axis by an angle of α, then rotate around
the y-axis by an angle of β, and finally rotate around the z-axis by an angle
of γ can be represented by

R(α, β, γ)x. (2.58)
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For simplicity, we denote R(α, β, γ) and R(α̂, β̂, γ̂) by R and R̂ respec-
tively.

Furthermore, for a vector x ∈ R3, translate it with the direction and dis-
tance of t ∈ R3 can be represented by x+ t.

Recall the two-step optimization problem (1.7) and (1.8). In our approach,
the registration step (1.8) can be described as:

Given two probability density functions p(x) : R3 → R and q(x) : R3 → R,
we want to find the optimal rotation matrix R̂ and optimal translation vector
t̂ such that

p(x) = q(R̂x+ t̂)

holds for every x ∈ R. For simplicity, we also denote q(Rx+ t) by qT (x).
Finally we have the following optimization problems to find optimal trans-

formation:
1. With K-L divergence: recall the Equation 1.14 for K-L divergence

between two probability distributions, we have the following optimization
problem:

argmin
α,β,γ,t

∫
x∈R3

p(x) log
p(x)

q(R(α, β, γ)x+ t)
dV (2.59)

2. With Wasserstein distance: recall Equation 2.50 the approximation
of Wasserstein distance, to find the optimal rotation degrees α̂, β̂, γ̂ and
optimal translation vector t̂ , we have to solve the following optimization
problem:

argmin
α,β,γ,t

max
c

[ ∑
i+j+k≤s

cijk

∫
R3

[p(x)− q(R(α, β, γ)x+ t)]ϕijk(x) dV

]
,

subject to: |cijk| ≤
√
3

(s+ 1)(s+ 2)(s+ 3)(s− 2)π
∀i, j, k.

(2.60)

2.5.2 The existence of gradients and the feasibility of
optimization

Note that in the registration step, we assume that p(x) and q(x) are known
and their analytical expressions exist. Suppose that p(x) and q(c) are smooth,
calculating the divergence of the objective function in the optimization problem
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with K-L divergence (Equation 2.59) is intuitive. Therefore, it is not elaborated
upon in the following. For the optimization problem with Wasserstein distance
(Equation 2.60), we have the following two claims.
Claim 2.
Given R̂ and t̂, the inner layer problem, i.e.

max
c

[ ∑
i+j+k≤s

cijk

∫
R3

[
p(x)− q(R̂x+ t̂)

]
ϕijk(x) dV

]
,

subject to: |cijk| ≤
√
3

(s+ 1)(s+ 2)(s+ 3)(s− 2)π
∀i, j, k,

(2.61)

is a linear programming.

proof. Given R̂ and t̂, the integrals are not related to c. Thus, let

Iijk =

∫
R3

[
p(x)− q(R̂x+ t̂)

]
ϕijk(x) dV, (2.62)

and then the objective can be written as∑
i+j+k≤s

Iijkcijk, (2.63)

which is a linear function of cijk. The constraints can be expressed as

cijk ≤
√
3

(s+ 1)(s+ 2)(s+ 3)(s− 2)π
, (2.64)

−cijk ≤
√
3

(s+ 1)(s+ 2)(s+ 3)(s− 2)π
, (2.65)

for all cijk.
Therefore, the inner layer problem (2.61) is a linear programming.

Claim 3.
Given ĉijk(α, β, γ, t), the objective of outer layer problem, i.e.∑

i+j+k≤s

ĉijk

∫
R3

[p(x)− q(R(α, β, γ)x+ t)]ϕijk(x) dV, (2.66)

is differentiable w.r.t α, β, γ and t, and the gradient can be calculated accord-
ingly.

proof. The optimization problem (2.60) can be abstracted as

min
θ,c
J (θ, c) = J (θ, c) + r2(c), (2.67)

where θ denotes a tuple of transformation parameters t, α, β and γ, J (θ, c)
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corresponds to the negative of objective function in original problem 2.60 since
the original problem contains a maximization problem, r2 is some penalty
function encoding the constraints |cijk| ≤

√
3

(s+1)(s+2)(s+3)(s−2)π
∀i, j, k.

As proved by [41], for finite-dimensional separable optimization problems
of the form

min
θ,c

J(θ, c) = J (θ, c) + r2(c), (2.68)

where J smoothly couples (θ, c) but may be non-convex, while r2 encode
additional constraints or regularizers. Consider g(θ) = minc J(θ, c), then
∇g(θ) = ∇θJ (θ, c)|c=argminc J(θ,c) holds if we can prove the objective satisfies
two conditions below:

A1: ∇θJ and ∇cJ exist and are Lipschitz-continuous for all (θ, c) :

‖∇θJ (θ, c)−∇θJ (θ′, c)‖ ≤ Lθθ‖θ − θ′‖, (2.69)

‖∇θJ (θ, c)−∇θJ (θ, c′)‖ ≤ Lθc‖c− c′‖, (2.70)

‖∇cJ (θ, c)−∇cJ (θ′, c)‖ ≤ Lcθ‖θ − θ′‖, (2.71)

‖∇cJ (θ, c)−∇cJ (θ, c′)‖ ≤ Lcc‖c− c′‖; (2.72)

A2: J(θ, c) is µ-strongly convex in c for all θ.
Since R(α, β, γ) is a smooth projection maps R × R × R to R3×3, we can

consider R as a whole and temporarily ignore α, β, and γ. In the following
we decompress R and t from θ in order to let the notations in formulas be
consistent with the previous sections. For example, when discussing ∇θJ we
will discuss ∇RJ and ∇tJ separately.

