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Abstract

The paper delves deep into the challenges and methods of generating
text from structured data(RDF triples) for under-resourced languages based
on the WebNLG challenge. The main question of this paper is to assess how
important language families are in helping the model generate text without
prior examples(zero-shot) in the WebNLG target languages. In the paper,
we work with limited resources. We utilize an already pre-trained encoder-
decoder LLM, such as mT5-small, to test the hypothesis, and we train as
much as necessary before we notice a plateau in performance since there are
hardware limitations. By applying further pre-training and testing different
finetuning strategies, the aim is to improve text coherence and fluency and
assess how well the model extracts the information from the RDF triples.
As part of our ablation experimentation, we pre-train and finetune to assess
their impact on the D2T task. The experimentation starts with the simplest
model, pre-trained on the OPUS-100 dataset and finetuned on the English
WebNLG dataset. The pre-training recipe remains the same, but for the
finetuning step, the WebNLG dataset is altered to include more linguistically
diverse language samples. Lastly, we introduce an augmentation technique
to further alter the WebNLG dataset and generate samples for all the relative
languages we are trying to target. In the end, the best finetuning strategy is
applied to a clean mT5 model to assess the influence of the pre-training. Later
on, in the meta-experiments, we generate augmented data for the languages
we target in WebNLG, which takes the models out of the zero-shot setting.
With these extensive experiments, we try to measure model performance
using automatic metrics, involving manual analysis, and lastly, a comparison
with other models in the WebNLG 2023 challenge. For the assessment, we
use automatic metrics such as BLEU, ROUGE, METEOR, TER, chrF++,
BertScore, and PARENT to provide a more holistic view of our model’s
capabilities. In a few words, this study aims to contribute in the following
ways:(a) What is the influence of language families under a zero-shot setting?
(b) is further pre-training necessary, or does it tend to have diminishing
results? (c) Does finetuning with noisy data provide any benefit? Lastly, (d)
How does our model compare with the other models of the WebNLG 2023
challenge?
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1 Introduction

In recent years, the emergence of capable Artificial Intelligence (AI)
models has led to the development of general task solvers. These models
can solve many tasks with little or no examples, a feat previously thought
unimaginable. The popularity of these models increased with the emergence
of Transformer models and their applications, such as Chat-GPT 1, which
is a chatbot trained on large corpora from various sources, enabling them
to acquire general knowledge and perform tasks such as question answering,
coding, etc. The development of more advanced generative models was also
on its way to train even larger and more capable task solvers. These models
are known as Large Language Models (LLMs) and have emerged due to years
of research in Natural Language Processing (NLP).

NLP is focused on enabling computers to understand, interpret, pro-
cess, and generate human language meaningfully and usefully. Similarly,
Natural Language Generation (NLG), a subfield of NLP, focuses on gener-
ating natural language from structured or unstructured data. The style and
quality of the text are also important aspects of NLG, intending to gener-
ate personalized and readable text that is coherent in semantically diverse
content scenarios.

Generating text from structured data is challenging, especially when
dealing with under-resourced languages. Recent research (1) indicates a sig-
nificant gap among the over 7,000 world languages in terms of available re-
sources in the field of NLP. Although there have been some advances in in-
clusion for under-represented languages at major NLP conferences, linguistic
diversity and inclusion still pose a challenge. Thus limiting the language
representation online and its inclusion in datasets.

Even though there are no language-universal models, a viable approach
to this problem is multilingual LLMs; these models are trained in multiple
languages and can produce text in a wide range of languages they have been
exposed to during training. Efforts like the WebNLG challenge (2) com-
bine data-to-text generation with under-resourced languages. The WebNLG
challenge provides a benchmark dataset in which participants convert non-
linguistic data from the Semantic Web into textual output. Initially focused
on English, the challenge now includes Irish, Maltese, Breton, and Welsh.

This paper aims to provide valuable insights into how existing data
can improve the generation of under-resourced languages in the context of
the 2023 WebNLG challenge on under-resourced languages. Our approach
involves using a popular multilingual model such as mT5 and further enrich-

1https://openai.com/chatgpt/
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ing its general knowledge about the family languages of the target languages
(WebNLG languages) using the OPUS-100 dataset. The aim is to enable
our text-to-text model to process structured data (RDF triples) and directly
generate text in under-resourced languages. Also, we are planning various
experiments with models undergoing further pre-training and many finetun-
ing strategies to measure performance and generation quality. With a few
words, our research aims to contribute to and answer the following research
questions:

• Main research question:

Q1: How can language families affect the NLG process?

• Following subquestions:

SQ1: Is further pre-training necessary, or does it have diminishing re-
turns?

SQ2: How does finetuning with noisy data impact the performance of
mT5 in the text generation tasks?

SQ3: How does our solution compare to other participating WebNLG
models?

The rest of the paper is structured as follows: Section 2 provides an
overview of the related work in the field. Section 3 explains our methodol-
ogy in detail, including the implementation of experiments and our choices.
Section 4 presents the results of our experiments and compares them with
other WebNLG contested models. Section 5 briefly discusses the problems
encountered and their contribution to the NLG research field. Lastly, Section
6 discusses the future direction of the project. All the code that was used
for this project can be found on GitHub 2

2 Related work

This section will discuss data-to-text generation in detail, including
the most used datasets, the main subtasks, end-to-end architectures, and
modular pipelines. We also compare the modular and end-to-end systems.
Then, we discuss what large language models(LLMs) are and their architec-
tures, and we discuss scaling laws and capabilities that are unlocked as the
model size grows. We touch upon the pre-training of LLMs as well as the

2https://github.com/GeorgiosChristopoulos96/Thesis
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tuning strategies. Moreover, we mention the current state-of-the-art multi-
lingual models. Lastly, we touch upon the top-performing models from the
WebNLG challenge, which contributed to the modeling choices we decided
to implement in this paper.

2.1 Data-to-text generation

Data-to-text generation broadly refers to automatically producing text
from non-linguistic input (3; 4).

Data-to-text (D2T) generation has historically employed modular pipeline
architectures, converting non-linguistic input data into natural language through
several intermediate steps (5; 4). However, recent advancements have seen
the emergence of neural models proposing end-to-end approaches, directly
rendering non-linguistic input into natural language with minimal intermedi-
ate representations. In the following subsections, we introduce some datasets
used in the D2T generation task.

2.1.1 NLG main subtasks

Reiter and Dale (6; 3) decompose the process of generating text in 6
subtasks. In NLG systems usually, the following six are found:

1. Content determination: Deciding what information should be com-
municated in the text.

2. Discourse planning: Imposing ordering and structure over the mes-
sages to be conveyed.

3. Sentence aggregation: Determining how to group the information
into sentences.

4. Lexicalization: Deciding the words and phrases that should be used
to express information.

5. Referring expression generation: Selecting words or phrases to
identify domain entities

6. Linguistic realization: Producing text that follows language rules to
be syntactically, morphologically, and orthographically correct.

Content determination: It is the first step of the NLG system, and
it involves deciding what information to include in the text. Although con-
tent determination is present in almost every NLG system (7), generalizing
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content determination can be challenging because it depends on the target
application’s details. For example, this process can be influenced by the
system’s data, domain knowledge, and user models. For example, the deter-
mination of the content of a rail system differs from that of customer support.
However, all these systems share the need to process the input data (filtering,
summarization).

Some systems use deep reasoning, analyzing user goals to identify nec-
essary information. Others rely on experts’ domain-specific rules, which are
easier to implement and adapt to legal or bureaucratic needs. Techniques
for establishing content rules include analyzing text corpora and consulting
with domain experts to develop relevant message classes and conditions for
their inclusion. The rules for content determination can be seen as a form of
knowledge acquisition (KA) (8) since many steps in the process of KA can
be applied to content determination.

Discourse planning: This process involves organizing content into
a coherent text. After determining what information to communicate, dis-
course planning decides how to structure these messages effectively. It uses
a text plan structured like a tree, where messages are the leaves and inter-
nal nodes show how messages are grouped conceptually. The plan outlines
discourse relations between messages, indicating how text fragments relate
to each other, such as through elaboration or contrast, often highlighted by
specific cue words. There are two approaches to discourse planning. The first
one is the planning-based approach. It aims to organize content messages into
coherent wholes, using AI-style planning operators to define the conditions
and effects of applying discourse relations. Our understanding of discourse
relations still limits this sophisticated method and is computationally expen-
sive, making it less common in real-world applications. The other approach is
schema-based, which offers a more practical alternative for specific domains,
identifying text patterns through analysis and expert consultation. These
approaches use schemas—defined patterns for constructing text plans—to
structure messages and relations (9). Schemas can request specific content
’on demand,’ allowing for an interplay between content determination and
discourse planning. This method, often implemented via specialized pro-
gramming constructs, promises easier development of domain-specific NLG
systems, though many developers create their own schema languages due to
the lack of standardization.

Sentence aggregation: Sentence aggregation aims to combine mul-
tiple messages into a single, coherent sentence or text plan (10). Sentence
aggregation involves deciding which messages to combine and determining
the syntactic mechanism for their combination. It also aims to enhance text
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readability and fluency without altering the informational content. There
are many sentence aggregation strategies, such as no aggregation, in which
each message is realized as a separate sentence, possibly with pronominal-
ization to improve coherence. Another one is to combine messages using a
relative clause. This formation involves attaching a relative clause to a sen-
tence to incorporate additional information without starting a new sentence.
The third one is simple conjunction, which uses conjunctions like ”and” to
connect sentences, conveying more than one message in a single sentence.
There are also aggregation formations, such as the ellipsis one, which elimi-
nates repeated constituents when sentences have common elements, making
the text more concise. The set formation aggregates messages with a com-
mon action but different objects into a single sentence that lists all objects.
Lastly, embedding formation is about embedding one clause as a constituent
of another, often through relative clauses (6).

But to create effective aggregation rules, these rules can be derived from
psycholinguistic research, writing guides, or by analyzing patterns within
specific corpora to reflect genre-specific conventions. A general constraint
involves aggregating only sibling nodes in a text plan to maintain coherence,
although a weaker version may allow for the aggregation of all descendants
of an internal node under certain conditions

Lexicalization: Lexicalization is selecting specific words or phrases
to accurately and effectively express domain concepts or relations. This task
is pivotal for crafting text that communicates intended meanings in a clear,
engaging, and context-appropriate manner. Advanced graph-rewriting al-
gorithms are crucial in lexicalization, transforming input graphs of domain
concepts into linguistic expressions through mappings defined in compre-
hensive dictionaries. This approach is especially valuable in multilingual
NLG, allowing for the expression of the same conceptual content across dif-
ferent languages and accommodating lexical divergences naturally. Decision
trees and rule-based methods guide lexical choice in practical applications,
enhancing text variety and adapting language use to match contextual or
stylistic requirements. Through careful lexicalization, NLG systems achieve
fluency and readability, producing texts that convey information accurately
and reasonably to the intended audience, demonstrating the interplay be-
tween domain knowledge and linguistic expression (3; 6).

Referring Expression Generation: Referring expression generation
involves crafting descriptions to identify target entities within a discourse
context unambiguously (11). It varies in complexity based on the information
needed to distinguish the entity from others, influenced by the discourse
context. Initial references to objects might simply use their names or describe
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their physical locations if they are uniquely identifiable that way. Subsequent
references often employ pronouns when the entity was mentioned recently,
and there’s no ambiguity with other entities or definite descriptions that may
incorporate base nouns and additional modifiers to differentiate the target
entity from others mentioned in the discourse.

Research has explored various strategies for generating these references,
with initial introductions receiving less focus than pronouns and definite de-
scriptions. Using pronouns is crucial for avoiding repetition and maintain-
ing coherence, relying on algorithms that ensure clarity and prevent misin-
terpretation by considering the entity’s recent mention and the absence of
potential referential ambiguity. For definite descriptions, methods include
starting with a basic noun and adding distinguishing features as needed, a
practice supported by corpus analysis within specific application domains.
This approach helps in situations where multiple entities of a similar type
are discussed, ensuring clear and precise identification of the intended target.

Linguistic realization: Linguistic realization involves encoding gram-
matical knowledge to generate sentences that communicate messages accu-
rately, considering syntax, morphology, and the peculiarities of a language.
It can involve various approaches, such as the inverse of parsing, systemic
grammars, meaning-text grammars, or using templates, each with its own
method for transforming semantic content into grammatically correct text.
Realization is typically seen as converting abstract representations of mes-
sages into coherent and grammatically correct sentences. One common ap-
proach is using templates, which can be straightforward when the variability
of the text is minimal. Templates predefine sentence structures where vari-
able slots are filled with relevant data. This method ensures grammaticality
and is effective in controlled domains but lacks flexibility and adaptability
to more complex linguistic needs (6; 12). Another approach involves hand-
coded grammar-based systems, which use rules from linguistic theories to
generate text. These systems handle various linguistic phenomena and pro-
duce more nuanced outputs than template-based systems, utilizing frame-
works like systemic-functional grammar and lexicalized tree adjoining gram-
mar (13; 14). Statistical approaches have become prominent with machine
learning techniques. These methods train models on large corpora to predict
word sequences from input representations, capturing linguistic variability
and handling complex text generation tasks (15; 16). Modern approaches
integrate these methods, using templates for fixed structures and statistical
models for flexibility. This hybrid approach balances templates’ reliability
with statistical methods’ adaptability (7).
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2.1.2 D2T datasets

E2E: The E2E dataset (17), designed for training end-to-end, data-
to-text applications in the restaurant domain, includes over 50,000 English
verbalizations corresponding to about 5,751 dialog-act-based meaning rep-
resentations (MRs). These MRs contain 3-8 attribute-value pairs from 8
attributes, which an example can be found in figure 1. The dataset was cre-
ated using CrowdFlower, using pictures as stimuli for data collection, which
yielded more natural and informative human reference phrases. The dataset
is divided into training, validation, and testing sets in a 76.5-8.5-15 ratio,
ensuring distinct MRs across sets and maintaining a balance in MR and text
length distribution. While contributors were encouraged to include all in-
formation from the MRs, omissions were not penalized, making the dataset
suitable for studying content selection in pipeline data-to-text systems. This
setup results in a rich corpus with higher lexical and syntactical variation
than similar corpora.

Figure 1. Ontology of a specific domain of the E2E dataset

DART: The DART dataset (18) is designed for text generation from
structured data records, specifically using RDF triplets. It comprises 82,191
examples across various domains, where each input is a semantic RDF triple
set derived from data records in tables and the schema’s tree ontology, anno-
tated with sentence descriptions. Unique for its hierarchical, structured for-
mat and open-domain nature, DART stands apart from other table-to-text
corpora. The primary task associated with DART is RDF-to-text genera-
tion, evaluated on metrics like BLEU (19), METEOR (20), BLEURT (21),
TER (22), MoverScore (23), and BERTScore (24), with a benchmark model
(BART-Large) (25) achieving notable scores in these areas. The dataset, en-
tirely in English, includes data instances with annotations (text descriptions
and sources), a subtree was extended boolean indicator, and RDF triplets.
It is split into training, validation, and test sets with 30,526, 2,768, and 6,959
examples. DART is curated to enhance the accessibility of knowledge bases
for lay users, drawing from varied sources such as WikiTableQuestions (26),
WikiSQL (27), WebNLG (28), and Cleaned E2E (29), and involves a com-

12



prehensive two-stage annotation process combining skilled annotator input
and broader group annotations for sentential descriptions.

WikiBio: The WikiBio dataset (30) is a comprehensive collection
designed for text generation tasks, specifically to convert structured data
into textual descriptions. It focuses on producing the initial sentences of
Wikipedia biographical articles based on infobox data. The dataset, com-
prising over 700,000 articles, was prepared by tokenizing sentences, convert-
ing numbers to tokens (except years), and lowercasing text for uniformity. It
supports machine learning research, notably in neural language models and
automatic text generation, by offering a rich source of structured information
paired with corresponding narrative text.

