
UTRECHT UNIVERSITY

Department of Information and Computing Science

Artificial Intelligence Master Thesis

Code Generation on a Diet: A Comparative Evaluation of

Low-Parameter Large Language Models

First examiner:

Gatt, Albert

Second examiner:

Dalpiaz, Fabiano

Candidate:

Carboni, Leonardo

June 29, 2024

Abstract

In the constantly evolving field of software development, the demand for

automated code generation has significantly increased since the release of

AI based tools like ChatGPT and GitHub Copilot. These tools, powered by

Large Language Models (LLMs), typically require server requests due to

their closed source nature and substantial computational costs. This thesis

investigates the potential of smaller, locally runnable low-parameter LLMs

in the context of code generation. The research begins with an overview of

the state of the art of coding and its anticipated evolution thanks to AI

integration. It continues by analyzing the current landscape of LLMs by

explaining the underlying mechanisms of these models and listing several

of the most important low-parameter models, such as Mistral, CodeLlama

and DeepSeek-Coder. The study also examines the impact of techniques

like fine-tuning, instruction-tuning and quantization on improving

performance and efficiency. Additionally, it reviews the available code

evaluation techniques, focusing on match-based and functional metrics,

and discusses the datasets used to evaluate the models. The methodology

employed involves selecting suitable datasets and models, generating code

samples, and evaluating them using both types of metrics. The evaluation

highlights the limitations of match based metrics in capturing the LLM’s

true code generation performance and emphasizes the importance of

functional metrics like pass rates. The findings indicate that while larger

models generally outperform smaller ones, the performance gap is

narrowing, thanks to higher quality and more domain-specific training

data. Moreover the study confirms the effectiveness of the aforementioned

fine tuning and quantization techniques in improving the model’s

capabilities and lowering the requirements needed to run them. The thesis

concludes by suggesting that with continuous advancements, smaller

models could play a crucial role in making high quality code generation

more accessible and sustainable.

2

Contents

1 Motivation Behind the Research 5

1.1 LLMs are more used than Stack Overflow 5

1.2 The advantages of smaller models 6

1.3 Research Questions . 8

2 LLMs for Code Generation 9

2.1 Why coding is relevant . 9

2.2 The Foundation: Language Models 13

2.3 Scaling Up: Large Language Models 14

2.4 Efficiency by Design: Low-Parameter LLMs 16

2.5 Even Smaller: Quantized Models 18

2.6 Large Language Models for code generation 20

2.7 Fine Tuning . 22

2.8 Instruction Tuning . 23

2.9 What’s next for LLMs . 24

2.10 Code evaluation methods . 25

2.11 Datasets . 28

2.12 Summary . 31

3 Methods 33

3.1 Datasets and Model Selection 33

3.2 Sample Generation . 36

3.3 Evaluation . 37

3.4 Analysis . 37

4 Results Analysis 39

4.1 Match Based Metrics correlation 40

4.2 Models Comparison . 43

3

CONTENTS CONTENTS

4.3 Quantisation Comparison . 48

4.4 Key Findings . 55

5 Conclusion 57

5.1 Future Work . 58

5.2 Limitations of the study . 59

5.3 Acknowledgements . 59

A Ethics and Privacy Quick Scan 69

B Dataset details 70

B.1 Dataset Examples . 70

B.2 Unused Dataset . 72

C Used LLMs Details 75

C.1 Templates . 75

4

Chapter 1

Motivation Behind the Research

In the constantly evolving field of software development, the demand for

automated code generation has grown exponentially since the public re-

lease of highly capable large language models and tools like ChatGPT and

GitHub Copilot. Some of these models, however, are only accessible via

APIs because of their closed source nature and computational costs. More

in detail, OpenAI’s flagship model, GPT4, reaches a summed parameter

count of around 1.76 trillion, spread across its 8 sub-models connected by

a Mixture of Experts architecture, according to an industry leak [59]. This

research aims to discover if and how smaller models can generate quality

code on par with the best available LLMs.

1.1 LLMs are more used than Stack Overflow

It is undeniable that, since the release of Copilot and ChatGPT, artificial

intelligence has become one of the most useful tools in the software de-

velopment community [1][21]. In this field, it has always been common to

take inspiration from someone else’s code via GitHub, Stack Overflow or

whichever blog about computer science. However, the code one can find

online would need to be adapted to the developer’s use case in the ma-

jority of occasions. On the contrary, feeding LLMs the right prompt and

enough context, like the rest of the code, or a good and detailed explana-

tion of what we need to implement and how, allows the system to give the

5

1.2 The advantages of smaller models Motivation Behind the Research

right solution in a good percentage of cases. This allows for a faster devel-

opment of systems, and, in some cases, even a better quality of the code.

Moreover, users can interact with LLMs by asking the AI to tweak parts of

the generated code or to explain how it works, without the need to wait for

an answer or the inconvenience of going through a list of similar threads

until the doubts have been cleared up.

1.2 The advantages of smaller models

It is generally safe to assume that larger models tend to outperform smaller

ones, a conclusion that can be reached without extensive technical knowl-

edge. This assertion is supported by researches on scaling laws such as the

study conducted by Kaplan et al. (2020) [34], which provides empirical evi-

dence of the performance benefits associated with larger models.

The landscape of large language models currently spans a broad and rapidly

expanding spectrum, including both open-source and proprietary mod-

els of varying sizes and architectures [79]. Leading the industry are major

corporations like Google, Meta, and the collaboration between OpenAI

and Microsoft engaged in a competitive effort to develop the most accu-

rate models possible, alongside emerging startups that often focus on more

specific sectors like efficiency or multilingualism. OpenAI’s GPT-4 [47] is

a proprietary model with a high parameter count, accessible through its

API or a subscription-based chat service. Google’s latest high-performing

model, Gemini [63], also closed-source, is available in various configura-

tions named Nano, Pro, and Ultra, with the latter achieving parity with

OpenAI’s flagship model across numerous tasks. Conversely, Meta’s LLaMa

(all the different versions) [65] [2] represents an open-source and permis-

sively licensed LLM available in different sizes (7, 34, 70 and 400 billion

parameters). LLaMa’s approach is different from its counterparts because,

despite not leading in performance metrics, it is highly regarded within

the open-source community for encouraging the development of special-

ized adaptations that contribute significantly to AI research advancements.

Overall, the models proposed by both big tech and smaller companies

6

Motivation Behind the Research 1.2 The advantages of smaller models

span from fewer than 10 billion parameters to several hundred billion

parameters. A very comprehensive analysis of the LLM landscape is pre-

sented in a 2023 survey by Zhao et al. [79].

Nevertheless, smaller models, thanks to their open-source nature and the

support from the developer community, have made significant advance-

ments in every field, suggesting that they are on a path to becoming a rele-

vant part of the market too, leveraging their key strengths to close the gap

with larger models. Additionally, on top of the architectural improvements

that brought small models into practical use, research introduced the con-

cept of quantization, further simplifying the model inference via the ap-

proximation of the LLM’s weights, reducing the computational require-

ments for running models on systems with limited performance capabili-

ties [13].

Locally runnable models, despite not being as reliable as top level paid

ones, present quite a list of advantages:

• Prices: There is no fee for API calls because the smaller versions can

operate on desktop computers and laptops with medium-to-high

performance. As a result, they are easier to access for both businesses

and individuals.

• Control: Low parameter models can be easily and affordably fine-

tuned by the user or the enterprise for certain tasks or coding styles.

A software development business, for instance, might employ a cus-

tom model to adhere to their own production code style or use an

internal library. On a more sensitive note, the models can also be ad-

justed with uncensored data; this eliminates the need to adhere to the

safety norms that a publicly traded company must follow.

• Privacy: Running a model locally means that the interaction history

between LLM and user are in full control of the user itself and cannot

be used in any way by third parties for analytical purpose.

• Environmental Sustainability: Less computing power required means

less energy spent, which translates to less carbon emissions [19] than

7

1.3 Research Questions Motivation Behind the Research

the ones of high parameters LLMs that run on often coal-powered

[62] data centers.

This research focuses on exploring the available open source models with

smaller parameters counts, that offer a good performance for little to no

cost, investigating the methods in which generated code can be evaluated

and understanding which Large Language Model is best at solving coding

tasks.

1.3 Research Questions

The research questions that this thesis aims to answer are:

RQ1. How do low-parameter large language models’ coding capabilities

compare to the ones of bigger models?

RQ2. What code evaluation methods can be used to enable comparative

analysis?

RQ3. Which small LLM is the overall best at coding?

RQ4. How much does quantization influence the quality of the generated

code?

8

Chapter 2

Current Landscape of Large

Language Models for Code

Generation

This section contains all the primary concepts that are explored in this re-

search. First of all, an analysis of the state of the art of coding and why

AI is always going to be more relevant in the field. Secondly, it contains

an overview of the main LLMs that will be examined, the fine tuning and

quantization techniques used to improve performance and reduce compu-

tational requirements of the LLMs. Finally, it discusses the available met-

rics that will be taken into consideration and the open source code comple-

tion datasets currently used to evaluate the models.

2.1 Why coding is relevant

In the constantly evolving field of technology, coding remains one of the

most fundamental skills, shaping nearly every kind of industry. The pro-

gramming task, that initially contemplated the use of punching cards and

was limited to a small number of very specialized scientists, has seen an

exponential growth after the creation of computers, that made it more ac-

cessible via the invention of programming languages. The first languages

that came to life in the 1950s and 1960s were all developed to solve scien-

9

2.1 Why coding is relevant LLMs for Code Generation

tific, mathematical, engineering and business related problems. After the

1970s, with the invention of languages such as C, programming became

useful for a potentially infinite number of tasks, like the creation of operat-

ing system and applications. Every programming language has to follow

a particular logic, which defines what and how different ideas can be im-

plemented. This means that programming languages can be placed on

a scale that defines the level of abstraction that a language can achieve.

Lower level languages, like Assembly, C and C++ make use of logic that

is as close as possible to the machine language (which is the most basic set

of instruction that the computer can execute) and revolves around basic

operations regarding arithmetic and memory management. High level lan-

guages, on the other side, are more comprehensible to humans and allow

for the implementation of different programming paradigms like Object

Oriented Programming. OOP has opened the door to reusable code, allow-

ing programmers to develop more complicated systems that also made use

of interactive graphical user interfaces. Some languages, however, even

if high level, are structured differently than others, due to their scripting

nature. A scripting language, like Python or Perl can be used to automate

repetitive tasks and run autonomous systems.

2.1.1 The new coding era

The programming landscape has undergone a transformation with re-

cently introduced technologies that enhance productivity and accessibility.

Two pivotal developments are chatbot interactions and code completion

tools, both leveraging artificial intelligence to change how programmers

interact with code.

AI chatbots have introduced a new layer of functionality and convenience,

with their ability to translate natural language to code. Giving detailed

instructions to tools such as ChatGPT, it is possible to obtain a snippet

of code in almost every existing programming language, that attempts

to solve the specified problem. This application helps programmers to

quickly prototype ideas, explore solutions, and learn new programming

10

LLMs for Code Generation 2.1 Why coding is relevant

concepts without having to write code from scratch.

Code Completion tools, like GitHub Copilot [22], offer contextual code

suggestions, predicting the following line(s) of code that the programmer

would need to write by hand. Thus this tools are not that suitable for prob-

lem solving, or at least not like chatbots can be, their main advantage is the

performance increase the developer gains by not having to rewrite repeti-

tive or boilerplate code.

Other AI applications not explored in this research touch topics like:

• Code Optimization: AI can analyze code and suggest optimizations

for performance, memory usage, or readability. For example, given

a function in python that makes use of for loops and matrix multi-

plications, a well trained LLM could suggest the use of optimized

methods from specific libraries like numpy, or refactor the code to take

advantage of list comprehension, a python feature that allows for

faster list population. The study from Wu et al. [72], explains how,

thanks to Reinforcement Learning with Human Feedback, their agent

CodeZero is able to rewrite code to minimize compiler instructions.

• Bug Detection: Machine learning models can be trained to detect

and fix bugs in code by analyzing patterns from existing codebases.

This means that the LLM could notify the developer regarding poten-

tial flaws like the possibility of division by 0 or the absence of excep-

tion handling.

• Code Translation: LLMs can translate code from one programming

language to another, facilitating cross-platform development and

legacy code migration.

• Code Refactoring: AI can assist in refactoring code by identifying

opportunities for improvement and suggesting changes to enhance

code quality and maintainability. For instance, it could help prevent

errors related to variables sharing the same name and improve read-

ability by extracting repeated or similar code parts into a single func-

tion.

11

2.1 Why coding is relevant LLMs for Code Generation

• Code Documentation: Language Models can generate documenta-

tion for code by analyzing its structure and functionality, reducing

the manual effort required. These tools have been introduced well

before the possibilities to implement them became available [56] and

are now widely diffused in the developer community.

• Test Case Generation: AI can generate test cases for software based

on the requirements, reducing the need for manual test design and

ultimately delivering more robust software.

• Test Automation: AI can automate various testing tasks, such as UI

testing, load testing, and regression testing, improving test coverage

and efficiency.

2.1.2 Transition to no-code

During a presentation about new AI chips, NVIDIA’s CEO Jensen Huang

made a bold prediction, suggesting that AI will eventually take over cod-

ing, making programming as we know it optional [67]. According to Huang,

future development processes will diverge significantly from current prac-

tices. People and companies will be able to implement their ideas just by

explaining them to AI models. This shift could not only enhance perfor-

mance but also unlock a myriad of possibilities currently beyond our con-

sideration. This statement aligns with the recent emergence of DevinAI1,

a groundbreaking AI system developed by Cognition Labs, hailed as the

first autonomous AI software engineer capable of tackling complex en-

gineering tasks from start to finish without human intervention. When

evaluated on the SWE-Bench benchmark [33], which tests an AI’s ability to

solve real-world GitHub issues, DevinAI correctly resolved 13.86% of the

issues unassisted, far surpassing the previous state-of-the-art model’s per-

formance of 1.96% unassisted and 4.80% assisted. DevinAI, controlled by

a fine-tuned LLM, autonomously tackles tasks for review, using a compre-

hensive suite of developer tools in a safe sandbox environment. If future

1Devin’s introduction blog post available at https://www.cognition.ai/blog/
introducing-devin

12

https://www.cognition.ai/blog/introducing-devin
https://www.cognition.ai/blog/introducing-devin

LLMs for Code Generation 2.2 The Foundation: Language Models

versions of AI software developers will keep getting better, it is very likely

these tools will follow the success gained by ChatGPT and Copilot. How-

ever, in order to obtain better results, it is still very important to develop

and discover techniques regarding the main component of such AIs, the

Large Language Models.

