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Abstract

In this research, we propose a formal definition for an intention management system (IMS)
which an agent can use within a FOND domain for managing its intentions. These intentions can
be expressed as any LTL𝑓 expression, in which temporally extended goals can also be provided to
the IMS. The IMS provides an agent with several query- and update operations, by which an agent
is given as much freedom as possible for reaching and adjusting its intentions throughout a run,
all while maintaining consistency among this changing set of intentions. The definition of this
IMS is used for developing a proof of concept in the form of software, which has been evaluated
on several problem scenarios within FOND domains, expressed in LTL𝑓 . The IMS has proven to
be effective for an agent in order to manage its dynamically changing intentions, complying to all
requirements as described in the definition of the IMS. The definition of an IMS is meant as a proof
of concept, proving its effectiveness in practice. This definition can be taken as a foundation for
further research, where it could also be applied to LDL𝑓 expressions, handling beliefs and desires,
and several other possible extensions on our research.
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Glossary

Acronyms
• AFA: alternating finite-state automata
• AI: artificial intelligence
• BDD: binary decision diagram
• DAG: directed acyclic graph
• DFA: deterministic finite-state automata
• FOND: Fully Observable and Non-Deterministic
• IMS: intention management system
• LDL: linear dynamic logic for infinite traces
• LDL𝑓 : linear dynamic logic for finite traces
• LTL: linear temporal logic for infinite traces
• LTL𝑓 : linear temporal logic for finite traces
• NFA: non-deterministic finite-state automata
• PDDL: planning domain definition language
• POC: proof of concept
• PPLTL: pure-past LTL
• RE: regular expressions
• ROBDD: reduced ordered binary decision diagram

Terms
• actions: what an agent does.
• belief: represents the informational state of an agent (belief set).
• desire: represents the motivational state of an agent (goals).
• domain: model of how the environment works.
• fluents: effects from the environment.
• intention: represents the deliberative state of an agent (plans).
• maximally permissive strategy: the entire set of strategies fulfilling a task.
• motivational attitude: what motivates an agent to act as it does.
• non-deterministic environment: where not everything can be determined from the start, ar-

bitrariness has influence later on in traces (influence by fluents).
• synthesis: a combination of components to form a connected whole.
• task: goal of an agent, represented by its intentions.
• temporal logic: any system of rules and symbolism for representing, and reasoning about,

propositions qualified in terms of time (e.g. "I am always hungry", "I will eventually be hun-
gry", or "I will be hungry until I eat something").

• temporally extended goal: a type of goal that spans a duration of time and involves a sequence
of actions or subgoals to achieve. A temporally extended goal cannot be accomplished in a
single, instantaneous action but requires a series of steps to be completed over time.

• traces: paths to take/sequence of actions.



6 1 Introduction

1 Introduction
The field of artificial intelligence (AI) is experiencing an exponential growth in the last couple of
years in terms of research and development, for which the field of planning within AI is no exception.
Planning with the aid of AI is already being used by most people in their everyday life, whether this
is consciously or unconsciously. One of the most well known examples for this is route planning
software, for which a user can plan to go from one location to another. Several types of routes can be
planned, allowing a user to change their route dynamically, even when this user is already on its way
to the target location. As people tend to be unpredictable, so are their plans, motivational attitudes
and intentions.

In the field of AI, people can be considered as autonomous agents, who often tend to take de-
cisions which cannot be easily anticipated on. Desires and intentions can change sporadically, for
which it would be not enough to plan only a singular strategy for fulfilling the intentions which this
autonomous agents might have. Autonomous agents’ motivational attitudes are dynamic and they
progressively commit to desires and refine/revise their intentions over time. Early commitment to
goals and plans may not be feasible or helpful if the world is very dynamic, the agent’s desires may
change, or if insufficient information makes planning difficult. But the agent should ensure that her
intentions remain consistent.

In this research, it will be studied how to use LTL𝑓 /LDL𝑓 synthesis algorithms [12] to handle
goal change in an agent, focusing on how to maintain consistency among a changing set of such tem-
porally extended goals. We will do so by designing an intention management system, which is able to
keep track of an agent’s intentions, their realizability at any time and state, and compute all possible
strategies to achieve these intentions (the maximally permissive strategy). For this, previous work
on synthesis of maximally permissive strategies [40], strategy repair [19], as well as compositional
techniques for strategy synthesis [8] will be examined. For further motivation on this approach, see
[26].

An intention management system for managing goals and maintaining their consistency will be
designed, a proof of concept in the form of software will be built which implements this design for
the intention management system, a number of benchmark goal change problems will be selected or
designed, and the implementation of these will be evaluated on the proof of concept.

In this research the focus will not be on probabilistic planning (e.g. Monte Carlo tree search),
since this is not in the scope of this project, although this might be interesting to research in future
work. Also, partially observable environments will not be covered, as this research is about fully
observable non-deterministic (FOND) environments only, in which the domain is limited to a spec-
ified set of possible states and actions. Lastly, this research talks about LTL𝑓 which only considers
the future, as opposed to different forms of LTL𝑓 focusing only on the past or both past and future.
These forms are called pure-past LTL (PPLTL) and past LTL, respectively, and are not the focus of
this research.

In FOND planning for temporally extended goals, it is useful to map LTL𝑓 /LDL𝑓 formulas into
automata, since automata allow for reaching several subgoals during execution of a program, as
opposed to reaching only a single goal, as would be in regular FOND planning. Automata also
make it easier to determine the resulting states of a chosen action. The most popular algorithms
and research on FOND planning for temporally extended goals are automata-based ([16], [12], [40],
[17]), on top of research already performed for FOND planning using automata without temporally
extended goals ([34], [10], [18], [8], [13], [11]), which we will exploit in this research. Automata
operate by themselves without human intervention and according to a set of rules, which makes them
predictable and work in the same manner as a computer program does. This makes it easier to apply
the theoretical design of the automata into usable software, as we want to achieve in this research by
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building a proof of concept. FOND planning can also be done without the use of automata, although
this will not be covered in this research.

In [8], it has been studied how to obtain the deterministic finite-state automaton (DFA), given
an LTL𝑓 /LDL𝑓 formula. The DFA specifies the result of each action in each state, which an agent
can use to make a strategy to fulfill its intentions with a complexity of 2EXPTIME-complete, where
the complexity could potentially introduce a bottleneck for processing the LTL𝑓 /LDL𝑓 formulas. In
practice however, 2EXPTIME complexity would not be reached in most cases, as this is considered
the worst-case complexity. Research accepts this complexity bottleneck, as in most cases the high
expressiveness of LTL𝑓 and LDL𝑓 weigh up against the computational challenges, and also in ex-
clusively theoretical research the exponential complexity is not a problem, as there would then be no
practical applications in which computations have to be made.

How a strategy can be extracted from a DFA which fulfill a set of intentions is described in [12].
It describes a method for extracting a winning strategy given a DFA. For this research we not only
want to extract a single winning strategy, but the entire set of winning strategies, which is called
the maximally permissive strategy, described in more detail in Section 2.9. When the maximally
permissive strategy is obtained, we know for each state, at any point in time, which actions will
guarantee us to still reach our goal. This mapping of states containing at least one action which
guarantees us to eventually reach our goal is called the ’winning region’. How to obtain the maximally
permissive strategy given a DFA, is described in [40].

The intentions of an agent can be represented using LTL𝑓 /LDL𝑓 formulas. As the agent pro-
gresses, it can adopt new intentions and may drop intentions it already has in its list of intentions.
If this would happen, the agent has to possibly change its strategy, and so the winning region could
also change. To alter its strategies and recompute the winning region, the agent needs to know at any
point in time which of the intentions it has are realizable, what actions in each state will guarantee the
agent to stay in the winning region (maximally permissive strategy), and how the agent will eventu-
ally reach a final state. In this research it will be studied how LTL𝑓 /LDL𝑓 synthesis algorithms can
be used to handle goal change in an agent in a non-deterministic environment using the maximally
permissive strategy.

In [25], an approach is described for computing more than a singular plan for an agent, as is also
done in [40] when a maximally permissive strategy is computed. Although [25] uses a somewhat
related approach to that of [40] in terms of providing the agent with flexibility in choosing actions
during a run, in [25] the possible environment reactions are not specified and the plans are not guar-
anteed to be winning. The research of [25] is focused on avoiding goal conflicts, where goal plan
trees (GPT) are made in which several plans are expressed for achieving an agent’s goal. This GPT
represents the goals, plans, and actions for an agent, which is somewhat related to the winning region
of [40], although in [25] the environment reactions are not included, and also in GPT’s an agent plan
is not guaranteed to be winning. In [25], intentions are revised based on the desires and beliefs of
an agent, although in our research we only use the intentions of an agent. We only deal with FOND
environments, in which everything within a domain is fully observable. Also important here is to
note that in [25], the intentions of an agent are dynamically changed based on the desires of an agent
which are consistent with its beliefs. In our approach, we do not focus on BDI agent architectures,
but rather propose a tool for an agent, an intention management system, which an agent can use for
keeping track of its intentions, their consistency, their progress, add and drop intentions, and retrieve
all possible strategies for fulfilling these intentions. Although in this research we will not implement
the approach of [25], it might be interesting to keep into account for future work. We will cover more
on this later in Section 7.

As far as we know, no prior work proposes a general model of intention management which
handles arbitrary LTL𝑓 intentions in FOND domains, maintains their consistency/realizability, and
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computes maximally permissive strategies through LTL𝑓 synthesis. This is what we will investigate
in this research. We will design an intention management system to keep track of an agent’s chang-
ing intentions, their realizability, and how to achieve these intentions. It is important to note that in
this research we assume the following: the action outcomes are always among those allowed by the
FOND model, the agent only performs actions that are guaranteed to keep her in the winning region,
and the agent never adopts unrealizable intentions. This theoretical design will be used to build a
proof of concept in the form of software, which can then be evaluated using benchmark problems to
test its performance and limitations.

After this research, we want to be able to answer the following research question:
What properties does an intention management system need in order to handle goal
change in a FOND environment, such that it can maintain consistency among a changing
set of temporally extended goals?

In order to answer this main research question, there is one main theoretical oriented objective
(objective 1) and two smaller practical oriented objectives (objectives 2 and 3) to be achieved during
this research:

1. Formally define the notion of an intention management system (theory/concept), which keeps
track of a list of intentions over time, provides query and update operations to check the re-
alizability of new intentions and add them if they are realizable, and compute all guaranteed
strategies to achieve these intentions, if there are any. This system indicates what actions can
be done to remain in the winning region, which realizable intentions are left, if adding a new
intention is realizable, and if choosing a certain action will make progress towards a final state,
where all the intentions have been achieved. As mentioned in the introduction, we will base
this theoretical design on previous work on synthesis of maximally permissive strategies [40],
strategy repair [19], as well as compositional techniques for strategy synthesis [8] for checking
the realizability of an LTL𝑓 /LDL𝑓 formula and deriving the DFA. We extend this previous
research by designing an intention management system which is able to maintain consistency
among a changing set of temporally extended goals, keep track of a list of intentions, and check
the realizability of new intentions, which has not yet been done in previous research. After this
we use the theory of previous research for synthesizing the maximally permissive strategy.