2.1.3 End-to-end architectures

End-to-end approaches in data-to-text (D2T) generation have signifi-
cantly evolved with deep learning and neural network architectures. Unlike
traditional modular approaches that rely on separate components for con-
tent selection, structuring, lexicalization, and realization, end-to-end meth-
ods aim to generate textual output directly from data inputs using a single
neural model. These approaches have been favored for their ability to learn
complex mappings from data to text without requiring intermediate repre-
sentations or hand-crafted rules. Moreover, in section 2.2, we discuss large
language models favored recently for text generation tasks.

Long Short-Term Memory Early end-to-end systems often utilized
RNNs, especially Long Short-Term Memory (LSTM) networks (31), which
was a novel architecture designed to overcome the limitations of traditional
recurrent networks(RNN) in learning long-term dependencies, due to their
capability to handle sequential data and remember long-term dependencies.
LSTM incorporates special units called memory cells, along with input and
output gates, to regulate the flow of information, allowing it to mitigate
fading gradient issues. These models were trained to generate text one token
at a time, conditioned on the input data and the previously generated tokens,
making them suitable for tasks like generating weather reports or financial
summaries from structured data.

Sequence-to-Sequence (Seq2Seq) Models The Seq2Seq architec-
ture, which typically combines an encoder RNN with a decoder RNN, became
a cornerstone for machine translation tasks, which later was adapted for D2T
generation, specifically with LSTM networks (32). The method involves
mapping input sequences to fixed-dimensional vectors with one LSTM and
decoding the target sequence from these vectors with another LSTM, show-
casing the ability to handle sequence-to-sequence learning tasks with minimal
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assumptions about sequence structure. This approach achieved notable re-
sults on a large-scale English-to-French translation task, outperforming stan-
dard phrase-based Statistical Machine Translation (SMT) systems. Later, as
seen in the work of Ferreira et al. (33), they adapted the Seq2Seq model for
the Abstract meaning representations-to-text task, framing it as a transla-
tion task. Later, Bahdanau et al. (34) introduced the attention mechanism,
which would set up the foundation for the Transformer models that were
introduced in the work of Vaswani et al. (35). In section 2.2.3, we discuss
the Transformer models and the attention mechanism in greater detail.

Pre-Trained Language Models Radford et al. (36) introduced a
novel approach to natural language understanding by pre-training a language
model followed by discriminative finetuning on specific tasks. By pre-training
on a diverse corpus of unlabeled text, the model learned a universal repre-
sentation that improved performance across various language understanding
benchmarks, outperforming task-specific discriminatively trained models in
most cases. They used the Transformer architecture due to its effectiveness
in handling long-term dependencies, with minimal changes needed for task-
specific adaptations. The results showed substantial improvements in ques-
tion answering, textual entailment, and document classification, establishing
new state-of-the-art performance.

Devlin et al. (37) introduced BERT (Bidirectional Encoder Represen-
tations from Transformers), a new method for pre-training language repre-
sentations (see section2.2.1) that outperforms existing models across a wide
range of NLP tasks by pre-training deep bidirectional representations from
unlabeled text. BERT’s architecture was unique because it used a multi-layer
bidirectional Transformer encoder conditioning both left and right context in
all layers, allowing it to be finetuned with just one additional output layer to
create state-of-the-art models for a diverse array of tasks, including question
answering and language inference without significant task-specific modifica-
tions.

Brown et al. (38) introduced GPT-3, an autoregressive language model
with 175 billion parameters, and explored its performance in a few-shot learn-
ing (see section 2.2.2) setting without task-specific finetuning. Scaling up
language models significantly enhances their ability to perform a wide range
of NLP tasks, including translation, question-answering, and cloze tasks, by
merely providing a few examples or instructions in natural language. GPT-3
demonstrates competitive results across various benchmarks, sometimes out-
performing state-of-the-art models that underwent task-specific finetuning.
However, the large pre-trained models struggle with potential biases from
training on large web corpora.
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Figure 2. Ferreiras’ modular pipeline inspired by Reiter and Dale (4)

2.1.4 Modular pipelines

Ferreira et al. (39) systematically compared neural pipelines in modu-
lar subtasks and end-to-end approaches for generating text from RDF triples.
The comparison validated whether generating text through a modular pipeline
with discrete steps can outperform end-to-end systems, which do not have
intermediate representations but mostly map the RDF triples to the corre-
sponding output text.

In figure 2, we can see the authors’ implementation inspired by Reiter
and Dale (4). The first subtask is discourse ordering. Discourse ordering
determines how the communicative goals(RDF triples) should be verbalized.
The second subtask is text structuring, which organizes the ordered triples
into paragraphs and sentences. The third subtask, lexicalization, aims to find
the proper phrases and words to express the content that must be included in
each sentence. The fourth subtask, referring to expression generation, gener-
ates references to the entities of the discourse. This template outlines where
and how to refer to specific entities, ensuring that the references are correctly
placed and entities are accurately identified within the discourse. The last
task is textual realization, which finalizes data conversion into text by ad-
justing verbs and determiners to their correct forms, ensuring grammatical
accuracy.

Puduppully, Dong, and Lapata (40) implemented a neural network ar-
chitecture incorporating content selection and planning without sacrificing
end-to-end training. Their pipeline incorporated content selection and plan-
ning to maintain coherence over long texts, ensure a logical ordering of facts,
and avoid redundancy and inaccuracies. The first stage of content selection
is seen in figure 3, which helps the model to understand how records relate
by using a content selection gate mechanism. It calculates attention scores
across records to determine their relevance. An attentional vector is formed
for each record, combining its information with related records. The content
selection gate then adjusts the record’s representation based on contextual
importance, allowing the model to focus on the most relevant details for gen-
erating summaries. The second subtask is content planning, which assists the
model in generating structured game summaries by learning explicit content
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plans from the training data, which guide what information to include and
in what order. Since datasets like RotoWire (41) don’t have inherent content
plans, these are created by mapping summary text to input data elements.
The model uses Pointer Networks (42) with an LSTM decoder to generate a
sequence pointing to input records, determining the structure of the output
text. This approach helps generate coherent, well-structured summaries by
specifying the sequence of discussed entities based on learned content plans.

Lastly, the last subtask is about text generation. In this step, The
model predicts the output text by considering both the input data and the
planned content structure. It uses a bidirectional LSTM to encode the con-
tent plan and an LSTM-based decoder for text generation, with attention to
focus on relevant parts of the plan. Additionally, it employs a copy mech-
anism that directly includes input data terms in the output, enhancing ac-
curacy and relevance. The planned content and the ability to copy directly
from inputs enable the generation of detailed and contextually accurate text.

Figure 3. Puduppullys’ pipeline

2.1.5 Neural and Modular architectures comparison

As mentioned previously, Ferreira et al. (39) tried to compare and
address issues of the end-to-end systems by comparing them with a modular
system with well-separated individual steps. The traditional pipeline used
by Ferreira, inspired by Reiter and Dale (4) steps, usually entails discourse
ordering, text structuring, lexicalization, referring expression generation, and
textual realization. Evaluating these systems suggests that having explicit
intermediate steps, such as the modular pipeline in the generation process,
results in better texts than the ones generated by end-to-end approaches since
they better describe the data on all domains of the corpus. Also, the pipeline
models generalize better to unseen domains, whereas the performance of the
end-to-end system drops significantly. The qualitative analysis showed that
end-to-end generated texts have the problem of Hallucinations (43), which
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means they describe non-linguistic representations that are not present in
the input

Puduppully, Dong, and Lapata (40) concentrated on content selection
and planning to improve fluency in natural language generation since current
end-to-end approaches are not explicitly modeled on what to say and how
to say it. Their approach aimed to generate more organized, interpretable,
and faithful text by explicitly modeling what information to include and in
what sequence. In their evaluation, they focused on how well the model
selected relevant content, generated accurate relations, and ordered content
correctly. Results showed that the Neural Content Planning (NCP) model
outperformed encoder-decoder models in all metrics, demonstrating improve-
ments in content selection, relation generation, and ordering.

2.2 Large Language Models

Large language models (LLMs) usually refer to the Transformer lan-
guage models that contain hundreds of millions or even billions of parameters,
which are trained on massive text data (44), such as GPT-3 (38), PaLM (45),
BLOOM (46), OPT (47), LLaMA (48), Chinchilla (49), BART (25) and
T5 (50). LLMs exhibit strong capacities to understand natural language and
solve complex tasks via text generation.

Of course, these models only emerged after a while. There has been a
progression starting from early statistical models such as the n-gram model (51),
which was based on the Markov assumption, meaning predicting words based
on previously fixed context, to task agnostic feature learners such as Word2Vec (52),
then progressing to the transferable NLP task solvers such as ELMo (53),
BERT (37), GPT-1 (36) and GPT-2 (54). Lastly, the progression reaches to-
day’s models, advanced transformer-based models, such as GPT-3 (38) and
GPT-4 (55), which are general-purpose task solvers. In the following sub-
sections, we categorize the models based on their architectures and give an
overview of how scaling can unlock new capabilities in the model. Then,
we look at how pre-training equips the model with general knowledge and
tuning strategies to elicit certain abilities in the LLMs.

2.2.1 Encoder models

An encoder is a transformer block with multiple layers stacked together
and can include an attention layer, normalization layer, feedforward layer,
and residual connections, which are tailored for capturing and processing the
input data into a representation that captures the information (35). The
encoder-only models are not suitable for text generation but primarily for
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NLP tasks such as Sentiment Analysis, Named Entity Recognition (NER),
Question Answering, Language Inference, and Text Classification (37). BERT
is the most popular encoder model (Bidirectional Encoder Representations
from Transformers) (37). BERT is designed to pre-train deep bidirectional
representations by conditioning on both the left and right context in all lay-
ers. The objective of BERT is masked language modeling (MLM) and next-
sentence prediction (NSP). During MLM, random words in a sentence are re-
placed with a [MASK] token, and the model is trained to predict the original
word based on the context provided by the other words in the sentence. This
process enables BERT to understand the context in which a word appears
and generate embeddings that capture this contextual information. Because
the BERT model is context-sensitive, the produced embeddings were a leap
in the quality of word representations. Moreover, the pre-trained BERT
model can be finetuned with just one additional output layer to create state-
of-the-art models for various tasks, such as question answering and language
inference, without substantial task-specific architecture modifications. Other
encoder-based models have emerged due to BERT.

One of them is DistilBERT (56), which is a smaller, faster, cheaper, and
lighter version of BERT. DistilBERT is designed to retain 97% of BERT’s
performance while being 40% smaller and 60% faster. It is an encoder-only
model that can be used for a wide range of NLP tasks, providing an efficient
alternative to BERT for environments with limited computing power.

Another is RoBERTa (Robustly optimized BERT approach) (57). This
model builds on BERT’s architecture and modifies key hyperparameters,
removing the next-sentence pre-training objective and training with much
larger mini-batches and learning rates. It demonstrates improved perfor-
mance over BERT on several benchmark NLP tasks.

Lastly, ALBERT (A Lite BERT) (58) is a model that offers a light ver-
sion of BERT that introduces two parameter-reduction techniques to lower
memory consumption and increase the training speed of BERT. It achieves
comparable or superior performance on benchmark NLP tasks with signifi-
cantly fewer parameters than BERT.

2.2.2 Decoder models

A Decoder (38) is a transformer block similar to the encoder. It does
not allow attention to go further than the current token using masking of
those tokens to maintain its autoregressive nature. Decoders typically use
multi-head or cross-attention attention to capture the information and pro-
cess the encoded representations of input data into the desired output format.
The model generates new tokens by predicting each token in a sequence based
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on the tokens that precede it, step by step, crafting coherent and contextually
sound outputs. This text-generation process, which depends on the previous
content, is called autoregressive generation. The decoder-only models have
been used in many tasks, such as text generation, summarization, code gen-
eration, question answering, and dialogue systems. Below, we discuss some
prevalent models that use a decoder-only architecture.

OpenAI released the GPT-3 in June 2020, which brought advanced
NLG capabilities, and it was a massive scale-up from the GPT-2 model,
setting a new standard for language model sophistication (51; 38). Brown
et al. (38) introduce the concept of language models as few-shot learners,
where a model trained on a wide variety of data uses this broad knowledge
to adapt to new tasks at inference time without finetuning. It contrasts three
approaches: FineTuning (FT), where a model is updated with a task-specific
dataset; Few-Shot (FS), where the model is given a few task demonstrations
at inference time; and One-Shot (1S), which is like few-shot but with only
one demonstration. The focus is on evaluating GPT-3’s task-agnostic per-
formance. It explores the concept of ”few-shot learning” in language models,
discussing their capabilities and limitations in learning from a limited number
of examples.

Later, Google Deepmind released Chinchilla (49), a model focused on
optimizing the model size, data, and computing trade-offs. The Chinchilla
paper investigates the relationship between language model size, dataset size,
and training tokens. It reveals that large models like Gopher are often under-
trained and that model size and data volume should be scaled proportionately
for optimal results. The study finds that using equal computing resources
with fewer parameters and more data helps Chinchilla to significantly out-
perform larger models like Gopher (59), GPT-3 (38), Jurassic-1 (60), and
Megatron-Turing NLG (61). It also discusses the importance of setting learn-
ing rate schedules to match training tokens for the best performance. The
improvement that Chinchilla demonstrated is that, with optimal training
data size and computing, smaller models could achieve performance compa-
rable to larger models, emphasizing efficiency in model training.

Google Research in 2022 introduced the Pathways Language Model
(PaLM), a large-scale Transformer language model with 540 billion param-
eters (45). PaLM is notable for achieving state-of-the-art results in few-
shot learning across a wide array of language understanding and generation
benchmarks. It demonstrated significant improvements in various English
NLP tasks over prior models such as GPT-3, Megatron–Turing NLG, Go-
pher, Chinchilla, and LaMDA (62). Moreover, PaLM showed remarkable
performance on multilingual NLP benchmarks, even though only a fraction
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of its training corpus was non-English.
The OPT model is another prevalent example with a focus and com-

mitment to open-source accessibility, which was released in 2022 by Meta AI.
The OPT paper by Susan Zhang et al. (47) discusses evaluations of Trans-
former language models of various sizes, from 125 million to 175 billion pa-
rameters, and their performance on standard NLP tasks. The study follows
the experimental setup of GPT-3 and compares results across multiple tasks,
observing that while performance broadly aligns with GPT-3, it can vary
significantly between tasks. It also highlights the unpredictability of model
performance on smaller validation sets and discusses inconsistencies when
replicating GPT -3’s results, indicating possible methodological differences.

On the same line of thought, BigScience, an open research collabora-
tion, released BLOOM, a 176-billion-parameter multilingual language model.
The initiative focused on releasing a public LLM focused on ethical AI, open
science, and language inclusivity. BLOOM is an open-source model with
comprehensive documentation and a license promoting responsible use. The
model is evaluated in zero-shot and few-shot settings, showing superior per-
formance in multilingual summarization and code generation compared to
other LLMs. The performance of BLOOM is attributed to its training on
multilingual-focused data. The paper also addresses the challenges and eth-
ical considerations in developing large-scale models, including data selection
and model alignment with human values. Achieved higher performance than
OPT (47), and the model gets better the larger it gets.

Lastly, Meta AI released on February 2023, the LLaMA(Large Lan-
guage Model Meta AI) model (48). The LLaMA model focused on its ef-
ficiency and optimizations within computing budgets, introducing language
models that prioritize computational efficiency. It used smaller models trained
on extensive publicly available data in languages with Latin and Cyrillic
scripts. It is built upon the transformer architecture with improvements for
stability (RMSNorm), non-linearity (SwiGLU), and positional embeddings
(RoPE). The training utilizes the AdamW optimizer with specific hyperpa-
rameters and a cosine learning rate schedule, emphasizing the relationship
between model size, data volume, and computational resources (48; 51).

