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Abstract

Gender Fairness in Depression Severity Prediction using Multimodal Models

Mental health illnesses cause significant suffering for individuals, their families, and society.
Early, accurate, and responsible detection of mental health problems is crucial for effective in-
tervention. This research aims to develop responsible methods to assist (not replace) medical
experts in depression detection. The performance and gender fairness of uni- and bimodal audio-
text models to predict depression severity are explored using the DAIC-WOZ dataset. Three
key research questions are addressed: the comparative performance of uni- and bimodal models,
the gender fairness of these models, and the effect of bias mitigation methods. The findings
indicate that the unimodal text model outperforms state-of-the-art uni- and bimodal audio-text
models. The best bimodal models could not improve the performance of our unimodal text
model but outperform state-of-the-art bimodal audio-text models. Gender biases were found in
all unimodal and bimodal models, with a general trend per modality: text models showed a bias
favoring males and audio models favoring females. The bias mitigation methods showed mixed
results, sometimes improving fairness but at the cost of overall performance.
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Nederlands Abstract

Geestelijke gezondheidsproblemen veroorzaken leed voor individuen en hun omgeving. Vroegti-
jdige, accurate en verantwoorde detectie van geestelijke gezondheidsproblemen is cruciaal voor
effectieve interventie. Deze studie onderzoekt methoden om medische experts te helpen (niet ver-
vangen) bij het detecteren van depressie. Uni- en bimodale audio-tekstmodellen worden getest
met behulp van de DAIC-WOZ dataset in het voorspellen van de ernst van depressie. Drie
onderwerpen worden behandeld in deze studie: de vergelijking van uni- en bimodale modellen,
de gender-eerlijkheid (fairness) van deze modellen en het effect van methoden om oneerlijkheid
(bias) te verminderen. De resulaten laten zien dat het unimodale tekstmodel beter presteert dan
bestaande uni- en bimodale audio-tekstmodellen. De beste bimodale modellen presteren niet
beter dan ons unimodale tekstmodel, maar wel dan bestaande bimodale audio-tekstmodellen
uit andere studies. Alle unimodale en bimodale modellen lieten genderverschillen zien, met een
algemene trend per modaliteit: tekstmodellen presteerden beter voor mannen en audiomodellen
voor vrouwen. De methoden om bias te verminderen lieten verschillende resultaten zien, waarbij
de fairness soms verbeterde, meestal ten koste van de algehele prestaties.

iii



Acknowledgements

I would like to thank Heysem for his patience, numerous ideas throughout this project, and
overall warm supervision style. His quick responses to questions, consistent hosting of our weekly
meetings with the essential refreshments, as well as his understanding of, and interest in my other
activities, made the project very rewarding. I would also like to thank Gizem, for bringing humor
into our weekly meetings, keeping us on track with time management during these meetings, and
providing the necessary encouragement during stressful periods.

Furthermore, I am thankful to Stan, Lara, and Sytse for their companionship during this
research project. Our shared experience and Wednesday working sessions made the project
enjoyable, and the discussions about our progress and next steps helped shape my research. I
am grateful to Prof. Salah for being my second examiner and dedicating time to provide feedback
on my research proposal. Lastly, I would like to thank Wouter, for supporting me during this
project and all my other pursuits.

iv



Contents

Abstract ii

List of Abbreviations vii

List of Symbols viii

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Domain Background and Related Work 4
2.1 Mental Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Mental Disorders as Collections of Symptoms . . . . . . . . . . . . . . . . 4
2.1.2 Studying Mental Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Behavioral Indicators of Mental Disorders . . . . . . . . . . . . . . . . . . 8

2.2 Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Gender Differences in the Mental Health Domain . . . . . . . . . . . . . . 10
2.2.2 Fair Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Distress Analysis Interview Corpus and Related Work . . . . . . . . . . . . . . . 11
2.4 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Background on Computational Approaches 15
3.1 Multimodal Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Speech Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Combining Multimodal Data . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Kernel Extreme Learning Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Measuring Fairness in Predictive Modeling . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Bias Mitigation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Methodology 25
4.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Depression Severity Models . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Experimental Results 31
5.1 Experimental Results on the Validation Set . . . . . . . . . . . . . . . . . . . . . 31
5.2 Comparison with State-Of-The-Art Models . . . . . . . . . . . . . . . . . . . . . 32
5.3 Gender Fairness of the Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Effect of Bias Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



6 Discussion 38
6.1 Answering the Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.1 Performance of Uni- and Bimodal Models (RQ 1) . . . . . . . . . . . . . . 38
6.1.2 Gender Fairness of Unimodal and Bimodal Models (RQ 2) . . . . . . . . . 39
6.1.3 Effect of Bias Mitigation Methods on Gender Fairness (RQ 3) . . . . . . . 39

6.2 Discussion on the DAIC-WOZ and Performance Metrics . . . . . . . . . . . . . . 40
6.2.1 Discussion on Fairness Metrics . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

References 44

Appendix A. Patient Health Questionnaire 8 54



List of Abbreviations

Acc Accuracy
A(EA) Audio modality (with emotional attention)
AEF Audio modality with emotional filter
AI Artificial Intelligence
AVEC Audio-Visual Emotion Challenge
CNN Convolutional Neural Network
CV Cross-validation
DAIC Distress Analysis Interview Corpus
DF Decision Fusion
DSM Diagnostic and Statistical Manual of Mental Disorders
EA Emotional Attention
EASE Engagement Arousal Self-Efficacy (dataset)
EF Emotional Filter
EqAcc Equal Accuracy
EqOpp Equal Opportunity
FF Feature Fusion
GPT Generative Pre-trained Transformers
(G)WDF (Gender) Weighted Decision Fusion
(K)ELM (Kernel) Extreme Learning Machine
MAE Mean Absolute Error
ML Machine Learning
MDD Major Depressive Disorder
NLP Natural Language Processing
PDEM Public Dimension Emotional Model
PHQ-8 Patient Health Questionnaire-8
PredEq Predictive Equality
PTSD Post-Traumatic Stress Disorder
RMSE Root Mean Squared Error
R(S)Q Research (Sub) Question
(S)BERT (Sentence) Bidirectional Encoder Representations from Transformers
SMILE Speech and Music Interpretation by Large-space Extraction
SP Statistical Parity
T(EA) Text modality (with emotional attention)
TN/FN(R) True/False Negative (Rate)
TP/FP(R) True/False Positive (Rate)
WOZ Wizard-of-Oz (condition in DAIC)

vii



List of Symbols

c Index representing a class
C Regularization coefficient of KELM
dk Mental disorder k

D Set of all mental disorders, D = {d1, d2, . . . , dn}
D Training dataset with n instances and m features
f Number of functionals
Fi Feature vector for participant i

G Sensitive attribute, G ∈ {m, f}
I Identity matrix of size n× n

i Index representing a person
j Index representing a symptom
k Index representing a mental disorder
l Index representing a value in an embedding
K Kernel matrix of size n× n

m Number of features in dataset
mPDEM Number of features in SBERT embedding
mSBERT Number of features in SBERT embedding
MEqAcc Fairness metric for equal accuracy (Gender-ratio in RMSE)
MEqOpp Fairness metric for equal opportunity (Gender-ratio in TPR)
MPredEq Fairness metric for predictive equality (Gender-ratio in FPR)
MSP Fairness metric for statistical parity
n Number of instances in dataset
nc Number of instances in class c

ni Number of embeddings/instances for participant i

N Number of participants
o Index representing a sentence/turn embedding
pi Health condition of person i

pki Indicator variable for person i labeled with disorder dk

sj Symptom j

S Set of all symptoms
Sk Set of binary symptoms linked to mental disorder dk

Si Set of binary symptoms that person i suffers from
Si True depression severity score for participant i
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1 INTRODUCTION

1 Introduction

Mental health illnesses can cause a lot of suffering for individuals, their relatives, and society.
People with severe mental disorders suffer not only from the burden of common symptoms
of mental diseases such as emotional distress, sleep problems, and low mood, but they also
represent a vulnerable and socially excluded part of society. They will likely be affected by lower
social and educational opportunities, social alienation, increased morbidity (likelihood of having
another medical condition), and increased mortality rates (Doran & Kinchin, 2017). Early and
accurate detection is crucial for timely intervention and effective treatment, thereby decreasing
the collective burden of mental health illnesses. This research aims to explore methods that can
assist – rather than replace – medical experts in the diagnostic process in a responsible manner,
to ensure the best possible outcomes for patients.

1.1 Problem Statement

Currently, in the Netherlands, there could be a six-month gap between the first consultation and
the diagnosis of a mental disorder (Patientenfederatie Nederland, 2023). The average additional
waiting time before the treatment begins is also long: for depression 19.2 weeks; for eating
disorders 21 weeks; for traumas 21 weeks (Volksgezondheid en Zorg, 2023). This prolongs the
stress of mental health illnesses on the people directly and indirectly affected by these disorders.
Therefore, it is important to look into ways to improve the process of detecting mental illnesses.

The first version of the Diagnostic and Statistical Manual of Mental Disorders (DSM) was
published in 1952 (American Psychiatric Association, 1952). This DSM enabled a systematic
approach to diagnosing people with mental illnesses because it contained descriptions of mental
disorders, their symptoms, and differential diagnoses (methods to distinguish a particular mental
disorder from other disorders with similar symptoms). Since the first version, five editions have
been published, of which the latest was released in 2013 (American Psychiatric Association,
2013b). Each new version of the DSM is a revision of the previous edition, with disorders being
added, removed, or modified to reflect the latest research and clinical insights. The DSM is
used by medical experts, making the diagnostic process more systematic, but a comprehensive
diagnosis still takes considerable time.

Disorders should be identified correctly because receiving a diagnosis can have legal impli-
cations (Stein et al., 2021), consequences for insurance coverage (Tkacz & Brady, 2021), but
also personal implications (Sims et al., 2021). Additionally, misdiagnosing a psychiatric disorder
as the wrong disorder, a physical illness, or as drug/alcohol abuse are reasons for psychiatric
nonresponse, incomplete response, and relapse (Shen et al., 2018; Estroff & Gold, 2018).

Machine learning (ML) models have been suggested to improve the detection of mental
illnesses (Shatte et al., 2019; Khoo et al., 2024; Liu et al., 2021). ML models can be trained
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1 INTRODUCTION

on large amounts of various data sources – such as physiological measures, motor activity, or
behavioral signals – and predict relatively accurately and quickly whether someone suffers from
a mental illness (Wright-Berryman et al., 2023; Mallol-Ragolta et al., 2019; Adarsh et al., 2023).
Therefore, these models can be used as decision-support tools to improve the diagnostic process.
To reiterate, the goal of using ML is not to replace a diagnosis by a medical professional but to
assist medical experts during the diagnosis process responsibly.

In recent studies, clinical notes (Sogancioglu et al., 2023), behavioral data with audio infor-
mation (Bailey & Plumbley, 2021), and video information from social media (Yoon et al., 2022)
have been used to detect mental illnesses with ML models. These models, however, sometimes
show gender inequalities in their accuracy (Cheong, Kuzucu, et al., 2023). While there are gen-
der differences for some mental disorders reported in the mental health literature (Afifi, 2007),
gender fairness in detecting these disorders is necessary because inaccurate predictions for cer-
tain groups can lead to unequal access to mental health resources and support, thereby possibly
increasing unfairness.

Gender bias was reported by Bailey & Plumbley (2021) in a multimodal dataset that is
often used to train and test ML models in detecting mental illnesses in a clinical setting: the
Distress Analysis Interview Corpus (DAIC; Gratch et al., 2014). The biased outcomes could
be mitigated, but not all available data modalities were used in this study to detect depression
(Bailey & Plumbley, 2021). Only audio (acoustic) information was used, although the text
modality (with semantic information) has been shown to be the most informative for depression
prediction on this corpus, by the winners of the Audio-Visual Emotion Challenge (AVEC)’2019:
Ray et al. (2019), but also by Van Steijn et al. (2022) and Oureshi et al. (2021).

