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Abstract

Scan operations are commonly applied in a wide variety of parallel applications and programming
languages. Existing scan algorithms, for the CPU architecture, are either limited to one-dimensional
input sequences or have some edge-case input shapes in which they lose their performance. The
adaptive chained scan algorithm transformed the original chained scan with decoupled look-back
to efficiently work on multi-core CPUs. This algorithm outperforms existing three-phase scan
algorithms and offers flexibility in the number of working threads and has zero overhead compared
to the sequential scan during single-threaded executions.

We present the assisting column-wise chained scan algorithm, which offers the same properties
as the adaptive chained scan algorithm and performs efficiently and similarly regardless of the shape
of the multidimensional input sequence. The algorithm is implemented and evaluated in Rust, by
comparing it with the existing multidimensional scan implementation of Accelerate and the one-
dimensional adaptive chained scan. Our results show that the assisting column-wise chained scan
algorithm performs significantly better in edge-case scenarios at the cost of a slight performance loss
in normal scenarios, which introduces a trade-off between robustness and maximal performance.
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1 Introduction

Scan algorithms, also known as prefix-sums, are commonly applied within a variety of applications,
such as ordering algorithms or image processing. Taking a sequence of elements, an initial value
and a binary operator, the scan algorithm generates an output sequence, in which the operator
consecutively combines the elements from the original sequence. For example, a sequential scan can
be implemented as follows:

function seq scan(input, output, size, initial)
acc ← initial
for i ← 0 .. size do

acc ← acc ⊕ input[i]
output[i] ← acc

Although this sequential version works fine in many applications, its performance is limited
when it comes to processing large input sequences in a short amount of time. If the binary operator
is associative, however, the scan operation can also be executed in parallel over the input sequence.
As multi-core processing on Central Processing Units (CPU) gradually became more powerful with
each new generation and the Graphical Processing Units (GPU) got introduced, the parallelization
of these types of algorithms became a popular topic in this field of research. The scan algorithm
became a primitive building block for many parallel applications [2, 1], and several parallel versions
of the algorithm were introduced [7], which improved the overall performance and efficiency when
processing a larger number of data elements.

An example of the application of the scan operation in other parallel algorithms is array com-
paction/filtering. The goal of such a filter operation is to determine for each element in an input
array, whether it satisfies some given property (provided by the programmer), to create a single
output array consisting of the correct elements that satisfied the given property. Imagine providing
multiple properties to the filter operation at once, this could quickly reduce the total size of the
input array to a much smaller array containing just the relevant elements. In that case, much fewer
elements have to be considered by the remainder of the algorithm, which potentially increases the
overall performance of the program, at the cost of a single scan over the input elements.

While the parallelization of the scan algorithm over one-dimensional sequences has been studied
for years, there is almost no research published that focuses the scan operation over multidimensional
data structures (e.g. matrices). Existing implementations of these type of scans, for example in
Accelerate [5], are repeatedly applying a sequential scan to each row in the inner-dimension of the
data set. This approach, however, can be inefficient when the input data set has a skewed shape. In
the example of a matrix, this indicates that there is either a small number of rows combined with
a large number of elements on each row, or the other way around. In these types of scenarios, the
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performance of the described multidimensional scan is often limited by two main factors. One of
these factors is an incorrect distribution of work over the available threads and the other factor is the
limited memory bandwidth. These limitations especially affect CPUs, as these devices have a small
number of threads and significantly less memory bandwidth compared to the GPU. Furthermore,
the CPU potentially runs other background tasks during the execution of the scan operation, while
the GPU is purely dedicated to these type of computations.

A recently published paper, called ’zero-overhead parallel scans for multi-core CPUs’ [6], in-
troduces improved versions of existing parallel scan algorithms. Up until then, most parallel scan
algorithms for the CPU had some overhead compared to the sequential scan performance, meaning
that these algorithms were less performant on single-threaded executions. Therefore, the paper in-
troduces new versions of these algorithms with equal performance to the original, while also offering
the property of zero overhead. The main contribution is the introduction of the adaptive chained
scan algorithm, for which the decoupled look-back algorithm [15], originally designed for the GPU,
is translated into a suitable version for the CPU architecture. Benchmarks over one-dimensional
sequences show promising results, as the adaptive chained scan algorithm outperforms the existing
scan algorithms in most scenarios. However, this algorithm is currently unable to handle multidi-
mensional input data.

Therefore, the goal of this thesis project is to develop a parallel scan algorithm for the CPU,
that is capable of efficiently handling multidimensional data structures, regardless of their shape.
This multidimensional algorithm uses concepts shown in the adaptive chained scan algorithm and
should ideally be able to run with zero overhead during single-threaded executions. Furthermore,
this algorithm is expected to be robust against skewed input shapes and should perform similar
to the existing multidimensional scan of the Accelerate framework [5] in the other input scenarios.
More specifically, the following research questions will be studied:

• How can the concepts of the zero-overhead adaptive chained scan algorithm be used to create
a parallel scan algorithm for multidimensional data structures?

• How can this multidimensional scan algorithm be designed to perform the execution efficiently
over the available threads, regardless of the shape of the data structure?

• What is the expected impact on array-based languages, like Accelerate, when implementing
this multidimensional scan algorithm into their framework?

4



2 Background

This section contains the background information used to get an understanding of multidimensional
parallel scans and the possible approaches of solving this problem. Section 2.1 goes into more detail
about the concept of the scan operation, describes what factors are important towards an efficient
scan algorithm and discusses the concepts of multidimensional scan operations. The zero-overhead
parallel scan paper, introducing efficient and flexible parallel scan algorithms over one-dimensional
data structures, is explained in more detail in Section 2.2. Finally, Section 2.3 discusses some basics
of the Accelerate language, as well as an overview of the existing scan algorithms in this framework.

2.1 Scan operation

The scan operation is a fundamental primitive for many parallel algorithms, which makes it one of
the most studied patterns in parallel applications. Back in 1989, Blelloch [1] introduced the scan as
a building block for a variety of applications. The year after, he published a paper [2] showing the
usage of the scan in several practical algorithms such as Radix-Sort and Quicksort, which further
demonstrates the efficiency of applying the prefix-sum algorithm in parallel applications.

Given a sequence of elements, a binary associative operator ⊕ and a starting value n, a scan
operation produces an output sequence of equal size to the input, in which each element represents
the reduction of all prior elements in the original input sequence. The result of a scan operation can
be either inclusive or exclusive. An inclusive scan means that the ith input element is incorporated
into the ith output reduction, while an exclusive scan means that the ith input element is not
incorporated into the ith output reduction. For example, the exclusive result of the scan operation
described, using the input array x = [x0, x1, ..., xk], would be:

[n, n⊕ x0, n⊕ x0 ⊕ x1, ..., n⊕ x0 ⊕ ...⊕ xk]

Common implementations of parallel scan operations are often making use of the classic three-
phase scan strategies or a modified version based upon these three-phase scans, including scan-
then-propagate [16] and reduce-then-scan [7]. In this context, three-phase indicates that the scan
algorithm operates in three individual phases. Each thread is required to finish its work within
the current phase, before the algorithm proceeds to the next phase. Other papers specifically focus
on a linear scan approach [18, 15] and propose a parallel scan algorithm for the GPU called the
chained-scan. The chained-scan algorithm applies a single-pass approach, which indicates that the
scan operates in a single phase. In comparison to the three-phase scans, the chained scan has no
restriction that requires all threads to be finished, before proceeding with the execution.