2.2 The Foundation: Language Models

In the last years, the field of Natural Language Processing has come a long

way. The objective of this AI research field is to build models of the human

use of language that serve in various technological applications. The lan-

guage model, considered one of the foundational components of this tech-

nology, is a probabilistic model that assigns a probability to a sentence or

word sequence P(word1, word2, ..., wordn−1, wordn), estimating how likely it

is to occur in natural language.

Natural Language Processing, is a research field that focuses on different

tasks related to the understanding and generation of text. In order for a

large language model to be considerable good, it must have good perfor-

mances in both NLU (Natural Language Understanding) and NLG (Natu-

ral Language Generation).

Some NLU applications include:

• Sentiment Analysis: Determining the sentiment expressed in a text,

such as capturing if a review is positive or not.

• Entity Recognition and Relationship Extraction: Identifying key

elements in text like names of people and the relationships between

subjects.

• Text Classification: Categorizing text into one or more predefined

topics based on their content. One example is spam detection in email

systems.

A good understanding of language can therefore lead to a good text se-

quence generation, that can be used for different applications like:

13

2.3 Scaling Up: Large Language Models LLMs for Code Generation

• Machine Translation: translation of an input text in a different tar-

get language. The LM is used to decide the words and the order in

which they have to appear.

• Speech Recognition: transcript text from acoustic signal. The sen-

tence probabilities help decide between similar-sounding options.

• Summarization: generate shorter paragraphs from longer textual

inputs.

• Dialogue Systems: communicate with user through conversation.

• Content Generation: given an initial prompt, the model generates a

sequence of words that reflects the solution of the problem described

in the prompt. Code generation, the topic of this research, falls under

this prominent area of AI applications.

2.3 Scaling Up: Large Language Models

Large Language Models, distinguished from standard LMs for their abil-

ities in general-purpose language generation, are commonly trained via

self-supervised and semi-supervised training techniques based on big

datasets. Currently, the most performing LLMs are influenced by the trans-

former architecture, presented in Google’s "Attention Is All You Need"

[68] in 2017, which gave birth to the widespread adoption of BERT in 2018

and, subsequently, larger and better models like the OpenAI’s GPT family,

Meta’s LLaMa, Google’s PaLM, Gemini and others.

The transformer is a neural architecture, originally developed for machine

translation, that employs positional encoding and an attention mechanism

to derive dependencies between input and output elements. Introduced

with an encoder-decoder implementation, it has been adapted to other

types of layer structures. The encoder’s function is to process the input by

converting words into a contextual representation, using positional encod-

ing to maintain sequence information that would be lost during parallel

processing. It makes use of self attention, allowing words to interact with

each other, in order to enhance the model’s understanding of the context.

14

LLMs for Code Generation 2.3 Scaling Up: Large Language Models

The decoder, based on the encoded input and the previous outputs, does

the opposite job of the encoder, employing both self attention for coher-

ence and cross attention to make the output accurately reflect the input

context. The transformer can handle parallel sequences of data, improving

performance and efficiency over the recurrent neural networks used for

most language tasks.

While the original transformer model makes use of both encoder and de-

coder, different variations that specialize in various aspects of language

modeling have been proposed. For example, BERT (Bidirectional Encoder

Representations from Transformers) utilizes only the encoder part to com-

prehend the context of words in text [15], making it very suitable for nat-

ural language understanding tasks. Conversely, models like T5 [54] and

BART [35] are examples of encoder-decoder architectures that are designed

for a broader range of tasks like text generation, summarization, and trans-

lation. Meanwhile, models such as the GPT series [6], based on decoder-

only architectures, focus on generating coherent and contextually relevant

output text based on the input they receive, making them the most aligned

with the language modeling objective previously introduced.

In the last year, researchers have been trying to mix the two major archi-

tectures, RNNs and transformers, to obtain even better results, developing

Receptance Weighted Key Value (RWKV) models, that use a linear atten-

tion mechanism, simpler than the one in the transformer, combined with

an RNN. RWKV is obtaining similar results to the transformer based al-

ternatives with similar parameter count, while keeping the use of the re-

sources significantly lower [51].

As introduced before, OpenAI’s GPT4 is still considerable the most power-

ful and accurate LLM available, but since LLaMa’s weights leak in march

2023 [69], the community has made big steps in improving models and

bridging the gap between open-source and closed-source models. As for

the current situation, different companies populate the LMSYS Chatbot

Arena Leaderboard [80] with one or more of their own models.

15

2.4 Efficiency by Design: Low-Parameter LLMs LLMs for Code Generation

2.4 Efficiency by Design: Low-Parameter LLMs

Figure 2.1: Large Language Models’ exponential growth across the years 2018-
2023

As mentioned earlier, it is proven that a higher number of parameters and

a bigger training set generally tend to give better performance [34], result-

ing in higher capabilities in capturing the nuances of language more ef-

fectively, leading to a superior level of generalization and understanding.

Furthermore, the relationship between model size and performance is not

linear but shows diminishing returns as the models become exceedingly

large, creating a power-law region outside of which the learning curve

plateaus [30]. The visualisation of this region is shown in figure 2.2, di-

rectly taken from the study by Hestness et al.[30]. The scaling laws apply

not only to LLMs [11] but also to neural models across various architec-

tures and domains, such as computer vision [75] and machine translation

[24].

16

LLMs for Code Generation 2.4 Efficiency by Design: Low-Parameter LLMs

Figure 2.2: Sketch of the power-law region learning curve, from Hestness et
al.[30]

Smaller models, however, thanks to different optimization techniques, are

now capable of yielding similar results to the ones of counterparts with 10

or 20 times the number of parameters, especially when comparing them on

specific tasks. For example, a smaller LLM trained on more code than nat-

ural language, like CodeLlama, is supposed to achieve a performance com-

parable to GPT 3.5 on coding challenges, outperforming the base Llama

model which should yield better results on more natural language related

tasks. First of all, it is important to separate low parameters models into

two categories: the downscaled version of a bigger models, like LLaMa2

7B, which is derived from the 70B parameter version [65], and models that

are designed to be small, like Mistral 7B, which is only available in one size

[32]. Models that employ more efficient data encoding techniques and at-

tention mechanisms, like parameter sharing [40] and FlashAttention [9],

can process information more effectively, improving performance without

linearly scaling the dimensions of the model. Training techniques are also

an important factor when trying to get the best out of limited sized mod-

els. Knowledge distillation, for example, is a technique that allows smaller

models to learn from the capabilities of their larger counterparts, learn-

ing to emulate their behaviour without scaling the size [25]. Finally, other

17

2.5 Even Smaller: Quantized Models LLMs for Code Generation

more practical techniques like fine tuning and domain specific instruction

tuning can improve the quality of the generated output. Both topics are are

explained more in detail in the relative sections 2.7 and 2.8.

2.5 Even Smaller: Quantized Models

Until now, the term ’size’ has referred to the dimensions of the model in

terms of its parameter count. This sections talks about less computation-

ally demanding version of the same LLM, where size is the actual memory

used by the system to load the model and run inference on it.

An LLM’s weights are the learned parameters that the model uses to gen-

erate text, and are typically stored as floating point numbers. The precision

of these numbers, that is the quantity of bits used to represent an informa-

tion, influences both the memory usage and the precision of the model.

For instance, weights are often stored in 32 bit floating point format (FP32),

which allows for a very detailed representation of the information but also

consumes substantial memory. To reduce computing requirements, mod-

els can employ lower precision formats like FP16 (half precision floating

point) and Bfloat 16, which is a format optimized for machine learning that

makes use of a different distribution in how each bit represents the dif-

ferent part of the number. Different floating point representation formats

have been proposed by companies and/or regulatory agencies [71], each

optimized for specific tasks.

In the last years a big effort has been done by the community to create

even more accessible models, using different compression methods. This

technique, called quantization involves reducing the precision of the model’s

weights and activations, compressing the model’s actual size without sub-

stantially compromising its performance or reducing the number of pa-

rameters. This makes small models even easier to run locally requiring less

resources, while still giving almost the best results possible. Lower preci-

sion models also allow for substantially cheaper requirements for fine tun-

ing, thanks to Quantized Low Rank Adapters (qLoRa [14]). The existing

18

LLMs for Code Generation 2.5 Even Smaller: Quantized Models

different quantization techniques can be categorized in two main branches:

Post-Training Quantization (PTQ), that recalculates the weights after the

training phase, and Quantization-Aware Training (QAT), that adapts the

training process to output directly the quantized weights [44]. QAT lets the

model take into consideration the quantization during the training phase,

allowing better performance than PTQ techniques. However, quantizing

weights after they have been calculated is less computationally demand-

ing than retraining a model, making post training quantization a more

diffused option. PTQ methods are divided in naive, hybrid and selective

methods [10]: the first methods quantize all the values to the same output

type (e.g. INT32 to INT8), hybrid quantization allows for mixed output

types, converting only specific operators to a lower rank type. The selec-

tive approach further refines the hybrid one, enabling the quantization of

specific operators with different calibration methods and granularity, of-

fering flexibility to optimize accuracy and latency for different parts of the

neural network. The first significant quantization method that maintained

high quality for models with over 7 billion parameters, called LLM.int8()

[13], is based on the 8 bit matrix multiplication, only limited to non outlier

values. Since this important breakthrough in the quantization field, differ-

ent and more refined methods have been developed, reaching even lower

bits multiplications and overall lighter models. Pre-quantized models are

typically available in three main formats [27]:

• GPTQ: compresses all weights to 4 or another specified number of

bits minimizing squared error between the full-sized weights and the

quantized version [20]. During inference, it dequantizes the weights

back to FLOAT16, improving performance, especially on GPU equipped

machines.

• GGUF (GPT-Generated Unified Format, formerly GGML): a more

versatile format, that allows better inference with CPUs and Apple’s

new Metal architecture.

• AWQ: similar to GPTQ, but uses a selective approach, assuming that

not all weights are equally important, allocating more space and

19

2.6 Large Language Models for code generation LLMs for Code Generation

higher precision to the more critical ones [39].

Large language models can ultimately be quantized to almost any quan-

tity of bits, with the most relevant being 4 and 8 bit. Other quantization

approaches have been proposed, like binary quantization. This new ap-

proximation technique exists in different variants, like the ternary value

based weights, as seen in BitNet b1.58 [46] and a more hybrid "AWQ-like"

approach that binarizes only the least important weights to values of 0 or 1

[60].

2.6 Large Language Models for code generation

Despite their linguistic origins, LLMs have proven to be able to handle

code as well, due to several factors:

• Similarities between natural language and code: both are communi-

cation means, following their own grammatical and syntactical rules.

Just like other languages, the model will learn to recognize and repli-

cate pattern found in code too.

• Structured nature of code: compared to natural language, code tends

to be more structured and less ambiguous, making it even easier to

generate.

• Abundance of training data: thanks to publicly available repositories,

like the ones on GitHub, there is an immense amount of available,

high quality and well documented code snippets, spanning every

language and sector.

Given the fast paced evolution that the NLP sector is experiencing, this

section will not attempt an exhaustive description of all the LLMs cur-

rently available. Instead, it identifies the key models that are representative

of the state of the art, acknowledging that the specific LLMs analyzed may

evolve with the progress of the study.

• Mistral 7B: A 7 billion parameters LLM engineered for performance

and efficiency [32] by Mistral AI. The model is capable of reaching

20

LLMs for Code Generation 2.6 Large Language Models for code generation

very good performance while being optimized for real-time applica-

tions. It makes use of sliding window attention and grouped-query

attention that bring down inference time and memory requirements.

The model also has a bigger context window than most of its rivals,

managing up to 32k tokens.

• Mixtral 8x7B: An evolution of Mistral that uses the Sparse Mixture of

Experts architecture, keeping the parameter count low but improv-

ing quality of answers [3]. The MoE architecture loads 2 of the 8 sub-

models on the device, allowing it to maintain computational require-

ments low. Despite this, the 8x7B model is still big compared to the

7B version, making it less accessible in terms of computing demand.

Another even bigger version of the model has been introduced, that

relies on 8x22B parameters sub-models, with double the context win-

dow (64k tokens).

• CodeLLaMa 7B, 13B and 34B: Version of LLaMa-2 from Meta specifi-

cally designed for code, available in different sizes [58]. LLaMa-2 [65]

won’t be analyzed because of lower performance on code due to the

availability of a version optimized for code.

• CodeQwen 1.5 7B: The Chinese model from Alibaba Cloud can man-

age up to 64k tokens and demonstrates great performance on 92 dif-

ferent coding languages [53].

• DeepSeek-Coder 6.7B and 33B: These open source models give no-

table results on various automated test, due to their training data

mostly being high quality project level code [37].

• Eagle RWKV-v5 7.25B: Open source model based on top of the RWKV-

v5 architecture with 10-100x lower inference costs that performs on

par with other 7B models in multi-lingual benchmarks [51].

• Phi-2 2.7B: This small model from Microsoft Research achieves near

state of the art performance on various tasks thanks to the high qual-

ity "textbook-grade" data it was trained on. The research paper for

Phi-1, "Textbooks are all you need", states that the quality of the train-

21

2.7 Fine Tuning LLMs for Code Generation

ing dataset influences the model’s performances more than the num-

ber of parameters, demonstrating the potential of strategically trained

small language models to match or exceed the capabilities of signifi-

cantly larger models [28].

These models have also been fine tuned on even more code, improving

further their performance on code generation:

• Phind-CodeLLaMa 34B: Fine tuned version of CodeLLaMa 34B from

Phind AI, trained on 1.5B tokens more than the standard version [4].

The models gives prominent results, but given its size, its require-

ments are still higher than most standard or even high end desktop

devices.

• Vicuna 13B and 33B: Similar to Phind-CodeLlama, Vicuna is a fine

tuned version of LLaMa2 which takes advantage of distillation knowl-

edge. It is trained on conversations between user and GPT4 [81].

• OpenHermes 2.5 7B: Mistral Fine-tune trained on GPT4 conversa-

tions and open source datasets [64].

• MagiCoder CL-7B and DS-6.7B: this models are respectively based

on CodeLLaMa and DeepSeek, fine tuned with 75000 synthetic in-

struction via a new method called OSS-Instruct [70]. The authors of

the paper claim its superiority over WizardCoder, previously known

as the best coding LLM.