2.2.3 Encoder-decoder models

As we show in section 2.1.3, Sutskever et al. (32) introduce a frame-
work for machine translation by using Seq2Seq(RNN encoder-RNN decoder)
that will influence later work on developments such as the attention mech-
anism and the Transformer models, which are discussed below. Bahdanau
et al. (34) introduced a novel approach to neural machine translation that
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significantly improves the traditional encoder-decoder architecture by inte-
grating an alignment mechanism, allowing the model to focus on relevant
parts of the input sentence dynamically during translation. This mecha-
nism is called attention. The attention mechanism addresses the limitations
of fixed-length context vectors, particularly in translating long sentences, by
letting the model search for and attend to specific parts of the source sentence
for each target word. In their research, the proposed RNNs demonstrated
superior performance to the standard RNN encoder-decoder models and tra-
ditional phrase-based statistical machine translation systems, especially in
handling longer sentences.

Later, Vaswani et al. (35) introduced the Transformer models, a novel
neural network architecture for Seq2Seq models that relies solely on attention
mechanisms, excluding traditional recurrent or convolutional layers. This
implementation significantly increased training parallelization, leading to a
faster and more efficient learning process. The Transformer achieved state-of-
the-art results on the WMT 2014 English-to-German and English-to-French
translation tasks, outperforming existing models and ensembles with consid-
erably lower training costs. Additionally, the model demonstrated its versa-
tility and generalizability by performing well in English constituency parsing
tasks, further establishing its effectiveness beyond translation.

With the current state-of-the-art LLM models of ever-growing size,
FacebookAI released BART (25) in 2019, which stands for Bidirectional and
Auto-Regressive Transformers. BART is a transformer-based model, and it is
trained by corrupting text with an arbitrary noising function and then learn-
ing a model to reconstruct the original text for natural language processing
(NLP) tasks, such as comprehension, translation, summarization, and Nat-
ural Language Generation(NLG). BART uses a standard Transformer-based
NMT architecture and can be seen as generalizing BERT (with its bidirec-
tional encoder) and GPT (with its left-to-right decoder). It’s effective for
text generation and comprehension tasks, achieving state-of-the-art results
in various applications. It matches the performance of RoBERTa (57) with
comparable training resources on GLUE (63) and SQuAD (64) and achieves
new state-of-the-art results on a range of abstractive dialogue, question an-
swering, and summarization tasks. BART performance also increases over
a back-translation system for machine translation, with only the target lan-
guage pre-training.

At the same time, the Text-to-text transfer transformer (T5) (50) is
a model developed by Google AI Language in 2019 with a primary focus
on transfer learning in the domain of natural language processing (NLP).
The model is trained to denoise corrupted spans of text. In transfer learn-
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ing, a model is first pre-trained on a data-rich task in which it acquires
general-purpose knowledge before being finetuned on a downstream task.
This approach has emerged as a powerful technique in natural language pro-
cessing (NLP), widely adopted by present-day state-of-the-art LLMs. T5
is a unified framework that converts all text-based language problems into
a text-to-text format, enabling consistent pre-training objectives, architec-
tures, and transfer approaches across a wide range of language tasks such
as machine translation in which the model did not achieve state-of-the-art
results by being pre-trained only in English. The study includes extensive
experiments with various model architectures, unsupervised objectives, pre-
training datasets, and transfer strategies. It introduces the Colossal Clean
Crawled Corpus (C4) as a pre-training dataset and experiments with models
up to 11 billion parameters. T5 achieves state-of-the-art results on numerous
benchmarks and releases datasets with pre-trained models; simultaneously,
the authors highlight that LLMs can perform well on low-resource tasks with
transfer learning.

2.2.4 Scaling law and capabilities

As the model’s scale, they unlock new capabilities not present in smaller
models (65). These capabilities are in-context learning(introduced by GPT-
3 (38)), instruction following (66), and Chain-of-Thought reasoning (67).
There are two aspects of scaling, as discussed below. The first aspect re-
searchers have addressed is the KM scaling law (68) in which, as models,
data, or computing resources scale, the model significantly improves its ca-
pacity since it depends on these factors. Another aspect is the one used with
the Chinchilla model, which requires that the model and data should scale in
tandem, while in the KM scaling law, model scaling is preferred more than
data scaling. The laws of scaling are important because they have assisted
research on understanding LLMs. For example, predictable scaling (55) is
used in experimental settings by testing the behavior of smaller models and
predicting that it will work better on the bigger variant. Another example
is task-level predictability, which indicates a complex link between language
modeling loss reduction and actual performance on tasks. Although lower
modeling loss suggests the potential for better task outcomes, this doesn’t
always translate to improved performance, with some tasks even showing
inverse scaling, meaning worse performance (69).
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2.2.5 Pre-training LLMs

To pre-train large language models, there are various corpora which are
commonly used from many domains, including Books, CommonCrawl (70),
Reddit Links (71), Wikipedia (72), coding datasets34 (73) as well as web-
scraped data, which is often not documented or curated. After pre-training,
models undergo further refinements like Instruction tuning and Alignment
tuning (66) using specific NLP, daily chat, and alignment datasets (51). It
is crucial to highlight the importance of high-quality, diverse data sources
and careful data preparation to avoid issues like data duplication, which can
impact model performance. Data scheduling is also crucial, where the mix
and the order of data presented during training can significantly affect the
model’s capabilities and generalization (51).

2.2.6 Tuning strategies

Instruction tuning: Instruction tuning (IT) is an advanced tech-
nique developed to enhance the capabilities and controllability of large lan-
guage models (LLMs). This method involves finetuning LLMs on datasets
consisting of (INSTRUCTION, OUTPUT) pairs, thus bridging the gap be-
tween the models’ next-word prediction objective and the user’s objective of
having models adhere to human instructions (66). Traditionally, LLMs like
GPT-3 (38), PaLM (45), and LLaMA (48) have been trained to minimize
contextual word prediction error on large corpora, which often leads to a
mismatch between the models’ training objectives and users’ needs for the
models to follow instructions accurately (74; 38; 75; 59; 62). IT addresses
this gap by further training LLMs on datasets comprising (INSTRUCTION,
OUTPUT) pairs, thereby transforming the model’s behavior to align with
specific user instructions (76; 77).

The general pipeline of IT involves constructing an instruction dataset,
either from annotated natural language datasets or generated using LLMs
themselves, to finetune pre-trained models in a fully supervised manner,
where the model learns to predict each token in the output sequentially given
the instruction and input (78). This process not only improves the mod-
els’ adherence to human instructions but also enhances their predictability
and controllability, making them more useful and safer in practical applica-
tions (79; 80; 81).

Instruction datasets are pivotal in IT and can be human-crafted, de-
rived from synthetic data via distillation, or generated through self-improvement

3https://github.com/
4https://stackoverflow.com/
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techniques. Prominent examples include Natural Instructions, InstructWild,
and Self-Instruct (82). Several notable models have emerged from IT, such
as InstructGPT, which shows improved performance in truthfulness and re-
duced toxicity, and models like BLOOMZ (82) and WizardLM (83), which
are finetuned on extensive multilingual and instruction datasets, enhancing
zero-shot and multi-modal task performance (66).

Despite its benefits, instruction tuning faces challenges such as creat-
ing high-quality instruction datasets and the potential for models to learn
surface-level patterns instead of truly understanding tasks (84). These issues
highlight the need for continued research and development to refine instruc-
tion tuning methodologies and maximize the potential of LLMs (85; 86).

Alignment tuning: Moreover, the LLMs must be aligned with human
values through a process called alignment tuning (66). Alignment tuning
adjusts LLM behaviors to human values, considering criteria like helpfulness,
honesty, and harmlessness. Since the training data can often be high or low
quality, it may produce toxic content when generating text. To address this
issue, the models undergo an alignment process with human values, which
takes place during the finetuning of the model.

For this process to be successful, high-quality human feedback is crucial
for alignment, a process called reinforcement learning with human feedback
(RLHF) (66; 87). RLHF involves several key steps:

Supervised Finetuning: Initially, the language model is finetuned on
a supervised dataset containing input prompts and desired outputs. Human
labelers create these prompts and outputs to cover a diverse set of tasks (66).

Reward Model Training: The reward model is trained using hu-
man feedback data where the language model generates outputs for vari-
ous prompts, and human labelers rank these outputs. The reward model is
trained to predict these rankings, learning to reflect human preferences (66).

Reinforcement Learning Finetuning: The language model is then
finetuned using a reinforcement learning algorithm, such as Proximal Policy
Optimization (PPO). The model generates text based on prompts, and the
reward model provides reward signals that guide the learning process. A
penalty term is included to prevent the model from deviating too much from
its pre-trained behavior (66).

However, aligning the model with human values can often lead to a loss
in model performance, known as the alignment tax. Reported performance
losses include reductions in creativity and the ability to generate diverse
outputs. For example, models trained with RLHF might generate less harm-
ful responses but become overly cautious, limiting their overall utility and
informativeness (51; 66). Additionally, the RLHF process can be resource-
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intensive and complex, involving simultaneously training multiple models
and sensitivity to hyperparameter settings (66).

2.2.7 Prompting strategies

Other aspects of tuning LMs are done through prompting strategies
and in-context learning (38; 88).

In-context learning (ICL) is a significant feature of LLMs, which emerged
with the release of GPT-3. This ability allows the model to perform tasks
based on examples or instructions within the input text without further train-
ing or updating the model’s parameters. The concept of in-context learning
is critical because it showcases the adaptability and flexibility of LLMs in
handling a wide range of tasks by leveraging the context provided in the
prompt (38).

Another ability of LLMs is Chain-of-Thought reasoning (67). This
ability enables the LLMs to use the prompting mechanism to solve complex
problems by following a chain of thought (intermediate steps) to reach the
solution. This ability emerges likely when training with code data. Arith-
metic reasoning performance is boosted in the PaLM (45) and LaMDA (62)
models when the models exceed the 60B parameters.

2.3 Multilingual Models

In the realm of natural language generation (NLG), having the capa-
bility to interpret and generate into other languages is a vital task. This
translation assists in a more inclusive and globally connected digital ecosys-
tem. Recent advancements have emerged with the Transformer models de-
but (35). These models, designed to understand and generate text across
multiple languages, are revolutionizing how we approach language technol-
ogy. They break the barriers of language-specific systems, offering a unified
framework that caters to a diverse linguistic landscape. The significance of
multilingual models lies in their ability to leverage cross-lingual similarities
and shared knowledge. These models enhance performance in high-resource
languages and extend state-of-the-art technology to low-resource languages,
which have traditionally been underrepresented and will also be a focus of
this paper.

Below, we discuss some popular and state-of-the-art multilingual mod-
els, and then we look at how machine translation can improve model perfor-
mance in under-resourced languages.

Kale et al. (89) introduced mT5, a multilingual variant of the T5 model,
pre-trained on a new Common Crawl-based dataset covering 101 languages.
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The authors focused on developing a model that inherits the advantages of
T5 while expanding its capabilities to multiple languages. The paper details
mT5’s design, training, and performance on various benchmarks. It also ad-
dresses the ”accidental translation” challenge in zero-shot settings where a
generative model chooses to translate its prediction into the wrong language.
It mitigates the issues by proposing mixing unlabeled pre-training data dur-
ing finetuning. The results demonstrate mT5’s state-of-the-art performance
in multilingual tasks. The paper contributes significantly to natural lan-
guage processing by offering a versatile and powerful tool for multilingual
text-processing tasks.

Liu et al. (90) present mBART, which is the multilingual version of
BART (25), a denoising auto-encoder pre-trained on large-scale monolingual
corpora across 25 languages using the BART objective. It is the first to pre-
train a full sequence-to-sequence model by denoising full texts in multiple
languages and can be finetuned for various translation tasks. The archi-
tecture is based on a standard sequence-to-sequence Transformer with 12
encoder and decoder layers. Key findings include substantial BLEU score
improvements for low-resource machine translation and document-level un-
supervised models. The authors found that pre-training in more languages
is particularly beneficial when the target language has limited monolingual
data. Interestingly, pre-training on diverse languages does not require sig-
nificant vocabulary overlap to improve translation quality, suggesting that
the model learns universal language properties. Future work may explore
finetuning unseen languages on the source side and multilingual pre-training
for multilingual machine translation.

Lastly, Moussallem et al. developed a Graph-based RDF Neural Ver-
baliser named NABU (91), a neural model for converting RDF data into
multilingual text. NABU uses an encoder-decoder architecture with a graph
attention network encoder and a transformer decoder. It is designed to work
with knowledge graphs, which are inherently language-agnostic. The model
has been shown to outperform existing methods in English and performs
consistently across multiple languages, demonstrating the utility of multi-
lingual models in language generation tasks. The approach suggests future
exploration into various graph neural architectures and methodologies to en-
hance NABU’s performance further, particularly in low-resource scenarios
and across different knowledge graphs.

2.3.1 Machine Translation aid

There are many occasions when the multilingual models do not suffice,
and researchers have aided their models with data augmentation techniques
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or pivoted through English and then to the under-resourced language. These
techniques aim to boost the generating process of under-resourced languages
by providing additional data that aids the model. Notable approaches are
those of Lorendi and Belz (92) and of Kumar et al. (93). As described in
more detail in section 2.4.3, the first used the GPT-3.5 and 4 models to
few-shot into English and then translate into the under-resourced language
achieved the best results in the WebNLG 2023 challenge. The latter used
the data augmentation approach and better translation systems, especially
for low-resourced languages, to create parallel data of higher quality than the
one provided.

Agarwal et al. (94) explore a bilingual system for converting structured
data into text and vice versa, improved by machine translation. Based on
the T5 model, the system shows significant gains in English and Russian
text generation and parsing tasks by incorporating machine translation in
pre-training and finetuning phases, particularly enhancing performance on
previously unseen data and the Russian language. The research emphasizes
the benefit of combining machine translation with bilingual multitasking to
improve data-to-text systems for languages with limited resources.

2.4 WebNLG best-performing models

We cannot ignore the impact of the chosen model without considering
the top-performing models on the WebNLG challenges. More specifically,
the WebNLG corpus is a benchmark dataset used in the WebNLG challenge
created by Gardent et al. (2). The participants are tasked to submit their
proposals, which automatically convert non-linguistic data from the Seman-
tic Web into a textual output (28). Initially focused only on English, the
challenge evolved to include new languages, giving another dimension to the
challenge by promoting multilingual models. The corpus is discussed more
in section 3.1.1. We have studied the top 3 models based on the leaderboard
tables, which are usually a modified version of T5 or BART. Since our prob-
lem involves machine translation, we will discard the base versions of the T5
and BART and use their multilingual variants, such as mT5 and mBART.
The following subsections briefly describe the top emerging models dating
back to the 2017 WebNLG challenge. As our primary focus is data-to-text
generation using the WebNLG corpus, we must recognize the contribution of
previous research with the corpus since it can help us achieve the objectives
of this paper.
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2.4.1 WebNLG 2017

The WebNLG 2017 challenge (28) has the mapping of data-to-text in
English as a primary task, as seen in figure 4. The data provided is of
Data/Text pairs where the data is a set of triples extracted from DBpedia,
and the text is a verbalization of these triples. The task involves specific
NLG subtasks such as sentence segmentation (how to chunk the input data
into sentences), lexicalization (of the DBpedia properties), aggregation (how
to avoid repetitions), and surface realization (how to build a syntactically
correct and natural sounding text)

The UPF-FORGe Model (95) is a pipeline system notable for its in-
novative approach, utilizing linguistic predicate-argument structures to pro-
cess DBpedia properties. This method transforms RDF triples into these
structures, which are then used in a multi-stage sentence generation pro-
cess. This process includes the careful population of templates, meticulous
sentence planning, and sophisticated linguistic generation, integrating rule-
based graph transducers with a statistical component for linearization. The
model scored first in the METEOR evaluation metric and fourth in BLEU
and TER.