Most of the existing research on scan algorithms is specifically targeting the GPU hardware.
Compared with the CPU, GPUs offer a much higher computation density and off-chip memory
bandwidth, because of their organisation of the processing cores. Therefore, most research contains
parallel applications that are suitable for the GPU architecture, but many of these can also be
modified to work on multi-core CPUs. This is shown in the zero-overhead parallel scan paper [6],
which we’ll briefly cover in Section 2.2 and is used as a starting point for this research project.
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2.1.1 Efficiency

An important property whilst working on a scan algorithm is to keep the number of passes as low
as possible. In this context, a single pass is a series of operations that should be completed for all
elements in the input sequence, before the algorithm can proceed with the next set of operations.
Figure 1 shows an execution diagram of two parallel scan algorithms mentioned before, namely the
single-pass chained scan [18] and the reduce-then-scan [7, 9] algorithm. Considering the diagram
of the reduce-then-scan algorithm (Figure 1b), we can determine three separate passes. The first
pass is the reduction of all elements in a block to a single value. After all of these reductions are
completed, the next pass is executed in which a single thread scans over the reduced values from
the previous pass. When this scan is completed, the third pass incorporates the resulting values
from the second pass in the final scan result. In comparison, the chained scan algorithm (Figure 1a)
combines the reduce and scan operations into a single pass, and transfers the required reduction
value directly between the working threads (B0 until BG−1). In general, reducing the number of
passes in an algorithm increases its performance, as there is less total waiting time between the
consecutive passes.

(a) Single-pass chained scan (∼2n global data movement)

(b) Three-kernel reduce-then-scan parallelization (∼3n global data movement)

Source: Original from Merrill and Garland [15]
Figure 1: Example execution diagram of parallel scans among G thread blocks
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Reducing the total number of memory accesses is another aspect for a well-performing scan
algorithm. Although most of the modern processing units are highly optimized to quickly perform
binary operations, they are generally bound by the high cost of memory accesses, such as reading
input data and writing results back to global memory. Therefore, minimizing the number of global
data movements, necessary for the execution of the scan, is a good objective for increasing the total
efficiency and performance of the algorithm. In the case of scan operations, the optimal solution
requires only a single read of the input values from memory and a single write of the results back
to memory, resulting in an optimal number of 2n global data movements. This property is achieved
by the sequential version of the prefix scan algorithm, which is used as the baseline measurement
during our benchmarks.

Parallel versions of the prefix scan are optimized to get as close as possible to this optimal
solution. The parallel single-pass chained scan algorithm (Figure 1a) makes use of G thread blocks,
which are each assigned a tile of the input data, labelled Xi. Furthermore, there is a serial depen-
dence chain between the thread blocks, indicated by the arrows labelled prefix0:i. This dependency
arises because the reduction results of one thread block needs to be transferred to the next thread
block in line to complete the scan operation. At the end of each thread block, the results are written
back to memory, labelled with Yi. This results in a global data movement of ∼2n (n reads, n writes,
(G−1) inter-thread communications), which is close to the optimal solution. In comparison, the
parallel reduce-then-scan algorithm (Figure 1b) is less efficient in regard to the number of global
data movements. In the execution diagram we can see that the values are read twice from memory,
namely in the reduce phase as well as the scan phase. Furthermore, the results are written back to
memory on completion of the algorithm and some additional data movements are necessary to send
the results between the different phases, using a small array of size G (= number of threads). This
adds up to a total number of ∼3n global data movements, which is less efficient than the number
of data movements of the chained scan approach.

2.1.2 Multidimensional scans

Nowadays, many research papers contain optimised parallel scan algorithms for one-dimensional
input sequences. However, as far as I’m aware, none of these papers really focus on the multidimen-
sional arrays of data (e.g. matrices) and the application of a prefix scan algorithm in these scenarios.
Šinkarovs and Scholz [17] propose a scan operation, which reshapes incoming (one-dimensional) data
into multidimensional arrays. The shape of this array is in turn used to guide the process of the
scan operation, such that the compiler is able to create efficient parallel code by applying multiple
sequential scans. This algorithm still handles just one-dimensional data sequences, but the guidance
of the traversal based on the array shape is a basis for further research.

A common approach for computing the prefix sum over matrices of data, is to store the elements
in a flat array and use the respective shape to assign a sequential scan upon each row in the
innermost dimension. The shape is used to determine the number of elements on each row and the
total number of rows with their respective starting positions. This guidance based on the array
shape is in some sense similar to the idea of Šinkarovs and Scholz, apart from the fact that they
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transfer one-dimensional data into a multidimensional array. An example execution of the prefix
sum operation over a given matrix is shown in Figure 2, in which we consecutively scan all rows in
the innermost dimension.x0 x1 x2

x3 x4 x5
x6 x7 x8

 =⇒

n⊕ x0 n⊕ x0 ⊕ x1 n⊕ x0 ⊕ x1 ⊕ x2
n⊕ x3 n⊕ x3 ⊕ x4 n⊕ x3 ⊕ x4 ⊕ x5
n⊕ x6 n⊕ x6 ⊕ x7 n⊕ x6 ⊕ x7 ⊕ x8


(input) (output)

Figure 2: Inclusive prefix sum over a matrix

Although this solution works fine on this small matrix example, there are some downsides to
consider, especially when the input data set grows. First, the shape of the input sequence can
affect the performance of the algorithm, such that the processor is not used to its full potential.
Consider a multidimensional input array in which there is a small inner dimension. In this case,
the processor scans the rows on the innermost dimension, but is unable to fully utilize the available
processing power, as there is only a small number of elements available on each row. If the input
array contains a large number of rows, this can gradually build up and reduce the total throughput
of the algorithm. Secondly, some scan algorithms require an intermediate array to store their values.
On top of that, the results of each row in the inner dimension should be stored separately as well,
which means that there is a risk of having a large number of memory accesses during the execution
of the algorithm. As we have seen that memory accesses are expensive in terms of performance,
this can significantly reduce the final performance of the algorithm.

These are some of the challenges that need to be considered, when taking the prefix scan into
the multidimensional context. The aim of this thesis project is to find a suitable algorithm for
multidimensional prefix scans on (multi-core) CPUs. The algorithm should be applicable to most
languages and frameworks that support multidimensional data structures. For the evaluation of
this thesis project, the algorithm will be implemented using the Rust programming language [12]
and tested against the existing scan operation of Accelerate [5].

2.2 Zero-Overhead algorithm

The single-pass parallel prefix scan algorithm with decoupled look-back, by Merrill and Garland
[15], improved the existing research on parallel GPU scan algorithms, as it alleviates the problem of
serial dependencies, increases the memory bandwidth usage and reduces the number of global data
movements to ∼2n. Taking this concept of the GPU algorithm and transforming it to efficiently
work on multi-core CPUs is the main contribution of the zero-overhead paper [6]. While many of
the existing parallel algorithms suited for the CPU architecture already have a low number of passes
and global data movements, they still contain a constant factor of overhead when comparing it to
the sequential scan on single-threaded executions. This overhead exists, as these parallel algorithms
traverse the input data multiple times, while the sequential version traverses the data only once.
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The improved parallel scan algorithms discussed in the paper, not only resolve the constant
factor of overhead, but also provide a more flexible solution for parallel execution of the algorithm.
As many existing algorithms require knowledge about the available number of threads beforehand,
the zero-overhead algorithms are able to start in a sequential mode and adapt whenever more
threads become available throughout the execution. Especially in the case of the CPU, this can
be highly beneficial. Threads are sparse in these type of devices and this option to adapt makes it
possible for a thread to assist, whenever it completes its current task.

The paper also introduces adapted versions of the three-phase scans, called assisted reduce-
then-scan and assisted scan-then-propagate, which are outperforming the original versions of these
algorithms. During the experiments, however, they find that the adapted version of the chained
scan [15] algorithm performs even better in most scenarios. Hence, this thesis will be focusing on
applying the concept of this adaptive chained scan algorithm for the multidimensional prefix scan,
as it provides the most promising results for further research.

2.2.1 Parallel chained scans on CPUs

The chained scan approaches, described by Yan et al. [18] and Merrill and Garland [15], are originally
designed for massively parallel GPUs. In contrast to CPUs, GPUs make use of thread blocks which
can easily communicate with each other at low overhead, and contain significantly more register
memory to store all elements within a block. However, the number of registers on the CPU is
quite limited, and to be able to keep a large enough block size to reduce synchronization overhead,
the elements are stored in L1 cache instead. The memory access cost of L1 cache is lower than
the access cost of global memory, but the available storage is relatively small and differs between
different processing units. This means that the maximal block size, used during the execution of
the algorithm, is now depending on the specific processor and the size of each element in the array.