2.7 Fine Tuning

Fine tuning is a transfer learning technique that retrains the weights of a

model using new data. This leads to higher performance on the newer

type of data, without distancing too much from the base model. In the

field of NLP, it is used to extend the knowledge of the model regarding

some topics like, for example, code generation. Using a model fine tuned

on a certain programming language or a certain set of operations will lead

to higher performance on the specific task itself. Even for code inclined

models like CodeLLaMa, fine tuning can yield higher results, both in over-

22

LLMs for Code Generation 2.8 Instruction Tuning

all coding capabilities, like Phind, with a 25% performance increase from

the base model, and specific capabilities like code style and use of custom

libraries. A fine tuned large language model’s performance is also depen-

dent on the size of the model itself and the specific task it is fine tuned for,

according to a study from Zhang et al. [76]. While fine tuning is a very

computationally demanding task, it is now easier and more accessible than

ever thanks to custom open source frameworks like Axolotl [8].

2.8 Instruction Tuning

Instruction tuning is a fine tuning technique for large language models

that teaches the model to generate a response to an instruction, in order

to get more practical results and less discursive answers. Models are gen-

erally trained on generic texts, mimicking the human discursiveness when

answering a question. This means that the answers might include unin-

tended sections like biased, toxic, untruthful or unnecessary text. In prac-

tice, instruction tuning helps to generate a better and more structured out-

put, facilitating the developments of pipelines that makes use of LLMs

instances and increasing the model’s accuracy. To obtain the best results

from a query to an instruction tuned LLM, the only necessary tweak needed

is to give a structure to the prompt.

Input:

"<s>[INST] Generate a Python function that takes a list of integers

and returns the sum of its elements. [/INST]"

Output:

1 def sum_of_elements(int_list):

2 """

3 This function takes a list of integers and returns the sum

of its elements.

4

5 Parameters:

6 int_list (list): A list of integers

7

23

2.9 What’s next for LLMs LLMs for Code Generation

8 Returns:

9 int: The sum of the elements in the list

10 """

11 return sum(int_list)

12

13 # Example usage

14 numbers = [1, 2, 3, 4, 5]

15 print(sum_of_elements(numbers)) # Output: 15

</s>"

This example shows the prompt template of Mistral 7B instruction tuned model,

where <s> and </s> delimit the beginning and end of a sentence, while [INST]

and [/INST] define the section for the instruction itself. The instruction provided

a clear and concise task for the LLM to perform, and the LLM responded with a

well-structured Python function that meets the specified requirements. It also in-

cluded a docstring and an example usage, demonstrating a thorough understand-

ing of the instruction.

Instruction tuning does not further train the model on its language mod-

eling objectives, but helps to align the output to better match the specific

input instructions. While this does not extend the model’s foundational

language skills, it can lead to the acquisition of new capabilities. This is

mostly achieved via a fine tuning technique called reinforcement learning

with human feedback, often referenced as RLHF, where each generated

response is evaluated by a human operator that triggers a reward mecha-

nism, improving the model’s performance by learning from these evalua-

tions. As shown in the research from Ouyang et al. (2022) [49], instruction

tuned models’ completions are generally preferred by human evaluators.

In this study, an instruction tuned version of an LLM will be used instead

of the base version or the chat-specific fine-tuned variant, when available.

2.9 What’s next for LLMs

During the first part of 2024, we have seen an evolution regarding how

LLMs interact with the user. While the multi turn question answering sys-

tem is both efficient and user friendly, a new type of LLMs is emerging.

24

LLMs for Code Generation 2.10 Code evaluation methods

These new LLMs, like OpenAI’s GPT-4o [48] and Google’s Project Astra

[23], introduce the capability of understanding and processing speech in

near real time, allowing for a more discursive chat between model and

user. Moreover they implement the possibility of processing real time video

too and are both deeply more aware of the tone of the conversation, show-

ing sparks of what could be called emotional intelligence. Most Large Lan-

guage Models are trained on a split of natural language and code, where

the natural language part prevails due to their intent being modelling hu-

man language. Because of this, these models are capable of a broad variety

of tasks, which makes them not optimal for automated code generation.

Some models, however, are designed with the intent to be good coders,

like DeepSeek Coder, which is trained from scratch on 2T tokens, with a

composition of 87% code and 13% natural language in both English and

Chinese [37]. The applications of coding LLMs are broad and span from

auto completion to fully autonomous AI Software Developer. For this par-

ticular kind of task, which requires extensive coding knowledge, it is im-

portant to have a reliable model that minimizes the mistakes. The field is

still in expansion, but given the potential it has, it is likely that it will de-

velop very rapidly.

2.10 Code evaluation methods

Code evaluation is a very complicated software engineering related tasks.

When assessing the quality of code it is important to take into considera-

tions some key aspects:

• Similarity to a ground truth solution: comparing the generated com-

pletion to a reference code can, in some cases, be a good way to de-

termine the quality of the code snippet by analyzing the similarity to

the ground truth solution.

• Adherence to language rules: the completion should follow the cod-

ing conventions in terms of syntax, usage of data structures and pro-

gramming paradigms to the specific language.

25

2.10 Code evaluation methods LLMs for Code Generation

• Syntactical correctness: the code must also be free of syntax errors,

allowing it to compile or run without issues.

• Functional correctness: the generated code has to fulfill the intended

purpose specified in the prompt and provide the expected outcome

in different conditions, including the edge cases.

Different metrics have been proposed to evaluate text in the context of

natural language generation. Various of the existing ones, however, are

match-based metrics, that compare the generated text to a ground truth

string. While these techniques are helpful for assessing machine translated

text in several languages, they may not be as indicative when applied to

code. This arises from the limited set of keywords used by programming

languages, and is aggravated by the multiple distinct approaches that can

be taken when solving a given coding problem. The most relevant match

based code evaluation metrics are mostly based on precision, recall and

accuracy, with some of them employing language models:

• Exact Match Ratio: measures the proportion of total predictions that

were correct. In the context of code, it assesses the percentage of matches

between the generated snippet and the ground truth.

• Edit Distance/TER: calculates the number of insertions, deletions, or

substitutions required to transform the generated code into the ref-

erence code. It provides a measure of similarity that accounts for the

possible minor modifications needed to correct the output, reflecting

the closeness of the generated code to the expected solution [61].

• BLEU: measures the similarity between two code snippets by count-

ing overlapping n-grams [50].

• CodeBLEU: evolution of BLEU that also considers the structure of

the code [57].

• CrystalBLEU: based on BLEU, but able to reduce the noise caused by

trivially shared n-grams [17].

• Ruby: considers lexical, syntactical, and semantic representations of

source code [66].

26

LLMs for Code Generation 2.10 Code evaluation methods

• BERTScore and CodeBERTScore: use contextual embeddings (BERT)

to measure similarity of text [78] and code [82].

• COMET: neural framework that exploits informations from both the

source input and a target-language reference translation in order to

more accurately predict MT quality [55].

• Rouge (Recall-Oriented Understudy for Gisting Evaluation): a recall

oriented set of metrics born to evaluate summarized text comparing

it to a reference [38]. It consists of Rouge-N, based on n-grams co-

occurrences, Rouge-L, that uses the longest common sub-sequence

of words in the two sentences to determine their similarity, Rouge-

W (similar to the previous one with the introduction of weights) and

Rouge-S, which measures the overlap of skip bi-grams between the

two sentences.

• YiSi: a metric that makes use of sentence representation to calculate

the similarity between a machine translation and human references

by aggregating the weighted distributional lexical semantic simi-

larities and optionally incorporating shallow semantic structures.

It offers different variants depending on the resources available for

evaluation [45].

• Meteor: computes a score based on explicit word-to-word matches,

synonyms and simple morphological variants of a word, taking into

account both precision and recall [12].

• CHRF: considers character-level precision, recall, and F1 score [52].

Code can also be evaluated via execution: running the code and the rela-

tive tests can be enough to check if the code actually resolve the problem

or not. This is, however, more intricate to implement and can suffer from

non exhaustiveness of test cases. The most common metric to evaluate ex-

ecution is pass@k, which quantifies the probability that at least one sample

out of the k best ones is correct (passes the tests) [7].

27

2.11 Datasets LLMs for Code Generation

pass@k := EProblems

[
1 −

(n−c
k)

(n
k)

]

Where:

k is the number of best samples considered

n is the total number of generated samples

c is the number of correct samples

EProblems is the expected value over the problems

This metric allows us to understand if the model, given a number of sam-

ples k, is able to solve the presented problem or not, by calculating the

complement of the probability that all k picks are wrong among the n − c

incorrect samples.

2.11 Datasets

Models are evaluated on the data they generate, therefore selecting which

data to synthesize is as important as choosing which metric to use. Next

are listed the most important code evaluation datasets, containing the

problem in natural language, a ground truth solution and eventually a list

of test cases:

• HumanEval: The most famous code evaluation benchmark, pro-

posed by OpenAI in 2021 [7]. Contains only 164 docstrings and rel-

ative solutions, with a list of test cases that need to pass in order to

confirm that the prompt has been interpreted correctly. The topics of

the questions encompass language comprehension, algorithms, and

basic mathematics, with some being similar to ones that could be en-

countered in software interviews.

• APPS: The Automated Programming Progress Standard consists of

10k coding problems, 131k test cases and 232k ground-truth solu-

28

LLMs for Code Generation 2.11 Datasets

tions written by humans. Problems vary in difficulty and can be quite

complicated to understand, with the average length of each prompt

being around 293 words [29].

• MBPP: Mostly Basic Python Programming consists of around 1000

entry level Python programming problems, covering programming

fundamentals, standard library functionality, and so on. Each prob-

lem consists of a task description, code solution and 3 automated test

cases. [5]

• CoNaLa: the Code/Natural Language Challenge dataset is filled

with 2879 examples from Stack Overflow questions. Each exam-

ple includes a natural language intent paired with a corresponding

Python snippet, typically consisting of a single line of code. In addi-

tion to the manually annotated dataset, there are also 598,237 mined

intent-snippet pairs [73]

• CodeContests: DeepMind’s dataset containing competition level

code used to train the AlphaCode model. The data is derived from

different sources and the problems contained in the dataset include

both correct and incorrect human solutions in different languages,

other than the relative test cases. [36]

• EvalPlus: EvalPlus is a code synthesis evaluation benchmark based

on HumanEval and MBPP. The HumanEval+ dataset contains altered

versions of ambiguous questions and extends the test cases up to 80

times the original number present in the standard HumanEval. The

overall performance over the standard version is 19.3-28.9% lower,

though the landscape is more varied now, with some smaller models

outperforming GPT-3.5 [42].

• Other Datasets: There are alternative coding datasets available, al-

though their relevance to the research may be limited. For instance,

Card2code Hearthstone [41] requires generating a corresponding

class based on a given Hearthstone Card description. Another ex-

ample is NAPS [74], which utilizes the Unified Abstract Syntax Tree,

an abstraction layer over the PSI of various programming languages

29

2.11 Datasets LLMs for Code Generation

designed for the Java Virtual Machine [31]. Finally, Natural2Code is

a coding dataset, supposedly similar to HumanEval, developed by

Google and shown in the Gemini presentation, which is not yet been

leaked online.

Considering the differences between chat-oriented instruction-tuned mod-

els and standard code completion models, it is important to make distinc-

tion between the prompt oriented evaluation sets already introduced and

the benchmarks that evaluate a model’s ability to suggest only the miss-

ing snippet. Different datasets have been proposed in order to answer

the question "Can Language Models give the right suggestion?". These

datasets, namely CrossCodeEval [16], RepoBench [43] and RepoCoder

[77], differ from the aforementioned sets like MBPP and HumanEval be-

cause they don’t specify the problem in natural language, but feed as prompt

the code that surrounds the missing section. Due to the nature of this eval-

uation methods, the context fed to the LLM is extended to the whole repos-

itory, and contains retrieved code from other relevant files.

Finally, RepoQA, developed by the EvalPlus group, is a benchmark for

evaluating long-context code understanding in large language models, ori-

ented on real-world repository based coding tasks in five programming

languages. It is based on the "Needle in the Haystack" problem, which re-

quires the identification of specific and relevant information from a large

textual context assessing LLMs’ ability of long-context code understand-

ing and retrieval [18]. The image 2.3, from RepoQA’s Homepage, shows

the structure of the context provided to the model. It begins with an initial

instruction outlining the task, similar to the one used for the other task, fol-

lowed by the code context, and then a description of the specific function

to be retrieved. Finally, the main instruction is repeated to reinforce the

model’s understanding of the task. The output, which should contain the

requested function, is then evaluated using BLEU and a similarity thresh-

old.

30

https://evalplus.github.io/repoqa.html

LLMs for Code Generation 2.12 Summary

Figure 2.3: RepoQA’s context structure, including the model’s response

2.12 Summary

This chapter has analyzed the state of the art of coding, reflecting upon

how it will evolve in the future thanks to the possibilities introduced by

artificial intelligence based tools that support and eventually might re-

place the role of developer. Code, being a subset of language, is modeled

in ways similar to the latter. The transformer, the most relevant neural ar-

chitecture in today’s language modeling landscape, has opened the doors

for a new era of code synthesis, based on pretrained large language mod-

els. These models vary in size, openness and performance on different

tasks. Thus bigger models tend to outperform smaller ones, it is also true

that, with time, efficiency and optimization allow to extrapolate more from

the small open source ones, making their use more accessible and demo-

31

2.12 Summary LLMs for Code Generation

cratic. To further improve the efficiency of these models, various tech-

niques have been introduced, each with a different goal. Quantisation al-

lows the model to run on approximated weights, making it even less com-

putationally onerous. Fine tuning is used to further train the model on un-

seen data in order to extend its knowledge, while instruction tuning helps

the LLM generate generally more coherent text in the context of multi turn

question answering.

The chapter has also given an overview of the most diffused and interest-

ing low parameters models, each characterized by their own architecture

and training data. Finally, we reflected upon the techniques employed to

evaluate an LLM, restricted to the field of programming. While it is im-

possible to evaluate a model by itself, it is feasible to evaluate the code it

generates and compare it to others. To generate code, various evaluation

datasets have been introduced, which require the model to output a code

snippet that solves the presented problem. In order to automate the evalu-

ation of code, multiple metrics have been introduced. While match based

ones, originating from the field of multilingual machine translation, should

give a sense of the quality of the generated code, functional metrics appear

as a more robust and indicative way to validate code and the model gener-

ating it.

32

Chapter 3

Methods

The research is divided in four parts: Datasets and Model Selection, Sam-

ple Generation, Evaluation and Analysis.

3.1 Datasets and Model Selection

The evaluation datasets referenced in Section 2.11 presents a diverse land-

scape that requires careful selection due to different levels of relevance and

applicability to our specific research objectives. A critical assessment of

these datasets reveals several limitations and mismatches with the goals of

our study:

• APPS: This dataset features a long and intricate prompt structure,

which consequently yields suboptimal results during the evaluation

phase. The complexity of APPS makes it a less indicative evaluation

harness.