Beginning with ∇θJ , i.e., ∂J
∂R

and ∂J
∂t

:

∂J
∂R

=
∂

∂R

[ ∑
i+j+k≤s

cijk ·
∫
R3

−q(Rx+ t)ϕijk(x) dV

]
(2.73)

Since the integral in Equation 2.73 is on x, we can directly interchange the
partial derivative and integral, i.e.,

∂J
∂R

=
∑

i+j+k≤s

cijk ·
∫
R3

− ∂

∂R
q(Rx+ t)ϕijk(x) dV. (2.74)

Equation 2.74 is linear w.r.t c, therefore it is Lipschitz-continuous for all c.
With similar derivations, we could also prove that ∂J

∂t
is linear w.r.t c. Hence

∇θJ is Lipschitz-continuous w.r.t c, and thus inequality (2.70) holds.
To prove ∇θJ is Lipschitz-continuous for all θ, recall an approach to prove

a function being Lipschitz-continuous is to prove its derivative is bounded.
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2.5 Gradient-based methods to optimize the transformation

Recall Equation 2.74, notice that in order to check whether the derivative of
∇θJ is bounded, the key is to check whether the derivatives of ∂q(Rx+t)

∂R
and

∂q(Rx+t)
∂t

are bounded. Therefore, at first we can write the formula for ∂q(Rx+t)
∂R

in detail:
∂q(Rx+ t)

∂R
= ∇Rx+tq(Rx+ t) · ∇R(Rx+ t)T , (2.75)

=

[
− 1

nh2

n∑
i=1

Rx+ t− xi

(2πh2)3/2
exp

(
− 1

2h2
‖Rx+ t− xi‖2

)]
· xT .

(2.76)

Then we need to explore the properties of its derivatives w.r.t R and t

respectively. First, its derivative w.r.t R is

∂2q(Rx+ t)

∂R2
=− 1

nh2

n∑
i=1

[
x(Rx+ t− xi)

T

(2πh2)3/2
exp

(
− 1

2h2
‖Rx+ t− xi‖2

)
−(Rx+ t− xi)(x)

Tx(Rx+ t− xi)
T

h4(2πh2)3/2
exp

(
− 1

2h2
‖Rx+ t− xi‖2

)].
(2.77)

The properties of exp(·) terms make ∂2q
∂R2 bounded w.r.t x for all R. Hence

the integral of it over x is bounded, i.e.∑
i+j+k≤s

cijk ·
∫
R3

− ∂2

∂R2
[q(Rx+ t)]ϕijk(x) dV (2.78)

is bounded. With similar derivations, we could prove that ∂2q
∂R∂t

is also bounded.
Therefore, ∂q(Rx+t)

∂R
is Lipschitz-continuous w.r.t R and t. Also with similar

derivations we could prove that ∂q(Rx+t)
∂t

is Lipschitz-continuous w.r.t R and
t. Thus, we can conclude that ∇θJ is Lipschitz-continuous w.r.t θ. Hence,
inequality (2.69) holds.

To prove ∇cJ is Lipschitz-continuous:

∇cJ =


∫
R3 [p(x)− q(Rx+ t)]ϕijk(x) dV

...∫
R3 [p(x)− q(Rx+ t)]ϕijk(x) dV

 (2.79)

It is obviously Lipschitz-continuous w.r.t c since c is eliminated. Therefore,
inequality (2.72) holds.

Furthermore, recall the above derivations, we already know that ∂q
∂R

and
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∂q
∂t

are bounded and tend to 0 when ‖x‖ → ∞, hence

∂

∂R

∫
R3

[p(x)− q(Rx+ t)]ϕijk(x) dV = −
∫
R3

∂

∂R
q(Rx+ t)ϕijk(x) dV

is bounded w.r.t R. Again, with similar derivations we could prove that it is
bounded w.r.t t. Hence, ∇cJ is Lipschitz-continuous w.r.t θ and thus inequal-
ity (2.71) holds.

So far, we have already given the proof to four inequalities in A1. Recall the
condition A2. From the above derivations, known that the Hessian of J w.r.t
c is 0, since the first derivatives (Equation 2.79) are already independent on c.
Hence, condition A2 is satisfied by ensuring r2(c), which encodes constraints
on c, being µ-strongly convex.

Therefore, with the help of Claim 2 and Claim 3, we are able to update c

and transformation parameters iteratively and separately: given initial guess
on transformation, which is denoted by θ0, we could solve the linear program-
ming problem

c0 = argmax
c

J (θ0, c),

subject to: |cijk| ≤
√
3

(s+ 1)(s+ 2)(s+ 3)(s− 2)π
∀i, j, k.

(2.80)

Then, with c0 we could update the transformation

θ1 = argmax
θ

J (θ, c0). (2.81)

In subsequent iterations, we continue this process to obtain ci and θi+1 in the
i-th iteration.
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3. Algorithms and implementation

In this chapter, algorithms from modelling point clouds to calculating optimal
transformation will be introduced and discussed in detail. An algorithm for
selecting the number of components of GMM will be given, as well as complete
algorithms for modelling point clouds using GMM and KDE to obtain the
corresponding density functions. Additionally, an algorithm, which is based
on Wasserstein distance and LBFGS, outputs optimal transformation on the
moving point cloud given density functions representing two point clouds will
be proposed. A full procedure for solving the point cloud registration problem
with proposed probabilistic methods will be shown in the end. The procedure
begins with two point clouds and ends with an optimal transformation of the
moving point cloud.

