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Abstract

The contents of this thesis focus on the development and evaluation of an interpretable
multimodal model for emotion recognition in collaboration with the Dutch Institute of
Sound & Vision. The state-of-the-art multimodal model Self Supervised Embedding
Feature Transformer (SSE-FT) was finetuned and assessed on the Multimodal Emotion-
Lines Dataset (MELD), revealing performance issues. The interpretability framework
MM-SHAP was modified for emotion recognition and extended to include the text,
audio, and video modalities. The proposed interpretability framework and ablation
studies showed the SSE-FT predominately relied on the textual modality, leading to
uni-modal collapse. The Dutch language model RobBERT was integrated into SSE-FT
to increase performance, yet training RobBERT independently showed its limitations
in capturing nuanced emotional cues from the MELD dataset. This thesis introduces
visualization techniques specifically developed to focus on increasing interpretability
within individual modalities, and to assist comparative analysis between the audio and
text modality. The proposed interpretability method and visualization technique for
text is applied to analyze the textual modality and show valuable insights into the
model’s learned emotional cues for the textual modality. The results show that SSE-
FT trained on MELD relies heavily on paralinguistic cues in text and is not able to
capture the more nuanced emotional cues in the video and audio modality. The find-
ings of this thesis call attention to the need for a balanced, high-quality Dutch dataset
for emotion recognition as well as the importance of general dataset quality for ad-
vancing in the field. The proposed interpretability method is found to be effective for
creating interpretability in multimodal models for emotion recognition. Keywords:
Multimodal, Emotion Recognition, Interpretability, SSE-FT, MM-SHAP, Uni-modal
Collapse, Visualization



Contents

List of Figures 5

List of Tables 7

List of Abbreviations 8

1 Introduction 9
1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Related work 15
2.1 Natural language processing . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Multimodal models . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Emotion recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Feature extraction for emotion recognition . . . . . . . . . . . . 17
2.2.1.1 Textual features . . . . . . . . . . . . . . . . . . . . . 17
2.2.1.2 Audio features . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1.3 Visual features . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Models for emotion recognition . . . . . . . . . . . . . . . . . . 19
2.2.2.1 Textual models . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2.2 Speech models . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2.3 Visual models . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Multimodal emotion recognition . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Fusion methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3.1 Early Fusion . . . . . . . . . . . . . . . . . . . . . . . 23

1



CONTENTS

2.3.3.2 Late Fusion . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3.3 Fusion with neural networks . . . . . . . . . . . . . . . 24

2.3.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4.1 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4.2 Visual transformers . . . . . . . . . . . . . . . . . . . . 26

2.3.5 Multimodal transformers . . . . . . . . . . . . . . . . . . . . . . 26
2.3.5.1 MulT . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.5.2 VATT . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.5.3 SSE-FT . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Datasets for multimodal emotion recognition . . . . . . . . . . . . . . . 31
2.4.1 Annotating emotions . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1.1 Categories of emotion . . . . . . . . . . . . . . . . . . 32
2.4.2 CMU-MOSEI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.3 IEMOCAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.4 MELD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.5 MEmoR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.6 OMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.7 SEMAINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Interpretability in multi-modal models . . . . . . . . . . . . . . . . . . 36
2.5.1 Interpretability methods . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1.1 SHAP . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.1.2 LIME . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.1.3 The Attention Mechanism . . . . . . . . . . . . . . . . 43
2.5.1.4 Prototype-based interpretability methods . . . . . . . 45

3 Methodology 47
3.1 Research overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 The MELD dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Implementing SSE-FT . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Metrics for evaluating the performance of SSE-FT . . . . . . . . 49
3.3.2 The finetuning procedure for SSE-FT . . . . . . . . . . . . . . . 49

3.3.2.1 Ablation study . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Modifying the multimodal interpretability method MM-SHAP . . . . . 51

3.4.0.1 Calculating Shapley values and the multimodal degree 51
3.4.1 Experiments with the modified MM-SHAP . . . . . . . . . . . . 52

3.4.1.1 MM-SHAP with SSE-FT . . . . . . . . . . . . . . . . 53
3.5 Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Visualizing Shapley values for text . . . . . . . . . . . . . . . . 58
3.5.2 Visualizing Shapley values for audio . . . . . . . . . . . . . . . . 59
3.5.3 Visualizing Shapley values for video . . . . . . . . . . . . . . . . 60

K.K. de Boer 2



CONTENTS

3.5.4 Visualizing the comparison between Shapley values for audio and
text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Implementation for the Institute of Sound & Vision . . . . . . . . . . . 62
3.6.1 The Dutch SSL model RobBERT . . . . . . . . . . . . . . . . . 63
3.6.2 Sound & Vision case study . . . . . . . . . . . . . . . . . . . . . 64
3.6.3 Case study evaluation . . . . . . . . . . . . . . . . . . . . . . . 65

4 Results 67
4.1 Finetuning SSE-FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Experiments with MM-SHAP . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Modality contribution . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.2 Analyzing the textual modality . . . . . . . . . . . . . . . . . . 70

4.2.2.1 Semantic influence . . . . . . . . . . . . . . . . . . . . 71
4.2.2.2 Contextual influence . . . . . . . . . . . . . . . . . . . 73

4.2.3 Evaluating SSE-FT on a selected corpus from the Sound & Vision
archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Discussion 75
5.1 The performance of SSE-FT on the MELD dataset . . . . . . . . . . . 76

5.1.1 Reported results in the original SSE-FT paper . . . . . . . . . . 76
5.1.2 Low performance and the causes for uni-modal collapse . . . . . 76
5.1.3 Emotion class confusion and the need for interpretability . . . . 78

5.2 Analyzing SSE-FT with the interpretability framework . . . . . . . . . 78
5.2.1 Token representation . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1.1 Text token representation . . . . . . . . . . . . . . . . 79
5.2.1.2 Video token representation . . . . . . . . . . . . . . . 79
5.2.1.3 Audio token representation . . . . . . . . . . . . . . . 80

5.2.2 The interpretability framework and uni-modal collapse . . . . . 80
5.2.3 Interpretability within the text modality . . . . . . . . . . . . . 81

5.3 The performance of SSE-FT on the Sound & Vision archive . . . . . . 82
5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Limitations of evaluating the interpretability framework . . . . . 83
5.4.2 Limitation within the interpretability framework . . . . . . . . . 83
5.4.3 Limitation in the resources of Sound & Vision . . . . . . . . . . 84
5.4.4 Limitations in the MELD dataset . . . . . . . . . . . . . . . . . 84

5.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.1 Increasing the performance of SSE-FT for the Sound & Vision

archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.5.2 Improving the interpretability framework . . . . . . . . . . . . . 86

K.K. de Boer 3



CONTENTS

5.5.3 Additional experiments with the interpretability framework . . . 87
5.5.4 Assessing the robustness of the interpretability framework . . . 88

6 Conclusion 89

Bibliography 91

A SHAP Visualization Plots 103

K.K. de Boer 4



List of Figures

2.1 A schematic overview the early fusion method (left) and the late fusion
method (right) for multimodal models. . . . . . . . . . . . . . . . . . . 24

2.2 The architecture of the ViT (left) and the architecture of the original
Transformer encoder (right), Figure from [35]. . . . . . . . . . . . . . . 26

2.3 The architecture of MulT for modalities (text (L), video (V), and au-
dio (A)), crossmodal transformers serve as the core components for the
multimodal fusion [104]. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 The architecture of VATT (left) and the self-supervised, multimodal
learning strategy (right), Figure from [1]. . . . . . . . . . . . . . . . . 29

2.5 The architecture of the Self Supervised Embedding Fusion Transformer
(SSE-FT) [58]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Evaluation results of the ablation studies performed by the authors of
SSEFT, Figure from [97]. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 The 2D valence-arousal model of emotion proposed by Russell, Figure
from [106]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 MELD: Emotion label distribution across train, test, and validation
datasplits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 MM-SHAP: This figure illustrates the ISA score for six different VL
models with their respective T-SHAP values, represented as percent-
ages. Blue tokens contribute positively to a high ISA, while red tokens
lower the ISA. Correct and incorrect alignments are marked, with cor-
rect alignments highlighting tokens contributing positively to aligning
the image and caption, and incorrect alignments indicating a negative
contribution [75] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.10 LIME: Explaining the predictions for the top 3 predicted classes (b, c
and d) for the original image in a for image classification [84] . . . . . 43

2.11 An example of a relevance map showing the focus of the model for VQA,
Figure from [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5



LIST OF FIGURES

2.12 An example of a Grad CAM heatmap showing the focus of the model on
the tabby-cat, Figure from [93]. . . . . . . . . . . . . . . . . . . . . . . 44

2.13 An example of the classification of a bird by ProtoPnet. The image
is divided into parts, which are each linked to learned prototype parts
belonging to a source image. The rightmost column shows the activation
maps, indicating the similarity to the prototype. Figure from [26]. . . . 46

3.1 An example of the process of masking tokens for the text modality. For
clarity, the full words are shown instead of the tokenenized sentence. . 54

3.2 Example of the process of masking tokens for the audio modality. . . . 56
3.3 Example of the process of masking tokens for the spatial dimension of

the video modality. Each video is divided into a 4 x 4 grid. For each
frame in the video, the patches at the same location get masked. . . . . 56

3.4 Example of the process of masking tokens for the temporal dimension of
the video modality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Visualization design for the mock Shapley values for the text ’I feel
happy’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Visualization design for the mock Shapley values for audio ’I feel happy’,
the top graph shows the audio waveform over time, while the bottom
graph shows the mock Shapley values repeated to match the total time
length of the audio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Visualization design for the mock Shapley values for the visual modality,
the left subgraph shows the original frame in black and white, while the
right subgraph presents the Shapley value overlay, in which the color
intensity represents the contribution to the emotion label. . . . . . . . 61

3.8 Visualization design for comparing the Shapley values of the audio and
text modality, the graph shows both text and audio Shapley values to-
gether, with text Shapley values represented as bars for each word and
audio Shapley values as lines over the corresponding segments of the text. 63

4.1 The confusion matrix illustrating the classification performance of SSE-
FT across all emotion labels. . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Visualization of the Shapley values for the utterance ’Yeah, there you go
!’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Visualization of the Shapley values for the utterance ’When I get up
there I’m going to kick some ass’. . . . . . . . . . . . . . . . . . . . . 73

4.4 Visualization of the Shapley values for the utterance ’I broke it.’. . . . 74

5.1 Examples of the eight RAVDESS emotions, Figure from [15] . . . . . . 78

K.K. de Boer 6



List of Tables

2.1 Overview of datasets for MMER including the video, audio, and text
modalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Original hyper-parameters for finetuning SSE-FT on the MELD dataset
[97]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Description of the annotated selected corpus from Ghiotto [43]. . . . . . 65

4.1 Performance metrics of SSE-FT. . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Ablation study results of SSE-FT (Test set) . . . . . . . . . . . . . . . 68
4.3 The distribution of predicted emotion classes with the percentage to the

total for each emotion class. . . . . . . . . . . . . . . . . . . . . . . . . 68

7



List of Abbreviations

AI Artificial Intelligence

ASR Automatic Speech Transcription

BERT Bidirectional Encoder Representations from Transformers

CNN Convolutional Neural Network

FER Facial Emotion Recognition

IAA Inter Annotator Agreement

LSTM Long Short-Term Memory

MELD Multimodal EmotionLines Datase

MFCC Mel-Frequency Cepstral Coefficients

MMER Multimodal Emotion Recognition

MM-SHAP Multimodal Shapley Additive Explanations

NLP Natural Language Processing

SER Speech Emotion Recognition

SSE-FT Self Supervised Embedding Feature Transformer

SVM Support Vector Machine

8



Chapter 1

Introduction

The introduction section provides the motivation, goals and scope for this research. To
begin, the background and context for the research are given in Section 1.1 and 1.2.
Following this, the main research question and subquestions are outlined in Section
1.3. Furthermore, the relevance of the current research within the field of Artificial
Intelligence (AI) is explained in Section 1.4. Lastly, the structure of the current thesis
is given in Section 1.5.

1.1 Preface

Large data collections are treasure chests for new research. However, the volume and
complexity of these datasets pose challenges for extracting useful information. The
Dutch Institute of Sound & Vision 1 is such a large data collection, as it manages
one of the world’s most extensive media archives, including radio shows, TV shows,
YouTube videos, written press, podcasts, and games.

Over decennia, the media in the archive has captured influences on Dutch culture
and our societal development. In recent years, the media landscape has changed vastly
with the explosion of social media, which now plays a serious role in our everyday lives
and in shaping our modern culture. ’Mass media’, or ”the communication (written,
broadcast, or spoken) that reaches a large audience”, influences how we think, behave,
and perceive others and the world around us [107]. As the world around us changes, it
is even more important to keep up to date with the influences of media on our society,
and develop the appropriate tools to be in charge of the transformation.

The aim of the Institute of Sound & Vision is to preserve the media in a sustainable
manner and explore the potential use of the archive. To achieve this, the institute
supports research on the archive and makes efforts to improve the archive’s accessibility.

1https://beeldengeluid.nl/
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CHAPTER 1. INTRODUCTION

To inspire researchers to study on the archive, they create building blocks that can be
used for research, such as segmentation, speaker diarization, and feature extraction
systems. To describe the process of research on the archive, data stories are created to
tell a story on a specific topic of interest based on analysis of data from the archive.

The initial collaboration for this thesis stems from the idea of applying machine
learning techniques to extract nuanced sentiment and/or emotions from media in the
Sound & Vision archive. Because the archive is inherently multimodal, including many
types of videos such as talk-shows, interviews, or documentaries, the idea came to go
beyond emotion recognition from text and exploit the visual and audio modality to
capture more nuances in emotions from the archive. Namely, performance on the task
of emotion recognition, is strengthened by including multiple modalities [17, 61, 86].

Hence, it was decided to explore the deployment of a multimodal model for emotion
recognition to be used as a building block for research on the archive. To verify the
reliability of this fairly complex multimodal model for emotion recognition, a layer of
interpretability is added to warrant the validity of the academic research for which this
system is used.

Moreover, the proposed interpretability approach provides insights into the emo-
tional cues used by the model in each modality. The outcomes of the current thesis
will contribute to the stimulation of journalistic and academic research and, thereby,
our understanding of Dutch cultural and societal phenomena hidden in the large media
archive of Sound & Vision. The interpretable multimodal emotion recognition system
is implemented in the pipeline used to work with data from the archive, called ’Dane’,
to ensure proper application functioning.

1.2 Background

Due to the fast technological advances in machine learning and the increase in com-
puting power, computers are nowadays able to perform well in human tasks, including
more intricate tasks such as emotion recognition. Emotion recognition systems are
widely used in applications such as mental health monitoring and customer satisfaction
[12, 7]. In such applications, it is beneficial for these computer systems to understand
emotional states to effectively reply to users’ needs. Moreover, in video streaming plat-
form interfaces, emotion recognition systems could be used to improve personalized
recommendations from the emotional content in a video[5].

It is hard to break down human emotions, but an automatic system can, for in-
stance, recognize them from our facial expressions, speech, and behavior. Recognizing
emotions, however, remains a challenging task for the following reasons: Emotions are
dependent on individual, cultural, and societal factors. The way emotions are expressed
and perceived can vary a lot between one individual and another. We all have different

K.K. de Boer 10
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body language, facial properties,and uses of voice and language. Moreover, emotions
can vary in different situational contexts. Small nuances can make the difference be-
tween a person using irony or being completely serious. Furthermore, difficulties in the
annotation process of emotions arise from these nuances and individual differences as
there is no clear set of rules on how to annotate emotions [43].

The features used in emotion recognition systems are tied to how humans express
emotions and extend across different information modes or modalities, such as text,
audio, or video. Multiple emotion recognition systems using information from only
one of those modalities have been proposed, demonstrating efficiency in specific con-
texts. These so-called ‘uni-modal emotion recognition systems’, traditionally select
handcrafted features such as selecting emotional words [50] and crafting acoustic fea-
tures [82]. Nowadays, more sophisticated approaches have been proposed using auto-
matic feature extraction methods and machine learning methods [46, 33, 76, 45].

Emotion recognition, although applicable within one modality, can benefit from
the integration of multiple modalities [17, 61, 86]. Some machine-learning tasks, such
as image captioning and visual question answering, rely on multiple input sources or
modalities. These tasks are inherently multimodal. The use of multiple modalities fits,
in general, within the current developments of creating more general and robust AI
and is possible due to the rapid advances in technologies that allow processing multiple
inputs in parallel. Numerous multimodal models for emotion recognition have been
introduced.

To handle the multimodal data, these models use different fusion strategies. In early
fusion, modalities are combined at the feature level before predictions are made. On
the contrary, late fusion approaches involve a separate process for each modality and
the fusing of their predictions, often using mechanisms such as voting [9]. Moreover,
diverse hybrid fusion methods, which combine both early and late strategies, have been
introduced in the literature [115, 80, 44, 1, 104]. Deep learning models are complex, and
they are often described as ’black boxes’ due to the challenge of understanding precisely
how they arrive at their predictions. The field of Explainable Artificial Intelligence
(XAI) aims to improve the interpretability of these models, making their predictions
more understandable and reliable [49].

The complexity of machine learning models increases when multiple data types are
added. As modalities have interactions and dependencies with each other, the model
must learn how different modalities influence and relate to one another. Multimodal
models trained on large datasets might lack a real understanding of the different modal-
ities, relying more on learned statistical patterns. Moreover, multimodal models might
reduce themselves to a uni-modal model, misusing biases in one modality or relying
on one modality only. These models are not able to use the information from the
other modalities, resulting in a so-called ’uni-modal collapse’ [68]. Hence, the need for
interpretable methods that assess the multimodality of these models and make their

K.K. de Boer 11
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decision-making process transparent, becomes apparent.
Multiple frameworks for adding interpretability have been proposed. SHAP and

LIME are model-agnostic methods, meaning that they can be applied to various models
without being dependent on the specifics of any particular model architecture [65,
84]. Moreover, within the transformer architecture, the attention mechanism can be
leveraged to improve interpretability [25].

These interpretability frameworks can be extended to involve more modalities, as
Parcalabescu et al. did through the introduction of MM-SHAP (Multi-Modal SHAP)
[75]. The authors introduce MM-SHAP as a modality contribution metric, focusing
on Image-text models while excluding the audio and video modalities. Evaluation is
limited to Visual Question Answering and Image-sentence alignment tasks. As the
number of multimodal models for emotion recognition grows, the need arises for an
interpretability method that is tailored for this task. Extending MM-SHAP to the audio
and video modalities would increase its use by assessing a larger range of multimodal
models. Moreover, extending the method to also be able to provide interpretability
within the modalities would provide a more detailed assessment of the robustness of a
multimodal model.

1.3 Research objectives

The aims of the current research are the following: In collaboration with the Dutch
Institute of Sound & Vision (S&V), the deployment of an interpretable multimodal
model is explored. The state-of-the-art multimodal model ’Self Supervised Embedding
Feature Transformer’ (SSE-FT) is implemented for the S&V pipeline to be used as a
building block for research on the archive.

To increase transparency and reliability in the implemented multimodal model, an
interpretability framework for emotion recognition is proposed and implemented for
SSE-FT. The MM-SHAP method for assessing multimodality is extended for video and
audio and modified to provide interpretability within these modalities. Visualizations
are created to manage a straightforward analysis of the results.

SSE-FT will be finetuned and evaluated on the ’Multimodal EmotionLines Dataset’
(MELD). MELD is a multi-party dataset for multimodal emotion recognition with clips
extracted from the TV-series ’Friends’ [81]. The proposed interpretability framework
can be used to further analyze the global performance and local predictions of SSE-FT
on the MELD dataset. Modality contributions of audio, video, and text on different
levels (sample, label, and dataset) can be investigated. Furthermore, the framework
can help spot the emotional cues used by the model within the modalities, which could
detect possible biases in the model.

Implementing SSE-FT with an interpretability framework on the S&V archive func-
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tions as a good use case for exploring interpretability in multimodal emotion recogni-
tion. This leads to the central research question of the current thesis: How can we
improve the interpretability of multimodal models for emotion recognition with the use
of MM-SHAP?