The look-back property of the chained scan means that threads are able to determine the required
prefix value themselves, instead of idling until the result of the predecessor comes in. The incoming
data is split into blocks of a fixed size, after which the parallel threads claim the blocks from left
to right. A thread reduces its block to a single value, called the aggregate, which is directly shared.
Then it requires the prefix value of the previous block, which is the last value in the block after
scanning, to determine its starting value and perform the final scan. Whenever the prefix value of
the predecessor is not yet available, the thread block can use the aggregate value and determine the
prefix value themselves by continuing the look-back to the next predecessor in line. This look-back
continues until a block with a prefix value is found, and the final scan can be performed using the
calculated value.

Therefore, a descriptor object is stored per block, to keep each of the threads synchronized
during execution. The descriptor object contains the following information:

• The status flag, which can be either:

X - The field is initialised, but there is no progress made
A - The aggregate value is available
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P - The prefix value is available

• The aggregate value
• The prefix value

All of the descriptor objects are initialised with status flag X. Regarding the look-back iterations,
it means that we take the aggregate of the predecessor when the status flag is A and the prefix
value if the status flag is P, after which the look-back finishes.

2.2.2 Adaptive chained scans

To achieve zero-overhead on single-threaded execution, the operation of the chained scan algorithm
(Section 2.2.1) is slightly changed, resulting in the adaptive chained scan algorithm. However, there
is one restriction on chained scans to consider, namely the order of block processing. As each
block depends on the aggregate values of its predecessors, they need to be processed from the left
to the right. Therefore, the adaptive chained scan algorithm starts in a sequential mode on the
leftmost block and switches to parallel mode when another thread joins the execution. When a
thread claims the next block in line, it directly checks whether the prefix value of the previous
block is already available. In that case, the thread directly performs the scan operation over its
block and skips the reduce step and the aggregate calculation. However, when the prefix value is
not yet available, the thread performs the usual operation of the chained scan as we’ve seen before.
In single-threaded scenarios, the prefix value of the predecessor will always be available and the
current block can directly be scanned using that value, reducing the total number of operations.
Hence, when executed on a single core, this adaptive chained scan will have no overhead compared
to the sequential counterpart.

2.3 Accelerate

As discussed earlier, parallel scans are applied in many array-based languages, one of them being
the Accelerate [5] language. We introduce this language in more detail and discuss their current
method for one-dimensional and multidimensional scan operations.

Accelerate is a functional embedded language in Haskell, which is used for high performance
array computations through parallelism. The language is compiled to efficient (parallel) code for
multi-core CPUs or optimized CUDA code for GPUs [5]. It uses a runtime compiler, which means
that compilation happens on-the-fly during execution.

The Accelerate library contains many combinators, which can be combined to create a variety
of parallel operations. These operations are further optimized by the compiler [13] as it combines
primitives to reduce the total amount of computations and removes intermediate data-structures,
which can significantly increase the performance of programs. Many of the functions available in
Accelerate will look familiar to Haskell programmers. For example, the function that calculates the
dot product of two given vectors can be defined as follows:
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dotp :: Acc (Vector Float) -> Acc (Vector Float) -> Acc (Scalar Float)

dotp xs ys = fold (+) 0 $ zipWith (*) xs ys

The Acc in the type definition is used as an indication that the calculation can later be executed
on the selected device. The Vector type indicates an one-dimensional array and the Scalar type
indicates a single value. The functions fold and zipWith are in Accelerate applied to arrays of
data. Although they look similar to the corresponding Haskell functions on lists, there is a main
difference, as these functions in Accelerate can be executed in parallel.

To compile this code to either the CPU or the GPU, Accelerate makes use of an internal rep-
resentation (LLVM IR). The LLVM backend of Accelerate [14] contains a seperate LLVM compiler
for native CPU code and GPU code. These compilers support many different algorithms including
the scan algorithm, which is further explained in Section 2.3.1

2.3.1 Scan operation

For the evaluation of this research project, the proposed multidimensional scan operation is com-
pared against the current multidimensional scan in Accelerate. Therefore, it is useful to have a
overview of the existing scan functionality in this language. The Accelerate library currently of-
fers support for both one-dimensional array operations, as well as multidimensional arrays. These
arrays are stored in memory as flat arrays, with separately stored shape information. This is repre-
sented using the ArrayR data type, which contains information about the dimensions and the data
layout/type of the corresponding array:

data ArrayR a where

ArrayR :: { arrayRshape :: ShapeR sh

, arrayRtype :: TypeR e

}

-> ArrayR (Array sh e)

In the current implementation of scan is a clear distinction between one-dimensional and mul-
tidimensional input arrays. One-dimensional arrays of a small size are scanned using a sequential
operation, while arrays of a larger size, are scanned using the scan-then-propagate algorithm. This
algorithm, as visible in Figure 3, first splits the input data into fixed size blocks. Then it reduces all
blocks to a single value, using a parallel execution, and stores the resulting values in a temporary
array. A single thread scans over this array to compute all of the aggregate values. Finally, it
combines the aggregates with the respective blocks in parallel, resulting in the final scanned array.
In total, this process takes ∼4n global data movements, which is far from the optimal solution.

The scan operation over multidimensional array structures is currently implemented as a sequen-
tial scan over a row, which executes in parallel over the outer-dimension. This means that multiple
rows are scanned in parallel, but each of these rows is handled by a single thread. Therefore, it
scans each row sequentially, instead of multiple threads working together on a single row as seen
with, for example, the scan-then-propagate algorithm. The downside of this approach is, that the
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Source: Original from Harris et al. [10]
Figure 3: The parallel scan-then-propagate algorithm (∼4n global data movement)

shape of the input array can heavily affect the performance of the scan algorithm. We consider two
edge case scenarios that can be inefficient for the performance of this algorithm:

• A small matrix consisting of many rows and few elements per row

• A wide matrix consisting of few rows and many elements per row

For the first edge case, consider an input array with dimension 3 × 10.000 elements. The outer
dimension of this array is 3, which means that the algorithm starts at most 3 threads in parallel,
even in situations where more threads are available for the computation. A single thread, therefore,
performs the scan operation sequentially over a row of 10.000 elements. As most modern CPUs
contain at least 8 threads, it would be more efficient to have multiple threads working in parallel
over the elements of a row, significantly improving the performance of this scan operation in these
scenarios. The second edge case can be inefficient, as each thread is being assigned to a single row
consisting of a small number of elements. Therefore, each thread will only request a small chunk
of elements from memory for its respective row, instead of larger chunks containing the number of
elements of the fixed block size. Therefore, the algorithm performs more (small) memory fetches
throughout the entire scan operation than strictly necessary, which is expected to result in some
performance loss.

Hence, the goal of this thesis project is to find a better solution to this existing scan operation
over multidimensional array structures and compare their performances.
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3 Multidimensional Parallel Scan

As we have seen the concepts and results of the adaptive chained scan algorithm (Section 2.2.2) on
one-dimensional arrays, the question about how to apply these concepts in the multidimensional
context and create an efficient multidimensional parallel scan algorithm still remains. A key property
of the single-pass chained scan approach, in which input sequences are divided into blocks of a fixed
size, is the linear dependency that exists between the consecutive blocks. The aggregate and prefix
values of the predecessors are a necessity to complete the computation over the elements in the
current block. Therefore, the order in which blocks of data are assigned to the working threads
should ensure that all blocks of a row are assigned in their original order.

The goal of the multidimensional scan algorithm is to scan the input sequences over the innermost
dimension, as shown in Section 2.1.2. Considering a flat array representation in memory, we can
translate multidimensional input sequences in terms of a matrix, in which the innermost dimension
represents a single row and the product of the other dimensions represents the total number of rows.
The columns in this matrix are determined by the number of blocks necessary to fit a single row of
the innermost dimension, which depends on the size of the innermost dimension and the fixed size
of each block.

Based on these aspects, we consider two main patterns in which the blocks can be assigned,
namely a row-wise and a column-wise block assignment pattern, which are discussed in Section 3.1
and Section 3.2 respectively. Then, we explain the design of our multidimensional scan algorithm
in Section 3.3. The implementation of the algorithm in Rust [12] will be explained in Section 3.4.

