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Abstract

Large Language Models (LLMs) have greatly improved the diversity and

quality of machine-generated text. So much so that humans score at chance

when distinguishing human-written texts from LLM-generated texts. As-

sociated risks include accelerating phishing, disinformation, fraudulent

product reviews, academic dishonesty, and spam. Detecting LLM-generated

text could prove crucial in mitigating these risks. Many detectors have

been proposed, however, past work has mainly focused on building detec-

tors within one domain, on the output of one LLM. The most performant

detector seems to be a fine-tuned masked Language Model (LM) with a

classification head. But these detectors struggle with several issues such

as lack of interpretability, difficulty in generalizing to unseen domains,

and lack of robustness to adversarial attacks. This study sheds a light on

the performance and robustness of various LLM-generated text detectors

across 10 different domains, as well as investigate if robustness can be im-

proved through data augmentation. We provide interpretable baselines

for each domain, as well as a comparison between a fine-tuned LM trained

on all domain data and an in-domain fine-tuned LM. We first show that a

fined-tuned LM detector trained on multiple domains indeed has trouble

generalizing to an unseen domain. We then show that performance of vari-

ous detectors varies between domains. In some domains a detector trained

on all domains leads to better performance, while on others fine-tuning

within domain is better. We then attack detectors in different domains with

a character level attack and paraphrasing attack, and show that models are

of variable robustness depending on the domain. We finally show that our

fine-tuned LM detector trained on student-written essays, can be made ro-

bust to character level attacks through data augmentation, most effectively

by adding paraphrases to the training data.
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1. Introduction

Recently, Natural Language Generation (NLG) models models have taken a

significant step forward in the diversity and quality of machine-generated

text. Large Language Models (LLMs) are the current state-of-the-art (SOTA)

NLG models. LLMs are neural language models based on the transformer

architecture [1]. The popularity of these LLMs surged when OpenAI’s Chat-

GPT was made available to the public [2]. Its excellent performance, chat bot

form, easy-to-use web interface and free usage made it the fastest growing

consumer application in history [3]. Other LLMs were quickly made avail-

able to the public, either by open-sourcing their weights or by deploying

them behind an API [4]. The combination of the capabilities and widespread

access to these models, could however pose several threats including but

not limited to; accelerating phishing, disinformation, fraudulent product

reviews, academic dishonesty, and spam [5]. Detecting whether a given text

is written by a human or by AI could prove vital for mitigating these risks

[5]–[7]. A reason for concern in detection of LLM-generated text, is that hu-

mans are currently performing at chance at the task of labeling whether a

text is generated by a LLM or written by a human [8], [9]. It seems our only

hope is to create automatic systems that can detect the increasingly subtle

differences between human and LLM-written texts.

Such LLM-written text detectors exist in many varieties. However, many

existing detectors have been trained and evaluated only on specific domains

of text [10], [11]. A ‘domain’ of text is roughly defined as a corpus of text

gathered from a specific source, e.g. Wikipedia, PubMed, news articles from

a certain newspaper, or a certain subreddit. Studies have shown that detec-

tors struggle to generalize beyond the domain of their training data, which

makes it unlikely that such domain specific detectors will generalize well

to other domains [11]–[13]. Fine-tuned language models (LMs) seem to at-

tain high accuracy within domain when fine-tuned on that domain [8], [9],
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Introduction

but they are susceptible to adversarial attacks [12], [14]–[16]. Adversarial

attacks can noise the text at character level (e.g. strategically adding ty-

pos [17]), at word level (e.g. similar word substitution [18]), or at the sen-

tence/paragraph level (e.g. paraphrasing attacks [15]). Such adversarial

attacks have shown to decrease the accuracy of various detectors to below

chance level [14]–[16], [19].

It is thus important to identify reliable and robust detection methods

for LLM-generated text, and to map out how this varies across domains

of text. Reliable, meaning we want a reasonable trade off between false

positives and true positives. Robust, since potential bad actors have control

over the input to the detector, and might be incentivized to perturb their

LLM-generated text such that detection is evaded (see Appendix C for a

list of commercial tools that aim to do just that). Can such a reliable and

robust detector be created across the board for all text, or do we have a

better chance at creating one detector per domain? Furthermore, it should

be investigated if detectors robustness to adversarial attacks could feasibly

be improved by data augmentation. This study will aim to address these

issues by answering the following research questions:

1. How well do LLM-generated text detectors perform across different

domains of text?

1.1 How well do LLM-generated text detectors perform out-of-dis-

tribution?

2. How robust to adversarial attacks are detectors, and does this robust-

ness vary across domains of text?

3. Does robustness to adversarial attacks of LLM-written text detectors

improve when attacked texts are included in their training data?

1.1 Overview

In this study we will explore the detectability of LLM-generated text, by

domain and under adversarial attack. First of all, a literature study is con-

ducted, (chapter 2). It will establish a basic understanding of how LLMs
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1.1 Overview

are trained and how they generate texts. Then, a brief overview of LLM-

generated text detection will be discussed, touching upon human perfor-

mance, rising questions around theoretical feasibility, and various automatic

LLM-generated text detectors. Lastly different types of adversarial attacks

and their effects on the LLM-generated text detection task will be discussed.

This literature study is followed by a method section (chapter 3), which ex-

plains the experimental setup of the conducted experiments. Choices for

the dataset, detection models, adversarial attacks and data augmentation

are explained. The results section (chapter 4) guides the reader through the

most important experimental results. These results are then discussed and

the research questions are answered (chapter 5). Finally, limitations and

suggestions for future work are discussed (chapter 6).
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2. Literature review

The literature review touches upon different topics. Section 2.1 will review

the fundamentals of large language models, to get a good understanding of

how the models work that generate the input to the detectors. Section 2.2

will outline the LLM-generated text detection task. Section 2.3 will cover

various adversarial attacks that can be performed against detectors, and to

what effect. Section 2.4 will cover previous work on the influence of do-

mains on detectability of LLM-generated text. Finally section 2.5 will con-

clude the findings of the literature review.

2.1 Large Language Model Fundamentals

As of the time of writing, the overwhelming majority of state-of-the-art

NLG models are based on the transformer architecture [1] [5]. We will focus

specifically on the transformer-based LLMs, since LLMs currently produce

the highest quality text [4]. The upcoming overview will be a brief summary

of some important concepts related to LLMs and is based on the excellent

LLM survey by Zhao et al. [4]. Understanding some key ideas in how LLMs

are trained, and how they generate text, will prove to be vital in understand-

ing different detection approaches discussed in Section 2.2.

2.1.1 Tokenization

Tokenization can be seen as "the initial phase in NLP" [20]. Tokenization

is the process of splitting sentences into individual sub units of text, called

tokens. These tokens are then seen as the vocabulary, and each token in

the vocabulary is represented with a unique integer identifier. Tokens were

initially assumed to be words, defined as ’space-separated substrings’, as is

common in many European languages. However modern tokenizers view

tokens as sub-words [21]. Moreover, tokenizers are increasingly learned
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2.1 Large Language Model Fundamentals

from data rather than defined by a set of rules. Byte-pair encoding (BPE)

[22] adjusted for natural language [23] is often used for this purpose. The to-

ken set starts of as each character that occurs in a corpus. BPE then finds the

most common pairs and merges these characters into a new token. This hap-

pens iteratively for a certain amount of steps, which yields the final token

vocabulary. Byte-level BPE (BBPE) [24] is a variant of BPE that uses bytes

rather than characters as atomic units of text, which was used by GPT-2 [21].

A variation on BPE tokenization is WordPiece [25]. WordPiece merges not

based on the total frequency of byte pairs, but on character n-grams that

maximize the probability of the data. WordPiece tokenization is used in the

BERT family language models [26], [27]. SentencePiece [28] is a software li-

brary that provides tokenization based on BBPE combined with a unigram

Language Model. It picks the byte-pairs based on their overall likelihood in

a simple unigram language model. This implementation also includes to-

kens that span across word boundaries, making it a universal tokenizer for

all languages and thus popular for multilingual language modelling, since

many languages don’t have natural white space delimiters between words

(e.g. Chinese, Japanese).

2.1.2 Pre-training

The tokens resulting from tokenization can be used to train a language

model. While LLMs can be trained to perform many tasks, we will focus

on the autoregressive language generation task. Such generative language

models predict the next token based on a sequence of previous tokens, also

referred to as the ‘context’. The process of training an LLM on this next

token prediction task, is commonly called pre-training. Formally, an autore-

gressive language model in pre-training will maximize the objective func-

tion:

LLM(x) =
n

∑
i=1

log P(xi|x1:i−1), (2.1)
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where x = {x1, x2, · · · , xn} is a sequence of tokens, xi is the current token

to predict, and x1:i−1 = {x1, x2, · · · , xi−1}, is the sequence of all preceding

tokens also referred to as the context. Essentially, the objective is to model

the likelihood of a next token given the context tokens, as closely to the

training data distribution as possible.

Pre-training is usually done by having the model generate the distribu-

tion P(x|x1:i−1) for all x ∈ V , and calculating the cross-entropy loss between

this distribution and the actual next token in the text. This loss is then back-

propagated through the network, tuning the parameters towards more ac-

curate prediction.

This language modelling objective is the same for previous implementa-

tions of language models such as n-gram models or RNNs. What sets LLMs

apart from these approaches is enormous scale at which they are trained,

hence the name Large Language Model. This is mainly due to the ability

to parallalize the training of transformer-based models on modern high-

performance GPUs, and the widespread availability of text data to train on.

This allows for the efficient training of models with hundreds of billions of

parameters or more, on huge datasets spanning from books and web data

to code. This scaling up of the number of parameters, amount of compu-

tational power and dataset size has shown in practice to greatly improve

performance [4].

2.1.3 Decoding

Once pre-training is done, the pre-trained language model can be used to

autoregressively generate text. This process of leveraging the language model

to generate text, is called decoding. Formally, we want the LLM to complete

the context x1:m with some new text of n tokens, to obtain the full text x1:m+n

[29]. It’s assumed that models compute the joint probability P(x1:m+n) using

10



2.1 Large Language Model Fundamentals

the unidirectional left-to-right decomposition of token probabilities:

P(x1:m+n) =
m+n

∏
i=1

P(xi|x1:i−1), (2.2)

This unidirectional left to right decomposition sets LLMs apart from lan-

guage models like BERT [26], which predict a masked token in a sequence

in a bidirectional fashion.

2.1.3.1 Greedy

Perhaps the most intuitive decoding method would be to pick the token

with highest probability at each decoding step i:

xi = argmax
x∈V

P(x|x1:i−1). (2.3)

Selecting the highest probability token at each step however, might overlook

sequences of tokens that are more probable overall [4]. Selecting the most

probable next token at each step is rarely used as it can only generate one

sequence of tokens for each given input, and the generations tend to be

repetitive and of low-quality [30].

Intuitively we would thus like to find the most probable sentence over-

all. With a large enough vocabulary this is unfortunately intractable for

transformer based models [29]. Beam search [31] is a heuristic method

to trim down the combinatorial space of possible highest probability sen-

tences. While variants exist, the basic idea of beam search is a heuristic

breadth-first search. At any given step in the search tree, only the β nodes

with the highest heuristic value (probabilities in our case) are kept at any

given point in the search tree [32]. If we would thus set β = |V|, we would

end up exploring the entire combinatorial space and if we would set β = 1,

we would effectively get equation 2.3. Once beam search has finished, it
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returns the highest overall probability for that given beam size β. How-

ever as it turns out, the most probable sentence might not be ideal for gen-

eration. It’s been shown that for purposes of open-ended text generation,

beam search tends to produce common phrases and repetitive text from the

training set [33].

2.1.3.2 Sampling based approaches

A more commonly used decoding technique for open-ended text genera-

tion, involves sampling the distribution at each decoding step i

xi ∼ P′(x|x1:i−1), (2.4)

where P′(x|x1:i−1) is some distribution derived from P(x|x1:i−1).

One approach would be random sampling, sampling a random token

out of the entire distribution. We would simply apply equation 2.4, where

P′(x|x1:i−1) = P(x|x1:i−1). Completely random sampling can however gen-

erate very unlikely words, which can lead to errors. Especially when using

sub-word tokenization, where for example a word can’t might be tokenized

as tokens ca and n’t. A model might produce ca but not the subsequent n’t

to complete the full word creating ungrammatical generations [33].

A way of limiting the likelihood that such errors occur during decod-

ing, is top-k sampling [33]. At each time step i, only the k most likely

tokens given by P(x|x1:i−1) are sampled. Let the set of the k most likely

tokens be V (top-k). Now the probabilities for the top-k tokens won’t sum

to one, so they need to be rescaled. This is done by dividing all the to-

ken probabilities for each token in V (top-k) by the sum of their probabilities
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p′ = ∑x∈V (top-k) P(x|x1:i−1), giving:

P′(x|x1:i) =

P(x|x1:i−1)/p′ if x ∈ V (top-k),

0 otherwise.
(2.5)

We then sample following equation 2.4. Since this k is a constant value this

might not be optimal for all contexts . If k is small, it might create generic

and bland contexts, while if k is large the options start to include tokens that

have low likelihood [29].

Nucleus sampling [29], also called top-p sampling, offers a solution by

having the distribution to sample from P′(x|x1:i−1) be of dynamic size rela-

tive to the original distribution P(x|x1:i−1). Top-p sampling, samples from

the smallest set of tokens that has a cumulative probability above p. For-

mally, given a distribution P(x|x1:i−1), the top-p vocabulary V (top-p) ⊂ V is

the smallest strict subset of V such that

∑
x∈V (top-p)

P(x|x1:i−1) ≥ p. (2.6)

Let p′ = ∑x∈V (top-p) P(x|x1:i−1). Now we sample according to equation 2.4,

where

P′(x|x1:i) =

P(x|x1:i−1)/p′ if x ∈ V (top-p),

0 otherwise.
(2.7)

Along with sampling-based methods, a temperature parameter is often

introduced to the decoding phase. Temperature sampling is a technique

used to adjust the probability distribution from which words are sampled.