The Melbourne Model (96) is an NMT system that adopted an encoder-
decoder framework reminiscent of machine translation systems. It focuses
on processing RDF triples and their translation into natural language. Key
stages include determining the types of entities involved, creating tailored
training data, and a strategic de-lexicalization process for entities within sen-
tences. This model scored first in all evaluation metrics of the 2017 WebNLG
challenge.

The PKUWriter model (97) is a sophisticated approach to natural lan-
guage generation. It leverages OpenNMT, a finetuned sequence-to-sequence
(seq2seq) model, and TensorFlow’s seq2seq API, incorporating features such
as bidirectional encoders, Luong attention, and dropout layers. Additionally,
the model integrates reinforcement learning to enhance its performance, en-
suring that subjects from the input triple set are accurately described in the
generated text. This integration leads to a notable improvement in BLEU
scores. The model also employs a unique Learning-to-Rank technique to
select the best output from multiple-generation models, further enhancing
its effectiveness. This comprehensive approach allows PKUWriter to achieve
good results, giving it the third position in BLEU and TER evaluation met-
rics.
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2.4.2 WebNLG 2020 models

The WebNLG 2020 challenge (98) focused on four tasks: RDF-to-
English, RDF-to-Russian, English-to-RDF and Russian-to-RDF. The land-
scape for the RDF-to-text generation has not changed much since the 2017
challenge, but the Russian language has been introduced. Participants were
tasked with generating coherent text from sets of RDF triples. Meanwhile,
Text-to-RDF Semantic Parsing introduces a new task to the challenge. This
new task required converting text into the corresponding set of RDF triples.
It involved reverse-engineering the RDF-to-Text Generation task, effectively
translating natural language into structured RDF data.

The challenge aimed to expand the datasets, cover more semantic cat-
egories from DBpedia, include an additional language, and promote the de-
velopment of knowledge extraction tools.

The FBConvAI team (99) used BART as their choice model. They first
experimented with BART Base to find the best configuration and deployed
the best setting on BART Large, utilizing the model to bridge the gap for
the KG-to-text task. The authors introduce methods to improve the model’s
structural awareness by organizing input and multitask learning for optimal
ordering. They also bridge the domain gap between pre-existing text-to-
text models and graph-to-text tasks by second-phase pre-training on similar
datasets and extra lexicalization to make the generated output more similar
to natural language. The efficacy of these methods is demonstrated on the
WebNLG dataset on the D2T task in English and Russian, achieving good
results regarding text structure and fluency in English but saw a drop in
performance in terms of data coverage compared to the T5 models. Overall,
FBConvAI was one of the top performers.

OSU Neural NLG (100) uses two models to improve text generation
for unseen categories in English and Russian. With limited training data,
the option for a pre-trained model approach emerged, explicitly using T5
for English and mBART for Russian. They found that models trained from
scratch performed poorly, especially on unseen categories. The models were
finetuned with specific hyperparameters to optimize performance. They used
BLEU-4 and BLEURT for evaluation, noting that T5 performed better but
could not improve further, possibly due to nearing ceiling correctness. The
study analyzed model successes and failures qualitatively by comparing train-
ing data proportions. One issue of OSU Neural NLG is the hallucinations
and omissions, often occurring due to uneven data distribution. Despite
some challenges, the pre-trained models showed remarkable results, particu-
larly the T5 in English. The model participated only in the D2T tasks, being
one of the top-performing models overall.
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AmazonAI (101) came with a novel approach, P2, developed for the
WebNLG 2020 Challenge. Their approach focused on converting knowledge
graphs to text, utilizing a Relational Graph Convolutional Network (R-GCN)
planner and the pre-trained T5 sequence-to-sequence model. The R-GCN
planner organizes knowledge graph triplets in an optimal order for text gen-
eration, which T5 verbalizes. This method showed superior performance,
securing first place in automatic and human evaluations for the English RDF-
to-text generation task and in unseen entities and categories.

An honorable mention to the challenge was the bT5 model (94). It is a
bilingual Data-to-Text Generation and Semantic Parsing system that lever-
ages a text-to-text generator to handle tasks in both English and Russian,
exploring multilingual multi-task learning during pre-training and finetuning.
Machine translation aids the model during both pre-training and finetuning
stages. Lastly, the bT5 model was the only team that participated in all four
tasks of the WebNLG 2020 challenge, and overall, it achieved good results
amongst the top-performing ones in every task.

2.4.3 WebNLG 2023 models

The WebNLG Challenge 2023 (102) was organized to address the gap in
text generation research for Russian and under-resourced languages, focusing
on Breton, Irish, Maltese, andWelsh. The challenge involved converting RDF
triples into natural text, emphasizing these less-represented languages. The
contest attracted a variety of approaches, including rule-based and machine-
learning-based systems. The systems were evaluated automatically and by
human judges, considering criteria like fluency, grammaticality, and factual
accuracy. The results demonstrated varying levels of success across languages
and approaches, highlighting the challenges and potential strategies for text
generation in under-resourced languages.

The Cuni-Wue model (93) was one of the participating models that
tackled all four tasks provided by WebNLG 2023. They chose an mT5 model
focusing on multilingual RDF-to-text generation. They used MT primarily
for data augmentation and quality improvement in multilingual RDF-to-text
generation, especially targeting low-resource languages. They aim to cre-
ate or enhance training datasets by translating existing resources into target
languages. For languages like Maltese (Mt), Irish (Ga), and Welsh (Cy),
they use the NLLB system for translation, replacing the Edinburgh Zero
System. For Breton (Br), where NLLB is unavailable, they filter out incon-
sistent examples from the training data. At the same time, they focus on
multitask learning, which means simultaneously training models on diverse
tasks to improve generalization. The approach combines data-to-text gener-
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ation in the target language with translation from English and data-to-text
in English. Another technique used is the split and generate(SaG), which
addresses the issue of data quality in larger input triple sets; they adopt a
method of splitting complex inputs for easier processing. The input triple
sets are split into subsets, and outputs are generated for these subsets indi-
vidually before being concatenated. Their experiments showed substantial
improvements in language generation for low-resource languages using these
methods. For example, they observe notable improvements for Mt, Ga, and
Cy using the NLLB system. However, like Russian (Ru), the SaG decoding
method sometimes reduces performance due to the language’s comparative
resource richness. The model achieved good results, occupying the second
place in the contest leaderboard most of the time.

The WebNLG-Interno model (103) was only used for the Russian RDF-
to-text generation task in the WebNLG Challenge 2023. The authors used
FRED-T5, a pre-trained LLM, and experimented with different prompts to
enhance its performance. They also used some preprocessing steps mentioned
by Agarwal et al. (94), achieving a Translation Edit Rate (TER) of 0.373 on
the test dataset, outperforming the best result of the previous challenge.
Their approach included using additional information from raw XML data
and machine translation. One of their findings is that even though translated
data can be beneficial, it is not crucial for significant improvements.

The DCU-NLG-PBN model (104) focused on using LLMs like GPT-3.5
and GPT-4 for data-to-text generation tasks in under-resourced languages.
These languages include Irish, Maltese, Welsh, and Breton, but the model is
not finetuned on WebNLG data. The study investigates how LLMs, which
are predominantly trained on English data, perform in generating text for
languages with limited representation in their training data. This investiga-
tion aligns with the work of Brown et al. (38), where LLMs use their broad
knowledge to adapt to new tasks at inference time, given a few demonstra-
tions for the task at hand. In-context learning allows the model to perform
tasks based on the instructions without any updates to its parameters, in
the case of the DCU-NLG-PBN generating on under-resourced languages in
which the training data might contain very few samples or even none. Their
research was two-fold: direct generation in the under-resourced language and
generation in English followed by translation into the target language. They
found that few-shot prompting was more effective for direct generation, but
this advantage disappeared when using English as a pivot language. Combin-
ing few-shot prompting with translation (using Google Translate) produced
significant improvements, outperforming competitor systems in the WebNLG
2023 shared task across all languages on various metrics. However, the per-
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formance in Welsh, the best among the tested languages, still lagged behind
the lowest-ranked English system from WebNLG’20. Moreover, the repro-
ducibility of the experiments is in question since they don’t have access to the
model but only use some available endpoints provided by OpenAI. Overall,
one of the important papers shows the power of LLMs since it outperformed
all other models in the challenge in the languages it was tested on. A simple
setup can produce a good model for under-resourced language generation.

2.5 Evaluation

To assess the quality of the text generated from RDF triples, we will
utilize automated evaluation metrics provided by WebNLG, including BLEU,
METEOR, chrF++, TER, and BERTScore. Unfortunately, the BERTmodel
for the Maltese language does not support BERTScore, so it will not be
utilized. Additionally, ROUGE and PARENT will be employed, and we may
seek the input of human evaluators to assess the generated text based on
four distinct criteria.

2.5.1 BLEU (Bilingual Evaluation Understudy)

The BLEU metric (19) is one of the most popular and inexpensive
algorithms for evaluating the quality of text that has been machine-translated
from one language to another. The main idea behind BLEU is that it is better
if the correspondence between a machine translated and the human reference
is close.

Scores are calculated for individual translated segments, generally n-
grams, by comparing them with good-quality reference translations. Those
scores are then averaged over the whole corpus to estimate the translation’s
overall quality. Neither intelligibility nor grammatical correctness are taken
into account. Even though it is one of the first metrics to report a high
correlation with human judgments, the model suffers from many limitations.
Firstly, since BLEU is an n-gram-based metric, it compares token overlap
from the predictions and references instead of comparing meaning. This can
lead to discrepancies between BLEU scores and human ratings. Secondly,
shorter translations achieve higher scores than longer ones simply due to how
the score is calculated. To counteract this, a brevity penalty is introduced.
Thirdly, BLEU scores are inconsistent when comparing different datasets
or languages. Lastly, scores vary greatly depending on which parameters
are used to generate the scores, especially when different tokenization and
normalization techniques are used. Therefore, it is impossible to compare
BLEU scores generated using different parameters or when these parameters
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are unknown. For the experimental setup, the BLEU score is just an easy
metric to calculate, and it might provide the linguistic and phrasal accuracy
of the generated text, given the reference text.

However, this metric can be problematic since there have been many
implementations of it. Post (105) highlights the inconsistent reporting of
BLEU scores within the machine translation research field. He mentions
how BLEU, a variable metric, yields diverse scores due to different, often
undisclosed, parameter settings. The varying tokenization and normaliza-
tion methods on these scores complicate comparisons across studies. For
this reason, we will use a uniform BLEU standard, as used by the Confer-
ence on Machine Translation (WMT), called SACREBLEU, a tool to ensure
consistent, transparent BLEU reporting, ensuring comparability with other
research studies.

2.5.2 METEOR (Metric for Evaluation of Translation with Ex-
plicit Ordering)

The METEOR evaluation metric (20) is another automatic evaluation
metric based on unigram matching between the machine-produced transla-
tion and human-produced reference translations. Unigrams can be matched
based on their surface forms, stemmed forms, and meanings, providing a
more nuanced understanding of meaning in translations. Once all general-
ized unigram matches between the two strings have been found, METEOR
computes a score for this matching, using a combination of unigram-precision,
unigram-recall, and fragmentation that is designed to directly capture how
well-ordered the matched words in the machine translation are in relation to
the reference.

For our evaluation purposes, the metric also has synonym and para-
phrase limitations and morphological complexity. Since there are big chances
for data augmentation using automated translation tools, the metric might
not do justice when using the automatically translated text to assess the
quality of the generation. Also, in languages with different morphological
complexity, mapping words based on unigrams might do poorly since there
are languages that express the same meaning differently with more or less
unigrams. The metric requires more testing for human correlation with other
languages.

2.5.3 chrF++(Character-level F-score)

The chrF metric (106) is a method for evaluating machine translation
output using character n-gram F-scores. This metric is advantageous because
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it captures some morpho-syntactic phenomena and is language-independent
and tokenization-independent. It doesn’t require additional tools or linguistic
resources, making it broadly applicable. The chrF score is computed by
calculating character n-gram precision and recall and then combining these
using the F-score formula. It has shown promising results in correlating
with human judgments of translation quality. The chrF++ metric (107)
extends over chrF by incorporating character n-grams and word n-grams
(specifically, unigrams and bigrams) to evaluate machine translation outputs.
It correlates better with human judgment than metrics focusing solely on
character or word n-grams, and it is effective in assessing translations of
morphologically rich languages. In our scenario, chrF++ can provide a more
comprehensive evaluation of the translation quality, especially considering
the morphological richness of these languages. This could highlight model
performance in preserving the meaning and structure of the source data in
diverse linguistic contexts.

2.5.4 TER (Translation Edit Rate)

The translation error rate (or translation edit rate) (22) explicitly tries
to estimate the amount of work required to turn the machine translation(MT)
output into the reference translation.

Specifically, it quantifies the number of edit operations (insert, delete,
substitute, shift) required to change the MT output into the reference trans-
lation. This could help with detailed error analysis. Moreover, TER is gen-
erally language-independent and can be applied to various language pairs.
On the other hand, it lacks semantic understanding since TER ignores any
notion of semantic equivalence. A translation that semantically matches a
reference translation needs human knowledge. Additionally, TER might not
adequately represent fluency or naturalness in translation, focusing more on
lexical and syntactic accuracy. For TER, the quality of the reference trans-
lation significantly influences TER scores. Poor-quality references can lead
to misleading results, but the WebNLG corpus will not suffer from this issue
since professional translators have manually handcrafted all translations so
that this metric can give pretty good insights into our system generation
quality.

2.5.5 BERTScore

BERTScore (24) is an automatic evaluation task-agnostic metric for
text generation tasks that correlates well with human judgments. The sim-
ple principle behind BERTScore is to calculate a cosine similarity score for
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each token in the candidate sentence and each token in the reference sentence.
Instead of capturing n-gram overlap, it computes token similarity using con-
textual embeddings using the BERT model (37). This enables the model to
capture semantic equivalences between generated and reference texts, par-
ticularly useful in NLG tasks since the generated output might be correct
but paraphrased. Another benefit of this evaluation metric is that since it
has been trained in diverse languages, it can be used to evaluate multilingual
models. The metric’s performance relies heavily on the quality of BERT’s
contextual embeddings. However, the model might suffer unstable perfor-
mance against low-resourced languages, thus affecting its reliability in the
WebNLG setting. Additionally, the BERTScore does not support Maltese.
We will have to use other evaluation metrics to assess it. Lastly, BERTScore
computes BERT Precision, BERT Recall, and BERT F1, which can be used
to evaluate different language tasks.

2.5.6 ROUGE (Recall-Oriented Understudy for Gisting Evalua-
tion)

The ROUGE metric (108) measures the overlap between a generated
summary and reference summaries using various methods like n-gram overlap
(ROUGE-N), longest common subsequence (ROUGE-L), and skip-bigram co-
occurrence statistics (ROUGE-S). ROUGE can evaluate different aspects of
summarization, like content overlap and word order, and its adaptability to
different summary lengths. However, its reliance on reference summaries and
potential limitations in capturing semantic variations are drawbacks. Since
data-to-text generation involves creating descriptive or informative text from
structured data, ROUGE can be helpful for our project since it is a cheap
metric. The metric could be useful for evaluating how well the multilingual
model generates text in Irish, Maltese, Breton, and Welsh and if it captures
the key information from structured data sources, particularly regarding con-
tent overlap and information retention.

2.5.7 PARENT(Precision And Recall of Entailed N-grams from
the Table)

The PARENT metric (109) evaluates table-to-text generation models
but could also be applied for RDF-to-text generation. It assesses the quality
of generated text by comparing it with reference texts and the source table.
It calculates precision and recall by aligning n-grams from the generated and
reference texts to the table data, using an entailment model to determine
if the table entails a text n-gram. This method helps address issues arising
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from divergent reference texts that may contain information not present in
the table, a common scenario in automatically constructed datasets.