3.1 Row-wise block pattern

Assigning the blocks in a row-wise pattern to the working threads is a reasonable approach for a
multidimensional scan algorithm, as this pattern ensures that all blocks of an inner-dimensional
row are assigned in their original order. This pattern is shown in Figure 4, which shows a multidi-
mensional input sequence that consists of three rows on the innermost dimension, each of which is
divided into three fixed size blocks. The consecutive rows are stored serially in memory because of
the flat array representation discussed earlier. Therefore, considering the last elements of a row to
be contained in block n, the first elements of the next row are contained in block n+ 1. The same
holds for the order of the blocks on a single row, which makes the row-wise assignment pattern a
constant increment of the block index by 1, until all input data is processed.

The concepts shown in the zero-overhead paper [6] can be applied within this row-wise multi-
dimensional scan algorithm, as it essentially is a collection of one-dimensional sequences, as long
as we keep track of the start and end index of each row. Application of the adaptive chained scan
(Section 2.2.2) principle, results in no overhead compared to the sequential scan performance on
single-threaded executions. As the input data is multidimensional, we need to consider the situa-
tion in which the first block of a (new) row is being processed, as this effects whether the aggregate
values of the predecessors can be ignored. Therefore, knowledge is required about the number of
blocks necessary to contain all elements of a row and the total length of a single row. The length is
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Figure 4: Row-wise block assignment pattern

used to determine the size of the last block on each row, as the number of remaining elements can
be smaller than the maximal allowed number of elements in a single block.

Increasing the number of working threads, however, increases the chance of threads performing
multiple iterations within the look-back phase to determine the required prefix value. All of the
threads are working on consecutive blocks and are therefore likely to be working on the same row.
However, if the input sequence contains many rows, the threads can also perform their scan operation
on separate rows instead, without interference of other threads on predecessor blocks. Therefore,
we consider an alternative block assignment pattern, which is further explained in Section 3.2.

3.2 Column-wise block pattern

Assigning the blocks in such a way that the interference between different threads working on
consecutive blocks is minimized, is the goal of the column-wise block assignment pattern. The
assignment order is visible in Figure 5, which again represents a matrix consisting of three rows on
the innermost dimension each of which is divided into three fixed size blocks. In contrast to the
row-wise pattern, we first assign the first block of each row, followed by the second block of each
row, continuing until all input data has been assigned and processed. This way all blocks of a row
are still processed in their original order, while the working threads are spread over the available
rows, reducing the interference of threads on consecutive blocks.
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Figure 5: Column-wise block assignment pattern

Consider a situation where the number of rows is significantly larger than the number of working
threads. Furthermore, assume that the nth block of all rows has been assigned to the working
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threads, meaning that the (n + 1)th block of the first row is the next block to be assigned by the
column-wise pattern. Whenever this next block is being processed, the work on its predecessor is
almost certainly finished, as the number of rows is significantly larger than the number of threads.
In that case, the required prefix value can directly be read from the block descriptor array by
applying the adaptive chained scan principle, as seen in Section 2.2.2.

Theoretically, all threads spend less time calculating the prefix value themselves using look-back
iterations, as the prefix value of the predecessor is mostly directly available. Therefore, we expect
a slight performance improvement compared to the row-wise block assignment pattern.

3.3 Multidimensional algorithm

Now that both the row-wise block pattern (Section 3.1) and the column-wise block pattern (Sec-
tion 3.2) are discussed, we can try to combine the strengths of these two patterns within a single
multidimensional parallel scan algorithm. Ideally, the algorithm performs the scan operation ef-
ficiently, regardless of the number of working threads and the size and shape of the input data,
including the edge case input sequences of either extremely small or wide matrices as described in
Section 2.3.1. First, the design and the functionality of this algorithm is explained in more detail.
Followed by an example state of the algorithm after execution of the scan operation, to explain the
functioning of the algorithm in practice.

3.3.1 Assisting column-wise chained scan

Preliminary benchmarks between the row-wise chained scan and the column-wise chained scan,
showed some advantages and disadvantages of both of these patterns. In fact, input scenarios with
an increasing number of working threads are most of the times performing equally or better using
the column-wise pattern instead of the row-wise pattern. Single-threaded executions, on the other
hand, show some slight overhead when using the column-wise pattern, while the row-wise pattern is
able to perform with zero overhead. The comparison between these two patterns is further discussed
in Section 4.2.

The assisting column-wise chained scan algorithm introduces a combination between the per-
formance of the column-wise pattern in multi-threaded scenarios and the zero-overhead property
of the row-wise pattern. The algorithm is visualized using a flowchart in Figure 6. A separate
conditional is included to determine whether the size of the innermost dimension is smaller or equal
to the fixed block size. In that case, depending on the size of the innermost dimension, at least one
or optionally multiple rows can fit within a single fixed size block. This potentially reduces the total
number of blocks and block assignments to the working threads, resulting in less atomic increment
instructions of the current block index.

In general, many parts of the algorithm are similar to the chained scan and adaptive chained
scan algorithm, discussed in Section 2.2. The working threads still need to be synchronised using
an array of descriptor objects, containing the status flag, the aggregate value and the prefix value
for each block. The main difference, however, is the way in which the individual data blocks are
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Figure 6: Flowchart assisting column-wise chained scan algorithm

assigned to the working threads. The first thread, which initially claimed the scan task, starts
processing the blocks via the row-wise pattern, which ensures the zero-overhead property on single-
threaded executions. The assisting/parallel threads will instead process the blocks via the column-
wise pattern, as we’ve seen that this pattern is mostly beneficial during multi-threaded executions.
The column-wise scan can only be applied if there’s an unclaimed row available, as otherwise keeping
track of assigning and processing all blocks of input data would be difficult. When multiple threads
start working on the same task, the first thread detects the parallelism and finishes its current row
in row-wise order, after which it assists with the column-wise scan. The same holds for the parallel
threads, whenever the column-wise scan is finished before the first thread could finish its current
row, they start assisting with the row-wise scan. We present the pseudocode for the assisting
column-wise chained scan algorithm in Algorithm 3, together with the block assignment loop in
Algorithm 2. These implementations will be further discussed in Section 3.4.

This design of the algorithm gives us a few properties. First of all, threads are prevented from
idling for longer periods of time, as they’re able to calculate the required prefix value themselves
during the look-back phase and assist either the row-wise or column-wise scan upon completing
their own task. Furthermore, the algorithm is able to switch to a parallel execution without any
additional synchronisation overhead, which makes the algorithm able to work with a variable number
of working threads throughout the execution. This is especially useful on a CPU, as available threads
are usually sparse on these type of devices and other background tasks may finish during the process
of the scan algorithm, after which the finished thread can assist the scan operation. Lastly, the
multidimensional scan algorithm is also able to handle one-dimensional input sequences. The row-
wise chained scan algorithm (Section 3.1), in which the algorithm starts , is practically equal to the
adaptive chained scan algorithm (Section 2.2.2). Therefore, our performance on one-dimensional
sequences is expected to be close to the performance shown in the zero-overhead paper [6].
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3.3.2 Execution example

Suppose we have a small multidimensional input matrix, consisting of three inner dimensional rows
that each can be divided into three fixed size data blocks. The assisting column-wise chained scan
algorithm is applied on this input sequence to calculate the prefix sum using three parallel threads.
Figure 7 illustrates a possible execution state after the algorithm is finished. The numbers represent
the order in which each of the blocks is assigned to the workers and the colours represent the different
threads that processed these blocks of data. We can identify the following stages:

• Thread 1 (yellow) starts the computation in row-wise order, as only a single thread is currently
working on the task.

• Thread 2 (green) joins the computation, while thread 1 is working on the second block.
Recall that assisting threads will only start processing blocks in column-wise order, whenever
an unclaimed row is available. The second row is currently unclaimed, as thread 1 is still
active on the first row. Therefore, the first block of the second row is assigned to the assisting
thread, after which it continues processing the other blocks in column-wise order.

• Thread 1 detects the parallelism of the assisting thread upon completion of the second block,
but still needs to finish the first row in row-wise order. Therefore, the third block of the first
row is now assigned to thread 1, after which it assists the parallel threads with the column-wise
order scan.