2. Develop a proof of concept (software), based on the formally defined notion of an intention
management system, which can take benchmark FOND domains and problems as input (spec-
ified in PDDL-format), computes the maximally permissive strategy, and updates the winning
region based on what intentions are added and dropped to the list of intentions. At any time
step, this proof of concept is able to tell what actions keep the agent in the winning region, and
what steps will progress such that it can eventually reach a final state.

3. Evaluate the proof of concept on benchmark FOND domains and problems. These benchmark
problems are provided in PDDL-format, which will be slightly altered such that the agent
does not only start with an initial set of intentions, but will be able to add new intentions over
time. These benchmark problems are scaled to test the performance and limits of the proof of
concept.
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2 Background
In this Section we will go over the preliminaries for this research, in which will be explained in what
ways these are relevant. An intuitive idea is given of how the concepts work, for which some of these
also include a more mathematical explanation, including some examples.

2.1 LTL
Linear Temporal Logic (LTL) is one of the most popular formalisms for expressing the temporal prop-
erties of reactive systems [30]. It can be used for expressing the valuations of a series of propositions
over time, which is especially useful in the field of planning. Given a set of atomic propositions 𝑃
the formulas of LTL are generated by the following grammar:

𝜙 ∶∶= 𝑎 ∣ ¬𝜙 ∣ 𝜙1 ∨ 𝜙2 ∣ ○𝜙 ∣ 𝜙1  𝜙2

where 𝑎 ∈ 𝑃 . 𝜙1 𝜙2 expresses that 𝜙1 has to hold, until 𝜙2 is reached. ○𝜙 expresses that in the
next state, 𝜙 holds. We use common abbreviations such as eventually as ◊𝜙 ≐ True 𝜙, always
as □𝜙 ≐ ¬◊¬𝜙, and as release as 𝜙1𝜙2 ≐ ¬(¬𝜙1 ¬𝜙2), well as the usual propositional logic
abbreviations. ◊𝜙 expresses that 𝜙 has to hold eventually. □𝜙 expresses that 𝜙 always has to hold.

Formulas of LTL are interpreted over infinite sequences (called traces) of truth evaluations of
variables in 𝑃 , i.e. 𝜋 = 𝜋0, 𝜋1,⋯ ∈ (2𝑃 )∞, where 2𝑃 includes every possible combination of truth
values for the propositions in 𝑃 . This also includes the empty set, ∅, since 2𝑃 includes every possible
combination of truth values, which includes ∅, in which no propositions are true. Given a trace 𝜋, we
define when an LTL formula 𝜙 holds at position 𝑖 on 𝜋, written 𝜋, 𝑖 ⊧ 𝜙, inductively on the structure
of 𝜙, as follows:

• 𝜋, 𝑖 ⊧ 𝑎 iff 𝑎 ∈ 𝜋𝑖 (for 𝑎 ∈ 𝑃 );
• 𝜋, 𝑖 ⊧ ¬𝜙 iff 𝜋, 𝑖 ̸⊧ 𝜙;
• 𝜋, 𝑖 ⊧ 𝜙1 ∨ 𝜙2 iff 𝜋, 𝑖 ⊧ 𝜙1 or 𝜋, 𝑖 ⊧ 𝜙2;
• 𝜋, 𝑖 ⊧ ○𝜙 iff 𝜋, 𝑖 + 1 ⊧ 𝜙;
• 𝜋, 𝑖 ⊧ 𝜙1  𝜙2 iff there exists 𝑗 ≥ 𝑖 such that 𝜋, 𝑗 ⊧ 𝜙2, and for all 𝑘, 𝑖 ≤ 𝑘 < 𝑗 we have that 𝜋, 𝑘 ⊧ 𝜙1.

We say that 𝜋 satisfies 𝜙, written 𝜋 ⊧ 𝜙, if 𝜋, 0 ⊧ 𝜙.
In this research, we will be using LTL𝑓 , which is LTL interpreted over finite traces. More on

LTL𝑓 is described in Section 2.2.

2.2 LTL𝑓

In many applications, especially in AI, the goal/task must be achieved/completed within a finite
horizon. Therefore, many recent works have looked at Linear Temporal Logic interpreted over finite
traces (LTL𝑓 ) [12].

The syntax of LTL𝑓 is the same as that of LTL, except for the following additional abbreviations:
the weak-next (⚫) defined as ⚫𝜙 ≐ ¬○ ¬𝜙, and the end of the trace (𝚏𝚒𝚗𝚊𝚕) defined as 𝚏𝚒𝚗𝚊𝚕 ≐
⚫𝚏𝚊𝚕𝚜𝚎. In other words: ⚫𝜙 expresses that 𝜙 holds, if there exists a next state.

Formulas of LTL𝑓 are interpreted over finite sequences (called traces) of truth evaluations of
variables in 𝑃 , i.e. 𝜋 = 𝜋0,… , 𝜋𝑛 ∈ (2𝑃 )∗. We denote the length 𝑛 + 1 of a trace 𝜋 by 𝑙𝑒𝑛𝑔𝑡ℎ(𝜋).
Given a finite trace 𝜋, we define when an LTL𝑓 formula 𝜙 holds at position 𝑖 on 𝜋 where 0 ≤ 𝑖 <
𝑙𝑒𝑛𝑔𝑡ℎ(𝜋), written 𝜋, 𝑖 ⊧ 𝜙, inductively on the structure of 𝜙, as follows:

• 𝜋, 𝑖 ⊧ 𝑎 iff 𝑎 ∈ 𝜋𝑖 (for 𝑎 ∈ 𝑃 );
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• 𝜋, 𝑖 ⊧ ¬𝜙 iff 𝜋, 𝑖 ̸⊧ 𝜙;
• 𝜋, 𝑖 ⊧ 𝜙1 ∨ 𝜙2 iff 𝜋, 𝑖 ⊧ 𝜙1 or 𝜋, 𝑖 ⊧ 𝜙2;
• 𝜋, 𝑖 ⊧ ○𝜙 iff 𝑖 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝜋) − 1 and 𝜋, 𝑖 + 1 ⊧ 𝜙;
• 𝜋, 𝑖 ⊧ 𝜙1  𝜙2 iff there exists 𝑖 ≤ 𝑗 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝜋) such that 𝜋, 𝑗 ⊧ 𝜙2, and for all 𝑘, 𝑖 ≤ 𝑘 < 𝑗 we have that
𝜋, 𝑘 ⊧ 𝜙1.

As LTL𝑓 is able to express a finite temporal specification, it is useful for applications in which it
has to be specified at which point a trace should end. In this research, we can apply this in a scenario
when all intentions of an agent have been fulfilled, and the program should terminate. A task for an
agent can be declared in LTL𝑓 , including the entire declaration of rules it has to follow and what
actions are possible in order to fulfill this task. More on this is described in Section 2.8, where an
LTL𝑓 declaration is used for expressing a domain and goals for an agent, from which a winning
strategy can be extracted.

2.3 LDL𝑓

Linear Dynamic Logic on finite traces (LDL𝑓 ) is an adaptation of LDL, introduced in [28], where
regular LDL is interpreted over infinite traces [12]. LDL𝑓 is obtained by merging LTL𝑓 with regular
expressions, but adopting a semantics based on finite traces [11] . LDL𝑓 can be seen as an extension
of LTL𝑓 , in which we can also talk about actions, making LDL𝑓 more expressive than LTL𝑓 . The
semantics for LDL𝑓 can be found in [11], and the progression of LDL𝑓 can be found in [12].

Although this research does talk about LDL𝑓 to a certain extent, the focus is on LTL𝑓 expressions.
As the scope of this research would become too broad when LDL𝑓 would be fully covered, it has been
decided to have this research focused on LTL𝑓 only. Section 3 describes an intention management
system which is able to handle LTL𝑓 , for which our automata-based approach could easily be adapted
to handle LDL𝑓 , which is described in the future work of Section 9.

2.4 Automata
Automata are abstract machines which are self-operating, designed for following or responding to a
sequence of operations and instructions. An automaton can consist of several states and transitions,
for which an input symbol can be provided within a state, and the transition function indicates what
the resulting state will be after providing the input symbol [23]. An example for this is shown in
Figure 2, where it is indicated for each state what the transition will be, given an input symbol.

Figure 2: Example of an automaton

Many algorithms for LTL𝑓 synthesis, as the one described in Section 2.8, are based on using
automata, as well as some theoretical results. In this research, we also make use of several types
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of automata, where the DFA is most important: a deterministic finite-state automata. From a DFA
we can deterministically extract for each possible state which action will transition us into which
next state, using a transition function. These automata and their applications in this research will be
described in further detail in Section 2.4.1, 2.4.2, and 2.4.3. Using LTL𝑓 synthesis, we obtain a DFA
from which we can extract a winning strategy for an agent, as explained in Section 2.8.

2.4.1 Deterministic Finite-state Automata (DFA)

The DFA is a general tool to represent temporal specifications. For a DFA it applies that for an input
symbol, there is only one corresponding resultant state (i.e. there is only one state transition possible
given an input). In Figure 3 an example is shown of a DFA:

Figure 3: Example of DFA
As can be seen in this Figure, every input symbol (0 or 1) corresponds to exactly one resultant

state, which makes it that this finite-state automata is deterministic. More formally,
Definition 2.1. A deterministic finite automaton (DFA) is a tuple

 = (Σ, 𝑄, 𝑞0, 𝛿, 𝐹 ),
where: Σ is a finite input alphabet;𝑄 is a finite set of states; 𝑞0 ∈ 𝑄 is the initial state; 𝛿 ∶ 𝑄×Σ → 𝑄
is the transition function; and 𝐹 ⊆ 𝑄 is the set of final states. The size of  is |𝑄|. Given a finite
trace 𝛼 = 𝛼0𝛼1… 𝛼𝑛 over Σ, we extend 𝛿 to be a function 𝛿 ∶ 𝑄 × Σ∗ → 𝑄 as follows: 𝛿(𝑞, 𝜆) = 𝑞,
and, if 𝑞𝑛 = 𝛿(𝑞, 𝛼0… 𝛼𝑛−1), then 𝛿(𝑞, 𝛼0… 𝛼𝑛) = 𝛿(𝑞𝑛, 𝛼𝑛). A trace 𝛼 is accepted if 𝛿(𝑞0, 𝛼) ∈ 𝐹 .
The language of , written (), is the set of traces that the automaton accepts. Given the DFAs
1,… ,𝑛, we can build a DFA  = PRODUCT(1,… ,𝑛) such that () =

⋂

𝑖≤𝑛 (𝑖) in
polynomial time in the sizes of 1,… ,𝑛.

In this research, we will be using DFAs for representing a FOND domain, described in Section
2.6, and all the intentions which an agent might have. The DFA is also used for extracting the
maximally permissive strategy, which is explained in more detail in Section 2.9. More information
on DFAs can be found in [34].

2.4.2 Non-deterministic Finite-state Automata (NFA)

As opposed to a DFA, in an NFA there is not always only one resultant state for every input symbol,
which makes it non-deterministic. As can be seen in Figure 4, when we start in state 𝑞0 and give
0 as an input symbol, we will transition either back into state 𝑞0 or into state 𝑞1, which cannot be
determined beforehand, making the finite-state automata non-deterministic.