Sub-questions supporting this research question can be posed to guide the research:

1. How well does the multimodal transformer SSE-FT perform at emotion recognition
using the MELD dataset?

2. How well does SSE-FT perform at recognizing emotions from videos in the Sound
& Vision archive?

3. How can the MM-SHAP method be extended to incorporate the video and audio
modalities?

4. How can the MM-SHAP method be used for emotion recognition?

5. How can the MM-SHAP method be extended to provide interpretability within
modalities?

6. What is the modality contribution of SSE-FT at sample, emotion label, and dataset
level on the MELD dataset according to the interpretability framework?

7. How can the interpretability framework be used to discover emotional cues that
SSE-FT has learned from the data?

8. How can visualizations be created and used to increase interpretability within
modalities?

9. How can visualizations be created and used to analyze certain emotional properties
within modalities?

1.4 Contribution

The current research holds significant relevance in the field of AI, as the main goal
is to improve the interpretability of state-of-the-art multimodal transformer models
for emotion recognition. Most research on interpretability within multimodal models
focuses on two modalities, text and image. The model implemented in the current
research uses text, audio, and video, as these modalities provide important emotional
cues.

The current research investigates the finetuning process on the benchmark dataset
MELD and the decision-making process of SSE-FT on these samples. The MELD
dataset is the only multi-party dataset for emotion recognition, and performance on
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the dataset is in general quite low. The current research has detailed answers to the
behavior of SSE-FT on the MELD dataset.

The proposed methods provide exhaustive analysis and interpretability on SSE-FTs
decision making process, as both global and local interpretability is given. Designs
for visualizations are presented, visualizing how different parts of each input modality
influence the prediction of a sample. This contributes to the development of more
transparent and reliable AI systems.

Furthermore, by collaborating with the Institute of Sound & Vision, the results from
this research are directly evaluated on a real-world application. The implemented inter-
pretable emotion recognition system provides a reliable base for future research. The
current research offers grounded recommendations for future development, contributing
to research on extracting emotion from media archives. Moreover, the results from this
research will hopefully inspire the creation of a Dutch multimodal dataset for emotion
recognition.

1.5 Thesis structure

First, a review of the related work and topics related to the research of the current
thesis is given in Chapter 2. The concepts and related work regarding natural language
processing, emotion recognition, multimodal emotion recognition, datasets for multi-
modal emotion recognition, and interpretability methods are explained in Sections 2.1,
2.2, 2.3, 2.4, and 2.5.

In the methodology in Chapter 3, an overview of the research is given in Section 3.1,
the dataset used in the current research is described in Section 3.2, the implementation
details of SSE-FT are given in Section 3.3, the proposed interpretability framework
is described in Section 3.4, the visualization designs are presented in Section 3.5, and
details regarding the implementation for the Institute of Sound & Vision are given in
Section 3.6.

The results regarding the performance of SSE-FT on the MELD dataset (Section
4.1) and the interpretability framework (Section 4.2) will be presented in Chapter 4.

In Chapter 5, the performance of SSE-FT is analyzed in Section 5.3, the implemen-
tation and results from the interpretability framework are discussed in Section 5.2, the
performance of SSE-FT on the S&V archive is discussed in Section 5.3, limitations of
the current research are described in Section 5.4 and recommendations for future work
are given in Section 5.5.

In the conclusion in Chapter 6, a summary of the findings of this research is given.
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Chapter 2

Related work

This chapter starts with a review of the existing literature on interpretable multimodal
models for emotion recognition. First, the topics of natural language processing and
emotion recognition are explored in Section 2.1, and Section 2.2. Subsequently, multi-
modal emotion recognition (MMER) is addressed in Section 2.3 and datasets frequently
employed for this task in Section 2.4. The chapter concludes with Section 2.5, with an
emphasis on the significance of interpretability within multimodal models for emotion
recognition and an overview of available interpretability methods.

2.1 Natural language processing

Natural Language Processing (NLP) is the field of research that focuses on how comput-
ers can be used to understand and generate text or spoken language to perform tasks
[50, p.60]. Researchers in the field of NLP have the goal of gathering knowledge on
how humans understand and use language, intending to create methods to make com-
puter systems understand and manipulate natural languages to execute specific tasks
[29]. Within the domain of NLP, a great number of valuable tasks exist, including part
of speech tagging (PoS-tagging), information retrieval (IR), named entity recognition
(NER), language translation, text generation, question answering (QA), and sentiment
analysis (SA).

2.1.1 Multimodal models

Machine learning models specialize in processing a single type of input and generating
a corresponding type of output [50]. For example, models can be designed to perform
tasks such as translating one language to another or predicting new numerical values
from a series of other numerical values. Input sources of these models can consist of
various modalities such as text, audio, images, and videos.
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When combining modalities in a machine learning model, and creating a multimodal
model, these models can capture additional dependencies within the data, leading to
a better understanding of the information [9]. In addition to improving performance
and ensuring more robust predictions, multimodal models are capable of functioning
effectively even in scenarios where some modalities contain little to no information. In
such cases, another modality can compensate and contribute to the task performance
[9]. Furthermore, machine learning models will, when combining multiple modalities,
be closer to operating in a manner that closely resembles human cognitive processing.
Human decision-making often relies on multiple information sources as well.

Multimodal models have a wide application, such as but not limited to education
[8], autonomous vehicles research [117], and the healthcare sector [7]. In NLP, the
motivation for incorporating additional data input sources stems partly from the chal-
lenges posed by lexical ambiguity and encountering out-of-vocabulary words [40]. As a
solution for this problem, other modalities can provide more context or clues for dis-
ambiguation. For instance, consider the sentence ’He swung the bat’. The word ’bat’
can have two meanings: an animal or an object used in baseball. When the sentence is
accompanied by an image that shows a man swinging a baseball bat, the visual context
provided by the image clarifies that in this specific instance, ’bat’ refers to the object
used in baseball. Hence, the sentence is disambiguated.

Moreover, NLP tasks can benefit from the extra information gained by adding more
modalities. Such tasks include sentiment analysis and emotion recognition. Finally,
some NLP tasks inherently involve the integration of information from different modal-
ities, e.g., image captioning (IC), visual question answering (VQA), and speech-image-
text alignment (SITA). Even though in theory including multiple modalities has bene-
fits, it also presents a range of challenges, as described in Section 2.3.

2.2 Emotion recognition

Emotion recognition and sentiment analysis, two important branches of NLP, tradi-
tionally study the feelings and emotional nuances embedded in textual and spoken
language. Sentiment analysis focuses on the classification of a text into either a posi-
tive, negative, or neutral tone, often using sentiment scores to capture the full range of
emotional expression. Sentiment can be detected, for example, at the document level
or in a dialogue. Moreover, stance detection focuses on detecting sentiment directed
toward specific subjects or individuals [56].

Emotion recognition goes beyond this more simplistic classification, and aims to
understand a broader aspect of human emotions. In Section 2.4.1.1, emotions are cat-
egorized in a dimensional model, where emotion recognition incorporates both valence
and arousal. Valence is similar to sentiment as it indicates how positive or negative
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an emotion is. Another dimension, arousal, is added to capture the intensity of the
emotion [85].

Human emotions can be recognized from facial expressions, speech, and behavior.
Humans, however, can conceal their emotions from external observation. For this rea-
son, recent studies have been focusing on physiological signals such as recordings of
brain activity (EEG), since these signals provide a more genuine representation of a
person’s emotional state [98]. In the next sections, Section 2.2.1 discusses how emo-
tional features are extracted, and Section 2.2.2 provides information on different models
for emotion recognition.

2.2.1 Feature extraction for emotion recognition

To recognize emotions, it is first necessary to extract the emotional states from the data
by transforming the data into informative representations of the data. This process
is what is known as feature extraction [50]. In the next sections, feature extraction
techniques for text (Section 2.2.1.1), audio (Section 2.2.1.2), and visual (Section 2.2.1.3)
information sources will be explained.

2.2.1.1 Textual features

There are multiple feature extraction methods for text. A popular NLP technique is
’Bag-of-words’ (BoW), This technique represents a piece of text as a collection of in-
dividual words without keeping the order and structure of the words. It essentially
creates a ’bag’ of all the words in a document, together with their frequency of occur-
rence. Since certain words’ presence often indicates the emotional tone of a text, BoW
can be a helpful technique for emotion recognition [50].

The ’Term Frequency-Inverse Document Frequency’ (TF-IDF), takes into account
both the frequency of a word and the rarity of the word across documents. The method
indicates if a word is important within a specific document but not overly common in
the entire corpus [88]. TF-IDF is often used to find the words most important for a
certain task, such as emotion recognition. What words contribute most to the emotional
load of the text?

’Word embeddings’, project words into a dense vector space, where words with sim-
ilar meanings are positioned close to each other. This method captures semantic rela-
tionships between words. However, the meaning of a word can be context-dependent.
While static word embeddings such as GloVe [77] and Word2Vec [72] maintain a con-
sistent embedding for a word regardless of its context, contextual embeddings such
as BERT [34] and other attention-based methods change the words’ embedding based
on the surrounding context. These methods allow the same word to have different
embeddings based on how it is used in context.
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2.2.1.2 Audio features

For speech emotion recognition (SER), features such as pitch, intensity, and prosody
can be extracted. The pitch of a sound is the perceived fundamental frequency, which
corresponds to how high or low a person’s voice sounds. Intensity measures the ampli-
tude of an audio signal, which corresponds to the loudness of a sound. Prosody relates
to the rhythm, timing, and intonation of speech. Prosody includes multiple features
such as speech rate, the total length of a speech, pauses, and intonation patterns [82].
These features capture variations in speech patterns, which can indicate (changes in)
emotional states [86]. For example, a higher pitch might indicate the emotional state
of happiness, while a lower pitch might indicate anger. A rapid speech with frequent
pauses might indicate nervousness, while a steady and slower pace could suggest calm-
ness or sadness [82].

While prosodic features provide valuable insights into emotion recognition, they are
often insufficient when used alone in speaker-independent algorithms. To increase per-
formance, phonetic features like Mel-frequency cepstral coefficients (MFCC) are incor-
porated [91]. MFCC focuses on the smallest units of speech (phonemes), while prosodic
features consider larger speech segments. MFCC captures the spectral characteristics
of audio by representing the short-term power spectrum of a signal. MFCC is shown
to be an effective feature for speech emotion recognition [91].

Moreover, recent advancements in SER have introduced end-to-end approaches that
bypass the need for specific features like pitch, intensity, or MFCC’s. These approaches
directly encode the waveform data with neural networks such as Wav2Vec2. Researchers
have demonstrated the effectiveness of such end-to-end methods [46, 33, 76, 45]. Fur-
thermore, researchers have developed specialized toolboxes for audio feature extraction,
such as OpenSMILE [39] and COVAREP [30]. OpenSMILE includes features such as
those mentioned before and is made for real-time operations because it is simple and
fast. Nowadays, it is widely used in the field of SER. COVAREP is a specialized toolbox
that focuses mainly on the emotional aspects of speech, it extracts acoustic features
that are highly relevant to emotion analysis and SER as well.

2.2.1.3 Visual features

Visual features for emotion recognition focus on facial and bodily gestures. ’Facial
landmarks’, are points on the face, including the eyes, nose, and mouth, that give
away emotional cues. Tracking these landmarks can tell us about a person’s emotional
state [38]. Moreover, combinations of certain muscles in our face produce emotional
expressions. These specific facial muscles are defined by the Facial Action Coding
System (FACS) [38]. Different combinations of these muscles, known as ’AUs’, produce
various emotional expressions. For example, a combination of action units 6 (cheek
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raiser) and 12 (lip corner puller) signifies happiness. Automatic systems such as FACET
(Facial Action Coding System) and OpenFace [10] use features based on FACS, along
with techniques such as eye gaze tracking and microexpression analysis.

2.2.2 Models for emotion recognition

Models for emotion recognition have been developed across various data sources, e.g.,
text, audio, and images, and significant advancements have taken place. In the next
sections, textual (Section 2.2.2.1), audio (Section 2.2.2.2), and visual (Section 2.2.2.3)
models for emotion recognition are discussed.

2.2.2.1 Textual models

In the last decade, emotion recognition through text has witnessed a transformation.
Traditionally, text-based emotion recognition involved selecting emotional keywords,
incorporating BoW representations, and employing N-grams. However, these methods
often struggle with sentences where emotional keywords might not be explicitly present
as the data might be sparse [92].

Researchers have introduced more sophisticated approaches, focusing on textual fea-
tures and improving machine learning models. An approach by Alm et al. involves
supervised machine learning and achieves high accuracy with a broad range of textual
features [4]. Additionally, Liu et al. leverage a real-world knowledge base known as
Open Mind, which contains a repository of 400,000 pieces of knowledge [62]. Moreover,
BERT (Bidirectional Encoder Representations from Transformers) has emerged as a
highly effective tool [34]. In Section 2.3.4.1, there will be a breakdown of this model.

2.2.2.2 Speech models

Earlier, SER relied on acoustic features and machine learning algorithms. An approach
by Milton et al. combines MFCC features and feature engineering with a traditional
machine learning technique, Support Vector Machines (SVM), to categorize emotions
[73].

In more recent developments, a hybrid CNN-LSTM deep network has been specially
designed for audio emotion classification, including both speech and song descriptions.
The authors used MFCC for feature extraction and achieved 73.33% accuracy for emo-
tions extracted from audio songs and 53.32% accuracy for emotions extracted from
audio speech [6]. Another novel approach involves a deep graph method to address the
task of SER. The authors represent the speech data in the form of graphs and achieve
competing performance using fewer parameters than other SER models [96]. Further-
more, in a study by Gong et al., a transformer architecture was created for SER. It is
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common to add a self-attention layer to a CNN to improve focus on global dependen-
cies. However, the authors achieve great performance using self-attention without the
CNN architecture [45].

2.2.2.3 Visual models

As previously discussed in Section 2.2.1.3, visual models for emotion recognition often
use features based on facial attributes. In the domain of Facial Expression Recognition
(FER), two main approaches exist: frame-based FER and video-based FER. The first
approach, frame-based FER, uses static facial features from images or selected peak
expression frames from image series. The second approach, video-based FER, leverages
spatio-temporal features to capture the dynamic changes in facial expressions over time
[52]. In many video-based FER models, the system tracks the facial landmarks over
time, frame by frame. This tracking captures not only the spatial characteristics of
facial expressions but also introduces an additional dimension: time. For instance, one
approach by Ghimire et al. employs facial landmark displacement as a feature, extracted
with the AdaBoost algorithm, and applies an SVM for expression classification [42].
Approaches like these rely on handcrafted features for extraction, followed by a (pre-
trained) classifier, such as a ’Suport Vector Machine’ (SVM) or ’Random Forest’, for
the classification task. These classifiers are known for their time efficiency and low
computational resource requirements, which makes them good alternatives to deep
learning approaches.

In recent times, Convolutional Neural Networks (CNNs), a deep learning method,
have been effective in various visual machine-learning tasks, including FER. In this
deep learning approach, input images undergo convolution operations to create fea-
ture maps. These feature maps are then combined with fully connected networks to
classify the facial expression into emotional categories [3]. The usefulness of CNNs is
shown in a study in which a simple CNN was implemented for the experiments. The
authors visualize the features of the CNN to understand the feature maps that are
obtained by training [13]. They discover a correlation between the features generated
by the unsupervised learning process and Ekman’s AU’s. Nonetheless, CNN-based
methods, while effective for spatial features in individual frames, may not fully capture
the temporal variations in facial components. To address this limitation, a recent hy-
brid approach combines a CNN to extract spatial features from individual frames and
incorporates Long Short-Term Memory (LSTM) to capture temporal features across
sequential frames [52]. Although deep learning approaches achieve great performance
in FER, these models need a significant amount of training data and computational
resources (depending on the specific model).
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2.3 Multimodal emotion recognition

Emotions are complex, and understanding them thoroughly often requires more than
just a single source of information. Research findings show that emotion recognition
benefits significantly from the integration of speech, vision, and text information [17,
61, 86]. In the following sections, there will be an explanation of multimodal emotion
recognition. The following aspects will be discussed as they are relevant to multimodal
models: representation (Section 2.3.1), alignment (Section 2.3.2), and fusion methods
(Section 2.1).

2.3.1 Representation

One of the fundamental challenges in multimodal learning is effectively representing and
choosing features for data from multiple modalities. This is challenging because each
modality presents the data in a different form, ranging from textual representation
as BoW or word embeddings to images represented by pixel values or deep feature
representations, and audio represented as raw waveforms or MFCC’s.

Moreover, each modality conveys a different form of information [9]. The textual
modality gives semantic and symbolic information through language. The visual modal-
ity provides aspects like color, shapes, and spatial relationships. Audio information
includes sound frequencies and patterns. The way these modalities relate to emotions
is also different. Words and sentences can directly imply emotional states, while visual
and audio convey more indirect nonverbal cues such as facial gestures or the pitch of a
voice.

Furthermore, the dimensionality of the modalities can diverge. Text can be consid-
ered one-dimensional in terms of spatial information, as it lacks spatial variations. In
contrast, audio is inherently one-dimensional in a spatial sense, but it has an additional
dimension to represent temporal information, essentially making it two-dimensional to
account for time. The presence of a temporal dimension is inherent to the concept of a
video itself, whether the video is represented in a sequence of individual frames or as a
continuous stream of differences between sequential frames [9].

An alternative approach to representation involves using uni-modal features (features
including only a single modality), which can be crafted by hand or generated through
deep learning techniques as discussed in Section 2.2.1. Nowadays, the latter approach
is most commonly practiced. To use a neural network for data representation, the
network is first trained for a task, for example, recognizing words from speech. Deep
neural networks have multiple layers, and each successive layer represents the data more
abstractly. The last, or one of the late neural layers, is therefore often used to represent
the data[9].

Various other sophisticated techniques can be used for multimodal representation,
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including Probabilistic Graphical Models (PGM), sequential models such as Recurrent
Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks, and more
recently, transformers. PGMs use random latent variables to capture hidden patterns
in the data. These probabilistic models can describe how different modalities contribute
to the total likelihood of observed data. One particular approach involves constructing
’Multilayer Boltzmann Machines’ and shows that these systems can be used in well-
performing generative models [87]. Probabilistic graphical models handle incomplete
or missing data by making reliable estimates and can uncover patterns in unlabeled
data by using the underlying probability distributions[87]. One notable limitation is
the computational cost associated with training these models.

Furthermore, sequential models such as RNNs and LSTMs are widely used for mod-
eling sequences in multimodal data, demonstrating success in emotion recognition, and
achieving good performance compared to baseline methods [28]. Transformers, in con-
trast to RNNs and LSTMs, process data without relying on sequential processing and
have gained popularity for multimodal tasks due to their ability to capture dependencies
among elements in a sequence, regardless of their relative positions. The architecture
of transformers and their use in (interpretable) multimodal models is elaborated in
Section 2.3.4.

2.3.2 Alignment

Multimodal alignment can be defined as ”finding relationships and correspondences
between sub-components of instances from two or more modalities” [9]. For example,
the alignment process aims to find the exact correspondence between textual subtitles
and audio content. Alignment methods are mostly based on finding similarities between
segments from uni-modal data.

Early research focused on aligning multimodal sequences unsupervised, with methods
such as dynamic programming and generative graphical models. For instance, dynamic
time warping is used as an approach to assess the similarity between two sequences to
find their best alignment [55]. Similarly, graphical models are constructed in a study
by Yu et al. to align visual objects in images with spoken words [114].

These methods aim to establish correspondences between multimodal data without
the need for labeled annotations. However, with the growth of datasets with anno-
tated labeled instances, supervised alignment methods have gained popularity. These
approaches are often based on deep learning [69, 78]. The Automatic Speech Recogni-
tion (ASR) model ’Whisper’, for example, uses supervised learning to extract text from
speech [83]. Whisper provides timestamps that can, for instance, be used to align the
text with audio and video.

In the current thesis, a dataset with pre-aligned multimodal data is used, the dataset
includes timestamps in the audio and videos. Such datasets, in which alignments are
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explicitly annotated, are valuable for training and evaluating multimodal models. How-
ever, datasets with explicitly annotated alignments are sparse and often do not fit the
desirable aligned format. Such datasets have to be aligned manually or via one of the
automatic approaches mentioned in this section.

2.3.3 Fusion methods

Fusion methods are an important aspect of multimodal learning because they determine
how information from different modalities is combined for effective modeling. These
methods can be classified as early fusion and late fusion. Moreover, hybrid fusion
methods combine the strengths of both methods to increase performance. Often, early
and late techniques make use of neural networks discussed in Section 2.1.