• Thread 3 (blue) joins the computation when thread 2 is already processing the data in column-
wise order. Therefore, it directly starts assisting the column-wise process.
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Figure 7: Example order of block assignment during a scan operation. The
colours represent the different threads processing the data blocks.
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3.4 Rust implementation

The implementation of the algorithms in Rust [12] can be subdivided into three main components:
the data structure, the block assignment loop and the scan algorithms. Each of these will be
discussed in more detail in the following subsections. The main focus will lie on the assisting column-
wise chained scan algorithm, as both the row-wise chained scan and the column-wise chained scan
are also embedded within the design of this algorithm. The full implementation of the algorithms
including the benchmarks can be found on Github1.

3.4.1 Multidimensional data container

To correctly execute the parallel scan algorithms, two things are required besides the data itself,
namely knowledge about the shape of the multidimensional data and the fact that the data itself
needs to be linearly stored in memory, also known as the flat array representation. We implemented
a minimal structure definition called MultArray, as shown in Listing 1, containing a reference to
the data and the corresponding (multidimensional) shape of the data. The MultArray takes the
shape information and the element type T on initialisation, and uses this to allocate a fixed sized
array for elements of type T on the heap. The Box type is then used to create a reference to this
location on the heap, which can easily be shared between the different functions.

pub struct MultArray<T, const N: usize> {

data: Box<[T]>,

shape: [usize; N],

}

Listing 1: Multidimensional data structure in Rust

3.4.2 Parallel block assignment

The different data blocks are assigned to the working threads using a parallel loop. Recall that an
important property of the chained scan algorithm is that all blocks need to be processed exactly
once and in their original order. Therefore, a global variable work index is used, which can be
updated by the threads to determine the current index of the block to be processed. As multiple
threads may be simultaneously working on the same task, we use atomic instruction to safely update
the work index variable.

Both the row-wise chained scan and the column-wise chained scan determine their next block
index by atomically incrementing the work index. The pseudocode for this loop is shown in Algo-
rithm 1. The row-wise scan uses the number of blocks on a single row, to determine the current
partition of elements to process. Whereas, the column-wise scan does an equal calculation, but
uses the total number of rows instead. This difference is also visible in Algorithm 3, in which the

1https://github.com/Rudolf-UU/multi-dimensional-parallel-scan
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row idx and column idx variables are determined differently, while the remainder of the algorithms
is similar.

Algorithm 1 Parallel block assignment

function block assignment loop(work size, uint32∗ work index, scan function)
loop

block idx ← atomic fetch add(work index, 1, ordering::relaxed)
if block idx >= work size then break
scan function(block idx)

The assisting column-wise chained scan, however, needs to keep track of the current index in
both the row-wise order and the column-wise order during parallel executions. Therefore, the global
32-bit work index variable is split; the 16 most significant bits represent the row-wise index and the
16 least significant bits represent the column-wise index. This allows us to represent both indices
using a single variable. One downside of this approach is the limitation on the total number of
blocks that can be processed. The work size cannot be larger than (216− thread count) to prevent
overflow into the other half of the variable, as the division between blocks processed in row-wise
order and column-wise order is unknown. This limitation, however, can be resolved by changing
the work index to a 64-bit variable, but for the purpose of this thesis we decided to keep the size
of the variable constant throughout the different algorithms.

The pseudocode for the two-sided block assignment loop, used in the assisting column-wise
chained scan algorithm, is shown in Algorithm 2. The function header contains the following
parameters:

• work size - total number of blocks
• work index - global block index variable
• seg count - number of blocks used to process a single row
• mult rows scan - scan algorithm that combines multiple rows in single fixed size block
• rw scan - row-wise chained scan algorithm
• cw scan - column-wise chained scan algorithm

The if-statement on line 3, checks whether a single row can be contained within one fixed size
data block, which is equal to the conditional (row size <= block size) seen in Figure 6. If true,
the mult rows scan algorithm is called, which is further explained in Section 3.4.3. Otherwise,
we proceed to lines 10-16, in which several variables are initialised to be later used to synchronize
the two-sided increment of the work index variable. The assisting threads determine the progress
made in row-wise order (lines 17-20), followed by an if-statement (lines 21-24) to decide whether
they proceed in column-wise order (unclaimed row available) or assist the row-wise order scan.
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Algorithm 2 Two-sided parallel block assignment loop

1: function two sided block assignment(
work size, uint32∗ work index, seg count,
mult rows scan, rw scan, cw scan)

2: block idx ← work index
3: if seg count = 1 then
4: /* Combine rows within a single block */
5: loop
6: mult rows scan(block idx)
7: block idx ← atomic fetch add(

work index, 1, ordering::relaxed)
8: if block idx >= work size then break
9: else

10: rw thread ← work index = 0
11: rw idx ← block idx ≫ 16
12: cw idx ← block idx & 0xFFFF
13: /* Synchronization variables */
14: rw claimed ← 0
15: rw work size ← work size
16: cw work size ← 0

17: if rw thread = false then
18: rw claimed ← (rw idx+seg count−1)

seg count
19: rw work size← rw claimed * seg count
20: cw work size ←

work size - rw work size
21: if cw work size > 0 then
22: cw scan(cw idx, rw claimed)
23: else
24: rw thread ← true

25: loop
26: if rw thread then // Row-wise order
27: res← compare exchange weak(

work index, block idx,
block idx + 1≪ 16, ordering::
relaxed, ordering::relaxed)

28: if res.is ok() then rw scan(rw idx)
29: block idx ← load(work index,

ordering::relaxed)
30: rw idx ← block idx ≫ 16
31: cw idx ← block idx & 0xFFFF
32: if cw idx > 0 then
33: /* Determine synchroniza-

tion variables and set
rw thread to false if cur-
rent row is finished */

34: claimed ← rw idx + cw idx + 1
35: if claimed > work size then break
36: else// Column-wise order
37: block idx ← atomic fetch add(

work index, 1, ordering::relaxed)
38: rw idx ← block idx ≫ 16
39: cw idx ← block idx & 0xFFFF
40: claimed ← rw idx + cw idx + 1
41: if claimed > work size then break
42: if cw idx ≥ cw work size then
43: rw thread ← true
44: continue
45: cw scan(cw idx, rw claimed)

The two-sided loop is visible on lines 25-45, consisting of the row-wise order section (26-35) and
the column-wise order section (37-45). When proceeding in row-wise order, we atomically increment
the 16 most significant bits of work index using the compare\_exchange\_weak function. On
success, the rw scan algorithm is called. Then we read the latest work index value and calculate
both indices (29-31), to determine whether parallel threads started assisting (line 32) or whether all
blocks have been processed (lines 34-35). A similar pattern is used for the column-wise order. We
atomically increment the 16 least significant bits of the work index variable and determine both
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indices (lines 37-39). Then we check whether all blocks have been claimed (lines 40-41) or whether
just the column-wise order is finished such that the row-wise order scan can be assisted (lines 42-44).
Otherwise, the cw scan is called with the rw claimed variable, representing the number of rows
being processed in row-wise order.

3.4.3 Scan algorithm implementation

Now that all data blocks are being assigned to the working threads, we need to consider how to
actually perform the scan over these blocks. As we’ve discussed in previous sections, the assisting
column-wise chained scan requires knowledge about a few aspects: a location of the input and
output arrays, information variables regarding the (multidimensional) shape of the data and an
array of block descriptors. Therefore, each scan algorithm is first initialised using a create_task

function. This function determines the necessary variables and arrays, which are combined in a
single data structure to be send to the scan algorithm. Using this data structure and the incoming
block index, the actual scan operation can be performed.

The pseudocode for the assisting column-wise chained scan algorithm is shown in Algorithm 3.
The create_task function receives an input pointer, an output pointer and a shape, and creates
a Data object (line 2) to be send to the assisting_columnwise_scan function. On line 5-7, we
determine the size of the innermost dimension, the total number of rows and the number of blocks
necessary to scan a single row. The if-statement on line 8, determines whether multiple blocks can
be combined, which in turn effects the total number of block descriptors needed to be initialised in
the descriptor array. These variables are combined into one data object (line 10), after which the
assisting column-wise chained scan algorithm can be executed.