For this research, NFAs are only used within the LTL𝑓 synthesis algorithm described in Section
2.8, where a DFA can be determinized from an NFA. More information on NFAs can be found in
[34].
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Figure 4: Example of NFA

2.4.3 Alternating Finite-state Automata (AFA)

While non-deterministic automata have the power of existential choice over transitions, alternating
automata are computational models with the power of both existential and universal choice over
transitions [4]. While a run for DFAs and NFAs is defined as a sequence of states, a run for AFAs
is a tree (acyclic) [18]. In this research, we only use AFA’s within the process of LTL𝑓 synthesis,
as described in Section 2.8. As no further knowledge is needed on this for this research, we refer to
more information on AFAs which can be found in [4], [18], and [34].

2.5 PDDL
PDDL stands for ’Planning Domain Definition Language’, which is considered the ’standard’ lan-
guage for representing classical planning tasks. This task consist of the following components: ob-
jects, predicates, initial state, goal state, action/operator. [22]

In PDDL, planning tasks are composed of two components:
1. A domain file, in which predicates and actions are defined
2. A problem file, in which objects, the initial state and the goal specification are defined
These files can be used as input for an agent to solve the intention problems in the PDDL-problem

file. Important here is to note that PDDL is a relational language, but it is assumed that the object
domain is finite. As this is the case, the predicates and operators can be grounded to obtain a propo-
sitional language. PDDL specifies the effects of an action, but does not give a specification of the
frame axioms, i.e. what remains the same after an action is performed. A more detailed description
of PDDL and its definitions can be found in [22].

In this research, we will use PDDL for expressing FOND domains, explained in Section 2.6, as
this is one of the most commonly used manners for expressing FOND domains within the field of
planning. An example of the well known FOND domain ’Triangle-Tireworld’, expressed in PDDL,
can be found in Section 6.9.2.
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2.6 FOND domains
As already mentioned in the introduction, in our research we only make use of FOND domains. A
FOND domain is a Fully Observable and Non-Deterministic domain, for which everything within a
domain can be observed, yet not every effect of an action is deterministic. This limits our research
to a certain degree, as we do not including anything related to probabilities or partially observable
domains. We only deal with domains in which we can determine any possible outcome for an effect
within a domain, although we cannot determine what this effect will be beforehand.

Following [14], we define a planning domain as follows:
Definition 2.2. A planning domain is a tuple

 = (2 , 𝐴𝑐𝑡, 𝑅𝑒𝑎𝑐𝑡, 𝛼, 𝛽, 𝛿),
where:  is a finite set of fluents 2 is the state space; 𝐴𝑐𝑡 and 𝑅𝑒𝑎𝑐𝑡 are finite sets of agent actions
and environment reactions, respectively; 𝛼 ∶ 2 × 𝐴𝑐𝑡 → 2 denotes agent action preconditions;
𝛽 denotes environment reaction preconditions; and 𝛿 ∶ 2 × 𝐴𝑐𝑡 × 𝑅𝑒𝑎𝑐𝑡 → 2 is the transition
function such that 𝛿(𝑠, 𝑎, 𝑟) is defined if and only if 𝑎 ∈ 𝛼(𝑠) and 𝑟 ∈ 𝛽(𝑠, 𝑎). We assume that planning
domains satisfy the properties of existence of agent action (i.e., ∀𝑠 ∈ 2 .∃𝑎 ∈ 𝛼(𝑠)), existence of
environment reaction (i.e., ∀𝑠 ∈ 2 , 𝑎 ∈ 𝛼(𝑠).∃𝑟 ∈ 𝛽(𝑠, 𝑎).), and uniqueness of environment reaction
(i.e., ∀𝑠 ∈ 2 , 𝑎 ∈ 𝛼(𝑠).𝛿(𝑠, 𝑎, 𝑟1) = 𝛿(𝑠, 𝑎, 𝑟2) ⊃ 𝑟1 = 𝑟2).

With these properties, inspired by [9], we capture planning domains adopted in FOND [7, 20], say
expressed in PDDL [22], though keeping explicit the reaction (corresponding to the oneof clauses
in PDDL). Considering that the domain can be compactly represented, say in PDDL, we identify the
size of the domain  with the size of its state space, which is exponential in the number of fluents
| |.

Note that we have not included the initial state in the planning domain. Given an initial state 𝑠0 ∈
2 , a planning domain evolves as the agent and the environment move in turns. At each turn, the agent
makes an action chosen among those that satisfy their preconditions, and the environment responds
with some reaction, again chosen among those that satisfy their preconditions. State transitions are
determined when both an agent- and environment move are performed.

2.7 Agent strategies
Within a domain, an agent can have strategies: plans which the agent wants to follow for fulfilling
its goals. Any strategy which an agent might have is defined over the possible traces/paths within a
domain. Following [10], we can define a domain trace as follows:
Definition 2.3. A domain trace starting from 𝑠0 over  is a (finite or infinite) sequence
𝜏 = (𝑎0, 𝑠0)(𝑎1, 𝑠1)… where in the initial step (𝑎0, 𝑠0), 𝑎0 is a dummy action, and (𝑖𝑖) for every
𝑖 > 0 the step (𝑎𝑖, 𝑠𝑖) is such that 𝑎𝑖 ∈ 𝛼(𝑠𝑖−1) and there exists a reaction 𝑟𝑖 ∈ 𝛽(𝑠𝑖−1, 𝑎𝑖) such that
𝛿(𝑠𝑖−1, 𝑎𝑖, 𝑟𝑖) = 𝑠𝑖 (notice that for the uniqueness of the reactions such 𝑟𝑖 is unique).

As the agent in each step starts by executing an action, and the environment reacts to this, the
first move of the agent is considered a ’dummy’ action, as mentioned in [12], where the agent action
has no effect. This dummy action is necessary because steps are always offered pairwise for an agent
action, and an environment reaction. Currently this tuple consists of a current action and a current
environment reaction. There is another possible approach for this, where a current environment
state and a next agent action are combined in this tuple. In this scenario, the agent does not have to
perform a dummy move before the environment can initialize itself. However, as the agent action and
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environment reaction are always offered pairwise, this would result in the agent having to perform a
’dummy’ action in a final state for the environment, which has no effect on the environment as the
environment has no next state. We do not choose the latter approach for our research, as this could
cause issues in domains where a final state for the environment causes that the preconditions for
agent actions are not fulfilled, and thus it cannot perform a final dummy action, breaking potential
domain rules. For example, if we have a domain with states 𝑠1, 𝑠2 and 𝑠3, where state 𝑠3 is a final
state, and as preconditions the agent can only execute an action if it is in state 𝑠1 or 𝑠2, this will result
in the agent not being able to execute any actions in state 𝑠3. If the domain specifies that the agent
has to execute exactly one action at a time, the agent will break this domain rule as it is impossible
to execute an action at this point, causing it to lose as no final dummy move can be executed. Would
we let the agent start off with a dummy move, as we do in our research, this problem can be avoided.

For our approach as already mentioned, since the environment has not initialized itself yet in the
first step of a trace, and an agent action has no effect whenever it is not located in an environment
state yet, the first action of an agent will have no effect. Infinite traces are also called plays and finite
traces are also called histories. Within these traces, an agent can apply a strategy.

We define an agent strategy as follows:
Definition 2.4. An agent strategy in 𝑠0 is a function 𝜎 ∶ (2 )+ → 𝐴𝑐𝑡 mapping state sequences (in
traces) to agent actions such that, for every 𝜏 = (𝑎0, 𝑠0)… (𝑎𝑛, 𝑠𝑛), 𝜎(𝑠0… 𝑠𝑛) ∈ 𝛼(𝑠𝑛).

Given an initial state 𝑠0 and an agent strategy 𝜎 in 𝑠0, we can construct a play as follows: the
initial step is (𝑎0, 𝑠0) as usual, and for every 𝑖 > 0 the step (𝑎𝑖, 𝑠𝑖) is obtained by choosing environment
reaction 𝑟𝑖 such that 𝑟𝑖 ∈ 𝛽(𝑠𝑖−1, 𝑎𝑖) and then having 𝑠𝑖 = 𝛿(𝑠𝑖−1, 𝑎𝑖, 𝑟𝑖). We denote the set of play
induced by a strategy 𝜎 at 𝑠0 by 𝑃 𝑙𝑎𝑦(𝜎, 𝑠0).A goal is an ltl𝑓 formula 𝜑 defined over the alphabet  ∪𝐴𝑐𝑡 i.e. over fluents and actions. Every
domain trace 𝜏 = (𝑎0, 𝑠0)(𝑎1, 𝑠1)… corresponds to a trace ({𝑎0} ∪ 𝑠0)({𝑎1} ∪ 𝑠1)…. So we can
evaluate ltl𝑓 formulas over finite domain traces.

When an agent strategy is guaranteed to let the agent fulfill its goal, we call this a winning strategy.
We can define a winning strategy as follows:

Definition 2.5. An agent strategy 𝜎 starting at 𝑠0 is a winning strategy for 𝜑 if, for all plays 𝜋 ∈
𝑃 𝑙𝑎𝑦(𝜎, 𝑠0) there exists a finite prefix 𝜋𝑘 that satisfies 𝜑, i.e., 𝜋𝑘 ⊧ 𝜑.

Given a domain and an initial state 𝑠0, ltl𝑓 synthesis is the problem of finding a winning strategy
for 𝜑, if one exists. ltl𝑓 synthesis in nondeterministic planning domains is 2EXPTIME-complete in the
size of 𝜑 and EXPTIME-complete in the size  (i.e. in | |), respectively, and can be solved via a
reduction to solving games played over deterministic finite automata [10].

Notice that if 𝜎 is winning, then for every play 𝜋 in 𝑃 𝑙𝑎𝑦(𝜎, 𝑠0) we have an index 𝑘 corresponding
to the length of the prefix that satisfies 𝜑. We call 𝑚𝑎𝑥𝑆𝑡𝑒𝑝𝑠(𝜎, 𝑠0, 𝜑) the maximum among all such
indexes. Intuitively 𝑚𝑎𝑥𝑆𝑡𝑒𝑝𝑠(𝜎, 𝑠0, 𝜑) tells us the maximum number of steps that are needed in
order to fulfill the 𝜑 in spite of the adversarial reaction of the environment.

In Section 2.8, we will discuss how a winning agent strategy can be extracted using synthesis.
One goal for this research is to extract the set of all possible winning strategies for an agent, both
procrastinating and non-procrastinating, which is called the maximally permissive strategy. More on
this is explained in Section 2.9.

2.8 LTL𝑓 synthesis algorithm
LTL𝑓 synthesis is the process of mapping an LTL𝑓 formula into a winning strategy, i.e. a strategy
which can guarantee an agent to reach its goal eventually. An LTL𝑓 formula, as described in 2.2,
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can be used to compute a winning strategy for a declarative specification by using an algorithm for
LTL𝑓 synthesis. It does so by taking an LTL𝑓 formula as input for the algorithm, where this is then
translated into a DFA, and this DFA can then be used for synthesizing a winning strategy. In the
DFA it is specified what next state an agent transitions to, given an agent action and an environment
reaction. The DFA represents the game arena in which strategies can be found for an agent to win. As
from the DFA it can be extracted what the agent transitions into given an agent action and the possible
environment reactions, the agent can extract with certainty how to reach its goal: a winning strategy.
It does so by checking for a given DFA state and agent action, if for any possible environment reaction,
there always is a strategy which guarantees the agent to reach a state in which all its intentions are
fulfilled. It is possible that there are multiple winning strategies, which is explained in more detail
in Section 2.9.