1.2 Research Objectives

The current study will concern gender fairness in depression detection using clinical interviews
with multimodal (audio and textual) information, thereby building on earlier work (Bailey &
Plumbley, 2021; Wei et al., 2023). The combination of audio information and textual informa-
tion is expected to reveal important gender patterns (Oureshi et al., 2021) and might improve
the (fairness in) detection of mental disorders. If the gender bias remains, it is important to
understand the source of the bias. To investigate the bias, different bias mitigation methods will
be explored.

The contributions of this study will include an evaluation of the fairness of state-of-the-art uni-
and multimodal models in detecting mental illnesses, using symptoms from the DSM. Overall,
this study aspires also to contribute to a more effective and responsible detection of mental
illnesses. In future practices, clinicians may use ML systems as a support tool in diagnosing
different health conditions, therefore it is crucial to adhere to ethical standards, such as fairness,
in the development phase of these systems.

2



1 INTRODUCTION

1.3 Outline

This paper will be structured as follows. First, important background information and related
research will be presented in Chapter 2. Then, computational approaches will be discussed in
Chapter 3. Chapter 4 will present the research questions and explain the approach to answering
the research questions. The results will be presented in Chapter 5, followed by a discussion of
the results, the limitations, and a conclusion in Chapter 6.

3



2 DOMAIN BACKGROUND AND RELATED WORK

2 Domain Background and Related Work

This section covers closely related literature on using ML to detect mental health illnesses. First,
an introduction to mental disorders will be provided, along with various topics regarding their
study. Next, relevant research on fairness regarding mental disorders will be discussed, as well as
research concerning fair ML practices. The dataset used in this study is then described. Finally,
the chapter concludes by identifying the research gap.

2.1 Mental Disorders

References to mental disorders – characterized by abnormal behavior with invisible causes –
can be found throughout history (Hallowell, 1934; Stengel, 1959; Kessler et al., 2005). Different
explanations have been popular, including supernatural notions proposing possession by demonic
spirits, curses, or sin; somatogenic theories assigning disturbances to genetic inheritance or brain
damage; and psychogenic theories focusing on traumatic or stressful experiences, or maladaptive
learned associations and thought patterns (Farreras, 2019).

The classification of behavior as normal or abnormal has always been context-dependent,
and currently the psychological discipline uses a biopsychosocial model to explain human be-
havior (Farreras, 2019). While individuals may be born with a genetic predisposition for some
psychological disorder, certain psychological stressors need to be present to develop the disorder.
As earlier mentioned, the first DSM provided a standardized diagnostic classification system,
thereby creating a shared language that would aid clinical research. The fundamental idea of the
DSM is that mental disorders are associated with symptoms of distress or impairment (Bolton,
2013).

2.1.1 Mental Disorders as Collections of Symptoms

The DSM assumes that people suffering from a mental disorder can be classified according
to their symptoms, and therefore that a set of symptoms characterizes a particular mental
disorder. These symptoms are considered binary: a symptom is either present or absent. Medical
professionals use this symptom-based classification system to diagnose mental illnesses. The
binary system has faced criticism, as it does not reflect the complexity of real-life experiences,
where symptoms can vary in intensity and frequency (Lahey et al., 2022). However, due to health
insurance requirements and the legal implications of a diagnosis, medical experts must justify
their diagnoses based on the presence of specific symptoms.

Summarizing, a person has a mental disorder if the corresponding subset of symptoms is
sufficiently present. This can be mathematically expressed as follows: let pi represent the health
condition of a person i. Let S be the set of all symptoms, S = {s1, s2, . . . sj , . . .}. Let D be the
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set of all mental disorders in the DSM, D = {d1, d2, . . . , dk, . . .}. Let Sk be the set of symptoms
linked to a mental disorder dk, and Si be the set of symptoms that a person i suffers from. It is
then possible to express that a person i has a symptom sj with xij :

xij =

1 if sj ∈ Si

0 otherwise
(1)

It is also possible to express that at least θk of the set of symptoms (Sk) from disorder dk need
to be present in a person i for them to be labeled with that mental disorder. So person i can be
labeled with disorder dk through variable pki :

pki =


1 if

∑
sj∈Sk

xij ≥ θk

0 otherwise
(2)

An abstract representation of two mental disorders with overlapping symptoms and a person
suffering from a subset of symptoms is illustrated in Figure 2.1.

Figure 2.1: Hypothetical representation of symptoms and mental disorders in DSM. S1 and S2

are two sets of symptoms from hypothetical disorders d1 and d2, Si is the set of symptoms that
person i suffers from.

The representation of overlapping symptoms in Figure 2.1 can be illustrated through the
symptom similarities between a major depressive disorder (MDD) and other mental disorders.
As the symptoms of MDD are important for this study, the symptoms of this disorder according
to DSM-V are presented in Table 2.1 (American Psychiatric Association, 2013a). Five (or more)
should have been present during the same 2-week period and represent a change from previous
functioning. And at least one of the symptoms is either (1) depressed mood or (2) loss of interest
or pleasure.

5



2 DOMAIN BACKGROUND AND RELATED WORK

1. Depressed mood most of the day, nearly every day, as indicated by either subjective
report (e.g., feels sad, empty, hopeless) or observation made by others (e.g., appears
tearful).

2. Markedly diminished interest or pleasure in all, or almost all, activities most of the
day, nearly every day (as indicated by either subjective account or observation).

3. Significant weight loss when not dieting or weight gain (e.g., a change of more than
5% of body weight in a month), or decrease or increase in appetite nearly every day.

4. Insomnia or hypersomnia nearly every day.
5. Psychomotor agitation or retardation nearly every day (observable by others, not

merely subjective feelings of restlessness or being slowed down).
6. Fatigue or loss of energy nearly every day.
7. Feelings of worthlessness or excessive or inappropriate guilt (which may be delu-

sional) nearly every day (not merely self-reproach or guilt about being sick).
8. Diminished ability to think or concentrate, or indecisiveness, nearly every day (either

by subjective account or as observed by others).
9. Recurrent thoughts of death (not just fear of dying), recurrent suicidal ideation

without a specific plan, or a suicide attempt or a specific plan for committing suicide.

Table 2.1: Symptoms of Major Depressive Disorder in DSM-V.

In addition to this list, it is necessary for a diagnosis MDD that 1) these symptoms cause
clinically significant distress or impairment in social, occupational, or other important areas of
functioning, 2) the episode is not attributable to the physiological effects of a substance or another
medical condition, 3) the occurrence of the major depressive episode is not better explained by
schizoaffective disorder, schizophrenia, schizophreniform disorder, delusional disorder, or other
specified and unspecified schizophrenia spectrum and other psychotic disorders, and 4) there has
never been a manic episode or a hypomanic episode.

This can be expressed mathematically: let SMDD be the set of symptoms for disorder MDD:
SMDD = {s1, ...s9} from the list above. Then θMDD = 5 because at least 5 symptoms need
to be present for an individual to have this mental disorder. Person Anne can suffer from the
set of symptoms SAnne = {s2, s3, s5, s6, s7, s8} and this could point to MDD, but an extensive
analysis is needed to exclude other disorders. The DSM-V includes a differential diagnosis for
each disorder to account for overlapping symptoms. For instance, symptom s8 could be indicative
of attention-deficit/hyperactivity disorder, while symptoms s1 and s2 could be linked to manic
episodes with irritable mood or major depressive episodes with irritable mood. This shows the
importance of experts taking time to completely understand an individual and their symptoms,
to rule out some disorders, and to diagnose accurately.

Mental illnesses and their symptoms have been studied in various ways. The next section will

6



2 DOMAIN BACKGROUND AND RELATED WORK

dive into the different methodologies that can be used to collect and analyze data in the field of
mental health research, as this can influence the interpretation and application of the results.

2.1.2 Studying Mental Disorders

This section explores two distinct approaches to gathering behavioral data for mental health
assessment: natural/in-the-wild environments and clinical settings. Some studies use a natural
setting (Bailey & Plumbley, 2021; Chen et al., 2014; Yoon et al., 2022; T. Zhang et al., 2022;
Zogan et al., 2022) , and others choose a clinical or laboratory setting (Sogancioglu et al., 2023;
Muzammel et al., 2021; Corcoran et al., 2018; Cohen et al., 2023; Cheong, Spitale, & Gunes,
2023; Adarsh et al., 2023).

Natural Research Setting
Supporters of using data from natural or in-the-wild environments, such as data from social

media platforms or smartphones, argue that these platforms provide a realistic context for un-
derstanding natural behavior. Data can be relatively easily retrieved and online research may
provide a diverse range of participants, while clinical settings may attract a specific demographic.
Another advantage of a natural setting is it might show more ‘hidden’ factors that contribute to
mental health, such as lifestyle and social factors. Additionally, it has been reported that people
might feel more comfortable sharing feelings online than face-to-face (S. Zhao, 2005). It is worth
noting, however, that not everyone uses social media to post about their thoughts or feelings.

There is a collection of work that uses behavioral data from social media to predict mental
health: for example, an explainable depression detection framework was developed using deep
learning of textual, behavioral, temporal, and semantic aspect features from social media (Zogan
et al., 2022). With this framework, tweets were analyzed to explain why a user was depressed
(which was clinically diagnosed). Similarly, videos from YouTube were used to test audio-video
models to detect depression online (Yoon et al., 2022). The depressed state of these individuals
was not clinically diagnosed. Text-based detection of mental health symptoms via Reddit has
also been proven to be successful (Z. Zhang et al., 2022).

Clinical Research Setting
As this study aims to contribute to improving the process of diagnosis in mental health care,

research from a clinical perspective is more relevant than from an in-the-wild perspective. The
clinical setting resembles a situation where individuals are intentionally observed for a mental
health assessment. Clinical notes or interviews are overseen by trained professionals, who can
guide the interpretation, direction, and assessment of conversations about mental health. These
settings often are standardized and validated, which can enhance the reliability and compara-
bility of data. Another advantage is that the clinical setting allows for in-depth interviews and
medically grounded questions, instead of only observing someone behave naturally.
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2 DOMAIN BACKGROUND AND RELATED WORK

Some examples of clinical multimodal datasets are the Distress Analysis Interview Corpus
(DAIC), a standardized clinical dataset that is widely used for the detection of post-traumatic
stress disorder (PTSD) and MDD (Gratch et al., 2014). This dataset will also be used in the
current study. Other datasets are the Androids corpus, a recently published Italian dataset for
speech-based depression detection (Tao et al., 2023); the Turkish Audio-Visual Bipolar Disorder
Corpus with video recordings of patients with bipolar disorder (Çiftçi et al., 2018); the Engage-
ment Arousal Self-Efficacy (EASE) dataset to detect PTSD (Dhamija & Boult, 2017). Overall,
increasingly complex neural network approaches demonstrate efficient use of multimodal clinical
data for mental health assessment (Khoo et al., 2024).

The natural and clinical research settings may vary in point of view, but both settings seek
information about signs of abnormal behavior that can indicate mental disorders.

2.1.3 Behavioral Indicators of Mental Disorders

Existing research on detecting mental disorders is generally categorized into different data sources.
One line of work focuses on monitoring physiological data such as physical strength, stress mark-
ers, or brain activity (Lever-van Milligen et al., 2020; Su et al., 2014). Another line of work
studies motor activity, such as the duration, intensity, or timing of movement (Jakobsen et al.,
2020; Difrancesco et al., 2021). A third line of work is grounded in findings that behavioral data
differentiates between healthy individuals and individuals who suffer from a mental disorder.
The current study falls into this third line of work.

In a clinical setting, information about a patient’s speech, verbal communication, visual
appearance, and body language may aid clinicians’ diagnosis (Yamamoto et al., 2020; Ma et
al., 2016; Corcoran et al., 2018). Therefore, this multimodal information can also be used in
automatically detecting depression (Cohen et al., 2023). Three modalities will now be discussed
that are commonly used in multimodal mental health prediction: the visual, audio, and textual
modality.