• CoNaLa: Restricted solely to evaluations based on match-based met-

rics, CoNaLa offers limited utility for code analysis. While it will be

incorporated to some extent, its application remains constrained by

its evaluative methodology.

• CrossCodeEval, RepoCoder, and RepoBench: These datasets are

tailored for Fill In the Middle (FIM) models, which are specifically

optimized to consider both preceding and subsequent contexts. This

33

3.1 Datasets and Model Selection Methods

models are not what the research focuses on, thus diminishing the

datasets’ relevance.

• Card2Code: The exclusion of Card2Code is due to its lack of unique

features and real world applicability, which limits its utility in pro-

viding distinctive insights.

Given these considerations, the datasets selected for use in this study are

primarily HumanEval, MBPP, along with their enhanced versions Hu-

manEval+ and MBPP+, and RepoQA. These datasets have been chosen

for their compatibility with the research objectives, focusing on standard

LLMs, and their proven efficacy in rigorous evaluative contexts. More in

detail, HumanEval, MBPP, HumanEval+ and MBPP+ are composed of a

prompt describing the problem, a ground truth solution and a list of test

cases. A more in depth analysis of how each problem is structured, along

with examples, is provided in Appendix B. RepoQA, on the other hand,

makes use of 50 repositories in 5 programming languages to evaluate the

LLM’s context retrieval capabilities.

Dataset Type Problems Size Language Article
HumanEval Prompt/Solution/Tests 164 83.9 kB Python Link
MBPP Prompt/Solution/Tests 974 351 kB Python Link
HumanEval+ Prompt/Solution/Tests 164 2.9 MB Python Link
MBPP+ Prompt/Solution/Tests 378 1.13 MB Python Link

RepoQA Information Retrieval 500 10.3 MB Python, C++, Java,
TypeScript, Rust Link

Table 3.1: Dataset used and their relative info

In order to run inference on each problem, a system prompt has been de-

fined as follows:

Write code to solve the following coding problem. WRAP YOUR

CODE USING “‘ OR IT WON’T BE EXECUTED! DO NOT GIVE EXAMPLES!

This string states the task the model will have to tackle (solving the cod-

ing problem) and instructs it to use special characters to wrap code. These

characters are needed to automatically extract only the code from the an-

swer. The instruction and the prompt are formatted in the correct template

before being encoded and fed to the model. The whole pipeline has been

illustrated in figure 3.1 in chapter 3.2. The list of templates used can be

34

https://arxiv.org/pdf/2107.03374
https://arxiv.org/pdf/2108.07732
https://arxiv.org/pdf/2305.01210
https://arxiv.org/pdf/2305.01210
https://evalplus.github.io/repoqa.html

Methods 3.1 Datasets and Model Selection

found in appendix C.

Before acting, it is important to carefully choose which models to test and

how. The landscape of the LLMs for code generation listed in section 2.6,

contains a wide variety of models, which span different sizes and come

from different AI companies. While this list references the most popular

ones, there are significantly more models to be considered.

Thanks to the public availability of a leaderboard directly provided by the

EvalPlus Team, available on the EvalPlus Website, the research can benefit

from a very wide selection of LLMs to compare. However, due to com-

putational and time constraints, the more in depth study regarding quan-

tization only makes use of a limited number of models, chosen for their

relevance in the landscape of LLMs for coding:

• Mistral 7B: the highly regarded European model offers very fast and

efficient completions, making it one of the most used models in the

selected size range for multiple applications.

• CodeLlama 7B and 13B: Both the smaller versions of CodeLlama are

easily accessible in terms of costs. It is also interesting to understand

how much a code oriented model performs compared to less opti-

mized but generally more innovative ones.

• Llama 3 8B: The latest Llama model, announced as a GPT-4 com-

petitor, is expected to deliver good results while still being locally

runnable. Thanks to the popularity of its predecessors it has the po-

tential to become a very diffused option.

• MagiCoder-S-DS 6.7B: This DeepSeek-Coder based model, which

features a training set predominantly made of code, can also give in-

sight regarding the efficacy of fine tuned models.

• Phi-2 3B: The small model based on the claim that the quality of

training data influences the abilities of a model more than its size has

a lot to prove.

35

https://evalplus.github.io/leaderboard.html

3.2 Sample Generation Methods

3.2 Sample Generation

In this phase, the focus is on running the models to generate the samples

for each prompt. After obtaining all the datasets, these have been adapted

to a standardized data retrieval method (as explained in appendix B). A

pipeline has been designed to iterate over every dataset and query the

prompts to each of the selected models. The sampled completions are then

saved for evaluation. It is important to note that each LLM is prompted

using the correct template in order to take advantage of instruction tuning

where available.

Figure 3.1: Sequence Diagram of the pipeline implemented: each problem is
formatted and encoded before being passed as argument to the inference func-
tion of the LLM. The output is then decoded and, after extracting the relevant
section of code, saved to a JSONL file.

At this time it is very important to:

• Decide the right amount of sample to generate (n value): every model

is required to generate n completions for each problem. Despite be-

ing 100 samples the ideal number of completions, it could’ve resulted

in a very computationally onerous process and a possible waste of re-

sources. This n value also ideally represents the maximum number of

36

Methods 3.3 Evaluation

queries a user would try to prompt the model before understanding

that the required solution cannot be synthesized. For this reason, a n

value of 10 provides a compromise between insufficient testing and

excessive resource utilization.

• Adapt the prompt to each LLM: as already said, using instruction

tuned models, when possible, is supposed to yield better results thanks

to the higher degree of understanding from the LLM. Each model,

however, being trained on different datasets, requires different tem-

plates. Even though the transformer library allows for automatic

template formatting, not all models are updated enough to have it

as a feature. This implies the need of a dictionary that parses each

model to its own template, obtained via the HuggingFace description

page of the model1. The templates used are listed in appendix C.

3.3 Evaluation

In this phase, the generated code snippets have been evaluated using the

aforementioned metrics. While the match based metrics are as easy to im-

plement as importing their specific library, the functional metric requires

the implementation of a sandbox environment where the code will be run

and tested. Given that the chosen metric, pass@k, has been introduced

with HumanEval, it made sense to adapt the provided evaluation harness

to our needs, also for the sake of repeatability.

3.4 Analysis

After all the metrics have been calculated, they have been compared to an-

alyze the eventual correlation between match based ones and the execu-

tion metric. The comparison between the different metrics allowed us to

get better closure on the topic of code evaluation itself. The results from

1When an instruction tuned model is presented on HuggingFace, it is common
to show the prompt format like the developers did for MagiCoder-S-DS (https://
huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B)

37

https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B
https://huggingface.co/ise-uiuc/Magicoder-S-DS-6.7B

3.4 Analysis Methods

each model have been systematically compared by placing their scores

side by side. This approach has allowed for a comprehensive analysis,

highlighting the differences and similarities in their performance. More-

over, some of the most important models have been compared to their 4

and 8 bit quantized version, to understand how much performance degra-

dation is introduced by quantization and, more specifically, the GPTQ al-

gorithm.

38

Chapter 4

Results Analysis

This chapter contains the results obtained from the analysis conducted,

from getting a deeper understanding of the metrics, to figuring out which

model performs better on coding tasks, to an investigation regarding how

quantisation affects the generation of code. More specifically, after analyz-

ing the correlation between different metrics (section 4.1), we compare the

main unquantized versions of the most relevant models on the selected

datasets (section 4.2). This will allow us to also visualize how the scaling

law applies and how instruction tuned models perform against their base

version. In addition, we also present an analysis regarding the fine tuning

of code oriented models, to evaluate the performance delta introduced by

this technique (section 4.2.1).

After that, we show how quantization influences the main LLMs on the

task of code generation and, more in depth, how each model is affected by

weight approximation. Finally, we present the results obtained by running

the RepoQA test on different models, in order to understand which model

has the best context retrieval skills, once again analyzing how quantization

affects the performance of the model.

39

4.1 Match Based Metrics correlation Results Analysis

4.1 Match Based Metrics correlation

To evaluate the effectiveness of match based metrics, we put them in re-

lations with the functional ones. The selected metrics, chosen for their

widespread use and reliability, include: BLEU, TER, Rouge (1, 2 and L),

ChrF, Comet, BERTScore (Precision, Recall and F1) and CodeBERTScore

(Precision, Recall and F1). The following tests have been run using Mistral

7B, its quantized version and Mixtral 8x7B, chosen for their architectural

similarity.

After generating n = 10 samples for each problem in HumanEval and

MBPP, we calculated the match based metrics scores based on the pro-

vided standard reference solution (or multiple solutions for particular

metrics that take into account different references). Then, using the imple-

mented sandbox environment, we run every generated snippet of code/-

function on all of the proposed texts. After saving which samples pass the

problem and which don’t, we calculated a pass rate metric using the for-

mula pass_rate = #passed
n . Finally, we also considered the metric passed,

which is an indicator variable set to 1 if any of the n samples pass, and set

to 0 otherwise.

It is important to emphasize that, in alignment with the pass@k philoso-

phy, we put in relations the best performing samples of each problem. For

all the metrics except for TER, which is based on an inverse scale, we con-

sider the highest value among the n samples. Similarly, the passed metric

considers a problem solved if at least one of the samples solves it. Unlike

the other metrics, pass@k is not compared directly because it evaluates per-

formance across multiple problems, whereas our method averages the best

outcomes from each individual problem.

40

Results Analysis 4.1 Match Based Metrics correlation

The correlation matrices, calculated using Spearman’s rank coefficient,

shown in figures 4.1, 4.2a and 4.2b show how every metric relates to the

others across different models.

Figure 4.1: Spearman Correlation Matrix between Match Based Metrics and
Functional Metrics on Mistral 7B (unquantized)

(a) Spearman Correlation Matrix between
Match Based Metrics and Functional Met-
rics on Mistral 7B (quantized)

(b) Spearman Correlation Matrix between
Match Based Metrics and Functional Met-
rics on Mixtral 8x7B (unquantized)

Figure 4.2: Correlation matrices comparison

41

4.1 Match Based Metrics correlation Results Analysis

As expected, the functional metrics (Passed Ratio and Passed) and the

Match Based ones relate very poorly to each other in all models tested.

This is due to the nature of match based metrics, that can be observed in

the distributions plot (figure 4.3). All the match based metrics, in some or-

der, end up having a similar and gaussian-like distribution, with a very

small number of outliers. The functional metrics, however, due to their

nature, have a very polarized distribution, with a high count of values be-

ing 0 (the unsolved problems). The TER metric stands out from the group

because it has an inverse scoring nature; a lower TER score indicates a

stronger match between generated and reference code. Consequently, TER

negatively correlates with all other metrics.

Figure 4.3: Metrics Distribution on Mistral 7B (unquantized)

The observed lack of correlation between the match-based metrics and the

functional metrics, along with the Gaussian-like distribution of MBMs,

suggests that they may not be indicative of the performance dimension

that is captured by the functional metrics.

42

Results Analysis 4.2 Models Comparison

4.2 Models Comparison

As said before, due to computational constraints, the overall evaluation of

the base models is taken from the https://evalplus.github.io/leaderboard.html.

The table 4.1 represents the most important models present in the leader-

board, together with their sizes, their level of openness, whether they are

prompted or not (as in whether they are instruction tuned models) and

the relative scores for both standard and Plus version of HumanEval and

MBPP.

As reported in table 4.1, the top performing models remain big and closed

source ones, with GPT-4 Turbo still being the undefeated reference LLM.

Anthropic’s Claude 3 Opus confirms the theory of how closed source mod-

els benefit from private investments that allow for more refined training

datasets and tweaks. In contrast with this, the lowest step of the podium

sees CodeQwen 1.5 on top of it. This model shows impressive performance

especially if we consider the number of parameters. Following Alibaba’s

top coding model, we can see DeepSeek-Coder and a some models men-

tioned earlier, like Mistral, Mixtral, CodeLlaMa, LlaMa 3 and others.

43

4.2 Models Comparison Results Analysis

Model Version #P PR OS HE HE+ MBPP MBPP+ AVG
GPT-3.5 May 2023 Yes None 73.20 66.50 69.85

GPT-3.5-Turbo Nov 2023 Yes None 76.80 70.70 82.50 69.70 74.93
GPT-4 May 2023 Yes None 88.40 79.30 83.85

GPT-4-Turbo April 2024 Yes None 90.20 86.60 88.40
OpenAI

GPT-4-Turbo Nov 2023 Yes None 85.40 81.70 85.70 73.30 81.53
claude-2 Mar 2024 Yes None 69.50 61.60 65.55

claude-3-haiku Mar 2024 Yes None 76.80 68.90 80.20 68.80 73.68
claude-3-opus Mar 2024 Yes None 82.90 77.40 89.40 73.30 80.75

claude-3-sonnet Mar 2024 Yes None 70.70 64.00 83.60 69.30 71.90
Anthropic

claude-instant-1 Mar 2024 Yes None 57.30 50.60 53.95
Gemini Pro 1 Yes None 63.40 55.50 75.40 61.40 63.93Google Gemini Pro 1.5 Yes None 68.30 61.00 64.65

Mistral AI Mistral Large Yes None 69.50 62.20 72.80 59.50 66.00
Gemma 2B 2 No None 25.00 20.70 41.80 34.10 30.40

Gemma 2B - IT 2 Yes None 17.70 15.20 16.45
Gemma 1.1 2B - IT 2 Yes None 22.60 17.70 29.80 23.30 23.35
Gemma 1.1 7B - IT 7 Yes None 42.70 35.40 57.10 45.00 45.05

Gemma 7B 7 No None 35.40 28.70 52.60 43.40 40.03

Gemma

Gemma 7B - IT 7 Yes None 28.70 25.00 47.10 36.80 34.40
CodeGemma 2B 2 No None 26.80 20.70 55.60 46.60 37.43
CodeGemma 7B 2 No None 44.50 41.50 65.10 52.40 50.88

Google

CodeGemma
CodeGemma 7B - IT 7 Yes None 60.40 51.80 70.40 56.90 59.88

Mistral 7B 7 No None 28.70 23.80 51.90 42.10 36.63Mistral Mistral v0.2 7B - IT 7 Yes None 42.10 36.00 44.70 37.00 39.95
Mixtral 8x7B - IT 13 Yes None 45.10 39.60 59.50 49.70 48.48Mistral AI

Mixtral Mixtral 8x22B - IT 44 Yes None 76.20 72.00 73.80 64.30 71.58
CodeLlama-7B 7 No None 37.80 35.40 59.50 46.80 44.88

CodeLlama-13B 13 No None 42.70 38.40 63.50 52.60 49.30
CodeLlama-34B 34 No None 51.80 43.90 69.30 56.30 55.33
CodeLlama-70B 70 No None 55.50 50.60 53.05