13
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This adjustment can either increase the likelihood of sampling more proba-

ble events or allow for more diversity by giving less likely events a higher

chance of being chosen [29]. The temperature parameter t typically ranges

from (0, ∞). When t = 1, the distribution remains unchanged, representing

standard sampling. As t decreases towards 0 (but not reaching 0), the model

increasingly favors higher probability events, leading to more predictable

and less diverse outputs. Conversely, as t increases above 1, the model starts

to give more weight to less likely events, enhancing diversity at the cost of

coherence, increasing the likelihood of errors. This temperature mechanism

can be used in conjunction with any of the previously mentioned sampling

methods. It is commonly employed in SOTA models, often in combination

with top-p sampling (e.g. LLama2 uses p = 0.9, t = 0.1 [34]). The temper-

ature parameter thus controls the trade-off between the diversity and the

quality of the generated text.

2.1.4 Conditional text generation

Once the pre-training phase has been completed, and a decoding strategy is

chosen, a LLM can generate text. The generation will be an autoregressive

continuation of a given sequence, the context x1:i−1 = {x1, x2, · · · , xi−1}. At

generation step i, the probability distribution P(x|x1:i−1) will be obtained

from the LLM, and the chosen decoding strategy will produce token xi. This

process is repeated, but the new context is now x1:i = {x1, x2, · · · , xi−1, xi},
the old context including the previously generated token. This new context

is then passed to the LLM to obtain new distribution P(x|x1:i), from which

new token xi+1 is decoded. This continues on until some special end of se-

quence marker (e.g. <|endoftext|> in the GPT-x family) is sampled, which

terminates the autoregressive process.

We call generation unconditional when no initial context is given to the

model. Since no context is given, the generated text can be anything and

highly depends on what the model was trained on and the decoding strat-

egy. The distribution is only skewed towards words that are often used as

the first word in a sentence across the entire training set. To make the LLM

14



2.1 Large Language Model Fundamentals

generate useful text for a specific task, it needs to be given some initial con-

text, also referred to as a ‘prompt’. A LLM that is only pre-trained, will just

continue the prompt, predicting what tokens are the most likely to follow it.

For a LLM to generate useful text, it needs to be able to follow the instruc-

tions given in the prompt rather than just generate likely next tokens.

2.1.5 Instruction following

To enable the ability in LLMs to follow specific instructions, instruction-

tuning can be employed. Instruction-tuning is the process of fine-tuning a

pre-trained language model on a set of natural language instructions. These

instruction templates often include a task description, some (optional) ex-

amples of how to execute the task, and a formulation of the correct answer

to the task. Datasets containing such formatted instructions for instruction-

tuning LLMs exist in many varieties [4], [35]. These datasets can vary based

on what instructions they contain, and how they are formatted. Some datasets

are specifically tailored to chat data for example, to make LLMs that are

instruction-tuned on it respond to prompts in a chatbot fashion. Datasets

initially all comprised of human-written data but are increasingly synthet-

ically generated by LLMs. Fine-tuning a pre-trained language model on

these natural language instructions, nudges the model’s next token predic-

tions towards generating texts similar to those in the instruction dataset [35].

Given task instructions in natural language form, LLMs have been found to

quickly generalize to handle new tasks [35].

2.1.6 Aligning

During pre-training, LLMs might have extracted certain textual patterns

from the data that the creators of the model don’t want their model to repeat

in their generation, for example for ethical or legal reasons. Furthermore, re-

searchers want the model to generate text that is of utility to potential users.

LLMs are prone to generate text that is likely, but not factual. This might

lead to the model generating false information, also called hallucination. To

address these issues, the model should be aligned to human preferences. Of-
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ten this process of aligning a LLM is done by means of Reinforcement Learn-

ing from Human Feedback (RLHF). In their original paper where RLHF

for LLMs is introduced, Ouyang et al. describe their process of creating

instruct-GPT out of the pre-trained model GPT-3 [36]. First they collect a set

of written instructions from labelers. They then employ instruction-tuning,

to fine-tune the model towards following those instructions. After obtaining

the instruction-tuned model, they prompt the model with many different

prompts. For each prompt, they have the model generate many alternative

responses. Human labelers are asked to rank the responses in order of their

preference. A reward model (RM) is trained to predict these human pre-

ferred outputs. The LLM is then optimized using a reinforcement learning

setup. At each step, a prompt is sampled from a dataset. The LLM gen-

erates a response, which gets fed to the RM. The RM predicts a score for

this LLM generated response, stating how ’human-preferred’ this output is.

The LLMs weights are updated with the intent of optimizing the reward

from the RM. The resulting LLM generates more human-like text, and is

less likely to generate text that the human labelers have discouraged. They

show that RLHF is highly effective in biasing models towards high quality

text. The model resulting from instruction-tuning and RLHF, Instruct-GPT,

scores higher than GPT-3 across many benchmarks, while having 100× less

parameters.

2.1.7 Summary

The above sections have laid out some relevant mechanics in how LLMs

are trained, and how their generative process works. First the pre-training

phase equips the LLM with a model of language, which optimizes for the

next word prediction task. This has an encoding phase; learning a represen-

tation of language in the models weights, and a decoding phase; turning the

probability distribution into a sequence of tokens. The most probable text

isn’t always what humans want LLMs to generate however [29], which is

why sampling methods are preferred over greedy methods in SOTA LLMs.

It is desirable for LLMs to follow human instructions based on a given

prompt, and the responses to these instructions should be written in a way
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that ‘looks good’ to human labelers. To this end, LLMs are instruction-tuned

and RLHF is used to bias the LLM towards generating human preferred

outputs. With this knowledge knowledge on how LLMs generate text, we

move to discussing how their outputs can be detected.

2.2 LLM-generated text detection

LLM-generated text detection can be formulated as a binary classification

task. Given a natural language text x, an LLM-generated text detector D
classifies the text as AI-written or human-written [6]:

D(x) =

1 if x generated by a LLM

0 if x written by a human
(2.8)

Furthermore there exist two settings for detection; the white-box and

black-box setting [7], [37]. In the white-box setting, the detector has some

level of access to the LLM, either full or partial access. This allows detection

methods to leverage different parts of the model (e.g. the logits) to make

predictions [11], [19]. In the black-box setting, the detector has no access to

the LLM that generated the texts in our dataset. Within the black-box set-

ting, one can either know which model has generated the texts, or this can

be unknown. In a real life scenario, the most likely setting is a black-box set-

ting with any number of unknown models that might have generated texts.

Bad actors trying to pose as a human by using an LLM are unlikely to kindly

provide information about the LLM they used for generation. Therefore this

literature review focuses on detection methods that are at least theoretically

generalizable to a black-box unknown model setting. This thus excludes

detection methods like watermarking or methods using logits of a known

source model etc.
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2.2.1 Metrics

To compare detectors, we need a way of formalizing how performance is

measured. Since we are dealing with a classification task, we have many

performance metrics to chose from. The most basic of metric is perhaps ac-

curacy, the fraction of the whole dataset that was classified correctly. But ac-

curacy doesn’t provide any information about the amount of false positives

or true positives. A standard confusion matrix can help give insights into

this, which gives all true positives (TP), true negatives (TN), false positives

(FP) and false negatives (FN). Since our detector D labels LLM-generated

texts as 1, a positive sample is a LLM-generated text, and a negative sample

is a human-written text. Since this trade-off between true and false posi-

tives is important in LLM-generated text detection, the area under the curve

of the Receiver Operating Characteristic (AUROC) is often reported as the

most important metric [7]. This metric expresses the ratio of true and false

positives across different classification thresholds for the model and is given

by:

AUROC =
∫ 1

0

TP
TP + FP

d
(

FP
FP + TN

)
. (2.9)

In automatic detectors we can see how different thresholds would im-

pact the performance of the detector, by outputting the probability that

some text x has a certain label, PD(y = 1|x) = 1 − PD(y = 0|x). How-

ever in human performance, there is not really such a thing as a ‘threshold’

for decision. So in human performance, we often see studies reporting ac-

curacy.

2.2.2 Human performance

Before resorting to automatic methods, we will discuss research on the abil-

ity of humans to detect texts written by LLMs. If this is an easy task for

humans, there might not be any need for automatic detectors. As we’ll see
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however, humans rarely score higher than chance on different variations

of the detection task, illustrating the importance of developing automatic

detectors.

One paper proposes a benchmarking dataset for detecting LLM-generated

vs. human-written text called Turingbench [9]. The dataset consists of

human-written news articles in English from different news outlets. The

titles of the articles, plus the desired length of the article are then used to

prompt several LLMs, with the prompt to write a news article based on the

title. Human performance on the detection of LLM-generated text in the

Turingbench dataset is roughly at chance.

Another study showed that the performance of humans is dependent on

the decoding method the LLM uses as well as the length of the text [38]. The

human-written and LLM-generated texts are not specified to be within any

specific domain of text, they are just specified as coming from the training

distribution of GPT-2. Humans were more accurately able to detect whether

a text was human or LLM-generated, the longer the text was. However

at the full length of 192 tokens, the average accuracy was still only 71.4%.

Interestingly, text generated with top-k sampling (with k = 40), is harder

for humans to distinguish from human-written than top-p sampling (p =

0.96 and p = 1.0). This is in contradiction to their findings for automated

detectors, which have a easier time detecting top-k sampling and a harder

time with top-p.

This poor performance of humans begs the question if humans can be

trained to perform better at the task. One study found that the initial accu-

racy of human labelers was around chance for detecting human vs. GPT-3

output [8]. They tested three domains of text: stories, news articles and

recipes. Deliberately training the labelers was found to increase the accu-

racy of labelers to 55% across domains, which was not a significant increase

in performance. Within domains there also wasn’t a significant increase in

labelers performance.

In summary, studies show that humans have great difficulty in discrimi-

nating between human-written and LLM-generated. Even deliberate train-
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ing for this task was shown to not sufficiently improve their skill level be-

yond chance level. Further reason for pessimism is that many studies that

have tested for human performance, have tested against the output of GPT-

2. The SOTA LLMs are even better at generating human-like text, providing

the intuition that this task has gotten harder rather than easier for humans.

Since it is unlikely that humans will be able to reliably differentiate between

human-written and LLM-generated text, there is a urgent demand for ac-

curate, robust and reliable automatic detectors that can be used at scale. In

many NLP tasks human performance is seen as the gold standard that sets

the bar for NLP systems to reach. In LLM-generated text detection it merely

provides a hint towards the difficulty of the task.

2.2.3 Can LLM-generated text reliably be detected?

Before we embark on the search for good automatic detection, we must

show that automatic LLM-generated text detection is at least theoretically

possible. Especially since the possibility of such reliable and robust auto-

matic detectors has recently been questioned. One recent paper provides

the ‘impossibility result’ in which they prove that as LLMs become more

capable at mimicking the distribution in human text, reliable detection of

such LLM-generated texts will become increasingly harder and inevitably

impossible in the limit [16]. Further reason for skepticism about the feasi-

bility of reliable LLM-generated text detection, is that OpenAI published a

AI-written text classifier, which they revoked as of July 2023 due to its low

rate of accuracy [39]. This thus begs the question, can LLM-generated text

be reliably detected [16] ?

As we will find out in Section 2.2.5, many detectors leverage the assump-

tion that a text written by a human has properties that are distinguishable

from the properties of a LLM-generated text. Often this assumption is ex-

tended to assuming that human-written text follows a different distribution

than LLM-generated text. A detector is essentially a discriminator between

those two distributions, and it’s accuracy is bound by the overlap of these

distributions. Sadasivan et al. [16] argue that a reliable detector, meaning
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a detector with high true positive and low false positive rate, would need

a large discrepancy between human-written and LLM-generated distribu-

tions. To be precise, they prove that for a detector to have an AUROC of

at least 0.9, the total variance distance between human and LLM-generated

texts, should be more than 0.5. This total variance (TV) between distribu-

tions is approximated by training a RoBERTa [27] classifier on the LLM-

generated classification task. The difference between the true positive and

false negative rate for LLM-generated text is taken as the TV between dis-

tributions. The authors claim that it is unlikely that the TV distance be-

tween human and LLM-generated texts distributions will remain above 0.5

as LLMs become more capable at modeling the human distribution of text.

They further their argument by showing that the TV between the distribu-

tions can be drastically lowered by adversarially attacking LLM-generated

text through paraphrasing the text many times (see Section 2.3.3). They

show that the performance of a whole range of different detectors degrades

to below chance level once the text has been recursively paraphrased five

times.

While an interesting and valuable insight in itself, the way the problem is

framed is a vast oversimplification. The paper lumps all of LLM-generated

and human text on a big pile. But this fairly raises the question, over ’which

humans’ [40] are we trying to generalize? In their 2024 study, Atari et al.

claim that much of the existing literature largely ignores that humans are a

cultural species with substantial psychological diversity around the globe

that is not fully captured within the training data of LLMs. In an exper-

iment, they let ChatGPT fill in the World Values Survey (WVS), a survey

designed to monitor cultural values, issues of justice, moral principles, atti-

tudes toward corruption, accountability and risk, migration, national secu-

rity, global governance, gender, family, religion, poverty, education, health,

security, social tolerance, trust, and institutions. They find that ChatGPTs

performance on this survey most resembles people of Western Educated

Industrialized Rich Democratic (WEIRD) countries. It can off course be ar-

gued that this is an arbitrary feature of OpenAI’s own bias. But since all

LLMs need textual training data that’s available at scale on the internet, we
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know that a large chunk of the population isn’t represented in this data.

As Atari et al. mention, the United Nations estimated that almost half the

worlds population doesn’t have access to the internet as of 2023 [40].

It is good to know that such variance between distribution has to be in

a certain order of magnitude to create a robust detector, as Sadasivan et

al. [16] point out in their paper. However the currently available human-

written text data is clearly not representative of humankind, and neither are

the people involved in creating instructions for instruction tuning, or the

labelers who label LLM responses through RLHF. Any claims about the dis-

tribution of human text, should thus be taken with some level of skepticism.

It seems more likely that many distributions exist, which differ across cul-

tures, languages, domains of text, etc. Additionally, as Section 2.2.5.1 will

outline, LLMs still have systematic flaws which could be exploited, even at

their current scale. It is not evident that scaling up LLMs further will make

these flaws disappear.