More recent fusion methods are designed to be a better fit for multimodal data [41].
Such methods include multiple kernel learning, graphical models, and neural networks.
In the scope of this research, early and late fusion methods are discussed (Section 2.3.3.1
and 2.3.3.2), as well as fusion methods using neural networks (Section 2.3.3.3).

2.3.3.1 Early Fusion

Early fusion, also known as feature-level fusion, involves extracting features from each
modality, integrating them, and feeding the combined features to a classification model.
The simplest early fusion method is concatenating the features into one input vector.
More advanced techniques involve creating a joint representation vector using neural
networks. The topic of joint representation is further elaborated in Section 2.3.3.3.

Early fusion allows the exploration of interactions between raw features across modal-
ities. However, this strategy also presents a challenge: as features from different
modalities often represent different physical properties, and the classifier must learn
both feature abstractions and their interactions simultaneously. This can lead to high-
dimensional input spaces and potential computational complexity, making the model
prone to overfitting [101]. A schematic overview of the early fusion approach can be
seen in Figure 2.1.

2.3.3.2 Late Fusion

Late fusion techniques focus on training an uni-modal model for each modality sepa-
rately and then fusing their predictions. Fusion can be achieved through methods like
voting, weighing, or training an additional model, such as a neural network, to com-
bine the predictions. Late fusion allows each modality to be processed independently,
using the strengths of individual modality-specific models. However, this approach
can, in some cases, ignore low-level interactions between modalities [110]. Despite this
limitation, the late fusion strategy has been used successfully in various applications,
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achieving competitive performance. An approach by Tripathi et al. incorporates late
fusion and obtains high performance on the IEMOCAP dataset [103]. Another ap-
proach uses late fusion for MMER that relies on speech and facial information and
achieves high accuracy on the RAVDESS dataset [64]. A schematic overview of the late
fusion approach can be seen in Figure 2.1.

Figure 2.1: A schematic overview the early fusion method (left) and the late fusion method (right) for
multimodal models.

2.3.3.3 Fusion with neural networks

Both early and late fusion methods can make use of a neural network model to fuse the
modalities. In this approach, a neural network maps individual modalities onto a uni-
fied shared representation vector space, either via joint representation or coordinated
representation. [49, 9]. An example of an early fusion strategy with neural networks
involves the use of fine-tuned neural networks to generate embeddings from text and au-
dio [32]. The embeddings are concatenated and fed into a transformer model equipped
with co-attention mechanisms, using the most important parts of each embedding. This
process results in a joint representation, which is then used as input for the classifier.
This technique achieves high performance on the IEMOCAP and SAVEEE datasets
for emotion recognition. Moreover, a late fusion technique is implemented by Sun et
al., where audio, text, and images are separately processed using a Bi-LSTM with an
additional self-attention layer. The outputs of these modality-specific models are then
fed into another Bi-LSTM for the final prediction [101].

Additionally, many deep learning approaches employ a hybrid fusion technique. In
one approach by Zadeh et al., a tensor fusion network is introduced to express mul-
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timodal fusion information through image, audio, and visual features [115]. In an-
other method, an LSTM is applied separately to text, visual, and audio data, and the
extracted features are integrated into a multi-level fusion learning architecture [80].
Ghosal et al. propose a multi-attention RNN framework to learn features using atten-
tion for multimodal representation [44].

2.3.4 Transformers

The transformer architecture was introduced in the paper ’Attention is all you need’
[108]. The architecture of the model is that of an encoder-decoder. First, all input is
processed and made into embedding vectors. These embedding vectors are put into the
encoder, which consists of three components; positional encoders, multi-head attention,
and a feed-forward layer. Positional encoders are used to handle the meaning of the
words in different sentences based on their position in the sentence.

Attention is used to give context to the numerical vectors representing the words.
The attention layer determines what part of the input the focus should be on. The
attention mechanism can be multi-headed, meaning it computes multiple attention
vectors and averages them per word, capturing cross-word relations. Because of the
attention mechanism, the input data can be handled in parallel, thus eliminating the
need for sequential processing.

The feed-forward layer simplifies the information obtained from attention, by re-
ducing the dimensionality of the data and applying non-linear transformations. Each
attention vector is processed by its own feed-forward layer, making it a parallel and
fast process.

Transformers are often used for sequence-to-sequence tasks, such as machine transla-
tion, and include decoder layers for this purpose [108]. However, for tasks like emotion
recognition, which do not require generating new sequences or translations, encoder
layers, in combination with classification layers and an activation function, form the
appropriate components for the task.

2.3.4.1 BERT

BERT, or ’Bidirectional Encoder Representations from Transformers’, is a transforma-
tive deep learning model that has had a significant impact on NLP and many other
domains [34]. BERT can accurately generate and understand human language, since
the model is trained on a large corpus of textual data. The architecture of BERT makes
use of a ’Masked Language Model’, which masks tokens in the input text randomly,
forcing the model to make predictions about the original token identities based on their
context. BERT is widely used in multimodal models as a text-encoder, and moreover,
specialized variants of BERT are developed to incorporate visual and audio data.
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2.3.4.2 Visual transformers

’Visual Transformers’ or ViT, draw inspiration from the NLP transformer architecture
previously described in Section 2.3.4 and adapt this to images or video. The Trans-
former’s self-attention mechanism is used to capture dependencies over long distances
and contextual information within the visual data. The images are broken up into
patches and then flattened, as can be seen in Figure 2.2. Moreover, Figure 2.2 shows
the ViT architecture in comparison to the original Transformer encoder architecture
[35]. ViTs are powerful in tasks such as image classification [35], object detection [20],
semantic segmentation [113], and emotion recognition [23] [67].

Figure 2.2: The architecture of the ViT (left) and the architecture of the original Transformer encoder
(right), Figure from [35].

2.3.5 Multimodal transformers

Multimodal transformers represent a significant advancement in deep learning. These
models can combine the strengths of different uni-modal models, such as BERT and
ViT, to simultaneously process diverse modalities. ClipBert and Video-BERT are two
noteworthy transformers designed for video-text understanding. ClipBert has a single-
stream early fusion architecture, in which the two modalities are first fused and then
processed together [59]. In the training phase, ClipBert uses sampled short clips at each
training step, which makes the model efficient for a small training dataset. It uses a 2D
CNN architecture for the video encoding: ResNet-50. Video-BERT, on the contrary,
has a dual-stream late-fusion architecture where the two modalities are processed apart
and later fused [100].

Transformers, processing three modalities (video, audio, and text), have been pro-
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posed as well. MEmoBERT is a self-supervised model for MMER [121]. This model
learns joint representations across modalities through self-supervised learning on an un-
labeled video dataset. MSAF, or ’Multimodal Split Attention Fusion’, is a multimodal
transformer for emotion recognition. It makes use of a special type of fusion technique.
Each modality is divided into channel-wise equal feature blocks, and a joint representa-
tion is formed to produce soft attention for each channel across the feature blocks [99].
HERO, or ’Hierarchical Transformer Architectures’ has a hierarchical architecture, con-
sisting of a cross-modal transformer and a temporal transformer for multimodal fusion
[60]. SWAFN, or ’Sentiment Words Attention Fusion Network’, is a model designed for
SA, trained on the CMU-MOSI and CMU-MOSEI datasets [27].

In the next sections, three multimodal transformer models are explored in depth.
As each of these models accepts raw input, they are suitable for the archive pipeline of
Sound & Vision. After attempting to run both MulT and VATT models, it appeared
that they were not reproducible. Therefore, the multimodal transformer SSE-FT will
be used in the experiments. The motivation behind choosing this model will be further
elaborated on in Section 3.2.

2.3.5.1 MulT

In the MulT architecture [104], depicted in Figure 2.3, first the input from each modal-
ity goes through a convolutional layer to extract the local structure of the input. Next,
positional embeddings are added to enable the input to carry temporal information.
Next, the input goes through cross-modal transformers, so each modality can use infor-
mation from the other modalities. In a cross-modal transformer, the target modality
is repeatedly reinforced with low-level features from another modality. This is done
by learning attention scores across the features of the two modalities. The authors
suggest that adapting from low-level features is advantageous for the model because it
helps preserve important low-level information specific to each modality. Finally, the
outputs are concatenated from the cross-modal transformers that have the same target
modality and passed through a self-attention transformer. The final elements of these
self-attention transformers are extracted and used for prediction.

2.3.5.2 VATT

The design of VATT [1], and its self-supervised learning strategy are depicted in Figure
2.4. The model takes raw video, audio, and text. There are two primary configurations
in the VATT architecture. In one, each modality has its own transformer with specific
weights. In the second configuration, all modalities share a single transformer, meaning
one transformer is applied universally across all modalities.

The architecture involves a tokenization layer, embedding vectors, and transformer
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Figure 2.3: The architecture of MulT for modalities (text (L), video (V), and audio (A)), crossmodal
transformers serve as the core components for the multimodal fusion [104].

components. VATT first converts each modality into a feature vector through linear
projection before inputting it into a transformer encoder. Each modality is processed
with its own positional encoding, so the transformer can distinguish between tokens
based on their position in the input sequence. VATT makes use of DropToken, which
is a mechanism that randomly selects certain input tokens to be processed, reducing
the computational cost of the transformer. The transformer architecture includes a
multi-head-attention module that employs a standard self-attention mechanism. This
allows the model to attend to different positions in the input sequence simultaneously,
as previously discussed in Section 2.3.4. The activation function used in the multi-layer
perceptron layer is the Gaussian Error Linear Unit (GeLU), chosen for its effectiveness
in capturing complex relationships within the data. Moreover, in the multimodal pro-
jection head, a semantically hierarchical common space mapping is created to compare
embedding pairs of video-audio as well as video-text with their cosine similarity. This
is done to take the semantic granularity of these modalities into account. Furthermore,
alignment of video-audio embedding pairs is done with Noise Contrastive Estimation
(NCE) and Multiple Instance Learning NCE (MIL-NCE) is used to align video-text
embedding pairs [2].
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Figure 2.4: The architecture of VATT (left) and the self-supervised, multimodal learning strategy
(right), Figure from [1].

2.3.5.3 SSE-FT

The Self Supervised Embedding Fusion Transformer (SSE-FT) is the first transformer
that is built from Self-Supervised Learning (SSL) embeddings to represent multiple
modalities [97]. Fusing SSL embeddings can be challenging because they come with
high dimensionality and long embedding lengths. Between modalities, the embeddings
can mismatch in size and sequence length.

To tackle these challenges, Siriwardhana et al. use an attention-based fusion mech-
anism that can be seen in Figure 2.5. As a first step, features are extracted from
the raw data using three pre-trained SSL models, namely RoBERTa and Wav2Vec for
text and audio, respectively, and Fab-net for video frames. To effectively represent
the modalities, a CLS token, functions as a compressed representation of the embed-
ding sequences. The Inter Modality Attention (IMA) transformer blocks embed one
modality’s representation with information from other modalities. This layer captures
cross-modal information. It operates similarly to self-attention, using the CLS token of
one modality as the Query (Q) vector and the embedding sequence of another modality
as the Key (K) and Value (V) vectors. There are six IMA transformer blocks, one
for each modality pair. In the next step, the embeddings are grouped based on their
target modality. After that, to extract the most important information from the tar-
get modality, the Hadamard product is taken between CLS tokens of the same target
modality. At last, the three representations are concatenated and sent through a fully
connected layer to which the softmax function is applied to perform prediction.

2.3.5.3.1 Ablation studies on SSE-FT Siriwardhana et al. conducted an ablation
study to better understand the contribution of the different components in SSE-FT[97].
Their study, involved the following ablations on the CMU-MOSEI dataset: Ablation

K.K. de Boer 29



CHAPTER 2. RELATED WORK

Figure 2.5: The architecture of the Self Supervised Embedding Fusion Transformer (SSE-FT) [58].

study on speech, text, and video input modalities; Examination of speech, text, and
video modalities; Analysis of IMA layers (Pre-IMA block); Evaluation of the Hadamard
product (Post-IMA block).

For the ablation study on uni-modal input, the authors trained SSE-FT for each
individual modality. The CLS token of the modality is extracted after the self attention
transformer, and is used to represent the data. This resulted for seven-class accuracy in:
text: 47.7%, speech: 43.8%, and video: 43.6%. Moreover, the authors investigated the
model’s performance using combinations of two input modalities. Here, CLS tokens
were taken after the IMA transformer blocks as the final representations. Text and
speech inputs demonstrated the highest results for seven-class accuracy: 54.1%. Speech
and video inputs yielded the lowest performance metrics: 44.18%. The complete results
of their ablation study are shown in Figure 2.6. In the figure, L, A, and V stand
for Language, Audio, and Visual. The notation ’(h)’ indicates that higher values are
preferable, while ’(l)’ indicates that lower values are preferable.
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Figure 2.6: Evaluation results of the ablation studies performed by the authors of SSEFT, Figure from
[97].

2.4 Datasets for multimodal emotion recognition

Most of the multimodal models for recognizing emotions are supervised, which means
that they require large manually annotated datasets. The annotation process for emo-
tion recognition is a difficult task, since emotions are nuanced and subjective to the an-
notator. This section further explains the nuances of annotating (multimodal) emotions.
Furthermore, multimodal datasets for emotion recognition are highlighted. In table 2.1,
an overview of the datasets can be seen, along with their total length, their present
modalities, the number of emotion labels, and their year of publication. Datasets that
did not include all modalities used in this research, i.e., text, audio, and video, have
been excluded from the overview.

2.4.1 Annotating emotions

When annotating a video, an emotion is assigned to each utterance. An utterance
can be defined as a complete unit of speech in spoken language. Often, an utterance
has the length of a sentence, or the length of the words between speaking pauses. A
multimodal utterance includes, for example, the text, audio and video corresponding
to the timestamps from this utterance.

The process of annotating emotions to a multimodal utterance is non-trivial due to
the subjectivity of annotators, the ambiguity of emotions, and the lack of consistent
annotating rules [43]. When analyzing an utterance, there are different emotions that
can be observed and labeled. There is not only the speaker’s subjective emotion but also
the speaker’s appraised emotion of a third subject, or even the emotion the annotator
feels from observing the speaker. A person can talk about their past or future emotions,
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while currently experiencing another emotion. Because of these nuances, in some cases,
annotators will not reach agreement as multiple emotions can be assigned. Since often
there is no clear distinction and emotions can overlap [43].

The reliability of annotations is typically measured by calculating inter-annotator
agreement (IAA), for instance, using the Fleiss’ kappa score. A high Fleiss’kappa score
means high agreement. Two well-known multimodal emotion datasets achieve fair to
moderate agreement: The MELD dataset achieves an overall Fleiss’ kappa score of 0.43,
while the kappa score for the IEMOCAP annotation process is 0.4 [81]. In most cases,
disagreement is resolved by aggregation methods, such as majority voting in MELD
[81].

It could be argued that annotating the emotion from a multimodal utterance is
somehow more natural than extracting the emotion, e.g., from solely text. This is
because theories on emotional categories are based on natural human interaction, as will
be described in Section 2.4.1. However, in their study on IAA for emotion recognition
in uni-modal versus multimodal utterances, Du et al. found the highest IAA when
annotating the text modality alone. Despite each modality offering unique emotion
cues, the agreement at the multimodal level was lower compared to text and audio
alone. The study also revealed a significant inconsistency in emotion labels across
multimodal and uni-modal setups, with nearly half of the instances showing differing
emotion labels [36]. This suggests that each modality contributes differently to the
perception and labeling of emotions, and learning these inconsistencies could benefit
the differentiation of nuanced emotions.

2.4.1.1 Categories of emotion

There are various theories on how to categorize emotions. Basic emotion theory holds
that there are basic emotions in humans. These emotions are happiness, sadness, fear,
anger, disgust, and surprise [37]. Following this theory, all humans express their emo-
tions from instinct in the same situations in a similar way, producing comparable phys-
iological signals. Other emotions, such as satisfaction or confusion, are believed to be
composed of these 6 basic emotions.

On the other hand, the dimensional emotion theory asserts that emotions aren’t dis-
tinct categories but rather exist on a spectrum, described by varying levels of intensity
along different emotional dimensions [85]. These emotional dimensions are primarily
valence (ranging from positive to negative) and arousal (ranging from calm to excited
states). While multiple approaches to dimensional emotion theory exist, the most com-
monly adopted model is Russell’s 2D emotion model [85]. This model, as envisioned by
Russell, visualizes emotions across the valence-arousal spectrum, as depicted in Figure
2.7.

Most multimodal datasets for emotion recognition include both categorical and di-
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mensional labels. Combining both emotion label frameworks could offer complementary
insights into how emotions are expressed in real life. As categorical labels do identify
distinct emotions, they do not capture the varying intensity levels of dimensional labels
[14].

Figure 2.7: The 2D valence-arousal model of emotion proposed by Russell, Figure from [106].

2.4.2 CMU-MOSEI

CMU-MOSEI, the ’Multimodal Opinion Sentiment and Emotion Intensity’ dataset, was
developed by the Multicomp Lab within Carnegie Mellon University in 2017 [116]. The
dataset has 22,777 movie review videos sourced from YouTube, accompanied by 22,856
annotated utterances. The videos are randomly chosen from various topics (250 in to-
tal). The dataset is gender-balanced and has a diverse range of speakers (1000 unique
speakers). Multiple speakers help a model generalize well over emotional patterns by
not solely focusing on individual identities. The annotations are obtained using 3 anno-
tators. Six emotion labels are included for each utterance; angry, happy, sad, surprise,
fear, and disgust. Moreover, each utterance is annotated with the scale of emotion
within the range of -3 to +3. From very negative -3 to very positive +3. Moreover,
the dataset incorporates valence (negative to positive), arousal (passive to active), and
dominance (submissive to dominant) scores. The dataset contains the raw data as well
as features extracted for all modalities. BERT embeddings are extracted for the text
modality, COVAREP and OpenSMILE features are present for the audio modality, and
FACET for visual features. While CMU-MOSEI stands out as the prevailing bench-
mark dataset for MMER, the dataset has some limitations, such as only containing
monologues and not having information on multi-speaker interactions.

K.K. de Boer 33



CHAPTER 2. RELATED WORK

2.4.3 IEMOCAP

IEMOCAP, the ’Interactive Emotional Dyadic Motion Capture Database’, curated by
the Speech Analysis and Interpretation Laboratory (SAIL) at the University of South-
ern California, was created out of the need for multimodal datasets capturing human
interactions [14]. IEMOCAP is built out of five acting sessions recited from scripts
and improvised, each with two actors (one male and one female), mimicking real life
interactions. The dataset captures the context of these interactions, which is important
to how we express and perceive emotions in everyday life. IEMOCAP spans 12 hours of
data collection across ten actors, with 6 emotions such as anger, disgust, fear, sadness,
happiness, and, additionally, neutral. In total, the dataset has over 10.000 raw video
samples. Valence, arousal, and dominance scores are also included.

2.4.4 MELD

The MELD dataset, ’Multimodal Emotion Lines Dataset’, is the first multimodal
dataset for emotion recognition that includes ’multi-party’ conversations involving text,
audio, and video. Meld extents on the Emotion Lines dataset, with textual dialogues
from the TV series ’Friends’, as the dataset also incorporates video and audio [81]. The
dataset is composed of almost 1400 videos, spanning 50 hours in total. The MELD
dataset, consisting of 13000 utterances, is split into train, validation, and test folds,
9989 utterances for training, 1109 for validation, and 2610 for testing. Each utterance
has an average time span of 3.59 seconds. Furthermore, the dataset includes feature
vectors for text and audio. GloVe [77] is used for textual embeddings, and audio fea-
tures are extracted from the OpenSMILE toolbox [39]. The utterances are annotated
with the emotions anger, disgust, sadness, joy, surprise, fear, and neutral. From the
Emotion Lines dataset, the annotations were reevaluated, as annotators were to watch
the corresponding video to the text. Including multiple modalities while annotating, the
MELD annotation process recorded 89 disagreements, significantly fewer than the 2,772
disagreements noted in EmotionLines, which reflects an improved annotation quality
achieved with a multimodal dataset.

Despite the significance of the dataset, it has limitations. ‘Friends’ is a comic TV
show and emotions are exaggerated. Moreover, the TV show has various but limited
speaking subjects. As can be seen in Figure 2.8, there is an imbalance in the dataset,
the ’neutral’ label is overrepresented. This can cause problems as it can influence model
training towards favoring the neutral class, potentially compromising the model’s ability
to accurately detect and differentiate other emotions [21].
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Figure 2.8: MELD: Emotion label distribution across train, test, and validation datasplits.