The assisting_columnwise_scan function first defines the different scan orders to be used by
the block assignment loop, which is shown on lines 12-31. The multiple_rows function takes a
block index as input parameter, and determines the number of rows that fit in a single block size.
Using this information, the start and end variables of the current block are calculated, after which a
sequential scan can be performed. The for-loop on line 18 is used to iterate over the different rows in
the block. Once one block has been sequentially scanned, we increase the start index to the beginning
of the next row, and repeat the same process until all rows are processed. The rowwise_scan

function uses the block index to determine the current row and the offset on this row of the block
to be processed (lines 22-23). Then, it calls the adaptive chained scan function to perform the scan
over this block, as described in Section 2.2.1 and Section 2.2.2. The columnwise_scan function
shows a similar pattern. However, it also determines the offset to be applied to the row index, to
account for the number of rows that have already been processed in row-wise order. The algorithm
concludes with a call to the two-sided block assignment loop (line 32) as described in Section 3.4.2,
which decides when each of the three functions above should be applied.
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Algorithm 3 Assisting column-wise chained scan

1: const block size← 4096
2: struct Data{T∗ input, T∗ output, blocks per row, inner size, work size,

uint32 work index, Descriptor∗ descriptors}
3: struct Descriptor{uint32 flag, T aggregate, T prefix}
4: function create task(input, output, shape)
5: inner size ← get inner(shape) // Retrieve the inner dimension
6: inner rows ← mult outer(shape) // Multiply dimensions, except the inner
7: blocks per row ← inner size+block size−1

block size
8: block count ← if blocks per row > 1 then blocks per row ∗ inner rows

else ceil( inner rows
block size/inner size)

9: descriptors ← new Descriptor[block count], init with X
10: data ← Data{input, output, blocks per row, inner size, block count,

work index:0, descriptors}
11: On available threads, execute assisting columnwise scan(data)

12: function assisting columnwise scan(Data∗ d)
13: inner rows ← d→input.len() / d→inner size
14: function multiple rows(block index)
15: rows per block ← min( block size

d→inner size , inner rows)
16: size block ← d→inner size ∗ rows per block
17: start ← block index ∗ size block
18: for ← 0 to rows per block do
19: seq scan(&d→input[start],&d→output[start],d→inner size, 0)
20: start ← start + d→inner size
21: function rowwise scan(block index)
22: row idx ← block index / d→blocks per row
23: column idx ← block index % d→blocks per row
24: descriptor idx ← block index // Block index in descriptor array
25: adaptive chained lookback(d, row idx, column idx, descriptor idx)
26: function columnwise scan(block index, completed rows)
27: new inner rows ← inner rows − completed rows
28: row idx ← (block index % new inner rows) + completed rows
29: column idx ← block index / new inner rows
30: descriptor idx ← (row idx ∗ d→block per row) + column idx
31: adaptive chained lookback(d, row idx, column idx, descriptor idx)

32: two sided block assignment(d→work size, &d→work index, d→blocks per row,
multiple rows, rowwise scan, columnwise scan)
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4 Experiments and Results

The performance of the different multidimensional parallel scan algorithms is measured using a
variety of input shapes and sequences in both a prefix sum operation and an in-place prefix sum
operation. In this context, the term ’in-place’ indicates that the algorithm reuses the input array
to store its computed result, which is achieved by referring both the input and output parameters
of the algorithm to the same memory location. We compare the proposed assisting column-wise
chained scan algorithm (Section 3.3) against the current multidimensional scan implementation of
Accelerate (Section 2.3.1), the row-wise chained scan algorithm (Section 3.1) and the column-wise
chained scan algorithm (Section 3.2). More specifically, the algorithms are tested against four
different input shapes/matrices containing n = 100.000.000 64-bit integers each, namely:

[[4, 25.000.000], [4.000, 25.000], [10.000, 10.000], [100.000, 1.000]]

These shapes are specifically selected to test the robustness of the algorithms in all kinds of multi-
dimensional scenarios, including the edge cases as described in Section 2.3.1, a square NxN matrix
and a non-square NxM matrix. Furthermore, a few benchmarks are included for one-dimensional
sequences, higher dimensional shapes and the comparison between the row-wise and column-wise
pattern, which will be further discussed in the next several subsections. The full implementation of
these benchmarks can be found on Github2.

We performed the benchmarks using an Intel 12900 processor, containing 24 threads divided
among 8 performance cores and 8 efficiency cores. It has 80 KB L1 cache available for each core, runs
two threads per core and offers a maximal memory bandwidth of 76.8 GB/s. Furthermore, it applies
a Uniform Memory Access (UMA) architecture, meaning that each core has equal memory latency
and access speed, therefore, eliminating slight performance differences caused by the access speed
of the main core claiming the task. This is in contrast to Non-Uniform Memory Access (NUMA)
architectures, for which the performance of a single run depends on the fact whether a core with low
or high latency is performing the scan operation. Each benchmark first performs a cold run, in which
no results are being recorded. Then the average execution times over 50 runs is calculated, to reduce
the effect of variance in the final results. Although the processor contains a total of 24 threads,
we only report the performance up to 16 threads, as applying more threads doesn’t significantly
affect the performance of the algorithm, neither positively nor negatively. Furthermore, the fixed
block size used in the benchmarks is set to 4096 elements (64-bit/8-byte) as this fits within a single
thread’s L1 cache size (32 KB < 40 KB).

4.1 Prefix sum

The performance of the multidimensional parallel scan algorithms is measured using the four input
matrices as listed before. The corresponding results for the prefix sum and in-place prefix sum
operations are presented in Figure 8 and Figure 9 respectively. The numeric representation of these

2https://github.com/Rudolf-UU/multi-dimensional-parallel-scan
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graphs can be found in Table 2 and Table 3 in the appendix. Looking at these results, we can make
the following observations.

The sequential row-based algorithm, currently used in Accelerate as described in Section 2.3.1,
is proven to be a relatively simple yet effective method in most scenarios, apart from the tested edge
case scenarios. For example, looking at Figure 8a, we can see that the performance of the sequential
row-based algorithm no longer increases when applying more than 4 parallel threads, which is due
to the limitation of only one thread being assigned to a single row in the input matrix. However, in
the more general case scenarios, like the NxN matrix, the algorithm is able to slightly outperform
the other scan algorithms.

The assisting column-wise chained scan, is the only algorithm to show an increased performance
with the small matrix input, shown in Figure 8d and Figure 9d. As a single row only contains 1000
elements and the applied fixed block size in the benchmarks is set to 4096 elements, the assisting
column-wise chained scan algorithm is able to combine 4 rows of the input matrix into a single
block, reducing the total number of atomic increments and memory calls.

The multidimensional parallel scan algorithms, apart from the column-wise chained scan, are
able to perform single-threaded scan operations with zero overhead compared to the sequential scan.
However, the performance of the column-wise chained scan on multi-threaded executions, especially
up till 8 threads, is in most cases better than the row-wise chained scan. This difference between
these two patterns is further explained in Section 4.2.

Lastly, we can see that all parallel algorithms reach their maximal performance around 6 to 8
threads, after which their performance slightly declines or remains the same. This is most likely
caused by the limitation of memory bandwidth. As more threads join the computation, more blocks
need to be fetched from memory to the local L1 caches. However, at a certain point the memory
bandwidth will be fully utilised, meaning that other threads are idling until enough bandwidth is
available to read their input values from memory or write their results back to memory. Based on
these benchmark results, this point is reached around 8 parallel threads.