3.1 Modelling point clouds

Given a set of points, fitting GMM with the E-M algorithm is a well-studied
and reliable approach. [42] provides detailed information on the Gaussian mix-
ture model and EM algorithm, as well as necessary background knowledge. It
is worth mentioning the algorithm used to determine the optimal number of
components. As shown in Algorithm 1, a linear search on all possible num-
bers of components is performed. Note that since two point clouds obtained
from the same object share similar properties in terms of geometry, we could
run the algorithm once on one point cloud and directly apply the result when
modelling another point cloud. Where silhouette score is the average of sil-
houette coefficient (Equation 2.5) of all samples. Furthermore, this algorithm
includes GMM fitting. Therefore, once the optimal number of components is
determined, the corresponding optimal GMM is also established.
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Algorithms and implementation

Algorithm 1 Estimate number of components of GMM using Silhouette
score

1: Input: Point cloud P ; Boundaries of K: Kmin and Kmax
2: Output: Kopt (optimal number of components)
3: Kopt ← 0
4: scopt ← −1
5: for K ← Kmin to Kmax do ▷ Update GMMP by performing GMM fitting

with K components
6: GMMP ← fit GMM to P with K components
7: sc← Silhouette score of GMMP
8: if sc > scopt then
9: scopt ← sc

10: Kopt ← K
11: return Kopt

Compared to the Gaussian mixture model, the implementation of kernel
density estimation is more straightforward. Given a set of points, the den-
sity function of KDE with Gaussian kernel can be directly obtained from the
combination of Equation 1.12, Equation 2.7 and Equation 2.10. Specifically,
if given a 3-dimensional point cloud P , the density function is p̂ as below:

p̂(x) =
1

nh3

∑
xi∈P

1

(2π)
3
2

exp

(
−1

2

∥∥∥∥x− xi

h

∥∥∥∥2
2

)
, (3.1)

where n denotes number of points in the point cloud, h = 1.06n− 1
5 Σ̂ and Σ̂ is

the average of standard derivation of each dimension of P .

3.2 Finding optimal transformation

Since in subsection 2.5.2 we have proved that the approximate Wasserstein
distance is differentiable w.r.t transformation and actually compute it, we are
able to design a gradient-based algorithm to find optimal transformation it-
eratively. A simple reference algorithm is provided in Algorithm 2. When
using K-L divergence, the calculation of gradient is intuitive and easy to im-
plement with third-party packages such as autograd from PyTorch. Therefore,
the algorithm for computing optimal transformation with K-L divergence and
gradient-based method is not elaborated further in the thesis. In practice,
we used LBFGS (Algorithm 3) to find optimal transformation. Again, some
modifications should be made when using Wasserstein distance because of its
two-layer nature. ĉ should be updated inside the loop. The complete algorithm
of LBFGS with Wasserstein distance could be found in Algorithm 4.
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3.2 Finding optimal transformation

Algorithm 2 Algorithm to find optimal rotation and translation with ap-
proximate Wasserstein distance

1: Input: p, q (probability density functions);
s (upper bound for i+ j + k);
α0, β0, γ0, t0 (initial values for rotation degrees and translation);
max_iter (maximum number of iterations);
ϵ (convergence threshold for Wasserstein distance);
µ (step size);

2: Output: α̂, β̂, γ̂, t̂ (optimal values for rotation degrees and translation)
3: n← 0
4: while n < max_iter do
5: for i← 0 to s do
6: for j ← 0 to s− i do
7: for k ← 0 to s− i− j do
8: Iijk ←

∫
[p(x)− q(R(αn, βn, γn)x+ tn)]ϕijk(x) dV ▷ Loop

over all possible combinations of i, j, k
9: Γ← [I000, I001, . . . , Iijk, . . . , Is00] ▷ Construct vector Γ from Iijk with a

certain order
10: ĉ← argmaxc Γc subject to |cijk| ≤

√
3

(s+1)(s+2)(s+3)(s−2)π
∀i, j, k ▷ Solve

the inner layer problem (linear programming)
11: define Jĉ(α, β, γ, t) =∑

i+j+k≤s ĉijk
∫
R3 [p(x)− q(R(α, β, γ)x+ t)]ϕijk(x) dV ▷ Define the

objective for outer layer problem
12: dn ← Jĉ(αn, βn, γn, tn)
13: if n == 0 or |dn − dn−1| > ϵ then ▷ Solve the outer layer problem
14: n← n+ 1
15: g← ∇Jĉ(αn−1, βn−1, γn−1, tn−1) ▷ Compute the gradient
16: [αn, βn, γn, tn]← [αn−1, βn−1, γn−1, tn−1]− µg
17: else
18: break ▷ If converge, break the loop and return optimal values
19: return αn, βn, γn, tn

Note that in the algorithms,
• Γ and c are vectors containing Iijk and cijk respectively, with some cer-

tain order and the constraint of i+ j + k ≤ s, e.g.,

Γ = [I0 0 0, I0 0 1, I0 0 2, . . . , I0 0 s, I0 1 0, . . . , Is 0 0], (3.2)

c = [c0 0 0, c0 0 1, c0 0 2, . . . , c0 0 s, c0 1 0, . . . , cs 0 0]
T ; (3.3)

• I6 denotes an identity matrix of size 6;
• Since α, β and γ are scalars and t is a 3 × 1 vector, the independent

variables of J are a mixture of scalars and a vector. Therefore, we define
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the gradient of J as

∇J (α, β, γ, t) :=


∂J
∂α
∂J
∂β
∂J
∂γ

∇tJ

 :=



∂J
∂α
∂J
∂β
∂J
∂γ
∂J
∂tx
∂J
∂ty
∂J
∂tz


. (3.4)

• To compute the integral, a "quasi trapezoidal rule" is applied, i.e.,∫
R3

f(x) dV =

∫
D

f([x, y, z]T ) dV = ∆x∆y∆z

Nx∑
i=0

Ny∑
j=0

Nz∑
k=0

f([xi, yj, zk]
T ),

(3.5)

where
– D = {(x, y, z) | x ∈ [xmin, xmax], y ∈ [ymin, ymax], z ∈ [zmin, zmax]} be-

ing a proper cubic integral area such that f is approximately 0 on
the bonds of D and outside D;