2.4.5 MEmoR

The dataset MEmoR has videos extracted from the TV show ‘The Big Bang Theory’
[95]. It has 5,502 videos and 8,536 labeled utterances. In contrast to the datasets
mentioned before, MEmoR provides annotations for each speaker and non-speaker.
The utterances are labeled using Plutchik’s wheel of emotions [79] with 8 primary and
24 more nuanced emotions. The primary emotion labels are joy, anger, disgust, sadness,
surprise, fear, anticipation, and trust. OpenSmile is used to extract audio features. A
textual representation is extracted with the use of BERT. Facial features and object
recognition features are extracted as well. A pre-trained CNN is used for face extraction,
and a Facenet model pre-trained on VGGFace2 is used for face recognition [19]. The
dataset is finetuned for the seven main characters from the TV series. Moreover, another
Facenet model is pre-trained for facial expression recognition.

2.4.6 OMG

The OMG-Emotion, ’One-Minute Gradual-Emotional Behavior’ dataset has a total
of 420 YouTube videos with a total time of around 10 hours [11]. The videos were
automatically selected based on specific search terms related to the term ’monologue’.
Each annotator considered the whole video when labeling an utterance, which provides
context to the dataset. Arousal and valence are annotated, along with six categorical
emotion labels: anger, disgust, fear, happiness, sadness, surprise, and the neutral label.

K.K. de Boer 35



CHAPTER 2. RELATED WORK

2.4.7 SEMAINE

The SEMAINE dataset, which stands for ’Sustained Emotionally colored Machine-
human Interaction using Nonverbal Expression’, was made in 2012 to support research
in human-computer interaction [70]. It includes recordings of human subjects in various
emotional states, in several modalities, such as text, audio, and video. It also includes
physiological signals, which can provide additional insights into emotional states. In the
scenario’s from the recordings, Sensitive Artificial Listeners (SAL) respond as emotion-
ally stereotyped ’characters’. The dataset includes 80 videos with a total time length
of 6 hours. Moreover, it provides 7 categorical emotion labels and values for valence,
arousal, intensity, and anticipation.

Dataset Length #Videos #Utterances #Modalities #Labels Year
CMU-MOSEI 1000 hours 22,777 22,856 Text, Audio, Video 6 2017
IEMOCAP 12 hours 302 10,000 Text, Audio, Video 5 2008
MELD 50 hours 1,394 13000 Text, Audio, Video 7 2018
MEmoR 32 hours 4,500 8,536 Text, Audio, Video 9 2020
OMG 10 hours 420 2400 Text, Audio, Video 7 2018
SEMAINE 6 hours 80 - Text, Audio, Video 7 2012

Table 2.1: Overview of datasets for MMER including the video, audio, and text modalities.

2.5 Interpretability in multi-modal models

Multimodal models have been using the combination of multiple modalities to enrich the
model’s pattern recognition abilities. Using advanced fusion techniques, these models,
improve on their uni-modal predecessors. However, neural nets have complex hidden
layers from which we have little or no understanding. This makes the decision-making
process and internal states of neural networks ’black box’.

From other simpler machine learning techniques, such as linear regression and deci-
sion trees, we know how the decision-making process works. The coefficient of a feature
in the equation of linear regression is a clear representation of the importance of this
feature. Decision trees are structured to first split on the most informative feature, an-
alyzing the splits of the tree, we can understand how the algorithm came to its decision
[89].

The field of XAI , which is a term invented by the Defense Advanced Research Project
Agency (DARPA), aims to improve our understanding of more black-box models such
as neural networks [49]. These non-linear models are not inherently interpretable and,
therefore, ask for a more complex ’post-hoc’ approach. Interpretable representations
of the model’s decision making process on the input can be made. In the context of
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text classification, for instance, interpretability can be achieved with binary vectors
representing the presence or absence of specific words, even though the underlying
classifier may work with more complex features like word embeddings. Multiple reliable
interpretability methods that can produce understandable representations have been
proposed and will be discussed in Section 2.5.1.

2.5.1 Interpretability methods

In this section, four prominent interpretability methods are explored: SHAP (SHapley
Additive exPlanations) in Section 2.5.1.1, LIME (Local Interpretable Model-agnostic
Explanations) in Section 2.5.1.2, the attention mechanism in Section 2.5.1.3 and prototype-
based methods in Section 2.5.1.4. These methods offer diverse approaches to uncovering
the inner workings of multimodal models.

2.5.1.1 SHAP

The SHAP (SHapley Additive exPlanations) method draws its inspiration from the
concept of Shapley values, which originate in the fields of economics and game theory
[94]. The goal of this method is to fairly distribute rewards from a set of games to all
the players. In the context of machine learning, the SHAP method achieves this by
linking the model’s features with the ’players’ who are set to receive the rewards [65].
Thus, when making a prediction, the SHAP method breaks down the prediction into
components, focusing on the contributions of each feature. This process allows for the
calculation of the individual contributions of each feature to the prediction [57].

Shapley values have four defining properties required for a fair payout, which all add
to the interpretability of a model: ”1) Efficiency: the contributions of all players sum
up to the model outcome; 2) Symmetry: any two players that contribute equally are
assigned the same payout; 3) Dummy: a non-contributing part is assigned zero value;
and 4) Additivity, enabling us to simply average the Shapley Values to determine the
total player contributions in a game with combined payouts (e.g., the two halves of a
soccer match, or ensembling of decision trees)” [65].

SHAP is model-agnostic, it means, in the context of machine learning, that the
technique can be applied to various models, as it does not use the properties of the
model architecture to generate explanations. Therefore, this technique is widely used
for interpreting black-box models.

Apart from SHAP having a grounded theoretic foundation as an interpretability
method, the SHAP library 1 also provides a wide range of visualization plots to support
its explainable power. Wang et al. use Shapley values to visualize the contribution of
features in the metadata (e.g., age, gender, etc.) used in an interpretability-based

1https://shap.readthedocs.io/en/latest/
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multimodal CNN for skin lesion diagnosis [109]. Zhang et al. use SHAP visualizations
to detect referable diabetic retinopathy, showing the use of explainable deep learning
for predictive healthcare tasks [118]. A complete summary of the SHAP visualization
plots will be given in Section 2.5.1.1.1. Parcalabescu et al. use SHAP to analyze pre-
trained vision-language encoders on their modality contribution. The authors find that
different models have different dominating modalities on the same task with the same
dataset [75]. Their approach will be elaborated in Section 2.5.1.1.2.

2.5.1.1.1 SHAP visualization plots Visualizations of Shapley values can be effective
explainatory tools for understanding the patterns and dependencies in a model’s pre-
diction process. A short summary and application example of each visualization plot
currently provided by the SHAP library will be given. The visualizations can be seen
in Appendix A.

2.5.1.1.1.1 Bar plot The bar plot visualizes the average Shapley values for each
feature. These features can be analyzed globally (over all samples) as well as locally
(for one sample). The bar plot also enables the visualization of cluster importance, in
cases where features are redundant with each other (redudant meaning that a model
could use either feature and still get the same accuracy). An example of the SHAP
barplot can be seen in Figure A.11.

2.5.1.1.1.2 Beeswarm plot The beeswarm plot shows the distribution of the data
samples for the top contributing feature. The plot can help gain insight into how
feature importance varies across different data points. The plot provides a summary
of the overall effect of each feature on the model’s output. An example of the SHAP
beeswarm plot can be seen in Figure A.12.

2.5.1.1.1.3 Violin plot The violin plot, like the beeswarm plot, shows the distri-
bution of the datapoints for all features, providing a summary. It, however, adds the
central tendency, spread, and symmetry of the data distribution. An example of the
SHAP violin plot can be seen in Figure A.23.

2.5.1.1.1.4 Decision plot The decision plot is effective for showing how more com-
plex models arrive at their predictions (which decisions are made). It can be used to
show the cumulative effect of the features. For binary classification, it shows how the
output changes as each feature varies. For multi class classification, the plot shows how
the model’s decision varies across different classes. The decision plot can also be used
to compare the decision behavior of different models. Moreover, it can be used to group
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observations with similar prediction paths to detect outliers. An example of the SHAP
decision plot can be seen in Figure A.24.

2.5.1.1.1.5 Heatmap plot The heatmap plot shows all samples on the x-axis and
all features below on the y-axis. By visualizing each feature value for each sample,
the heatmap plot shows a full picture of the variations in different features across the
dataset. An example of the SHAP heatmap plot can be seen in Figure A.25.

2.5.1.1.1.6 Dependence Scatter plot The dependence scatter plot can show the
models learned dependencies for the data. In the scatter plot, the range of feature
values can be plotted against the x-axis and their corresponding Shapley values along
the y-axis. This way, the scatter plot can be used to analyze the interaction between
the feature and the prediction as the feature value changes. More features can be added
to examine their dependencies. An example of the SHAP scatterplot can be seen in
Figure A.26.

2.5.1.1.1.7 Force plot The force plot shows the feature importance for a single
sample as a series of bars. Each bar represents a feature, and its length and direction
indicate the influence (positive or negative) on the prediction. An example of the SHAP
force plot can be seen in Figure A.37.

2.5.1.1.1.8 Waterfall plot The waterfall plots, like the force plot, show the impor-
tance of a feature for a single sample. However, features are shown along the y axis,
and the cumulative contributions of the features are shown on the x axis. An example
of the SHAP waterfall plot can be seen in Figure A.39.

2.5.1.1.1.9 Text plot The text plot is used to specifically interpret the contribu-
tions of individual words to the prediction of a text-based machine learning model. It
includes a force plot, which shows the words instead of features. In addition, it shows
the text input and marks the words with red and blue, indicating their positive or
negative contributions to the prediction. An example of the SHAP text plot can be
seen in Figure A.38.

2.5.1.1.1.10 Image plot The image plot is perhaps the best known plot for visu-
alizing Shapley values. It visualizes how different parts of an image contribute to the
model’s decision-making process. It can be used besides object recognition to analyze
the influence of the presence and position of objects to the model’s output. An example
of the SHAP image plot can be seen in Figure A.310.

K.K. de Boer 39



CHAPTER 2. RELATED WORK

2.5.1.1.2 Multi-Modal SHAP Parcalabescu et al. extended SHAP to involve more
modalities, i.e., image and text, through the introduction of MM-SHAP (Multi-Modal
SHAP). The authors introduce MM-SHAP as a metric to measure the multimodal de-
gree, which is the degree to which modalities are used in model predictions. Measuring
the multimodal degree can test for uni-modal collapse, whether a multimodal model has
ineffective fusion and relies on only a single modality. Like uni-modal SHAP, MM-SHAP
is performance agnostic, meaning that its outcomes are independent of the model’s per-
formance. This characteristic is preferred because, unlike performance-based methods
that overlook false predictions, MM-SHAP considers all predictions. Even false pre-
dictions provide valuable insights into how the model processes features, making them
useful for analyzing feature contributions. Moreover, using a performance-agnostic
metric allows for the measurement of the multimodal degree in situations where model
accuracy is low.

The multimodal degree as proposed by Parcalabescu et al. is computed as follows:
Shapley values are computed for the multimodal transformer model at the prediction
time for all the samples in the test set. The complete input to the model is represented
by tokens. As the model has multimodal input, each modality has a unique token
representation. MM-SHAP uses so called superpixels to represent the visual modality,
and for the textual modality, each token represents a word, as shown in Figure 2.9.

The input to the models consists of p tokens, including text and image tokens.
First, subsets S ⊆ {1, . . . , n} of tokens are created, forming a group towards the model
prediction Val(S). The Shapley value (ϕj) for a token j is calculated using the formula:

ϕj =
1

γ

∑
S⊆{1,...,n}\{j}

[val(S ∪ {j}) − val(S)](
n−1
|S|

) (2.1)

where γ =
( |S|
n−1|S|

)
· p!
n!

is the normalizing factor accounting for all possible combinations

of choosing a subset S. The number of potential coalitions grows exponentially with
the number of tokens masked, denoted as p, resulting in (γ = 22p+1). Due to the
impracticality of computing Shapley values for all possible subsets, the ’Monte Carlo’
approximation is employed [65]. This involves randomly sub-sampling n = 2p + 1
subsets to estimate the Shapley values.

Now the textual contribution is defined as ΦT , the image contribution as ΦI towards
a prediction as the sum of (absolute) Shapley values of all textual and visual tokens for
a pre-trained multimodal transformer with nT text tokens and nI image tokens:

ΦT =

nT∑
j=1

|ϕj| (2.2)
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ΦI =

nI∑
j=1

|ϕj| (2.3)

The absolute value is considered, and not the sign (positive or negative) of the influence
of a token, as the focus is on measuring whether a token is influential in a modality
regardless of the direction it pushes the prediction. MM-SHAP can also be defined as
a ’proportion of modality contributions’, which allows for assessing a model’s textual
degree (T -SHAP) and visual degree (V -SHAP).

T -SHAP =
ΦT

ΦT + ΦI

(2.4)

V -SHAP =
ΦI

ΦT + ΦI

(2.5)

Parcalabsecu et al. test their multimodal framework for interpretability on four tasks:
Image-Sentence Alignment (ISA), Visual Question Answering (VQA), Visual Question
Answering with Balanced Datasets (GQA) and Vision and Language for Scene Under-
standing (VALSE). Figure 2.9 illustrates the proposed framework on the task of ISA
and shows the contribution of the tokens to the ISA scores, together with the textual-
contribution. The contribution of the visual modality is computed as 100 - T-SHAP.

The scalability of the method proposed by Parcalabescu et al. is a notable con-
cern. The computational complexity of the method can increase significantly as more
modalities are added and more detailed interpretability is desired. The superpixels
used in MM-SHAP to represent the visual modality are limited in their explanatory
power, while they can overlap multiple objects, and pixels residing within neighboring
patches often share semantic relevance. Tasks such as image-sentence alignment and
visual question answering rely on the understanding of concepts such as objects and
their context.

To address this limitation, more fine-grained tokens can be created to better repre-
sent individual objects and their contexts. However, this approach increases computa-
tional complexity significantly. Cafagna et al. propose a solution by using the visual
backbone of a transformer model to generate tokens for images that represent mean-
ingful areas, such as individual objects [16]. This approach aims to reduce the number
of visual input features as well as construct more semantically valid explanations. Al-
though this approach yields more semantically relevant explanations, it violates the
feature independence assumption of Shapley Values, assuming that the features are
disjoint and do not correlate. Applying this approach for calculating modality con-
tribution could give inconsistent results as the regions generated with Deep Feature
Factorization (DFF) can overlap. However, Cafagna et al. show that the overlap does
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not significantly affect the final segment contribution for a sample. When aggregating
over all samples in a dataset to calculate modality contribution, the use of DFF could
potentially lead to an overestimate of the contribution of the visual modality. In con-
trast, using superpixels, which do not overlap, would avoid the risk of double counting
a region’s contribution.

Other approaches addressing the computation of Shapley coefficients in image data
are h-shap, which explores a hierarchical partition of the input image [102]. This method
begins by broadly partitioning the image and then focuses on further subdividing only
the areas deemed important.

Figure 2.9: MM-SHAP: This figure illustrates the ISA score for six different VL models with their
respective T-SHAP values, represented as percentages. Blue tokens contribute positively to a high ISA,
while red tokens lower the ISA. Correct and incorrect alignments are marked, with correct alignments
highlighting tokens contributing positively to aligning the image and caption, and incorrect alignments
indicating a negative contribution [75]

.

2.5.1.2 LIME

The ’Local Interpretable Model-agnostic Explanations’ or LIME is an algorithm for
providing insights into the predictions made by any classifier or regressor [84]. LIME,
just like SHAP, is model-agnostic, meaning that the mechanism treats the original
model as a black box. LIME works as follows: for each sample, LIME generates altered

K.K. de Boer 42



CHAPTER 2. RELATED WORK

versions of the sample by making small, controlled changes. The idea is to explore
how the model behaves when the input data changes slightly. For example, in Figure
2.10, at every altered version, some connected pixels are left out, resulting in a changed
classification of the sample. If the absence of certain connected pixels consistently leads
to a change in the model’s classification for the altered versions of a sample, it suggests
that these pixels are important for the model’s decision-making in a local context. LIME
is more used for local features but could also be used for global feature interpretation
and assessing model behavior.

DIME, an approach based on LIME, aims to disentangle explanations from LIME
and can analyze the impact of each modality independently [66]. In this approach,
LIME is executed for one modality at a time, while keeping the inputs to all other
modalities constant and only perturbing the inputs to the selected modality. This
process allows the authors to analyze the impact of each modality on the explanation
generated.

Figure 2.10: LIME: Explaining the predictions for the top 3 predicted classes (b, c and d) for the
original image in a for image classification [84]

.

2.5.1.3 The Attention Mechanism

Another method for interpreting multimodal predictions is leveraging the attention
mechanism in transformers. As previously explained in Section 2.3.4, the attention
layer determines what part of the input the focus should be on. The attention values,
therefore, tell us what features are important to the prediction: high attention values
correspond with high feature importance. It is noteworthy, that attention values allow
for positive-only relevance assessments (while Shapley values can also make negative-
relevance assessments) [25].

Transformers can have multiple layers of self and co-attention. For each of these
attention layers, attention maps can be visualized to provide valuable insight into the
inner workings of a model. Chefer et al. propagate through attention layers to produce
relevancy maps for each of the interactions between the input modalities in the network
[25]. They test their approach for models using self-attention and co-attention. An
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example of the relevance maps produced with their method can be seen in Figure 2.11.
Relevance for images is given by multiplying each region by the relative relevancy [48].
In contrast to this technique, raw attention maps regard only the last layer’s attention
map for feature importance.

Figure 2.11: An example of a relevance map showing the focus of the model for VQA, Figure from
[25].

Another technique for visualizing attention values is ’Gradient-weighted Class Acti-
vation Mapping’, also called Grad CAM’s attention maps [93]. An example of a Grad
CAM heatmap is shown in Figure 2.12. Important regions have higher attention scores
and are therefore displayed as red in the heat map. The above-mentioned methods are

Figure 2.12: An example of a Grad CAM heatmap showing the focus of the model on the tabby-cat,
Figure from [93].

a form of post-hoc attention, meaning that the attention values are extracted after the
training phase, and so, parameters are already set. Contrary to post-hoc attention,
trainable attention refers to the method where attention weights are learned during
training [48].

Attention scores can also be used to visualize and calculate modality contributions.
Showing how modalities contribute to a prediction, given a certain task and dataset,
can provide insights into how the model integrates the input from different sources.
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For instance, Cao et al., in their research, have utilized attention weights from pre-
trained visual-language models to visualize the significance of different modalities [18].
Additionally, attention schemes have been employed to assess the contribution of each
modality to the outcome in emotion recognition [63]. The authors make use of the
[CLS] and [SEP] tokens present in the transformer architecture. Information from all
modalities is represented in the [CLS] token through self-attention; thus, the degree of
attention of the [CLS] token over each modality can be calculated to investigate the
contribution of the modalities.

Furthermore, apart from visualizing feature relevance in self-attention and co-attention
layers, cross-modality correlation can be analyzed by computing the attention scores
between two modalities by cosine similarities [105]. Tsai et al. propose a method that
fuses the values from both modalities based on the attention scores. The authors show
both global and local interpretability in their model. For each test sample, they show
the contribution from each single modality and all of their combinations.

Although attention provides interpretability in a model’s decision-making process,
there is no consensus yet on whether attention yields explanatory power. For example,
researchers investigated and found that the perceptions of a model and a human do not
focus on the same areas while providing the same output [47]. However, the methods
used in their study are criticized, and it was found that it is not excluded that attention
can account for interpretability [112]. Even if the model and human perception don’t
align perfectly, understanding what the model focuses on can provide insights into the
decision-making process of these black-box models.

2.5.1.4 Prototype-based interpretability methods

Prototype-based interpretability methods rely on a set of typical representatives known
as prototypes. This approach resembles clustering algorithms like K-Means, in which
the centroids of clusters can serve as prototypes. In their work, Zinemanas et al.,
propose a prototype-based interpretable model for audio classifications [122]. Their
model has a prototype layer that stores several prototypes, which are representatives
of each class. The layer outputs a similarity measure for each input sample to each
prototype. The similarity measures of the input samples to the prototypes can be
analyzed to make intuitive explanations.