Referring back to the research questions, one goal of this thesis project is to answer the question:
’How to design a multidimensional parallel scan algorithm that can efficiently execute the scan
operation over the available threads, regardless of the shape of the data structure?’. Looking
at the discussed observations and the performance of the proposed assisting column-wise chained
scan algorithm, we may conclude that the design of this algorithm forms a reasonable answer to
that question. Throughout all different test scenarios, including higher dimensional benchmarks
which are later discussed in Section 4.4, the performance of the assisting column-wise chained scan
algorithm remains very similar. However, on the one hand we have the robustness of this algorithm
in the edge case scenarios, while on the other hand we can see a slight performance loss in general
case scenarios, compared to the performance of the sequential row-based algorithm. This forms a
trade-off between the advantage and disadvantage of this algorithm, which has to be decided upon
for each specific situation and application.
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(a) Input shape: [4, 25.000.000] (b) Input shape: [4.000, 25.000]

(c) Input shape: [10.000, 10.000] (d) Input shape: [100.000, 1.000]

Figure 8: Prefix sum benchmarks of matrices with n = 100.000.000 elements. The results are
normalised to the sequential scan performance.

25



(a) Input shape: [4, 25.000.000] (b) Input shape: [4.000, 25.000]

(c) Input shape: [10.000, 10.000] (d) Input shape: [100.000, 1.000]

Figure 9: In-place prefix sum benchmarks of matrices with n = 100.000.000 elements. The
results are normalised to the sequential scan performance.
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4.2 Row-wise vs column-wise

To determine the best strategy for the assisting column-wise chained scan algorithm, as described
in Section 3.3.1, we needed an overview of the strengths and weaknesses of both the row-wise and
column-wise pattern. Table 1 presents the relevant rows of the prefix sum benchmark over the input
matrix [10.000, 10.000], visible in Figure 8c. This benchmark is used to show the relation between
these two patterns/algorithms, but this relation is also recognisable in most other benchmarks.
Based on these results, we can make a few observations.

First, the column-wise chained scan algorithm is most of the times performing equal or better
than the row-wise chained scan algorithm. The most significant difference between the performance
of these two patterns is visible between 2− 8 threads, while the difference between 8− 16 threads
is instead relatively small. The first improvement is most likely achieved by the reduction of
interference between consecutive threads, as described in Section 3.2. The small difference using 8
or more parallel threads is most likely caused by the limitation of memory bandwidth as described
in the previous section.

Second, the row-wise chained scan algorithm performs single-threaded executions with no over-
head compared to the sequential scan, while the column-wise chained scan has some overhead. We’re
unsure what the exact reason for the overhead is, however, a possible explanation could be related to
the size of the L1 cache. The applied Intel 12900 processor, has per core 80 KB of L1 cache available
and is able to run two threads per core, which means that 40 KB of L1 cache can be used by each
thread. The fixed block size is based on this 40 KB, however, chances are that on a single-threaded
execution a core is only launching a single thread. In that case, this single thread has 80 KB of L1
cache available, in which two fixed size blocks can be stored. As the row-wise pattern is processing
the blocks in their original order, it is likely that the result of the previous block is still available
in the cache, resulting in a low access time compared to a memory call. On the other hand, the
column-wise pattern isn’t processing direct consecutive blocks, meaning that the second result avail-
able in the cache is most likely irrelevant to the current block. Then, the result of the predecessor
is fetched from memory, resulting in some overhead due to the higher access time. However, this
explanation is purely based on reasoning, and further research is needed to get to a definitive answer.

Number of threads 1 2 3 4 6 8 10 12 14 16

Sequential 1.00 (67 ms)

Column-wise chained 0.94 1.42 1.77 2.16 2.56 2.67 2.52 2.48 2.41 2.39

Row-wise chained 1.00 1.28 1.59 1.89 2.40 2.65 2.55 2.47 2.43 2.38

Table 1: Comparison of the row-wise pattern vs the column-wise pattern. Performance numbers
are selected from the prefix sum benchmark using input [10.000, 10.000].
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4.3 One-dimensional prefix sum

The assisting column-wise chained scan algorithm is based upon the concepts proposed in the adap-
tive chained scan algorithm (Section 2.2.2), which only supports one-dimensional input sequences.
To measure any differences regarding the performance between these two algorithms, we applied
them both to an one-dimensional input sequence. These benchmarks are equal to the prefix sum and
in-place prefix sum benchmarks shown in the zero-overhead paper [6]. For simplicity, we excluded
the proposed three-phase scans by that paper and instead directly compared the adaptive chained
scan algorithm to the assisting column-wise chained scan algorithm. Figure 10 shows the result of
these benchmarks over an array of n = 226 elements.

In these graphs is visible that both algorithms perform equally in the given one-dimensional
scan operations. This means that the proposed assisting column-wise chained scan is not just able
to handle multidimensional sequences, as seen in the previous sections, but is also able to efficiently
scan one-dimensional sequences without any performance loss compared to the original adaptive
chained scan algorithm. This is an useful property, from which frameworks like Accelerate could
benefit. Usually these frameworks contain a separate function for the scan operation over one-
dimensional and multidimensional sequences, as most scan algorithms can only handle one of these
input variants efficiently. Using the assisting column-wise chained scan algorithm, however, both
variants of input data can be handled by a single algorithm, simplifying the general structure of the
framework and therefore making it less error prone to the programmer.

(a) Prefix sum (n = 67.108.864) (b) In-place prefix sum (n = 67.108.864)

Figure 10: One-dimensional benchmark results, comparing the original adaptive chained scan
against the proposed assisting column-wise chained scan.
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4.4 Higher dimensional prefix sum

Benchmarks up until this point, only considered either one-dimensional sequences or matrices, which
at itself doesn’t prove an algorithm to be considered multidimensional. Therefore, we included some
benchmarks that measure the performance of the different multidimensional scan algorithms over
both a three-dimensional and four-dimensional input sequence, for which the results are visible in
Figure 11. The performance of a multidimensional scan algorithm is expected to remain equal
between two benchmarks, as long as the innermost dimension of the shape doesn’t change, because
only the innermost dimension is relevant for the scan performance. Therefore, we took the prefix
sum benchmark over the shape [10.000, 10.000], shown in Figure 8c, as our starting point. Then, we
first split the shape over the outer dimension, resulting in the shape [100, 100, 10.000], after which
we split over the innermost dimension, resulting in the shape [100, 100, 100, 100].

Comparing the benchmark result shown in Figure 11a with the original result in Figure 8c, it is
visible that the performance of all algorithms indeed remained the same, as only the outer dimension
has changed. However, the split over the innermost dimension resulted in some surprising results,
which are visible in Figure 11b. The performance of the algorithms is expected to change as the
innermost dimension is different, however, the decrease in performance during the two-threaded
execution is surprising. The multidimensional scan algorithms, apart from the assisting column-
wise chained scan, only outperformed the sequential scan when using at least six parallel threads.
The reason for this decrease is somewhat unclear and would have to be further researched.

(a) Input shape: [100, 100, 10.000] (b) Input shape: [100, 100, 100, 100]

Figure 11: Higher dimensional prefix sum benchmarks, based upon the original [10.000, 10.000]
prefix sum benchmark (Figure 8c).
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5 Related Work

The parallel execution of scans has been extensively studied for decades. As the capabilities of the
processing units kept growing, this allowed researchers to constantly improve the performance of
existing parallel scan algorithms.

Blelloch was one of the first to show the usability of the scan algorithm in parallel applications
[2, 1], including radix sort and sparse matrix-vector multiplications [3]. These algorithms were
designed for the CPU architecture, as the GPU was later introduced, which meant that the original
algorithms were not directly interchangeable with the more complex architecture of the GPU. Horn
[11] introduced one of the first GPU-based scan algorithm, which used the streaming model for the
scan operation. Other researchers made use of the tree-based Brent-Kung scan [4], to develop the
three-phase scan-then-propagate algorithm [16]. This was followed by the more efficient reduce-
then-scan [7, 9], which reduces the number of required memory operations. Reducing the memory
utilization at the cost of increasing the sequential dependencies between the threads, was the concept
introduced with the chained scan algorithm [18, 15]. Fraser et al. [8] discussed the trade-off between
accuracy and performance when it comes to sequences of floating point values, and introduces scan
algorithms that reduce rounding errors.

While most of the algorithms were specifically designed for the GPU architecture, Zhang [19]
proposed a novel parallel scan algorithm for multi-core processors. Previous work required the
number of processors to be a power of two, while this algorithm could operate on any number of
processors given at the start of the operation. The zero-overhead parallel scan paper [6], transformed
efficient GPU scans to suitable version for multi-core CPUs. They reduced the overhead of these
algorithms when executed on a single thread and allowed a variable number of threads to work on
the elements during the execution.