In the context of WebNLG, PARENT is instrumental since it correlates
highly with human judgments. The WebNLG dataset presents structured
data (RDF triples) and corresponding text descriptions. PARENT evaluates
how well the generated text aligns with the factual content of these triples,
meaning that it will assess the model’s ability to convert data into coherent
and factually correct text in the target languages. PARENT evaluates the
fidelity of the generated text to the source data.

When PARENT generates text from tables, it doesn’t use the complete
tabular data. This can be an issue as in the WebNLG corpus since the aim
is to generate all the information in the RDF triples.

3 Methodology

In this section, we discuss the methodology for achieving our goals. We
describe the datasets we will use and then discuss the experimental setup,
including tools, data augmentation techniques, data preprocessing, the pro-
posed models, and the pipeline we implement. Then, we discuss the task
description.

3.1 Data

This section presents the datasets we will use in our pipeline to test
zero-shot generation on low-resourced languages. The model will primarily
use the OPUS-100 dataset for additional pre-training and the WebNLG for
finetuning.

3.1.1 WebNLG corpus

The WebNLG dataset (28) contains Resource Description Framework
(RDF) triples extracted from DBPedia, and the text is a verbalization of
this data. Each triple is in the form of Subject, Predicate and Object. The
Predicate represents the relationship of the Subject and Object.

The WebNLG corpus was initially developed for English, consisting of
25,298 texts describing 9,674 sets of up to 7 RDF triples in 15 domains: As-
tronaut, University, Monument, Building, Comics Character, Food, Airport,
Sports Team, Written Work, and City. New domains were added later to cre-
ate the test set. These domains are Athlete, Artist, Means of Transportation,
Celestial Body and Politician were used for the test set.
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The last version of the WebNLG corpus released in 2023 targets a vari-
ety of under-resourced languages, such as Breton, Welsh, Irish, and Maltese.
The latest dataset contains 1,399 dev items for Breton, 1,665 dev items for
Welsh, Irish, and Maltese, and 790 for Russian. WebNLG also provided
5,573 train items for Russian and 13,211 for the other languages. These
items were automatically translated using an NMT system (110). Lastly, the
corpus offers 1,101 test items for Russian and 1,778 for other under-resourced
languages.

The challenge uses various metrics to evaluate the quality of the pro-
posed solutions, including traditional NLG metrics like BLEU (19), ME-
TEOR (20), chrF++ (107), TER (22), and BERTScore (24), as well as
human evaluations for fluency, adequacy, and correctness. Figure 4 shows an
example of 5 RDF triples verbalized to English text.

Figure 4. RDF-to-text verbalisation

3.1.2 OPUS-100

The development of the OPUS-100 dataset (110) has emerged due to
the recent advancements in multilingual NMT. This English-centric dataset,
sourced from the OPUS collection, includes 100 languages with up to 1M
training pairs for each language pair, totaling approximately 55M sentence
pairs. The dataset composition varies, from movie subtitles to GNOME
documentation and the bible. For training, validation, and testing, up to 1M,
2,000, and 2,000 sentence pairs were randomly sampled per language pair,
respectively, with careful filtering to prevent overlap. Additionally, OPUS-
100 serves zero-shot translation evaluation in 15 language combinations like
Arabic, Chinese, and French, further underscoring its broad applicability in
the NMT domain.

37



3.2 Experimental setup

This section presents the experimental setup we will use for the project
implementation. In the following sections, we describe the languages we
will use, data augmentation techniques and accompanying tools, the data
preprocessing stage, and the decisions that led to choosing the right model
for the task. Then, we give an overview of the systems pipeline describing
each stage, and lastly, we present the task this model will address.

3.2.1 System overview

This section explains the modeling choices for each step of the pipeline
to generate text from RDF triples. We aim to explain each step of the
pipeline to enhance the transparency and replicability of our research. The
proposed pipeline is illustrated in figure 5.

Figure 5. Proposed pipeline for generating data-to-text in low-resourced languages

To commence, we used a multilingual model, specifically mT5 (89),
which is detailed in section 3.2.5. While mT5 is already trained in various
languages (see Appendix B), we pre-train the model using the OPUS-100
dataset. This step further enriches the model’s general knowledge with all
the relevant languages we want to target in the WebNLG dataset. We ex-
clude the target languages in both corpora to test if the language family
alone can generate a decent result in a zero-shot setting, but we include Irish
in the pre-training because there are not many languages that are closely
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related to Breton. It is important to note that the mT5 model has already
been trained with many languages, including the ones from WebNLG. Fur-
thermore, training on the OPUS-100 dataset (110) is straightforward and ef-
ficient since it’s in text format, eliminating the need to aggregate and extract
data ourselves. We leverage the bilingual sets of languages provided in the
OPUS-100 dataset. This involves selecting language pairs closely related to
the target languages in the WebNLG dataset. The input to the model would
be text in one language, while the output would be its translation in another
language. This method will allow the model to learn cross-linguistic repre-
sentations and improve its ability to understand and generate text, which
will be useful later for the D2T task.

At this stage, the model has further enriched its linguistic capabilities.
Next, we finetune the model to generate text from RDF triples. This process
enables the model to learn how to produce fluent text in natural language
from structured data. The structured data we will be using comes from the
WebNLG corpus (28), and as we described, preprocessing the data makes it
easier for the model to understand and train on, as discussed in section 3.2.3.
Lastly, we will generate text without providing examples to the model, but
we will also experiment with a non-zero-shot setting approach.

3.2.2 Languages

The languages we will use for this project span various language fami-
lies. We pretrain it in Arabic, Hebrew, Italian, French, English, and Amharic
to target Maltese, a Semitic language. We also include language examples
from the Celtic languages, such as Irish and Scottish Gaelic, even though
Irish is one of the target languages of the WebNLG dataset. We have in-
cluded examples from Irish and Scottish Gaelic, which are Celtic languages,
to target Breton and Welsh, which also belong to the Celtic group. Lastly,
to test model performance and robustness, we have a variant of the model
finetuned in English, one in English and Russian and another in English,
Russian, the OPUS-100 languages, and German. We hope with these diverse
results, the model will learn to understand the prompt better and generalize
in languages not seen before.

3.2.3 OPUS-100 data preprocessing

The OPUS dataset (110) language pair distribution is shown in figure
7. For experiments, we use the OPUS-100, a massively multilingual dataset
sampled from OPUS (111). OPUS-100 consists of 55M English-centric sen-
tence pairs covering 100 languages (110). The OPUS-100 provided in Hug-
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gingFace contains a lot of language pairs that are mistranslated, meaning
that the English translation is carried to the target language. This can cre-
ate a problem in our model’s training and performance since the data can
be low quality. For this reason, we apply a data preprocessing operation to
clean the data from such translation pairs.

Lastly, since the OPUS-100 dataset contains many language pairs in
reverse order (e.g., Amharic to English), we process the dataset to reverse
the ordering and re-arrange it as English to Amharic. The aim is for the
decoder of mT5 to be exposed to these different languages to acquire better
language representations and perhaps be better at cross-lingual transferring.
The training, validation, and test distributions are illustrated in figures 6a ,
7a and 7b

(a) Original dataset

Figure 6. Language pair distributions of the training data on OPUS-100(filtered)
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(a) Validation dataset (b) Test dataset

Figure 7. Language pair distributions of the test and validation data on OPUS-100
(filtered)

3.2.4 WebNLG data preprocessing

Another preprocessing step we must implement is on the RDF triples,
especially when they are the input of text-to-text models such as BART (25)
or T5 (50). For this reason, it is vital to preprocess the data so that the
models can handle its structured nature. This preprocessing step aims to
ensure that the data is uniform and consistent, which is crucial for the optimal
performance of the model. The ultimate goal of the model is to learn to
generate fluent text rather than memorize the ordering of the input data,
which can make it less adaptable to other scenarios where the data may be
shuffled.

To generate text that accurately reflects the intended meaning of the
input, the model should not rely on the order in which the triples are pre-
sented. Since linearization can give an unfair advantage to the model, as
seen in the work of Moussallem et al. (91), we will implement reshuffling to
the triples to ensure the model does not depend on linearization, but instead,
accurately represents the intended verbalization order.

To eliminate the camelCase in the data, we will convert them to multi-
word expressions with normal spacing, as demonstrated in the work of Agar-
wal et al. (94). For instance, La Crosse Wisconsin →La Crosse Wisconsin.
This approach will make the data more consistent and closer to natural lan-
guage. It will also help the tokenizer as case sensitivity may identify subword
units differently.

Furthermore, we utilize distinct delimiters to distinguish each triple’s
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Subject, Object, and Predicate (94). These delimiters, denoted as <S >,
<0>, and <P>, serve to enhance the clarity and organization of the data,
streamlining the model’s ability to comprehend the relationships among the
triples. Furthermore, these delimiters are prominent indicators for the model
to parse the data effectively.

To finalize the preparation of RDF data, it is necessary to serialize each
RDF triple, which involves converting the subject, predicate, and object into
a string format. This can be done by concatenating the three parts into a
single string.

3.2.5 Models

To implement this project, we use pre-trained state-of-the-art transformer-
based models with an encoder-decoder architecture. The models of choice
are text-to-text models pre-trained on a multilingual corpus. Two models
that emerged after research are the T5 (50) and BART (25) models but
in their multilingual versions. The mT5 (89) variant of T5 comes in many
sizes ranging from small to XXL 5, whereas the mBART (90) can only be
found in base size pre-trained on 25 languages and on a large version which
is pre-trained on 50 languages 6. Based on section 2.4, we discussed how the
WebNLG challenge has evolved with every iteration and how the participat-
ing teams have tried to tackle the challenges. The use of the T5 family is
prevalent. Firstly, the model is a text-to-text generator meaning data can be
easily transformed into a string. Secondly, for multilingual tasks, the T5 mul-
tilingual variant has been trained in many more languages than the BART
counterpart(Appendices B C). Thirdly, since the resources are limited for the
scope of this MSc thesis, it would be easier to train with a model that is not
computationally expensive. As a reference, mT5-small 7 is around ≈ 220M
compared to ≈ 580M parameters for the mT5-base. On the other hand,
the BART family has for the mBART8 variant pre-trained on 25 languages
around 680M parameters and >680M parameters for the large.

3.2.6 Pre-training

The first involves pre-training our multilingual model by doing one pass
of the OPUS-100 corpus with the parameters described in table 1.

5https://huggingface.co/google/mt5-base
6https://huggingface.co/facebook/mbart-large-50
7https://huggingface.co/google/mt5-small
8https://github.com/facebookresearch/fairseq/tree/main/examples/mbart
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Table 1. mT5 pre-training setup

Paremeters Values
num train epochs 1
per device train batch size 8
per device eval batch size 8
learning rate 0.001
gradient accumulation steps 4
predict with generate True
optimiser AdaFactor

We provide statistics about the length per language string in figures
8, 9. These statistics help us to set the maximum input length to 128 for
the input and target string sequences fed and produced by the model. This
process ensures that the strings have a uniform length, simplifying batch
processing and improving computational efficiency.

Figure 8. The average length per language string in the OPUS-100 dataset
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Figure 9. The max length per language string in the OPUS-100 dataset

When pre-training the mT5, there are many things that we should take
into consideration. For the most successful training regimen, we look over
Kaplan et al. (68) work to estimate the ideal scaling of data and model size.
Due to hardware constraints, we have chosen the mT5-small model 9 since it
contains the least amounts of parameters ≈ 220M and it will take less time
to pre-train and finetune it. Using the scaling laws for Neural Networks, we
want to achieve data scaling so that our model will not overfit and acquire
better generalization capabilities.

In the pre-training phase, the model is trained on the mC4 corpus10

with around 1T tokens (89). Additionally, we try to enrich the models’ gen-
eral knowledge by training it further with the OPUS-100 dataset containing
≈ 5.6 ∗ 108 tokens. To avoid overfitting, we use the stochastic approach of
the AdaFactor optimizer (112), which can help prevent the model from see-
ing the same data multiple times (50). We observe that the validation loss
is generally lower than the training loss, but both steadily decrease. The
learning curves can be found in figure 20 of the Appendix. The curves’ ap-
pearance might also be attributed to the model’s capacity since we work with
the small variant. The model has already been pre-trained for 1M steps on
the mC4 dataset (89). Further pre-training might have diminishing returns
since the model cannot learn from the new data. Even though the model’s
curves do not converge and validation loss is generally lower than training
loss, we assess the model based on the quality of the generated text and on
the improvement of automatic metrics over time. When the improvement
plateaus, we stop the model from further training.

9https://huggingface.co/google/mt5-small
10https://www.tensorflow.org/datasets/catalog/c4#c4multilingual
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3.2.7 Finetuning

For finetuning, we follow the recipe of the CUNI-Wue model by Ku-
mar et al. (93). The initial plan was to follow the mT5 finetuning strategy
presented by Xue et al. (89), but it only provides a general guideline for
downstream tasks. For this reason, we adjusted our model parameters based
on the CUNI-Wue model.

Table 2. mT5 finetuning setup

Paremeters Values
num train epochs 10
per device train batch size 8
per device eval batch size 8
learning rate 2e-5
gradient accumulation steps 8
predict with generate True

3.2.8 Text generation

We experiment with both zero and non-zero-shot text generation in the
WebNLG (102) target languages. We use the settings described in table 3 as
a decoding strategy. Initially, our decoding strategy consisted of beam search
decode with a beam width of 4 and repetition penalty of 3.5 to prevent the
model from repeating the same information (113). These settings did not
produce the best quality text since, in many cases, repetition of the same
sentence or words was prevalent and hurting performance. We additionally
included sampling for randomness for more varied outputs and doubled the
beam width to 8 to increase the exploration of multiple possible sequences
simultaneously, keeping track of the top 8 most likely sequences at each step.
Additionally, we introduced temperature to control the randomness of the
predictions and reduce the probability of less likely tokens, leading to more
coherent and focused text. The repetition penalty for 2-grams ensured that
the generated text did not include repetitive phrases, an issue we faced with
the old setup. Last but not least, we enabled early stopping to allow the
generation process to halt once a complete and sensible output is achieved
rather than continuing to the maximum token limit. The result in the gener-
ating text can be seen in figures 17 for the old decoding strategy and figure
18 for the new decoding strategy. For RDF triple verbalization, we use the
prompt format: RDF-to-text in < lang >: < input > where < lang > is the
target language and < input > denotes the input triples.
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Table 3. Decoding strategy parameters

Paremeters Values
do sample True
max new tokens 100
num beams 8
temperature 0.6
repetition penalty 3.5
no repeat ngram size 2
early stopping True

3.2.9 Experiments

In the following figure 10, we describe the experiments performed on
this project. Moreover, we give a detailed overview of each experiment and
the reasoning behind each experiment.
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Figure 10. Proposed experiments for evaluating our model in zero-shot setting

The chain of experiments measured the impact of each recipe on a zero-
shot generation. We started by enriching the model’s general knowledge using
further pre-training, and then we branched out to different finetuning recipes
to determine which yields the best performance on the automatic metrics.

For the first experiment, we performed a single pass on the OPUS-100
since our goal was not for the model to learn the translation task but to
familiarise itself with the language families of Irish, Maltese, Breton, and
Welsh. Then, we evaluated the model per language pair to analyze the per-
formance on the OPUS-100 translation task. The results for the translation
task are found in table 16 and conclude later on how the pre-training might
affect the RDF-to-text task. Moreover, we use stopping criteria such as
early stopping to avoid overfitting the training data. After the pre-training,
we finetune for 100 epochs on the RDF-to-text in English and another 100
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on the RDF-to-text in Russian sequentially. Of course, this resulted in the
model getting more biased towards Russian and forgetting how to generate
in English. To resolve this problem, we kept the checkpoint where the model
is finetuned only in English. In the Appendix, we illustrate the figures 19 for
the pre-training and 20 for the validation loss curves. Our observations from
the first experiment were that the model was mostly generated in English,
and it also introduced words from Arabic and Amharic. We speculate that
this is due to pre-training. Another speculation was that the model had also
experienced catastrophic forgetting by mostly generating in English and not
understanding the text instruction.