This method stands out because it provides a clear window into the model’s decision-
making process, and eliminates the necessity for an additional interpreter, as required,
for instance, with attention maps. Chen et al. propose a prototypical part network
(ProtoPNet), which can be seen in Figure 2.13. Their method dissects an image and
finds prototypical parts to combine evidence from the prototypes to make a final clas-
sification [26]. Kim et al. present an interpretable vision transformer neural tree (ViT-
NeT). Their method uses a ViT to achieve high-level classification performance and a
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neural tree that acts as a discriminant decoder, interpreting the decisions of the ViT
and then routing the images hierarchically [53]. This opens the decision-making process
of the model. Zhang et al. propose a method that selects sub-sequences that represent
concepts of the input sequence as prototypical parts [120].

Figure 2.13: An example of the classification of a bird by ProtoPnet. The image is divided into parts,
which are each linked to learned prototype parts belonging to a source image. The rightmost column
shows the activation maps, indicating the similarity to the prototype. Figure from [26].

K.K. de Boer 46



Chapter 3

Methodology

This chapter presents the methodology and details of the experimental setup of the
current research. An overview of the research is given in Section 3.1. The dataset
used for finetuning and evaluating the multimodal transformer model will be explained
in Section 3.2. The implementation of the multimodal transformer SSE-FT will be
explained in Section 3.3. Moreover, the modification and implementation of the inter-
pretability method MM-SHAP will be explained in detail in Section 3.4. In Section 3.6,
the implementation and evaluation of the multimodal model on the Sound & Vision
archive will be elaborated. Additionally, designs for visualizing the results from the
interpretability are presented in Section 3.5.

3.1 Research overview

For a more structured overview of the current research, this section provides the research
steps and refers to the sections that discuss them accordingly.

1. The MELD dataset undergoes pre-processing to meet the specific requirements of
the model SSE-FT. An outline of the MELD dataset is given in Section 3.2.

2. SSE-FT is fine-tuned and evaluated on the MELD dataset as described in Section
3.3.

3. The MM-SHAP framework for multimodal interpretability is implemented for SSE-
FT. The process of modifying MM-SHAP is described in Section 3.4.

4. The modified MM-SHAP is used to calculate modality contributions for the MELD
dataset, for each emotion label, and on a sample level, as described in Section 3.4.

5. Visualizations are designed to clarify the Shapley values at the sample level. The
method for creating these visualizations is specified in Section 3.5.
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6. SSE-FT and MM-SHAP are implemented in the digital pipeline of the Institute of
Sound & Vision as described in Section 3.6.

7. The modified MM-SHAP for emotion recognition is implemented and evaluated
on a corpus from the Sound & Vision archive as described in Section 3.6.

8. The outcomes of the modified MM-SHAP as well as the visualizations of the out-
comes are given in Chapter 4 and analyzed in Chapter 5.

3.2 The MELD dataset

As previously outlined in Section 2.4, multiple multimodal datasets are proposed for
emotion recognition. Each has different features and characteristics, as they are made
for different applications within the field. In the current research, the dataset MELD
was selected for the following reasons: The Sound & Vision archive contains interviews,
talk shows, and actuality programs featuring multiple individuals in a single frame.
MELD stands out as the only dataset specifically designed to handle such multi-party
interactions. Moreover, MELD has raw data available as well as pre-extracted features
for all modalities: text, audio, and video. For the S & V archive, the model is applied
to raw videos, and therefore the model that is implemented needs to be able to handle
these raw videos as input. MELD showed compatibility not only with the transformer
model SSEFT, but also with the other models (VATT and MULT) considered during
the model selection process, as these transformer models require raw input data, and
notably, SSE-FT has been evaluated on the MELD dataset. Moreover, the modalities
in the dataset are already pre-aligned with time stamps, so the model does not have
to perform this alignment. The MELD dataset is split into train, validation, and test
folds1. The train fold consisting of 9989 utterances is used for the finetuning of SSE-FT.
The test fold of 2610 samples is used for evaluation. A more detailed description of the
properties of the MELD can be read in Section 2.4.4.

3.3 Implementing SSE-FT

This section describes the methodology for the implementation of the multimodal model
SSE-FT. First, the metrics used to evaluate the performance of SSE-FT are given in
Section 3.3.1. In Section 3.3.2, the procedure of finetuning SSE-FT on the MELD
dataset is explained. Lastly, the ablation studies done to evaluate the multimodality of
SSE-FT are described in Section 3.3.2.1.

1https://affective-meld.github.io/
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3.3.1 Metrics for evaluating the performance of SSE-FT

For a complete evaluation of the performance of SSE-FT, the following metrics are
used: 7-class accuracy, precision, recall, and the F1 score. The F1 score is the harmonic
balance of precision and recall [90]. Moreover, dual accuracy, precision, recall, and the
F1 score are calculated to evaluate the model’s ability to recognize emotion versus non
emotion. For clarity, the computation of dual accuracy for distinguishing between a
neutral class (N) and all other emotion classes (non-neutral, O) is provided:

1. Definition of metrics:

• True Positives (TP): Samples correctly classified as a particular class.

• True Negatives (TN): Samples correctly classified as not belonging to a par-
ticular class.

• False Positives (FP): Samples incorrectly classified as belonging to a particular
class.

• False Negatives (FN): Samples incorrectly classified as not belonging to a
particular class.

2. Calculation of both accuracies:

• For the neutral class (N):

AccuracyN =
TPN + TNN

TPN + TNN + FPN + FNN

• For the non-neutral class (O):

AccuracyO =
TPO + TNO

TPO + TNO + FPO + FNO

3. Dual accuracy calculation:

Dual Accuracy =
AccuracyN + AccuracyO

2

3.3.2 The finetuning procedure for SSE-FT

In Section 2.3.5, the architecture of SSE-FT, among other considered transformer mod-
els has been outlined. Apart from SSE-FT, the multimodal models, VATT described
in Section 2.3.5.2 and MulT 2.3.5.1 were considered. However, after implementation
efforts, VATT and MulT appeared to have deprecated code bases. Hence, the model
SSE-FT was chosen to be implemented and analyzed with an interpretability frame-
work. Even though SSE-FT has been evaluated on the MELD dataset, pre-trained
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checkpoints for their best model on the MELD dataset are not included in the code
base. Hence, finetuning on the MELD dataset is necessary. The implementation of the
model SSE-FT is available on GitHub2. As described in Section 2.3.5.3, SSE-FT ini-
tially extracts features from pre-trained SSL models, namely RoBERTa, Wav2Vec, and
Fabnet. Checkpoints for these pre-trained models are available. The MELD training
split, consisting of 9987 utterances, is used for finetuning.

For finetuning, first, text files are tokenized using RoBERTa, which is integrated into
the Fairseq library. For the audio WAV files, the waveforms are converted to tensors
and saved as .pt files. The pre-trained SSL models, RoBERTa large3, Wav2Vec24, and
Fabnet5, are downloaded. SSE-FT is validated on the test split with 2610 utterances. In
their experiments with the MELD dataset, the authors perform a basic grid search for
hyper-parameter tuning. These settings are followed in the finetune procedure and can
be found in Table 3.1. In the first training effort, fp16 was activated, for a computational
speedup. In the second effort, fp16 was turned off to possibly improve performance.
The performance results from SSE-FT can be found in Section 4.1.

Hyper-parameter Value

Batch Size 32
Epochs 20
Number of Attention Blocks 1
Number of IMA Blocks 1
Number of Self Attention Heads 2
Number of IMA Heads 2
Dropout Rate 0.1
Initial Learning Rate 3.00E-04
Learning Rate Scheduler Polynomial Decay
Training Hardware NVIDIA A100 Tensor Core GPU

Table 3.1: Original hyper-parameters for finetuning SSE-FT on the MELD dataset [97].

3.3.2.1 Ablation study

In the current research, SSE-FT is trained and evaluated on the MELD dataset. An
ablation study is conducted on the speech, text, and video input modalities for the
MELD dataset, to better understand how well the model can capture information from
each modality individually, without being influenced by the presence of other modalities.
The model is also evaluated using the dual input of the audio and video modalities,

2https://github.com/shamanez/Self-Supervised-Embedding-Fusion-Transformer
3https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/README.md
4https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec
5https://www.robots.ox.ac.uk/~vgg/research/unsup_learn_watch_faces/fabnet.html
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to assess its performance without the SSL embeddings from RoBERTa. Moreover, the
results from the ablation study can be compared to the overall modality contribution
values obtained from the modified MM-SHAP. The method for the ablation study is
as described in Section 2.3.5.3.1. The CLS token of the modality is extracted after the
self attention transformer and is used as the final representation. Hence, the model
is trained on the individual modalities text, audio and video and the dual modality
audio-video. Results from the ablation study can be read in Section 4.1.1.

3.4 Modifying the multimodal interpretability method MM-
SHAP

In Section 2.5.1.1, the workings of the model-agnostic interpretability method SHAP
have been explained. SHAP has been extended to involve more modalities, i.e., image
and text, through the introduction of MM-SHAP, as discussed in Section 2.5.1.1.2. In
the current research, this approach is adopted to explore the modality contribution of
the chosen multimodal transformer, SSE-FT, in the context of emotion recognition.
Notably, in the proposed method, MM-SHAP is tailored to include the audio modality
as well, analyzing the text, video, and audio modality together. The current section
defines the calculation of Shapley values and the modality contribution, including all
three modalities, and the experiments using these calculations (Section 3.4.0.1) and
explains the implementation to the model SSE-FT (Section 3.4.1.1).

3.4.0.1 Calculating Shapley values and the multimodal degree

Shapley values are computed for the multimodal transformer models at prediction
time on the test dataset. As previously explained in Section 2.5.1.1.2, first subsets
S ⊆ {1, . . . , n} of tokens are created to form a group towards the model prediction
val(S). And then, the Shapley value (ϕj) for a token j is calculated using Equation 2.1.
Originally, only the text and image degrees were measured. However, in this research,
MM-SHAP is augmented with the audio modality.

To determine the multimodal degrees, the textual contribution is defined as ΦT , the
image contribution as ΦV , and the audio contribution as ΦA towards a prediction as
the sum of Shapley values of all textual, visual, and audio tokens for a pre-trained
multimodal transformer with nT text tokens, nV video tokens, and nA audio tokens.
The contribution of the audio modality ΦA is computed the same as ΦT and ΦV :

ΦA =

nA∑
j=1

|ϕj| (3.1)
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As previously discussed, MM-SHAP can also be defined as a proportion of modality
contributions. Similar to the model’s textual degree (T -SHAP) and visual degree (V -
SHAP), the audio degree (A-SHAP) can be computed as:

A-SHAP =
ΦA

ΦT + ΦI + ΦA

(3.2)

This formulation accounts for contributions for all three modalities.

3.4.1 Experiments with the modified MM-SHAP

From the calculations in Section 3.4.0.1, in theory, multiple experimental questions
could be answered. The following questions can provide interpretability to any mul-
timodal model for emotion recognition, and are used to create interpretability and
analyze the robustness of the model SSE-FT fine-tuned on the MELD dataset:

1. What are T-SHAP, V-SHAP, and A-SHAP on dataset level?
The contributions of the text, video, and audio modality to the predictions av-
eraged over the MELD test set are calculated to analyze the multimodality of
SSE-FT. How completely and effectively does SSE-FT use the information from
each part of the input?

2. How do T-SHAP, V-SHAP, and A-SHAP vary for each emotion label?
The contribution of the modalities to emotional classes is analyzed to understand
how SSE-FT uses each modality to discern emotions. Are some emotion classes
best recognized by a certain modality?

3. What do samples with either text, video, or audio as the highest contributing modal-
ity have in common?
Instances where either text, video, or audio is identified as the modality with the
highest contribution to the model’s predictions are analyzed. The patterns that
are shared among these samples can provide insights into which aspects of each
modality are most important for recognizing emotions for SSE-FT.

4. What insights can be derived from T-SHAP, V-SHAP, and A-SHAP when samples
are misclassified?
To better understand the factors within a multimodal model that lead to incorrect
predictions, the Shapley values of misclassified samples are examined. In the case
of an incorrect prediction, which label is predicted? Are these emotion classes
more often confused? Can a change be noticed in the degree of multimodality?
This could suggest that SSE-FT turns to a certain modality when the confidence
in a sample prediction is low.
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Zooming into each modality, characteristics within the modalities can be analyzed to
find out what influence they have on recognizing emotions. To calculate the modality
contribution, the input for each modality has been split up into representative tokens.
Analyzing the Shapley values computed for these tokens can give information on how
a multimodal model and SSE-FT trained on the MELD dataset specifically, recognize
emotions. From the token representation further described in 3.4.1.1, the following
questions can be analyzed:

1. What parts of a sentence are important for model prediction?

2. What specific time points or intervals of the audio have an impact on the predic-
tion?

3. What parts of the video within a frame have an impact on the prediction?

4. Is the time dimension of the video input of importance to the model prediction?

3.4.1.1 MM-SHAP with SSE-FT

As previously discussed, the method of MM-SHAP relies on perturbation, involving
the selective masking of input tokens to observe changes in the model’s output. The
perturbation process uses a masker function, allowing specific tokens from modalities
to be shut off. For the method, three things are important: To define how the input for
a multimodal model is formatted and so which parts can be masked (Section 3.4.1.1.1),
to define for each modality how each input token is represented (Text, Section 3.4.1.1.2,
audio Section 3.4.1.1.3, and Video Section 3.4.1.1.4), and to which value the influence
of the tokens is calculated (Section 3.4.1.1.5).

3.4.1.1.1 Masker function Firstly, in the masker function, it is defined what the model
input looks like in general, even though some tokens are masked. Namely, some tokens
should not be masked, as they convey important information. These tokens are the
CLS and the separator. Similarly, the padding tokens do not get masked, as including
them would not make sense, since these tokens are unimportant to the model outcome.
The model SSE-FT has a CLS token for the text input (identified as the first token
’0’); it appends CLS tokens for audio and video later in the model. SSE-FT does not
use separator tokens. The padding tokens are 0 for audio and text and -1 for video.
Hence, the text CLS token and padding tokens get excluded from masking.

3.4.1.1.2 Text modality Having established which parts of the input should not be
masked, the next step involves determining how to mask the relevant parts for each
modality. Since each modality is represented differently, they require different masking
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approaches. The representation of the text input is as follows: each token represents a
single textual element in a sentence. Tokens for the textual modality consist of tokens
after the tokenization by roBERTa large.

Tokenization with roBERTa includes punctuation as well as the sentence start and
end tokens: <s>and </s>. Punctuation and special tokens matter for the context,
tone, and nuance of communication. For instance, an exclamation mark might denote
excitement or emphasis, while question marks could suggest hesitation or surprise.
Therefore, all textual elements have to be included in the analysis of the text modality,
as all of them are used by SSE-FT.

An example of the process of masking the text is given in Figure 3.1. The text
is first tokenized, and then SHAP masks every combination of tokens to calculate
their contribution. For example, consider the tokenized utterance ’<s>I feel happy
! </s>’, individual tokens are masked ’<s>[MASK] feel happy ! </s>’, but also
pairs ’<s>[MASK] [MASK] happy ! </s>’, and every other combination ’<s>[MASK]
[MASK] [MASK] [MASK] </s>’. This process continues for all possible combinations
of tokens.

Figure 3.1: An example of the process of masking tokens for the text modality. For clarity, the full
words are shown instead of the tokenenized sentence.

3.4.1.1.3 Audio modality For audio, the tokens are half a second long during wave-
form segments. To construct these audio segments for each audio file, the number of
values per token is calculated as the duration of a token (0.5 seconds) divided by the
duration of a sample.

Values per token =
0.5 seconds

Duration of a sample
(3.3)
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The duration of a sample is calculated as 1 divided by the sample rate.

Duration of a sample =
1

Sample rate
(3.4)

Combining both equations gives:

Values per token = 0.5Sample rate (3.5)

This results in a vector of audio tokens that represent segments of half a second. As
the total number of samples in the audio vector might not be perfectly divisible by the
values per token, there is a remainder smaller than half a second. These remaining
samples are distributed evenly across all tokens. An example to illustrate this process
is given.

• Suppose the sample rate is 16,000 samples per second.

• The values per token would be 0.5 × 16000 = 8000 samples.

• If the audio file has a total of 32,050 samples, there would be 4 tokens of 8,000
samples each and a remainder of 50 samples.

• These 50 samples are then distributed evenly across the 4 tokens, adding approx-
imately 12-13 samples to each token.

An example of the masking process of the audio is given in Figure 3.2.

3.4.1.1.4 Video modality The video input is shaped as 1, 3, 300, 256, 256, batch size,
channels, number of frames, width, and height, respectively. For each frame, the 256 x
256 patches are divided by 16. As can be seen in Figure 3.4. Each video is represented
as 16 tokens, each representing a patch within a 4 x 4 grid. There are 4 rows, and the
first row has tokens 1, 2, 3, and 4. The second row has tokens 5, 6, 7 en 8 etc. For each
frame in the video, the patches at the same location get masked.

Another experiment with video tokens can be conducted to determine the importance
of the temporal dimension of the video. Each video has 300 frames, which are divided
by 30. The resulting 10 frames represent the tokens of the temporal dimension of the
video. Analyzing the Shapley values of these tokens gives information about the model’s
use of this temporal dimension.

3.4.1.1.5 Prediction function MM-SHAP was originally tested for tasks such as VQA
and image-sentence alignment, basing the Shapley value on discrete task scores. In the
proposed method, the Shapley values are calculated based on the changes in softmax
values to the predicted emotion label. In the experiments with running the modified
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Figure 3.2: Example of the process of masking tokens for the audio modality.

Figure 3.3: Example of the process of masking tokens for the spatial dimension of the video modality.
Each video is divided into a 4 x 4 grid. For each frame in the video, the patches at the same location
get masked.
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Figure 3.4: Example of the process of masking tokens for the temporal dimension of the video modality.

MM-SHAP on the MELD test set, Shapley values are calculated for each sample for each
emotion class. For the implementation for the archive of Sound & Vision, the Shapley
values are only calculated according to the predicted emotion class label. This approach,
based on the calculation defined in Section 3.4.0.1, provides effective interpretability
for the relevant class. Calculating Shapley values for all possible emotion classes can
be computationally expensive, especially when dealing with larger datasets or real-time
analysis. By focusing on the predicted class, the computational costs are reduced. The
primary interest lies in understanding why a particular emotion was predicted by the
model, in order to gain trust in the model. While a complete analysis of all possible
emotions is important for the current research, it is often more practical to understand
the decisions behind the predicted emotions. For example, if a researcher at the S & V
is analyzing a video, they are likely more interested in the factors that led to the specific
predicted emotion rather than the reasons why other emotions were not predicted.

3.5 Visualizations

The interpretability of the model’s predictions and the Shapley values can be increased
with the help of visualizations. The SHAP library6 provides visualization plots for all
kinds of analysis. A complete summary of the plots available can be found in Appendix
A. These plots, however, are only suited for uni-modal models. Challenges come up
when visualizing multimodal data, much like when choosing how to represent the data
and processing it, as discussed in Section 2.3.1. Decisions that have been made in the
process of representing the input as tokens have consequences for the interpretability of

6https://shap.readthedocs.io/en/latest/

K.K. de Boer 57

https://shap.readthedocs.io/en/latest/


CHAPTER 3. METHODOLOGY

the visualizations. For example, when masking the video input, tokens are represented
by patches. The number and the size of these patches determine how detailed the
explanation is. Smaller patches provide a detailed explanation but may hide global
patterns, while larger patches offer a broader explanation but may overlook details.
This is also the case for the number of tokens in the temporal dimension. These choices
are directly reflected in the explanation.

In any case, visualizations can help make more informed assessments about the
model’s decision process and give transparency to the model’s predictions. Visualiza-
tions highlight possible biases in the model and, therefore, can help evaluate its fairness.
The designs of the visualizations for interpreting the Shapley values are given in Sec-
tion 3.5.1 (text), Section 3.5.2 (audio), Section 3.5.3 (spatial dimension of video), and
Section 3.5.4 (comparison between text and audio).

3.5.1 Visualizing Shapley values for text

For each individual sample, the interpretability framework can visualize a bar plot to
explain the Shapley values given to the text tokens. As can be seen in figure 3.5, the
y-axis lists features in descending order of importance to the model output, with the
most influential features to the prediction at the top and the least influential at the
bottom. Note that the order is based on the importance of the prediction of the sample
and does not represent the overall importance of a feature. However, it is likely that
features that have a high positive or negative contribution to the prediction of a sample,
are influential in the general decision making process of the model. Recall that positive
Shapley values contribute positively to the model prediction, and vice versa for negative
values.