CodeLlama

CodeLlama-70B-IT 70 Yes None 72.00 65.90 68.95
Llama3-8B 8 No None 33.50 29.30 61.40 51.60 43.95

Llama3-8B-IT 8 Yes None 61.60 56.70 70.10 59.30 61.93

Meta

Llama 3
Llama3-70B-IT 70 Yes None 77.40 72.00 82.30 69.00 75.18

CodeQwen1.5-7B 7 No None 51.80 45.70 73.50 60.80 57.95CodeQwen CodeQwen1.5-7B-Chat 7 Yes None 83.50 78.70 79.40 69.00 77.65Qwen
Qwen Qwen1.5-72B-Chat 72 Yes None 68.30 59.10 72.50 61.60 65.38

CodeT5+-2B 2 No Full 25.00 22.00 48.40 38.10 33.38
CodeT5+-6B 6 No Full 29.30 24.40 52.90 41.50 37.03Salesforce Code T5

CodeT5+-16B 16 No Full 31.70 26.80 56.60 47.10 40.55
DS-C 1.3B 1 No None 28.70 25.60 56.90 47.90 39.78

DS-C 1.3B IT 1 Yes None 65.90 60.40 65.30 54.80 61.60
DS-C 6.7B 7 No None 47.60 39.60 72.00 58.70 54.48

DS-C 6.7B IT 7 Yes None 74.40 71.30 74.90 65.60 71.55
DS-C v1.5 7B IT 7 Yes None 75.60 71.30 75.20 62.20 71.08

DS-C 33B 33 No None 51.20 44.50 47.85

DeepSeek AI DeepSeek-Coder

DS-C 33B IT 33 Yes None 81.10 75.00 80.40 70.10 76.65
Microsoft Phi-3 Phi-3-mini - IT 4 Yes None 64.60 59.10 65.90 54.20 60.95

Databricks DBRX dbrx-instruct 36 Yes None 75.00 70.10 67.20 55.80 67.03
Bud Code-Millennials code-millenials-34B 34 Yes None 74.40 70.70 76.20 64.60 71.48

StarCoder2-3B 3 No Full 31.70 27.40 29.55
StarCoder2-7B 7 No Full 35.40 29.90 32.65BigCode StarCoder 2

Starcoder2-15B - IT 15 Yes Full 67.70 60.40 78.00 65.10 67.80

Table 4.1: EvalPlus Leaderboard, grey models are fully closed source. #P =
Parameter Count, PR = Prompted, OS = Open Source Data

44

Results Analysis 4.2 Models Comparison

From a more detailed analysis, we can confirm that, relatively to the same

model, the scaling law applies, with bigger versions of LLMs perform-

ing better than their smaller counterparts, as represented in figure 4.4.

However, the rate of improvement and the shape of the growth curve dif-

fers significantly depending on the model. This variability suggests that

some architectures are more efficient at leveraging more computational re-

sources than others.

Figure 4.4: Analysis of performance increase different sizes of the same model

It is also confirmed that, in the context of coding and solving problems

based on prompts, instruction tuning influences positively the quality of

the response. The average performance increase between base and instruc-

tion tuned (prompted) model stands at 11.4% and a graphical analysis is

reported in figure 4.5. The bar plot illustrates the performance comparison

between the different model versions. Less performing models, such as

Gemma and Mistral, show minimal improvement or even a decline in ac-

curacy, while the models that already perform decently, benefit more from

instruction tuning.

45

4.2 Models Comparison Results Analysis

Figure 4.5: Analysis of performance increase between Base and Instruction
Tuned Models

Another relevant aspect to take into consideration is the fact that EvalPlus

Scores shuffle the leaderboard by quite a lot, with closed source models

performing better on the standard datasets than their more refined and

exhaustive version. This might or might not be an indication of the fact

that closed source models are trained on evaluation datasets too, making

them appear as more performing in the leaderboards.

4.2.1 Fine tuned models

The data presented in table 4.2, supports the efficacy of fine-tuning a cod-

ing LLM with additional high quality code. When compared with the re-

sults scored by the base models, the fine tuned version generally yields

better results. For example, Mistral 7B, that scores an average of 36.63%

as shown in table 4.1, gets widely outperformed by OpenChat 3.5, that

solves almost twice as many problems as the base model. Similarly, both

CodeLlama and DeepSeek-Coder exhibit potential for more accurate code

generation if further trained on high quality code. It is also confirmed that,

when using the same dataset to fine tune the models, DeepSeek-Coder re-

mains the most performing one compared to Mistral/CodeLlama based

46

Results Analysis 4.2 Models Comparison

LLMs.

Model Base Model #P PR OS HE HE+ MBPP MBPP+ AVG
Magicoder-S-CL-7B CodeLlama 7 Yes Partial 70.70 67.70 70.60 60.10 67.28Magicoder Magicoder-S-DS-6.7B DeepSeek-Coder 7 Yes Partial 76.80 71.30 79.40 69.00 74.13

WizardCoder-Python-34B-V1.0 CodeLlama 34 Yes None 73.20 64.60 75.10 63.20 69.03
WizardCoder-Python-7B-V1.0 CodeLlama 7 Yes None 50.60 45.10 58.50 49.50 50.93

WizardCoder-15B-V1.0 DeepSeek-Coder 15 Yes None 56.70 50.60 64.30 54.20 56.45WizardCoder

WizardCoder-33B-V1.1 DeepSeek-Coder 33 Yes None 79.90 73.20 76.55
Phind AI Phind-CodeLlama-34B-v2 CodeLlama 34 No None 71.30 67.10 69.20
Artigenz Artigenz-Coder-DS-6.7B DeepSeek-Coder 7 Yes None 75.60 72.60 80.70 69.60 74.63
Dolphin dolphin-2.6-mixtral-8x7b Mixtral 8x7B 13 Yes Partial 64.00 57.30 70.60 59.00 62.73

HuggingFace starchat2-15b-v0.1 StarCoder2 15 Yes Full 73.80 71.30 74.90 64.60 71.15
speechless-code-mistral-7B-v1.0 Mistral 7 Yes Partial 48.20 41.50 57.40 48.70 48.95

speechless-coder-ds-6.7B DeepSeek-Coder 7 Yes Partial 71.30 65.90 75.90 64.40 69.38
speechless-starcoder2-7b StarCoder2 7 Yes Full 56.10 51.80 66.70 56.30 57.73

speechless-starcoder2-15b StarCoder2 15 Yes Full 67.10 62.80 73.50 62.40 66.45
Speechless AI

speechless-codellama-34B-v2.0 CodeLlama 34 Yes Partial 77.40 72.00 73.80 61.40 71.15
OpenChat OpenChat-3.5-7B-0106 Mistral 7 Yes Partial 72.60 67.70 63.80 54.50 64.65

WaveCoder WaveCoder-Ultra-6.7B DeepSeek-Coder 7 Yes None 75.00 69.50 74.90 63.50 70.73
WhiteRabbitNeo WhiteRabbitNeo-33B-v1 DeepSeek-Coder 33 Yes None 72.00 65.90 79.40 66.90 71.05

XwinCoder XwinCoder-34B CodeLlama 34 Yes None 75.60 69.50 77.00 64.80 71.73

Table 4.2: EvalPlus learderboard for FineTuned Models. #P = Parameter
Count, PR = Prompted, OS = Open Source Data

47

4.3 Quantisation Comparison Results Analysis

4.3 Quantisation Comparison

After understanding that open source models are capable of generating

quality code on par with closed-source one, and comparing them to each

other, we can explore the possibility of making the models even easier

to run, by putting them against their quantized version. For the experi-

ment, the models are sampled in both their full sized version and their

4-bits quantized version, using GPTQ as the quantization framework. 4-

bits models bring a very substantial decrease in precision compared to

their full sized counterpart. This however is justified by the quantity of

memory needed to run the model, which, in the case of Mistral, is reduced

from at least 16 GB to less than 5 for the 4 bit counterpart. Other quan-

tized versions, using 3 to 8 bits to represent data, are still valuable and rel-

evant models that could be employed in different applications, just like the

use of other quantization formats. However this research focuses on 4-bit

quantized models, which can now run on limited capabilities laptops and

desktop PCs.

In table 4.3 we can see the results obtained by sampling the models on

standard HumanEval and MBPP. Aside from the interested open-source

model, the table reports the score obtained using the same sampling tech-

nique on GPT-3.5 Turbo and GPT-4 Turbo. The scores obtained by these

models are close to the ones previously reported, but are overall lower, be-

cause of the way the prompt was structured, which was kept as simple as

possible, in order to mimic at best how a human user would interact with

the model and minimize compilation error.

We can observe that the performance degradation that quantization intro-

duces depends from the model itself:

• Mistral appears to be the most affected by quantization, with an av-

erage relative decrease of 77.7% on HumanEval and 20.7% on MBPP

(absolute decrease at 32.2 and 13.5).

• CodeLlaMa, on both versions, has a very low performance degrada-

tion, with an overall increase in performance on HumanEval (+6.4%,

48

Results Analysis 4.3 Quantisation Comparison

mostly due to the pass@10 score obtained by the 13B model) and a

very low decrease in MBPP (around 1.7%).

• LlaMa-3 shows constant performance decrease between the unquan-

tized and quantized version, standing at 15.2% on HumanEval and

15.9% on MBPP. In this case, the trade off between resources saved

and performance lost appears to be balanced enough, especially con-

sidering that the quantized version still performs better than most

models tested.

• MagiCoder-S (DeepSeek): The quantized version of the overall best

performing model exhibits a 1% increase in accuracy only on Hu-

manEval, together with a more aligned 8% decrease on MBPP.

• Phi-2, the smallest tested model, gives overall unimpressive results

on both the unquantized and quantized version. Thus his size is lim-

ited, the quantized version seems to be performing decently on Hu-

manEval with a 13.6% decrease from the full weight model and not

as good on MBPP, where the relative difference jumps to 39%.

HumanEval MBPPModel Size Quantized pass@1 pass@10 pass@1 pass@10
GPT 3.5 Turbo N/A No 62.80% - 52.87% -
GPT 4 Turbo N/A No 85.37% - 59.03% -

No 34.02% 51.22% 20.56% 38.91%Mistral 7 Yes 4.21% 16.46% 13.83% 35.52%
No 35.61% 54.88% 31.40% 46.41%7 Yes 32.44% 54.88% 31.96% 46.20%
No 36.10% 53.05% 34.60% 49.08%CodeLlama

13 Yes 38.29% 68.29% 31.98% 48.67%
No 56.59% 79.88% 38.35% 54.31%LlaMa 3 8 Yes 45.06% 71.95% 27.77% 51.95%
No 59.45% 77.44% 51.25% 70.00%Magicoder-S-DS 6.7 Yes 60.12% 82.93% 46.37% 65.20%
No 7.07% 32.32% 14.41% 42.30%Phi-2 2.7 Yes 6.34% 26.83% 6.97% 30.65%

Table 4.3: Comparison between models quantized and unquantized

To better understand the reason of this performance decrease, table 4.4

shows in detail how each model’s generated snippets act when executed.

The proportion shown in the table takes into consideration every single

sampled solution, without making any distinction based on the problem

49

4.3 Quantisation Comparison Results Analysis

it is a solution of. In this case too, models react differently to quantization.

In the instances of Mistral and LlaMa-3, which are very comparable due to

their general purpose nature, quantization introduces a high level of inac-

curacy regarding the task of generating code itself, with a higher compila-

tion error than their non-quantized counterpart and less correct solutions

overall.

As demonstrated in table 4.3, both quantized and unquantized version of

CodeLlaMa 7B and 13B are very comparable, with the approximated ver-

sions showing an even lower percentage of non-compilable code. This ro-

bustness could be attributed to the architecture’s ability to maintain func-

tionality despite quantization and pruning, as explained by Gromov et al.

[26]. The study implies that either current pretraining methods do not fully

utilize the parameters in deeper network layers, making them less rele-

vant, or that the shallower layers are the most crucial for retaining knowl-

edge. Finally, Magicoder and phi, following what shown in table 4.3, ex-

hibit a decrease in correct solutions, with a higher percentage of compiled

snippets that eventually fail the tests.

Although quantized models may exhibit lower correctness, some of them—

namely CodeLlama, DeepSeek-Coder and Phi-2—tend to produce a higher

proportion of executable code. This could be accredited to the standardiza-

tion introduced by approximating weights, which reduces susceptibility to

stochastic variations.

To get an even deeper knowledge of how quantization influences the qual-

ity of the generated code, both full sized model and its 4-bits quantized

version are put in relation with an 8-bits quantized variant. More in de-

tail, we compared Magicoder-S DS on both the HumanEval and MBPP test

sets.

50

Results Analysis 4.3 Quantisation Comparison

Model Passed Failed Non Compiled
gpt-3.5-turbo (1 sample) 54.31% 32.16% 13.53%

gpt-4-0125-preview (1 sample) 62.83% 27.68% 9.49%
Mistral-7B-Instruct-v0.2 22.50% 30.99% 46.50%

Mistral-7B-Instruct-v0.2-GPTQ 12.44% 17.75% 69.81%
CodeLlama-7B-Instruct 32.00% 37.59% 30.40%

CodeLlama-7B-Instruct-GPTQ 31.77% 42.64% 25.59%
CodeLlama-13B-Instruct 34.82% 37.77% 27.42%

CodeLlama-13B-Instruct-GPTQ 32.89% 37.72% 29.39%
Llama-3-8B-Instruct-HF 40.98% 39.31% 19.71%

Llama-3-8B-Instruct-GPTQ 30.26% 34.70% 35.04%
Magicoder-S-DS-6.7B 55.99% 23.49% 20.53%

Magicoder-S-DS-6.7B-GPTQ 48.36% 34.07% 17.57%
phi-2 3.35%, 5.49% 91.16%

phi-2-GPTQ 7.15%, 10.62% 82.23%

Table 4.4: Differentiation between passed all test, failed tests and didn’t com-
pile

The models differ in number of bit used to represent a weight and group

size, which is a parameter that determines how the weights of the model

are grouped together for quantization. A smaller group size generally

leads to better accuracy but higher memory usage, while a larger group

size reduces memory usage at the cost of some accuracy. The 8 bits / 32 gs

version is the most resources demanding of the available, while the 4 bits

/ 128 gs puts efficiency first. The required VRAM to run inference on the

three versions of the model is (approximately) 20 GB for the unquantized

version, 8 for the 8 bit and 4 for the 4 bit.