– x0 = xmin, xNx = xmax, y0 = ymin, yNy = ymax, z0 = zmin, zNz =

zmax;
– xi+1 − xi = ∆x ∀i ∈ [Nx − 1], yj+1 − yj = ∆y ∀j ∈ [Ny − 1],

zk+1 − zk = ∆z ∀k ∈ [Nz − 1].
Additionally, due to the limitation of floating-point arithmetic in comput-

ers, in practice, a tiny amount will be recognized as 0. Then, when using K-L
divergence, this will raise undefined errors, e.g., log(0) and ·

0
when p(x) → 0

or q(x) → 0 for some x. Therefore, denote machine epsilon by eps, we have
the practical version of Equation 2.59 as follow:

argmin
α,β,γ,t

∫
x∈R3

p(x) logmax

[
p(x)

max [q(R(α, β, γ)x+ t), eps]
, eps

]
dV. (3.6)

Note that with this approach, gradient may be 0 when two point clouds
are far from each other.

3.3 Full procedure

In this section, a full procedure for solving the point cloud registration prob-
lem with proposed probabilistic methods will be shown. Recall formulas (1.7)
and (1.8), there are two major steps to solve the problem. For the fitting step,
Gaussian Mixture Model and Kernel Density Estimation are introduced and
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3.3 Full procedure

discussed in detail in section 2.1 and section 2.2 respectively. For registra-
tion step, K-L divergence and Wasserstein distance are introduced as criteria
for judging whether two point clouds are close enough. The capability to use
gradient-based methods is discussed in section 2.5. Therefore, combining all
of them, we have the following probabilistic method for the point cloud regis-
tration problem:

• First, in fitting step: given two point clouds P and Q in the form of two
sets of 3D points, we use either GMM or KDE to model the point cloud
and get two probability density functions p and q corresponding to those
two point clouds.

– GMM: performing on one point cloud, use the method outlined in
Algorithm 1 along with the Expectation-Maximization algorithm,
detailed in subsection 2.1.1, to determine the optimal number of
components. Corresponding optimal GMM will be also established
during this process, which yields a probability density function.
Perform the same procedure on another point cloud so that we can
get two probability density functions, namely p and q representing
P and Q, respectively.

– KDE: first, calculate the average of the standard derivation of each
dimension of one point cloud, namely Σ̂. Then, substitute data
points to the formula in Equation 3.1 with h = 1.06n− 1

5 Σ̂. Perform
the same procedure on another point cloud. This results in two
probability density functions, denoted as p and q.

• Then, in the registration step, given two probability density functions p

and q, perform gradient-based methods to optimize the transformation.
– K-L divergence: solve the optimization problem (2.59) with gradient-

based methods. For example, the LBFGS algorithm (see Algo-
rithm 3 for reference). Output of the algorithm will be the optimal
transformation on the moving point cloud Q that aligns it with the
target point cloud P .

– Approximate Wasserstein distance: solve the optimization problem
(2.60) using Algorithm 2, specifically LBFGS algorithm can be ap-
plied (see Algorithm 4 for reference). Output of the algorithm will
be the optimal transformation on the moving point cloud Q that
aligns it with the target point cloud P .

• Finally, after obtaining the optimal transformation, apply this transfor-
mation to the moving point cloud Q. Then, establish the correspon-
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dences between points in two point clouds using the nearest neighbour
method. In other words, given a set

S = {(x,y) | x ∈ P ∧ y ∈ Q}, (3.7)

then, every element in the following set represents a pair of points be-
tween two point clouds,

Sco =

{
(x,y) ∈ S | x = argmin

x′∈P
d(x′,y) ∧ y = argmin

y′∈Q
d(x,y′)

}
. (3.8)

Note that in practice, due to noise, sampling errors, inaccurate transforma-
tion output by the registration algorithm, and the varying number of points
in different point clouds, a point in one point cloud does not always find its
corresponding point in another point cloud.
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4. Experiments

In this chapter, experiments will be conducted focusing on the fitting step and
the registration step, respectively. First, we will model the point clouds using
Gaussian Mixture Models and Kernel Density Estimation to compare their
differences and determine which model is more appropriate regarding to a given
dataset. Subsequently, we will apply the Kullback-Leibler divergence and the
approximate Wasserstein distance proposed in this thesis to the registration
step, starting with one degree of freedom in transformation, progressing to
two degrees and six degrees of freedom. These experiments aim to ascertain
whether our approximate Wasserstein distance algorithm can provide correct
gradients with respect to transformations and whether it is applicable for point
cloud registration.

4.1 Dataset

The experiment dataset comes from "Stanford Bunny" [43] with scan angle 000.
This dataset has been widely used in computer graphics and computational
geometry research, making it a standard benchmark for testing and compar-
ing point cloud processing algorithms, including point cloud registration al-
gorithms. The dataset includes complex surface details with rich geometric
features, which are challenging to process. Moreover, its asymmetry enables a
better understanding of the behaviour of the proposed algorithms.

Figure 4.1 shows the Stanford Bunny point cloud in front, left and top
views. In the figures, the red, green, and blue lines indicate the positive
direction of the x-axis, y-axis and z-axis respectively. For example, in the front
view (Figure 4.1a), the positive x-axis direction is pointing right, the positive
y-axis is pointing up, and the positive z-axis is pointing out of the page (�).
There are totally 40256 points in the point cloud, and the dimensions are

x ∈ [−0.071, 0.085];

y ∈ [−0.061, 0.091];

z ∈ [−0.094, 0.023].