For the second experiment, we tried to enrich the dataset with more
languages, this time by combining Russian and English samples in the same
dataset, to improve model robustness and understanding of diverse instruc-
tions. We finetuned the model for 200 epochs and then performed zero-shot
generation. Our observations from this setup were that the model could still
not generate well in zero-shot, but it had seen a significant improvement com-
pared to the first experiment. Following this line of thought, we expected that
an even more diversified WebNLG dataset could give the necessary learning
capabilities for mT5 to generate even better text. Since WebNLG is limited
to a specific set of languages, we created synthesized data using the NLLB
model (114).

For the third experiment, we generate an augmented dataset based on
the Russian and English WebNLG datasets. We randomly select samples
from the data and generate translated lexicalizations based on OPUS-100
languages and by adding German using the NLLB model (114). German
was chosen arbitrarily as a language to expand the diversity of the languages
the model was exposed to during finetuning. The new dataset consists of
57,795 samples, and the model is trained for 100 epochs. The language
distribution can be seen in figure 11. Additionally, for this experiment, we
have included the percentage of noisy and clean data from this distribution,
illustrated in figure 12. Our observations for this setting were that the model
indeed learned to generate and score better, but the diversity of languages
present both at the pre-training and at the finetuning stage had caused the
model to do code-switching between languages when it was instructed to
generate in a specific language.

Lastly, as part of measuring the impact of the pre-training, we finetuned
an mT5 model without pre-training by only following the best finetuning
strategy from our previously described experiments. Surprisingly, this model
performed equally well as its pre-trained counterpart. The performance gains
in some aspects might come from the fact that as a multilingual model, it
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Figure 11. Language distribution of the synthesized WebNLG

doesn’t need further pre-training, as it is already extensively trained on mC4
11, making it very knowledgeable out of the box. However, mT5 does require
finetuning.

11https://www.tensorflow.org/datasets/catalog/c4#c4multilingual
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Figure 12. Distribution of noisy and clean data on the synthesized WebNLG dataset

3.2.10 Second stage finetuning

In this project, we also perform non-zero-shot generation experiments
for experimentation. More specifically, we train our model with the target
languages from WebNLG after the model has been finetuned to the settings
described in the section 3.2.7. The data for training our model is synthesized
using the NLLB model (114). We translate pre-existing lexicalizations from
English and Russian to Maltese, Irish, and Welsh. We could not synthesize
data for Breton since NLLB is not trained in that language.

We perform three experiments per the settings described before as a
second-stage finetuning approach. The first experiment consists of 150 syn-
thesized samples with 50 samples per language. In the second experiment,
we synthesize 999 samples with 333 samples per language. In the last ex-
periment, we synthesize 4500 samples with 1500 samples per language. We
selected this size to observe how the performance is affected. We increase
the dataset with noisy data and if that can have diminishing returns on the
model.

We examined the development of metrics for these experiments, begin-
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ning with the BERT-F1 metric per experiment. This is shown in figures 13a,
13b, 13c. The model notation in the figures caption can be found in section
4.

Regarding BERT-F1, the PT WebNLG en model initially shows a drop
in performance but improves after adding +4500 samples. Conversely, the
PT WebNLG en ru model plateaus after just +150 samples, while the PT Augm WebNLG
model consistently declines as more samples are added.

The remaining figures can be located in the appendix figure in section
E. Furthermore, for validation, we utilized the training dataset provided by
WebNLG in the Irish, Maltese, and Welsh languages. The training dataset
consists of 1998 samples, with each language having 666 samples. Finally,
we used the dev dataset provided by WebNLG for evaluation.

We observed that the PT WebNLG en model usually displays an ini-
tial performance drop with a small amount of data but significantly improves
with larger datasets, exhibiting better generalization with more data. This
trend is consistent across metrics such as BLEU, chrF++, and METEOR.
The PT WebNLG en ru model shows a consistent pattern of steady improve-
ment across different metrics and languages, although it tends to plateau
early in some metrics, indicating good initial learning but limited gains with
additional data. In contrast, the PT Augm WebNLG model often demon-
strates early improvements but struggles to maintain performance with more
extensive data, often reaching a plateau or continuously declining.
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(a) PT WebNLG en model (b) PT WebNLG en ru model

(c) PT Augm WebNLG model

Figure 13. BERT F1 Experiments for Welsh

Figure 14. Proposed experiments for evaluating our model in zero-shot setting
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4 Results

We report our evaluation results in the tables below. Our experiments
consist of four models. We denote the further pre-trained models using the
filtered OPUS-100 dataset with the prefix PT and then the finetuning lan-
guages as a postfix. Our experimentation settings for the models can be
summarized from the following list

PT WebNLG en : A model further pre-trained on OPUS-100 and fine-
tuned on the English WebNLG dataset

PT WebNLG en ru : A model pre-trained on the OPUS-100 dataset and
finetuned with a mixture of Russian and English WebNLG datasets

PT Augm WebNLG : A finetuned model using synthesized data from the
English and Russian WebNLG datasets and augmented the data using the
OPUS-100 languages and German.

Pure mT5 : A model without pre-training and finetuned based on the best-
performing strategy. This model was finetuned according to the PT Augm WebNLG
recipe.

Furthermore, for the models that we performed in the second finetuning
stage, we kept the original name and added the number of samples we used.
For simplicity, in the following list, we showcase the non-zero shot genera-
tion for which the methodology is explained in section 3.2.10. We denote as
Model the aforementioned models such as PT WebNLG en, PT WebNLG en ru,
PT Augm WebNLG excluding the Pure mT5 model.

Model+150 : A model finetuned on 150 augmented Irish, Maltese, and
Welsh samples.

Model+999 : A model finetuned on 999 augmented Irish, Maltese, and
Welsh samples.

Model+4500 : A model finetuned on 4500 augmented Irish, Maltese, and
Welsh samples.

4.1 Best performing models

This section provides a detailed comparison of the experiments con-
ducted and their results, focusing on the performance of the models for Bre-
ton, Maltese, Irish, and Welsh. The analysis includes the evaluation metrics
BLEU, ROUGE, METEOR, TER, chrF++, BERTScore, and PARENT F1.
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For Breton, the scores of the models are illustrated in table 7. The best
model was the Pure mT5 since it scored the highest in most metrics. The
model’s performance was prevalent in the BertScore metrics since it gener-
ated semantically closer text than the other models. Another metric that
assists the case of Pure mT5 is METEOR, which considers not only ex-
act matches but also word stems and synonyms for comparison, which often
attribute the model’s capacity by generating semantically similar text. In
generating the most similar text to the reference text, PT Augm WebNLG
did the best job. Metrics such as BLEU, ROUGE, and TER generally cap-
ture accuracy in using specific words and phrases and their order and struc-
ture. PT WebNLG en surprisingly score the highest chrF++ score, match-
ing more n-grams than any other model and better preserved character-level
information.

In the case of Maltese, the table 5 shows the scores of the models.
The best-performing models were the Pure mT5 and PT Augm WebNLG,
as they achieved the highest scores in most key metrics, indicating better
quality generations than the reference texts. Specifically, the Pure mT5
model outperformed all others across BLEU and ROUGE metrics. The
PT Augm WebNLG and models that underwent further pre-training and
finetuning also performed well by generating text that matched better at a
subword level. These models also demonstrated better performance on TER
scores than Pure mT5, except for PT WebNLG en and PT WebNLG en 150.
Lastly, for METEOR, most models achieved more or less similar performance.
Further pre-training and finetuning helped the models achieve better perfor-
mance on a granular level in Maltese, while the second stage of finetuning
seemed to have helped most models enrich their ability to find synonymous
words.

For Irish, the scores of the models are shown in table 4. The best-
performing model for Irish was the PT WebNLG en ru+4500, as it scored
the highest in most metrics, with PT WebNLG en ru + 999 coming in as
the second best performer. It can be observed that many models, which
were further finetuned with noisy data, could generate more diverse forms of
words as they were more enriched. On a detailed level, the enriched mod-
els performed better on chrF++ than the Pure mT5. On the other hand,
Pure mT5 had the highest BERT F1 and BERT P scores, indicating that
the model generated more semantically similar text than the others. Gener-
ally, the PT WebNLG en ru+ 4500 and the PT Augm WebNLG variants
showed better performance, as Irish was part of the pre-training languages,
and some variants were also included in the further finetuning. These en-
richments gave an advantageous position to these variants for the automatic
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metrics.
For Welsh, the scores of the models are illustrated in table 6. The

PT Augm WebNLGmodel was the best performer by producing precise and
semantically relevant text to the reference text. On chrF++ the Pure mT5
had the lowest score. Since Welsh is also a Celtic family, the model has
learned some representation from the pre-training that helped achieve better
overlapping of the character-level n-grams and the TER score. Nevertheless,
the Pure mT5 also performed the best on ROUGE, BERT F1, and BERT
P.

After evaluating models for Breton, Maltese, Irish, and Welsh lan-
guages, here are the best-performing models and their strengths:

For Breton : Pure mT5 was the top model, excelling in five out of nine
metrics.

For Maltese : Pure mT5 and PT WebNLG en ru + 4500 were the top
models, scoring highest in two out of six metrics. Since Pure mT5 is under
zero-shot, we consider it a superior model.

For Irish : PT WebNLG en ru + 4500 was the best performer, scoring
highest in four metrics. But Pure mT5 and PT Augm WebNLG are the
best under zero-shot, so we consider them as superior models.

For Welsh : PT Augm WebNLG stood out as the top performer

Overall, the Pure mT5 performed the best, and PT Augm WebNLG
was the second best model. Both models performed well in BLEU and
ROUGE, while the PT WebNLG en ru and its variants performed well in
METEOR. We also observed trends in model performance based on their
training regimens and datasets used. Additionally, we noted that the auto-
matic metrics provide only one side of the story, and a manual analysis was
performed to further support our claims.

Models BLEU ROUGE METEOR TER(↓) chrF++ BERT F1 BERT P BERT R PARENT F1
PT WebNLG en 5.55 0.19 0.23 0.89 32.05 0.68 0.69 0.67 0.14
PT WebNLG en+ 150 5.22 0.19 0.23 0.89 32.13 0.68 0.69 0.67 0.14
PT WebNLG en+ 999 4.62 0.2 0.24 0.9 29.86 0.64 0.66 0.63 0.15
PT WebNLG en+ 4500 7.57 0.23 0.25 0.85 31.8 0.69 0.71 0.67 0.13
PT WebNLG en ru 5.55 0.19 0.23 0.88 32.05 0.68 0.69 0.67 0.14
PT WebNLG en ru+ 150 7.17 0.22 0.26 0.85 32.83 0.69 0.71 0.68 0.13
PT WebNLG en ru+ 999 7.23 0.22 0.26 0.84 32.95 0.7 0.71 0.68 0.13
PT WebNLG en ru+ 4500 7.58 0.23 0.26 0.82 32.93 0.7 0.72 0.68 0.13
PT Augm WebNLG 7.59 0.21 0.23 0.82 29.67 0.69 0.71 0.67 0.1
PT Augm WebNLG+ 150 6.2 0.19 0.22 0.86 29.99 0.68 0.7 0.67 0.09
PT Augm WebNLG+ 999 6.72 0.2 0.23 0.86 30.47 0.69 0.7 0.67 0.09
PT Augm WebNLG+ 4500 6.7 0.2 0.23 0.86 30.43 0.69 0.7 0.67 0.09
Pure mT5 6.52 0.22 0.22 0.92 27.12 0.71 0.74 0.67 0.09

Table 4. Evaluation Metrics for Irish (GA)
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Models BLEU ROUGE METEOR TER(↓) chrF++ PARENT F1
PT WebNLG en 5.72 0.2 0.24 0.92 34.75 0.15
PT WebNLG en+ 150 5.22 0.19 0.23 0.92 34.7 0.14
PT WebNLG en+ 999 7.21 0.23 0.26 0.9 34.43 0.13
PT WebNLG en+ 4500 7.52 0.23 0.26 0.89 34.48 0.13
PT WebNLG en ru 5.22 0.19 0.24 0.9 35.16 0.15
PT WebNLG en ru+ 150 6.71 0.23 0.27 0.9 35.91 0.13
PT WebNLG en ru+ 999 7.01 0.23 0.27 0.91 35.92 0.14
PT WebNLG en ru+ 4500 7.31 0.24 0.28 0.91 36 0.14
PT Augm WebNLG 8.02 0.23 0.24 0.89 31.16 0.09
PT Augm WebNLG+ 150 6.41 0.22 0.25 0.89 34.49 0.1
PT Augm WebNLG+ 999 6.9 0.23 0.26 0.89 34.74 0.1
PT Augm WebNLG+ 4500 6.91 0.23 0.26 0.91 34.82 0.1
Pure mT5 8.68 0.25 0.26 0.91 29.27 0.1

Table 5. Evaluation Metrics for Maltese (MT)

Models BLEU ROUGE METEOR TER(↓) chrF++ BERT F1 BERT P BERT R PARENT F1
PT WebNLG en 5.97 0.2 0.23 0.93 34.26 0.71 0.72 0.7 0.13
PT WebNLG en+ 150 5.33 0.19 0.23 0.93 34.16 0.7 0.71 0.7 0.13
PT WebNLG en+ 999 4.61 0.19 0.25 0.89 31.29 0.66 0.67 0.65 0.13
PT WebNLG en+ 4500 7.44 0.23 0.25 0.92 33.79 0.71 0.72 0.7 0.11
PT WebNLG en ru 5.5 0.19 0.24 0.9 34.53 0.71 0.71 0.71 0.13
PT WebNLG en ru+ 150 7.15 0.23 0.26 0.9 35.26 0.72 0.73 0.71 0.12
PT WebNLG en ru+ 999 7.23 0.23 0.27 0.86 35.3 0.72 0.73 0.71 0.12
PT WebNLG en ru+ 4500 7.71 0.24 0.27 0.86 35.41 0.72 0.74 0.71 0.12
PT Augm WebNLG 8.04 0.23 0.24 0.85 31.71 0.73 0.74 0.71 0.09
PT Augm WebNLG+ 150 6.52 0.21 0.24 0.89 31.79 0.71 0.72 0.7 0.08
PT Augm WebNLG+ 999 7.05 0.22 0.24 0.86 32.23 0.71 0.72 0.7 0.08
PT Augm WebNLG+ 4500 6.88 0.22 0.24 0.86 32.14 0.7 0.72 0.7 0.09
Pure mT5 7.75 0.25 0.24 0.94 29.31 0.73 0.76 0.7 0.09

Table 6. Evaluation Metrics for Welsh (CY)

Models BLEU ROUGE METEOR TER(↓) chrF++ BERT F1 BERT P BERT R PARENT F1
PT WebNLG en 5.89 0.2 0.23 0.89 34.4 0.71 0.71 0.7 0.13
PT WebNLG en ru 5.22 0.19 0.23 0.89 34.68 0.71 0.71 0.7 0.13
PT Augm WebNLG 6.8 0.23 0.22 0.87 29.99 0.73 0.75 0.71 0.08
Pure mT5 6.16 0.23 0.23 0.91 28.54 0.74 0.77 0.72 0.07

Table 7. Evaluation Metrics for Breton (BR)

4.2 Manual analysis

This section evaluates our models’ generation capabilities by measuring
the counts of words in each generated file and creating a distribution for each
language found in that file. We perform a manual analysis of each model’s
generated text files. Using a bag-of-words approach and a language detection
tool 12, we want to evaluate whether the highest-performing models generated
most of the text in the language in which they were evaluated. This approach
does not consider a text’s fluency and coherence. The objective is to evaluate

12https://fasttext.cc/
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distributions of languages present in a text and find insights about the models
that generated better under a zero-shot setting.