External visual features reflect information about the internal state of individuals (Adarsh et
al., 2023). Although the current study will not look into this topic in this study, some relevant
work has been done here (Williamson et al., 2016; Muzammel et al., 2021; Mulay et al., 2020).
Facial representations detected by ML models can encode expression information (Li & Deng,
2022), head pose and eye gaze have been used in detecting depression (Alghowinem et al., 2018).
The visual modality has often been combined with audio information (Yoon et al., 2022; Booth
et al., 2021).

Textual Indicators of Mental Disorders
Language is the basis by which others can infer our thought processes, and disorganized

language is therefore considered to reflect disorganized thought. Natural Language Processing
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(NLP) entails using computational techniques to analyze natural language and speech (Chowd-
hary, 2020; Nadkarni et al., 2011). In the context of mental disorder detection, NLP tools are
useful for analyzing text data and extracting insights about linguistic patterns, sentiment, and
specific words that suggest mental health conditions (Le Glaz et al., 2021; T. Zhang et al., 2022).

Research has shown that automated NLP methods can be used to indicate disturbances
in semantics and syntax across different stages of psychotic disorders (Corcoran et al., 2018).
NLP models have been used to identify depression, anxiety, and suicide risk in short (5-10
minutes) virtual screenings (Wright-Berryman et al., 2023). Transcribed clinical interviews were
successfully used to detect depression (Mallol-Ragolta et al., 2019). The processing of textual
information to detect mental health abnormalities can be found in Section 3.1.1.

Audio Indicators of Mental Disorders
In addition to language, vocal behavior (acoustic properties of a speaker’s voice; paralinguis-

tics) can also reflect information about the internal state of an individual. According to Schuller
(2011), the field of paralinguistics can be divided into speaker states – dealing with changes
over time such as affection, emotion, and health states – speaker traits – identifying permanent
characteristics such as gender, height, or personality – and vocal behavior. In the context of this
study, speaker states are the most relevant.

Traditional analyses of sounds used pitch, loudness, duration, and timbre. For example, the
mean, variance, and autocorrelations of loudness, pitch, brightness, and bandwidth were used
to classify sound recordings as (vocal behavior) laughter (Wold et al., 1996). There is evidence
that produced audio data differs between healthy people and people with a mental disorder
(Cummins et al., 2015; Ma et al., 2016; Bailey & Plumbley, 2021; Srimadhur & Lalitha, 2020).
Speech markers such as the duration of speech, pitch, and speech tone can signal distress (Adarsh
et al., 2023) and depressed participants show longer pause time, longer response time, and slower
speech rate than healthy participants (Yamamoto et al., 2020).

Details about processing audio/speech data will be discussed in Section 3.1.2. Additionally,
an elaboration on methods to combine data from different modalities – which might reveal even
more information about an the internal state – can be found in Section 3.1.3. But first, fairness
in terms of mental health and more general, in the field of ML will be discussed.

2.2 Fairness

Fairness1 is the quality or state of being fair, where fair treatment is defined as the lack of
favoritism toward one side or another. Fairness is an important aspect in understanding and
treating mental health, as well as in developing and applying ML models. This section addresses

1Fairness: the quality or state of being fair; especially: fair or impartial treatment: lack of favoritism toward
one side or another. Retrieved from https://www.merriam-webster.com/dictionary/fairness (accessed: 11-
12-2023)
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these two areas by examining fairness in the mental health domain and the strategies for achieving
fair ML.

2.2.1 Gender Differences in the Mental Health Domain

An analysis of gender differences in mental health, and specifically depression, showed that there
is not always a lack of favoritism towards one side. Doctors are more likely to diagnose depression
in women compared to men, even when they have similar scores on standardized measures of
depression (Afifi, 2007) and it seems more difficult to diagnose depression in females compared
to males (Floyd, 1997).

Differences in detection rates might be caused by differences in latent variables (that are
not directly observable) between the genders, or by differences in mental health expression be-
tween males and females. The DSM-V reports that although the most reproducible finding in
the epidemiology of MDD is a higher prevalence in females, there is no clear difference between
genders in symptoms, course, treatment response, or functional consequences (American Psy-
chiatric Association, 2013a). However, early stages of depression in men differ from early stages
of depression in women (Ogrodniczuk & Oliffe, 2011), and women generally report more bod-
ily distress and more numerous, more intense, and more frequent somatic symptoms than men
(Barsky et al., 2001).

Additionally, during adolescence, girls have a higher prevalence of depression and eating
disorders and engage more in suicidal ideation and suicide attempts than boys (Hawton et al.,
2002), who are more prone to engage in high-risk behaviors and commit suicide successfully more
frequently (Parker & Roy, 2001). Men and women differ in written suicide notes (Lester & Heim,
1992) and suicidal distress (Straw & Callison-Burch, 2020). Other significant differences were
found in the personality trait neuroticism (tendency to experience negative emotions) between
males and females, where males score typically lower on neuroticism (less negative emotions) than
females (Djudiyah et al., 2016). It was also reported that women have a heightened expression of
positive emotion and internalizing of negative emotions, and men have an increased expression
of anger (Chaplin, 2015).

Despite these differences, fair treatment of all genders is necessary to ensure fair mental health
care. As ML has been proposed in various fields for diverse prediction tasks, with sometimes
significant consequences for the subjects involved, the topic of fairness has become increasingly
important.

2.2.2 Fair Machine Learning

Well-intentioned ML applications in (high-stake) decision domains can sometimes lead to out-
comes that raise objections. Barocas et al. (2017) delved into fairness and ML, addressing
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arbitrary, inconsistent, or faulty decision-making concerns. A recent survey on bias and fairness
in ML (Mehrabi et al., 2021) outlined definitions of fairness in this field. The concept of fairness
can be categorized into individual and group fairness.

Individual fairness entails that two similar individuals with respect to a detection task should
be treated similarly. Group fairness entails that the predictions of a model do not systematically
differ between different groups (e.g., gender or age groups). This study will focus on the fairness
between groups of people (gender), specific group fairness metrics are therefore discussed in
Section 3.3.

When fairness measures are not satisfied, the model or system may show biases against
certain groups. These biases can arise from various sources, such as the data on which the
model was trained or choices related to the model’s design (Mehrabi et al., 2021). In terms of
data, ML algorithms typically assume a balanced distribution of samples across different groups
(Krawczyk, 2016). When groups are imbalanced, learning algorithms tend to favor the majority
group because the chance of an instance being in this group is a priori higher. Additionally,
historical biases may be embedded in the data, or variables may not accurately represent groups
or may be correlated with protected features. Existing approaches to mitigate biases in ML
systems often focus on large datasets (Cheong, Spitale, & Gunes, 2023). However, most datasets
in the mental health domain are small. Although there is much emphasis on the need for gender
fairness in automatic prediction tasks for (mental) health, there is not much research evaluating
the fairness of these models.

Bailey & Plumbley (2021) concluded that the demographic parity of depression was not
satisfied in the DAIC-WOZ training and development data, because the number of depressed
instances was not nearly equal for males and females. Wei et al. (2023) tested the gender fairness
of different models on this dataset with the audio, visual, and text modalities. Their proposed
models showed high overall performance but also gender biases.

2.3 Distress Analysis Interview Corpus and Related Work

The Distress Analysis Interview Corpus (DAIC) is a publicly available set of semi-structured
clinical interviews, collected by Gratch et al. (2014). A subset of this dataset is the Wizard-of-
Oz (WOZ) condition, which contains interviews conducted by an animated virtual interviewer
called Ellie, controlled by a human interviewer in another room. Three modalities are included
in the dataset: visual features collected with OpenFace (Baltrušaitis et al., 2016), which uses
Conditional Local Neural Fields for facial landmark detection and tracking (Baltrusaitis et al.,
2013); audio recordings with identifiable utterances scrubbed; and a text transcript. In this
study, only the audio and text modality will be used.

The participants (189 in total) complete a series of questionnaires before the interview, in-
cluding basic demographic questions and measures of psychological distress and current mood.
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The Patient Health Questionnaire 8 (PHQ8; Kroenke et al., 2009) is used to measure psycho-
logical distress, which is a well-validated marker of depression disorder using the first eight
MDD symptoms from DSM-V (American Psychiatric Association, 2013b). This questionnaire
(included in Appendix A) contains eight questions asking the experienced severity (0 to 3) of
a symptom. Unlike the binary perspective on symptom presence, this questionnaire provides a
more nuanced view, with experiences symptom severity. The question about the 9th symptom
(recurrent thoughts of death) was included in the PHQ9 (Kroenke et al., 2001) but omitted in
the PHQ8 because responses to this item did not accurately reflect whether or not suicide risk
is present, and PHQ8 and PHQ9 total scores were similar (Wu et al., 2020). When the total
score on the PHQ8 (ranging from 0 to 24) is equal to or above 10, the participant is classified as
depressed and otherwise as not depressed.

This dataset was used in the AVEC’2017 challenge for multimodal depression and affect
recognition (Ringeval et al., 2017) and consists of three subsets: a training, development, and
test set. The distributions of gender and depression classes are shown in Figure 2.2. In general,
there are more nondepressed instances than depressed samples, and the gender balance in the
training set is most disproportionate. There are more nondepressed males than nondepressed
females, and more depressed females than depressed males.

Figure 2.2: The gender-depression class imbalances in the DAIC-WOZ dataset. The sizes of the
subclasses are shown in the charts.

The training and development sets are combined in this study for robustness. This combined
set (142 participants) will be referred to as the validation set and is used to optimize models
with N-fold Cross-Validation (CV; more details about this method in Section 4.2.2).

The gender-specific proportions of symptom severities in the validation set are shown in
Figure 2.3. This illustrates that the distributions of symptom severities for males and females
are relatively consistent over the eight symptoms of MDD. Generally, more males than females
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score lower (0 or 1) and more females than males score higher (2 or 3). Only PHQ8 Moving – a
question referring to moving or speaking noticeably slow – shows a deviating distribution and is
experienced by few.

Figure 2.3: Symptom distributions (proportion) per gender in the DAIC-WOZ validation set.

The authors of the DAIC-WOZ dataset took some preprocessing steps: removing identifiable
utterances from the audio recordings and converting transcriptions to lowercase sentences, en-
suring ease of use for researchers. Therefore, this dataset has become an often-used benchmark
for evaluating uni and multimodal models for predicting psychological distress. Some limitations
are that the number of participants is relatively small compared to other datasets used to train
ML models, and as mentioned before, the size imbalance in both gender and depression classes
has led to biases in the models in the past (Bailey & Plumbley, 2021; Wei et al., 2023).

Several studies can highlight the significance of this dataset in multimodal depression recog-
nition research. These studies represent just a fraction of the research conducted using this
dataset. Muzammel et al. (2021) and Niu et al. (2021) developed a high-performing hierarchical
context-aware graph attention model using the audio and text modality. Oureshi et al. (2021)
discovered that gender information in the DAIC-WOZ can improve the performance of depres-
sion severity estimation and that the text modality is the best marker of depression. Guo et al.
(2022) tested a late-fusion strategy to combine audio and text information, and they proved to
diminish the overfitting issue caused by the small dataset. Despite the research that has been
conducted in this area, a gap in the literature remains.

2.4 Research Gap

Summarizing the content above, there is a body of research in the domain of multimodal mental
health detection in various research settings, but the exploration of fairness in this context has
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been limited, especially regarding gender. Therefore, there is an opportunity to enhance this
research domain by integrating both audio and text modalities and evaluating gender fairness
in a clinical setting, using the symptoms from the DSM. The DAIC-WOZ is a suitable clinical
dataset with multimodal data, therefore this dataset will be in this study. Table 2.2 shows a
selection of papers similar to this research, illustrating a gap in the research literature.