(4.1)
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(a) Front (b) Left (c) Top

Figure 4.1: Stanford Bunny

4.2 Probability models

In this section, experiments on modelling point clouds with Gaussian Mixture
Model and kernel density estimation will be conducted and the correspond-
ing 3D probability density functions will be displayed in the form of slices.
This allows us to intuitively compare differences between the two probabilistic
models and point out that KDE might be a more suitable probabilistic model.

4.2.1 Gaussian Mixture Model

Algorithm 1 provides a linear search algorithm to find an optimal number of
components for GMM. In this experiment, the Stanford Bunny point cloud
is down-sampled to 1408 points with the voxel grid downsampling method
in order to speed up the computation. This means that the point cloud is
divided into a 3D grid of voxels, and points that fall into the same voxel are
approximated by a single point, typically the centroid of the points in that
voxel. Silhouette scores (Equation 2.6) of different numbers of components
when modelling the point cloud with GMM are shown in Figure 4.2, and the
output is Kopt = 229.

After applying E-M algorithm, we are able to obtain GMM probability den-
sity functions. Figure 4.3 shows six heat-map slices of the estimated probability
density function. The slices are parallel to the xy-plane. It can be observed
that the Gaussian mixture model captures certain features of the point cloud,
such as the shape of the bunny’s body (Figure 4.3b and Figure 4.3c) and its
long ears (Figure 4.3e, Figure 4.3d and Figure 4.3f). However, due to the rel-
atively small estimated variance of each component and the tendency of the
E-M algorithm to concentrate and cluster components in high-density areas,
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4.2 Probability models

Figure 4.2: Silhouette scores of different number of components

the resulting probability density function exhibits significant variability around
the bunny’s surface. This is shown in the image as sharp and clear boundaries,
which may affect the registration step. For instance, it might perform worse
when handling point clouds with substantial random noise.

(a) z = 0.045 (b) z = 0.016 (c) z = −0.013

(d) z = −0.042 (e) z = −0.071 (f) z = −0.1

Figure 4.3: Slices of GMM probability density function
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4.2.2 Kernel density estimation

As stated in section 3.1 to estimate the bandwidth for KDE, the standard
derivations of each dimension of the 1408-points point cloud (as the downsam-
pled point cloud from the previous experiment) are 0.04153521, 0.04034828

and 0.02181502 respectively. Therefore, their average, Σ̂ = 0.03456617. Then,
we have the bandwidth

h = 1.06n− 1
5 Σ̂ = 0.0085948. (4.2)

Applying Equation 3.1, we can obtain a KDE probability density function
modelling the point cloud. Figure 4.4 shows slices of the probability density
function. The features such as the shape of the bunny’s body (Figure 4.4b
and Figure 4.4c) and its ears (Figure 4.4d, Figure 4.4e and Figure 4.4f) are
also visible. In contrast to GMM (subsection 4.2.1), KDE provides a smoother
probability density function, which may help the registration step.

(a) z = 0.045 (b) z = 0.016 (c) z = −0.013

(d) z = −0.042 (e) z = −0.071 (f) z = −0.1

Figure 4.4: Slices of KDE probability density function

4.3 Approximating Wasserstein distance with
different number of basis functions

Recall Equation 2.28, by changing s, the number of basis equations can be
changed. Therefore, in this experiment, the effect of the choice of s on the
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Wasserstein distance approximation will be explored. In the experiments, the
Stanford Bunny point cloud is down-sampled to 23 points with the voxel grid
downsampling method. Then, the 23-point point cloud is duplicated, and one
of them is used as the fixed point cloud (i.e., target point cloud) and the other
as the moving point cloud (i.e., source point cloud). KDE will be applied to
model these two point clouds in the experiments.

In the first experiment, the moving point cloud is translated along x-axis,
y-axis, and z-axis respectively. For example, when translating along x-axis, the
moving point cloud is translated to coordinate (x, 0, 0) where x ∈ [−4, 4]. The
corresponding approximate Wasserstein distances with different s are shown in
Figure 4.5a, Figure 4.5c, and Figure 4.5e. In the second experiment, the mov-
ing point cloud is rotated around its z-axis, y-axis, and z-axis respectively. The
corresponding approximate Wasserstein distances with different s are shown in
Figure 4.5b, Figure 4.5d, and Figure 4.5f. Intuitively, the more basis functions,
the better to approximate all 1-Lipschitz, and thus the closer to the supremum
in Equation 2.25. However, from the results of the experiments, we observe
that the statement does not hold for some cases. As s increases, the curve
becomes higher and higher, but when s is greater than some certain value,
the curve gradually decreases. The reason for that comes from the imperfect
constraints of the linear programming scheme. The constraints (i.e., formula
2.38) are sufficient but not necessary conditions for ĥ to be 1-Lipschitz. In
other words, suppose the best Lipschitz constant of ĥ is k′, then constructing
ĥ with such constraints will make

k′ < 1, (4.3)

and thus it can not approximate all 1-Lipschitz functions in principle. [44]
states that in Equation 2.25, if consider h to be k-Lipschitz instead of 1-
Lipschitz, then the supremum of the formula will equals to k times Wasserstein
distance, i.e.,

kW1(µ, ν) = sup
||h||L≤k

[
E

x∼µ
[h(x)]− E

x∼ν
[h(x)]

]
. (4.4)

Therefore, denotes the optimal solution of linear programming (2.61) by
Ŵ1, then we have

Ŵ1 ≈ k′W1 < W1. (4.5)

Note that k′ is an unknown function of s, and it is not guaranteed to
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increase as s increases. Therefore, as shown in Figure 4.5, the curve may
decrease when s increases. However, the optimal solution remains the same
as the real Wasserstein distance, and Figure 4.5 shows that the approximation
scheme can provide correct descent direction. Therefore, choosing different s

will not make a huge impact on optimization. Considering the computation
speed, a small but not too small value of s should be selected. Unless otherwise
specified, s = 6 is selected by default in subsequent experiments.