Whether reliable, accurate and robust detection is feasible remains an

open question. This study will aim to address some of these questions, in-

cluding specifically the impact of paraphrasing attacks on detectors and po-

tential ways to increase robustness to them.

2.2.4 Human-assisted methods

Some frameworks for aiding humans in labeling texts accurately as LLM vs.

human-written have been proposed. One paper proposed the Giant Lan-

guage Model Test Room (GLTR) [41]. This method annotates words in the

text by highlighting them, based on statistical methods that detect common

artifacts in the text, across common sampling schemes. The paper shows

that for detecting GPT-2 output, it boosts human performance from 54% to

72%.

Another paper proposed the Scarecrow framework, and is focused on

detecting GPT-3 output [42]. In this approach, the authors have defined

common errors that LLMs make based on academic findings (e.g. inco-

herency, bad math, hallucinated ‘facts’). Using this as a starting point, they
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crowd-sourced annotation to get a label set that is salient to non-expert la-

belers. This label set could be used to label data in the future, by relatively

untrained labelers. The paper provides the community with the annotation

scheme, but it remains to be seen if the accuracy of training labelers to use

this labeling technique enhances their performance in detecting LLM vs.

human-written text.

2.2.5 Automatic detection

A whole range of automatic LLM-written text detectors has been proposed

in the literature, too many to include here. Some great surveys have been

published that give a good overview of the many detectors that have been

proposed [5]–[7], [37]. To limit the scope of this literature review, we will fo-

cus only on training-based models that can be used in a black-box, unknown

model setting. We will specifically look at types of detectors: feature based

detectors, which can be used as a baseline for detection and are inherently

explainable, and fine-tuned LM detectors, which seem to attain highest per-

formance while being relatively simple to implement and train.

2.2.5.1 Feature based detectors

Language exhibits patterns that can be captured using statistical techniques.

These statistical features are known to vary across different domains of text

[43], but also across authors, allowing models to perform the task of au-

thorship attribution [37]. Differences in stylometric features have also been

found to exist between human-written text and LLM-generated text [44],

which can be leveraged to predict if a text was written by a LLM or a hu-

man. Using such features makes detection transparent, explainable and of-

fers insights into characteristic behaviour of LLMs [45]. Furthermore, it’s

been shown that using features alongside a neural approach leads to classi-

fiers being more robust against adversarial attacks [14]. Features specific to

the LLM-generated text detection task are formulated to capture common

limitations that LLMs exhibit in general, making them ideal for a black-

box setting where the source LLM is unknown. Whether a feature based

detector is trained to classify the outputs of one known LLM, or multiple
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unknown LLMs depends on the composition of the dataset on which a clas-

sifier is finally trained. In previous work on feature based LLM-generated

text detection, both datasets with LLM-samples from multiple LLMs [45]

and just one LLM [46] have been used as training data.

A simple baseline that is commonly used in NLP for classification, is

term frequency inverse document frequency (TF.IDF) with unigrams and bi-

grams as features for a logistic regression classifier [5]. OpenAI shared such

a baseline in their report when releasing the 1.5B parameter GPT-2 model.

When setting temperature to 1, meaning the whole distribution is sampled

at random and left unchanged, the accuracy of the baseline ranged from

88% on their 124M parameter model to 74% on the 1.5B model [46]. When

top-k sampling with k = 40, the accuracy improves to between 97% and

93% respectively. Another study tested more model sizes of GPT-2, as well

as outputs of GPT-3 and Grover [45]. They report similar results as stated in

the OpenAI report, larger models GPT-2 models are generally harder to de-

tect with the TF.IDF baseline and total random sampling is easier to detect

than top-k sampling for k = 40. For the newer models GPT-3 and Grover,

they report an AUROC of 83.7% on GPT-3 and 76.4% on Grover. As of the

time of writing, we haven’t been able to find a study that replicates a TF.IDF

baseline for SOTA LLMs.

One feature of human text is that its word occurrences follows Zipf’s

law [47]: the frequency of a word is inversely proportional to its rank in an

ordering of words by frequency. In LLMs however, this can vary according

to the decoding strategy that is used [5]. The deviance of a text from the

expected distribution according to Zipf’s law, has been used as a feature

and has been show to have some predictive power in detecting the output

of a transformer-based translation tool [44], as well as the output of GPT-2

[14].

Fröhling et al. trained detectors with perhaps the most comprehensive

set of features for the LLM-generated text detection task [45]. Their features

can be divided up into four different types of errors LLMs commonly make.

1. Lack of syntactic diversity: Named Entity tags, Part-of-Speech tags,
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and coreference clusters.

2. Repetitiveness of words: Number of stop words, unique words, and

the frequency of the most common words.

3. Lack of coherence: Assesses coherence by tracking entity roles and

transitions, analyzing content-word co-occurrences, and measuring

topic consistency through information loss in text simplification.

4. Lack of purpose: Features from the lexicon-package empath, which

analyses text across 200 gold standard topics and emotions [48].

These features are then used all together with different statistical classi-

fiers (Logistic Regression, SVM, Random Forest and Neural Network). They

continue with a neural network for further analysis, since it had superior

performance on GPT-2 output of all model sizes. In further analyses they

found that detectors did generalize between models with the same architec-

ture and decoding strategy but different complexity. They found no gener-

alizability between models with different decoding strategies. They observe

that their classifier beats the TF.IDF LR baseline in detecting text that used

full distribution random sampling, but underperforms the baseline when

top-k sampling is used. The paper also implements ensemble classifiers,

which take into account both the TF.IDF LR model, as well as the feature

based classifier. They show that these ensemble models do consistently out-

perform the TF.IDF baseline, with a 0.864 AUROC on GPT-3 and 0.805 on

Grover.

2.2.5.2 Fine-tuned Language Models

A common approach in LLM-generated text detection, is fine-tuning smaller

language models as classifiers. Commonly, masked language models like

RoBERTa [27] are used to this end. Again these approaches are in the black-

box setting, where it is dependent on the composition of the dataset how

many different LLMs are included. OpenAI published such a RoBERTa

based LLM-generated text detector with high accuracy of approximately

95% in detecting GPT-2 text [46]. These fine tuned model thus outperform

both the TF.IDF baseline as well as feature based classifiers, in the case of
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Fröhling et al. by 18 percent points on accuracy [45]. The OpenAI report

states that when top-p decoding is used, text is hardest to detect overall but

training the classifier on text generated with top-p decoding, generalizes

the best to other decoding strategies. The paper by Ippolito et al. [38] men-

tioned in Section 2.2.2, replicates the finding with their fine-tuned BERT [26]

model and juxtaposes these results to human performance, which is con-

versely higher on top-p and lower on top-k. They also find that training on

top-p generalizes best to other decoding strategies, while training on top-k

or random decoding doesn’t generalize well enough to stay above chance

level on other decoding strategies. In general, these models exhibit great

performance at face value with around a 95% accuracy on different detec-

tion tasks.

However, these models lack robustness as they tend to overfit to the

training data, making them of limited use across domains of text and on

unseen data [6], [10], [11], [49]. The implications of different domains of

text in relation to fine-tuned LM detectors will be discussed in more detail

in Section 2.4. Perhaps most worrisome of all, various adversarial attacks

have been shown to degrade performance below chance level, which will

be discussed in Section 2.3.

2.3 Adversarial attacks

The detectors described in Section 2.2.5.2 are considered the SOTA LLM-

generated text detectors. It has been shown however that different adver-

sarial attacks degrade their performance to below chance level [14]–[16],

[19]. This is problematic since a detector is specifically used in an adversar-

ial setting, where a bad actor tries to pass a LLM-generated text as human-

written. All serious threats of LLM-generated text as outlined in the threat

model by Crothers et al. are of such a nature [5]. Bad actors are thus incen-

tivized to use such attacks to perturb LLM-generated texts in order to evade

detection.

In order to create robust detectors to mitigate such threats, it should be

studied which perturbations will fool LLM-generated text detectors and
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what could be done to mitigate the effects of such attacks. Without ro-

bustness to adversarial attacks, detectors will be of little utility in real-life,

high risk scenarios. For example, if LLM-generated text detectors can detect

ChatGPT-generated essays, but these detectors aren’t robust to paraphras-

ing attacks, a student could just paste their ChatGPT-generated essay into

a tool that paraphrases their text (e.g. one of the tools in Appendix C) and

evade detection. We will review the types of adversarial attacks that exist,

so we can understand how they change text, and how this could confuse

detectors.

2.3.1 Character-level attacks

Attacks in this category operate at the character level. One type of attack is a

misspelling attack [14], [37]. This type of attack leverages the fact that LLMs

are unlikely to make spelling mistakes or ‘typos’. Strategic typos that are

commonly made by humans are added, making it more likely for detectors

to classify a noised LLM-generated text as human-written. Another attack is

the white space attack, which removes white space between certain words

[37].

Character level attacks leverage the first part of the detectors pipeline,

tokenization. Before a detector can make a prediction, it must tokenize the

input, as described in Section 2.1.1. Slight variations in spelling will likely

still be readable to us humans, but they will lead to different tokens being

inputted to the automatic detector. Such a small variation could cause a

vastly different internal representation of the sequence within the detector

(e.g. the TF.IDF representation, stylometric features or weights within the

fine-tuned LM), which could in turn lead to misclassification of the text.

2.3.2 Word-level attacks

Different methods in this category, swap words for other words, while pre-

serving some level of semantic similarity. One such attack is TextFooler [18],

which replaces words with similar words in the BERT embedding space,

based on cosine similarity. Another approach is to flip the sentiment of a
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word. That is, if a word is classified as having negative connotation make

it have positive connotation and vice-versa [50]. Named entities can also be

swapped by another irrelevant entity from the same type [50].

Word-level attacks leverage the differences in the internal state of detec-

tors when one token or more tokens are changed in the model. Detectors

might recognize certain pattern in sentences and their correlation to cor-

responding classes (human vs. LLM). These patterns are then broken by

an adversarial attack that changes words strategically, possibly causing the

model to miss classify inputs.

However, such attacks seem less plausible to be used in a real life sce-

nario, since changing individual words could greatly effect the meaning of

the sentence. Such attacks might not only fool detectors, but also perturb

the text such that it no longer serves the original purpose.

2.3.3 Paraphrasing attacks

Paraphrasing attacks involve paraphrasing entire sequences of text, with

the goal of keeping semantics highly similar. Krishna et al. [15] propose a

model called DIPPER, which is a paraphrasing model that takes paragraph

level context into account. They show that the performance of various de-

tectors (including a fine-tuned LM) is decreased to below chance level when

evaluating on LLM-generated texts paraphrased with DIPPER. Another ap-

proach is by Sadasivan et al., who publish their paraphrasing approach

along with the impossibility theorem discussed in Section 2.2.3 [16]. They

recursively rewrite a text some amount of times with a paraphrasing model,

showing that after five iterations, all tested detectors have a performance be-

low chance level on detecting the paraphrased texts. A more simple way is

to use an LLM for paraphrasing through a prompt (e.g. Can you paraphrase

the following text: text to paraphrase here), as was done by Li et al. [11]. A

popular model for paraphrasing has been trained specifically to paraphrase

as good as ChatGPT, by training a model on inputs and paraphrased out-

puts from ChatGPT [51].

Paraphrasing attacks leverage the difference in the internal representa-
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tion of a detector of two sentences with different sentence structure, but

equivalent semantics. A detector may have started to correlate a certain to-

ken order and certain word choices in the training data with that text being

LLM-generated or human-written. Paraphrasing the text removes some of

these patterns by scrambling the word order and word choice, potentially

causing misclassification, while keeping semantics highly similar.

2.4 LLM-generated text detection and domains of

text

Previous work has mainly focused on creating a detector for a single do-

main [10], [11]. Recently however, more work has been published about the

difference in detector performance between domains. One study by Wang

et al. created a multi-generator, multi-lingual and multi-domain dataset to

evaluate different models [10]. They include domains such as Wikipedia,

WikiHow, Reddit ELI5, arXiv, peer read, as well as some other non-English

domains. They prompt various LLMs to write Wikipedia articles, to write

abstracts for academic papers, to write an academic paper review based on

the title and the abstract of the paper, and to answer questions from Red-

dit’s ExplainLikeImFive subreddit. This results in a dataset with the orig-

inal human-written texts, and the LLM-generated ones. They show that a

RoBERTa model fine-tuned for classification is the most accurate model for

in-domain classification. The accuracy varies between domains however,

ranging from 0.936 on the Reddit ELI5 domain to the 0.996 on the Wikipedia

domain. They show that the performance generalizes poorly to other do-

mains that the detectors weren’t trained on. The authors don’t investigate

the cross-domain in the multi-generator setting at the same time. All their

models are only trained on the outputs of one specific model. They also

don’t subject any of their models to adversarial attacks to test for robust-

ness.

Another study by Li et al. attempts to do ‘deepfake detection in the wild’

[11]. They too acknowledge that previous work has been too focused on de-
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tection of texts in one domain from one LLM. To test detection in a more

practical scenario (e.g. ‘in the wild’) where a detector faces texts from vari-

ous domains and LLMs, they create a dataset which includes 10 different do-

mains (Table 3.1) and 27 different LLMs (Table 3.2). They fine-tune a Long-

former [52] model as a LLM-generated text detector, in various settings:

fixed-domain and fixed-model, fixed-domain arbitrary-models, arbitrary-

domains fixed-model and arbitrary-domains arbitrary models. Furthermore

they have test beds to test the performance of a detector on unseen-models

and unseen-domains. In the domain-specific cross-model setting, their Long-

former detector scores on average over all domains: an AUROC of 0.99 and

an average recall of 93.51%, whereas in the cross-domain cross-model set-

ting, the Longformer detector has an AUROC of 0.99 with an average recall

of 90.53%. When generalizing to an unseen domain, Longformer scores an

AUROC of 0.93 with an average recall of 68.40%. They however tweak their

decision boundary based on the ROC curve, which boosts the performance

on unseen domain to an average recall of 81.78%. The authors conclude

that the transferability of detection capabilities to out-of-distribution scenar-

ios, including unseen domains, remains uncertain and a crucial challenge

[11]. Additionally, the authors perform a paraphrasing attacks to test for

robustness. They use gpt-3.5-turbo as their paraphraser. They paraphrase

both human-written and LLM-generated texts, after which they label both

as LLM-generated texts. Their Longformer detector scores an AUROC of

0.75 and an average recall of 62.92%, showing that their model isn’t robust

to paraphrasing. Furthermore, they make domains either ‘specific’ or ‘arbi-

trary’, but they don’t look at individual differences between domains, and

their relative performance. They also don’t explore the potential variation

of robustness to paraphrasing across the various domains.