Table 2.2: An overview of related work. The columns indicate research directions: fusion refers
to the study exploring different fusion methods for the multimodal data, fairness indicates an
exploration of the impact of biases. Gender signifies a specific focus on gender differences, and
symptoms indicates an analysis focused on mental health symptoms.
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3 Background on Computational Approaches

This section introduces the technical details of some relevant computational methods for this
study. Text processing, speech processing, and ways to combine multimodal data will be dis-
cussed. After this, details about the predictive models used in this study will be provided, as
well as ways to measure fairness and mitigate biases.

3.1 Multimodal Data Processing

The background section illustrated that certain behaviors can indicate a healthy or unhealthy
mental state. By analyzing textual and audio data, we can extract valuable insights and patterns
that help to understand these indicators. This section discusses natural language processing,
speech processing, and the methods to combine data from different modalities.

3.1.1 Natural Language Processing

Language can be represented computationally in different manners, words and sentences can for
example be embedded with or without context.

Word and Sentence Embeddings
Non-contextual word embeddings like Word2Vec (Mikolov et al., 2013) and GloVe (Pen-

nington et al., 2014) capture semantic relationships between words by representing them in a
continuous vector space (Miaschi & Dell’Orletta, 2020). Each word is a high-dimensional vector
and a low distance between two vectors indicates two words with similar meanings. The same
direction between two pairs of word embeddings indicates a similar relationship.

On the other hand, contextual word embeddings, take into account the surrounding context
of a word, which enables capturing nuances in meaning that may vary depending on the context
in which a word is used. Figure 3.1 illustrates the embedding of the words ‘I feel bad, I am crying’
in a sentence. The sentence is split into segments (A and B), each word is divided into tokens
(the base form and pre- or suffixes), and the input embedding is the sum of the segmentation,
token, and position embeddings.

Figure 3.1: Illustration of a sentence embedding.
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These contextual word embeddings (or sentence embeddings) can be fed to transformer mod-
els: neural networks that can capture longer-range relationships.

Transformer Models
Transformer models can process sentence embeddings, producing outputs that vary based on

the specific task to which they are applied. Figure 3.2 shows a transformer module for sentence
classification. These modules are used by architectures such as Bidirectional Encoder Represen-
tations from Transformers (BERT; Devlin et al., 2019) and Generative Pre-trained Transformers
(GPT; Radford et al., 2018). Sentence BERT (SBERT) computes sentence embeddings with
sentence transformer models, giving as output numerical representations of sentences with rel-
ative meaning. The sentence ‘I feel bad’, will be more similar to ‘I did something wrong’ than
‘Yesterday I ate pie’.

Figure 3.2: Illustration of a transformer module for text classification.

SBERT has a pre-training and fine-tuning stage. The pre-training stage involves two self-
supervised tasks. The initial pre-training step entails the random masking of a percentage of
input tokens, and the model is trained to predict these masked tokens. This step facilitates the
learning of relatively short-range relationships between words. In the second pre-training step,
BERT uses next-sentence prediction (NSP), enabling the model to learn sentence relationships.
For each pre-training example, sentences A and B are selected, with a 50% chance that B is the
actual next sentence following A and a 50% that it is a random sentence from the corpus. This
strategy enables the model to grasp longer-range relationships.

During fine-tuning, task-specific token representations generated by BERT can be plugged
into the transformer module, and parameters are fine-tuned. Using this process, mental health-
related data can for example be analyzed with BERT (Xiao et al., 2021; Fan et al., 2019). In
addition to textual data, audio (speech) data can be used to detect depression.

3.1.2 Speech Processing

The processing of audio information entails a few steps: first, an audio recording is divided into
shorter chunks. Depending on the task, the file is split into words, ‘turns’ (based on speech
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onset until the offset of one speaker in a conversation), time slices with a constant length, or
proportions of longer units.

The most important step in automated recognition of speaker states, traits, and vocal be-
havior is extracting relevant features. In the past, prosodic features (e.g., pitch, duration, and
intensity) were more frequently used than voice quality features (e.g., harmonics-to-noise ratio,
jitter, shimmer) (Schuller, 2011). Segmental, spectral features modeling formants, or cepstral
features are often found in the literature (Ma et al., 2016; Bailey & Plumbley, 2021; Yamamoto
et al., 2020).

State-of-the-art networks use audio feature extraction methods such as wav2vec2.0 (Baevski
et al., 2020) and openSMILE (open Speech and Music Interpretation by Large-space Extraction)
(Eyben et al., 2010). Wav2vec2.0 is a framework that is trained to predict the correct speech unit
for masked parts of the audio file. The pre-trained model can then be fine-tuned on a specific
dataset and for a specific task. This has been useful for speech recognition of various languages
and dialects (Sharma, 2022).

Selecting a subset of features can improve reliability and (speed and memory) performance.
Additionally, feature reduction reduces the complexity and number of free parameters to be
learned by ML algorithms.

Public Dimension Emotional Model
The Public Dimension Emotional Model (PDEM) was developed by Wagner et al. (2023).

This audio model is intended for speech emotion recognition and predicts values for emotional
dimensions such as arousal, dominance, and valence. Arousal measures the intensity of an
emotion, dominance measures the level of control or assertiveness in the emotion and valence
measures the positivity or negativity of the emotion.

PDEM uses two pre-trained transformer-based models, the earlier mentioned wav2vec2.0
(Baevski et al., 2020) and HuBERT (Hsu et al., 2021). Both are designed for processing raw
waveform audio input. The architecture of the PDEM is shown in Figure 3.3.

Figure 3.3: Illustration of the PDEM architecture, adapted from Wagner et al. (2023).
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Not only the three output scores for arousal, dominance, and valence can be used, but the 1024
hidden units can serve as an embedding for an audio chunk, thereby embodying the emotional
information. This model has been shown to be fair with respect to gender groups (Wagner et al.,
2023). Because of the expected importance of emotional information in mental health detection,
the PDEM will be used to extract audio embeddings in this study.

After preprocessing the data and determining the relevant text and audio features, the input
for classification or regression is prepared. These input features can be used directly in sentence-
level audio models or the feature vector can be weighted with an attention vector, emphasizing
certain parts of the feature.

Attention Mechanism
Attention mechanisms focus on specific parts of the input and emphasize those that are more

important for the task at hand. A systematic overview (Galassi et al., 2021) on attention models
describes that the attention mechanism is part of a neural architecture that can be applied to
raw input or higher-level representation, thereby computing a weight distribution on the input
with higher values to more relevant elements. The attention mechanism can be applied to audio
and text data, giving more weight to relevant information.

Whether using attention or not, the embeddings from audio or text can be used separately to
predict depression (unimodal), or alternatively, the audio and text information can be combined
in a multimodal model.

3.1.3 Combining Multimodal Data

As discussed in the introduction, multiple modalities (e.g., audio, visual, and textual) can predict
an individual’s mental well-being. Modalities can be combined or fused according to different
strategies. State-of-the-art fusion approaches for depression recognition can be categorized as
model-agnostic or model-based (Muzammel et al., 2021).

Model-Agnostic Fusion Strategies
Model-agnostic fusion strategies can be used with any model. Three methods can be identi-

fied, differing in when they are applied in the process: early, late, and hybrid fusion.
Early fusion, also known as feature-level fusion is a commonly used fusion strategy (Fang

et al., 2023; Booth et al., 2021; Cohen et al., 2023). Features in ML context are informative,
predictive characteristics of input data or signals that can be extracted from different modalities.
Early fusion combines two or more feature vectors (where each vector may represent a single
modality) into a single high-dimensional feature vector, this high-dimensional feature vector can
then be used as input for any model.

Late fusion is also called decision-level fusion. First, multiple base models (usually unimodal)
are used to make predictions, and then an algebraic combination rule (e.g., majority voting,
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averaging, or stacking) is used to integrate these predictions. Majority voting uses the most
frequently predicted label of the base models. Alternatively, the predictions can be averaged in
a weighted or unweighted manner, and then predict the average. In stacking, the final decision
is made by another classifier that uses as input either the predicted labels or the predicted class
probabilities of each base model (Wolpert, 1992).

Hybrid fusion uses both early and late fusion to combine individual classification scores
of uni or multimodal models. For example, Yang, Sahli, et al. (2017) fused the predictions
of audiovisual and text-based models: two audiovisual models with early fusion were trained
separately to predict depression, and these predictions were then combined with the predictions
from two text-based models.

Model-Level Fusion Strategies
The three fusion strategies above can be applied to any model. Model-level fusion strategies

are model-dependent and try to learn a joint representation of different modalities after unimodal
feature extraction and concatenation, or directly with the raw signal. Recent related work has
for example used multiple kernel learning to find an optimal combination of input modalities’
features for emotion recognition with visual and audio features (Chen et al., 2014), or neural
networks-based approaches to detect mental health illnesses (Al Hanai et al., 2018; Yang, Jiang,
et al., 2017; S. Zhang et al., 2017).

Now we have discussed the input for models to predict mental health. The next topic will
be the specific architecture used in this study to map input (audio or textual information) to
output (depression severity).

3.2 Kernel Extreme Learning Machine

Kernel Extreme Learning Machine (KELM) is an advanced version of an Extreme Learning
Machine (ELM), known for fast and efficient learning. An ELM is a single hidden layer feed-
forward neural network where the input weights and biases are first randomly assigned, and
the output weights are optimized (Huang et al., 2004). KELM enhances ELM by using kernel
methods: mapping input features into high-dimensional features allowing it to handle non-linear
data effectively.

Kernel methods operate by computing the inner products between all pairs of data points
in the feature space, represented by the kernel matrix. This approach enables KELM to predict
both classification and regression labels efficiently (Huang et al., 2011). Commonly used kernel
functions are linear, polynomial, Gaussian (RBF), and sigmoid kernels.

KELM’s efficacy has been demonstrated in paralinguistic and affective computing tasks (Kaya
et al., 2017; Gurpinar et al., 2016; Kaya et al., 2019). This has shown that KELM is useful
in contexts where data is sparse and high-dimensional. KELM offers a balance of speed and
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accuracy, unlike Support Vector Machines (SVMs), which can be slow, and other neural networks
that may require extensive training on smaller datasets.

Given a training dataset D ∈ Rn×m with n instances and m features, KELM solves a regu-
larized least squares regression problem. The relationship between the kernel matrix K ∈ Rn×n

and the target variable/matrix T is expressed as:

β =

(
I

C
+K

)−1

T

where C is the regularization coefficient, and I is an n × n identity matrix. For a test instance
x, the prediction ŷ is obtained using:

ŷ = ϕ(D,x)β

where ϕ denotes the kernel function. T can be extended for multi-task regression or classification,
where each column represents a different task (such as predicting multiple symptom severities).
The multi-task regression will be used in the current study.

In classification tasks, categories are often one-hot encoded, and an ordinal encoding can
be used for ordinal classification (Shi et al., 2019). To handle class imbalance in classification
tasks – which is common in mental health datasets – weights can be included in the model. By
integrating weights, KELM can mitigate the impact of class imbalance, ensuring the model does
not favor the majority class excessively (Zong et al., 2013). Although the weights will not be
used in this study, the efficiency and flexibility of KELM in terms of regression/classification,
weights, and parameters makes it suitable for complex mental health detection tasks. With the
input data and the model, the predictions of the model can be evaluated on overall performance
and on fairness.

3.3 Measuring Fairness in Predictive Modeling

Various metrics are used to quantify fairness and evaluate biases in ML models. This section
discusses one fairness metric based on a continuous prediction (e.g., depression severity), and
several fairness metrics based on binary predictions.