The algorithm for LTL𝑓 synthesis for this research is defined in [12] and works as follows:
1. Given LTL𝑓 formula 𝜑

(a) Compute AFA for 𝜑 (linear)
(b) Compute corresponding NFA (exponential)
(c) Determinize NFA to DFA (exponential)
(d) Synthesize winning strategy for DFA game (linear)

As shown in the synthesis algorithm, an LTL𝑓 formula is given as input. This is then transformed
into an AFA. With this AFA, we can compute the NFA, which we can then use to determinize the
DFA. The determinizing of an NFA to a DFA causes an exponential blow up, as transferring from
non-deterministic into deterministic means that all possible outcomes are held into account. The
exact manners of computing the AFA, NFA and DFA are described in [12]. The agent can now
check the realizability of the DFA game, i.e. if there exists a winning strategy. If the DFA game is
indeed realizable, the agent can synthesize a winning strategy which specifies what action to take in
each state in order to reach a final state.

What is important to note is that step (d) of the algorithm is a recursive algorithm itself. It
initializes the winning region to the final states (goal states). After this, it adds the states where
some agent action ensures that it reaches the winning region in one step. It keeps doing so until
no state can be added anymore to the winning region, such that the complete winning region in the
DFA is mapped. When eventually the complete winning region is known, a winning strategy can be
synthesized which explains, starting from an initial state, which actions to choose in order to reach
a final state. Important here is to note that there only is a winning strategy whenever the initial state
is also included in the winning region. When this is the case, the DFA game is realizable.

Going from LTL𝑓 to a DFA is going from purely declarative to fully procedural. It relies on the
possibility of obtaining a deterministic automaton, a DFA, which is a machine, and hence a process.
This does not hold in the infinite trace settings. The basic idea of program synthesis is to have a
mechanical translation of human-understandable task specifications into a program that is known to
meet the specifications.

In this research, LTL𝑓 synthesis is applied by providing an initial LTL𝑓 formula which specifies
a FOND domain and the intentions which an agent wants to achieve, for which a DFA is extracted.
In this research, the LTL𝑓 synthesis is performed by Lydia1: a software for extracting a DFA and
winning agent strategy [8]. From this DFA, the ’maximally permissive strategy’ is extracted for the
agent, which contains all possible strategies for eventually reaching a final state. More on this is
explained in Section 2.9.

1Source for code of Lydia: [35]
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2.9 Maximally Permissive Strategy

A maximally permissive strategy (MPS) is the entire set of winning strategies fulfilling a task. The
MPS consists of two type of strategies: the deferring strategies and the non-deferring strategies, also
referred to as the procrastinating- and non-procrastinating strategies. The deferring strategies refer
here to all moves which keep an agent in the winning region, but allow an agent to defer the winning
moment. As opposed to the deferring strategies, the non-deferring strategies keep an agent both in
the winning region, while also progressing towards a final state. This allows an agent to be able to
choose among the strategies while in execution, without committing to any specific one beforehand.
Synthesis of maximally permissive strategies for LTL𝑓 specifications was first introduced in [40],
aiming at giving as much freedom as possible to an agent for reaching a final state. It defines what
the winning states are and what the actions are that can guarantee to keep an agent in the winning
region. While the maximally permissive strategy leaves as much freedom to the agent as possible, it
still always reaches the final state eventually. The maximally permissive strategy does not say when
the agent has to switch to a non-deferring strategy, but he must eventually switch. When this happens
is up to the agent.

The maximally permissive strategy is unique for each problem statement, as it is a set of strate-
gies allowing for maximal permissiveness for the agent given a specific set of constraints and goals
within the problem statement, containing only the strategies guaranteeing an agent to remain in the
winning region. If for two different problem statements we would have the same maximally permis-
sive strategy, this would imply that one of these two maximally permissive strategies is either not
maximally permissive, or includes non-winning strategies. Once we find the maximally permissive
strategy for a problem statement, the problem of reaching a final state can be solved. The maximally
permissive strategy does not allow an agent to be lazy and stay in the same state indefinitely (non-
procrastinating). Eventually it has to become efficient and makes progress towards the final state.
The maximally permissive strategy gives multiple possible actions in each state which eventually
reach the final state. How these actions are chosen by an agent is not important for this research.
This could be a randomly selected action which is non-deferring. This could also be decided by
heads-tails flipping of a coin to simply stay in the winning region or to progress towards the final
state.

In [40], an algorithm for finding the maximally permissive strategy was designed, which will
be used in this research. They have developed software which implements this algorithm, called
Syftmax2, and is described in more detail in Section 5.1.2. Syftmax builds upon other software,
called ’Lydia’. Lydia is used to determinize the DFA of an LTL𝑓 formula, where the DFA is then
used for defining the maximally permissive strategy in Syftmax. More details on Lydia are described
in Section 5.1.1.

One might think that computing the maximally permissive strategy would take significantly
longer compared to computing only a single strategy of reaching a final state. However, this is not
necessarily the case. In [40], it is proven that computing the maximally permissive strategy only
brings minor overhead compared to computing a single strategy.

In this research, we will use the maximally permissive strategy to provide an agent with as much
freedom as possible in choosing an action, while guaranteeing that the agent will eventually still
reach a final state, in which all its intentions are fulfilled.

2Source for code of Syftmax: [39]
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2.10 (Reduced Ordered) Binary Decision Diagram

A BDD (binary Decision Diagram) is a DAG-like (Directed Acyclic Graph) data structure which is
used for representing Boolean functions, where each non-terminal node is labeled by a function vari-
able. A BDD can be compressed into a more compact representation of sets and relations, which are
called ROBDD’s (Reduced Ordered BDD) [2, 3]. Operations can be applied directly on this com-
pressed representation, making it more efficient compared to approaches which require decompres-
sion of the entire representation. Originally, BDD’s were developed for symbolic model checking,
for which these were later also applied to LTL/LTL𝑓 .

As an example, we look at Figure 5. This BDD represents the logical function (¬𝑥1 ∧ ¬𝑥2 ∧
¬𝑥3) ∨ (𝑥1 ∧ 𝑥2) ∨ (𝑥2 ∧ 𝑥3). Each node has two outgoing edges, representing the valuation of 0,
indicated with a dashed line, and 1, indicated with a solid line. As already shown in Figure 5, for
a BDD a truth table can be extracted. By providing the valuations of variable 𝑥1, 𝑥2, and 𝑥3, the
resulting value tells us if the provided function holds under these values.

Figure 5: Example of a BDD

Using a BDD, we can extract the valuations of each type of function which can be expressed
in propositional logic, including LTL𝑓 . As LTL𝑓 and BDD’s are both based on Boolean functions,
we can transform LTL𝑓 formulas into BDD’s, and extract from this whether the formula holds by
providing the valuations for the Boolean propositions. However, the representation of a BDD as
shown in Figure 5 gives us no advantage over using a regular truth table. In order to give us an
advantage in terms of computation, this tree would need to be reduced in size, as now computations
are executed which are redundant and we have repeating leave nodes, 0 and 1. In Figure 6, a reduction
of the BDD of Figure 5 is shown, called a ROBDD (reduced ordered binary decision diagram). It
expresses the same function as in Figure 5, although this is represented more efficiently.

For example, as can be seen in Figure 6, when 𝑥1 is 𝑇 𝑟𝑢𝑒, 𝑥3 is not relevant anymore for check-
ing if the entire function holds. After 𝑥1 is set to 𝑇 𝑟𝑢𝑒, only 𝑥2 decides if the function will hold.
Here is the power of an ROBDD, as a graph can be represented more compactly, and unnecessary
computations for checking if a function holds under a set of truth valuations for variables is executed
more efficiently.

For the ROBDD in Figure 6, we can also write a truth table. When writing out the truth table for
a ROBDD, we do not care about the variable valuations in which the entire function is not satisfied.
We only care about the valuations of a graph which end up in leave node ’1’.

This would then result in the following table:
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Figure 6: An equivalent Reduced Ordered BDD

𝑥1 𝑥2 𝑥3
0 0 0
0 1 1
1 1 2

Note here that we do not have to include truth values for function 𝑓 in the table, as all the results
in this table satisfy the entire function anyways. We see that we now only have three sets of variable
valuations in which the function is satisfied: [0, 0, 0], [0, 1, 1], and [1, 1, 2]. Each of these sets
of valuations are called a ’cube’. A cube is a set of variable valuations which satisfies the function
represented by an ROBDD. In the third cube, we see that𝑋3 is valuated as ’2’. This implies that this
variable is irrelevant for the outcome of the function, as this can take on either value 0 or 1.

As ROBDD’s can be applied on LTL𝑓 logic and provide a compressed representation, making
it computationally efficient, these are used also in this research for extracting the truth valuations of
LTL𝑓 formulas. More information on (RO)BDD’s can be found in [3].

2.11 LTL/LTL𝑓 Progression
As in this research we are dealing with temporally extended goals, i.e. a goal which spans a duration
of time and involves a sequence of actions/subgoals to achieve, it is necessary to keep track of the
progression of these goals. Since part of a temporally extended might already have been achieved,
this does not have to be achieved again at a later point, for which only the part of the goal yet to be
achieved needs to remain. This is achieved by progression.

We can define the progression of a LTL/LTL𝑓 formula𝜙 over a truth evaluation𝑤 of the variables
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in 𝑃 , 𝑝𝑟𝑜𝑔(𝜙,𝑤), as follows [1]:
𝑝𝑟𝑜𝑔(𝛼,𝑤) ≐ 𝚝𝚛𝚞𝚎 if 𝑤 ⊧ 𝛼 and 𝚏𝚊𝚕𝚜𝚎 otherwise
𝑝𝑟𝑜𝑔(¬𝜙,𝑤) ≐ ¬𝑝𝑟𝑜𝑔(𝜙,𝑤)
𝑝𝑟𝑜𝑔(𝜙1 ∨ 𝜙2, 𝑤) ≐ 𝑝𝑟𝑜𝑔(𝜙1, 𝑤) ∨ 𝑝𝑟𝑜𝑔(𝜙2, 𝑤)
𝑝𝑟𝑜𝑔(○𝜙,𝑤) ≐ 𝜙
𝑝𝑟𝑜𝑔(𝜙1 𝜙2, 𝑤) ≐ 𝑝𝑟𝑜𝑔(𝜙2, 𝑤) ∨ (𝑝𝑟𝑜𝑔(𝜙1, 𝑤) ∧ 𝜙1 𝜙2)

We can also add:
𝑝𝑟𝑜𝑔(𝜙1 ∧ 𝜙2, 𝑤) ≐ 𝑝𝑟𝑜𝑔(𝜙1, 𝑤) ∧ 𝑝𝑟𝑜𝑔(𝜙2, 𝑤)
𝑝𝑟𝑜𝑔(◊𝜙,𝑤) ≐ (𝑝𝑟𝑜𝑔(𝜙,𝑤) ∨◊𝜙)
𝑝𝑟𝑜𝑔(□𝜙,𝑤) ≐ (𝑝𝑟𝑜𝑔(𝜙,𝑤) ∧□𝜙)
𝑝𝑟𝑜𝑔(𝜙1𝜙2, 𝑤) ≐ 𝑝𝑟𝑜𝑔(𝜙2, 𝑤) ∧ (𝑝𝑟𝑜𝑔(𝜙1, 𝑤) ∨ 𝜙1𝜙2)

(≡ 𝑝𝑟𝑜𝑔(¬(¬𝜙1 ¬𝜙2), 𝑤))

Intuitively, the progression of 𝜙 over a truth evaluation 𝑤 is a formula 𝜙′ that represents what
remains of 𝜙 after𝑤 has occurred, i.e., what remains to be satisfied over the rest of the trace after𝑤.
For example, consider the goal 𝜙 = ◊𝑝; if 𝑝 holds in 𝑤, then the progression of 𝜙 over 𝑤 is 𝚝𝚛𝚞𝚎,
i.e., the goal had already been satisfied (in 𝑤); if on the other hand 𝑝 does not holds in 𝑤, then the
progression of 𝜙 over 𝑤 is ◊𝑝, i.e., we still need to eventually achieve 𝑝.