Finally, a concurrent work by He et al. [49] explores the performance

and robustness to various attacks of various detectors, on three domains,

high-school and university level essays, posts from the subreddit Writing-

Prompts, and news articles from Reuters. They create a dataset for the LLM-

generated text detection task, by prompting 6 LLMs (Table 3.3) to write

news articles, stories, or news articles following a given headline. Unlike
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in Li et al. [11], they always detect the outputs of one specific LLM. They

too find that fine-tuning a LM for classification, leads to the best perfor-

mance within various domains and LLMs. Their BERT-based [26] detector

scores F1 scores on all domains and LLMs above 0.950, even scoring close to

1.000 on many domain and LLM combinations. They observe that detection

methods trained on different datasets may have different transferability to

the other datasets. For example training their fine-tuned BERT on essays

and evaluating it on news articles, has an F1 score of only 0.672, while train-

ing on essays and evaluating on WritingPrompts data leads to an F1 score

of 0.983. Lastly, they evaluate the adversarial robustness of different detec-

tors on different domains, as generated by different LLMs. They attack the

models using character-level attacks by inserting random whitespaces in the

text with 1% probability. Word-level attacks are performed through swap-

ping words with synonyms in an adversarial way [53], [54]. Paraphrasing

attacks are performed using the ChatGPT paraphraser [51] from Hugging-

face. For their fine-tuned LM they find that paraphrasing the text has gener-

ally little to non effect on detector performance. Likewise inserting random

whitespaces doesn’t seem to fool the detector. Most effective was the word-

level adversarial attack. Since the paper doesn’t provide statistics about the

amount of perturbations the algorithm had to perform to fool the detector,

it’s hard to tell if those output texts are still human readable. It is interesting

to see that paraphrasing had no effect in this study. This could be because

they used a different paraphrasing model, or because paraphrasing attacks

are less effective against fine-tuned LMs in these specific domains.

2.5 Conclusion & gap identification

This literature review glanced over several important topics surrounding

LLM-generated text detection. First of all we looked at how LLMs gener-

ate language. We then turned to human performance on the task of LLM-

generated text detection and concluded that humans don’t score better chance.

We touched upon rising questions from the literature about the feasibility of

the task, and determined that detection is not necessarily theoretically im-
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possible. We then discussed some approaches have been tried in detecting

LLM-generated vs. human written texts in a black-box setting. We con-

tinued by surveying the adversarial attacks have been shown to degrade

detector performance. We closed off the literature review by highlighted

some recent work on domain differences in detecting LLM-generated text.

Evidently some levels of analysis are still missing from the literature

when it comes to the issue of domain and adversarial attacks. No study

seems to look at the general detectability of multiple unknown LLMs which

generated text within a certain domain and the differences between do-

mains specifically. When creating for example a detector for university level

essays, we know the domain of text we are expecting as input to our detec-

tor, but it is unknown which LLMs students might attempt to use to pass

LLM-generated essays off as their own. While it is infeasible to include all

LLMs in the training data, detector performance generalize much better to

unseen LLMs than to unseen domains [10], [11], providing the intuition that

training within a specific domain, on the output of multiple LLMs might

have the highest chance of creating a reliable in-domain detector. Training

on a small number of LLMs might also mean that a detector could overfit

to the specific decoding strategy used by those LLMs, which doesn’t always

generalize to other decoding strategies [38]. Furthermore, by comparing

how detectable LLM-generated texts are across various domains, we could

learn more about the problem of detection, in general and per domain. Es-

tablishing baselines by training inherently explainable models might prove

insightful here, which is missing from many existing studies.

It is clear that more research should be conducted to identify the best

approach in creating a robust, reliable LLM-generated text detector. Creat-

ing one detector for all domains of text, and all possible LLMs seems chal-

lenging. The best performing models, fine-tuned LMs, struggle to gener-

alize beyond their training data and suffer from vulnerability to adversar-

ial attacks. More fundamentally, viewing all of human-written text as one

‘human-distribution’ seems like a vast simplification that likely does not

hold. It is more likely that many such distributions exist, and that they vary

across many dimensions, one of which is the domain that the text belongs
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to. Perhaps this should inform us to turn to a more fine-grained analysis

when it comes to detection. Rather than trying to create a reliable and ro-

bust LLM-generated text detector for all ‘human’ vs. LLM-generated text,

let’s first explore if we can create such reliable and robust detectors within

various domains.

A benefit of building domain-specific detectors, is that they seem prac-

tically very feasible to create. One would need human-written texts rep-

resentative of the domain, and access to LLMs to generate LLM-generated

texts, resulting in a fully labelled dataset to train on. Fine-tuning a LM as

a detector on such a dataset is very feasible and cost effective due to the

low price of compute and the relatively small model size. It would however

then be important to know how reliable these detectors are for specific do-

mains, and how robust these in-domain detectors are to various adversarial

attacks.

We see that such a cross-model, domain-specific setting in combination

with adversarial attacks is lacking from existing works. Such an analysis

could tell us more about patterns in human and LLM-generated texts that

detectors are learning per domain, and what perturbations break those pat-

terns to evade detection. This would also allow to explore defenses against

such attacks, such as data augmentation through adding adversarial sam-

ples to the train set.

This study hopes to provide empirical insight into these questions by

showing which approach is most reliable and robust to adversarial attack,

for various domains of text. Additionally it attempts to show if data aug-

mentation could improve robustness of detectors.
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3.1 Data

The main dataset that was used was the MAGE dataset [55]. It contains

texts text from 10 different domains including opinion statements, news ar-

ticle writing, question answering, story generation, commonsense reason-

ing, knowledge illustration and scientific writing. A breakdown of all do-

mains can be found in Table 3.1. The MAGE dataset contains text written

by humans and text generated by one out of 27 LLMs, see Table 3.2 for the

LLMs that were used. The authors create LLM-generated texts using three

different prompt strategies:

• Continuation prompts: they prompt the LLM to finish a human-written

text after being given the initial 30 words,

• Topical prompts: they prompt the LLM to write a story on a certain

topic,

• Specified prompts; they prompt the LLM with specified information

about the text source from which to generate (e.g. Reddit or Yelp).

The original training set consists of a total of 319k texts, with a valida-

tion and test set of 56.7k texts each. The original ‘test beds’ that the dataset

creators provide, won’t be used here, as they provide different test settings

that don’t align with the research questions of this study. Each data split

contains texts from all 27 LLMs.

An additional dataset was selected to evaluate the out-of-distribution

performance of detectors, the student essay domain from the MGTBench

dataset [49]. It contains essays of high-school and college level on several

academic topics, gathered from a public website called Ivypanda. To obtain

the generated texts the authors prompt ChatGPT-turbo to generate a prompt

based on the essay text. This prompt is then filled into the following tem-
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plate: "Write a story in K words to the prompt <prompt>", which is used

to prompt the 7 LLMs to generate essays. See Figure 3.3 for the LLMs that

were used. Contrary to the MAGE dataset, these prompts are made avail-

able in the dataset and can be used, for example to enhance paraphrasing

(by conditioning the paraphrase on the prompt with DIPPER [15]). In total,

the dataset includes 1000 human-written and 6774 LLM-generated essays.

In the case of evaluating detectors out-of-distribution, the total dataset is

used for evaluation. In the case of data augmentation on essays (discussed

in Section 3.4), we set aside a random sample of 20% for validation, and 10%

for testing.

Table 3.1: Different domains of text that are used in this study.

Abbreviation Explanation
CMV Opinion statements collected from the Reddit subreddit

"ChangeMyView".
Yelp Yelp reviews.

XSum News articles from the BBC from 2010 to 2017 on var-
ious topics (News, Politics, Sports, Weather, Business,
Technology, Science, Health, Family, Education, Enter-
tainment and Arts).

TLDR News articles collected from hyperlinks in a tech
newsletter.

ELI5 Questions and answers collected from the ‘explain-
likeimfive’ subreddit.

WP Stories based on prompts from the Reddit Writing-
Prompts subreddit.

ROCT Collection of commonsense short stories, written by
Amazon Mechanical Turk workers.

HellaSwag Dataset for assessing commonsense Natural Language
Inference of models. Contains step-by-step instructions
from Wikihow and captions of events in videos.

SQuAD Wikipedia paragraphs from the SQuAD QA context.
SciGen Abstracts of scientific articles from SciGen.
Essays Student-written essays from Ivypanda. Only domain

that is is retrieved from MGTBench [49] rather that
MAGE [55]
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Organization Model Variants

OpenAI GPT text-davinci-002, text-davinci-003,
gpt-turbo-3.5

Meta LLaMA 6B, 13B, 30B, 65B
GLM 130B -
Google FLAN-T5 small, base, large, xl, xxl
Facebook OPT 125M, 350M, 1.3B, 2.7B, 6.7B, 13B,

30B, iml-1.3B, iml-30B
BigScience T0 T0-3B, T0-11B
BigScience BLOOM BLOOM-7B1
EleutherAI GPT-J GPT-J-6B
EleutherAI GPT-NeoX GPT-NeoX-20B

Table 3.2: The various LLMs that were used in the MAGE dataset [55].

Organization Model

OpenAI gpt-turbo-3.5
GLM ChatGLM
Databricks Dolly
Open-source GPT4All
Stability AI StableLM
Anthropic Claude

Table 3.3: The various LLMs used in the MGTBench dataset [49].

3.2 Detectors

Detectors of varying complexity were used in an attempt to detect LLM-

generated text. In this section, we will describe each of them.

3.2.1 Most common class baseline

Since our datasets have an imbalanced class distribution, it is meaningful to

compare detectors relative to the majority class. To provide this comparison,

a ‘most common’ detector was added across all domains and per-domain.

This detector always predicts the majority class, which is LLM-generated in

all domains except for Yelp, which has more human-written texts.
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3.2.2 Features

The features from the literature are almost entirely based on the study by

Crothers et al. [14]. Crothers et al. use different collections of features:

frequency features, complex phrasal features, fluency features and consis-

tency features. A selection of these features were included as features in our

detectors. All included features were extracted at dataset level. Figure 3.1

shows the distributions of each feature, for each domain, for both human

and LLM-generated text.

The frequency features measure the deviance of the lemma frequencies

in a text from the expected distribution based on a Zipfian distribution. To

this end texts are tokenized and tokens are turned into lemma form to ac-

count for conjugation variance (e.g. walking→walk). Then, the frequencies

of lemmas are counted and ordered from highest to lowest. A linear regres-

sion is fitted, where the ranks of the lemmas are used as the independent

variables, X, and the lemma log frequencies are the dependent variable, ~y.

The resulting features are the slope, r2 and the Mean Square Error (MSE) of

the fitted linear regression. Figures showing the Zipfian distribution of the

top 300 most frequent terms for LLM-generated and human-written texts

per domain are added to Appendix B, Figure B.1.

The complex phrasal features are measured as the amount of occurrences

of certain phrases in the text, such as English idioms, English cliche phrases,

or English archaisms. E.g. an English idiom phrase is "in the nick of time",

or a cliche phrase "throw in the towel". Both English idioms and English

cliche phrases were used as features, but archaisms were dropped, since the

original list of archaisms was no longer available. Omitting archaisms is un-

likely to make a meaningful difference in detection accuracy, since Crothers

et al. showed that the feature archaisms had little predictive power [14].
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(a) Slope (b) r2

(c) Mean Squared Error (MSE) (d) Flesch

(e) Gunning-Fog (f) English Idioms

(g) English Cliches (h) Spelling Errors

(i) Lemma count

Figure 3.1: Distribution of each used feature, by domain and split out human
vs. LLM
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To obtain the phrasal features, we first lemmatize all idiom and cliche

phrases. We then lemmatize each text in our dataset and count all occurences

of the idioms and cliche phrases in them. These counts are normalized by

the total amount of lemmas in each text, to obtain the ‘idiom ratio’ and

‘cliche ratio’ features.

The fluency features are measured by the Gunning-Fog index [56] and

the Flesch index [57], both measuring how readable a text is. The Gunning-

Fog index ranging from a score of 6, representing a required reading level

of a sixth grader, to a score of 17, which would require a reading level of a

college graduate. The Flesch index ranges from a score of 100, requiring a

reading level of a fifth grader, to a score of 0, requiring university gradu-

ate level to understand. While these are the semantic interpretation of these

scores, their values are theoretically unbounded. A text can become arbi-

trarily hard to read. The scores of Gunning-Fog can exceed 17, and the score

of Flesch can drop below 0 (as visible in Figures 3.1d and 3.1e). The Flesch

index and the Gunning-Fog index were both added as features.

Finally for the consistency features, Crothers et al. use the ratio of phrasal

verbs to the total number of words, as well as coreference ratios. These fea-

tures require relatively a large amount of compute to extract, since they rely

on seperate neural models for Part-Of-Speech (POS) tagging and depen-

dency parsing in the case of the verb phrase ratio, and coreference resolu-

tion models in the case of the coreference ratios. To assess their usability,

a stratified subsample was taken out of the full set, using 10% of the data

of each domain (total N = 15344). On this subset, feature based detec-

tors both including and excluding these consistency features were fitted, to

see if adding consistency features increased performance significantly and

would thus be worth the additional computational expense. The results

were added to Appendix B. In Figure B.2 we can see that including the con-

sistency features did not systematically improve performance. The consis-

tency features were thus excluded as they were considered to not be worth

the extra computational cost.