Continuous metric: Equal Accuracy / RMSE Ratio
As AVEC’2017 (Ringeval et al., 2017) used the root mean squared error (RMSE) as a baseline

accuracy measure in depression severity prediction, we will take the accuracy performance ratio
of different classes (in this case gender) as a fairness measure. Let Ŝi be the predicted depression
severity score and Si be the true depression severity score for participant i in a subset of the data
with size n. The overall RMSE of the predictions in this subset can be calculated as follows:
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RMSE =

√√√√ 1

n

n∑
i=1

(Ŝi − Si)2 (3)

Let G ∈ {m, f} be the sensitive attribute (gender), RMSEf be the RMSE for females, and
RMSEm be the RMSE for males. For a classifier to be deemed perfectly fair according to equal
accuracy (EqAcc) RMSEf = RMSEm and therefore:

MEqAcc =
RMSEf

RMSEm
(4)

If MEqAcc > 1, then RMSEf > RMSEm. This indicates a bias favored towards males, as a
lower RMSE signifies better predictive accuracy. If MEqAcc < 1, the predictive system is biased
in favor of females.

Basic terms that lie at the root of binary classification metrics are presented in Table 3.1.
These terms can be used to calculate Equations 5 - 9. Ratios of some of these performance
measures across groups can again be used to evaluate fairness.

Actual label
1 0

Predicted label
1 (positive) True Positive (TP) False Positive (FP)
0 (negative) False Negative (FN) True Negative (TN)

Table 3.1: Confusion matrix for binary classification with performance metrics.

Accuracy =
TP+TN

TP+TN+FP+FN
(5)

Sensitivity / True Positive Rate (TPR) / Recall =
TP

TP+FN
(6)

Precision / Positive Predictive Value =
TP

TP+FP
(7)

False Positive Rate (FPR) =
FP

TN+FP
(8)

F1-score =
2× Precision × Recall

Precision + Recall
(9)

The most common binary group fairness measures will now be discussed through an example:
a depression detection system predicting the presence of depression (prediction Ŷ = 1) or the
absence of depression (prediction Ŷ = 0) for patients that either have depression (outcome
Y = 1) or not (outcome Y = 0).

21



3 BACKGROUND ON COMPUTATIONAL APPROACHES

Binary metric: Statistical / Demographic Parity
Demographic parity means that the likelihood of a positive outcome is the same, regardless of

group. If the depression detection system adheres to the demographic parity measure for gender,
an equal proportion of men and women would be predicted to have depression. For a classifier
to be deemed fair according to this measure P [Ŷ = 1|G = f ] = P [Ŷ = 1|G = m] and therefore:

MSP =
P [Ŷ = 1|G = f ]

P [Ŷ = 1|G = m]
(10)

A limitation of this fairness measure is that it does not consider the actual outcome (whether
someone has depression, or what the exact prevalence of depression is in different groups). The
classifier can make random predictions and still adhere to this fairness measure, therefore this
measure will not be used in this study.

Binary metric: Equal Opportunity / True Positive Rate Ratio
Equal opportunity (EqOpp) ensures that people with the same (positive) outcome – depressed

people – are treated the same. This is similar to the recall or TPR (Equation 6) being equal
for each group of a given sensitive attribute. If the predictive system adheres to the equal
opportunity measure, everyone who has depression has the same likelihood of being predicted as
depressed (regardless of gender). For a classifier to be deemed fair according to equal opportunity
P [Ŷ = 1|Y = 1, G = f ] = P [Ŷ = 1|Y = 1, G = m] and therefore:

MEqOpp =
P [Ŷ = 1|Y = 1, G = f ]

P [Ŷ = 1|Y = 1, G = m]
(11)

If MEqOpp > 1, the predictive system is biased in favor of females, if MEOpp < 1, the
predictive system is biased in favor of males.

Binary metric: Predictive Equality / False Positive Rate Ratio
Predictive Equality (PredEq) also ensures that people with the same outcome are treated the

same. Regardless of gender, nondepressed people should have the same likelihood of receiving
an incorrect label (preferably low). This is similar to the FPR (Equation 8) being equal for each
group of a given sensitive attribute. For a classifier to be deemed fair according to predictive
equality P [Ŷ = 1|Y = 0, G = f ] = P [Ŷ = 1|Y = 0, G = m] and therefore:

MPredEq =
P [Ŷ = 1|Y = 0, G = f ]

P [Ŷ = 1|Y = 0, G = m]
(12)

If MPredEq > 1, the predictive system is biased in favor of males, if MPredEq < 1, the predictive
system is biased in favor of females. Instead of insisting on equal scores for all the above fairness
metrics, it is possible to relax this constraint with the principle of disparate impact (Feldman et
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al., 2015). The ideal score of 1 indicates a perfectly fair system, but for practical experimental
purposes, this study will follow existing literature that considers 0.8 and 1.2 as acceptable lower
and upper fairness bounds respectively (Cheong, Kuzucu, et al., 2023; Zanna et al., 2022; Park
et al., 2022).

In the mental healthcare literature, different measures have been used to assess the fairness
of binary systems: F1-scores per gender (and depression) subgroup (Bailey & Plumbley, 2021);
statistical parity, equal opportunity, equal accuracy, and equalized odds (Cheong, Kuzucu, et
al., 2023; Park et al., 2022); equal accuracy and disparate impact (ratio of the probability of a
favorable outcome for the unprivileged group to that of the privileged group) (Cheong, Spitale,
& Gunes, 2023); macro-averaged F1-score, equal opportunity, predictive equality, and mismatch
ratio (Sogancioglu et al., 2023). In this study, the most often used fairness measures will be
reported: equal accuracy, equal opportunity, and predictive equality. When a fairness metric is
above or below the fairness bounds, the classifier shows a bias in favor of or against a group.

3.4 Bias Mitigation Methods

Mitigating biases can make predictive systems more fair. There is, however, often a potential
trade-off between maximizing overall accuracy and ensuring fairness (Wang et al., 2021; Dutta
et al., 2020). Specific algorithms, (hyper)parameters, loss functions, and thresholds can all
contribute to this trade-off. Nevertheless, methods to mitigate biases can be divided into pre-
processing, in-processing, and post-processing methods.

Pre-processing methods
Pre-processing methods focus on the first stage in the training process, changing or adjusting

the data to remove bias to ensure fairer data to obtain a fairer model (Cheong, Spitale, & Gunes,
2023). Two examples of pre-processing to ensure fair data are data augmentation and reweighing.
Reweighing can sometimes be applied directly when the classifier works with weights, otherwise
the data can be resampled to mimic weights.

Balancing the data is a data augmentation method where the number of samples from minor-
ity groups is increased to match the number of samples from majority groups. This can be done
by re-using samples from the minority groups (same as reweighting), or by generating synthetic
data. The MixFeat approach (Cheong, Spitale, & Gunes, 2023), based on the MixUp method
(H. Zhang et al., 2017) was used to balance data from the DAIC-WOZ using interpolation to
generate data points. Given a dataset of size N , where vA represents an audio embedding and
vT represents a text embedding, the new training sample (vo∗, vo∗) for a minority group can be
generated as follows:
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vAo∗ = λA · vAo + (1− λA) · vAo+

vTo∗ = λT · vTo + (1− λT ) · vTo+
(13)

where o, o+ ∈ {1, ..., N}, o ̸= o+ and λA, λT ∼ Beta(0,1).

Another way to augment the data, e.g., when there is an imbalance in the number of instances
per class, is to split the interview into subsets of sentences and create multiple (sub)session-level
embeddings of a single subject from a minority class. Let Vi represent the set of sentence
embeddings for participant i in a minority class. To balance the subclasses, we might require
three times more data samples in this class. The set Vi1 = {vio | o ∈ {1, . . . , ni/3}} can be used
as the first part of the interview, Vi2 = {vio | o ∈ {ni/3 + 1, . . . , 2ni/3}} as the second part,
and Vi3 = {vio | o ∈ {2ni/3 + 1, . . . , ni}} as the last section of the interview. With these sets
of embeddings and the approach in Section 4.2.1, three new session-level feature vectors can be
computed and the classes can be balanced.

In-processing methods
In-processing methods mitigate biases during the model training process for example via

regularization and constraints, or adversarial learning. A (weighted) regularization term can be
added to make the classifier fairer, imposing a cost on the optimization function (Kamishima
et al., 2012). Adversarial debiasing is used when there are proxy features for the sensitive
feature (e.g., due to historical biases or systemic discrimination), which might result in the
model learning these biases. Generative adversarial networks have two parallel goals: predict
the outcome (goal of the predictor module) and predict the protected attribute from the output
(goal of the adversary module). The adversarial module penalizes biased or unfair predictions
and the system will learn to maximize the predictive ability of the predictor while minimizing
the predicting ability of the adversarial (B. H. Zhang et al., 2018). This method will not be
explored in the current study.

Post-processing methods
Post-processing methods are applied after model training, acting on the model outcomes

(Hort et al., 2024). These methods change the predictions of the models, thereby directly con-
trolling the outcomes. Post-processing methods in a classification task can use different decision
thresholds for different groups, to ensure for example equal opportunity (Hardt et al., 2016),
or equalized odds (Awasthi et al., 2020). This method will also not be explored in the current
study.
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4 Methodology

This section describes the approach to answering the research questions. First, the research
questions will be presented, then the general procedure will be outlined with the data, models,
and evaluation of the models.

4.1 Research Questions

The background section identified a gap in the literature (see Section 2.4 and Table 2.2). To
summarize: gender bias in the literature on clinical depression detection with both audio and
text data has not yet been sufficiently analyzed. The main research questions (RQ) and research
subquestions (RSQ) in this study are:

RQ 1: What is the performance of unimodal audio models, unimodal text models, and bimodal
audio-text models when predicting clinically diagnosed depression severity using the DAIC-WOZ
corpus – as measured by RMSE and MAE?

RSQ 1A: What is the effect of adding an emotional attention component to the unimodal
models on the depression severity prediction using the DAIC-WOZ corpus – as measured
by RMSE and MAE?

RSQ 1B: What is the effect of adding an emotional filtering component to the unimodal au-
dio model on the depression severity prediction using the DAIC-WOZ corpus – as measured
by RMSE and MAE?

RQ 2: What is the gender fairness of the uni and bimodal models from RQ 1 in depression
severity prediction and binary depression detection using the DAIC-WOZ corpus – as measured
by EqAcc, EqOpp, and PredEq?

RQ 3: What is the effect of three pre-processing bias mitigation methods (resampling, interview
split, and MixFeat) on gender fairness using the best models from RQ 1 for depression severity
prediction and binary depression detection using the DAIC-WOZ corpus– as measured by EqAcc,
EqOpp, and PredEq?

4.2 Proposed Approach

This research will be conducted in a python environment. To answer the research questions, the
data will be preprocessed, and the models will be optimized and evaluated based on performance
and fairness metrics. All the code needed to replicate this study can be found in a GitHub
repository2. A pipeline of the proposed approach to answer the research questions can be found
in Figure 4.1.

2https://github.com/MartKoek/master-thesis
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Figure 4.1: Pipeline of the proposed approach.

First, the data management steps will be discussed, including preprocessing and the gen-
eration of session-level embeddings from sentence-level embeddings with functionals. Then the
specific uni- and bimodal models using KELM will be outlined. Additionally, the process of
optimizing and evaluating these models will be explained.

4.2.1 Data Management

Each interview contains subject turns and Ellie turns (the avatar interviewer). As Ellie’s turns
are relatively constant over all the interviews, they are not informative of the depressed state
of the participants, therefore they are filtered out. Additionally, only turns with a length over
500 ms are retained, as shorter turns might predominantly add noise. After preprocessing, the
average number of turns per subject in the validation set is 150.49. Gender-specific information
is presented in Table 4.1. This shows that the average number of turns in a conversation and
the average number of words per turn are slightly higher for females.

Gender (size) Avg. No. turns in conversation Avg. No. words per turn Avg. PHQ8 severity
Female (63) 153.52 9.53 7.51
Male (79) 148.06 9.09 6.00

Table 4.1: Data statistics per gender (averages) in the validation set.