Note that after obtaining the progression, it is advisable to perform some Boolean simplifications
of the resulting formula:

¬𝚏𝚊𝚕𝚜𝚎 ⇒ 𝚝𝚛𝚞𝚎 ¬𝚝𝚛𝚞𝚎 ⇒ 𝚏𝚊𝚕𝚜𝚎

𝚝𝚛𝚞𝚎 ∧ 𝜙⇒ 𝜙 𝜙 ∧ 𝚝𝚛𝚞𝚎 ⇒ 𝜙
𝚏𝚊𝚕𝚜𝚎 ∧ 𝜙⇒ 𝚏𝚊𝚕𝚜𝚎 𝜙 ∧ 𝚏𝚊𝚕𝚜𝚎 ⇒ 𝚏𝚊𝚕𝚜𝚎

𝚏𝚊𝚕𝚜𝚎 ∨ 𝜙⇒ 𝜙 𝜙 ∨ 𝚏𝚊𝚕𝚜𝚎 ⇒ 𝜙
𝚝𝚛𝚞𝚎 ∨ 𝜙⇒ 𝚝𝚛𝚞𝚎 𝜙 ∨ 𝚝𝚛𝚞𝚎 ⇒ 𝚝𝚛𝚞𝚎
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3 Intention management system
As described in the introduction, the intention management system (IMS) should be able to handle
goal change during a run, where intentions can be adopted and dropped. Important here is to note
that the IMS only manages intentions of an agent, for which it holds that the IMS only manages the
goals which an agent is dedicated to achieving. We are not dealing with desires or keeping track
of a list of desires which can be dynamically changed by the IMS itself, based on their priorities
and realizability. The IMS checks for realizability of all intentions which are provided by an agent,
since the agent has to decide what intentions it intends on achieving. This means that the IMS is not
responsible for what new intentions are added or dropped from the list of intentions. The IMS is only
responsible for managing the intentions provided by the agent and checking their realizability.

As mentioned in Section 2.3, for this research LDL𝑓 will not be covered, as this would increase
the scope of this research too much. There would have to be an additional function in our approach
for also progressing LDL𝑓 intentions, as is described in [12]. Our automata-based approach could be
easily adapted to handle LDL𝑓 , although this has been left for future work, as described in Section
9. However, besides of progressing LDL𝑓 intentions, our current design for the IMS should be able
to work with LDL𝑓 expressions also.

In terms of intentions, whenever an intention is added to the intention list, the IMS has to check
whether this new intention is realizable in conjunction with the list of intentions the IMS already has.
If this is not realizable, the new intention is not added to the intention list, where feedback is given
to the agent on this, and which intentions should potentially be dropped from the intention list by the
agent in order to add this new intention.

In the scenario where the new intention is realizable with the list of intentions the IMS already
has, it is added to the intention list. Since the intention list has now changed, the winning region and
maximally permissive strategy have to be recomputed by the IMS, since adding the new intention
might have impact on the winning states and the maximally permissive strategy.

In the scenario where an intention is dropped by the agent from the intention list, the winning
region and maximally permissive strategy also have to be recomputed. Also here it is true that when-
ever an intention is dropped, the winning states and maximally permissive strategy might change.

To give an idea of how the IMS would handle the adding and dropping of intentions during a run,
we describe a theoretical scenario in Section 3.1 of how the IMS should operate in runtime, which
takes place in the ’Triangle-Tireworld’-domain, as described in Section 6.9.1. After this example,
we will give a more formal description for an IMS, which is based upon the given example.

3.1 Example scenario: Triangle-Tireworld
Consider an agent operating in the well known FOND domain called the Triangle-Tireworld (6.9.1)
with a layout as shown in Figure 2.4 on p. 39 of [18]. The domain involves locations/nodes connected
by roads. The agent can perform the action 𝑚𝑜𝑣𝑒-𝑐𝑎𝑟(𝑓𝑟𝑜𝑚, 𝑡𝑜) to go from location 𝑓𝑟𝑜𝑚 to an
adjacent location 𝑡𝑜 provided that they are connected by an edge/road and she is at 𝑓𝑟𝑜𝑚 and does
not have a flat tire. After this action is performed, the agent will be at 𝑡𝑜 and the agent may or may
not have a flat tire, a nondeterministic effect which is decided by the environment. The agent can
perform the action 𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) if she has a flat tire and there is a spare tire at 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛.
After this action, she does not have a flat tire and there is no spare at 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛. See Example 4.4 on
p. 18 of [17] for a precise specification of this FOND domain in PDDL. We assume that the domain
layout is exactly as in Figure 2.4 on p. 39 of [18], except that there is a spare at location 13 and there
is no spare at locations 22 and 33.

The scenario we want to model is as follows:
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1. Initially, the agent is at location 11 and has the intention at priority 0 that
◊(𝑎𝑡(32) ∧ 𝑓𝑖𝑛𝑎𝑙)

i.e., to eventually reach location 32 and stop3. She has no other intentions.
2. Then the agent does the action 𝑚𝑜𝑣𝑒-𝑐𝑎𝑟(11, 12) and gets a flat tire.
3. Then the agent does the action 𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒(12).
4. Then the agent acquires the intention at priority 1 that

◊(𝑎𝑡(41) ∧○◊ 𝑎𝑡(32))

i.e., to pass through location 41 on the way to location 32.
5. Then the agent does the action 𝑚𝑜𝑣𝑒-𝑐𝑎𝑟(12, 21) and gets a flat tire.
6. Then the agent does the action 𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒(21).
7. Then the agent acquires the intention at priority 2 that

◊(𝑎𝑡(42) ∧○◊ 𝑎𝑡(32))

i.e., to pass through location 42 on the way to location 32.
8. Then the agent does the action 𝑚𝑜𝑣𝑒-𝑐𝑎𝑟(21, 31) and gets a flat tire.
9. Then the agent does the action 𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒(31).

10. Then the agent does the action 𝑚𝑜𝑣𝑒-𝑐𝑎𝑟(31, 41) and gets a flat tire.
11. Then the agent does the action 𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒(41).
12. Then the agent drops the intention at priority 2 that

◊(𝑎𝑡(42) ∧○◊ 𝑎𝑡(32))

13. Then the agent does the action 𝑚𝑜𝑣𝑒-𝑐𝑎𝑟(41, 32) and stops.
Observe that initially, the winning region includes all locations with a spare as well as the goal

location 32. This is also the case after the agent goes to location 12. However after step 4 where
the agent acquires the intention to pass through location 42 on the way to location 32, the winning
region only includes the locations with spares on the left side of the Figure, as there are no spares at
locations 22 and 33, so the agent cannot get from the right side to the left side of the Figure to go to
location 42.

3Note that for FOND planning, we can actually drop 𝑓𝑖𝑛𝑎𝑙 from the goal formula because there in no spare tire at location
32, so once the agent gets there she may not be able to leave.
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3.2 Operational environment for the IMS
Using the example given in Section 3.1, we can extract the operational environment for the IMS,
and the parties who are involved in this operational environment. As mentioned before, the IMS
operates in a FOND domain, which means it is fully observable and non-deterministic. More details
on FOND domains are explained in Section 2.6. In this operational environment we are dealing with
an agent, the protagonist, and the environment, the antagonist. The information and queries sent by
both parties towards the IMS are as follows:

The agent can send the following update operations to the IMS:
• Add intention to list of intentions during a run;
• Drop intention from list of intentions during a run;
• Perform an action from the maximally permissive strategy provided by the IMS. The possible

actions only contain (non-)procrastinating actions in a current domain state, extracted from the
maximally permissive strategy, which will keep the agent in the winning region. The agent can
specify here if the provided actions should be either procrastinating or non-procrastinating;

• Terminate the system’s operation.
The environment sends the following information to the IMS:
• A (non-)deterministic effect, as a reaction to an action chosen by the agent.

3.3 Requirements for the IMS
After knowing the operational environment for the IMS and which information is given to and asked
by the IMS from each party involved, we can extract the responsibilities the requirements for the IMS
and design a data structure which is able to handle the dynamic changing of intentions.

The IMS should be able to do the following:
• Compute the winning region and maximally permissive strategy, given a domain and set of

intentions. This should also be possible at a later point in a run;
• Check if either a single intention or a list of intentions given by the agent are realizable in the

current LTL𝑓 domain specification;
• Get the current world state, which consists of the valuations of the current agent- and environ-

ment variables;
• Check whether all intentions have been fulfilled. If so, provide this as feedback to the agent;
• Keep track of a list of intentions;
• Get the length of the intention list;
• Retrieve an intention, given a position in the intention list;
• Check the truth valuation for a given LTL𝑓 formula in the current world state;
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• In the current world state, check the progression for each of the intentions which are in the
current list of intentions. If any intention have been fulfilled, provide this as feedback to the
agent and remove this intention from the intention list, since it has already been achieved. If
any progress has been made in a given intention, but has not yet been fulfilled completely,
update the intention with what remains of it. The progression of intentions is explained in
more detail in Section 3.7;

• Check if the current list of intentions is realizable in conjunction with a newly provided inten-
tion in the current domain state;

• Add new and drop old intentions from a list of intentions during the execution of a run, based
on what is instructed by the agent;

– If a newly added intention is realizable in conjunction with the intentions we already have,
the IMS adds the new intention to the list of intentions it already had, and recomputes
the winning region and maximally permissive strategy;

– If a newly added intention is not realizable in conjunction with the intentions we already
have, the IMS should forget about this new intention. However, the IMS will check,
based on priority of the intentions (position in the list) which intentions would have to
be dropped in order to add the new intention, and returns this to the agent. Intentions
should only be added or dropped by the agent, so the IMS can only give suggestions to
the agent of which intentions should be dropped;

– If an intention from the intention list is dropped, recompute the winning region and maxi-
mally permissive strategy. Since the list of intentions was already realizable before drop-
ping the given intention, the updated domain will also be realizable for the agent after
recomputing the winning region and maximally permissive strategy, which is why we do
not have to explicitly check again for realizability;

• Check if the action chosen by an agent in the current domain state is guaranteed to keep the
agent in the winning region;

• Get the set of all actions which keep the agent in the winning region in the current domain
state;

• Check if the action chosen by an agent in the current domain state is guaranteed to keep both
the agent in the winning region and make progress towards a final state in which all intentions
are satisfied;

• Get the set of all actions which keep both the agent in the winning region in the current domain
state and make progress towards a final state in which all intentions are satisfied;

• Terminate the system if the agent gives instructions to do so.
These requirements are the foundation of the IMS. Section 4 provides a description how a proof

of concept can be built in the form of software, which is based on these requirements.
Important here is to note that we only design the architecture of the IMS, since the workings of

the agent and environment are not relevant in this research. We only want to know which outputs of
the agent and environment are used as input for the IMS.
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3.4 Formal description of an IMS state
Now that we have a specification of which queries the IMS should be able to handle, what its respon-
sibilities are, and in which environments it should be able to handle, we can write out the information
required for the IMS in each state.