(a) Translate in x direction (b) Rotate around x-axis

(c) Translate in y direction (d) Rotate around y-axis

(e) Translate in z direction (f) Rotate around z-axis

Figure 4.5: Approximated Wasserstein distance with different s
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4.4 Comparing approximate Wasserstein dis-
tance with K-L divergence

In the experiments, similar to section 4.3, the moving point cloud is modelled
by kernel density estimation, and it has 1 degree of freedom in terms of trans-
formation. The corresponding normalized approximate Wasserstein distance
and K-L divergence are shown in Figure 4.6. The figures show that on the
23-point Stanford Bunny point cloud, compared to the approximate Wasser-
stein distance, K-L divergence has a shape that is more conducive to the use of
gradient-based optimization methods in most cases. However, when two point
clouds are far from each other, the gradient (derivative in this 1-degree-freedom
case) of K-L divergence tends to be 0 as expected (recall Equation 3.6). When
two point clouds are close enough (e.g., less than 0.1 in Figure 4.6a, but still
far enough considering the size of the point cloud), approximate Wasserstein
distance can also provide correct descend direction, and it decreases faster than
K-L divergence. Similar situations can be observed in the cases of rotation.
The rotation angle is represented in radians. The observed decreases when ap-
proaching π or −π arise from the fact that the downsampled Stanford Bunny
point cloud is relatively thin, allowing the data points to be approximated
as residing on a single plane. Therefore, due to its symmetry, the period of
the approximate Wasserstein distance during rotation is π. When the moving
point cloud is subjected to a small angle of rotation, Wasserstein distance can
provide correct descend direction, while its decrease speed is at least not worse
and even faster in some cases (Figure 4.6d and Figure 4.6f).

(a) Translate in x direction (b) Rotate around x-axis

Figure 4.6: Approximate Wasserstein distance (WD) and KullbackLeibler
divergence (KLD) with different translation or rotation on source point cloud
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(c) Translate in y direction (d) Rotate around y-axis

(e) Translate in z direction (f) Rotate around z-axis

Figure 4.6: Approximate Wasserstein distance (WD) and KullbackLeibler
divergence (KLD) with different translation or rotation on source point cloud

Next, the moving point cloud has 2 degree of freedom in translation. Cor-
responding grayscale images for normalized approximate Wasserstein distance
are shown in Figure 4.7 with black representing 0 and white representing 1.
For example, in Figure 4.7a, the grayscale value of a pixel located in (z, y)

corresponds to the normalized approximate Wasserstein distance between the
fixed point cloud and moving point cloud, where the moving point cloud is
translated to position (0, y, z).

The figures show that the global minimum of approximate Wasserstein dis-
tance is obtained around (0, 0, 0) as expected and desired. However, multiple
local optima exist, which may prevent gradient-based optimization algorithms
from reaching the global optimal solution. In contrast, as shown in Figure 4.8,
K-L divergence has a better shape in this case.
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4.5 Point cloud registration with approximate Wasserstein distance

(a) Translate in z-y plane,
x = 0

(b) Translate in z-x plane,
y = 0

(c) Translate in x-y plane,
z = 0

Figure 4.7: Grayscale images for normalized approximate Wasserstein
distance

(a) Translate in z-y plane,
x = 0

(b) Translate in z-x plane,
y = 0

(c) Translate in x-y plane,
z = 0

Figure 4.8: Grayscale images for normalized K-L divergence

4.5 Point cloud registration with approximate
Wasserstein distance

The experiments begin with 1-degree-of-freedom transformation, by allowing
the moving point cloud to only translate along the z-axis, with constraints set
to x = 0, y = 0. Then, the moving point cloud is allowed to rotate around
its z-axis, with its centre being always the same as the target point cloud.
Subsequently, an experiment involving 2 degrees of freedom will be conducted,
allowing the moving point cloud to translate on the x − z plane. Finally,
experiments featuring six degrees of freedom, which include translations in
R3 and rotations in SO(3), will be conducted. Additionally, a comparison of
success rates with the registration algorithm that utilizes K-L divergence will
be included.

In the first experiment, for Figure 4.9a, the centre of moving point cloud
is translated to (0, 0, z) and the point cloud registration experiments was per-
formed using the approximate Wasserstein distance proposed in this thesis.
Assume that the optimal translation estimated by the algorithm that aligns
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the two point clouds, which acts on the moving point cloud, is (0, 0,−ẑ). Then,
the formula for calculating the relative error with respect to the point cloud
size is

relative error = |z − ẑ|
Lz

, (4.6)

where Lz denotes the length of the point cloud in z direction, i.e.,

Lz = 0.023− (−0.094) = 0.117

for the Stanford Bunny (refers to Equation 4.1).
For Figure 4.9b, the centre of moving point cloud remains aligned with

that of the target point cloud, but the moving point cloud is allowed to rotate
around its z-axis. The angle of rotation is expressed in radians, and it is known
that when the angle is 0, the two point clouds are perfectly aligned. Similarly,
the formula for calculating the relative error is

relative error = |γ − γ̂|
π

, (4.7)

where γ denotes the actual rotation angle (around z-axis) on the moving point
cloud and γ̂ denotes the estimated one.

(a) Point cloud registration results with
translation along z-axis

(b) Point cloud registration results with
rotation around z-axis

Figure 4.9: Point cloud registration results with 1 degree of freedom

Figure 4.9 shows that when the two point clouds are close enough, i.e., when
approximate Wasserstein distance can provide the correct gradient descent
direction, the registration result is good and relative errors are nearly 0. When
the two point clouds are far apart enough to be in a region with local optima,
the gradient-based method will fall into the local optima.