In the tables below, you can find the language distributions for Welsh
(see table 8), Maltese (see table 9), Breton (see table 10), and Irish (see
table 11). We provide the language distribution for each evaluation of all
variants of our models. These files contain the generated triples in the target
language. Often, the models generated in languages other than the target
language, a phenomenon known as code-switching. In this evaluation, we
are not comparing the model’s output with reference texts; our goal is to
observe the knowledge the model has acquired through the various training
and finetuning recipes.

We will start our approach hierarchically, considering first the top-
performing models based on the automatic evaluation metrics for each lan-
guage.

For Breton, the Pure mT5 performed the best in the automatic met-
rics, and in the manual analysis, Breton has 36.84% word coverage from all
the generated text, which is the second highest, while PT Augm WebNLG
performed the highest with word coverage in Breton of 42.11%. It validates
that the training regimen of finetuning the models with noisy data based
on the OPUS-100 languages + German helped them perform better at zero-
shot generation. We suspect the reason why the PT Augm WebNLG scored
higher might be attributed to the extra pre-training of the model. On the
other hand, the PT WebNLG enmodel that was trained only on the English
WebNLG dataset has the word coverage concentrated more in English but
still contains some words from Arabic and Hebrew, which are attributed to
the pre-training regimen. We also observe that from all the other languages,
for Breton, the models generated in fewer languages than the other ones,
which might also be attributed to the uniqueness of the language since we
did not train or finetune with many relative languages.

For Irish, the PT WebNLG en ru + 4500 model achieved the high-
est scores in automatic metrics, followed by the PT WebNLG en ru + 999
model. The PT Augm WebNLG had the highest word coverage in Irish at
33.33%, with Pure mT5 having the second-highest coverage at 27.78%. Most
models primarily generated text in Irish or English, occasionally incorporat-
ing words from other languages such as Arabic, Hebrew, Amharic, and some-
times French, Italian, Breton, or Russian. Notably, PT WebNLG en predom-
inantly generated text in English (94.21%), while models like PT Augm WebNLG
and Pure mT5 had higher Irish coverage due to their extensive finetuning
regimens. Some cross-linguistic influences were observed, such as including
Breton and Russian words.
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Another interesting case is the PT WebNLG en+4500 model, which is
finetuned in Russian. It occasionally generates a small proportion of words
in Russian, a phenomenon not seen in the other models. These findings
suggest that comprehensive finetuning and pre-training on diverse language
sets significantly enhance the models’ ability to generate text in Irish. It
is worth noting that no postprocessing step was applied to minimize the
code-switching observed in most models.

For Maltese based on automatic metrics the best models were the
Pure mT5 and PT WebNLG en ru + 4500. The PT Augm WebNLG model
achieved the highest Maltese word coverage at 38.89%, and models Pure mT5,
PT Augm WebNLG + 4500, PT Augm WebNLG + 999, and PT Augm WebNLG
+ 150 shared the second-highest coverage at 31.58%. Most models primar-
ily generated text in English and Maltese, with occasional words in other
languages. This demonstrates that a robust finetuning regimen significantly
enhances Maltese text generation. Alternatively, an instruction-tuned model
like T5 (50) may have been better for generating text in the target language.

The top-performing models for Welsh are PT Augm WebNLG and
PT WebNLG en ru + 4500 based on automatic metrics. The Pure mT5
model achieved the highest Welsh word coverage at 31.58%. Further finetun-
ing significantly enhances Welsh word generation, although some language
mixing occurs.

We can generally assume that high-performing models in automatic
metrics achieve greater coverage in the target language being evaluated. This
suggests that models capable of generating more fluent text with better n-
gram overlap in the target language also tend to produce a larger proportion
of text in that language. The augmented WebNLG dataset (28) provided use-
ful insights for the model to differentiate between different languages better
than other models. Finally, high performance in automatic metrics does not
always guarantee high word coverage in the evaluated language, especially
for models trained mainly on English data.
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Model Name English Welsh Portuguese Arabic Hebrew Amharic Breton Russian
PT WebNLG en in Welsh 89.00% 1.62% 5.15% 1.42% 1.65% 2.06%
PT WebNLG en + 150 in Welsh 81.64% 10.20% 2.07% 1.01% 2.02% 3.06%
PT WebNLG en + 999 in Welsh 78.74% 15.44% 3.06% 0.55% 2.21%
PT WebNLG en + 4500 in Welsh 75.00% 10.95% 3.48% 2.35% 3.22% 5.00%
PT WebNLG en ru in Welsh 78.29% 16.67% 1.49% 1.49% 1.49% 0.57%
PT WebNLG en ru + 150 in Welsh 73.06% 16.67% 1.30% 1.30% 1.30% 5.56% 0.81%
PT WebNLG en ru + 999 in Welsh 78.91% 15.44% 1.37% 1.37% 2.21% 0.7%
PT WebNLG en ru + 4500 in Welsh 71.22% 21.00% 1.23% 1.23% 0.1% 5.00% 0.22%
PT Augm WebNLG in Welsh 71.23% 21.05% 1.23% 1.23% 5.26%
PT Augm WebNLG + 150 in Welsh 70.73% 26.32% 1.23% 1.22% 0.5%
PT Augm WebNLG + 999 in Welsh 71.02% 21.05% 1.23% 1.23% 0.21% 5.26%
PT Augm WebNLG + 4500 in Welsh 70.56% 26.32% 1.23% 1.23% 0.66%
Pure mT5 in Welsh 64.79% 31.58% 2.28% 1.35%

Table 8. Language Distribution by Model in Welsh

Model Name English Maltese Arabic Hebrew Amharic French Italian Breton Russian
PT WebNLG en in Maltese 90.27% 1.58% 1.44% 1.45% 5.26%
PT WebNLG en + 150 in Maltese 92.11% 5.05% 0.81% 2.03%
PT WebNLG en + 999 in Maltese 85.00% 10.53% 1.53% 1.53% 1.41%
PT WebNLG en + 4500 in Maltese 62.68% 25.00% 1.68% 1.68% 1.68% 5.00% 5.00%
PT WebNLG en ru in Maltese 70.16% 27.78% 0.80% 0.81% 0.45%
PT WebNLG en ru + 150 in Maltese 69.12% 27.78% 1.20% 1.20% 0.15% 0.55%
PT WebNLG en ru + 999 in Maltese 74.57% 22.22% 1.30% 1.30% 1.21%
PT WebNLG en ru + 4500 in Maltese 69.43% 22.27% 1.20% 1.23% 5.00% 0.87%
PT Augm WebNLG in Maltese 57.74% 38.89% 1.02% 1.02% 1.33%
PT Augm WebNLG + 150 in Maltese 65.49% 31.58% 1.14% 1.14% 0.65%
PT Augm WebNLG + 999 in Maltese 65.81% 31.58% 1.14% 1.14% 0.33%
PT Augm WebNLG + 4500 in Maltese 65.08% 31.58% 1.14% 1.14% 0.34%
Pure mT5 in Maltese 63.13% 31.58% 1.05% 1.05% 1.05% 2.14%

Table 9. Language Distribution by Model in Maltese

Model Name English Portuguese Arabic Hebrew French Breton Russian
PT WebNLG en in Breton 94.74% 1.75% 1.06% 2.45%
PT WebNLG en ru in Breton 84.89% 3.33% 0.90% 10.53% 0.35%
PT Augm WebNLG in Breton 50.87% 0.88% 0.88% 5.26% 42.11%
Pure mT5 in Breton 55.98% 1.92% 5.26% 36.84%

Table 10. Language Distribution by Model in Breton
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Model Name English Irish Arabic Hebrew Amharic French Italian Breton Russian
PT WebNLG en in Irish 94.21% 1.96% 1.32% 2.51%
PT WebNLG en + 150 in Irish 79.16% 16.67% 2.23% 0.11% 2.23%
PT WebNLG en + 999 in Irish 76.57% 22.22% 1.53% 1.53% 1.21%
PT WebNLG en + 4500 in Irish 71.86% 14.95% 0.73% 1.23% 1.23% 5.00% 5.00%
PT WebNLG en ru in Irish 77.23% 22.22% 1.30% 1.30% 1.30% 0.55%
PT WebNLG en ru + 150 in Irish 77.00% 22.22% 1.39% 1.39% 0.45% 0.33%
PT WebNLG en ru + 999 in Irish 76.1% 22.22% 1.39% 1.39% 0.05% 0.42%
PT WebNLG en ru + 4500 in Irish 75.37% 16.00% 1.33% 1.33% 4.00% 0.63%
PT Augm WebNLG in Irish 65.66% 33.33% 1.11% 1.11% 1.11%
PT Augm WebNLG + 150 in Irish 77.02% 22.22% 1.30% 1.30% 0.76%
PT Augm WebNLG + 999 in Irish 72.07% 27.78% 1.20% 1.20% 0.15%
PT Augm WebNLG + 4500 in Irish 76.87% 22.22% 1.30% 1.30% 0.91%
Pure mT5 in Irish 71.17% 27.78% 1.20% 1.20% 1.05%

Table 11. Language Distribution by Model in Irish

4.3 Text generation observations

In this section, we present some examples that we found interesting
when manually inspecting the generated text and deemed as noteworthy
examples for the scope of this research. In the first observation, we present
the triples, lexicalization, and model generation for that specific triple in
Breton in figure 18. The PT WebNLG en model cannot generate text in
other languages, leading to code-switching and mostly generating in English.

In the PT WebNLG en+4500, we observe in figure 15 that the model
generates in a mixture of English, Italian, Maltese, and French, with hints of
Arabic and Hebrew.

In figure 16, we can see a generation example with Maltese. The model
performs similarly in terms of confusion, but we also noticed it hallucinates
with certain facts, such as ”a footballer f ’pres Cullin”.

In the generation process, we identified that the model makes certain
typos, such as Antonis SamarAS, when the correct ones would be Antonis
Samaras and Konstantinos Mitsiotakidis when the correct version is Kon-
stantinos Mitsotakis. This synthetic dataset contains the information cor-
rectly. Looking at generations across the models, they accidentally generate
Arabic, English, Hebrew, and Amharic, which can be attributed to the pre-
training for models with less finetuning examples and data like PT WebNLG en
and PT WebNLG en ru, and to the finetuning regimen for models with
more finetuning data and diverse examples such as PT Augm WebNLG and
Pure mT5. More examples of generation can be found in the appendix(see
section F)
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Figure 15. Example generating in Irish. Triple lexicalization refers to the reference text
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Figure 16. Example generating in Maltese. Triple lexicalization refers to the reference
text
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Figure 17. Example of generating in Breton with the old decoding strategy. Triple lexi-
calization refers to the reference text
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Figure 18. Example of generating in Breton with the new decoding strategy. Triple
lexicalization refers to the reference text

4.4 Comparison with other WebNLG 2023 models

As seen in the following tables, our best-performing model, Pure mT5,
highlighted in grey, was compared against other competing models in the
WebNLG 2023 competition. The comparisons focus on BLEU, chrF++, and
TER metrics for Maltese and additional BERT-based metrics for the other
languages. Despite our model’s significant improvements over the baseline,
as discussed in section 4.1, it still performs less than models that underwent
extensive training in the WebNLG target languages. This performance gap
can be attributed to our model operating in a zero-shot setting, lacking
targeted finetuning in the specific languages the evaluation requires. Our
model’s tendency to generate text in English, even when instructed otherwise,
further impacted its performance.
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Models BLEU chrF++ TER (↓)
DCU-NLG-PBN 21.27 0.52 0.65
IREL 16.49 0.47 0.7
CUNI-Wue 14.02 0.45 0.78
Amazon+Zero 15.60 0.42 0.67
Pure mT5 8.68 0.29 0.91

Table 12. Evaluation Metrics for Maltese Generation

Models BLEU chrF++ TER (↓) BERT P BERT R BERT F1
Amazon+Zero 9.92 0.33 0.76 0.77 0.73 0.75
CUNI-Wue 10.09 0.33 0.8 0.76 0.73 0.74
Pure mT5 6.16 0.28 0.91 0.77 0.72 0.74

Table 13. Evaluation Metrics for Breton Generation

Models BLEU chrF++ TER (↓) BERT P BERT R BERT F1
DCU-NLG-PBN 25.11 0.55 0.64 0.83 0.83 0.83
IREL 20.97 0.49 0.67 0.82 0.8 0.81
CUNI-Wue 17.00 0.45 0.79 0.79 0.78 0.79
Amazon+Zero 10.7 0.36 0.77 0.78 0.75 0.76
Pure mT5 7.75 0.29 0.94 0.76 0.7 0.73

Table 14. Evaluation Metrics for Welsh Generation
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Models BLEU chrF++ TER (↓) BERT P BERT R BERT F1
DCU-NLG-PBN 20.4 0.51 0.69 0.81 0.8 0.81
DCU/TCD-FORGe 16.66 0.44 0.75 0.79 0.76 0.77
IREL 15.66 0.44 0.73 0.8 0.77 0.78
CUNI-Wue 15.87 0.43 0.78 0.78 0.77 0.77
Amazon+Zero 11.63 0.36 0.74 0.78 0.74 0.76
Pure mT5 6.52 0.27 0.92 0.74 0.67 0.71

Table 15. Evaluation Metrics for Irish Generation

Our best-performing model Pure mT5, despite being a small variant
and evaluated in a zero-shot setting, demonstrates its potential by achieving
the same score with the Amazon+Zero model on BERT P score, the same
BERT F1 with the CUNI Wue model in Breton. For Irish and Welsh, we
also observe that the Pure mT5, even though it performs worse in BertScore,
the performance is in close range to the other models. Lastly, for Maltese,
the performance of our model is dramatically worse. The results indicate
that with more extensive training and finetuning in the target languages,
the model’s performance could significantly improve, potentially closing the
gap with the leading models in the WebNLG 2023 competition. Moreover,
training a larger variant of the mT5 could have significant improvements,
but we were limited by hardware capacity. The comparisons highlight areas
for future work, which we will discuss in more detail in section 6.

5 Conclusion & Discussion

This paper discusses an experimental approach for improving data-to-
text generation for under-resourced languages under zero-shot and non-zero-
shot using the WebNLG benchmark dataset (28). Our experiments were
designed to measure the impact of pre-training and finetuning choices in ad-
dressing the challenges of generating coherent text in languages with limited
resources.

We utilized two primary datasets: the WebNLG corpus and the OPUS-
100 dataset. The WebNLG corpus contains structured data in RDF triples
paired with textual descriptions in multiple languages, making it ideal for
training models on data-to-text tasks. The OPUS-100 is a parallel corpus
encompassing 100 languages, providing a richer multilingual training regimen
crucial for enriching the models’ knowledge of the under-resourced languages.
The selection of languages focused on the same family as those represented
in the WebNLG challenge, without including the target languages to enable
generation in a zero-shot setting.

66



Data preprocessing was a critical step in the experimental setup for
both datasets. For the OPUS-100, this involved cleaning the dataset remov-
ing low-quality translations and duplicated text to ensure better quality and
consistency. In some instances, language pair reversal was also required, as
we aimed to enrich the decoder of our model responsible for text generation.
The WebNLG dataset also transformed, including handling the structured
nature of the triples to ensure data uniformity and consistency, reshuffling
to prevent the model from relying on the order of the triples and convert-
ing camelCase to multi-word expressions with average spacing to align the
data more closely with natural language. Distinct delimiters such as (<S>,
<O>, and <P>) are used to separate subjects, objects, and predicates to
improve the model’s task comprehension. Finally, RDF triples were serialized
by concatenating the subject, predicate, and object into a single string.