An IMS state is a triple 𝐼 = ⟨𝐷, 𝑠, 𝐿⟩, where 𝐷 is a FOND planning domain, 𝑠 is a state of 𝐷,
and 𝐿 is a list of agent’s intentions. At system initialization time, we set 𝑠 to an initial state and pro-
vide such a prioritized list of intentions (possibly empty). The IMS state can be queried and updated
though specific operations.

We can use these components of the IMS state in order to fulfill the requirements for the IMS,
as described in Section 3.3. In Section 3.5 and 3.6, the query- and update operations are described
which the IMS should be able to execute.

3.5 The query operations of the IMS
First we initialize the system with the FOND domain model𝑀 and (initial) world state 𝑠. This could
be represented as a PDDL nondeterministic domain or in some other language (e.g., an NDBAT in
the situation calculus).

The agent/system’s intentions will be represented by a list 𝐿 = [𝜙0,… , 𝜙𝑛] of ltl𝑓 formulas
ordered in decreasing order of priority, i.e., 𝜙0 is the highest priority intention and 𝜙𝑛 the lowest.
At any point in time, the system should ensure that this intention list 𝐿, i.e., its intention state, is
realizable, i.e., that the agent has a strategy to ensure that all its intentions are satisfied no matter
how the environment behaves. With a little abuse of notation, sometimes we will use 𝐿 itself as an
abbreviation for ltl𝑓 formula ⋀

𝜙𝑖∈𝐿 𝜙𝑖. Note that the empty list [] corresponds simply to 𝚃𝚛𝚞𝚎.
At system initialization time, we also provide such a prioritized list of intentions.
The system will support query- and update operations. The query operations are:
• 𝐼.𝑔𝑒𝑡𝐷𝑜𝑚𝑎𝑖𝑛𝑆𝑡𝑎𝑡𝑒(): returns the current domain state 𝑠;
• 𝐼.𝑖𝑠𝐼𝑛𝐹 𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒(): returns whether the current IMS state is such that all intentions are sat-

isfied and the agent may stop, i.e., is final;
• 𝐼.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠(): returns the current list of intentions 𝐿;
• 𝐼.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝐿𝑒𝑛𝑔𝑡ℎ(): returns 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿);
• 𝐼.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑘): returns the intention at index 𝑘 from 𝐿 (requires that 𝑘 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿));
• 𝐼.ℎ𝑜𝑙𝑑𝑠𝐼𝑛𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒(𝜓): return the truth value of state formula 𝜓 in the current world

state 𝑠;
• 𝐼.𝑖𝑠𝑊 𝑖𝑛𝑛𝑖𝑛𝑔(𝑎): returns whether executing agent action 𝑎 in the current IMS state 𝐼 is such

that there exists a winning strategy 𝜎 for 𝐿 starting at the current state of the domain 𝑠 such
that 𝜎(𝑠) = 𝑎;

• 𝐼.𝑔𝑒𝑡𝑊 𝑖𝑛𝑛𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠(): returns the set of all actions 𝑎 such that executing 𝑎 in the current
IMS state is guaranteed to remain in the winning region;
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• 𝐼.𝑖𝑠𝑃 𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑛𝑔(𝑎): returns whether executing action 𝑎 in the current IMS state is guaranteed
to progress towards a fulfilment all the intentions, i.e., there exists a winning strategy 𝜎 for 𝐿
starting at the current state of the domain 𝑠 such that 𝜎(𝑠) = 𝑎 and for every other winning
strategy 𝜎′, such that 𝜎′(𝑠) ≠ 𝑎 we have that 𝑚𝑎𝑥𝑆𝑡𝑒𝑝𝑠(𝜎, 𝑠, 𝐿) ≤ 𝑚𝑎𝑥𝑆𝑡𝑒𝑝𝑠(𝜎′, 𝑠, 𝐿);

• 𝐼.𝑔𝑒𝑡𝑃 𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠(): returns the set of all actions 𝑎 such there exists a winning strategy
𝜎 for 𝐿 starting at the current state of the domain 𝑠 such that 𝜎(𝑠) = 𝑎 and for every other win-
ning strategy 𝜎′, such that 𝜎′(𝑠) ≠ 𝑎 we have that 𝑚𝑎𝑥𝑆𝑡𝑒𝑝𝑠(𝜎, 𝑠, 𝐿) ≤ 𝑚𝑎𝑥𝑆𝑡𝑒𝑝𝑠(𝜎′, 𝑠, 𝐿);

• 𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘): checks whether inserting new intention 𝜙 at position 𝑘 yields a realiz-
able set of intentions; it returns 𝚃𝚛𝚞𝚎 if 𝜙 ∧

⋀

𝜙𝑖∈𝐿 𝜙𝑖 is realizable; 𝙵𝚊𝚕𝚜𝚎 if
𝜙∧

⋀

𝜙𝑖∈[𝜙0,…,𝜙𝑘−1] 𝜙𝑖) is not realizable; otherwise, it returns 𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘, 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿)),
where 𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘, 𝑗) is defined as follows: if 𝑗 = 𝑘−1, then 𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘, 𝑗) =
∅; else, 𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘, 𝑗) = 𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘, 𝑗−1)∪{𝑗} if 𝜙∧⋀𝜙𝑖∈[𝜙0,…,𝜙𝑘−1] 𝜙𝑖∧
⋀

𝑚∈𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙,𝑘,𝑗−1) 𝜙𝑚 ∧ 𝜙𝑗 is realizable, and 𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘, 𝑗) =
𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘, 𝑗 − 1) otherwise; essentially, it returns the set intention indexes ≥ 𝑘 that
can/should be kept.

Intuititively, it may not always be obvious why each of these query operation might be needed.
For example, one might wonder why it is useful to know whether a given action keeps the agent in
the winning region by calling 𝐼.𝑖𝑠𝑊 𝑖𝑛𝑛𝑖𝑛𝑔(𝑎), when this can already be extracted by retrieving the
set of winning actions by calling 𝐼.𝑔𝑒𝑡𝑊 𝑖𝑛𝑛𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠(). As in this research the IMS is only meant
to be a proof of concept, it is not tested on elaborate domains where the agent might have a large set
of possible actions to perform. As the agent might retrieve a large set of actions, possibly hundreds of
them, this might not be efficient for retrieving a winning action. To give the agent as much freedom
as possible, the agent should also be able to provide an action itself, where it is simply returned if
this action is either winning or progressing.

As how the queries are currently designed, it leaves the agent with as much freedom as possible,
while the IMS is already prepared for potential new features in future research.

3.6 The update operations of the IMS
In this Section, we specify the update operations performed by an agent within the operational envi-
ronment, as explained in Section 3.2.

The update operations are:
• 𝐼.ℎ𝑎𝑙𝑡: terminate the system’s operation;
• 𝐼.𝑑𝑟𝑜𝑝(𝑘): drops the 𝑘-th intention from 𝐿 (requires that 𝑘 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿)). Updates 𝐿 =
𝐿.𝑟𝑒𝑚𝑜𝑣𝑒(𝑘);

• 𝐼.𝑑𝑜(𝑎): If 𝐼.𝑖𝑠𝑊 𝑖𝑛𝑛𝑖𝑛𝑔(𝑎) = 𝙵𝚊𝚕𝚜𝚎 does nothing, otherwise the agent executes 𝑎, then the
system observes the new world state due to the environment reaction 𝑠′ and updates the IMS
𝐼 = ⟨𝐷, 𝑠, 𝐿⟩, to 𝐼 = ⟨𝐷, 𝑠′, 𝐿′

⟩, where 𝐿′ = [𝜙′
0,… , 𝜙′

𝑛] with each 𝜙′
𝑖 = 𝑝𝑟𝑜𝑔(𝜙𝑖, (𝑎, 𝑠′)),i.e., obtained by progressing each 𝜙𝑖 ∈ 𝐿 through (𝑎, 𝑠′) (note that here (𝑎, 𝑠′) stands for the

interpretation {𝑎} ∪ 𝑠′);
• 𝐼.𝑎𝑑𝑜𝑝𝑡(𝜙, 𝑘): adopt the intention 𝜙 at priority 𝑘 (requires that 𝑘 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿)); Let 𝑟𝑖𝑠 =
𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘). If 𝑟𝑖𝑠 = 𝚃𝚛𝚞𝚎, then set 𝐿 to 𝐿.𝑖𝑛𝑠𝑒𝑟𝑡(𝜙, 𝑘) and return True; else, do
nothing and return False;
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3.7 Progressing an LTL𝑓 intention
For describing how LTL𝑓 intentions are progressed, we use the theory described in Section 2.11.
Intentions can be expressed in a complex manner, sometimes needing several specific steps in order
to fulfill them. Every type of intention expressed in LTL𝑓 can be progressed by the IMS. This can, for
example, be reachability, sequences, or safety properties, among other properties [11]. Since in this
research we are dealing with temporally extended goals, there is a need for progressing intentions,
such that it can be measured to which extend a set of given intentions has been fulfilled. An example
of how such an intention is progressed, is described in Section 3.7.1.

3.7.1 Example for progressing an LTL𝑓 formula

We take an example intention from a pseudo domain: intention ’◊(𝑠1 ∧○◊(𝑠2))’. Which domain
this is exactly, is not relevant, since we only care about the progression of intentions, regardless of
the exact domain. In this example, we consider variable 𝑠1 to be ’state 1’, and 𝑠2 to be ’state 2’.
In natural language, this intention would express the following: "eventually be in state 1, and next,
eventually be in state 2".

In this setting, if the agent in the next step does not reach s1, the formula remains as it is before:
◊(𝑠1 ∧ ○◊(𝑠2)). This is still considered progression, even when the intention is not altered, as is
described in Section 2.11.

In another scenario where the agent at some point does reach s1, the formula is both progressed
and changes from its previous form, since a part of the intention has now been fulfilled: ◊(𝑠1).
The intention now progresses from ◊(𝑠1 ∧ ○◊(𝑠2)) to ◊(𝑠2), where the remaining intention is to
eventually reach s2: ◊(𝑠2). Once we also reach 𝑠2, the intention progresses into 𝑡𝑟𝑢𝑒, as described
in Section 2.11, since now the intention has been fulfilled, and afterwards will remain 𝑡𝑟𝑢𝑒.