The x-axis represents the scale for Shapley values, with a vertical line at zero. Values
to the right of the line are positive, while those to the left are negative.

Color is used to support the intuitiveness of the Shapley values. To increase con-
trast in the visualizations, positive values are displayed in red and negative values are
displayed in blue. When explaining the influence of the text modality on the model’s
prediction, visualizing the individual words makes a good explanation, as humans know
the meaning of the words and can judge whether the Shapley value assigned to them
is fair to the model outcome.

Contextual information, such as adjacent words, syntax, and semantic relations,
can influence the Shapley values too. Words can have different meanings and/or more
nuanced sentiments depending on their context. The proposed visualizations for text
are used to analyze unique words in a sentence in Section 4.2.2.1 and the contextual
information in Section 4.2.2.2.
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Figure 3.5: Visualization design for the mock Shapley values for the text ’I feel happy’.

3.5.2 Visualizing Shapley values for audio

The audio input for the model SSE-FT is represented as a vector with waveform values.
As previously explained in Section 3.4.1.1.3, Shapley values for audio are obtained for
each half a second of a waveform; the remainder of the waveform is appended to each
segment, as can be seen in Figure 3.2. As each Shapley value represents a chunk of
audio along the temporal dimension, it is important for the visualizations to correctly
map these values to the right time stamps. Therefore, first the waveform is depicted
with its amplitude along the y-axis and values, set to time in milliseconds, along the
x-axis. Then, below the waveform, along the same x-axis, the Shapley values for each
audio token are displayed along the y-axis.

Shapley values can be quite low, and they still need to be visible. For this reason, in
the visualization, the audio Shapley values are shown normalized to the max and min
values. The colors are blue (negative values) and red (positive values). An example
of a visualization for the audio modality can be seen in Figure 3.6. In the example,
the waveform for the utterance ’I feel happy’ can be seen together with the example
Shapley values for 3 tokens; -0.3, 0.5 and 0.7.

As can be seen in the visualization, the tokens do not completely align with the
words in the utterance. The spikes in the amplitude correspond to syllables instead of
words, and this requires some caution in the interpretation. Nevertheless, this design
allows users, while listening to the audio, to verify whether these highlighted segments
indeed contain emotional cues. This increases the interpretability and reliability of a
model.
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Figure 3.6: Visualization design for the mock Shapley values for audio ’I feel happy’, the top graph
shows the audio waveform over time, while the bottom graph shows the mock Shapley values repeated
to match the total time length of the audio.

3.5.3 Visualizing Shapley values for video

The Shapley value visualization for the visual modality closely mimics the original image
plot of the SHAP library shown in A.310. However, the proposed method makes use
of superpixels instead of visualizing the Shapley values for each pixel. As discussed in
Section 3.5, smaller patches, such as individual pixels used in the original SHAP image
plot, allow for more details but require significantly more computational resources due to
the higher number of patches processed. To balance interpretability with computational
efficiency, the frame is divided into 16 superpixels on a 4x4 grid. This choice ensures
sufficient detail in the visualization while reducing computational complexity in the
process of running the interpretability framework [75].

In analyzing the visualizations shown in 3.7, the important question to the user is:
Do the patches correctly point at the most emotional parts of the frame? The intensity
of the colors, red for positive contribution and blue for negative contribution, indicates
the contribution to the predicted emotion. By inspecting the Shapley value overlays,
users can assess whether the model’s focus aligns with their intuition of emotionally
significant regions within the image.

Regions that are known to convey emotional information, such as faces, would be
expected to be highlighted in the visualization. Other emotional cues could be body
language, such as gestures or posture. For instance, hands might be highlighted in
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various emotional states, or the entire upper body could indicate a state of defensive-
ness or confidence. Context within the frame also plays a role in conveying emotion.
When multiple people are in a frame together, their proximity to each other can be an
emotional cue, being closer together could indicate affection or aggression. Moreover,
people, in context with other items, can show emotional states. It would be interesting
to see if certain items in a certain context would also be highlighted as related to a
certain emotion.

If the highlighted patches consistently fail to align with the regions that would be ex-
pected to have emotional information, this would raise a concern regarding the model’s
reliability or could suggest a bias in the training data. On the other hand, if the parts
of the frame that are highlighted, intuitively align with human perceptions of emotional
cues, this would suggest that the model effectively captures emotions.

Figure 3.7: Visualization design for the mock Shapley values for the visual modality, the left subgraph
shows the original frame in black and white, while the right subgraph presents the Shapley value
overlay, in which the color intensity represents the contribution to the emotion label.

3.5.4 Visualizing the comparison between Shapley values for audio and
text

By analyzing how the Shapley values of words align with the Shapley values of audio
tokens within an utterance, insights into what information from the audio modality the
model finds important for emotions can be gained. A visualization of the alignment
between Shapley values for text and audio modalities needs to both show the words
and incorporate the temporal dimension to correctly match both modalities.
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Along the y-axis, the Shapley values for both audio and text are shown scaled to
the maximum and minimum values. On the x-axis, the utterance is displayed. Each
word’s Shapley value is represented by a bar, where the color (as well as the position
on the y-axis) indicates whether the contribution is positive (red) or negative (blue).
The Shapley values of the audio tokens are connected with a line, the color of the line
as well as the position on the y-axis reflect the overall Shapley value of the token.

In Figure 3.8, the design example of the comparison between Shapley values for
audio and text can be seen of the utterance ’I feel happy, yesterday I did not’. The
example Shapley values for text and audio are 0.1, 0.3, 0.5, 0, -0.3, -0.1, -0.2, -0.5,
and 0.1, 0.4, 0.2, -0.5, respectively. When analyzing this visualization for emotional
utterances, multiple observations could be made.

If the Shapley values of both modalities align, this would suggest that within the
audio modality, the semantics, contribute most to predicting emotions. This implies a
strong correspondence between the linguistic content and the acoustic features captured
by the model.

If no alignment is observed between the modalities together with high audio Shapley
values, this would indicate that other acoustic features beyond semantics might be more
influential, i.e., pitch, intonation, or prosody. For instance, in the example in Figure
3.8, the third audio token has a positive Shapley value (0.2), but it corresponds to the
word ’yesterday,’ which has a negative Shapley value (-0.3). This lack of alignment
suggests that the audio token might be carrying emotional cues through prosody or
intonation that are not captured by the text alone. This could imply that the emotional
tone conveyed by how ’yesterday’ is spoken is significant for the model’s prediction,
despite the semantic meaning of the word itself not being positive in the given context.
Furthermore, this visualization gives information about the contextual information in
the text modality.

3.6 Implementation for the Institute of Sound & Vision

The current thesis is in collaboration with the Dutch Institute of Sound & Vision. As
a product of the current thesis, the multimodal transformer SSE-FT is deployed in
the institute’s pipeline together with the proposed augmented MM-SHAP framework
for interpretable emotion recognition. The implementation can handle raw video’s
with audio files as input from the archive of any size. The implementation first uses
the Automatic Speech Recognition (ASR) model FasterWhisper7 to segment the full
audio and video file in short utterances. The speech from the segments is extracted and
tokenized with RoBERTa (or with the Dutch textual backbone variant RobBERT). The
output of the proposed system is the predicted emotion label for each video segment

7https://github.com/SYSTRAN/faster-whisper
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Figure 3.8: Visualization design for comparing the Shapley values of the audio and text modality, the
graph shows both text and audio Shapley values together, with text Shapley values represented as bars
for each word and audio Shapley values as lines over the corresponding segments of the text.

and the contribution values for each modality.
The contribution of the input within each modality is visualized according to the

method described in Section 3.5. The visualizations of the Shapley values provide
interpretability in the decision of the model for a segment. They can be used to analyze
the characteristics in the video that contribute to emotion, for example, to study a
particular cultural phenomenon or person. Moreover, in the context of producing a fair
analysis for a data story, analyzing modality contributions can help identify biases that
might exist in specific modalities, the model itself, or both.

3.6.1 The Dutch SSL model RobBERT

RoBERTa, the textual SSE model, has the ability to generalize well over other lan-
guages, however, the English model may have trouble capturing the specific nuances
and cultural context of emotions expressed in Dutch. Therefore, in an effort to improve
performance, RoBERTa has been replaced with RobBERT, a Dutch language model.
The architecture and pre-training methods of RobBERT are based on the RoBERTa
model, and the model has been pre-trained on OSCAR, a large Dutch corpus containing
nearly 126 million lines of text [31].

The similarity of RobBERT to RoBERTa makes the swap to the Dutch model reli-
able since the architecture of the model has not drastically changed. The embedding
dimensions of the textual baseline have been altered from 1024 to 768. The MELD
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train and validation utterances were translated into Dutch using the ’googletrans’ li-
brary from Google Translate8. The model was then trained on the translated data,
keeping the audio and video modalities the same.

To check architectural compatibility between RobBERT and SSE-FT, RobBERT is
trained and evaluated on the translated MELD utterances. To find out if improvement
is possible by making balancing adjustments to the dataset, 75% of neutral samples
was eliminated. In both experiments, RobBERT was trained for 5 epochs with batch
size 16.

3.6.2 Sound & Vision case study

The proposed implementation of SSE-FT with the modified MM-SHAP is evaluated on
a selection of videos annotated by Maddalena Ghiotto, who was an intern at Sound &
Vision researching the ontology of annotations for MMER in media culture [43]. For
her research, Ghiotto selected eight videos from diverse Dutch TV shows to form a
corpus and filtered videos on two criteria:

1. Items more likely to portray people expressing emotions: to fullfil such a require-
ment, after a preliminary exploration of items across different genres, talk shows
were identified as the most appropriate genre, as they mostly portray two or more
people engaging in a conversation that involves exchanging opinions about a topic,
often in a subjective and emotionally charged way.

2. Items about queer discourse, in order for Ghiotto to enable further topic analysis
on queer archival material.

From this corpus, Giotto annotated segments for 4 videos that related to queer topics,
as can be seen in Table 3.2. As previously discussed in Section 2.4.1, it is crucial for
annotating emotions to have a clear understanding of the different ways emotions can
be annotated, and make a clear approach for this. In her annotation process, Ghiotto
only annotated the multimodal emotion conveyed by the speaker of an utterance, since
this is the only case where all modalities refer to the same emotion. Each annotation
includes a ’trigger,’ which is a precisely identifiable part in one or more modalities (text,
audio, video) where the annotator recognizes the expression of emotion. For example, a
trigger could be a frowning facial expression in the video, the phrase ’I am hurt’ in the
text, or a louder pitch and tense articulation in the audio. Triggers are categorized as
verbal, visual, or aural [43]. Ghiotto annotated each segment with the emotion category
according to Ekman, the agent who conveys the emotion and the emotional triggers.
Out of 145 utterances, 68 were found to be not neutral.

8https://pypi.org/project/googletrans/
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Name of Program Date Broadcaster Summary of Content

WELLES NIETES 19-03-1988 NCRV Discussion about the statement: ’Can you say
what you think on television?’. In the selected
part, the conversation focuses on the represen-
tation of transgender people in the program
De Nacht, featuring Adelheid Roosen. The
discussion is moderated by Legien Kromkamp.

HET BLAUWE LICHT 17-03-1999 VPRO Biweekly discussion program from De Balie
in Amsterdam presented by Anil Ramdas and
Stephan Sanders, in which various guests dis-
cuss topics and the way in which they are de-
picted using television fragments and photos.
In this episode, the guests comment on some
extracts from a documentary about a trans-
gender person’s transition (Vergezicht: Body
and soul, RVU, 18/03/1999).

TIJDVERSCHIJNSELEN 31-03-1985 VPRO Discussion program led by Ad ’s-Gravesande,
this episode features (mostly pregnant)
women discussing various ways of having chil-
dren, such as traditional methods, artificial in-
semination, and in vitro fertilization. Topics
also include raising children in traditional fam-
ilies, single-parent families, and same-sex cou-
ples, as well as motherhood, surrogacy, and
family planning.

SONJA OP ZATERDAG 06-04-1985 VARA Saturday version of Sonja Barends’ weekly
talk show in which she talks to various guests
about a current topic. In the selected part,
the poet and translator Jim Stratton Holmes
is invited to talk.

Table 3.2: Description of the annotated selected corpus from Ghiotto [43].

3.6.3 Case study evaluation

To analyze and evaluate the proposed implementation of SSE-FT with the modified
MM-SHAP on the typical media from the S & V archive, a case study is conducted on
the corpus with selected non-neutral annotations as discussed in Section 3.6.2. This
involves analyzing the Shapley values for each sample and checking if the key features
(words, audio tones, and visual cues) that contributed to the emotion prediction com-
pare to Ghiotto’s annotated emotional triggers. For each sample, the visualizations for
the textual modality are analyzed to check if SSE-FT understands the emotional cues.
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The utterances from this corpus are extracted from the ASR used in the ’Media
Suite’, the research platform used by Sound & Vision. It was noted that the utterances
extracted are quite long, spanning multiple sentences and pauses. In contrast, SSE-
FT is trained on smaller utterances, spanning between speaking pauses. The longer
utterances may have more emotional information than the shorter ones, or they might
be more complex. For this reason, a precise assessment in terms of accuracy can not
be made, however, a sample-by-sample analysis is done by the author to evaluate the
shorter utterances including the annotated emotion trigger words. For example, the
utterance ’Nou ja ze begonnen dus mee met die bossen te schreeuwen en dergelijke op
een vervelende manier ja ik ben doodzenuwachtig dat dat mag misschien wel maar ik
vond het heel vervelend want er lopen een heleboel van die mensen rond ik heb zelf
persoonlijk eentje gekend.’, is annotated with ’Fear’ due to the verbal trigger ’ik ben
doodzenuwachtig’. To analyze the proposed method, the new utterance ’Ja ik ben
doodzenuwachtig dat dat mag’ is examined to see whether SSE-FT accurately predicts
the emotion of ’Fear’ for this segment and if the Shapley values highlight the verbal
triggers.
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Results

In this section, the results of this research are presented. The results of finetuning
SSE-FT on the MELD dataset are given in Section 4.1. The results from applying the
modified interpretability framework MM-SHAP are discussed in Section 4.2, zooming
in on the modality contribution in Section 4.2.1 and the textual modality in Section
4.2.2. Moreover, in Section 4.2.3, the performance of SSE-FT on the corpus of the
Institute of Sound & Vision is discussed.

4.1 Finetuning SSE-FT

The finetuning method used for SSE-FT is described in Section 3.3.2. Upon evalu-
ation of the SSE-FT model with all modalities on the test set, performance metrics
were obtained and can be found in table 4.1. The accuracy on the test set with fp16
was 58,0%. Accuracy remained the same when fp16 was deactivated. In their study,
Siriwardhana et al. reported a higher performance on the MELD dataset, specifically
an accuracy of 64.3% [97]. However, it is not explicitly stated on which dataset this
result was obtained. During the training process of this research, the model achieved
its highest accuracy of 66.7% on the validation set at epoch 13. However, when the
model was evaluated on the test set using the specified hyper-parameters (trained for
20 epochs), the obtained accuracy was lower.

Dual accuracy was calculated to assess the ability of the model to recognize emotions.
Moreover, the precision, recall, and F1 scores for both the neutral class and the non-
neutral class were calculated. Both results can be seen in Table 4.1. The accuracy for
the neutral class and the non-neutral class is 89,0% and 45,1% respectively. Averaging
this gives a dual accuracy of 67,0%. For the neutral class, the precision is extremely
high, indicating that all predictions are correct (precision = 1). However, the lower
recall for non-neutral classes (recall = 0.45) means that the model is missing many
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actual instances of non-neutral emotions. The classification results can be seen in
Figure 4.3. The model fails to predict the emotion labels: fear, sadness and disgust. In
Figure 4.1, the confusion matrix shows the classification mistakes.

Table 4.1: Performance metrics of SSE-FT.

Metric Neutral Class 7-Class Accuracy Non-neutral Class
Overall Performance (Test Set)
Accuracy 0.89 0.58 0.45
Precision 1.00 0.48 0.83
Recall 0.89 0.58 0.40
F1 Score 0.95 0.51 0.55
Reported by Shiriwadhi et al.
Accuracy 0.64

Table 4.2: Ablation study results of SSE-FT (Test set)

Modality Accuracy Precision Recall F1 Score
Text 0.60 0.54 0.60 0.54
Speech 0.48 0.48 0.48 0.48
Video 0.48 0.48 0.48 0.48
Audio & Video 0.48 0.48 0.48 0.48

Table 4.3: The distribution of predicted emotion classes with the percentage to the total for each
emotion class.

Class Total Predictions

Neutral Anger Joy Suprise

Neutral 1256 1123 (89.43%) 2 (0.16%) 96 (7.65%) 35 (2.79%)
Sadness 208 147 (70.67%) 11 (5.29%) 40 (19.23%) 10 (4.81%)
Anger 345 105 (30.43%) 32 (9.28%) 155 (44.93%) 53 (15.36%)
Joy 402 134 (33.33%) 25 (6.22%) 229 (56.97%) 14 (3.48%)
Suprise 281 65 (23.13%) 24 (8.54%) 64 (22.78%) 128 (45.55%)
Fear 50 27 (54.00%) 1 (2.00%) 15 (30.00%) 7 (14.00%)
Disgust 68 32 (47.06%) 8 (11.76%) 21 (30.88%) 7 (10.29%)

4.1.1 Ablation study

After training the model SSE-FT for each individual modality, the results shown in
Table 4.2 were obtained on the test set; the text modality had an accuracy of 60.0%,
the other ablation studies resulted in an accuracy of 48.1%. From these ablation study
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Figure 4.1: The confusion matrix illustrating the classification performance of SSE-FT across all
emotion labels.

results, it is clear that the model prefers the text modality for predicting emotions from
the MELD test set. To assess whether the audio and video modality can improve each
other’s performance without the text modality, an ablation study was conducted to
assess the impact of combining the audio and video modalities on model performance.
The resulting accuracy obtained from this combination was 48.1%. Without the text
modality, all of the samples are predicted to have the neutral emotion label. In the test
set, there are 1256 neutral samples out of 989 samples in total, this is 48.1% neutral
samples, which explains the score.

4.2 Experiments with MM-SHAP

The proposed interpretability framework, explained in Section 3.4, offers a more com-
prehensive understanding of the model’s decision-making process compared to the ab-
lation studies. While the low performance of the uni-modal and dual-modal models
may indicate issues regarding multimodality, this often doesn’t provide specific insights
into what exactly is going wrong and where the limitations in these models lie. Ap-
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plying MM-SHAP provides a direct metric for which modality contributes the most to
the model’s output. Unlike performance-dependent metrics such as the ablation study,
MM-SHAP offers insights into modality contributions regardless of the model’s overall
performance. This means that even for misclassified samples, MM-SHAP can iden-
tify which modality had the greatest influence on the model’s decision. In an ablation
study, the model is trained on a subset of modalities, for this reason, the metric may
not account for the interaction between modalities in the full model. Conducting ex-
periments with the full multimodal model intact can offer a more accurate assessment
of its performance. The results regarding the modality contributions are discussed in
Section 4.2.1, and the Shapley values from the textual modality are analyzed in Section
4.2.2.

While initially, this research included plans to analyze Shapley values for text, audio,
and video, the current implementation of SSE-FT trained on the MELD dataset does
not use the audio and video modality. It attributes near-zero Shapley values for the
audio and video modalities due to uni-modal collapse. Hence, the analysis of the video
and audio modalities is infeasible. Nevertheless, the visualizations for the audio and
video modality as well as the comparison visualization for audio and text Shapley values
are ready to use as they are described in Sections 3.5.2 (Audio), 3.5.3 (Video), and 3.5.4
(Text and Audio).

4.2.1 Modality contribution

Upon testing SSE-FT with all modalities on the MELD test set, it became apparent
that computing the overall modality contribution on the complete MELD test set was
too time-consuming for the available computational resources. As a result, a selection
process was undertaken, which included correctly classified samples for each emotion
class, as well as samples misclassified for each other emotion label. This selection
process yielded a total of 55 samples for analysis. When assessing the overall modality
contribution on this selected sample set, it was found that the textual modality achieved
a contribution of T-SHAP of 99.8%. This indicates that SSE-FT likely experiences
uni-modal collapse on the MELD dataset, where the model heavily relies on a single
modality (in this case, text) while disregarding the information from other modalities.