Model HumanEval MBPP
Bits Group Size pass@1 pass@10 pass@1 pass@10

16 bits Full model 59.45% 77.44% 51.25% 70.00%
4 bits 128 60.12% 82.93% 43.27% 63.27%
8 bits 32 60.30% 76.83% 47.12% 60.62%

Table 4.5: Comparison between 4 bit, 8 bit quantized and 16 bit unquantized
Magicoder-S-DS

As explained in section 2.5, the size difference between BF16 and GPTQ’s

4-bit and 8-bit precision format is substantial, allowing to run 4 or more

instances of the 4-bits quantized version with the same requirements of

the base model or 2 with almost the same VRAM the 8-bits instance needs.

51

4.3 Quantisation Comparison Results Analysis

Table 4.5 shows the results of the three version of the same model achiev-

ing very similar results, with quantized models almost outperforming the

base model on HumanEval and demonstrating significantly inferior per-

formance on the more understanding and reasoning oriented MBPP, simi-

larly to what saw in table 4.3.

Focusing on just the two quantized versions, the lower bit version outper-

forms the more computationally onerous one over the 10 samples, while

the 8 bit model seems to be slightly more precise and reliable when only

considering one try.

The last dataset tested, RepoQA, based on the needle in the haystack test,

helps us understand how the models are able to retrieve information from

context. The table reported below shows how the models score based on

a similarity threshold. Every model tested, with a context limited to its

maximum input, shows very prominent signs of understanding degra-

dation. The highlighted value is the average across all languages with a

match similarity threshold of 0.8, enough to ensure a high level of preci-

sion in matching the “needle” (specific information or answer) within the

“haystack” (large body of text or repository of data).

Table 4.6 compares the standard and 4-bits quantized version of Mistral

7B using 16k characters of context and Llama 3 8B, restricted to 6000 char-

acters because of its limited context window of 8k tokens. The results re-

flect the landscape obtained after the functional evaluation, showing a

solid decrease in performance when using the approximated version of

the weights.

Lastly, comparing 4 bit and 8 bit quantized version of the same models

yields interesting results on the Search Needle Function tests. As shown in

table 4.7, the difference between the two variants is close to none, proving

that the difference in requirements does not reflect the one in performance.

52

Results Analysis 4.3 Quantisation Comparison

Threshold 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Mistral 7B Instruct V0.2
AVG 85.8 75.8 69.8 66.0 61.2 58.0 55.8 52.0 46.6 42.2 29.8
python 92.0 80.0 69.0 62.0 55.0 51.0 46.0 42.0 38.0 31.0 23.0
cpp 80.0 71.0 68.0 63.0 61.0 58.0 58.0 52.0 49.0 46.0 33.0
java 87.0 78.0 70.0 66.0 64.0 62.0 60.0 57.0 47.0 45.0 37.0
typescript 92.0 89.0 86.0 84.0 78.0 74.0 72.0 67.0 60.0 51.0 24.0
rust 78.0 61.0 56.0 55.0 48.0 45.0 43.0 42.0 39.0 38.0 32.0

Mistral 7B Instruct V0.2 GPTQ
AVG 22.2 14.4 13.2 13.0 13.0 13.0 12.2 12.0 11.8 11.4 9.6
python 23.0 13.0 11.0 11.0 11.0 11.0 9.0 9.0 8.0 8.0 8.0
cpp 27.0 21.0 21.0 20.0 20.0 20.0 19.0 18.0 18.0 18.0 18.0
java 13.0 7.0 5.0 5.0 5.0 5.0 4.0 4.0 4.0 4.0 4.0
typescript 35.0 28.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 24.0 15.0
rust 13.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

Llama 3 8B Instruct [6k context]
AVG 86.4 83.2 81.0 79.8 79.0 78.2 76.4 75.4 74.8 71.0 57.2
python 89.0 86.0 84.0 83.0 82.0 81.0 78.0 78.0 77.0 74.0 71.0
cpp 77.0 72.0 68.0 68.0 68.0 68.0 66.0 64.0 63.0 58.0 34.0
java 86.0 84.0 82.0 81.0 81.0 80.0 79.0 78.0 78.0 75.0 68.0
typescript 94.0 92.0 91.0 89.0 87.0 86.0 85.0 84.0 83.0 77.0 44.0
rust 86.0 82.0 80.0 78.0 77.0 76.0 74.0 73.0 73.0 71.0 69.0

Llama 3 8B Instruct GPTQ [6k context]
AVG 37.6 26.4 25.4 24.6 24.4 24.2 23.0 22.4 22.4 21.8 18.2
python 28.0 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 13.0 11.0
cpp 55.0 49.0 48.0 47.0 47.0 47.0 46.0 46.0 46.0 44.0 28.0
java 24.0 14.0 13.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0
typescript 32.0 16.0 15.0 14.0 13.0 13.0 11.0 10.0 10.0 10.0 10.0
rust 49.0 38.0 37.0 37.0 37.0 36.0 33.0 31.0 31.0 31.0 31.0

Table 4.6: Comparison between unquantized and 4-bit quantized version of
Mistral 7B and LlaMa 3 8B on the RepoQA dataset

53

4.3 Quantisation Comparison Results Analysis

Threshold 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Magicoder S DS [8k context]
AVG 81.0 72.2 68.8 65.4 63.6 62.4 60.8 59.4 57.0 52.6 44.2
python 91.0 81.0 76.0 70.0 69.0 68.0 66.0 64.0 59.0 56.0 52.0
cpp 74.0 63.0 60.0 59.0 56.0 55.0 53.0 52.0 51.0 48.0 40.0
java 85.0 79.0 77.0 75.0 75.0 74.0 71.0 70.0 69.0 62.0 56.0
typescript 87.0 82.0 79.0 76.0 74.0 73.0 73.0 70.0 67.0 59.0 36.0
rust 68.0 56.0 52.0 47.0 44.0 42.0 41.0 41.0 39.0 38.0 37.0

Magicoder S DS GPTQ [4bit] [8k context]
AVG 32.6 21.6 20.2 19.8 19.4 19.0 18.0 17.8 17.6 16.8 14.2
python 24.0 10.0 10.0 10.0 9.0 9.0 6.0 6.0 5.0 5.0 5.0
cpp 42.0 32.0 31.0 31.0 31.0 29.0 27.0 26.0 26.0 26.0 26.0
java 25.0 14.0 11.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
typescript 45.0 41.0 40.0 40.0 39.0 39.0 39.0 39.0 39.0 36.0 24.0
rust 27.0 11.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 8.0 7.0

Magicoder S DS GPTQ [8bit] [8k context]
AVG 32.4 21.2 19.8 19.4 19.0 18.6 17.6 17.4 17.2 16.8 14.2
python 24.0 10.0 10.0 10.0 9.0 9.0 6.0 6.0 5.0 5.0 5.0
cpp 42.0 32.0 31.0 31.0 31.0 29.0 27.0 26.0 26.0 26.0 26.0
java 25.0 14.0 11.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
typescript 45.0 40.0 39.0 39.0 38.0 38.0 38.0 38.0 38.0 36.0 24.0
rust 26.0 10.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.0

CodeLlama 7B Instruct [8k context]
AVG 73.8 59.6 52.6 51.2 49.4 48.2 46.2 44.0 41.8 38.4 30.4
python 79.0 65.0 57.0 56.0 53.0 53.0 50.0 46.0 43.0 41.0 35.0
cpp 76.0 51.0 45.0 44.0 41.0 39.0 38.0 37.0 36.0 32.0 25.0
java 70.0 56.0 50.0 49.0 48.0 47.0 46.0 46.0 43.0 38.0 33.0
typescript 78.0 67.0 63.0 59.0 58.0 56.0 55.0 52.0 48.0 42.0 22.0
rust 66.0 59.0 48.0 48.0 47.0 46.0 42.0 39.0 39.0 39.0 37.0

CodeLlama 7B Instruct GPTQ [4 bit] [8k context]
AVG 32.6 22.4 21.0 20.6 20.2 19.8 18.8 18.6 18.2 17.6 14.8
python 24.0 14.0 14.0 14.0 13.0 13.0 10.0 10.0 8.0 8.0 7.0
cpp 42.0 33.0 32.0 32.0 32.0 30.0 28.0 27.0 27.0 27.0 27.0
java 25.0 14.0 11.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
typescript 45.0 40.0 39.0 39.0 38.0 38.0 38.0 38.0 38.0 36.0 24.0
rust 27.0 11.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 8.0 7.0

CodeLlama 7B Instruct GPTQ [8 bit] [8k context]
AVG 32.4 21.2 19.8 19.4 19.0 18.6 17.6 17.4 17.2 16.8 14.2
python 24.0 10.0 10.0 10.0 9.0 9.0 6.0 6.0 5.0 5.0 5.0
cpp 42.0 32.0 31.0 31.0 31.0 29.0 27.0 26.0 26.0 26.0 26.0
java 25.0 14.0 11.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0
typescript 45.0 40.0 39.0 39.0 38.0 38.0 38.0 38.0 38.0 36.0 24.0
rust 26.0 10.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.0

Table 4.7: Comparison between unquantized and quantized (4 bit and 8 bit)
version of Magicoder-S DS 6.7B and CodeLlaMa 7B on the RepoQA dataset

54

Results Analysis 4.4 Key Findings

4.4 Key Findings

The analysis conducted helped us getting a thorough understanding of

how Large Language Model perform in code generation tasks:

• Evaluation Metrics: it is clear that match based metrics and func-

tional ones can’t be used for the same purpose. While execution-

related metrics give us a more practical understanding of the capa-

bilities of a coding model, match-based ones are still a valid way to

evaluate code given a reference. This means that metrics like BLEU,

BERTScore, or even better, CodeBERTScore, can be employed in vari-

ous specific tasks, such as in context retrieval evaluation, as seen with

RepoQA. However, they are not as indicative as the pass@k metric

when used to evaluate code generation itself because of their sensi-

bility to variations that might not be relevant.

• Closed Source LLMs are still undefeated: as shown in table 4.1, the

best results are achieved by big closed source models, with GPT-4

still dominating the leaderboard.

• DeepSeek-Coder 6.7B and CodeQwen 1.5 7B are the best performing

low parameter count open source models available: the two models

show impressive results compared to other models with the same

size.

• A bigger version of a model will perform better: while the scaling

law is confirmed, the curve of how a model scales varies greatly de-

pending on the LLM itself. While some models greatly benefit from a

higher parameter count, others show very low performance increase

that doesn’t justify the higher computational requirements.

• Instruction Tuning is effective: the graph presented in figure 4.5 is a

solid proof that a model optimized for multi-turn question answer-

ing provides better code than the standard completion model.

• Fine Tuning can improve a model’s ability to generate code: when

trained on more high quality code, LLMs will produce better code.

• Quantization introduces an amount of degradation that depends

55

4.4 Key Findings Results Analysis

widely on the model: different models respond in different ways to

quantization, with some like CodeLlama not being affected as much

as others. In general, the decrease in performance introduced is a

trade off that needs to be carefully evaluated before deciding which

version to use.

• The number of bits used to quantize a model is not as relevant as

it may seem: from the analysis done with HumanEval, MBPP and

RepoQA, it emerges that the difference between 4 and 8 bits models

is less substantial than anticipated, while the performance delta be-

tween quantized and unquantized model is very high, especially in

context retrieval tasks.

56

Chapter 5

Conclusion

This research has explored different techniques developed to asses the

quality of the code generated by large language models and compared the

main LLMs currently available to understand the state of the art of AI code

synthesis. The research investigated how the scaling law and the quantiza-

tion techniques affect the quality of generated code.

RQ1. The comparative analysis revealed that while larger models gener-

ally outperform smaller counterparts in complex coding tasks, the lower

parameter count models can achieve competitive performance, especially

if trained on high quality data. Despite closed source models still being

at the top of the leaderboards, which is dominated by GPT-4 Turbo and

Cloud 3 Opus, the gap between them and highly specialized open source

ones is closing, allowing for a less expensive and more accessible code gen-

eration, that opens the doors for new locally runnable automatic program

syntheses.

RQ2. Match based metrics have been found not as indicative as functional

metrics when it comes to evaluation of generated code. While metrics like

BLEU are useful in specific tasks such as retrieval evaluations, functional

metrics provide a more practical way to understand if the generated code

is right or wrong. This discrepancy is evident from the presented correla-

tion matrix and the score distribution.

RQ3. Out of all the open source models analyzed to evaluate their skills in

57

5.1 Future Work Conclusion

code generation, the most reliable ones are CodeQwen 7B and DeepSeek-

Coder 6.7B for the lower end of parameter count range. However, if we ex-

tend the size range up to 70B parameters, Mixtral 8x22B, Llama 3 70B and

DeepSeek-Coder 33B give the highest results. While 70B parameters are 10

times bigger than the smallest counterpart, therefore being less accessible

and harder to run in a local configuration, it is also important to take into

consideration the rapid scaling that even retail Graphic Processing Units

are experiencing. This is making running bigger models easier thanks to

the faster speeds and higher quantities of memory built in the hardware,

highlighting the possibility of sacrificing a small part of efficiency for a

performance improvement, even if not substantial.

RQ4. The process of weight precision reduction leads to a performance

degradation that varies across different models. Some models, like CodeL-

laMa, maintain high robustness against pruning and quantization, show-

ing consistent performance across all different levels of data precision.

Conversely, other models like Mistral exhibit a significant decrease in cor-

rectness when quantized, underscoring the need for careful consideration

when choosing the version of an LLM to use for code generation.

5.1 Future Work

Future research can build upon this findings by exploring the development

of hybrid evaluation metrics based on a small LLM like DeepSeek-Coder.

This would involve creating a more refined and context-aware evalua-

tion metric to better understand and improve the performance of differ-

ent LLMs, particularly in specialized domains such as code generation and

natural language processing. Further exploration of model robustness, par-

ticularly in the context of quantization and pruning, will also be valuable

to optimize LLM performance under various constraints.

58

Conclusion 5.2 Limitations of the study

5.2 Limitations of the study

While the analysis has been structured to be the most comprehensive pos-

sible, it could benefit from a broader selection of models to test. The lists of

available models and datasets are also constantly expanding, making any

kind of similar research eventually out of date.

5.3 Acknowledgements

I would like to express my appreciation to my supervisor, Professor Albert

Gatt, whose expertise and patience added considerably to my graduate

experience, allowing me to do research on a topic that I am strongly pas-

sionate about. I am also grateful to my peers for their wonderful collabo-

ration and stimulating discussions that we had during this time we shared

together.

59

Bibliography

[1] 2023 Devloper Survey. en. URL: https://survey.stackoverflow.

co/2023.

[2] Meta AI. Introducing Meta Llama 3: The most capable openly available

LLM to date. URL: https://ai.meta.com/blog/meta-llama-3/.