Two features were added besides the features used by Crothers et al.,
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the amount of spelling mistakes and the lemma counts. First of all, the

amount of spelling errors was added as a feature. Where humans can easily

make a typo or a grammar mistake, LLMs have often been subjected to in-

struction tuning and RLHF, which penalize for making such mistakes. This

could theoretically make LLMs less likely to produce such errors, thus al-

lowing us to leverage the amount of spelling errors as a meaningful feature

for prediction. The amount of spell errors were counted using a package

called Pyspellchecker [58]. Each lemma in the text was checked with the

spellchecker, and the final feature was the total amount of spell errors nor-

malized by the total amount of lemmas in the text. The lemma counts were

added as a feature, to see if a certain bias existed in the dataset, where for

example human texts were always of a different length than LLM written

texts. If such a bias were to exist, the weight for this feature in the logistic

regression should give us an intuition how instructive it is.

After extracting features, some outliers were discovered. An outlier here,

is a feature z-score of either lower than -3 or higher than 3. Upon further

inspection it became noticeable that some texts had outliers in multiple fea-

tures, and that these texts often looked odd, containing a repeating pattern

of words. Such repeating patterns are a common problem in the decoding

phase of LLMs. Since such outputs hardly fool a human, they were seen

as noisy for the classification task, and dropped from the dataset. All texts

that had an outlier on at least three feature values were dropped, result-

ing in a total of 775 texts dropped, out of which 39 human-written and 736

LLM-generated. The final set of features and their correlations on the whole

MAGE dataset can be seen in Figure 3.2.
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Figure 3.2: Correlation matrix of features.

3.2.3 Term Frequency Inverse Document Frequency (TF.IDF)

Another set of features that was used are TF.IDF features. TF.IDF features

with a logistic regression have often been used as a baseline for NLP classi-

fication tasks. Establishing such a baseline is useful as it allows other detec-

tors to be interpreted relative to it, in the case of this study regarding per-

formance and adversarial robustness. The included terms were unigrams

and bigrams, with a minimum document frequency of 5% and a maximum

document frequency of 95%.

3.2.4 Logistic regression detectors

The features above were used to fit logistic regression classifiers. For each

domain, a classifier based on only the Crothers et al. features, a classifier

based on TF.IDF features, and one based on the combination of both were

fitted. All input features were normalized to have a mean of 0 and unit

variance. Each of these logistic regression classifiers was fit on these scaled

features, using 5-fold cross validation to find the best regularization hyper-

parameter C.
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While there are more accurate classifiers, logistic regression was cho-

sen for it’s inherent interpretability. These detectors were created as inter-

pretable baselines for the other detectors, not as the best possible detector

given these features.

3.2.5 Neural models

Additionally, a masked LM with a classification head on top was fine-tuned

to the classification task. Li et al. [55] offer a detector based on the Long-

former model [52], which they fine-tuned as a LLM-generated text detector

on all domains. The authors however don’t offer a fine-tuned detector per

domain. To test the performance of fine-tuning a LM in-domain, we fine-

tuned DeBERTaV3-base [59] for the classification task. DeBERTaV3-base

was chosen as it currently represents the SOTA for masked language mod-

elling [59]. It was chosen over the larger DeBERTaV3-large variant to keep

training feasible. We chose to use a model with a shorter context window

than Longformer, for the same reason, to keep training and inference feasi-

ble given the scope of this study. Longformer supports a context window

up to 4098, but in their detector Li et al. use a max sequence length of 2048.

DeBERTaV3-base has a max context length of 512 tokens. To get an idea of

the influence of the sequence length per domain, see Table 3.4. It shows the

fraction of texts longer than 512 tokens per domain. In these texts, Long-

former will have access to a larger part of the text than DeBERTa.

Another important distinction is that Li et al. [55] give a custom deci-

sion boundary for classification rather than just predicting the class with

the highest probability. They argue that this helps the model to generalize

to unseen domains. This decision boundary, also called threshold, is used

in all further experiments that involve the Longformer model. All detec-

tors that we’ve fit, use the default decision boundary of predicting the most

common class. This essentially means that Longformer has picked another

point on the ROC curve, and thus has a different trade off between the FPR

and the TPR. We have decided to stick with the default decision boundary,

but obviously a different decision boundary could be set in our detectors
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Table 3.4: Per domain, the percentage of texts with more than 512 tokens, tok-
enized with DeBERTa tokenizer.

Domain > 512 tokens

cmv 17.59%
eli5 14.84%
tldr 7.73%
xsum 14.36%
wp 35.33%
roct 12.27%
hswag 10.63%
yelp 6.59%
squad 16.09%
sci gen 13.28%

too to attain a certain desired FPR and TPR. We provide ROC curves for all

detectors to display the performance at every possible decision boundary,

which is the most fair comparison between detectors.

The implementation of both the Longformer from Li et al. and our De-

BERTa, were taken from the Transformers library from Hugginface [60]. The

library offers various out-of-the-box architectures that serve various pur-

poses, one of which is sequence classification. Such a model is a combina-

tion of a backbone (DeBERTa/Longformer in this case) plus fully connected

layers on top as a classification head.

Table 3.5, shows the model characteristics and training setup for all in-

domain DeBERTa detectors, as compared to the all-domain Longformer de-

tector by Li et al. [55].

Table 3.5: Comparison between Longformer detector by Li et al. [55] and our
DeBERTa detector. Per model it shows the total number of parameters, the
maximum sequence length (in tokens), the dimensions of the last hidden state,
batch size, learning rate and weight decay.

Model # Params Seq len Last hidden bs lr wd

Longformer 148M 2048 768 16 0.00005 -
DeBERTa 184M 512 768 16 0.00004 0.01

To prevent overfitting on the train set, a pass through the validation set

was done after 20% of each epoch. After each pass the weights that pro-
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duced the lowest validation loss were saved. Early stopping was employed

after at least 8 passes through the validation set without improvement of the

validation loss. The final model was the model that resulted in the minimal

loss on the validation set.

3.2.5.1 Exploring the embedding space

To get an intuition of the internal representation of the texts in the embed-

ding space of DeBERTa, a stratified sample of 10% of each domain was taken

from the MAGE dataset. These texts were then embedded by extracting the

[CLS] token’s last hidden state as an embedding from the DeBERTa model.

A UMAP [61] projection was used to project down these 768 embedding

dimensions to a 2D plane for visualisation. Figure 3.3 highlights the differ-

ences between domain, with no discrimination between LLM-generated or

human-written text. We can see some amount of clustering per domain,

from which we can infer that there is some amount of meaningful sep-

aration in the representation of texts from different domains. Figure 3.4

highlights the differences between LLM-generated and human-written text

overall. Here we see a lack of separability between the two classes, hinting

at the difficulty of creating an all-domain detector. The highlighted differ-

ences between LLM-generated and human-written texts split out per do-

main are included in Figure 3.5 and 3.6. We see that each domain looks

quite different in the embedding space, when comparing LLM-generated to

human-written text. Some domains have a more clear separation between

classes (e.g. Yelp), where other domains seem to have more separation (e.g.

SQuAD). These preliminary explorations of the embedding space seem to

justify a further focus on the differences in detectability of LLM-generated

text between domains.

3.3 Adversarial attacks

Two adversarial attacks were performed, a character-level attack with Deep-

WordBug [62] and a paraphrasing attack using the DIPPER [15] paraphras-

ing model. As a target for adversarial attack, a random sample of 100 LLM-
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Figure 3.3: UMAP projection into 2D of DeBERTa embeddings. Sample of 10%
of each domain.
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Figure 3.4: UMAP projection of 10% of the data, shown is LLM-generated (in
orange) vs. human-written (in blue).
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(a) CMV (b) ELI5

(c) TLDR (d) XSUM

(e) WP (f) ROCT

Figure 3.5: UMAP projection of embeddings of texts split out by domain, la-
belled as LLM-generated (in orange) vs. human-written (in blue).
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(a) HSWAG (b) YELP

(c) SQUAD (d) SCI_GEN

Figure 3.6: UMAP projection of embeddings of texts split out by domain, la-
belled as LLM-generated (in orange) vs. human-written (in blue).
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generated samples were taken from the test set, for each attack. The mod-

est size of this sample was informed by the relatively large computational

resources needed to perform these attacks. Only LLM-generated samples

were attacked because an adversary is likely to want to pass off a LLM-

generated text as human written, but unlikely to want to pass of a human-

written text as LLM-generated.

3.3.1 Character level attack

To attack the LLM-texts at the character level, DeepWordBug was chosen

[62]. DeepWordBug needs white-box access to the model that it is attacking.

It first determines which tokens are the most important to perturb, based

on the difference in the probability that the model assigns to each perturbed

input. DeepWordBug then perturbs the most important tokens in the text

by swapping, substituting, deleting or inserting characters. The final goal

is to have the model under attack misclassify a text with as little character

edits as possible. Different detectors can thus be subjected to different per-

turbations, depending on which edits DeepWordBug finds most effectively

confuse that detector. See Figure 3.7 for an example of a successful Deep-

WordBug attack. Texts where a detector already predicts the wrong class

without perturbations, are skipped.

Original Text:
(...) It seems to me like one has more impact than another depending
on how well they resonate within our life experience. (...)

Perturbed Text:
(...) It sems to me like one has more impact than another depning on
how well they resonate within our life experience. (...)

Figure 3.7: Example of a successful DeepWordBug attack. Attacked text taken
from an attack on our ChangeMyView DeBERTa detector.
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3.3.2 Paraphrasing attack

To perform paraphrasing attacks, the DIPPER paraphrasing model [15] was

used. It allows control over the paraphrased output through lexical diver-

sity with parameter L, and the order diversity with parameter O. Addition-

ally, it allows the insertion of a conditional ‘prompt’ to guide the generation

of the paraphrase. The MAGE dataset [55] didn’t contain such a prompt

so it was left out during paraphrasing. The MGTBench dataset [49] pro-

vides the essay domain, includes the prompt that was used to generate each

LLM-generated text. For the essay domain we thus leveraged this prompt to

guide the paraphrasing generation. In all usages of DIPPER, both the lexical

diversity parameter L and the order diversity parameter O were set to 60,

as Krishna et al. [15] show that these settings produce paraphrases that are

the most effective in evading detection while retaining semantic similarity

with the original text.

An important difference with DeepWordBug is that paraphrasing is done

without access to a detector. The paraphrases are generated only given the

input text, parameters O and L, and an optional prompt. The generated

paraphrases are thus the same for each detector. See Figure 3.8 for an exam-

ple paraphrase.

3.4 Data augmentation

Only the essay domain from MGTBench [49] was used to see what the im-

pact of data augmentation on adversarial robustness was. This decision

was made to make experimentation feasible. To do data augmentation ef-

fectively, we need to add a meaningful amount of augmented texts to the

train set. If we add too few augmented texts, the robustness might not in-

crease much, but if we add too many, the performance on the original texts

might decrease. One study by Li et al. shows that in increasing adversarial

robustness, 10% seems to be a good balance between performance on the

task and increased robustness [63]. We thus desire such a fraction to per-

form data augmentation. In the case of the MAGE [55] dataset that would
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Original Text:
"Yes, it is a loophole, no that doesn’t change our position." Saint-
Peter impatiently drummed his fingers on his lecturn, dreaming of
the day he’d be allowed to retire. "But I may have something else for
you... It’s not going to work with your current technology but..." He
went silent as she turned and looked at him in surprise after hearing
about what was possible from her. He had been working hard trying
to find any new way through this mess when something suddenly
occurred to him: If they used their power against each other then
perhaps there would be less chance of them being found out than if
one or both just tried doing so without using magic themselves?

Paraphrased Text:
Saint-Pierre impatiently tapped his fingers on the lectern, dreaming
of the day when he would be allowed to retire. - But I have some-
thing else to tell you... Yes, it is a loophole, no, it does not change
our position. He had been working hard to find a new way out of
this mess, when suddenly he thought of something: if they used
their power against each other, perhaps they would be less likely to
be discovered than if one or both of them had tried to do it without
magic. It won’t work with your current technology, but...

Figure 3.8: Example of a text before and after paraphrasing. Text originally
generated using OPT-30B within the WritingPrompts domain by the authors
of MAGE [55]. The text was then paraphrased using DIPPER [15] by us.
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imply augmenting 31900 texts, which is beyond the scope of this study. By

limiting to essays we only have to augment 610 texts, which can feasibly be

done.

For data augmentation we again only sample LLM-generated texts to

perturb. For character-level data augmentation, the package nlpaug [64]

was used, which provides functionality to swap characters with higher prob-

ability if they are closer to each other on a QWERTY keyboard. This is meant

to simulate human-like typos. Note that we’re not using attacked texts from

DeepWordBug [62] for data augmentation, but that we are instead using

random character perturbations. This was done because it is computation-

ally much faster, since we don’t need white-box access to any detector. For

nlpaug, the probability of generating a typo was set to 10% per token, with

a max of one typo per token. The data augmentation module allowed for a

custom tokenizer, so the DeBERTa tokenizer was used in the data augmen-

tation process. A random sample of 10% of the all texts in the train set are

augmented using this method.

For data augmentation using paraphrasing, DIPPER was used. A sam-

ple 10% of the LLM-generated texts from the training set was recursively

paraphrased three passes, each saved individually. DIPPER allows an op-

tional prompt to guide generation, which we provided, since MGTBench

[49] includes the prompts that were used to generate each text. With these

three passes of paraphrasing, we create four different train sets. A set with

one paraphrasing pass, two passes, three passes, and an even split between

one/two/three passes. Another train set was created to evaluate the added

effect of augmenting the train set both with typos and paraphrases. This

train set contained the mix paraphrases of three different levels along with

all texts noised with typos. Notably this is the only train set where 20% of

data is augmented.

Now that we have these different train sets, we fit DeBERTa detectors on

each train set in exactly the same way as was done prior. Once we obtained

these detectors, we evaluated their performance and robustness. Evaluat-

ing the robustness to character level attacks was again done by attacking
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detectors with DeepWordBug, on a random sample of 100 LLM-generated

texts from the test set. Evaluating the robustness to paraphrasing attacks is

done by evaluating detector performance on the full test set (human-written

and LLM-generated), plus paraphrased LLM-generated texts. To obtain the

paraphrases for evaluation, all LLM-generated texts from the test set (672

texts) were paraphrased recursively three times. Evaluating on such a test

set of both the original test set and the paraphrased LLM-generated texts

provides a balanced view of both the robustness to paraphrasing and the

performance on the original detection task. Three test sets were created by

adding each paraphrasing level to the test set. An additional test set with a

mix of all three levels of paraphrasing was created, in which we randomly

sampled one of the paraphrasing levels for each LLM-generated text in the

test set. This mix of paraphrased texts was again added to the original test

set, to create a fourth test set. A final test set was created, by adding all

unperturbed LLM-generated texts to the original test set. This was done to

evaluate detectors on the original performance only, while preserving the

same label distribution as all other test sets.