Using SBERT, each sentence from the interview transcription is encoded into a text em-
bedding. Each session-level .wav file with audio data is split into chunks with the start and
stop times of each turn (included in the transcript file). Using the PDEM architecture, each
sentence-level audio chuck is converted into an audio embedding and scored on the emotional
dimensions valence, arousal, and dominance (VAD). Therefore, each turn is translated into an
SBERT embedding, PDEM embedding, and VAD vector.

An often-used method to summarize sentence-level embeddings into session-level data is to
calculate functionals over all sentences in an interview for each feature value. Let n = 142 be the
number of instances in the validation dataset, let m be the length of an embedding vector, with
mSBERT = 384 as the length of each SBERT vector, and mPDEM = 1024 as the length of each
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PDEM embedding. Let ni be the number of turns (embeddings) for participant i. Let f be the
number of functionals applied to the embeddings of each participant, namely: mean, median,
standard deviation (sd), var, max, q75, thus f = 6.

Let Vi be the set of embeddings for participant i, with Vi = {vi1, . . . vio, . . . , vini} with
o ∈ {1, ..., ni}. For each embedding vector vio: Let vio[l] be the l-th value of the o-th vector for
participant i with l ∈ {1, 2, . . . ,m}. The functionals over the ni embeddings for each embedding
value l can then be calculated:

meanl =
1

ni

ni∑
j=1

vio[l] (14)

medianl = median(vi1[l], vi2[l], . . . , vini [l]) (15)

varl =
1

ni

ni∑
j=1

(vio[l]− meanl)
2 (16)

sdl =
√

varl (17)

maxl = max(vi1[l], vi2[l], . . . , vini [l]) (18)

q75l = 75th percentile of (vi1[l], vi2[l], . . . , vini [l]) (19)

Thus, for each participant i, a session-level feature vector Fi ∈ Rf×m, is constructed, where:

Fi = (mean1,median1, . . . , q751, . . .meanm,medianm . . . q75m)

This results in a feature vector FSBERTi for each participant with a total length of f × n =

6× 384 = 2304 values and a FPDEMi with a total length of f ×n = 6× 1024 = 6144 values. The
most informative functionals were selected during the 7-fold CV stage. All possible combinations
of functionals were tested within the feature vectors, and the functionals from the best-performing
model were used in subsequent experiments on the test set.

4.2.2 Depression Severity Models

This section discusses the prediction of depression severity scores and binary depression scores.
The regression KELM (explained in Section 3.2) was trained on the session-level PDEM

embeddings FPDEM and SBERT embeddings FSBERT in the validation set to predict the symptom
vector of a participant. Let Fi be the session-level embedding for participant i and let yi =

(yi1, yi2, . . . , yi8) be the symptom vector for participant i, corresponding to the eight symptom
scores on the PHQ-8 questionnaire with yij ∈ {0, 1, 2, 3}. As we predict the depression severity
and sum the symptom severities, we chose to use regression of individual symptoms and not
ordinal classification of symptom severities, because the exact severity of each symptom is less
important. The KELM model is trained to predict ŷi from Fi:
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ŷi = ϕ(D,Fi)β (20)

The predicted values are then constrained within the range of 0 to 3, ensuring that any values
below 0 are set to 0 and above 3 are set to 3: ŷij = max(0,min(3, ŷij)) for j ∈ {1, 2, . . . , 8}. Then,
the individual symptom scores are aggregated and the resulting sum is rounded to the nearest
integer to obtain the overall depression severity score Ŝi for participant i:

Ŝi =

0.5 + 8∑
j=1

ŷij

 (21)

where ŷi = (ŷi1, ŷi2, . . . , ŷi8) are the constrained predicted scores for participant i and ⌊·⌋ denotes
the floor function. This approach is interpretable, allowing for the identification of individual
symptom severities that the subject is likely experiencing.

Uni- and Bimodal Models
We construct four unimodal and five bimodal models to predict depression severity from

audio or text embeddings. With the architecture in Figure 4.2, four unimodal models and one
bimodal model can be constructed. The optional VAD component indicates the use of emotional
attention or emotional filtering. Without this component, we have two plain unimodal models:
an audio model with PDEM embeddings (model 1: A) and a text model with SBERT embeddings
(model 2: T).

Figure 4.2: Unimodal and bimodal architecture to predict depression severity. The optional VAD
component indicates an optional emotional attention or filtering layer using the VAD values from
PDEM. Attention is applied to both the audio and text modality, filtering is only applied to the
audio modality.

Emotional filtering (EF) entails using the top X% emotional turns in an interview. The
distance between the VAD value of a sentence and the mean VAD value in that interview is
calculated. All sentences are then ranked based on this distance and the top emotional part
of the interview is used to compute an emotional session-level embedding. The percentage and
emotional dimension (valence, arousal, or dominance) are optimized using N-fold CV. Emotional
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filtering is applied exclusively to the PDEM embeddings, resulting in an unimodal audio model
with emotional filtering (model 3: AEF).

Emotional attention (EA) is applied by multiplying the sentence embeddings by the raw
original or absolute VAD values, thereby increasing the weight of more emotional sentences
before computing the session-level embeddings with functionals. As the emotional attention
stems from the audio recordings, applying this to the PDEM embeddings results in an unimodal
audio model with emotional attention (model 4: AEA). Applying emotional attention to the
SBERT embeddings results in a bimodal audio-text model with model-level fusion (model 5:
TEA).

In addition to the model-level fusion method mentioned above, two model-agnostic fusion
methods are explored. Feature-level fusion entails concatenating the session-level feature vectors
of PDEM and SBERT into a single fused embedding (see Figure 4.3). This audio-text embedding
is then used as input for the KELM, resulting in a bimodal audio-text model with feature fusion
(model 6: FF).

Figure 4.3: Bimodal architecture using feature fusion to predict depression severity.

The architecture to construct three bimodal decision fusion models is shown in Figure 4.4.
Unweighted decision fusion (DF) combines the predictions of unimodal models from SBERT and
PDEM embeddings (model 7: DF). Weighted DF (WDF) involves computing a weighted average
of the unimodal predictions, where the optimal weights for the audio and text predictions are de-
cided with N-fold cross-validation (model 8: WDF). Gender WDF (GWDF) uses gender-specific
audio and text weights to weigh the predictions of the unimodal models (model 9: GWDF).

Figure 4.4: Bimodal architecture using decision fusion to predict depression severity.
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Evaluating Performance
This study measures performance to predict depression severity with two key metrics, RMSE

and mean absolute error (MAE), calculated as the discrepancy between predicted and reported
PHQ-8 scores averaged over all sequences of a subset of data. These metrics were also used in the
AVEC’2017 challenge (Ringeval et al., 2017), which established the baseline performance for this
dataset. With Ŝi being the predicted depression severity score and Si being the true depression
severity score for participant i for a subset of the data with size n MAE can be calculated:

MAE =
1

n

n∑
i=1

|Ŝi − Si| (22)

Using these the RMSE and MAE, we can optimize the parameters of the models for depression
severity prediction. From the predicted depression severity score Ŝi, we can derive the predicted
binary depression score Ŷi. According to the PHQ8 method, instances with a severity score of
10 or higher are classified as depressed (label = 1) and otherwise as not depressed (label = 0):

Ŷi =

1 if Si ≥ 10

0 if Si < 10
(23)

We do not train KELM directly to predict the binary depression score to maintain the model’s
interpretability. By predicting individual symptom severities first, we can understand why the
model classifies an instance as depressed or not based on the predicted symptoms. But with
the binary depression prediction, we can still evaluate the model on binary fairness measures
(discussed in Section 3.3).

Stratified 7-fold Cross Validation
N-fold cross validation (CV) is a statistical technique used to assess a model’s performance.

In this study, the validation set was split semi-randomly into 7 folds with 20-21 instances. Details
on the exact split (for replicating the results) can be found in the GitHub repository. Given that
the validation set is small and the data is imbalanced, it is important to keep the gender and
depression class balance roughly equal over the folds, this is called stratification. Stratified N-fold
CV ensures that each fold represents each class proportionally, making the evaluation metrics
more reliable.

In each fold, one part is used once as a temporary test set while the other parts are used
as the temporary training set. After the 7 iterations, the 7 temporary test set predictions are
concatenated and the overall performance (RMSE) is calculated. This performance is compared
to the overall performance of the model with different (hyper)parameters. For each of the 9
models, the settings of the best-performing model are then used to retrain the model on the
entire validation set and the model is tested on the original test set.
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5 Experimental Results

In this section, the findings of this study on multimodal depression prediction and gender fairness
will be presented. First, the performance of the optimized models on the validation set will be
given. Then, the performance of models on depression severity prediction and binary depression
detection on the test set will be presented and compared to state-of-the-art research. A fairness
analysis will follow this and lastly, the effect of bias mitigation methods will be discussed.

5.1 Experimental Results on the Validation Set

With 7-fold CV, (hyper)parameters for KELM were optimized. Three different SBERT embed-
ders were explored: all-MiniLM-L12-v2, bert-base-nli-mean-tokens, and all-mpnet-base-

v23. All best-performing models used the embeddings from all-MiniLM-L12-v2. Using KELM,
four kernels were explored: RBF, linear, polynomial, and sigmoid. All best-performing models
used the linear kernel. Different values for the regularization coefficient C were explored in the
range [1, 20] and all possible combinations of functionals were tested for each model.

Table 5.1 shows the best-performing models on the validation set, optimized with model-
specific parameters. Regarding the emotional attention and emotional filter models, the best-
performing parameters for each emotional setting are shown. The RMSE column shows the
performance of the models when predicting depression severity for the combined instances in the
7 temporary test parts (142 values in total). The results indicate that the plain unimodal text
model (T) performs better than the unimodal audio model (A). The addition of an emotional
filter to the audio modality (AEF) improves the performance of the plain audio model (A) the
most. The top 35% emotional sentences with respect to valence seem to contain the most relevant
information for a depression severity prediction.

The use of emotional attention with the audio modality (AEA) improves the performance of
the plain audio model (A) more than the emotional filtering (AEF). Attention with raw arousal
values shows the best performance for this model, performing similarly to the plain text model
(T). The use of emotional attention with the text modality (TEA) improves the performance of
the plain text model (T), this model shows the best performance on the validation set.

The feature fusion model (FF) does not improve the predictions of the plain unimodal models
(A and T). The models with decision fusion (DF), however, do outperform the plain unimodal
models. The best fusion method is the model-level fusion (TEA). The best model-agnostic fusion
strategy is gender-weighted decision fusion (GWDF).

3Sentence Transformers by HuggingFace
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Model Modality Functionals C RMSE
A A Mean, var, median, max 2 5.13
T T Median 3 4.93

Model Modality VAD Top% Functionals C RMSE

AEF A
V 35 Mean 4 5.01
A 25 Mean, var, sd, q75, max 9 5.03
D 80 Var, sd, median, max 6 5.08

Model Modality VAD Abs Functionals C RMSE

AEA A

V Mean, var, sd, max 2 5.07
V abs Mean, var, sd, q75, max 2 5.08
A Mean, var, sd, median, max 9 4.93
A abs Var, sd, median, max 9 4.99
D Mean, var, sd, q75, max 6 5.06
D abs Mean, var, q75, max 10 5.05

TEA A+T

V Median, q75, max 5 4.82
V abs Median, q75, max 5 4.82
A Q75 10 4.62
A abs Q75 10 4.63
D Sd, q75 8 4.70
D abs Sd, q75 8 4.70

Model Modality C RMSE
FF A+T 2 5.07

Model Modality wf
A wf

T wm
A wm

T RMSE
DF A+T 0.5 0.5 0.5 0.5 4.85
WDF A+T 0.2 0.8 0.2 0.8 4.82
GWDF A+T 0.2 0.8 0.51 0.49 4.78

Table 5.1: Performance overview of the 9 (4 unimodal and 5 bimodal) models on the validation set
with their respective parameters. The setting with the best performance per model is highlighted
in bold. The FF model and the DF models use the predictions of the plain A and T models.
The column names for the three DF models indicate (optimal) weights for the audio modality,
and text modality, for females and males.