The core model used for the experiment was a pre-trained state-of-
the-art transformer-based model with an encoder and decoder architecture,
namely mT5. We tested various training regimens for mT5 using different
datasets and finetuning approaches to evaluate their impact on text genera-
tion accuracy.

For our experimental setup, we tested many different training regi-
mens for mT5. The models were trained with the OPUS-100 dataset in
all experiments except the last experiment. Initially, we finetuned the pre-
trained model using only the English WebNLG dataset (PT WebNLG en).
Then, we trained the model in Russian, which resulted in catastrophic for-
getting (115). For this reason, we mixed the Russian and English WebNLG
datasets and finetuned from the beginning the mT5 (PT WebNLG en ru).
Next, we augmented the lexicalizations of the WebNLG dataset to create
a WebNLG dataset based on the filtered OPUS-100 languages and German
(PT Augm WebNLG). To further research the impact of the finetuning, we
performed a second stage finetuning process on the aforementioned models
using augmented data from the WebNLG dataset. The models were tested
with different samples to explore how the metric evolution of the models
enhanced the ability to perform zero-shot text generation. Lastly, based on
the best-performing model, we finetuned an mT5 model with the best set-
tings from the beginning without pre-training it with the OPUS-100 dataset
(Pure mT5). This step was done to evaluate the impact of the pre-training.

Our results highlighted that for Breton, the PT Augm WebNLGmodel
achieved the highest BLEU and TER scores, indicating superior text gen-
eration accuracy and fewer required edits, while the Pure mT5 model had
the highest chrF++ score. Both models, however, performed poorly on the
PARENT metric, reflecting less accuracy in generating contextually appro-
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priate text from structured data. For Maltese, the Pure mT5 model ex-
celled with the highest BLEU and ROUGE scores, showcasing its effective-
ness in generating accurate and fluent text. Across all languages, models
incorporating mixed-language finetuning and data augmentation, such as
the PT WebNLG en ru variants, demonstrated improvement in METEOR
scores. The results suggest that while finetuning with diverse datasets en-
hances certain metrics, challenges remain in achieving high contextual accu-
racy and coherence in underrepresented languages.

Additionally, with manual analysis and text generation examples, in
sections 4.2 and 4.3, we showed that all models suffered code-switching but
data augmentation improved performance in the automatic metrics. This
happens partly because of mT5 under zero-shot generation (89) and because
we believe the model did not learn to follow the prompts provided during
the finetuning. Generally, the model finetuned in many languages did not
learn as much as we would expect to generate text in unseen languages. This
is because the model might have learned language invariant representations
that do not assist it during the generation process (116). Next, we will
answer the research questions we introduced at the beginning of this paper
and provide a comprehensive answer on a factual basis.

• Main research question:

Q1: How can language families affect the NLG process?

• Following subquestions:

SQ1: Is further pre-training necessary, or does it have diminishing re-
turns?

SQ2: How does finetuning with noisy data impact the performance of
mT5 in the text generation tasks?

SQ3: How does our solution compare to other participating WebNLG
models?

We will first focus on answering the subquestions to answer our main
research question. For the SQ1, we realized that after extensive experi-
ments with many different scenarios and using the same model, we conclude
that language families are not so beneficial in pre-trained models like the
mT5, while always considering a good finetuning regimen as discussed in
section 4. For example, the best-performing models followed the same fine-
tuning regimen. However, one was pre-trained using the OPUS-100, and
the other was not. If we exclude the models trained in the WebNLG tar-
get languages, we have the Pure mT5 came on top in Maltese, Breton. The
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PT Augm WebNLG came first in Welsh, and together with Pure mT5, they
came first for the Irish generation. However, we consider the Pure mT5 su-
perior because OPUS-100 contained Irish. With a few words, for an LLM like
mT5, the further pre-training seemed to hurt performance and added no real
benefit. We believe a pre-trained instruction-tuned model like T5 (50) would
have seen higher gains from the pre-training. The reason is that it is not a
multilingual model pre-trained on a massive multilingual mC4 corpus (89) so
it would only learn the relevant languages, but it is also instruction tuned,
meaning the model can be navigated to perform a task better than mT5 in
zero-shot setting.

For SQ2, we focus on finetuning with a noisy data regimen. We observe
that the PT WebNLG en with the simplest finetuning strategy achieved the
poorest results because it did not learn to generate in the target language
under zero-shot even though it was trained with the high-quality data pro-
vided by WebNLG (28). On the other hand, the PT Augm WebNLG and
Pure mT5, which were finetuned with augmented noisy data, saw signifi-
cantly better performance in zero-shot generation. The models that did not
perform zero-shot generation and were trained with the augmented data for
Irish, Breton, and Maltese still experienced good performance compared to
PT WebNLG en. Overall, in our experiments, we conclude that the noisy
data assisted the model to perform generally better.

For SQ3, our model performed worst in section 4.4 in the WebNLG 2023
challenge. Last but not least, we conclude for our main research question
that in our use case where we used the smallest variant of the LLM model
mT5, which is not finetuned on any downstream task, language families when
finetuning may have played an important role in the zero-shot setting for the
text overlapping metrics but of course there was the limitation of instruction
following that limited our model to understand the task at hand. We believe
that data augmentation with the language of families helped to direct the
model in generating better text in unseen tasks, but of course, there would
have been greater improvements with a bigger model and dataset as well as
an instruction-tuned model.

6 Future work

Even though in this project there is an attempt for human evaluation
by presenting some text generation observations in section 4.3 and perform-
ing qualitative analysis in section 4.2, the results of incorporating human
evaluation for the final project assessment is something that would benefit
this paper. For example, a metric like the BLEU is widely adopted and
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easy to use for diagnostic evaluations. However, it is essential to acknowl-
edge the limitations highlighted by recent structured reviews, such as the
work by Reiter (117), which shows that BLEU is primarily effective for MT
system-level evaluations and less so for NLG or text-level assessments. For
this reason, it’s really important to include human assessments to ensure a
more comprehensive evaluation of our system’s performance.

Unlike automated metrics, human evaluation offers an understanding
of context, coherence, fluency, and error identification, which are crucial for
evaluating natural language generation (NLG) systems. The planned human
evaluation will use the quality criteria established in the WebNLG challenge,
specifically focusing on fluency, absence of omissions, absence of additions,
and unnecessary repetition, with a scoring system from 1 to 5. Unlike human
evaluation performed by a group of native speakers, the qualitative analysis
done in this paper was based on one person using ready-made solutions to
analyze the text and then reading the files for inconsistencies, which is not
ideal.

Another important area of improvement is to train more variants of the
mT5 model and incorporate more extensive finetuning in target languages
and families of languages. The limitations due to hardware capacity suggest
that more powerful hardware could significantly improve model performance,
potentially bridging the gap with leading models in the WebNLG 2023 com-
petition. Also, by having more resources, we could transfer our parameter
settings to the largest variant of mT5 since they would potentially fit the
data better and perform better at zero-shot generation.

Moreover, in this project, we created an augmented version of the
OPUS-100 dataset by balancing the data of undersampled languages in the
distribution by increasing the dataset size 3-fold. In the future, it would be in-
teresting to experiment with this dataset for pre-training and observe its im-
pact. Although the current experiments show diminishing returns in certain
cases from additional pre-training, it is essential to investigate the optimal
balance and methods for incorporating new data. This could involve devel-
oping more sophisticated data preprocessing techniques and experimenting
with different model configurations to maximize the added data’s benefits.

Lastly, we may also explore different finetuning techniques like in-
struction tuning. Instruction tuning involves the finetuning datasets of (IN-
STRUCTION, OUTPUT) pairs (66). It can enhance the model’s capability
to follow complex instructions and generate more accurate outputs. This
finetuning approach could be ideal even in our current scenario since we are
convinced that, plenty of times, the model could not follow its instructions
to generate in zero-shot. We consider this to be one of the most serious lim-
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itations of our model when generating under a zero-shot setting. Instruction
tuning is often overlooked and not mentioned as a general issue by the other
competing models in the WebNLG challenge (28; 118).
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A OPUS-100 supported pair languages

- af-en: Afrikaans to English
- am-en: Amharic to English
- an-en: Aragonese to English
- ar-en: Arabic to English
- as-en: Assamese to English
- az-en: Azerbaijani to English
- be-en: Belarusian to English
- bg-en: Bulgarian to English
- bn-en: Bengali to English
- br-en: Breton to English
- bs-en: Bosnian to English
- ca-en: Catalan to English
- cs-en: Czech to English
- cy-en: Welsh to English
- da-en: Danish to English
- de-en: German to English
- dz-en: Dzongkha to English
- el-en: Greek to English
- en-eo: English to Esperanto
- en-es: English to Spanish
- en-et: English to Estonian
- en-eu: English to Basque
- en-fa: English to Persian
- en-fi: English to Finnish
- en-fr: English to French
- en-fy: English to Western Frisian
- en-ga: English to Irish
- en-gd: English to Scottish Gaelic
- en-gl: English to Galician
- en-gu: English to Gujarati
- en-ha: English to Hausa
- en-he: English to Hebrew
- en-hi: English to Hindi
- en-hr: English to Croatian
- en-hu: English to Hungarian
- en-hy: English to Armenian
- en-id: English to Indonesian
- en-ig: English to Igbo
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- en-is: English to Icelandic
- en-it: English to Italian
- en-ja: English to Japanese
- en-ka: English to Georgian
- en-kk: English to Kazakh
- en-km: English to Khmer
- en-ko: English to Korean
- en-kn: English to Kannada
- en-ku: English to Kurdish
- en-ky: English to Kyrgyz
- en-li: English to Limburgish
- en-lt: English to Lithuanian
- en-lv: English to Latvian
- en-mg: English to Malagasy
- en-mk: English to Macedonian
- en-ml: English to Malayalam
- en-mn: English to Mongolian
- en-mr: English to Marathi
- en-ms: English to Malay
- en-mt: English to Maltese
- en-my: English to Burmese
- en-nb: English to Norwegian Bokmål
- en-ne: English to Nepali
- en-nl: English to Dutch
- en-nn: English to Norwegian Nynorsk
- en-no: English to Norwegian
- en-oc: English to Occitan
- en-or: English to Odia
- en-pa: English to Punjabi
- en-pl: English to Polish
- en-ps: English to Pashto
- en-pt: English to Portuguese
- en-ro: English to Romanian
- en-ru: English to Russian
- en-rw: English to Kinyarwanda
- en-se: English to Northern Sami
- en-sh: English to Serbo-Croatian
- en-si: English to Sinhala
- en-sk: English to Slovak
- en-sl: English to Slovenian
- en-sq: English to Albanian
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- en-sr: English to Serbian
- en-sv: English to Swedish
- en-ta: English to Tamil
- en-te: English to Telugu
- en-tg: English to Tajik
- en-th: English to Thai
- en-tk: English to Turkmen
- en-tr: English to Turkish
- en-tt: English to Tatar
- en-ug: English to Uyghur
- en-uk: English to Ukrainian
- en-ur: English to Urdu
- en-uz: English to Uzbek
- en-vi: English to Vietnamese
- en-wa: English to Walloon
- en-xh: English to Xhosa
- en-yi: English to Yiddish
- en-yo: English to Yoruba
- en-zh: English to Chinese
- en-zu: English to Zulu
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B mT5 pre-trained languages

mT5 is pre-trained on the mC4 corpus, covering 101 languages:
Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Be-
larusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chi-
nese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Fil-
ipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian
Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic,
Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer,
Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish,
Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mon-
golian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Ro-
manian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala,
Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish,
Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese,
Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu.
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C mBART pre-trained languages

mBART is pre-trained on the CC25 checkpoint and monolingual data from
XLMR dataset. Supported languages are:
Arabic (ar AR), Czech (cs CZ), German (de DE), English (en XX), Span-
ish (es XX), Estonian (et EE), Finnish (fi FI), French (fr XX), Gujarati
(gu IN), Hindi (hi IN), Italian (it IT), Japanese (ja XX), Kazakh (kk KZ),
Korean (ko KR), Lithuanian (lt LT), Latvian (lv LV), Burmese (my MM),
Nepali (ne NP), Dutch (nl XX), Romanian (ro RO), Russian (ru RU), Sin-
hala (si LK), Turkish (tr TR), Vietnamese (vi VN), Chinese (zh CN), Afrikaans
(af ZA), Azerbaijani (az AZ), Bengali (bn IN), Persian (fa IR), Hebrew (he IL),
Croatian (hr HR), Indonesian (id ID), Georgian (ka GE), Khmer (km KH),
Macedonian (mk MK), Malayalam (ml IN), Mongolian (mn MN), Marathi
(mr IN), Polish (pl PL), Pashto (ps AF), Portuguese (pt XX), Swedish (sv SE),
Swahili (sw KE), Tamil (ta IN), Telugu (te IN), Thai (th TH), Tagalog (tl XX),
Ukrainian (uk UA), Urdu (ur PK), Xhosa (xh ZA), Galician (gl ES), Slovene
(sl SI)

D Learning curves and tables

Lang Pair / Metric BLEU ROUGE METEOR TER(↓) chrF++ BERT F1 BERT P BERT R
en-am 0.65 0.01 0.08 93.66 8.31 0.90 0.91 0.88
en-ar 5.52 0.03 0.17 87.95 21.67 0.77 0.79 0.75
en-fr 6.32 0.35 0.29 84.01 22.59 0.75 0.78 0.73
en-ga 3.66 0.40 0.29 85.22 21.27 0.77 0.81 0.74
en-gd 4.33 0.24 0.17 86.92 19.58 0.73 0.74 0.72
en-it 10.90 0.39 0.35 80.21 28.71 0.78 0.79 0.76
en-he 18.35 0.01 0.39 73.84 35.29 0.82 0.83 0.81

Table 16. Detailed Evaluation Metrics for Test Data Across Language Pairs when pre-
training
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Figure 19. Training/validation loss when pre-training on the filtered OPUS-100 dataset

Figure 20. Training/validation loss when finetuning on English for 100 epochs for the
first experiment
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Figure 21. Training/validation loss when finetuning on English for 200 epochs for the
second experiment
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Figure 22. Training/validation loss when finetuning on OPUS-100+german for 100
epochs for the third experiment

E Metric evolution of the second stage fine-

tuning
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(a) PT WebNLG en model (b) PT WebNLG en ru model

(c) PT Augm WebNLG model

Figure 23. BLEU Experiments for Welsh

(a) PT WebNLG en model (b) PT WebNLG en ru model

(c) PT Augm WebNLG model

Figure 24. chrF++ Experiments for Welsh
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(a) PT WebNLG en model (b) PT WebNLG en ru model

(c) PT Augm WebNLG model

Figure 25. METEOR Experiments for Welsh
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(a) PT WebNLG en model (b) PT WebNLG en ru model

(c) PT Augm WebNLG model

Figure 26. BERT F1 Experiments for Irish

(a) PT WebNLG en model (b) PT WebNLG en ru model

(c) PT Augm WebNLG model

Figure 27. BLEU Experiments for Irish
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(a) PT WebNLG en model (b) PT WebNLG en ru model

(c) PT Augm WebNLG model

Figure 28. chrF++ Experiments for Irish
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(a) PT WebNLG en model (b) PT WebNLG en ru model

(c) PT WebNLG en ru model

Figure 29. METEOR Experiments for Irish

(a) PT WebNLG en model (b) PT WebNLG en ru model

(c) PT Augm WebNLG model

Figure 30. BLEU Experiments for Maltese
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(a) PT WebNLG en model (b) PT WebNLG en ru model

(c) PT Augm WebNLG model

Figure 31. chrF++ Experiments for Maltese
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(a) PT WebNLG en model (b) PT WebNLG en ru model

(c) PT Augm WebNLG model

Figure 32. METEOR Experiments for Maltese

F Text generation observation figures
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Figure 33. Example generating in Irish. Triple lexicalization refers to the reference text
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Figure 34. Example generating in Irish. Triple lexicalization refers to the reference text
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