Recursive paraphrasing has been done previously by Sadasivan et al.

[16] in a slightly different way. They paraphrase in 5 rounds, and always use

the previous round p− 1 as input to paraphrase, and p− 2 as the prompt.

In our case this wasn’t done, each paraphrase pass was paraphrased on

p − 1, but prompted with the original generation prompt. We also only

paraphrase 3 passes to keep running experiments feasible within the scope

of this study.

3.5 Evaluation & Metrics

For each detector, we will report the Area Under the ROC Curve (AUROC),

the accuracy of the model, and the weighted averages of the precision, re-

call and F1 score. In the case of evaluating on all domains at once, and on

the out-of-domain essay domain, we will provide confusion matrices. This

is done to more specifically zoom in on the impact of the custom descision

boundary of Longformer on the true positive ratio (TPR) and false positive
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ratio (FPR) of the model, both in-domain and out-of-domain. In all other

cases, the ROC curves and AUROC are given, allowing evaluation of detec-

tor performance for any decision threshold.

3.6 Ethical statement

The Ethics and Privacy Quick Scan of the Utrecht University Research Insti-

tute of Information and Computing Sciences was conducted, see Appendix

A for its results.
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4. Results

4.1 Performance

Table 4.1 shows the performance of detectors that have been trained using

the entire MAGE dataset [55]. This was done to compare the Longformer

detector to our feature-based baselines. We see that the Longformer detector

far outperforms the baseline detectors. Within the baseline detectors, we

see that combining the features and TF.IDF increases overall performance

compared to both separate detectors. However, the feature based detectors

barely score above our baseline of classifying each text as LLM-written.

Table 4.1: Performance of detectors on all domains when trained on all those
domains, except for essays.

Detector AUROC Accuracy Precision Recall F1

Longformer 0.985 0.876 0.898 0.876 0.874
Features + TF.IDF 0.702 0.646 0.647 0.646 0.646
TF.IDF 0.685 0.632 0.633 0.632 0.632
Features 0.580 0.558 0.558 0.558 0.557
Most common - 0.650 - - -

(a) Evaluated on all MAGE domains. (b) Evaluated on out-of-domain es-
says from MGTBench.

Figure 4.1: ROC curves for detectors trained on all domains from the MAGE
dataset.

Although Longformer has a quite high AUROC of 0.985, we see that the
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other metrics aren’t very high. This is result of the chosen decision bound-

ary by Li et al., see Fig 4.1a for the ROC curves. When we look at the con-

fusion matrix for the Longformer in Appendix B, Figure B.3, we see that the

chosen decision boundary gives a FPR of 164
164+28571 ≈ 0.57%, and a TPR of

21138
6853+21138 ≈ 75.52%.

To evaluate the out-of-distribution (OOD) performance of Longformer

when compared to our baselines, we evaluated them on the essay domain

from the MGTBench dataset [12]. Table 4.2 shows the results and Figure 4.1b

shows the ROC curves. Similarly to the in-distribution results, we see that

Longformer outperforms the feature-based and TF.IDF detectors. We that

see the AUROC of Longformer falls by 0.098 compared to the in-distribution

setting. Additionally we see that the detector only based on the features per-

forms worse than predicting the most common class, the TF.IDF and TF.IDF

+ features detectors score slightly better than predicting the most common

class. At the given threshold Longformer has a FPR of 160
160+840 = 16% and

a TPR of 5182
5182+1592 ≈ 76.50%, see Appendix B, Figure B.4 for the confusion

matrix.

Table 4.2: Performance of detectors trained on entire MAGE dataset, evalu-
ated on out-of-distribution essays domain.

Detector AUROC Accuracy Precision Recall F1

Longformer 0.887 0.774 0.889 0.774 0.808
Features + TF.IDF 0.628 0.493 0.827 0.493 0.567
TF.IDF 0.644 0.488 0.835 0.488 0.560
Features 0.311 0.551 0.734 0.551 0.623
Most common - 0.871 - - -

Now for the results within domains. We will compare the best detec-

tors trained on all data (Longformer), with various detectors that have been

trained only in in-domain (Logistic Regression baselines and DeBERTa). Ta-

ble 4.3 shows the results, and Figures 4.2 and 4.3 show the ROC curves per

domain for each detector.
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Table 4.3: Performance comparison between training a general detector on all
domains (Longformer) vs. training a detector in-domain (all other detectors).
*Yelp is the only domains where the most common class is human-written.

Domain Classifiers AUROC Accuracy Precision Recall F1

cmv Longformer 0.996 0.895 0.912 0.895 0.894
DeBERTa 0.989 0.962 0.942 0.985 0.963
Features + TF.IDF 0.941 0.875 0.876 0.875 0.875
TF.IDF 0.926 0.848 0.848 0.848 0.848
Features 0.826 0.757 0.767 0.757 0.755
Most common - 0.736 - - -

eli5 Longformer 0.986 0.824 0.869 0.824 0.818
DeBERTa 0.961 0.879 0.838 0.942 0.887
Features + TF.IDF 0.807 0.740 0.740 0.740 0.740
TF.IDF 0.795 0.724 0.725 0.724 0.724
Features 0.687 0.659 0.659 0.659 0.658
Most common - 0.580 - - -

hswag Longformer 0.982 0.860 0.888 0.860 0.856
DeBERTa 0.988 0.969 0.976 0.960 0.968
Features + TF.IDF 0.912 0.851 0.854 0.851 0.851
TF.IDF 0.858 0.794 0.796 0.794 0.793
Features 0.872 0.833 0.848 0.833 0.831
Most common - 0.759 - - -

roct Longformer 0.983 0.886 0.907 0.886 0.885
DeBERTa 0.980 0.957 0.958 0.955 0.956
Features + TF.IDF 0.878 0.834 0.844 0.834 0.833
TF.IDF 0.845 0.795 0.802 0.795 0.794
Features 0.855 0.846 0.872 0.846 0.843
Most common - 0.764 - - -

sci gen Longformer 0.981 0.909 0.916 0.909 0.908
DeBERTa 0.982 0.888 0.816 0.983 0.892
Features + TF.IDF 0.894 0.817 0.817 0.817 0.817
TF.IDF 0.841 0.764 0.764 0.764 0.763
Features 0.807 0.769 0.778 0.769 0.766
Most common - 0.709 - - -

squad Longformer 0.991 0.866 0.893 0.866 0.863
DeBERTa 0.977 0.918 0.944 0.887 0.915
Features + TF.IDF 0.862 0.780 0.784 0.780 0.779
TF.IDF 0.778 0.710 0.711 0.710 0.709
Features 0.785 0.762 0.780 0.762 0.758
Most common - 0.543 - - -

tldr Longformer 0.985 0.894 0.909 0.894 0.893
DeBERTa 0.962 0.864 0.811 0.941 0.871
Features + TF.IDF 0.868 0.794 0.796 0.794 0.794
TF.IDF 0.832 0.763 0.764 0.763 0.762
Features 0.772 0.761 0.776 0.761 0.756
Most common - 0.758 - - -

wp Longformer 0.997 0.930 0.937 0.930 0.930
DeBERTa 0.995 0.966 0.943 0.991 0.967
Features + TF.IDF 0.957 0.895 0.895 0.895 0.895
TF.IDF 0.944 0.871 0.871 0.871 0.871
Features 0.816 0.743 0.749 0.743 0.742
Most common - 0.711 - - -

xsum Longformer 0.988 0.890 0.907 0.890 0.889
DeBERTa 0.969 0.887 0.839 0.958 0.894
Features + TF.IDF 0.885 0.809 0.809 0.809 0.809
TF.IDF 0.859 0.783 0.783 0.783 0.783
Features 0.821 0.760 0.762 0.760 0.760
Most common - 0.743 - - -

yelp Longformer 0.984 0.812 0.861 0.812 0.804
DeBERTa 0.952 0.869 0.927 0.794 0.855
Features + TF.IDF 0.751 0.687 0.688 0.687 0.686
TF.IDF 0.741 0.676 0.677 0.676 0.675
Features 0.623 0.624 0.626 0.624 0.620
Most common * - 0.592 - - -
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(a) CMV (b) ELI5

(c) TLDR (d) XSUM

(e) WP (f) ROCT

Figure 4.2: ROC curve of detectors per domain. Longformer trained on all
data vs. other detectors trained in-domain.
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4.1 Performance

(a) HSWAG (b) YELP

(c) SQUAD (d) SCI_GEN

Figure 4.3: ROC curve for detectors per domain. Longformer trained on all
data vs. other detectors trained in-domain.

We see that in general, Longformer has high performance on each indi-

vidual domain that it was trained on compared to the in-domain detectors.

The AUROC of Longformer is highest on all domains except SciGen and

HellaSwag. In terms of accuracy, Longformer is best in 3 domains, while

the in-domain DeBERTa is best in 7 of the domains. These differences in

accuracy between Longformer and DeBERTa can be quite dramatic, for ex-

ample on HellaSwag DeBERTa outperforms Longformer by ≈ 10.9%. On

F1 DeBERTa outperforms Longformer in 8 out of the 10 domains. But, this

is at the default decision boundary of predicting the most probable class.

When we look at the ROC plots in Figures 4.2 and 4.3, we see that in the

case of ELI5, TLDR, XSum, Yelp and SQUaD, DeBERTa would have a much

lower TPR than Longformer when constraining the FPR through a custom

decision boundary. Longformer would thus outperform the in-domain De-

BERTa when a lower FPR is desired.

59



Results

For the feature based and TF.IDF detectors, we see that they perform

vastly better in this in-domain setting than they did in the all domain set-

ting. We see that combining both features and TF.IDF into one detector con-

sistently outperforms the detectors that use them individually.

4.1.1 Features importance

When we look at the top 10 coefficients from each class of our features +

TF.IDF detectors in Figure 4.4, we see that across domains, different features

are off different importance to detection.

The most common features across domains are the fluency features: slope

and r2. In all domains except HellaSwag, a higher r2, thus a better fit with a

Zipfian distribution, leads to a text being more likely to be human-written.

In most domains, (all except XSum), a larger slope means that a text is

more likely to be human-written. This means that a text that contains rel-

atively more uncommon words is more likely to be human-written than

LLM-generated. Put another way, humans sample more words from the

long tail of infrequent words of the Zipfian distribution when compared to

LLMs, which was also found in previous work [41]. The Mean Squared Er-

ror (mse) seems to be of variable importance across detector, where in some

domains it is big factor pointing towards LLM-generation like HellaSwag,

while in others it has a marginal weight only like XSum.
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(a) CMV (b) ELI5

(c) TLDR (d) XSUM

(e) WP (f) ROCT

(g) HSWAG (h) YELP

(i) SQUAD (j) SCI_GEN

Figure 4.4: Top 10 features for human-written (lower coefficients) vs. LLM-
generated (higher coefficients), of the TF.IDF + features detectors.
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The fluency features are a bit less intuitive. In many domains, we see

that texts with a higher Gunning-Fog fluency score, are more likely to be

generated by an LLM. However in some domains, also a higher Flesch read-

ability score makes a text more likely to be LLM-generated. This is counter-

intuitive since the features are strongly inversely correlated (see Figure 3.2),

a higher Gunning-Fog scores means that a text is harder to read while a

higher Flesch score means it is easier to read. The unintuitive coefficients

are most likely due to the large class imbalance. There are so many more

LLM-generated texts than human-written texts, that the logistic regression

assigns a relatively high coefficient to a non-sparse feature, in order to pre-

dict that a text is LLM-written often enough. For the length of the sequence,

measured by the feature lemma counts, we see that it is only a strong pre-

dictor for XSum, where humans tend to write shorter texts than LLMs.

Then we see that the features English idioms, English cliches, and spelling

errors never end up in the top 10 most important features for either class.

Looking at the coefficients of the feature only detectors in Figure 4.5, we can

see that indeed, English idioms and English cliches have low coefficients,

with the exception of Yelp reviews, where humans seem to use a lot more

cliches than LLMs.

In most domains, the amount of spelling mistakes has a small nega-

tive coefficient, indicating the humans make slightly more spelling mistakes

than LLMs. We see a variable coefficient of lemma counts, where in some

domains LLMs generate longer texts than humans write, while in others hu-

mans write longer texts. The top 10 most important for the TF.IDF detectors

are added to Appendix B, Figure B.5.
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(a) CMV (b) ELI5

(c) TLDR (d) XSUM

(e) WP (f) ROCT

(g) HSWAG (h) YELP

(i) SQUAD (j) SCI_GEN

Figure 4.5: All 9 features for human-written (lower coefficients) vs. LLM-
generated (higher coefficients), of the feature detectors.
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In general we see variability in performance between domains, across all

detectors. For example the best detector on the Yelp domain has a F1 score

of 0.855, while the best detector on the WritingPrompts domain scores 0.967.

The variability in performance of detectors across domains can also clearly

be seen from the ROC curves in Figure 4.2.

4.2 Robustness

In evaluating robustness, we leave out the all-domain feature based and

TF.IDF detectors. They perform so poorly that even if these detectors were

robust they wouldn’t be useful. We evaluate the robustness of all detectors

always per domain, where Longformer is the only detector that was trained

on all domains, and all other detectors were only trained in-domain.

4.2.1 Character level

The results of DeepWordBug can be found in Table 4.4. The columns mean

the following: Domain is the domain under attack, Acc is the original ac-

curacy on the unperturbed texts, Attack Acc is the accuracy under attack,

Success % is the percentage of successful attacks, and Avg. perturb is the

average amount of words that were perturbed in successful attacks.
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Table 4.4: Adversarial robustness of detectors against DeepWordBug attack.
Results are reported on 100 randomly sampled LLM-generated texts from the
test set. Best in bold.