In the second experiment, as results shown in Figure 4.10, the centre of
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4.5 Point cloud registration with approximate Wasserstein distance

moving point cloud is translated to (x, 0, z), where x ∈ [−0.09, 0.09] and z ∈
[−0.3, 0.3]. The formula of relative error is

relative error = ‖(x, 0, z)− (x̂, 0, ẑ)‖
‖(Lx, 0, Lz)‖

. (4.8)

Figure 4.10 shows that for some small translations applied to the moving
point cloud, our proposed algorithm can return the correct translation to reg-
ister the point clouds. However, the problem arising from local optima (refers
to Figure 4.7b) prevents the algorithm from returning correct translation when
two point clouds are far from each other on z and y directions.

Figure 4.10: Point cloud registration results with translation on x− z plane

In the third experiment, Gaussian noise with deviations (0.01Lx, 0.01Ly, 0.01Lz)

is added to the points in the moving point cloud. Then, the moving point cloud
will be translated and rotated to random positions. Let (x, y, z) be the tuple of
random variables that denotes the coordinate of the centre of the moving point
cloud after translating. Let α, β, γ be the random variables that denote the ro-
tation angles around the x, y, z axes passing through the centre of the moving
point cloud. Then the random variables follow the following distribution:

x ∼ U([−0.3,−0.01] ∪ [0.01, 0.3]),

y ∼ U([−0.3,−0.01] ∪ [0.01, 0.3]),

z ∼ U([−0.3,−0.01] ∪ [0.01, 0.3]),

α ∼ U
(
−π

2
,
π

2

)
,

β ∼ U
(
−π

2
,
π

2

)
,

γ ∼ U
(
−π

2
,
π

2

)
.

(4.9)
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After applying the transformation on the moving point cloud, we use the
proposed algorithm to align two point clouds. Recall chapter 1, nearest neigh-
bour method is applied to estimate the correspondences. Since the target point
cloud (the fixed one) and the source point cloud (the moving one) come from
exactly the same data set, the ground truth of the correspondence information
is already known. Compare the estimated correspondences with the ground
truth, if 50% of the correspondences are correct, then the registration is con-
sidered to be successful. Table 4.1 shows the comparison of success rate of the
algorithm using our proposed approximate Wasserstein distance with the one
using K-L divergence.

"Distance" metric Success rate
Approximate Wasserstein distance 0.7%

KullbackLeibler divergence 78.9%

Table 4.1: Success rates of proposed point cloud registration algorithm with
approximated Wasserstein distance and KullbackLeibler divergence

This experiment shows that in the 6-degree-of-freedom case, the algorithm
can not work for most of the time. As discussed in previous experiments, the
reason for the low success rate is that the objective (refers to Equation 2.60) is
not convex enough when using the Stanford Bunny dataset and the proposed
basis functions Equation 2.27.
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5. Conclusion and outlook

In the beginning, we introduced the Lidar system and the assumptions regard-
ing the point clouds, specifically that only depth information is available. We
also discussed various methods for addressing the 3D point cloud registration
problem, underscoring the challenges and techniques relevant to spatial data
handling.

Following this, the probabilistic method and its two steps, namely the
fitting step and the registration step, are discussed. Specifically, we focused
on applying the Gaussian Mixture Model and Kernel Density Estimation to
the fitting step and employing K-L divergence and Wasserstein distance to the
registration step. Then, we proposed using linear programming techniques to
approximate the Wasserstein-1 distance that preserves differentiability through
Kantorovich-Rubinstein Duality.

The experiments demonstrate that the gradient-based registration algo-
rithm, which utilizes the proposed approximate Wasserstein distance, performs
effectively when the point clouds are close together and when restricted to 1 or
2 degrees of freedom. These experiment results not only highlight the poten-
tial of employing a linear programming approach to approximate Wasserstein
distance via Kantorovich-Rubinstein Duality but also validate our theoretical
framework regarding the differentiability w.r.t transformation on the probabil-
ity measure.

However, subsequent experiments show limitations in this approximation
approach, specifically the non-strictly convexity of the objective. The existence
of local optima prevents gradient-based algorithms from being effective in most
cases. These findings suggest that while the proposed method shows promise
under some conditions, its applicability in broader contexts requires further
enhancement on basis functions to overcome the challenges of local optima.

The first area for future exploration is improving the probabilistic models
used to represent point clouds. Gaussian Mixture Model and Kernel Density
Estimation approaches currently employed offer a solid foundation, but GMM
has limitations in capturing the full complexity of point cloud data, while KDE
is relatively slow in terms of computational speed. Research could focus on
developing more sophisticated models that better capture the details of spatial
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distributions while ensuring fast computation. This could lead to more robust
and accurate point cloud representations and speed up the registration step.

Another promising research direction is the exploration of alternative basis
functions for approximating the Wasserstein distance. The current basis func-
tions (Equation 2.27), characterized by trigonometric functions, are symmetric
about the origin and exhibit periodicity. This presents certain challenges, such
as its inadequacy in accurately approximating asymmetric or non-periodic Lip-
schitz functions.