[3] Mistral AI. Mixtral of Experts. Dec. 2023. URL: https://mistral.

ai/news/mixtral-of-experts/.

[4] Phind AI. Beating GPT-4 on HumanEval with a Fine-Tuned CodeLlama-

34B. Aug. 2023. URL: https://www.phind.com/blog/code-llama-

beats-gpt4.

[5] Jacob Austin et al. Program Synthesis with Large Language Models.

2021. arXiv: 2108.07732 [cs.PL].

[6] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020.

arXiv: 2005.14165 [cs.CL].

[7] Mark Chen et al. Evaluating Large Language Models Trained on Code.

2021. arXiv: 2107.03374 [cs.LG].

[8] OpenAccess ai collective. axolotl: Go ahead and axolotl questions.

URL: https://github.com/OpenAccess-AI-Collective/axolotl.

[9] Tri Dao et al. FlashAttention: Fast and Memory-Efficient Exact Atten-

tion with IO-Awareness. 2022. arXiv: 2205.14135 [cs.LG].

[10] Deci.AI. Model Quantization and Quantization-Aware Training: Ulti-

mate guide. Jan. 2024. URL: https://deci.ai/quantization-and-

quantization-aware-training.

60

https://survey.stackoverflow.co/2023
https://survey.stackoverflow.co/2023
https://ai.meta.com/blog/meta-llama-3/
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://www.phind.com/blog/code-llama-beats-gpt4
https://www.phind.com/blog/code-llama-beats-gpt4
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2107.03374
https://github.com/OpenAccess-AI-Collective/axolotl
https://arxiv.org/abs/2205.14135
https://deci.ai/quantization-and-quantization-aware-training
https://deci.ai/quantization-and-quantization-aware-training

BIBLIOGRAPHY BIBLIOGRAPHY

[11] DeepSeek-AI et al. DeepSeek LLM: Scaling Open-Source Language

Models with Longtermism. 2024. arXiv: 2401.02954.

[12] Michael Denkowski and Alon Lavie. “Meteor Universal: Language

Specific Translation Evaluation for Any Target Language”. In: Pro-

ceedings of the Ninth Workshop on Statistical Machine Translation. Ed.

by Ondřej Bojar et al. Baltimore, Maryland, USA: Association for

Computational Linguistics, June 2014, pp. 376–380. DOI: 10.3115/

v1/W14-3348. URL: https://aclanthology.org/W14-3348.

[13] Tim Dettmers et al. LLM.int8(): 8-bit Matrix Multiplication for Trans-

formers at Scale. 2022. arXiv: 2208.07339 [cs.LG].

[14] Tim Dettmers et al. QLoRA: Efficient Finetuning of Quantized LLMs.

2023. arXiv: 2305.14314 [cs.LG].

[15] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Trans-

formers for Language Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[16] Yangruibo Ding et al. CrossCodeEval: A Diverse and Multilingual

Benchmark for Cross-File Code Completion. 2023. arXiv: 2310.11248

[cs.LG].

[17] Aryaz Eghbali and Michael Pradel. “CrystalBLEU: Precisely and

Efficiently Measuring the Similarity of Code”. In: Proceedings of the

37th IEEE/ACM International Conference on Automated Software Engi-

neering. New York, NY, USA: Association for Computing Machin-

ery, 2023. ISBN: 9781450394758. DOI: 10.1145/3551349.3556903.

URL: https://doi.org/10.1145/3551349.3556903.

[18] EvalPlus. URL: https://evalplus.github.io/repoqa.html.

[19] Ahmad Faiz et al. LLMCarbon: Modeling the end-to-end Carbon Foot-

print of Large Language Models. 2023. arXiv: 2309.14393 [cs.CL].

[20] Elias Frantar et al. GPTQ: Accurate Post-Training Quantization for

Generative Pre-trained Transformers. 2023. arXiv: 2210.17323 [cs.LG].

[21] Sue Gee. Stack overflow announces AI-powered features. July 2023.

URL: https://www.i-programmer.info/news/99-professional/

16487-stack-overflow-announces-ai-powered-features.html.

61

https://arxiv.org/abs/2401.02954
https://doi.org/10.3115/v1/W14-3348
https://doi.org/10.3115/v1/W14-3348
https://aclanthology.org/W14-3348
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2310.11248
https://arxiv.org/abs/2310.11248
https://doi.org/10.1145/3551349.3556903
https://doi.org/10.1145/3551349.3556903
https://evalplus.github.io/repoqa.html
https://arxiv.org/abs/2309.14393
https://arxiv.org/abs/2210.17323
https://www.i-programmer.info/news/99-professional/16487-stack-overflow-announces-ai-powered-features.html
https://www.i-programmer.info/news/99-professional/16487-stack-overflow-announces-ai-powered-features.html

BIBLIOGRAPHY BIBLIOGRAPHY

[22] GitHub. GitHub Copilot. URL: https://github.com/features/

copilot.

[23] Google. Gemini breaks new ground with a faster model, longer context,

AI agents and more. 2024. URL: https://blog.google/technology/

ai/google-gemini-update-flash-ai-assistant-io-2024.

[24] Mitchell A Gordon, Kevin Duh, and Jared Kaplan. Data and Param-

eter Scaling Laws for Neural Machine Translation. Online and Punta

Cana, Dominican Republic, Nov. 2021. DOI: 10.18653/v1/2021.

emnlp-main.478. URL: https://aclanthology.org/2021.emnlp-

main.478.

[25] Jianping Gou et al. “Knowledge Distillation: A Survey”. In: Inter-

national Journal of Computer Vision 129.6 (Mar. 2021), 1789–1819.

ISSN: 1573-1405. DOI: 10.1007/s11263-021-01453-z. URL: http:

//dx.doi.org/10.1007/s11263-021-01453-z.

[26] Andrey Gromov et al. The Unreasonable Ineffectiveness of the Deeper

Layers. 2024. arXiv: 2403.17887 [cs.CL].

[27] Maarten Grootendorst. Nov. 2023. URL: https://open.substack.

com/pub/maartengrootendorst/p/which-quantization-method-

is-right.

[28] Suriya Gunasekar et al. Textbooks Are All You Need. 2023. arXiv:

2306.11644 [cs.CL].

[29] Dan Hendrycks et al. “Measuring Coding Challenge Competence

With APPS”. In: NeurIPS (2021).

[30] Joel Hestness et al. Deep Learning Scaling is Predictable, Empirically.

2017. arXiv: 1712.00409.

[31] JetBrains. UAST - Unified Abstract Syntax Tree. URL: https : / /

plugins.jetbrains.com/docs/intellij/uast.html.

[32] Albert Q. Jiang et al. Mistral 7B. 2023. arXiv: 2310.06825 [cs.CL].

[33] Carlos E. Jimenez et al. SWE-bench: Can Language Models Resolve

Real-World GitHub Issues? 2024. arXiv: 2310.06770 [cs.CL].

62

https://github.com/features/copilot
https://github.com/features/copilot
https://blog.google/technology/ai/google-gemini-update-flash-ai-assistant-io-2024
https://blog.google/technology/ai/google-gemini-update-flash-ai-assistant-io-2024
https://doi.org/10.18653/v1/2021.emnlp-main.478
https://doi.org/10.18653/v1/2021.emnlp-main.478
https://aclanthology.org/2021.emnlp-main.478
https://aclanthology.org/2021.emnlp-main.478
https://doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1007/s11263-021-01453-z
http://dx.doi.org/10.1007/s11263-021-01453-z
https://arxiv.org/abs/2403.17887
https://open.substack.com/pub/maartengrootendorst/p/which-quantization-method-is-right
https://open.substack.com/pub/maartengrootendorst/p/which-quantization-method-is-right
https://open.substack.com/pub/maartengrootendorst/p/which-quantization-method-is-right
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/1712.00409
https://plugins.jetbrains.com/docs/intellij/uast.html
https://plugins.jetbrains.com/docs/intellij/uast.html
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06770

BIBLIOGRAPHY BIBLIOGRAPHY

[34] Jared Kaplan et al. Scaling Laws for Neural Language Models. 2020.

arXiv: 2001.08361 [cs.LG].

[35] Mike Lewis et al. BART: Denoising Sequence-to-Sequence Pre-training

for Natural Language Generation, Translation, and Comprehension.

2019. arXiv: 1910.13461 [cs.CL].

[36] Yujia Li et al. “Competition-level code generation with Alpha-

Code”. In: Science 378.6624 (2022), pp. 1092–1097. DOI: 10.1126/

science.abq1158. eprint: https://www.science.org/doi/pdf/10.

1126/science.abq1158. URL: https://www.science.org/doi/abs/

10.1126/science.abq1158.

[37] Daya Guo Qihao Zhu Dejian Yang Zhenda Xie Kai Dong Wen-

tao Zhang Guanting Chen Xiao Bi Y. Wu Y.K. Li Fuli Luo Yingfei

Xiong Wenfeng Liang. DeepSeek-Coder: When the Large Language

Model Meets Programming – The Rise of Code Intelligence. 2024. URL:

https://arxiv.org/abs/2401.14196.

[38] Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation

of Summaries”. In: Text Summarization Branches Out. Barcelona,

Spain: Association for Computational Linguistics, July 2004, pp. 74–

81. URL: https://aclanthology.org/W04-1013.

[39] Ji Lin et al. AWQ: Activation-aware Weight Quantization for LLM

Compression and Acceleration. 2023. arXiv: 2306.00978 [cs.CL].

[40] Ye Lin et al. Understanding Parameter Sharing in Transformers. 2023.

arXiv: 2306.09380 [cs.LG].

[41] Wang Ling et al. Latent Predictor Networks for Code Generation. 2016.

arXiv: 1603.06744 [cs.CL].

[42] Jiawei Liu et al. “Is Your Code Generated by ChatGPT Really Cor-

rect? Rigorous Evaluation of Large Language Models for Code

Generation”. In: Thirty-seventh Conference on Neural Information Pro-

cessing Systems. 2023. URL: https://openreview.net/forum?id=

1qvx610Cu7.

63

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/1910.13461
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://www.science.org/doi/pdf/10.1126/science.abq1158
https://www.science.org/doi/pdf/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://arxiv.org/abs/2401.14196
https://aclanthology.org/W04-1013
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2306.09380
https://arxiv.org/abs/1603.06744
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7

BIBLIOGRAPHY BIBLIOGRAPHY

[43] Tianyang Liu, Canwen Xu, and Julian McAuley. RepoBench: Bench-

marking Repository-Level Code Auto-Completion Systems. 2023. arXiv:

2306.03091 [cs.CL].

[44] Zechun Liu et al. LLM-QAT: Data-Free Quantization Aware Training

for Large Language Models. 2023. arXiv: 2305.17888 [cs.CL].

[45] Chi-kiu Lo. “YiSi - a Unified Semantic MT Quality Evaluation and

Estimation Metric for Languages with Different Levels of Avail-

able Resources”. In: Proceedings of the Fourth Conference on Machine

Translation (Volume 2: Shared Task Papers, Day 1). Ed. by Ondřej Bo-

jar et al. Florence, Italy: Association for Computational Linguistics,

Aug. 2019, pp. 507–513. DOI: 10.18653/v1/W19-5358. URL: https:

//aclanthology.org/W19-5358.

[46] Shuming Ma et al. The Era of 1-bit LLMs: All Large Language Models

are in 1.58 Bits. 2024. arXiv: 2402.17764 [cs.CL].

[47] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

[48] OpenAI. Hello, GPT-4o. 2024. URL: https://openai.com/index/

hello-gpt-4o/.

[49] Long Ouyang et al. Training language models to follow instructions

with human feedback. 2022. arXiv: 2203.02155 [cs.CL].

[50] Kishore Papineni et al. “Bleu: a Method for Automatic Evaluation

of Machine Translation”. In: Proceedings of the 40th Annual Meet-

ing of the Association for Computational Linguistics. Ed. by Pierre

Isabelle, Eugene Charniak, and Dekang Lin. Philadelphia, Penn-

sylvania, USA: Association for Computational Linguistics, July

2002, pp. 311–318. DOI: 10.3115/1073083.1073135. URL: https:

//aclanthology.org/P02-1040.

[51] Bo Peng et al. RWKV: Reinventing RNNs for the Transformer Era.

2023. arXiv: 2305.13048 [cs.CL].

64

https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2305.17888
https://doi.org/10.18653/v1/W19-5358
https://aclanthology.org/W19-5358
https://aclanthology.org/W19-5358
https://arxiv.org/abs/2402.17764
https://arxiv.org/abs/2303.08774
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://arxiv.org/abs/2203.02155
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
https://arxiv.org/abs/2305.13048

BIBLIOGRAPHY BIBLIOGRAPHY

[52] Maja Popović. “chrF: character n-gram F-score for automatic MT

evaluation”. In: Proceedings of the Tenth Workshop on Statistical Ma-

chine Translation. Ed. by Ondřej Bojar et al. Lisbon, Portugal: As-

sociation for Computational Linguistics, Sept. 2015, pp. 392–395.

DOI: 10.18653/v1/W15-3049. URL: https://aclanthology.org/

W15-3049.

[53] Team Qwen. Code with CODEQWEN 1.5. 2024. URL: https : / /

qwenlm.github.io/blog/codeqwen1.5/.

[54] Colin Raffel et al. Exploring the Limits of Transfer Learning with a

Unified Text-to-Text Transformer. 2023. arXiv: 1910.10683 [cs.LG].

[55] Ricardo Rei et al. “COMET: A Neural Framework for MT Evalu-

ation”. In: Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing (EMNLP). Ed. by Bonnie Webber et

al. Online: Association for Computational Linguistics, Nov. 2020,

pp. 2685–2702. DOI: 10.18653/v1/2020.emnlp-main.213. URL:

https://aclanthology.org/2020.emnlp-main.213.

[56] Ehud Reiter, Chris Mellish, and John Levine. “Automatic genera-

tion of technical documentation”. In: Applied Artificial Intelligence

an International Journal 9.3 (1995), pp. 259–287.

[57] Shuo Ren et al. CodeBLEU: a Method for Automatic Evaluation of Code

Synthesis. 2020. arXiv: 2009.10297 [cs.SE].

[58] Baptiste Rozière et al. Code Llama: Open Foundation Models for Code.

2023. arXiv: 2308.12950 [cs.CL].

[59] Maximilian Schreiner. GPT-4 architecture, datasets, costs and more

leaked. July 2023. URL: https : / / the - decoder . com / gpt - 4 -

architecture-datasets-costs-and-more-leaked/.

[60] Yuzhang Shang et al. PB-LLM: Partially Binarized Large Language

Models. 2023. arXiv: 2310.00034 [cs.LG].