Domain Approach Acc Attack Acc Success % Avg. perturb

cmv Longformer 0.980 0.254 0.740 9.48
DeBERTa 1.000 0.330 0.670 4.98
Features + TF.IDF 0.813 0.114 0.860 5.21
TF.IDF 0.840 0.160 0.810 4.01
Features 0.763 0.237 0.690 6.37

eli5 Longformer 0.952 0.200 0.790 10.40
DeBERTa 0.962 0.960 0.090 7.47
Features + TF.IDF 0.781 0.219 0.720 6.56
TF.IDF 0.794 0.254 0.680 4.64
Features 0.741 0.163 0.780 6.80

hswag Longformer 0.935 0.402 0.570 11.36
DeBERTa 0.909 0.836 0.080 15.51
Features + TF.IDF 0.833 0.433 0.480 13.30
TF.IDF 0.800 0.488 0.390 5.55
Features 0.870 0.783 0.100 9.00

roct Longformer 0.980 0.275 0.720 9.55
DeBERTa 0.990 0.990 0.000 -
Features + TF.IDF 0.877 0.342 0.610 9.99
TF.IDF 0.820 0.541 0.340 6.78
Features 0.877 0.342 0.610 14.61

sci gen Longformer 1.000 0.430 0.570 12.50
DeBERTa 0.971 0.612 0.370 7.81
Features + TF.IDF 0.800 0.176 0.780 6.37
TF.IDF 0.758 0.197 0.740 4.82
Features 0.746 0.187 0.750 7.25

squad Longformer 0.971 0.379 0.610 12.57
DeBERTa 0.840 0.311 0.630 6.89
Features + TF.IDF 0.746 0.276 0.630 6.91
TF.IDF 0.699 0.273 0.610 3.11
Features 0.725 0.348 0.520 8.36

tldr Longformer 0.990 0.267 0.730 10.03
DeBERTa 0.963 0.644 0.330 12.50
Features + TF.IDF 0.735 0.213 0.710 8.85
TF.IDF 0.769 0.246 0.680 4.67
Features 0.769 0.292 0.620 7.54

wp Longformer 0.990 0.396 0.600 9.29
DeBERTa 1.000 0.220 0.780 6.79
Features + TF.IDF 0.909 0.282 0.690 5.34
TF.IDF 0.855 0.308 0.640 4.34
Features 0.671 0.228 0.660 7.33

xsum Longformer 1.000 0.270 0.730 10.67
DeBERTa 0.952 0.533 0.440 8.49
Features + TF.IDF 0.893 0.223 0.750 6.80
TF.IDF 0.870 0.339 0.610 3.73
Features 0.787 0.354 0.550 7.91

yelp Longformer 0.926 0.278 0.700 7.24
DeBERTa 0.826 0.248 0.700 3.85
Features + TF.IDF 0.714 0.143 0.800 5.14
TF.IDF 0.730 0.153 0.790 4.74
Features 0.662 0.192 0.710 9.05

First of all we see that Longformer isn’t robust to attacks by DeepWord-

Bug. In every domain, the accuracy of Longformer drops greatly under

65



Results

attack. While DeBERTa is also not robust in many domains, DeBERTa holds

up almost perfectly on ELI5, HellaSwag and perfectly on ROCT, with low

attack success rates and high accuracy under attack. The logistic regres-

sion baselines show great drops in accuracy under attack and are thus not

very robust. We see that in general, the robustness of detectors to charac-

ter perturbations of DeepWordBug varies between domains. The attacks

are generally less successful on HellaSwag and more successful on Yelp for

example.

4.2.2 Paraphrasing

Results for the paraphrasing attack with DIPPER can be found in Figures

4.6, 4.7 and 4.8. The figures show the detectors ROC curve on 100 sampled

LLM-generated texts, and 100 sampled human-written texts, both from the

test set. Each figure shows the ROC curve of the detectors on the original

texts on the left, and on the right the ROC curve of the detectors where all

LLM-generated texts have been paraphrased with DIPPER.

We observe that in general, paraphrasing has a variable effect on the var-

ious detectors per domain. On HellaSwag for example (Figure 4.8a), we see

that the AUROC of Longformer decreases after paraphrasing, while the AU-

ROC of DeBERTa and the features + TF.IDF detectors increase. On SQUaD

(Figure 4.8c), we see all the AUROC of all detectors dip. Conversely on

WritingPrompts (Figure 4.7b), we see that some detectors dip slightly in

AUROC, while others have an increased AUROC on paraphrases.

However a change in AUROC doesn’t tell the full story. It also matters

where the ROC curve changes. We see that paraphrasing lowers the TPR

specifically at lower FPR rates for most domains and most detectors. This

means that if a requirement of a detector is a low FPR, the TPR can still

suffer dramatically, even if the total AUROC doesn’t decrease much. As an

example, if we’d want a 1% FPR on SQUaD for Longformer, we could attain

a TPR of 92% on the original texts. On paraphrases Longformer could only

attain a TPR of 71% at that same FPR of 1%. Quite a big difference given

that the AUROC on paraphrases decreased by only 0.021.
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(a) CMV

(b) ELI5

(c) TLDR

Figure 4.6: ROC curves of detectors under paraphrasing attack. Sample of
100 human-written and 100 LLM-generated texts. Left shows the unattacked
ROC curves, the right shows the ROC curves when LLM-generated texts are
paraphrased.
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(a) XSUM

(b) WP

(c) ROCT

Figure 4.7: Figure 4.6 continued.
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(a) HSWAG

(b) YELP

(c) SQUAD

Figure 4.8: Figure 4.6 continued.
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(a) SCI GEN

Figure 4.9: Figure 4.6 continued.

But again, we don’t see this pattern on all domains and all detectors. On

WritingPrompts, DeBERTa is completely robust to paraphrasing. The AU-

ROC even increases slightly on paraphrases. The detector scores a TPR of

92% at a fixed FPR of 1% both on the original texts and paraphrases. Differ-

ences within a domain, between detectors can also be vast. For example in

the SciGen domain, Longformer attains a TPR of 77% at a fixed FPR of 1%,

which is decreased to a TPR of 45% on paraphrases at that same fixed FPR

of 1%. Meanwhile DeBERTa attains a TPR of 78% which increases to 80% on

paraphrases, at the same fixed 1% FPR.

Domain thus matters to the robustness of detectors to paraphrasing. Dif-

ferent detectors are variably robustness to paraphrasing per domain, and

different detectors vary in robustness within domain. When detectors aren’t

robust to paraphrasing, we see that specifically the TPR at a low FPR de-

creases.

4.3 Data Augmentation

In this section we summarize the results of attempting to detect against ad-

versarial attacks through data augmentation. First we will go over the re-

sults for the character level attack using DeepWordBug, followed by the re-

sults of paraphrasing. Data augmentation was done by either adding typos,

paraphrases, or both to the train set of a detector.
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4.3.1 Character level attacks

The robustness results of the DeBERTa LLM-generated essay detector to

DeepWordBug for various data augmentation settings, can be found in Ta-

ble 4.5.

Table 4.5: Adversarial robustness of DeBERTa detector to DeepWordBug,
different data augmentation, best in bold. The column ‘Data augmentation’
refers to the type of data augmentation that was done in the training data.

Data augmentation Acc Attack Acc Success % Avg. perturb

- 0.990 0.505 0.490 0.062
Typos 0.990 0.921 0.070 0.047
Paraphrase (1 + 2 + 3) 1.000 0.960 0.040 0.065
Paraphrase (1 + 2 + 3)
+ typos

0.990 0.891 0.100 0.066

We see that DeBERTa is not very robust to the character perturbations

that DeepWordBug performs, when it’s been trained on the original train

set without any data augmentation. Its accuracy drops from 0.990 to 0.505.

Doing data augmentation by adding typos to the train set, makes the re-

sulting detector much more robust to attack, resulting in the same origi-

nal accuracy, and an accuracy of 0.921 under attack. The best level of data

augmentation for robustness to the DeepWordBug attack is done by adding

various levels of paraphasing, which attains an original accuracy of 1.000

and an accuracy under attack of 0.960. Adding both typos and paraphrase

levels leads to worse adversarial robustness than adding paraphrases or ty-

pos separately, but needs on average more perturbations to be fooled than

the unaugmented detectors. We can see that data augmentation with para-

phrases dramatically improves the adversarial robustness of the DeBERTa

detector to DeepWordBug attacks within the essay domain.

4.3.2 Paraphrasing

We first of all establish the extent to which our DeBERTa detector to detect

LLM-generated essays is robust to paraphrasing, when no data augmenta-

tion is used. In Table 4.6 we see that the unaugmented detector is generally

robust to paraphrasing already, with performance even going up on texts
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that were paraphrased multiple times recursively. We also see that aug-

menting the data with paraphrases of various levels and retraining the de-

tector increases the accuracy and recall, but decreases the precision slightly,

resulting in a higher F1-score. Augmenting with paraphrases also makes the

detectors perform more similarly on all levels of paraphrasing, e.g. there is

less variance between the detectors performance on the different paraphrase

levels. Adding typos seems to have almost no effect on the performance on

paraphrased text when compared to the detector that was trained without

data augmentation.
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4.3 Data Augmentation

Table 4.6: Performance of DeBERTa with different levels of data augmentation,
on test set containing various degrees of paraphrased texts.

Aug # DIPPER passes AUROC Accuracy Precision Recall F1

- 0 1.000 0.988 1.000 0.987 0.993
1 1.000 0.987 1.000 0.986 0.993
2 1.000 0.989 1.000 0.988 0.994
3 1.000 0.992 1.000 0.992 0.996
(1 + 2 + 3) 1.000 0.989 1.000 0.988 0.994

1 0 0.999 0.993 0.996 0.997 0.996
1 0.999 0.994 0.996 0.999 0.997
2 0.999 0.994 0.996 0.999 0.997
3 0.999 0.994 0.996 0.999 0.997
(1 + 2 + 3) 0.999 0.994 0.996 0.999 0.997

2 0 0.998 0.992 0.993 0.999 0.996
1 0.998 0.992 0.993 0.999 0.996
2 0.998 0.992 0.993 0.999 0.996
3 0.998 0.992 0.993 0.999 0.996
(1 + 2 + 3) 0.998 0.992 0.993 0.999 0.996

3 0 0.999 0.994 0.996 0.997 0.997
1 0.999 0.994 0.996 0.998 0.997
2 0.999 0.995 0.996 0.999 0.997
3 0.999 0.995 0.996 0.999 0.997
(1 + 2 + 3) 0.999 0.995 0.996 0.999 0.997

(1 + 2 + 3) 0 0.999 0.991 0.995 0.996 0.995
1 0.999 0.992 0.995 0.996 0.996
2 0.999 0.992 0.995 0.997 0.996
3 0.999 0.992 0.995 0.997 0.996
(1 + 2 + 3) 0.999 0.992 0.995 0.997 0.996

typos 0 0.999 0.990 0.998 0.991 0.994
1 0.999 0.987 0.998 0.988 0.993
2 0.999 0.989 0.998 0.990 0.994
3 0.999 0.991 0.998 0.993 0.995
(1 + 2 + 3) 0.999 0.989 0.998 0.990 0.994

(1 + 2 + 3) 0 0.999 0.990 0.999 0.991 0.995
+ typos 1 0.999 0.993 0.999 0.994 0.996

2 0.999 0.993 0.999 0.994 0.996
3 0.999 0.993 0.999 0.994 0.996
(1 + 2 + 3) 0.999 0.993 0.999 0.994 0.996
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5. Discussion

In this section we will discuss the results and put them in broader light of

the existing literature, as well as answer the research questions.

5.1 Detector performance on all domains &

generalizing to unseen domain

When training on all domain data simultaneously, we see that the fine-tuned

Longformer greatly outperforms the feature-based baselines. Whether the

longformer detector is good enough for detection ‘in the wild’ depends on

what is considered good enough for some real life use case. At the cho-

sen threshold, we attain a conservative 0.57% FPR, but also only a TPR of

75.52%, meaning about a quarter of all LLM-generated texts go undetected.

Tweaking the decision boundary to set a different ratio between TPR

and FPR (as per the ROC curve in Figure 4.1a) is possible, but could have an

impact on the detectors robustness to adversarial attack in various domains,

especially when trying to attain a low FPR. This can be seen in Figure 4.6,

4.7, 4.8 for various domains, where paraphrasing specifically harms the TPR

at a low FPR.

The logistic regression baselines when trained on all domains, general-

ize poorly out-of-domain. The Longformer detector performs reasonably

well compared to the baselines, however, the resulting FPR and TPR still

result in an unreliable detector. Out of all essay, the Longformer detector

would falsely accuse 16% of students of using LLMs to write their essays

while still missing 23.5% of actually LLM-generated essays. We thus con-

firm once more the difficulty for fine-tuned LM detectors to generalize to

unseen domains.
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5.2 Fine-tuning on all-domains vs. in-domain

5.2 Fine-tuning on all-domains vs. in-domain

We see that fine-tuning an LM within a domain (DeBERTa) performs very

well versus fine-tuning on all domains (Longformer). While Longformer

outperforms DeBERTa on AUROC in most domains, DeBERTa often gets

very close. In 5 out of 10 domains, DeBERTa is within 0.01 of the AUROC

of Longformer or scores higher (CMV, HellaSwag, ROCT, SciGen and Writ-

ingPrompts). While DeBERTa has more parameters, it has only a quarter of

the context size compared to Longformer (see Table 3.5). The DeBERTa de-

tector is thus able to extract enough information out of this limited context

window to attain similar performance to the all-domain Longformer.

There are also domains where Longformer is clearly more performant

than the in-domain DeBERTa (Yelp, XSum, TLDR, ELI5, and SQuAD). One

reason could be that the longer context length plays a role here, another

that Longformer learned more abstract, domain-invariant features of LLM-

generated text from training on all domains, that are leveraged in these do-

mains. However if we look at Table 3.4, we see that the Yelp and TLDR

are the domains with the smallest fraction of texts above 512 tokens, yet

Longformer outperforms DeBERTa there. Conversely WritingPrompts has

many longer texts, while DeBERTa and Longformer score comparably on

that domain. It thus seems that the effect of context length too, is not en-

tirely trivial across all domains. More context isn’t always needed for better

performance in all domains while it might still might help in others. Both

the fact that Longformer retains some accuracy out-of-domain and the fact

that it outperforms DeBERTa on shorter texts, gives the intuition that Long-

former has indeed learned some abstract domain-invariant features from

training on all domains, that the in-domain DeBERTa detectors have no ac-

cess to.