5.2 Comparison with State-Of-The-Art Models

A comparison of our unimodal models with state-of-the-art unimodal models in predicting de-
pression severity on the test set of the DAIC-WOZ can be found in Table 5.2. The corresponding
RMSE performance on the 7-fold CV using the validation set is also shown, to check generaliz-
ability of the optimized models to the test set.

The unimodal text model (highlighted in bold) outperforms the current best predictive uni-
and bimodal model using the audio and/or text modality, both in RMSE and MAE. The other
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unimodal models surpass the AVEC’2017 baseline (Ringeval et al., 2017). The addition of
emotional filtering improves the performance of the plain audio model (similar to the results
on the validation set), but adding emotional attention to the plain audio model to improve
performance does not generalize to the test set.

Source Modality RMSE MAE CV RMSE
AVEC’2017 baseline A 7.78 5.72
Z. Zhao et al. (2020) A 5.66 4.28
Oureshi et al. (2021) A - 5.11
Oureshi et al. (2021) T - 3.78
Rohanian et al. (2019) T 6.05 4.98

Ours

A 5.44 4.26 5.13
A (EF) 5.41 4.12 5.01
A (EA) 5.82 4.68 4.93
T 4.23 3.62 4.93

Table 5.2: Unimodal depression severity model performances on the DAIC-WOZ test set. The
CV column contains the performance of this setting using 7-fold CV on the validation set (also
shown in Table 5.1). The best-performing model per column is highlighted in bold.

The performance of the bimodal models on the test set (and validation set) can be found in
Table 5.3. This shows that adding emotional attention to the plain text model does not improve
the performance on the test set. Additionally, TEA is not the best-performing bimodal model
on the test set, but WDF outperforms all the other bimodal models. This bimodal model also
performs better than state-of-the-art unimodal and bimodal audio-text models. WDF does not
perform better than our unimodal text model or the model by Rohanian et al. (2019) in terms
of MAE on the test set. However, RMSE was the main challenge performance measure in the
AVEC’2017 instead of MAE.

Source Fusion method RMSE MAE CV RMSE
Al Hanai et al. (2018) Fusion scoring 6.27 4.97
Muzammel et al. (2021) Model-level 4.47 -
Rohanian et al. (2019) Word-level 5.14 3.66

Ours

Model-level (TEA) 5.06 4.04 4.62
FF 5.30 4.17 5.07
DF 5.31 4.00 4.85
WDF 4.35 3.72 4.82
GWDF 4.62 3.96 4.78

Table 5.3: Bimodal audio-text depression severity model performances on the DAIC-WOZ test
set. The CV column contains the performance of this setting using 7-fold CV on the validation
set. The best-performing model per column is highlighted in bold.
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Many studies do not predict depression severity, but binary depression score, therefore our
severity predictions were converted to binary scores (using Equation 23) and evaluated on binary
performance metrics using the test set (see Table 5.4). The results of DF are not included as
this model did not predict any severity score above or equal to 10, therefore no depression labels
were predicted.

Source Modality Acc Recall Precision F1-score
Milintsevich et al. (2023) T - - - 0.74
Rohanian et al. (2019) T - - 0.68 0.69
Rohanian et al. (2019) A + T - - 0.78 0.80
Guo et al. (2022) A + T 0.74 0.79 0.55 0.65
Al Hanai et al. (2018) A + T - - 0.72 0.75

Ours

A (A) 0.74 0.50 0.58 0.54
A (AEF) 0.77 0.50 0.64 0.56
A (AEA) 0.72 0.36 0.56 0.43
T (T) 0.83 0.79 0.69 0.73
A + T (TEA) 0.66 0.57 0.44 0.50
A + T (FF) 0.77 0.50 0.64 0.56
A + T (WDF) 0.79 0.57 0.67 0.62
A + T (GWDF) 0.77 0.50 0.64 0.56

Table 5.4: Binary depression detection model performances on the DAIC-WOZ test set.

The results above show that our models perform on par with the state-of-the-art models.
The text model outperforms the existing models on depression severity prediction in terms of
accuracy and recall, although the bimodal model by Al Hanai et al. (2018) and Rohanian et al.
(2019) are slightly better on the binary depression classification in terms of precision and F1.
The models will now be evaluated on gender fairness.

5.3 Gender Fairness of the Models

As mentioned earlier, gender fairness will be measured by the gender ratio of performance metrics
on the test set: MEqAcc, MEqOpp, MPredEq (see Equations 4, 11, 12). Table 5.5 presents the gender
fairness of the uni and bimodal models on the test set with performance values outside the range
of fair ratios (below 0.8 or above 1.2) highlighted in bold. Again, the results of DF are not
included as this model did not predict any severity score above or equal to 10, therefore no
depression labels were predicted.
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Model MEqAcc MEqOpp MPredEq

A 0.93 (f) 1.33 (m) 1.41
AEA 1.10 (f) 1.50 0.94
AEF 0.89 (f) 1.33 0.94
T (m) 1.21 0.83 (m) 1.41

TEA 1.16 1 (m) 2.20
FF 0.93 (f) 1.33 0.94
DF 1.07 - -
WDF 1.12 1.00 0.94
GWDF 0.99 (f) 1.33 0.94

Table 5.5: Gender fairness of our uni and bimodal models on DAIC-WOZ test set. Unfair
performances are highlighted in bold. The letter of the sex (f = female, m = male) indicates a
bias favoring this group.

The unimodal audio model (A) does not show a bias in terms of the equal accuracy, but it
does show a (contradicting) bias in terms of equal opportunity and predictive equality: MEqOpp

signifies a bias in favor of females and MPredEq signifies a bias in favor of males. The audio
model with attention (AEA) and emotional filter (AEF) both show a bias in favor of females
(MPredEq > 1.2), but the bias in terms of predictive equality disappeared. The unimodal text
model (T) is biased towards males (MEqAcc > 1.2 and MPredEq > 1.2). The bimodal text model
with attention (TEA) is fair in terms of equal accuracy and equal opportunity, but not in terms
of predictive equality (MPredEq > 1.2), indicating a large bias in favor of males. The other
bimodal models (FF and GWDF) show a bias in favor of females (MEqOpp > 1.2). The WDF is
solely deemed fair according to these fairness metrics.

Adding an emotional filter or emotional attention to the audio model (A) had the same effect
regarding gender fairness: it removed the bias favoring males in terms of predictive equality, but
the bias favoring females in terms of equal opportunity remained. Adding emotional attention
to the text model (T) did remove the bias favoring males in terms of equal accuracy, but in
increased the bias favoring males in terms of predictive equality.

The distributions of true depression scores and predictions of the overall best-performing
model (T; bias in favor of males) on the test set are shown in Figure 5.1. This figure shows that
the prediction value range is narrower than the ground truth value range in the test set. This
phenomenon is referred to as regression to the mean problem, implying that predictions tend to
be more conservative, clustering around the mean value of the training set to minimize RMSE
loss.
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Figure 5.1: Boxplot of true and predicted PHQ8 scores per gender in the DAIC-WOZ test set
by the best unimodal model (T).

Figure 5.1 also indicates that there is not enough evidence that a post-processing bias miti-
gation method (such as gender-specific thresholding for the depression binary score) would make
the model more fair for females. The continuous fairness metric MEqAcc would not change – as
thresholding for binary classification has no effect on depression severity prediction – and it is
unclear whether the binary fairness metrics would improve.

This section showed that not all uni and bimodal models are equally fair. The two plain
unimodal models perform good overall, but are the least fair, therefore three pre-processing bias
mitigation methods will now be explored with the aim of improving the fairness of these models.

5.4 Effect of Bias Mitigation

Table 5.6 illustrates the data imbalance in the validation set, which serves as a training set
for models evaluated on the test set. The pre-processing bias mitigation methods address this
imbalance by increasing the number of samples in the minority classes to match the sample count
of the majority class (nondepressed males). Specifically, the number of samples for nondepressed
females will be increased by 32, for depressed females by 38, and for depressed males by 43.

No. samples Females Males
Nondepressed 29 61
Depressed 23 18

Table 5.6: Number of samples per class in the validation set of the DAIC-WOZ.
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Table 5.7 shows the effect of bias mitigation methods for the plain text model (T) and audio
model (A). Resampling entails re-using samples from the minority classes. For the text model
(T) – which is biased in favor of males – resampling does not improve the fairness of the audio
model significantly in terms of equal accuracy. It increases the existing bias in favor of males in
terms of predictive equality.

Model Bias mitigation RMSE MEqAcc MEqOpp MPredEq

T

- 4.23 (m) 1.21 0.83 (m) 1.41
Resampling 4.64 1.20 0.83 (m) 1.88
Split interview 4.90 (m) 1.36 0.80 0.94
MixFeat 4.38 (m) 1.21 0.83 (m) 1.41

A

- 5.45 0.93 (f) 1.33 (m) 1.41
Resampling 5.43 0.86 (f) 2.00 0.94
Split interview 6.20 1.01 1.00 0.94
MixFeat 5.49 0.92 (f) 1.67 (m) 1.41

Table 5.7: Effect of bias mitigation methods for unimodal models on DAIC-WOZ test set. Unfair
performances are highlighted in bold. The top row for SBERT and PDEM shows the original
model performance without bias mitigation.

Resampling has a positive effect for females regarding the audio model (A). Both the equal
opportunity and predictive equality measures become more biased towards females, thereby
increasing the existing bias in equal opportunity and removing the bias in predictive equality.

The split interview technique uses subsets of interviews to make multiple session-level em-
beddings. For the depressed males, each interview was split into three subsets, creating three
new samples for each participant (54 new samples in total). For the depressed and nondepressed
females, each interview was split in two (creating 46 and 58 new samples respectively). A subset
of new samples is selected for each class and added to the original samples of that class, ensuring
that the combined total matches the sample size of the majority class.

For the text model (T), splitting each interview into subsets increases the existing bias fa-
voring males in equal accuracy, but removes the bias favoring males in predictive equality. For
the audio model, the contradicting biases are mitigated and the split interview technique results
in a fair model. However, splitting the interview has a negative impact on overall performance.

The MixFeat approach generates synthetic samples per minority class to match the size of the
majority class (Cheong, Spitale, & Gunes, 2023). This technique does not improve the fairness
of the text model, and it increases the bias favoring females in the audio model.

Overall, some of the bias mitigation methods succeed in improving fairness, but only for some
models or for specific fairness measures. Almost all methods have a negative effect on the overall
performance.
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6 Discussion

This section addresses the research questions and discusses the implications of the findings in
this study on multimodal depression prediction and gender fairness. Additionally, the limitations
of the research will be presented. This will be followed by future directions and the conclusion
of this study.

6.1 Answering the Research Questions

This research studied three research questions. In the following sections, each of them will be
discussed.

6.1.1 Performance of Uni- and Bimodal Models (RQ 1)

The performance of various models in predicting depression severity using the DAIC-WOZ
dataset showed that our unimodal text model, using SBERT embeddings, outperforms current
state-of-the-art unimodal and bimodal audio-text models on the test set.

Based on the results in the validation set, it was expected that the model-level fusion method
(adding emotional attention from speech to the text model) would outperform the plain text
model on the test set, but this was not found. The unimodal audio models surpassed the
baseline of AVEC’2017 but generally did not perform as well as the plain text model on the test
set. This was similar to the results on the validation set.

Among the model-agnostic fusion models, the gender-weighted decision fusion model showed
the best performance on the validation set, but the weighted decision fusion model outperformed
the other bimodal models on the test set. This model also outperformed the state-of-the-art
audio-text models.

Regarding binary depression detection, most of our models perform on par with the state-of-
the-art models. Even though our models were not trained to predict binary depression scores,
the unimodal text model outperformed existing models in accuracy and recall.