Further, there is significant potential in exploring the integration of the
current methods with other advanced topics such as feature-based methods,
neural networks, and deep learning architectures. The proposed scheme of
using linear programming for approximating the Wasserstein distance points
towards a new possible direction for obtaining a metric to measure the simi-
larity between two probability measures while preserving differentiability with
respect to transformations of the probability measures. Such a metric poten-
tially benefits other research areas, such as Image Processing, Machine Learn-
ing, Computational Neuroscience, Finance, and Climate Science.
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A. Appendix

A.1 LBFGS Optimizer

Algorithm 3 LBFGS Optimizer
1: Input: J (α, β, γ, t) (the objective function);

α0, β0, γ0, t0 (initial values of the parameters);
m (history size of previous updates);
ϵ (convergence threshold);
max_iter (maximum number of iterations);
B0 (initial value for inverse Hessian matrix).

2: Output: α̂, β̂, γ̂, t̂ (optimal rotation and translation parameters).
3: g0 ← ∇J (α0, β0, γ0, t0)

4: k ← 0

5: while ‖gk‖ > ϵ and k < max_iter do
6: ▷ Apply the two-loop recursion to compute Bkgk.
7: if k > 0 then
8: r ← gk

9: for i← k − 1 down to max(0, k −m) do
10: ρi ← 1/(y⊤i si)

11: ai ← ρis
⊤
i r

12: r ← r − aiyi

13: µk =
s⊤k−1yk−1

y⊤k−1yk−1

14: B0 ← µkI

15: z ← B0r

16: for i← max(0, k −m) to k − 1 do
17: b← ρiy

⊤
i z

18: z ← z + si(ai − b)

19: else
20: z ← B0g0

21: ▷ Descent direction
22: pk ← −z
23: ▷ Perform a line search
24: λk ← argminλ J (αk + λpαk , βk + λpβk , γk + λpγk, tk + λptk)
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25: ▷ Update α, β, γ, t

26: αk+1 ← αk + λkp
α
k

27: βk+1 ← βk + λkp
β
k

28: γk+1 ← γk + λkp
γ
k

29: tk+1 ← tk + λkp
t
k

30: sk ← λkpk

31: yk ← ∇J (αk+1, βk+1, γk+1, tk+1)− gk

32: gk+1 ← ∇J (αk+1, βk+1, γk+1, tk+1)

33: k ← k + 1

34: if k > m then
35: ▷ Delete early historical values
36: delete yk−m−1

37: delete sk−m−1

38: delete other unnecessary values
39: return αk, βk, γk, tk

A.2 Reference LBFGS algorithm embedded with
c update

Algorithm 4 Optimization with LBFGS, update c inside
1: Input: p, q (probability density functions);

s (upper bound for i+ j + k);
α0, β0, γ0, t0 (initial values for rotation degrees and translation);
max_iter (maximum number of iterations);
m (history size of previous updates);
ϵ (convergence threshold);
B0 (initial value for inverse Hessian).

2: Output: α̂, β̂, γ̂, t̂ (optimal values for rotation degrees and translation).
3: l ← 0

4: for i← 0 to s do
5: for j ← 0 to s− i do
6: for k ← 0 to s− i− j do
7: Iijk ←

∫
R3 [p(x)− q(R(αl, βl, γl)x+ tl)]ϕijk(x) dV

8: Γ← [I000, I001, . . . , Iijk, . . . , Is00]

9: ĉ← argmaxc Γc subject to |cijk| ≤
√
3

(s+1)(s+2)(s+3)(s−2)π
∀i, j, k

10: define Jĉ(α, β, γ, t) =
∑

i+j+k≤s ĉijk
∫
R3 [p(x)− q(R(α, β, γ)x+

t)]ϕijk(x) dV

50



A.2 Reference LBFGS algorithm embedded with c update

11: g0 ← ∇Jĉ(αl, βl, γl, tl)

12: while ‖gl‖ > ϵ and l < max_iter do
13: if l > 0 then ▷ Apply the two-loop recursion to compute Blgl.
14: r ← gl

15: for i← l − 1 down to max(0, l −m) do
16: ρi ← 1/(y⊤i si)

17: ai ← ρis
⊤
i r

18: r ← r − aiyi

19: µl ←
s⊤l−1yl−1

y⊤l−1yl−1

20: B0 ← µlI

21: z ← B0r

22: for i← max(0, l −m) to l − 1 do
23: b← ρiy

⊤
i z

24: z ← z + si(ai − b)

25: else
26: z ← B0g0

27: pl ← −z ▷ Descent direction
28: λl ← argminλ J (αl + λpαl , βl + λpβl , γl + λpγl , tl + λptl ) ▷ Perform a

line search to solve
29: αl+1 ← αl + λlp

α
l

30: βl+1 ← βl + λlp
β
l

31: γl+1 ← γl + λlp
γ
l

32: tl+1 ← tl + λlp
t
l ▷ Update α, β, γ, t

33: sl ← λlpl

34: yl ← ∇Jĉ(αl+1, βl+1, γl+1, tl+1)− gl

35: gl+1 ← ∇Jĉ(αl+1, βl+1, γl+1, tl+1)

36: l ← l + 1

37: if l > m then ▷ Delete early historical values
38: delete yl−m−1

39: delete sl−m−1

40: delete other unnecessary values
41: return αl, βl, γl, tl
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A.3 Code

The reference implementation with Python for the algorithms is available at
https://github.com/Li4ngXu/ProbMethodForPointCloudReg.

A.4 Notations and conventions

Mathematical expression Meaning
D dimension
R the set of real numbers
x D-dimensional point
y D-dimensional point
P point cloud
Q point cloud
T transformation

SE(D) D-dimensional special Euclidean group
SO(D) D-dimensional rotation group

R rotation matrix
t translation vector
n number of points in a point cloud
M probability model
Θ tuple of parameters of some probability model
P probability
K number of components (of GMM)
K kernel function
N Gaussian (Normal) distribution
µ mean vector (for Gaussian distribution)
Σ covariance matrix (for Gaussian distribution)
I identity matrix
sc silhouette score

Table A.1: Notations
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