4.2.2 Analyzing the textual modality

The interpretability framework outputs Shapley values for each textual input token.
These Shapley values are helpful for understanding the importance of each part of the
input, but they first need to be put into context for their correct interpretation. To
increase interpretation, the Shapley values are visualized for each sample in the selected
MELD test subset, as described in Section 3.5.1. In Section 4.2.2.1, the text modality
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from the samples is analyzed, visualizing the unique words in a sentence, without their
specific context. In Section 4.2.2.2, the text modality is analyzed with the contextual
information.

4.2.2.1 Semantic influence

Within an utterance, a distinction can be made between words and paralinguistic cues.
Each category has another role in carrying meaning and nuance, and thus in distin-
guishing emotional states.

4.2.2.1.1 Paralinguistic cues From the textual Shapley value visualizations, it be-
comes apparent that punctuation is the most important cue for emotion. In all samples
that are predicted as ’Joy’ , the token ’ !’ was represented as least once, and has a total
Shapley value of at least 0.25. An example of this can be seen in Figure 4.2.

Figure 4.2: Visualization of the Shapley values for the utterance ’Yeah, there you go !’.

In the textual modality, punctuation can function similarly to prosody in audio,
which includes aspects like volume, pitch, and intonation. Punctuation can be inter-
preted as paralinguistic cues that express the emotional state of the writer [22].

It’s important to note that paralinguistic cues alone don’t determine a writer’s or
speaker’s emotion. Instead, a fuller understanding emerges from considering verbal
meaning alongside these cues, within the context of the text’s type and genre. In
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samples that are predicted as ’Surprise’, the tokens ’ !’ and ’?’ as well as their alterations
’ !?’ and ’ !!’ are frequent and have high Shapley values. For the emotion surprise, these
tokens are often co-occurring with the words ’what’, ’Oh’, ’Huh’, ’No’, ’Why’, ’Who’,
and ’God’.

The results indicate that in the context of transformers trained to recognize emo-
tional cues, paralinguistic cues from punctuation can give a strong signal that a sentence
is not neutral.

4.2.2.1.2 Emotional words It would be expected to see certain emotional words high-
lighted with high Shapley values. However, it seems that a sample never gets predicted
emotionally because of a single emotion baring word. In all cases, a punctuation emo-
tion cue breaks the neutrality. There are examples where emotional words such as
’frown’ or ’betrayal’, ’sorry’, ’broke’, ’worry’, and ’great’ contribute negatively to a
neutral label.

If a word contributes negatively to a neutral label, it makes sense that this word
contribute positively to an emotional label, like ’sadness’, ’happiness’, or ’anger’. For
example, it would be expected if the word ’sorry’ would contribute positively to the
label ’sadness’; this implies that the model has captured the semantic meaning of the
word and accurately associates it with the emotional context of sadness. Some examples
from the selected test are zoomed into.

1. The utterance ’I mean if you buy a bed from Janice’s ex-husband, that’s like
betraying Chandler.’, is annotated as anger. The word ’betraying’, contributes
-0.12 to the neutral label, +0.028 to the anger label, +0.032 to joy, and +0.008
to surprise. As can be seen in the confusion matrix, joy and anger get swapped
often, and the model is not nuanced enough to differentiate between the two.

2. The utterance ’When I get up there I’m going to kick some ass’ is annotated with
anger. While ’When I get up there’ remains neutral, ’I’m going to kick some ass’
shifts the tone away from neutrality, namely ’kick’ and ’ass’ contribute -0,1 and
-0.17 to the negative label respectively. The same words contribute positively to all
other emotion labels. ’Kick’ contributes 0.04 to joy and 0.016 . ’Ass’ contributes
0.08 to joy and 0.016 to anger. The visualization of the contribution of the tokens
from this utterance can be seen in Figure 4.3.

4.2.2.1.3 Neutral bias In the example in 4.3, we see negative Shapley values for the
majority of the tokens in the sentence; however, such as in this sample, in some cases
the sample is still predicted as ’Neutral’. When looking at the base value for the neutral
label for this sample, it is observed to be 0.832, suggesting a high baseline prediction
for neutrality. This is supported by the observation that Shapley values for tokens
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indicating positive contributions to emotional labels are significantly lower than those
indicating negative contributions to the neutral label.

Figure 4.3: Visualization of the Shapley values for the utterance ’When I get up there I’m going to
kick some ass’.

4.2.2.2 Contextual influence

Does the model use context for emotion prediction? In Figure 4.3, it can be seen that
fairly neutral words like ’I’, ’am’, and ’going’ contribute negatively to the neutral label
and positively to other emotion labels. In the context of the sentence ’I’m going to kick
some ass,’ the fairly neutral words gain emotional weight and contribute to the overall
sentiment. Another example is the utterance ’I broke it.’ as shown in Figure 4.4.
The word ’it’ is inherently neutral; however, when combined with the word ’broke,’
it acquires a non-neutral weight. The phrase ’broke it’ reveals that ’broke’ implies
physical damage, thereby conveying a negative sentiment. All other meanings of the
word ’broke’ convey a negative sentiment: failure or bad financial status. The word ’it’
specifies the object affected by the negative action. These examples suggest that the
model can understand context and uses it to detect the emotional tone of a sentence.
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Figure 4.4: Visualization of the Shapley values for the utterance ’I broke it.’.

4.2.3 Evaluating SSE-FT on a selected corpus from the Sound & Vision
archive

The model SSE-FT with the interpretability framework was evaluated on a selected
corpus from the archive of Sound & Vision described in Section 3.6. The model consis-
tently misclassified emotional utterances, assigning a neutral label to all instances. This
outcome was anticipated, as the model relies only on the textual backbone trained on
English text data while the annotated utterances are in Dutch. RoBERTa, the textual
SSE model, possibly cannot capture the emotional cues from the Dutch text. There-
fore, in an effort to improve performance on the archive, RoBERTa has been replaced
with RobBERT, a Dutch language model. This resulted in an accuracy of 48% on the
MELD validation set with translated utterances.

The new instance of SSE-FT with the Dutch textual backbone again consistently
predicted the neutral label on the corpus from the archive. A high ’neutral’ baseline
was observed: 0.49. Unfortunately, the annotated emotional triggers from the selected
corpus described in Section 3.6.2 could not be compared to the Shapley values for
audio, text, and video. Namely, running SSE-FT using RobBERT with the proposed
interpretability model resulted in near zero Shapley values for all modalities.

To check whether the low performance is due to the architectural incompatibility or
to RobBERT’s general performance on the MELD dataset, RobBERT is trained and
evaluated on the translated MELD utterances. This also results in an accuracy of 48%,
in which only the neutral label is predicted. After deleting 75% of ’Neutral’ samples,
the accuracy on the validation set is 56%.
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Discussion

The aim of this research was to explore the interpretability of multimodal models for
emotion recognition and to implement a multimodal model for the Sound & Vision
archive. For this research, the state-of-the-art multimodal model SSE-FT was fine-
tuned on the MELD dataset for emotion recognition. The performance of SSE-FT with
all modalities included, measured with 7-class and dual class accuracy, was 58% and
67% on the MELD test set, respectively.

The interpretability framework MM-SHAP was used to investigate the multimodality
of the model as well as to zoom in on each modality and find out what parts of the
input are influential in recognizing emotions. MM-SHAP, tailored for vision & language
models, was extended to handle the input format of SSE-FT, including text, audio, and
video.

MM-SHAP was run on a selected dataset from the MELD test set representing
correctly classified and misclassified samples, this resulted in T-SHAP 90.8%, I-SHAP
0.01% and A-SHAP 0.01%. These results indicate that the model SSE-FT has uni-
modal collapse on the MELD dataset. To verify this result, ablation studies were done
on the single modalities as well as with the combination of audio and video. These
ablation studies showed that the uni-modal performance for text was 60.0%, and for
each audio, video and audio-video 48.1% only predicting the ’neutral’ class. These
results confirm the uni-modal collapse. Part of this research included analyzing the
influence of the input within single modalities on recognizing emotions. Due to SSE-
FT only using the information from the text modality, the interpretability results for
text from MM-SHAP are analyzed. The analysis of the visualizations for the textual
modality supports the belief that the model has captured semantic and contextual
emotional cues from the data.

For the implementation for the Institute of Sound & Vision, SSE-FT was trained
on the translated MELD train set, substituting the English textual backbone roBERTa
for the Dutch language model robBERT. SSE-FT was then tested on a selected corpus
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from the Sound & Vision archive. In the following subsections, the results from SSE-FT
on the MELD dataset (Section 5.1), the results from analyzing the contribution of the
textual modality (Section 5.2), the results from testing SSE-FT on the Sound & Vision
archive (Section 5.3) are discussed. Furthermore, the limitations of this research are
given in Section 5.4, and future research is described in Section 5.5.

5.1 The performance of SSE-FT on the MELD dataset

In this section, the performance of SSE-FT on the MELD dataset is discussed. First,
the results from the current research in comparison to the reported results in the original
paper of SSE-FT is discussed in Section 5.1.1. Secondly, the causes for SSE-FT’s low
performance and its uni-modal collapse are explained in Section 5.1.2. And lastly,
SSE-FT’s ability to discern emotions is discussed in Section 5.1.3.

5.1.1 Reported results in the original SSE-FT paper

As described before, SSE-FT performs significantly lower on the MELD test set than
reported in the original SSE-FT paper, namely 58% instead of the reported 64,3%, while
maintaining the same hyper-parameters. Apart from evaluating on the MELD dataset,
the authors evaluated SSE-FT on the CMU-MOSEI dataset as well as the IEMOCAP
dataset measured with averaged F1 scores, 87.0 and 84.2 respectively. MELD is the only
dataset for which F1 scores are omitted. It is not clear what causes the performance
difference, but it does raise an issue for reproducability. Other multimodal models
bench marked on the MELD dataset obtained a similar result, namely the hierarchical
biLSTM 60,8 % and QIN 61,9 % [119, 80]. None of the multimodal models benchmarked
on the MELD dataset including SSE-FT, have performed an ablation study to assess
multimodality.

5.1.2 Low performance and the causes for uni-modal collapse

SSE-FT has low performance on the MELD dataset. Ablation studies on the CMU-
MOSEI dataset imply increased performance with the current multimodal architecture
of SSE-FT. However the ablation study in this research shows that the uni-modal
model for text outperforms the multimodal model with text, audio, and video. The
results from applying the interpretability framework and the ablation studies indicate
that SSE-FT only relies on the textual modality for prediction, resulting in uni-modal
collapse.

The model could fall back on the textual modality possibly for a series of reasons.
From the results reported, and based on the results of this research it is likely that the
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uni-modal collapse has to do with SSE-FT not being able to fully use the visual and
aural information from the training samples.

Firstly, it could be, when finetuning data is limited or imbalanced, that the strengths
of the three self-supervised learning (SSL) models, RoBERTa, Wav2Vec2, and Fabnet,
vary significantly in zero-shot emotion recognition tasks, and therefore the model might
heavily rely on one of the pre-trained models. RoBERTa has robust language under-
standing capabilities and performs well in zero-shot emotion recognition, as has been
tested on the MELD and IEMOCAP dataset [54]. Moreover, research shows that the
frozen Wav2Vec2 model performs well in speech emotion recognition evaluated on the
IEMOCAP dataset with minimal finetuning [111]. However, at Spoken Language Un-
derstanding (SLU), including Intent Classification (IC) and Slot Filling (SF), Wav2Vec2
performs poorly, which suggests that the frozen model cannot hold complete seman-
tic information. No research is found on evaluating Fab-Net on the task of emotion
recognition.

However, the exact architecture of SSE-FT was implemented (including the same
embedding sizes) and evaluated on the RAVDESS dataset, and achieved the weighted
F1 score over all emotion class labels of 81.68 for the multimodal model [24]. The
uni-modal models achieved the weighted F1 score of 80.87 (Wav2Vec2), 82.87 (Fabnet),
and 81.12 (RoBERTa). This indicates that the SSL models perform well for the task
of emotion recognition, and the uni-modal collapse is not likely due to the architecture
of the model.

The RAVDESS dataset contains 7356 recordings, including both speech and song,
performed by 24 actors (12 male, 12 female) in North American English. The dataset
consists of raw .wav and .mp4 files that cover the emotional states: calm, sad, happy,
neutral, surprised, disgust, fearful, and angry as can be seen in Figure 5.1.

The performance difference of the proposed architecture on the MELD dataset com-
pared to RAVDESS can be explained by several factors. MELD contains acted conver-
sations from the TV show ’Friends,’ with flat, context-dependent emotional expressions.
In contrast, RAVDESS has controlled, scripted recordings with exaggerated emotional
expressions by actors, making the emotions clearer and more consistent. Additionally,
MELD has an imbalanced distribution of emotion classes. Out of the 9988 MELD train-
ing samples, 48.12% is neutral, and emotional labels are underrepresented; 15.4 % joy,
13.22 % anger, 10,77% surprise, 7.97% sadness, 2.71% and 1.91% fear. The imbalance
is causing the model to overfit on the neutral samples, preventing it from learning the
data distribution, which results in the model failing to correctly distinguish boundaries
between different emotion classes. On the contrary, the RAVDESS is balanced over all
emotion classes.

These differences might account for the uni-modal collapse to the textual modal-
ity. The textual emotional cues are stronger and more straightforward, since in text,
emotions are directly expressed through words, phrases, and paralinguistic cues. In
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contrast, the emotional cues in video and audio are much more nuanced and indirect,
hence the model needs more or clearer data samples for each emotion to fully capture
the nuances. MELD does not have enough clear samples from each emotion class for
SSE-FT to learn these nuances in the audio and video modality, the model falls back
to the more direct textual emotion cues for prediction. Imbalance is a frequent and
natural occurrence in multimodal datasets for emotion recognition [71]. To solve the
imbalance in the data, multiple methods have been proposed, and this issue is discussed
in Section 5.5.

Figure 5.1: Examples of the eight RAVDESS emotions, Figure from [15]
.

5.1.3 Emotion class confusion and the need for interpretability

SSE-FT has trouble discerning the emotional class boundaries, however, when calcu-
lating performance with dual accuracy, which is 67%, it can be confirmed that in a
lot of cases, the model does recognize the presence of emotion. The confusion matrix
in Figure 4.1 shows that, apart from each emotion class to be confused with the ’neu-
tral’ class, emotion classes are often confused and classified as ’Joy’ and ’Anger’. From
the performance based metrics alone it is unclear what causes these confusions. This
emphasizes the importance of creating interpretability, since these emotion class confu-
sions among more details of feature importance are analyzed with the interpretability
framework and discussed in Section 5.2.

5.2 Analyzing SSE-FT with the interpretability framework

For the exploration of the decision making process and performance of a multimodal
model for emotion recognition, in this research, MM-SHAP is modified and applied
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to SSE-FT. In this section, the representation of the modalities (Section 5.2.1), the
effectiveness of the interpretability framework in assessing multimodality (Section 5.2.2)
and the results from analyzing the textual modality with the interpretability framework
(Section 5.2.3) are discussed.

5.2.1 Token representation

For MM-SHAP, representation tokens were created for each modality, and each modality
is represented differently. In the following sections, the token representations for text
(Section 5.2.1.1), video (Section 5.2.1.2) and audio (Section 5.2.1.3) are discussed.

5.2.1.1 Text token representation

The text modality representation is the most straightforward, since the textual input
corresponds one to one with the tokens used as input to represent the textual modality
for MM-SHAP. The model SSE-FT requires the text to be preprocessed with tokeniza-
tion, without removing punctuation and start and end symbols. It is later determined
that it is these paralinguistic cues, such as punctuation, that the model uses most in
recognizing emotion. Removing these paralinguistic cues in the preprocessing phase
might potentially prevent the model from overfitting on these types of emotional cues
and prioritize semantic cues from words. Thereby, the model might increase its capacity
to generalize on the textual input. However, training the model on a more balanced
dataset would eliminate the need to apply this preprocessing step, since the overall
capacity of the model to recognize emotions from text would possible be better.

5.2.1.2 Video token representation

For representing the video modality, the input of 256 x 256 is divided in 16 patches, so
called ’superpixels’ of the size 16 x 16. This method is cost efficient, since the number
of tokens has a limit. For the task of emotion recognition, it might be more preferable
if the different facial attributes, such as the spacing between facial features could be
differentiated in the visualization. However, to acquire these details, the computational
cost would be infeasible. For application, such as to the archive of the Institute of Sound
& Vision, it is preferable if the interpretability method takes minimal time recourse.
With the current method, the faces of the people in the videos from the MELD dataset
often fit in two superpixels. Although the influence of the features in the face is less easy
to interpret, if the model assigns a high contribution to the superpixels containing the
face for a certain emotion this gives confidence in the outcome. Moreover, as previously
discussed, the superpixels could be used to highlight other potentially emotional cues,
such as a person’s posture or items. For this reason, the proposed token representation
for the visual modality is helpful for assessing the model’s robustness.
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A possible alternative to superpixels would be to create more semantically mean-
ingful tokens. In their work, Cafagna et al. proposed such a method, using the visual
concepts from the visual backbone of a Vision & Language model [16] which preserve
semantics. However, their method is unsupervised and produces partitions that do not
always exactly sum up to the total size of the image. To solve this issue, the authors
create a leftover mask to fill in the unassigned space in the image, however, some tokens
still overlap. This method is efficient for creating meaningful interpretations, although
it creates an issue for the calculation of the modality contribution. For calculating
T-SHAP, V-SHAP, and A-SHAP, the tokens can not overlap, as the visual modality
would be attributed to much contribution. Possible solutions to this issue are discussed
in Section 5.5.

5.2.1.3 Audio token representation

As previously discussed in Section 2.2.1.2, the audio modality is very important for
discerning emotions, making it essential to include it in the analysis of emotions with
MM-SHAP. The proposed modification of MM-SHAP is the first to incorporate the
audio modality into the interpretability analysis of a multimodal model. In the proposed
method, the tokens representing the audio modality are chunks of waveform values
spanning half a second each. This method makes it possible to analyze the semantic
properties in the audio and compare the contribution of a spoken word in the audio
modality to that of the corresponding word in the text modality. The duration of half
a second is an estimation of the average duration of a word in the MELD dataset.
Limitations and future work regarding the token representation of the audio modality
can be read in Sections 5.4 and 5.5.

5.2.2 The interpretability framework and uni-modal collapse

The proposed interpretability framework shows to be very effective in application. The
uni-modal collapse is clearly visible in the results obtained from the interpretability
framework, where T-SHAP is observed 99.8% for the selected samples. The inter-
pretability framework eliminates the need for ablation studies on multimodality, as its
results directly reflect the importance of each modality on the whole dataset. Abla-
tion studies isolate one modality and might, because of this, overlook the interactions
between the modalities in the complete model. Furthermore, as previously mentioned,
MM-SHAP includes incorrectly classified samples in the multimodality assessment, and
therefore creates a more exact measurement. MM-SHAP was originally tested for tasks
such as VQA and image-sentence alignment basing the Shapley value on discrete task
scores. In the proposed method, the Shapley values are calculated based on the changes
in softmax values to the predicted emotion label. This research has demonstrated MM-
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SHAP’s ability to translate effectively to the task of emotion recognition with the
proposed modifications.

5.2.3 Interpretability within the text modality

Apart from effectively assessing the multimodality of the model SSE-FT, the proposed
interpretability framework also has the ability to provide modality specific interpreta-
tions and visualize these. Unfortunately, due to the uni-modal collapse, there are only
results for the textual modality. The interpretability framework gives insight in how
different tokens in the text modality are important for predicting emotions. The results
show that paralinguistic cues such as punctuation attribute the most to the prediction
of an emotional label. The emotion labels, ’joy’, ’anger’, and ’surprise’ can be recog-
nized by punctuation. Surprise is classified when the symbol ’?’ is present, ’joy’ and
’anger’ are often confused since both samples often have a ’ !’ present in the utterance.
From just the confusion matrix, it would be a guess as to why ’joy’ and ’anger’ are con-
fused often, however, the interpretability gives us information on the process behind
this prediction.