3.8 Usage of the IMS
Now that we have a notion of the operational environment and of the query- and update operations
which the IMS is supposed to handle, it can be specified how the IMS works during runtime. We
split this up in three parts: the initialization of a run, the operations performed during a run, and the
completion of a run.

3.8.1 Initialization of a run

Before a run is started, the IMS is provided with a FOND domain and an initial list of intentions.
The entire intention list is assumed to be realizable, given the FOND domain. If this list is not real-
izable, the run is not started. Once a realizable list of intentions has been provided, the environment
initializes with its initial variables. Note that no query- or update operations have been executed yet
by the IMS up to this point, as realizability for the entire list of intentions and the initial DFA are not
computed by the IMS itself during the initialization of a run.

3.8.2 Operations during a run

Firstly, the IMS calls the query 𝐼.𝑔𝑒𝑡𝐷𝑜𝑚𝑎𝑖𝑛𝑆𝑡𝑎𝑡𝑒(), which returns the current domain state s.
The agent can now perform an action, either procrastinating or non-procrastinating. The IMS pro-
vides a set of actions, chosen by the agent, either 𝐼.𝑔𝑒𝑡𝑊 𝑖𝑛𝑛𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠(), which contains both
the procrastinating- and non-procrastinating actions, or 𝐼.𝑔𝑒𝑡𝑃 𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠(), which contains
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only the non-procrastinating actions. The agent picks an action, and the IMS calls update opera-
tion 𝐼.𝑑𝑜(𝑎), where 𝑎 is the action picked by the agent. This operation returns 𝑠, the environment
reaction. All intentions of the intention list are progressed implicitly by update operation 𝐼.𝑑𝑜(𝑎),
and the domain transitions into a new state, given the agent- and environment action. For the IMS
to implicitly check if an intention from the intention list has been fulfilled after progressing, it calls
query operation 𝐼.ℎ𝑜𝑙𝑑𝑠𝐼𝑛𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒(𝜓), where 𝜓 is the intention being checked.

In the new domain state, the agent is now able to call the update operations 𝐼.𝑎𝑑𝑜𝑝𝑡(𝜙, 𝑘),
𝐼.𝑑𝑟𝑜𝑝(𝑘), or 𝐼.ℎ𝑎𝑙𝑡, which are for adding a new intention to the intention list, dropping an intention
from the intention list, or terminating the system’s operation, respectively.

• If the agent calls operation 𝐼.𝑎𝑑𝑜𝑝𝑡(𝜙, 𝑘), the IMS checks for realizability of the new intention,
𝜙, in conjunction with the current intention list, in the current domain state. For this, the IMS
queries 𝐼.𝑔𝑒𝑡𝐷𝑜𝑚𝑎𝑖𝑛𝑆𝑡𝑎𝑡𝑒(), 𝐼.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠(), and 𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘) are used.

– If 𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘) returns true, the new intention is added to the list of intention
at position 𝑘 using update operation 𝐼.𝑎𝑑𝑜𝑝𝑡(𝜙, 𝑘). A new domain state and maximally
permissive strategy are computed, since these have changed after altering the intention
list.

– If 𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘) returns false, the agent is informed that it is not possible to add
the new intention to the list of intentions. 𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘) checks which subset
of intentions with highest priority would be realizable in conjunction, where the IMS
returns to the agent which intentions of the intention list would have to be dropped, based
on priority, in order to add the new intention and make the intention list realizable, as
specified in Section 3.6. The agent is informed about the intentions which would have to
be dropped in order to add the new intention.

• If the agent calls operation 𝐼.𝑑𝑟𝑜𝑝(𝑘), the intention with index 𝑘 is dropped from the intention
list. A new domain state and maximally permissive strategy are computed, since these have
changed after altering the intention list.

• If the agent calls operation 𝐼.ℎ𝑎𝑙𝑡, the run is finalized, which is explained in more detail in
Section 3.8.3.

After calling 𝐼.ℎ𝑎𝑙𝑡, all query- and update operations which an agent might need during a run
are covered, except for the following query operations:

• 𝐼.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝐿𝑒𝑛𝑔𝑡ℎ();
• 𝐼.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑘);
• 𝐼.𝑖𝑠𝑊 𝑖𝑛𝑛𝑖𝑛𝑔(𝑎);
• 𝐼.𝑖𝑠𝑃 𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑛𝑔(𝑎).
Note that these operations are not explicitly used by the agent in these scenarios. Query

𝐼.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝐿𝑒𝑛𝑔𝑡ℎ() and 𝐼.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑘) can be used by the IMS implicitly when check-
ing for the agent which subset of intentions from an intention list are realizable, for which these
queries are also included for potential usage by the agent in future work. Similarly for the queries
𝐼.𝑖𝑠𝑊 𝑖𝑛𝑛𝑖𝑛𝑔(𝑎) and 𝐼.𝑖𝑠𝑃 𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑛𝑔(𝑎), these are mainly included for future usage. Although the
set of winning- and progressing actions can already be extracted by calling 𝐼.𝑔𝑒𝑡𝑊 𝑖𝑛𝑛𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠()
and 𝐼.𝑔𝑒𝑡𝑃 𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠(), if the set of possible actions returned is extensive, it would be eas-
ier for the agent to provide an action by itself, for which it would be returned if this action is either
winning or progressing.
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3.8.3 Completion of a run

After each domain transition, the IMS calls the query operation 𝐼.𝑖𝑠𝐼𝑛𝐹 𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒(), which returns
if all the intentions are satisfied. Feedback from the IMS is given to the agent if in the current domain
state all intentions are satisfied, however the run is not automatically stopped, since only the agent
can stop a run. If the agent wants to continue the run, it can. The agent can call the update operation
𝐼.ℎ𝑎𝑙𝑡, which makes the IMS terminate the system’s operation.
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4 Design of the IMS
We can evaluate the data structure of the intention management system described in Section 3 by
making it into a proof of concept in the form of software, which we can then use to process benchmark
FOND domains and problems. In Section 3, a description was given for an IMS which talks about
domains as a general concept. However in this section, we will assume the domain and intentions
are conjoined into a single DFA (2.4.1). In Section 4.1, a more detailed description is given for the
design of the IMS.

4.1 Description for the design of the IMS
The IMS as a proof of concept is based on other software, called Lydia (5.1.1) and Syftmax (5.1.2).

Important here is to note that the benchmark FOND domains are specified in LTL𝑓 . In our
manner of implementation the domain specification is joined with the intention specification to ob-
tain a single LTL𝑓 formula. This is then transformed into a DFA by Lydia, representing the entire
specification. Syftmax is ran on this afterwards, for obtaining the winning region and maximally
permissive strategy. The DFA and maximally permissive strategy are only recomputed whenever
the list of intentions from an agent changes. The composition of the LTL𝑓 formula for running the
synthesis algorithm on for extracting the DFA is explained in more detail in Section 4.6. When an
agent executes an action, the IMS observes the environment reaction. After this, the DFA state is
advanced into a next DFA state, and all intentions are progressed, given the world state.

The LTL𝑓 specification for the domain and intentions remain the same throughout a run, except
for when the DFA is recomputed. At this point, the initial environment initialization is set as the
current environment variable valuations, and the goal is replaced by an updated list of intentions.
As this is how we designed the IMS, for our implementation the LTL𝑓 formula is split up in several
components, such that dynamic adjustment of the LTL𝑓 specification can be applied over the envi-
ronment initialization and the goal during a run. The contents of these individual components are
specified in more detail in Section 4.5.

As already mentioned, there are many possible manners for representing a FOND domain- and
problem specification in LTL𝑓 , where in this implementation we represent both the domain- and
problem specification in a singular DFA. By doing so, we do not have to split the specification into
several DFA’s, as the singular DFA contains all necessary information for the IMS.

After a DFA for the domain- and problem specification is computed, it can be saved within the
IMS state for the proof of concept, as shown in Section 4.2, which is then used for executing query-
and update operations. This can be considered as one of the simplest manners for computing the
winning region for an agent, as the IMS does not have to keep track of progression for several DFA’s
at the same time, and there is no interaction required with any other DFA’s.

Another manner for computing the winning region is to compute a separate DFA for the domain,
and compute separate DFA’s for each intention of the agent, which in the end might be less computa-
tionally expensive. However, as this implementation for the IMS is only meant as a proof of concept,
we do not focus on computing the winning region for the agent as efficiently as possible, and leave
this as potential future work.

4.2 IMS state for the design
For describing the IMS state of the proof of concept, we start from the mathematical description for
the IMS state as described in Section 3.4.
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The state of an IMS for the proof of concept is written more elaborately, where we also ex-
press the winning region, (non-)procrastinating strategy, and current DFA state. Important here is to
note that this is our manner of designing an IMS. However, there are many other ways of designing
this. For distinguishing the IMS state for the mathematical description and the IMS state for our
design, we will define the IMS state for our design as 𝐼+, as this contains more information than
the mathematical definition for the IMS state. For our design, the IMS state is written as follows:
𝐼+ = (𝐷, 𝑠, 𝐿,DFA, 𝑠DFA, 𝑤, 𝑝𝑠, 𝑛𝑝𝑠), where

• 𝐷 is the FOND domain represented as an LTL𝑓 formula. This is used for constructing a DFA.
An example for a FOND domain specified in LTL𝑓 is provided in Section 4.5.2;

• 𝑠 is the current state of the domain. In this state, the agent- and environment variables are
captured, including their truth values, represented as a BDD. This is used for making transitions
from one state to a next one in the DFA, and for progressing intentions;

• 𝐿 is the current list of LTL𝑓 intentions. At the initialization of a run, this list is provided by
an agent. During a run, the agent can add and drop intentions from this list;

• DFA is the DFA, representing 𝐷, the FOND domain, and 𝐿, the current list of intentions. As
already mentioned in the introduction, the DFA is computed using Lydia (5.1.1), where𝐷 and
𝐿 are joined and provided as a singular LTL𝑓 formula;

• 𝑠DFA is the current state of the DFA, represented as a BDD. This is used for checking if the agent
is in the winning region/a final state, and for extracting what moves an agent can execute in the
current DFA state in order to stay in the winning region when combined with the maximally
permissive strategy, consisting of 𝑝𝑠 and 𝑛𝑝𝑠. Also, the current DFA state 𝑠DFA, combined with
𝑠 and the transition function of a DFA, returns the next 𝑠DFA;

• 𝑤 is the winning region of the DFA, represented as a BDD;
• 𝑝𝑠 is the procrastinating strategy, extracted from the maximally permissive strategy, repre-

sented as a BDD;
• 𝑛𝑝𝑠 is the non-procrastinating strategy, extracted from the maximally permissive strategy, rep-

resented as a BDD;
As the IMS state for the design is more elaborate compared to the IMS state as provided in Section

3.4, the internal workings of the query- and update operations will also be different in our design.
How the query- and update operations work in our implementation, is explained in more detail in
Section 4.3.