65

https://doi.org/10.18653/v1/W15-3049
https://aclanthology.org/W15-3049
https://aclanthology.org/W15-3049
https://qwenlm.github.io/blog/codeqwen1.5/
https://qwenlm.github.io/blog/codeqwen1.5/
https://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://aclanthology.org/2020.emnlp-main.213
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2308.12950
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/
https://arxiv.org/abs/2310.00034

BIBLIOGRAPHY BIBLIOGRAPHY

[61] Matthew Snover et al. “A Study of Translation Edit Rate with Tar-

geted Human Annotation”. In: Proceedings of the 7th Conference of

the Association for Machine Translation in the Americas: Technical Pa-

pers. Cambridge, Massachusetts, USA: Association for Machine

Translation in the Americas, Aug. 2006, pp. 223–231. URL: https:

//aclanthology.org/2006.amta-papers.25.

[62] Emma Strubell, Ananya Ganesh, and Andrew McCallum. En-

ergy and Policy Considerations for Deep Learning in NLP. 2019. arXiv:

1906.02243 [cs.CL].

[63] Gemini Team et al. Gemini: A Family of Highly Capable Multimodal

Models. 2023. arXiv: 2312.11805 [cs.CL].

[64] Teknium1. OpenHermes 2.5 - Mistral. 2023. URL: https://huggingface.

co/teknium/OpenHermes-2.5-Mistral-7B.

[65] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat

Models. 2023. arXiv: 2307.09288 [cs.CL].

[66] Ngoc Tran et al. “Does BLEU Score Work for Code Migration?” In:

2019 IEEE/ACM 27th International Conference on Program Compre-

hension (ICPC). IEEE, May 2019. DOI: 10.1109/icpc.2019.00034.

URL: http://dx.doi.org/10.1109/ICPC.2019.00034.

[67] Arya Vaishnavi. Nvidia CEO thinks AI would kill coding, says “every-

body is now a programmer”. 2024. URL: https://www.hindustantimes.

com/world- news/us- news/nvidia- ceo- thinks- ai- would-

kill - coding - says - everybody - is - now - a - programmer -

101708965034169.html.

[68] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.

03762 [cs.CL].

[69] James Vincent. Meta’s powerful AI language model has leaked online -

what happens now? Mar. 2023. URL: https://www.theverge.com/

2023/3/8/23629362/meta-ai-language-model-llama-leak-

online-misuse.

66

https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2006.amta-papers.25
https://arxiv.org/abs/1906.02243
https://arxiv.org/abs/2312.11805
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
https://arxiv.org/abs/2307.09288
https://doi.org/10.1109/icpc.2019.00034
http://dx.doi.org/10.1109/ICPC.2019.00034
https://www.hindustantimes.com/world-news/us-news/nvidia-ceo-thinks-ai-would-kill-coding-says-everybody-is-now-a-programmer-101708965034169.html
https://www.hindustantimes.com/world-news/us-news/nvidia-ceo-thinks-ai-would-kill-coding-says-everybody-is-now-a-programmer-101708965034169.html
https://www.hindustantimes.com/world-news/us-news/nvidia-ceo-thinks-ai-would-kill-coding-says-everybody-is-now-a-programmer-101708965034169.html
https://www.hindustantimes.com/world-news/us-news/nvidia-ceo-thinks-ai-would-kill-coding-says-everybody-is-now-a-programmer-101708965034169.html
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misuse
https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misuse
https://www.theverge.com/2023/3/8/23629362/meta-ai-language-model-llama-leak-online-misuse

BIBLIOGRAPHY BIBLIOGRAPHY

[70] Yuxiang Wei et al. Magicoder: Source Code Is All You Need. 2023.

arXiv: 2312.02120 [cs.CL].

[71] Wikipedia contributors. Bfloat16 floating-point format — Wikipedia,

The Free Encyclopedia. [Online; accessed 28-May-2024]. 2024. URL:

https://en.wikipedia.org/w/index.php?title=Bfloat16_

floating-point_format&oldid=1216247964.

[72] Jialong Wu et al. Supercompiler Code Optimization with Zero-Shot

Reinforcement Learning. 2024. arXiv: 2404.16077 [cs.PL].

[73] Pengcheng Yin et al. “Learning to Mine Aligned Code and Natural

Language Pairs from Stack Overflow”. In: International Conference

on Mining Software Repositories. MSR. ACM, 2018, pp. 476–486. DOI:

https://doi.org/10.1145/3196398.3196408.

[74] Maksym Zavershynskyi, Alex Skidanov, and Illia Polosukhin.

NAPS: Natural Program Synthesis Dataset. 2018. arXiv: 1807.03168

[cs.LG].

[75] Xiaohua Zhai et al. Scaling Vision Transformers. 2022. arXiv: 2106.

04560.

[76] Biao Zhang et al. “When Scaling Meets LLM Finetuning: The Ef-

fect of Data, Model and Finetuning Method”. In: arXiv preprint

arXiv:2402.17193 (2024).

[77] Fengji Zhang et al. RepoCoder: Repository-Level Code Completion

Through Iterative Retrieval and Generation. 2023. arXiv: 2303.12570

[cs.CL].

[78] Tianyi Zhang et al. BERTScore: Evaluating Text Generation with BERT.

2020. arXiv: 1904.09675 [cs.CL].

[79] Wayne Xin Zhao et al. A Survey of Large Language Models. 2023.

arXiv: 2303.18223 [cs.CL].

[80] Lianmin Zheng et al. Judging LLM-as-a-judge with MT-Bench and

Chatbot Arena. 2023. arXiv: 2306.05685 [cs.CL].

[81] Lianmin Zheng et al. Judging LLM-as-a-Judge with MT-Bench and

Chatbot Arena. 2023. arXiv: 2306.05685 [cs.CL].

67

https://arxiv.org/abs/2312.02120
https://en.wikipedia.org/w/index.php?title=Bfloat16_floating-point_format&oldid=1216247964
https://en.wikipedia.org/w/index.php?title=Bfloat16_floating-point_format&oldid=1216247964
https://arxiv.org/abs/2404.16077
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://arxiv.org/abs/1807.03168
https://arxiv.org/abs/1807.03168
https://arxiv.org/abs/2106.04560
https://arxiv.org/abs/2106.04560
https://arxiv.org/abs/2303.12570
https://arxiv.org/abs/2303.12570
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

BIBLIOGRAPHY BIBLIOGRAPHY

[82] Shuyan Zhou et al. CodeBERTScore: Evaluating Code Generation with

Pretrained Models of Code. 2023. arXiv: 2302.05527 [cs.SE].

68

https://arxiv.org/abs/2302.05527

Appendix A

Ethics and Privacy Quick Scan

The Ethics and Privacy Quick Scan of the Utrecht University Research In-

stitute of Information and Computing Sciences was conducted and classi-

fied this research as low-risk with no fuller ethics review or privacy assess-

ment required.

69

Appendix B

Dataset details

B.1 Dataset Examples

B.1.1 HumanEval

The HumanEval dataset, available on GitHub is structured as follows:

• task_id: id of the task containing the dataset name and the problem

number (i.e. HumanEval/0)

• prompt: function declaration stating function name, arguments, re-

turn type, a docstring that contains what the function is intended to

do and a list of examples.

1 from typing import List

2 def has_close_elements(numbers: List[float], threshold:

float) -> bool:

3 """ Check if in given list of numbers , are any two

numbers closer to each other than given threshold.

4 >>> has_close_elements ([1.0 , 2.0, 3.0], 0.5)

5 False

6 >>> has_close_elements ([1.0 , 2.8, 3.0, 4.0, 5.0, 2.0],

0.3)

7 True

8 """

• entry_point: the function name, useful for automatic execution dur-

ing the functional evaluation phase (i.e. has_close_elements)

70

https://github.com/openai/human-eval/blob/master/data/HumanEval.jsonl.gz

Dataset details B.1 Dataset Examples

• canonical_solution: the ground truth solution proposed by the au-

thors.

1 for idx , elem in enumerate(numbers):

2 for idx2 , elem2 in enumerate(numbers):

3 if idx != idx2:

4 distance = abs(elem - elem2)

5 if distance < threshold:

6 return True

7 return False

• test: a list of tests saved directly in python code, for convenience dur-

ing the execution.

1 def check(candidate):

2 assert candidate ([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3)

== True

3 assert candidate ([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05)

== False

4 assert candidate ([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) ==

True

5 assert candidate ([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) ==

False

6 assert candidate ([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1)

== True

7 assert candidate ([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) ==

True

8 assert candidate ([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) ==

False

B.1.2 MBPP

To simplify and unify the sampling process, the MBPP dataset has been

modified from its original version, obtained from GitHub to the same exact

structure as HumanEval.

The main differences between the two sets are:

• prompt: MBPP’s prompt is a string containing the natural language

description.

71

https://github.com/google-research/google-research/blob/master/mbpp/mbpp.jsonl

B.2 Unused Dataset Dataset details

Write a function to find the minimum cost path to reach

(m, n) from (0, 0) for the given cost matrix cost[][] and a

position (m, n) in cost[][].

• canonical_solution: the solution contains the whole code

1 R = 3

2 C = 3

3 def min_cost(cost , m, n):

4 ttc = [[0 for x in range(C)] for x in range(R)]

5 tc [0][0] = cost [0][0]

6 for i in range(1, m+1):

7 tc[i][0] = tc[i -1][0] + cost[i][0]

8 for j in range(1, n+1):

9 tc[0][j] = tc[0][j-1] + cost [0][j]

10 for i in range(1, m+1):

11 for j in range(1, n+1):

12 tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i

][j-1]) + cost[i][j]

13 return tc[m][n]

• entry_point: While standard MBPP does not have a predefined func-

tion, the canonical solution entry point is included in the prompt, so

that the automatic execution harness could be used to evaluate both

sets (in this example min_cost)

B.2 Unused Dataset

The motivation for why the other proposed datasets have not been utilised

for model evaluation is reported in section 3.1. However, it is important to

specify that APPS and CoNaLa have been used for some preliminary tests

before being discarded.

B.2.1 APPS

While APPS is conceptually similar to both HumanEval and MBPP, the

main reason why it did not get included in the study is the poor results

that all models tested achieved. The following table shows how 5 differ-

72

Dataset details B.2 Unused Dataset

ent models’ performance on APPS, indicating the average test pass rate

limited to the compiled codes, the percentage of problems solved with all

test passing and the percentage of compilation and runtime errors derived

from faulty code generation.

Model Test Case
Average

Strict
Accuracy

Compile
Errors

Runtime
Errors

CodeLlama 70B* 15.04% 4.5% 23.0% 24.5%
Gemma 7B* 13.18% 1.93% 9.2% 41.3%

Mistral 8x7b* 13.38% 3.54% 33.0% 22.7%
CodeLlama 7B Instruct GPTQ 9.67% 3.07% 19.4% 25.5%

Mistral 7B GPTQ 7.43% 2.38% 44.2% 27.5%

Table B.1: Results on APPS dataset on different models. The models marked
with a * are sampled on a limited number of problems.

Despite the results still aligning with the results presented in tables 4.1 and

4.3, the overall low percentages relative to accuracy make them less indica-

tive, not properly highlighting the gaps between models as much as Hu-

manEval and MBPP. This is also due to the complexity of the problems of

APPS. Moreover, APPS is composed of 5000 different problems, making

the sampling phase very onerous in terms of resources and time.

B.2.2 CoNaLa

The CoNaLa dataset, composed of 2880 problems, is structured as follows:

• intent: an extremely short explanation of the problem.

• rewritten intent: a more specific explanation of the problem that

needs to be solved

• solution: a short solution, often being just single line of code.

The first major noticeable difference from the other datasets is the absence

of test cases, which make the automatic execution based evaluation impos-

sible. Another major difference is the presence of a rewritten intent. This

intent gives the actual description relative to the solution, as shown in the

example below.

As we can see, a problem can have multiple different interpretations, which

are explained in the rewritten intent field. The problem descriptions, how-

73

B.2 Unused Dataset Dataset details

id intent rewritten_intent snippet
1,476 express binary literals convert 173 to binary string bin(173)
1,476 express binary literals convert binary string ’01010101111’ to integer int(’01010101111’, 2)
1,476 express binary literals convert binary string ’010101’ to integer int(’010101’, 2)
1,476 express binary literals convert binary string ’0b0010101010’ to integer int(’0b0010101010’, 2)
1,476 express binary literals convert 21 to binary string bin(21)
1,476 express binary literals convert binary string ’11111111’ to integer int(’11111111’, 2)
1,854 What OS am I running on get os name import platform platform.system()
1,854 What OS am I running on get os version import platform platform.release()
1,854 What OS am I running on get the name of the OS print(os.name)

ever, are very broad, while the solutions, being so short, can vary quite

substantially. Although this would not be a problem in the context of ex-

ecutable code, it definitely is a discriminating factor when evaluating the

generated code using match-based metrics, which are more sensitive to

these variations. The absence of standardized functions in the solutions

poses a significant issue. Different models, due to variations in their train-

ing, tend to encapsulate most solutions within a function. When match-

based metrics are used to evaluate the differences between the generated

and reference strings, this discrepancy leads to lower scores, despite the

underlying code being substantially similar.

74

Appendix C

Used LLMs Details

C.1 Templates

The templates used for each model during the sampling phase are reported

as follows:

• Mistral-7B:

<s>[INST] {system_message}: {prompt} [/INST]

• CodeLlama (7B and 13B):

[INST] {system_message} :

{prompt}

[/INST]

• Llama 3 8B:

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_message}<|eot_id|>

<|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>

75

C.1 Templates Used LLMs Details

• Magicoder-S-DS-6.7B:

{system_message}:

@@ Instruction

{prompt}

@@ Response

• Phi-2 3B:

Instruct: {system_message}. {prompt}

Output:

76

	Motivation Behind the Research
	LLMs are more used than Stack Overflow
	The advantages of smaller models
	Research Questions

	LLMs for Code Generation
	Why coding is relevant
	The Foundation: Language Models
	Scaling Up: Large Language Models
	Efficiency by Design: Low-Parameter LLMs
	Even Smaller: Quantized Models
	Large Language Models for code generation
	Fine Tuning
	Instruction Tuning
	What's next for LLMs
	Code evaluation methods
	Datasets
	Summary

	Methods
	Datasets and Model Selection
	Sample Generation
	Evaluation
	Analysis

	Results Analysis
	Match Based Metrics correlation
	Models Comparison
	Quantisation Comparison
	Key Findings

	Conclusion
	Future Work
	Limitations of the study
	Acknowledgements

	Ethics and Privacy Quick Scan
	Dataset details
	Dataset Examples
	Unused Dataset

	Used LLMs Details
	Templates