Furthermore, it was found, that in samples misclassified as the neutral label, a
negative contribution is assigned to words that have an inherently negative or positive
sentiment. This tells us that SSE-FT has captured some of the semantic meaning of
the words with their emotional load. Moreover, apart from the semantic meaning of the
tokens in the textual modality, the context of the words and their place in the sentence
also influence their emotional load. The results suggest that the model uses context for
predicting emotions. Emotionally neutral words receive a negative contribution to the
neutral label when paired with other words that make the sentiment of the grouped
words non-neutral. To make definite statements about the use of context by SSE-FT,
further assessment is needed and is discussed in Section 5.5.3.

Additionally, a fairly high baseline for the ’neutral’ label was observed from the
Shapley values of the textual modality. As most samples are predicted ’neutral’ and the
base-line reflects the average prediction of the model, this is not unexpected. However,
it is a clear sign that SSE-FT has a bias for the ’neutral’ label, caused by the imbalance
in the training data. This also reflects a lack of strong indicators for other emotional
labels in the textual modality. This is supported by the observation that Shapley values
for tokens indicating positive contributions to emotional labels are significantly lower
than those indicating negative contributions to the neutral label. The lower Shapley
values for tokens indicating positive contributions to emotional labels imply that the
model may require stronger evidence from these tokens to decide which emotional label
to predict, since now the contributions are divided over all emotional labels. The bias
towards the ’neutral’ label can be reduced, for instance, by applying class weighting or
data augmentation, which is discussed in Section 5.5.
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5.3 The performance of SSE-FT on the Sound & Vision archive

Due to the unavailability of well annotated Dutch datasets for multimodal emotion
recognition, a cross-lingual approach was proposed, training on the American English
MELD dataset and testing on Dutch videos from the Sound & Vision archive. From the
results, however, it was shown that the MELD dataset provides insufficient emotional
cues for the audio and video modality, and SSE-FT relied most on the paralinguistic
text cues for discerning emotion. The English model was unable to recognize emotional
content from the videos in the archive as paralinguistic text cues were not present in
these videos.

For this reason in efforts to improve the performance of SSE-FT on the S&V, the
model was trained and evaluated with the textual backbone RobBERT on the translated
MELD utterances; however, this made performance worse. Evaluating SSE-FT with
RobBERT as expected also resulted in poor performance on the selected dataset from
the archive of S%V, only predicting the neutral label. The interpretability framework
gave near-zero Shapley values and a high neutral baseline, which indicates that learned
emotional cues are weak.

Research on the perseverance of emotion classes after translation from English to
Finnish, French, and Italian deemed the degree of perseverance sufficient for cross-
lingual approaches [74]. Difficulties arise when translation becomes ambiguous or in-
complete. After carefully assessing the translations, utterances with English ’Slang’ and
typical phrases became somewhat ambiguous due to a lack of correct context. However,
no radical changes in semantics were found, and paralinguistic cues were preserved. Be-
cause of time constraints, the proposed interpretability framework could not be applied
to the model with the Dutch textual backbone, however, the performance suggests that
the emotional cues in the translated text were too nuanced or ambiguous for RobBERT,
and although preserved in the translations, the paralinguistic emotional cues this time
were not sufficiently learned. Moreover, since only the text modality was translated in
this model instance, the audio is still in English, the poor performance of the model
with RobBERT could be caused by the incompatibility of the Dutch text with English
audio. However, this is most likely not the cause since the performance of the English
uni-modal model was at least as good as the English multimodal model. RobBERT
was evaluated without the structure of SSE-FT to find out if the low performance was
caused by implementation faults or architectural incompatibility, this resulted in the
same accuracy as using RobBERT within SSE-FT. Eliminating 75% of ’neutral’ sam-
ples in the train and validation set resulted in an accuracy of 56%, which suggests that
solving the imbalance of the dataset can improve the performance of RobBERT as well
as SSE-FT with RobBERT as the textual backbone.
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5.4 Limitations

In this research, the interpretability framework MM-SHAP is modified to analyze the
audio and video modalities. While, the results show that the proposed method correctly
processes the model input and applies the SHAP Explainer to the multimodal model
for emotion recognition, some limitations of this research have been identified and
discussed. Limitations in testing the interpretability framework (Section 5.4.1), the
representation of the modalities (Section 5.4.2), the resources provided by Sound &
Vision (Section 5.4.3) and the MELD dataset (Section 5.4.4) are explained.

5.4.1 Limitations of evaluating the interpretability framework

Due to the uni-modal collapse of SSE-FT fine-tuned on the MELD dataset, only the
textual modality could be explored. The method for incorporating audio and video is
fully developed, but has not been used to analyze emotional cues as done with the tex-
tual modality. Therefore, the effectiveness of the proposed interpretability framework
for the audio and video modalities has only been reasoned theoretically and has not
been empirically tested.

This limitation could lead to potential issues in applications, as the framework’s
capability to provide interpretability for the video and audio modality through visual-
ization is unverified. Additionally, due to the limited computational resources available,
the proposed method was only evaluated on a subset of the MELD test set described
in 4.2.1, which might affect the robustness of the evaluation.

5.4.2 Limitation within the interpretability framework

Some limitations related to interpretability lay in the choices made for representing the
audio and video modality. In visualizing the audio modality, the amplitude is plotted
together with the audio tokens. In this visualization, a user is expected to interpret the
audio waveform. However, as spikes in the waveform represent syllables rather than full
words, reading the waveform can become challenging, especially for longer words and
utterances. This visualization is therefore more valuable when analyzing the emotional
cues in the amplitude, but for other analyses, such as examining the semantics within
the audio modality, this visualization might be less interpretable. In such cases, the
visualization comparing the audio and text modality is preferred, as it has a clearer
alignment between spoken words and their corresponding Shapley values.

Moreover, the current representation of the audio modality only considers the am-
plitude, ignoring other acoustic properties. Apart from speech, other sounds such as
laughter, music, or ambient noises (e.g., rain, objects falling) can also convey emo-
tions. These non-speech audio elements pose a challenge for the current method, since
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they also spike the amplitude. While the method allows users to listen to the audio
and verify whether highlighted segments contain emotional cues, it does not inherently
differentiate between types of audio. It is worth noting, however, that in the MELD
dataset, utterances are very short and mostly consist of spoken words.

To create interpretability in the semantic properties of the audio, a visualization
of the comparison between audio and textual Shapley values has been designed. A
limitation of this is that the audio and text tokens do not perfectly align with each
other. There are often fewer audio tokens than text tokens, and an audio token is
not designed to represent a single word. This misalignment limits the accuracy of the
comparison and the interpretability of the visualization. To increase interpretability,
a more exact estimation for the length of the audio tokens could be made, which is
discussed in 5.5.

5.4.3 Limitation in the resources of Sound & Vision

Limitations can be identified in the application of SSE-FT fine-tuned on the MELD
dataset for the Sound & Vision archive. The multimodal model SSE-FT for emotion
recognition with the interpretability framework has been fully developed to function on
the archive, however, due to SSE-FT’s inability to fully use the information from the
visual and audio modality, performance is quite low. The current instance of SSE-FT
relies fully on the textual modality and is therefore effectively a uni-modal text model
for emotion recognition.

Furthermore, during the process of this research, there was no dataset available
for finetuning SSE-FT on data from the archive. Therefore, it was decided to use
the large benchmarked dataset, MELD, for finetuning. Due to the unavailability of
computational power from Sound & Vision, it was not feasible to finetune SSE-FT on
data from their archive. The current implementation can easily be fine-tuned on a more
representative dataset for the archive, whenever data and computational power become
available.

5.4.4 Limitations in the MELD dataset

As previously discussed, issues regarding the uni-modal collapse arise due to limitations
in finetuning SSE-FT the MELD dataset. Apart from the imbalance in training samples,
several characteristics of the dataset could pose challenges. The MELD dataset consists
of acted dialogues, which can differ a lot from the content in a television archive, such as
talk-shows and interviews, showing conversations between real people. Acted emotions
might be exaggerated and less nuanced compared to real emotions, affecting the model’s
ability to generalize well.

Moreover, the filming style and editing techniques in MELD, designed for comedic
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timing, differ from the more static filming in television archive formats such as talk-
shows. Additionally, the presence of a laughing track in MELD, added for comedic
effect, may give artificial emotional cues that are not present in natural conversations.
During the annotation process, some utterances with subtle emotional nuances may
be perceived as more humorous due to the laughing track, which could bias towards
annotating an emotion.

Furthermore, the MELD dataset mostly features the main seven characters from the
Friends series in the conversations, while the archive has a wide variety of speakers.
The model might learn specific patterns related to the seven characters, and this can
affect generalization.

5.5 Future work

From the described limitations in Section 5.4, a series of directions for future research
can be followed. The future work is structured as follows: solutions for increasing the
performance of SSE-FT will be given in Section 5.5.1, improvements for representing
and visualizing the modalities for the interpretability framework will be given in Section
5.5.2, additional experiments with the interpretability framework will be explored in
Section 5.5.3 and lastly, a method, using the attention mechanism in transformers,
for assessing the robustness of the proposed interpretability framework is discussed in
Section 5.5.4.

5.5.1 Increasing the performance of SSE-FT for the Sound & Vision archive

As previously discussed in Section 5.1.2, the low performance of SSE-FT and the uni-
modal collapse are most likely due to the inability of SSE-FT to capture visual and
aural emotional cues from the MELD samples. This stands in contrast to its good
performance on the RAVDESS dataset. The MELD dataset was chosen for this research
because it includes multi-party conversations, that closely resemble the content of Sound
& Vision.

To improve SSE-FT’s performance for Sound & Vision, multiple approaches could be
evaluated in future work. Initially, SSE-FT could be trained on the RAVDESS dataset,
which contains clearer emotional expressions in the audio and video modality. This ini-
tial training could potentially result in good performance on the archive. Subsequently,
SSE-FT could be finetuned on the MELD dataset or a specially crafted corpus directly
from the archive.

Alternatively. another approach would be to address the performance issues of SSE-
FT on the MELD dataset directly, namely, SSE-FT would require more clear emotional
samples to capture visual and aural emotional cues. This can be acquired by applying

K.K. de Boer 85



CHAPTER 5. DISCUSSION

several approaches to fix the imbalance and neutral bias in the dataset. These ap-
proaches fall into three main research directions: data augmentation, sampling strate-
gies, and loss-sensitive methods.

With data augmentation, new samples could be generated by modifying the original
MELD samples for the underrepresented emotion class samples. Since the samples in
the MELD dataset are multimodal, involving text, audio, and video data, this pro-
cess becomes more complex, since most augmenting techniques are modality specific.
One solution, that could be used for multimodal input, would be to create adversarial
examples with a Generative Adversarial Network (GAN) [71].

A more straightforward way of fixing the imbalance is by applying a sampling strat-
egy. Future research could balance the class distribution by doubling the samples of
underrepresented emotion classes or halving the ’Neutral’ samples. Eliminating 75%
of ’neutral’ samples, improved the performance of RobBERT on translated MELD ut-
terances by +8% accuracy. Furthermore, imbalance could be tackled by applying a
loss sensitivity method, by assigning higher weights to the loss function for underrep-
resented classes. For example, the loss of each sample could be multiplied by a weight
factor that is inversely proportional to the sample class frequency. This way, errors
made in predicting emotion classes such as ’Disgust’ and ’Fear’ have a greater impact
on the overall loss, and the model learns to pay more attention to these emotions.

Moreover, as a cross-linguistic approach using the English RoBERTa and an En-
glish dataset may give lower performance on the Dutch video’s, future works could use
the multi-lingual version of BERT, mBERT, as a tokenizer and textual backbone for
finetuning on both an English and Dutch dataset [34].

5.5.2 Improving the interpretability framework

Within the proposed interpretability method, a few improvements could be explored in
future work. Firstly, the token representation for the spatial dimension of the visual
modality could be more semantically meaningful, as discussed in Section 5.2.1.2. Future
research can apply approaches such as those proposed by Cafagna et al., using the visual
priors in the model. However, a method needs to be created to ensure a complete
partition of the frame. This could possibly be done by defining the overlap and cutting
the intersection from the token space. Other visual hand-picked masking techniques
could be explored to experiment with visual emotion cues, such as partitioning the
frame in front and background. Moreover, other object recognition methods could be
explored to assess the emotional cues of items, faces, and body parts.

Secondly, to assess the ability of multimodal models to use textual context to discern
emotion classes, NLP techniques can be used. For example, n-grams could be used to
represent tokens, comparing Shapley values for different n-grams can give insights into
the use of context. For instance, the bigram ’very happy’ might have a higher Shapley
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value than the individual words ’very’ and ’happy’ alone, indicating that the context
provided by the combination is significant for emotion recognition. Moreover, adding
’not’, creating the trigram ’not very happy’ might provide context that changes the
contribution of the token from positive to negative to the class ’Joy’. Additionally,
Part Of Speech tagging could be applied to analyze syntactic patterns and context. For
instance, a certain word can provide different emotional clues as a adverb compared to
an adjective.

Lastly, future research can improve the alignment of the text and audio tokens in the
Shapley value comparison visualization. By including time stamps at the word level,
the framework could determine the exact length of the audio tokens to correctly assess
the semantic properties of the audio modality. This would increase the interpretability
for audio modality and the reliability of both the audio and the textual modality. Time
stamps can be saved using an ASR method such as Whisper.

5.5.3 Additional experiments with the interpretability framework

Several other experiments could be suggested for future work with the proposed in-
terpretability method. Firstly, once SSE-FT’s performance in recognizing emotions
is improved or if another multimodal model with good performance is available, the
proposed interpretability framework should be applied to assess the video and audio
modality. The following experiments mentioned in Section 3 can be conducted in future
research. T-SHAP, V-SHAP, and A-SHAP can be calculated for each emotion label to
get insights into how each modality contributes to the recognition of emotions. The
results from these experiments can be compared to the results from Khalene et al., who
applied SHAP to find out the influence of features extracted from the CMU-MOSEI
dataset and corresponding modality on various emotion classes [51].

With the proposed interpretability framework, future research could analyze the
video and audio modality to find shared patterns among samples that predicted the
same label, to find out which features from the modalities give emotional cues, such
as with the textual modality. Moreover, samples with the same highest contributing
modality can be analyzed to find out which features globally are most influential within
a modality. Moreover, patterns in misclassified samples for audio and video can be
analyzed to identify potential weaknesses or biases in the model with respect to these
modalities.

Furthermore, experiments can be conducted for the temporal dimension of the visual
modality to highlight the frame with the highest contribution. The highest contributing
frame can then be visualized to increase the interpretability of the spatial visualization.

Finally, the proposed interpretability method could be applied to other multimodal
models for emotion recognition to analyze the robustness of these models and the frame-
work itself.
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5.5.4 Assessing the robustness of the interpretability framework

Although for evaluating their framework, in the original paper, MM-SHAP is compared
to ablation methods and the Perceptual Degree, a quantitative comparison with the
method using the attention mechanism is absent. Both methods, MM-SHAP and the
attention mechanism, offer global and local insights, as can be read in Sections 2.5.1.1
and 2.5.1.3, and a comparative analysis considering both methods would increase the
proposed method with the modified MM-SHAP. For each input token, Shapley values
can be compared to attention values extracted from the last transformer block. Fu-
ture research could study the extent of modality contribution at the sample, label, and
dataset levels for SSE-FT on the MELD dataset according to the attention mecha-
nism. This could determine whether there is a consistent agreement or divergence in
results between the MM-SHAP framework and the attention mechanism when assessing
modality contribution.
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Conclusion

In collaboration with the Dutch Institute of Sound & Vision, the current thesis explored
the development of an interpretable multimodal for emotion recognition. The state-of-
the-art multimodal model SSE-FT was trained and evaluated on the MELD dataset
with its original architecture. Furthermore, an interpretability approach was proposed
for analyzing multimodal models for emotion recognition and evaluating their robust-
ness and limitations. This interpretability framework was implemented and evaluated
on the model SSE-FT.

To achieve this, the MM-SHAP interpretability method was modified for the task of
emotion recognition and extended to use text, video, and audio. Apart from evaluat-
ing multimodality, the proposed interpretability also provides detailed interpretability
within the modalities by visualizing the Shapley values for each modality. Performance
on the MELD test dataset was fairly low. The proposed interpretability framework
found that SSE-FT relied solely on the textual backbone, as indicated by a T-SHAP
score of 99%. Ablation studies verified these results and found that the textual back-
bone outperformed the model instance using all modalities. These results show that
the model experiences ’uni-modal collapse’ on the MELD dataset. The proposed in-
terpretability framework demonstrated effectiveness in evaluating the multimodality of
SSE-FT.

Moreover, the proposed approach describes a detailed method for analyzing the emo-
tional cues captured by a model within each modality; however, due to the uni-modal
collapse only the textual modality has been analyzed. Using the proposed interpretabil-
ity framework to zoom in on the textual modality, it was found that each test sample
had a high base value for the ’neutral’ class. Due to the neutral bias of SSE-FT on the
MELD dataset, most samples were predicted to be neutral. SSE-FT mostly relies on
paralinguistic cues and exclamation words such as ’Oh’ and ’God’, to break the neutral-
ity and assign an emotional label. In samples classified as ’neutral’, it was found that
words with high sentiment and their adjacent words contribute negatively to the ’neu-
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tral’ class, while these words contribute positively to emotional classes. This strongly
suggests that the model has learned the semantics and context from the textual training
data. Future work in Section 5.5.2 describes further experiments evaluating a model’s
ability to use context.

Research evaluating SSE-FT on the RAVDESS dataset results in good performance,
even for the uni-modal models for audio and video [24]. This strongly suggests the
uni-modal collapse is caused by the MELD dataset, namely, the model is not able
to capture the more nuanced emotional cues from the audio and video modality and
relies on the direct emotional cues from the textual modality. As mentioned before, the
MELD dataset is imbalanced, as 48% of the training samples are neutral. The model
is unable to discern between the underrepresented emotional classes. To use the audio
and video modality, more clear samples for these classes are required, or the neutral
bias in the training samples would have to be eliminated, as described in Section 5.5.1.

As an attempt to increase performance for the Sound & Vision archive, the SSL
model RoBERTa was swapped for the Dutch variant RobBERT, which caused a decrease
in performance. Training and evaluating RobBERT without the structure of SSE-FT
resulted in the same accuracy. Fixing the imbalance in the textual data, eliminating
75% of ’neutral’ samples improved performance. These results suggest that the SSL
model RobBERT, although performing worse than RoBERTA, can be swapped as done
in the current implementation; however, a well balanced dataset of good quality is still
needed.

As it turns out, multimodal emotion recognition is quite difficult. The quality of the
MELD dataset is too low for training an applicable multimodal model. Future work
on improving the multimodal model for the Institute of Sound & Vision is described
in Section 5.5.1. For a multimodal model to succeed in discerning emotions, it is most
important to develop natural, balanced datasets that use clear rules on how to annotate
emotions from multiple modalities. More specifically, a Dutch dataset for multimodal
emotion recognition needs to be created, since currently there are none available. Such
a dataset would significantly contribute to and inspire research in the field.
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ity for NLP-centered applications: Resources, advances and frontiers. In Pro-
ceedings of the Thirteenth Language Resources and Evaluation Conference, pages
6837–6847, 2022.

[41] Efthymios Georgiou, Charilaos Papaioannou, and Alexandros Potamianos. Deep
hierarchical fusion with application in sentiment analysis. In INTERSPEECH,
pages 1646–1650, 2019.

[42] Deepak Ghimire and Joonwhoan Lee. Geometric feature-based facial expression
recognition in image sequences using multi-class adaboost and support vector
machines. Sensors, 13(6):7714–7734, 2013.

[43] Maddalena Ghiotto. Archiving emotions: Conceptualizing multimodal emotion
recognition in media culture. Master’s thesis, UNIVERSITA’ DI BOLOGNA,
2022-2023.

[44] Deepanway Ghosal, Md Shad Akhtar, Dushyant Chauhan, Soujanya Poria, Asif
Ekbal, and Pushpak Bhattacharyya. Contextual inter-modal attention for multi-
modal sentiment analysis. In proceedings of the 2018 conference on empirical
methods in natural language processing, pages 3454–3466, 2018.

[45] Yuan Gong, Yu-An Chung, and James Glass. AST: Audio spectrogram trans-
former. arXiv preprint arXiv:2104.01778, 2021.
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Appendix A

SHAP Visualization Plots

(1) Bar Plot (2) Beeswarm Plot
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(3) Violin Plot (4) Decision Plot

(5) Heatmap Plot (6) Dependence Scatter Plot
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(7) Force Plot (8) Text Plot

(9) Waterfall Plot (10) Image Plot
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