Performing parallel scan operations over multidimensional data structures is a concept that has
hardly been studied. As far as I’m aware, no research specifically targets this problem on the CPU
architecture. Šinkarovs and Scholz [17] proposed a scan algorithm, that reshapes one-dimensional
input sequences to multidimensional arrays, to allow the compiler to perform the sequential scan in
parallel over the array shape. They allow the scan operation to be constructed in terms of smaller
primitives. This, however, cannot be considered a general solution to the problem of performing a
parallel scan over multidimensional input data, but instead is focused on the parallelization achieved
by their specific compiler. Therefore, our research is an interesting addition to the current research
upon parallel scan algorithms.
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6 Conclusion

We introduced a parallel chained scan algorithm, capable of handling both one-dimensional and
multidimensional data sequences. The one-dimensional performance matches the original adaptive
chained scan algorithm [6], from which concepts are applied in the design of this algorithm. The
proposed assisting column-wise chained scan starts by processing data blocks in row-wise order, and
switches to column-wise order processing when parallel threads assist the computation. The row-
wise order ensures zero overhead during single-threaded executions, while the column-wise order
reduces interference between parallel threads during multi-threaded executions.

Benchmarks are used to compare our performance against the existing multidimensional scan
in Accelerate [5] and the row-wise and column-wise order scans. Based on the results, we con-
sider a trade-off between robustness and performance. The assisting column-wise chained scan is
performing similar throughout all (multidimensional) test cases, including the considered edge-case
scenarios of the existing Accelerate scan. Furthermore, both one-dimensional and multidimensional
input sequences are efficiently being processed by this single algorithm. However, the necessary con-
ditionals come at the cost of some overhead on ’non-edge-case’ input shapes, resulting in a slight
performance loss against the existing algorithm in Accelerate. Therefore, depending on the specific
application and/or framework, one algorithm may be preferred over the other.

Future work may focus on incorporating and evaluating this algorithm in an existing array-based
language, like Accelerate, to compare the performance results in such a practical application. These
languages often have other factors and optimisations, which is likely to have some effect on the per-
formance of this algorithm. The property of handling both one-dimensional and multidimensional
arrays, potentially simplifies the existing structure of languages, as many still apply a separate scan
function for the one-dimensional and multidimensional input situation.
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A Numeric benchmark results

Prefix sum: [4, 25.000.000]
Number of threads 1 2 3 4 6 8 10 12 14 16

Sequential (Rust) 1.00 (66 ms)
Sequential (C++) 1.03 (65 ms)
Sequential row-based 0.99 1.49 1.52 2.24 2.24 2.23 2.23 2.23 2.23 2.21
Column-wise chained 1.00 1.48 1.82 2.22 2.60 2.75 2.64 2.58 2.53 2.48
Row-wise chained 1.00 1.22 1.52 1.86 2.51 2.71 2.61 2.51 2.46 2.40
Assisting column-wise chained 0.99 1.48 1.82 2.22 2.64 2.77 2.65 2.57 2.52 2.46

Prefix sum: [4.000, 25.000]
Number of threads 1 2 3 4 6 8 10 12 14 16

Sequential (Rust) 1.00 (66 ms)
Sequential (C++) 1.03 (65 ms)
Sequential row-based 0.99 1.48 1.84 2.24 2.66 2.78 2.62 2.57 2.50 2.47
Column-wise chained 0.94 1.42 1.76 2.15 2.55 2.66 2.50 2.47 2.40 2.38
Row-wise chained 1.00 1.23 1.53 1.82 2.30 2.67 2.58 2.46 2.43 2.38
Assisting column-wise chained 0.98 1.42 1.76 2.14 2.54 2.65 2.50 2.46 2.39 2.37

Prefix sum: [10.000, 10.000]
Number of threads 1 2 3 4 6 8 10 12 14 16

Sequential (Rust) 1.00 (67 ms)
Sequential (C++) 1.03 (65 ms)
Sequential row-based 1.00 1.48 1.84 2.23 2.66 2.78 2.62 2.58 2.51 2.48
Column-wise chained 0.94 1.42 1.77 2.16 2.56 2.67 2.52 2.48 2.41 2.39
Row-wise chained 1.00 1.28 1.59 1.89 2.40 2.65 2.55 2.47 2.43 2.38
Assisting column-wise chained 1.00 1.42 1.77 2.15 2.55 2.66 2.51 2.47 2.41 2.39

Prefix sum: [100.000, 1.000]
Number of threads 1 2 3 4 6 8 10 12 14 16

Sequential (Rust) 1.00 (67 ms)
Sequential (C++) 1.03 (65 ms)
Sequential row-based 0.98 1.36 1.68 1.99 2.40 2.56 2.49 2.45 2.40 2.37
Column-wise chained 0.99 1.34 1.66 1.98 2.38 2.53 2.47 2.43 2.38 2.36
Row-wise chained 0.98 1.34 1.66 1.97 2.37 2.54 2.47 2.43 2.38 2.36
Assisting column-wise chained 0.99 1.45 1.80 2.17 2.58 2.69 2.58 2.53 2.47 2.45

Table 2: Prefix sum benchmark results
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In-place prefix sum: [4, 25.000.000]
Number of threads 1 2 3 4 6 8 10 12 14 16

Sequential (Rust) 1.00 (53 ms)
Sequential (C++) 0.98 (54 ms)
Sequential row-based 0.99 1.63 1.56 2.02 2.02 2.02 2.02 2.01 2.02 2.02
Column-wise chained 1.00 1.66 1.92 2.03 2.10 2.17 2.21 2.24 2.26 2.27
Row-wise chained 1.01 1.20 1.58 1.83 2.02 2.10 2.18 2.20 2.21 2.25
Assisting column-wise chained 0.99 1.63 1.90 2.02 2.11 2.17 2.21 2.23 2.26 2.27

In-place prefix sum: [4.000, 25.000]
Number of threads 1 2 3 4 6 8 10 12 14 16

Sequential (Rust) 1.00 (53 ms)
Sequential (C++) 0.98 (54 ms)
Sequential row-based 0.99 1.63 1.91 2.03 2.15 2.20 2.23 2.25 2.27 2.28
Column-wise chained 0.93 1.56 1.84 1.96 2.08 2.13 2.15 2.16 2.18 2.19
Row-wise chained 1.00 1.21 1.57 1.82 1.98 2.10 2.16 2.19 2.22 2.24
Assisting column-wise chained 0.98 1.55 1.83 1.96 2.08 2.13 2.15 2.16 2.19 2.20

In-place prefix sum: [10.000, 10.000]
Number of threads 1 2 3 4 6 8 10 12 14 16

Sequential (Rust) 1.00 (53 ms)
Sequential (C++) 0.97 (54 ms)
Sequential row-based 0.99 1.61 1.89 2.01 2.14 2.19 2.22 2.24 2.27 2.27
Column-wise chained 0.93 1.55 1.53 1.95 2.08 2.13 2.14 2.15 2.18 2.19
Row-wise chained 1.00 1.29 1.60 1.88 2.01 2.08 2.15 2.18 2.22 2.23
Assisting column-wise chained 0.98 1.53 1.81 1.94 2.07 2.13 2.14 2.16 2.18 2.19

In-place prefix sum: [100.000, 1.000]
Number of threads 1 2 3 4 6 8 10 12 14 16

Sequential (Rust) 1.00 (53 ms)
Sequential (C++) 0.98 (54 ms)
Sequential row-based 0.99 1.35 1.76 1.93 2.07 2.14 2.20 2.22 2.25 2.26
Column-wise chained 0.99 1.34 1.74 1.92 2.05 2.13 2.18 2.20 2.23 2.24
Row-wise chained 0.99 1.33 1.73 1.91 2.05 2.13 2.18 2.20 2.23 2.24
Assisting column-wise chained 0.98 1.56 1.87 1.99 2.12 2.18 2.22 2.23 2.26 2.26

Table 3: In-place prefix sum benchmark results
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