5.3 Detector performance by domain

The performance of the best detector per domain varies quite drastically.

This further emphasizes the importance of domain in LLM-generated text
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detection. This implies that any LLM-generated text detector should be

evaluated against a myriad of domains, as generalization of performance

across different domains is clearly not self-evident. For example, fine-tuning

a LM for detection, varies in accuracy between 0.969 by fine-tuning on Hel-

laSwag, and 0.869 by fine-tuning on Yelp, a full 10% difference.

It’s interesting to see that the fine-tuned HellaSwag detector has the

highest performance, since HellaSwag is a dataset used to evaluated the

common-sense reasoning ability of LLMs, a task at which they are known

to struggle [4]. It’s also interesting to see that detection works well when

detecting within the domain of creative writing, e.g. the WritingPrompts

and ROCT domains. It seems as though creative writing is still something

in which LLMs struggle to write indistinguishably from humans.

5.4 Robustness

We see variation between domains on adversarial robustness. DeBERTa is

robust to DeepWordBug in some domain, and not in others. Longformer is

not robust to DeepWordBug attacks in any domain. This could be due to

the larger context window, giving the DeepWordBug more possibilities for

perturbations that could confuse the detector. Another explanation could

be that a detector trained on multiple detectors suffers from decreased ro-

bustness when compared to an in-domain detector. In general we see that

DeepWordBug attacks are generally more effective on some domains than

others. The attack success rate of Yelp is really high for example, while the

attack success rate is much lower on HellaSwag.

We see that robustness of detectors to DIPPER paraphrases varies across

domains and across detectors. Furthermore we see that in the case where

detectors aren’t robust to paraphrasing, that their TPR drops at lower FPR

rates. This raises the issue of the generalizing statement that ‘paraphras-

ing evades detection’ [15]. We have shown that this is definitely the case

for some domains, but not for all. The issue of domain was initially not

addressed by Sadasivan et al. [16], but their paper has since been updated

with experiments of paraphrasing attacks on multiple different domains.
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5.5 Data augmentation

They too see variability in the success paraphrasing attacks on detectors and

they observe that fine-tuned LMs are generally more robust to paraphras-

ing than other detectors. They do however, still evaluate the performance

on one LLM to generate texts per domain.

In the DIPPER paper [15], Krishna et al evaluate the effectiveness of their

attacks on two domains ELI5, and Wikipedia articles (similar to SQuAD).

We indeed show that robustness of detectors is poor on both ELI5 and SQuAD.

However we also show robustness of detectors is much better on Writing-

Prompts and ROCT for example. In the case of WritingPrompts, our in-

domain DeBERTa detector is completely robust to paraphrasing.

The Longformer classifier is never completely robust to paraphrasing

attacks. Again we think this might be attributable to either the increased

context size or a possible decrease in robustness when training a detector

on all domains.

5.5 Data augmentation

We see that the DeBERTa essay detector is not initially robust to DeepWord-

Bug, but augmenting with either typos or paraphrases, boosts the robust-

ness greatly. Augmenting with paraphrases is more effective than augment-

ing with typo’s which also raises the unattacked accuracy of the detector.

Data augmentation could be a effective and practical way to boost robust-

ness to character level attacks. Importantly this was only shown for the es-

say domain. These results should be evaluated per domain, as the attack ac-

curacy per domain varies greatly, and perhaps different domains also vary

in how effective data augmentation is.

While the DeBERTa essay detector is already robust to paraphrasing at-

tacks, we see that data augmentation with paraphrases increases the recall

at cost of the precision, finally resulting in a slightly higher F1 score. Since

the DeBERTa detector trained on unaugmented data is already robust, it’s

hard to tell from this experiment if data augmentation will greatly improve

the performance. In this particular case we’re quickly hitting the ‘ceiling’
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with the detector.

5.6 Answering of Research Questions

We will now return to the research questions and briefly answer them based

on our discussed results.

How well do LLM-generated text detectors perform across different domains of

text?

Performance varies quite substantially across domains. A detector trained

on multiple domains scores variably on each individual domain it was trained

on. Fine-tuning a detector within a domain had a different maximum per-

formance per domain. Detecting LLM-generated texts is considerably harder

in some domains than others.

How well do LLM-generated text detectors perform out-of-distribution?

Detectors perform poorly OOD. A detector trained on a whole range

of domains performs poorly on an unseen domain, where LLM-generated

texts are generated by different LLMs. Even with a custom the decision

boundary set to specifically support better OOD performance.

How robust to adversarial attacks are detectors, and does this robustness vary

across domains of text?

When looking at character based attacks, we see that most detectors

have poor adversarial robustness DeepWordBug. A notable exception is in-

domain fine-tuned DeBERTa detectors in specific domains. In general we

see great variability in the robustness to DeepWordBug across domains. For

paraphrasing attacks, we see that adversarial robustness is more nuanced.

In most domains we see that paraphrasing causes a dip in the AUROC of

the detector, but not in all. When the AUROC does dip, we see that the total

amount of decrease in AUROC is generally not large, but that specifically

the TPR at a low FPR is affected. In some domains, an in-domain detector

has increased performance on paraphrased texts compared to the original

texts. Adversarial robustness to paraphrasing varies substantially across

domains.
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5.6 Answering of Research Questions

Does robustness to adversarial attacks of LLM-written text detectors improve

when attacked texts are included in their training data?

This question can only be answered with respect to the essays domain

on which we ran our experiments. Our in-domain LLM-generated essay de-

tector was initially not robust to DeepWordBug attacks. Through data aug-

mentation typos or paraphrases we could make the detector robust. Data

augmentation with paraphrases worked the best, boosting both the origi-

nal accuracy and the accuracy under attack. Our in-domain LLM-generated

essay detector was initially already highly accurate and robust to paraphras-

ing, so data augmentation had minimal effect. Data augmentation with

paraphrasing did boost the overall F1-score on both the original and para-

phrased texts.
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6. Limitations & future work

Writing a thesis in a research field as dynamic as natural language process-

ing, is bound to have limitations. This section describes some of those limi-

tations, as well as propose directions for future research.

6.1 Latest generation LLMs

The field is moving at an incredibly high pace. The scaling of compute,

dataset size and amount of parameters seems to hold, as bigger and more

capable models are released. The datasets used in this study don’t contain

the most recent SOTA models (such as GPT-4 [65], Google Gemini [66], and

many others). The findings in this study might not necessarily generalize to

these newer more capable models. Future work should focus on generating

new LLM-generated texts with the latest LLMs and adding them to datasets.

6.2 Context length

When comparing the Longformer detector with the DeBERTa in-domain de-

tector, it can be hard to attribute the differences in performance and robust-

ness to only the all domain vs. in-domain setting, since the detectors also

vary in context length. This study doesn’t directly address the influence

of longer context length on performance and robustness of detectors. This

might prove crucial as the context length of LLMs is increasing rapidly, in

some cases up to millions of tokens (e.g. Google’s Gemini model [66]). Fur-

thermore, when a detector has a limited context window, users could write

a text within the context limit themselves and have an LLM continue their

text, which falls out of the detector context window. In our essay example,

students could just write a beginning to an essay consisting of 512 tokens,

after which they prompt an LLM the continue their essay. Future work is
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6.3 Collaboration between human and LLM

needed on the influence of different context lengths on both performance

and robustness across various domains.

6.3 Collaboration between human and LLM

All of our efforts have focused on detecting if a text was either human-

written or LLM-generated. But we don’t know how detection would work

in cases where humans write colaboratively with LLMs. Intuitively this

feels like the way in which many people use these tools to write, rather than

generating full texts in a zero-shot manner. The Real or Fage Text (RoFT)

framework as proposed by Dugan et al. [67] might be a step in the right

direction here. They introduce an evaluation task based on detecting the

boundary at which a text that starts off as human-written transitions to be-

ing LLM-generated [67]. While they only use the task for human evaluation,

it would be interesting to see how automatic detectors can preform at this

task. Existing work on automated LLM-generated text detection doesn’t

seem to provide an answer to the question of the detectability of such a mix

of distributions.

6.4 Model size

In this study, DeBERTa-base was used, where DeBERTa-large was also avail-

able. It has been shown that the larger variants of these LMs perform better

on the LLM-generated text detection task. Sadasivan et al. [16] find that in

their attacks when comparing different detectors, a RoBERTa-large detector

is much more robust to attack than RoBERTa-base in different domains. This

begs the question also, if an even larger model, would be even more robust.

One idea for future work here would be to test QLoRA [68] fine-tuning an

LLM to the classification task. This could be done relatively easily with the

open-source LLMs available on Huggingface [60]. Perhaps the much richer

internal language model LLMs have obtained through pre-training can be

leveraged to more reliable and robust detection of LLM-generated text.
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6.5 Sampling variance

Most adversarial attacks were performed on a small sample of 100 out of

approximately 4000 samples in the test set of each domain, for the MAGE

dataset [55]. It could be that some of the variance in robustness between do-

mains is merely sampling variance. There is a chance that the robustness to

attacks in certain domains was higher or lower, due to by chance sampling

easier or harder texts to attack.

6.6 Dominance of the English language

It’s non trivial that findings from this study will generalize beyond the En-

glish language. Some work has been done on the multi-lingual and multi-

domain setting [10], but this remains an understudied area. Future work

should focus on creating multilingual datasets and evaluating detector per-

formance and robustness in various languages.

6.7 Data augmentation on robust detector/domain

Since our DeBERTa was trained on MGTBench [12] essays was already quite

robust to paraphrasing without data augmentation, it doesn’t show all too

much about the possible improvement by using data augmentation in a do-

main where detectors are not robust to paraphrasing. In hindsight it would

have been better to apply data augmentation to a domain that has worse ro-

bustness to paraphrasing, to show the extent to which this can be improved

by data augmentation. Future work should be done on data augmentation

to improve robustness to paraphrasing in domains that where detectors are

not robust.

6.8 Generalization within domains

While we’ve trained detectors within certain domains by training it on some

data from that domain, it’s hard to say how representative these domain
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6.9 Limited amount of attack strategies

dataset are of the whole domain. In the case of essays, we train on only 1000

human written essays. A ‘domain’ of text can in some cases be tricky to de-

fine. Essays for one course might follow vastly different distributions that

essays from another course. People in primary school write different essays

than Philosophy PhDs. In some cases, ‘domain’ might still not be the right

level of abstraction to encapsulate a human-written vs. LLM-generated dis-

tribution.

6.9 Limited amount of attack strategies

Another limitation is that only for both character perturbations and para-

phrasing, only one attack strategy was used. Many other attacks exist, in-

cluding but not limited to homoglyph attacks, using an LLM directly to

paraphrase texts, or commercial tools as listed in Appendix C. These tech-

niques might perturb the text differently and have a different effect on de-

tector performance than shown in this study. Detectors that are shown to

be robust to attacks in this study might not be robust to different attacks.

Further work should be done to asses how effective different attacks are in

different domains. This might involve reverse-engineering how commercial

detection evaders work and experimenting with potential defenses.

6.10 The need for high-quality data

To ensure that detection is possible, we need high-quality human-written

texts from various different domains, in different languages. This data should

be prevented from entering into the training data of LLMs, to rule out any

data leakage. This would make sure that the human-written texts aren’t

trivially reproduced by the next generation LLMs. Having this data leak

could also allow adversaries to exploit the differences in distributions. A

bad actor could for example fine-tune open-source LLMs to generate more

human-like texts based on such data.

LLM-generated texts could be generated relatively easily, from such a

dataset of human-written texts, as has been done to create the datasets in

83



Limitations & future work

this study. Existing datasets often have a class imbalance skewed towards

LLM-generated texts as it is so much easier, cheaper and faster to gener-

ate text with an LLM when compared to having humans write texts. How

to create such a high-quality dataset with a wide variaty of high-quality

human-written text data, prevent LLMs from being trained on it, put it in

the hands of good actors and out of the hands of bad actors, is a practical

problem that we don’t see a simple solution for unfortunately.

6.11 Contrastive learning

Our detectors all use the cross-entropy loss during learning. However such

a loss doesn’t maximize the distance between positive and negative samples

in the embedding space [69]. Contrastive learning seems like an interesting

avenue of research. It might help create better representations of human-

written and LLM-generated text and thus better detectors. Some promising

work has already been done in this area [70], [71]. It would be interesting

to see more work in the multi-domain setting combined with adversarial

attacks.
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A. Ethics & Privacy scan Utrecht Univer-

sity

The Ethics and Privacy Quick Scan of the Utrecht University Research Insti-

tute of Information and Computing Sciences classifies this research as low-

risk with no fuller ethics review or privacy assessment required.
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B. Additional Tables and Figures

(a) CMV (b) ELI5 (c) TLDR

(d) XSUM (e) WP (f) ROCT

(g) HSWAG (h) YELP (i) SQUAD

(j) SCI_GEN

Figure B.1: Ordered frequencies of each word, ranked from highest to lowest.
Frequencies are displayed in a log space. Each plot shows human-written vs.
LLM-generated texts distributions for one domain.
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Figure B.2: AUROC of a logistic regression classifier based on features from
the literature, including vs. excluding consistency features on a subsample of
N=15344

Figure B.3: Confusion matrix of Longformer on entire MAGE dataset, given
the custom decision boundary.
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Figure B.4: Confusion matrix of Longformer OOD essay domain, given the
custom decision boundary.
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(a) CMV (b) ELI5 (c) TLDR

(d) XSUM (e) WP (f) ROCT

(g) HSWAG (h) YELP (i) SQUAD

(j) SCI_GEN

Figure B.5: Top 10 features for human-written (lower coefficients) vs. LLM-
generated (higher coefficients), of the TF.IDF detector for each domain.
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C. Commercial AI detection evasion tools

The relevance of evading detection through adversarial attacks is evident by

the abundant availability of commercial tools that aim to achieve this goal

(items are clickable):

• undetectable.ai

• stealthgpt.ai

• writehuman.ai

• stealthwriter.ai

• conch.ai
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