Overall, the models in this study perform on a state-of-the-art level. The findings are similar
to earlier research as the text modality is the most informative for depression prediction (Ray et
al., 2019; Van Steijn et al., 2022; Oureshi et al., 2021). Combining the audio modality with the
text modality did not improve the depression severity predictions.

Effect of adding emotional attention to unimodal models (RSQ 1A)
Adding an emotional attention component to the unimodal audio model improved the per-

formance on the validation set. However, this improvement did not generalize well to the test
set, where adding emotional attention did not enhance performance. These results are similar
to the text model results: adding emotional attention improved performance on the validation
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set, making it the best-performing model, but this improvement was not found when the model
was tested on the test set.

Effect of adding emotional filtering to unimodal audio model (RSQ 1B)
The emotional filtering component improved the performance of the plain audio model on the

validation set. This improvement was consistent with the results observed on the test set, where
emotional filtering also improved predictions by the plain audio model. This shows that the
emotional part of a conversation (based on audio information) is more informative for depression
severity prediction than the conversation as a whole.

6.1.2 Gender Fairness of Unimodal and Bimodal Models (RQ 2)

The result section revealed that the unimodal and bimodal models demonstrate gender biases,
although the direction and magnitude of these biases varied. The plain unimodal text model
showed a bias in favor of males, as well as the bimodal text model with emotional attention.

The plain unimodal audio model showed conflicting biases, with equal opportunity favoring
females and predictive equality favoring males. This can be explained by a higher number of
depressed predictions (severity prediction equal to or above 10) for the female class than for
the male class, possibly caused by the imbalance in depression samples across genders in the
validation set. The audio models with emotional attention and emotional filtering showed a bias
in favor of females in equal opportunity.

For the model-agnostic bimodal models, feature fusion and gender-weighted decision fusion
showed a bias favoring females. The decision fusion model was fair according to our gender
fairness metrics. Overall, it seems like the text data is more informative for males than for
females in depression severity prediction, and the audio data is more informative for females
than for males in depression severity prediction.

6.1.3 Effect of Bias Mitigation Methods on Gender Fairness (RQ 3)

Several pre-processing bias mitigation methods were explored to balance the data, which could
have caused gender biases in the unimodal models: resampling, the split interview technique,
and the MixFeat approach (Cheong, Spitale, & Gunes, 2023).

Resampling was effective for the audio model in terms of reducing bias in predictive equality
but less effective for the text model, where it increased existing biases. Splitting the interviews
was effective in achieving fairness for the audio model but at the cost of overall performance.
For the text model, this method partially improved fairness by removing the bias in predictive
equality. The MixFeat approach was not effective in improving the fairness of the text model
and it increased the gender bias in the audio model.
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Overall, the bias mitigation methods show mixed results, improving fairness in some models
and measures, while often negatively impacting overall performance. This highlights the trade-off
between fairness and accuracy (Dutta et al., 2020).

6.2 Discussion on the DAIC-WOZ and Performance Metrics

Given the regression to the mean phenomenon and the predominance of non-depressive samples
in the DAIC-WOZ, all the models tend to predict lower severity scores than the true severity
scores. A recent expert user study (Sogancioglu et al., 2024) on the importance of different
fairness measures in mental healthcare revealed that for major depression disorder, a lower
prediction is more harmful than a higher prediction compared to the actual severity score when
there is a suicidal risk. However, for mild depression cases, incorrectly predicting someone to
be more depressed than they are can have negative consequences due to unnecessary use of
medication.

Because of the size of the dataset, models were optimized on the validation set with CV.
The optimal parameters showed a good fit in the CV stage, however, in certain cases the 7-fold
CV performance was not indicative of the test set performance. Nevertheless, the best uni- and
bimodal models still outperformed state-of-the-art models.

The DAIC-WOZ contains data of participants talking to a virtual avatar. This avatar (con-
trolled by a human in another room) conducts a semi-structured interview, asking each partici-
pant a similar set of questions. It has been reported that virtual humans can increase willingness
to disclose (Lucas et al., 2014), but it is unclear whether the audio and/or text data would be
similar in a situation where the interviewer was human. Earlier research shows that participants
perceive rapport4 more often and enclose mental symptoms more often in a conversation with a
real expert than with a virtual agent (Yokotani et al., 2018). More research should be conducted
to learn about the best setting for collecting multimodal data in order to detect depression or
predict depression severity.

6.2.1 Discussion on Fairness Metrics

The results show the importance of motivating the chosen fairness metrics. Metrics such as equal
accuracy, equal opportunity, and predictive equality provide different perspectives on model
fairness. Equal accuracy was based on the ratio in RMSE between different classes of our
sensitive attribute. While RMSE provides an average error per gender class, it does not indicate
the direction of the error. This limitation can lead to significant issues. For example, if predictive
accuracy is equal between genders but the model consistently overestimates depression severity

4Rapport: A relationship characterized by agreement, mutual understanding, or empathy that makes com-
munication possible. Retrieved from https://www.merriam-webster.com/dictionary/rapport (accessed: 13-07-
2024)
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for females and underestimates depression severity for males, a bias is present. This scenario
could result in females being taken more seriously and treated with greater caution, whereas
depressed males might be perceived as less depressive. Such biases can have serious and unfair
consequences.

Evaluating gender fairness in binary depression detection raises questions about the utility
of such metrics. Binary depression prediction simplifies the task, but does not consider the
range of depression severity within the binary depression classes. It might be more important to
classify someone with depression if the severity is high, than classifying someone with depression
if this person scores just above 10 on the PHQ8. The limitation of binary fairness metrics is
linked to the approach of viewing mental illnesses and their symptoms as binary states – either
present or absent. The DSM implies that individuals either have a mental illness or not, without
considering the spectrum of symptom severity. In contrast, tools like the PHQ8 acknowledge
nuances in symptom severity, making continuous fairness metrics more suitable for this context.

6.3 Ethical Considerations

This section contains ethical considerations in the research phase of this study, but also ethical
considerations about the use of this study in future practices. The current study complies with
the ethics and privacy regulations for research projects at Utrecht University. Before conducting
the research, an ethics and privacy quick scan was completed with ethical considerations related
to human participants, data protection and storage, potential harms, and conflicts of interest.

The research project involves personal data, defined as information about an identifiable
living person: the DAIC-WOZ contains anonymized sensitive personal data about individuals’
mental health. The data collection was conducted via informed consent and the participants
in this study can not be identified using the available information, although it is theoretically
possible to recognize someone from their voice recordings. Nonetheless, all data was stored
securely and protected by passwords. No contractual conditions are attached to the use of this
data.

In processing sensitive information, innovative technology5 was used, of which the primary
objective was to predict mental disorders from behavioral indicators. This has no impact on the
participants in the dataset. Additionally, the likelihood of harm to any institution is extremely
low and no conflict of interest could affect the research outcome, as the project is not funded
and no specific outcome has beneficial consequences for any party involved.

Other ethical considerations of this study are related to interpretability and fairness. The
models – such as those employed in this study – can be used in practice to support the decision
of medical experts to treat someone in a particular way. In the development of the models, we

5As defined by Utrecht University: machine learning (including deep learning).
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chose to predict the severity of 8 symptoms rather than directly predicting a total depression
severity score or binary depression score. This approach allows for an analysis of individual
symptom contributions to the total severity score, which can explain the total severity score.
The current study has not explored the interpretability of this method, however, this is an
important consideration if such predictive tools are to be used in future practices. The other
ethical aspect of the current research is fairness. As mentioned earlier, unfairness in mental
health detection models can have dangerous consequences for patients. Different bias mitigation
methods have been explored to combat unintentional biases, with varying success.

It is important to note that depression detection models are not intended for personal use
and should not be made publicly available. Public access to these models could lead individuals
to mistakenly accept the model predictions as definitive, without knowing the risk of wrong
predictions.

6.4 Future Directions

In this section, specific research directions relevant to the proposed approach in this research will
be discussed. Then more general future research directions will be explored.

The current approach used multitask regression to predict symptom severities, summing the
regression scores to a total severity score. Future research could explore ordinal classification for
symptom severity instead of regression. Ordinal classification could provide more insights into
the severity of each symptom, providing the set of symptoms that are particularly burdensome
for a patient. This approach may help medical experts to develop effective treatment strategies.

Regarding the features in the used models. Speech rate has not been included in the prediction
of depresion severity, although this feature has been shown to differ between depressed and
nondepressed people (Yamamoto et al., 2020). Additionally, the emotional dimensions valence,
arousal, and dominance have now been extracted from the audio modality and applied to both
modalities in terms of attention and filtering. Sentiment analysis from text data could be included
in future research to confirm the emotional load of sentences, or to develop a bimodal model by
combining audio data with textual emotion.

As mentioned in the introduction, the presence of certain symptoms from the DSM does not
necessarily indicate Major Depressive Disorder. Future mental health predictive systems should
be capable of distinguishing between multiple mental disorders based on the symptom criteria
outlined in the DSM. This would enhance the precision of mental health assessment tools and
ensure that patients receive appropriate and targeted treatment.

The beginning of this report stressed that medical experts should be able to understand fully
why a patient is suffering. With access to more data and more depressed samples for both females
and males, we can develop models that are not only more accurate but also fairer. As with any
ML approach, the availability of enough data is crucial. Collecting more data could enable the
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development of models that generalize better across different populations and subsets of data,
thereby enhancing the robustness and applicability of the models in real-world scenarios.

Additionally, to ensure the generalizability of the current models, the models in the current
study can be evaluated on other (clinical) datasets to detect depression (severity). This validation
would help verify whether the research findings extend to other contexts.

Although the current models demonstrate better performance in predicting depression sever-
ity than existing models, they need to be further improved. Future research should address
challenges such as improving model performance, fairness, and validating the models in diverse
real-world settings. This is essential for applying these models as decision-support tools in clinical
settings to improve the process of diagnosing mental illnesses.

6.5 Conclusion

This research aimed to explore methods that can assist medical experts in the diagnostic process
in a responsible manner, to ensure the best possible outcomes for patients with and without
a mental disorder. The performance and fairness of uni- and multimodal models in predicting
depression severity in a clinical setting have been evaluated, using the DAIC-WOZ dataset.
The unimodal text model outperformed state-of-the-art models, while the unimodal audio and
bimodal audio-text models exceeded the AVEC’2017 baseline but not the text model. The
combination of audio and textual information did not reveal important gender patterns that
could improve over the unimodal models. Gender biases were observed in the unimodal and
bimodal models, and data augmentation bias mitigation methods showed mixed results. These
methods sometimes improved fairness, but mostly at the cost of overall performance.

Ethical considerations such as fairness and interpretability have been taken into account
during model development. Future research directions include evaluating the proposed models
on other clinical datasets, exploring more features, using ordinal classification for symptom
severity, and developing models capable of distinguishing multiple mental disorders based on
DSM criteria. More research is needed before these models can be applied in clinical practice to
enhance mental health diagnosis and possibly reduce the time that patients, their relatives, and
society suffer from the burden of mental health illnesses.
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Appendix A. Patient Health Questionnaire 8

The PHQ8 by Kroenke et al. (2009):

Using these options:

0 Not at all
1 Several days
2 More than half the days
3 Nearly everyday

Over the last 2 weeks, how often have you been bothered by any of the following problems?

1. Little interest or pleasure in doing things

2. Feeling down, depressed, or hopeless

3. Trouble falling or staying asleep, or sleeping too much

4. Feeling tired or having little energy

5. Poor appetite or overeating

6. Feeling bad about yourself - or that you are a failure or have let yourself or your family
down

7. Trouble concentrating on things, such as reading the newspaper or watching television.

8. Moving or speaking so slowly that other people have noticed. Or the opposite – being so
fidgety or restless that you have been moving around a lot more than usual

The individual scores can be summed into a total depression severity score [0, 24].
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