4.3 The query- and update operations for the design
For the usage of query- and update operations, we take the specification provided in Section 3.5 and
3.6, and apply this to the IMS state for our design as described in Section 4.2. Here we describe how
the variables for our design of the IMS state are used by the query- and update operations of the IMS
internally as follows:

Query operations:
• 𝐼+.𝑔𝑒𝑡𝐷𝑜𝑚𝑎𝑖𝑛𝑆𝑡𝑎𝑡𝑒(): returns the current domain state 𝑠 from the IMS state, containing the

agent- and environment variables, including their truth valuations;
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• 𝐼+.𝑖𝑠𝐼𝑛𝐹 𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒(): returns whether the current IMS state is such that all intentions are
satisfied and the agent may stop, i.e., is final. For this to be true, the current DFA state 𝑠DFAhas to be in 𝑤, and 𝐿 has to be empty;

• 𝐼+.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠(): returns the current list of intentions 𝐿 from the IMS state;
• 𝐼+.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝐿𝑒𝑛𝑔𝑡ℎ(): returns 𝑙𝑒𝑛𝑔𝑡ℎ(𝐿), given 𝐿 from the IMS state;
• 𝐼+.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑘): returns the intention at index 𝑘 from 𝐿 (requires that
𝑘 < 𝐼+.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝐿𝑒𝑛𝑔𝑡ℎ()), where 𝐿 is taken from the IMS state and 𝑘 is provided exter-
nally;

• 𝐼+.ℎ𝑜𝑙𝑑𝑠𝐼𝑛𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒(𝜓): return the truth value of state formula 𝜓 in the current state 𝑠,
where 𝜓 is provided externally and 𝑠 is taken from the IMS state;

• 𝐼+.𝑖𝑠𝑊 𝑖𝑛𝑛𝑖𝑛𝑔(𝑎): returns whether executing agent action 𝑎 in 𝑠DFA is part of the procrastinat-
ing strategy, keeping the agent in the winning region. Here, 𝑠DFA and 𝑝𝑠 are taken from the
IMS state, where 𝑎 is provided externally;

• 𝐼+.𝑔𝑒𝑡𝑊 𝑖𝑛𝑛𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠(): returns the set of all actions an agent can execute in 𝑠DFA which
remain in the winning region, where 𝑠DFA and 𝑝𝑠 are taken from the IMS state;

• 𝐼+.𝑖𝑠𝑃 𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑛𝑔(𝑎): returns whether executing agent action 𝑎 in 𝑠DFA is part of the non-
procrastinating strategy, progressing the agent towards a final state. Here, 𝑠DFA and 𝑛𝑝𝑠 are
taken from the IMS state, where 𝑎 is provided externally;

• 𝐼+.𝑔𝑒𝑡𝑃 𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠(): returns the set of all actions an agent can execute in 𝑠DFA which
progress towards a final state, where 𝑠DFA and 𝑛𝑝𝑠 are taken from the IMS state;

• 𝐼+.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘): A copy of 𝐿 is made, ’𝐿𝑐𝑜𝑝𝑦’, where new intention 𝜙 is inserted at
position 𝑘 in 𝐿𝑐𝑜𝑝𝑦. A new DFA is created using 𝐷, 𝑠, and 𝐿, for which realizability is
checked. If 𝐿𝑐𝑜𝑝𝑦 is realizable, 𝐼+.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘) returns 𝑇 𝑟𝑢𝑒. If this returns 𝑓𝑎𝑙𝑠𝑒,
𝐼+.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘) is iteratively called, where in each iteration a subset of 𝐿𝑐𝑜𝑝𝑦 is taken,
starting with the highest priority intentions, and gradually decreasing which prioritized inten-
tions are selected, as described in Section 4.4.1. Whenever a subset is found which is realizable,
it is returned what intentions this realizable subset consists of. This maximally prioritized re-
alizable subset of intentions is represented the same as described for the 𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘)-
query in Section 3.5. If no realizable subset exists, return 𝐹𝑎𝑙𝑠𝑒. Variables 𝜙 and 𝑘 are pro-
vided externally, while 𝐷, 𝑠, and 𝐿 are taken from the IMS state;

We have now defined the complete set of query operations for the design of the IMS, as this set
contains all the same query operations as specified in Section 3.5.

Update operations:
• 𝐼+.ℎ𝑎𝑙𝑡: terminate the system’s operation;
• 𝐼+.𝑑𝑟𝑜𝑝(𝑘): drops the 𝑘-th intention from 𝐿 (requires that 𝑘 < 𝐼+.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝐿𝑒𝑛𝑔𝑡ℎ()).

As 𝐿 has changed, DFA, 𝑠DFA,𝑤, 𝑝𝑠, and 𝑛𝑝𝑠 are recomputed, as these have changed as a result
of 𝐿. DFA is recomputed using 𝐷, 𝑠, and 𝐿, where 𝑠DFA, 𝑤, 𝑝𝑠, and 𝑛𝑝𝑠 are extracted from
DFA. In the IMS state, DFA, 𝑠DFA, 𝑤, 𝑝𝑠, and 𝑛𝑝𝑠 are replaced. The only external variable is 𝑘,
while the result of all used variables come from the IMS state;
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• 𝐼+.𝑑𝑜(𝑎): If 𝐼+.𝑖𝑠𝑊 𝑖𝑛𝑛𝑖𝑛𝑔(𝑎) = 𝙵𝚊𝚕𝚜𝚎, the IMS does nothing. Otherwise, the IMS executes
𝑎 in 𝑠DFA, where an environment reaction is returned. 𝑎 and the environment reaction result in
𝑠, the current domain state, which is updated in the IMS state. Taking 𝑠DFA and 𝑠, and applying
these on the transition function extracted from DFA, the next 𝑠DFA is returned. All intentions
of 𝐼+.𝐿 are internally progressed, given 𝐼+.𝑠. The IMS state updates 𝑠DFA with the resulting
𝑠DFA. Variable 𝑎 is provided externally, while DFA and 𝑠DFA are taken from the IMS state;

• 𝐼+.𝑎𝑑𝑜𝑝𝑡(𝜙, 𝑘): try to adopt intention𝜙 at priority 𝑘 (requires that 𝑘 < 𝐼+.𝑔𝑒𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠𝐿𝑒𝑛𝑔𝑡ℎ()).
Firstly, 𝐼+.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘) is called. If 𝐼+.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘) returns 𝑇 𝑟𝑢𝑒, adopt new in-
tention 𝜙 at priority 𝑘. As 𝐿 has changed when a new intention is adopted, DFA, 𝑠DFA, 𝑤, 𝑝𝑠,
and 𝑛𝑝𝑠 are recomputed, as these have changed as a result of 𝐿. DFA is recomputed using 𝐷,
𝑠, and 𝐿, where 𝑠DFA, 𝑤, 𝑝𝑠, and 𝑛𝑝𝑠 are extracted from DFA. In the IMS state, DFA, 𝑠DFA, 𝑤,
𝑝𝑠, and 𝑛𝑝𝑠 are replaced. The only external variable is 𝑘, while the result of all used variables
come from the IMS state; If 𝐼+.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘) returns 𝐹𝑎𝑙𝑠𝑒, do nothing;

We now have all update operations for the design of the IMS, all of which have also been used
in the definition for the IMS in Section 3.6. Together with the query operations, the design for all
operations which the IMS can execute is now complete for usage by an agent. All operations of the
design comply with the requirements for an IMS as described in Section 3.3, where these operations
function as described in the introduction of Section 4. In Section 5.2, a description is given for how
these query- and update operations can be used by an agent within a simulation of a FOND domain.

4.4 Adding and dropping of an intention to list of intentions
For our design of the IMS, the manner of adding new intentions and dropping old intentions is to
check if a new intention is realizable in conjunction with the intentions we are currently already
committed to. If the new intention is realizable, together with our current intentions, we can adopt it
in our current list of intentions and recompute the maximally permissive strategy. If the new intention
is not realizable in conjunction with our current intentions, the IMS does not add the new intention
to the list of intentions and only stays committed to set of intentions we already had. However, the
IMS can give a suggestion to the agent on which intentions would have to be dropped in order to
add the new intention to the list of intentions. This suggestion is based on the priority of intentions,
since the position of an intention in the intention list indicates its priority, for which a more detailed
description is given in Section 4.4.2.

Note that checking realizability, adopting an intention, and dropping an intention are solely query-
and update operations which an agent can call from the IMS. How these query- and update operations
are used during a run is not part of the definition for the IMS, but is part of our implementation for the
IMS, which we have used for evaluating the IMS in simulations. Section 3 discusses which query-
and update operations can be called from the IMS, where our design and implementation for the IMS
during a simulation is provided in Section 4 and 5. In Section 4.4.1, we provide an example of how
an intention can be added and dropped from the list of intentions.

4.4.1 Example for adding a new intention to the list of intentions

Now that we have a general idea of how the IMS handles the adding of new intentions and checking
their realizability, we will give a concrete example. We provide an example of how new intentions
can be added to the intention list, as will be done during the implementation of the IMS in Section
5, and what happens in the scenario where it is not realizable to add a new intention to the intention
list.
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We will consider the following stepwise example scenario:

1. The agent provides the IMS a list of intentions at initialization, [𝐴,𝐶]. Where the left-most
intention 𝐴 has highest priority (priority 0), and the right-most intention 𝐶 has lowest priority
(priority 1). We set the intentions [𝐴,𝐶] as 𝜙𝑔𝑜𝑎𝑙. Note: which specific domain is used here
is irrelevant, since it is only used for explanation and is applicable to any domain.

2. As we will see in the implementation of the IMS in Section 5, the winning region is computed
for the domain, and the IMS checks, using the winning region, if it is realizable for the agent
to reach all given intentions. Note that in the formal definition for the IMS in Section 3, the
manner for computing the winning region and maximally permissive strategy are not included,
as this is part of the implementation, as will be discussed in more detail in Section 5. It is
returned to the IMS that these intentions are indeed realizable for the agent. The IMS extracts
the maximally permissive strategy for the agent using the winning region, and provides to the
agent what actions can be executed in order to remain in the winning region. The agent picks
an action, and the environment responds to this. The domain transitions into a new state, given
the agent action, the environment response, and the initial domain state.

3. After this transition, the agent decides that it wants to add a new intention to the intention list:
intention 𝐷, with priority 2. The IMS checks if intention 𝐷 is realizable in conjunction with
intentions [𝐴,𝐶] in the current domain state by calling query operation 𝐼+.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘),
where 𝐷 is represented by 𝜙 and priority 2 is represented by 𝑘. This appears to be realizable,
so the agent adds intention 𝐷 with priority 2 in the intention list by calling update operation
𝐼+.𝑎𝑑𝑜𝑝𝑡(𝜙, 𝑘), where 𝜙 represents 𝐷 and priority 2 represents 𝑘, adding 𝐷 in the right-most
position of the intention list, resulting in list [𝐴,𝐶,𝐷]. After adding the new intention, the
winning region and maximally permissive strategy are recomputed by the IMS, as these have
changed after adding a new intention.

4. After adding intention 𝐷 to the intention list, the agent decides that it wants to add another
intention: intention 𝐵 with priority 1. Again, the IMS checks if intention 𝐵 is realizable in
conjunction with intentions [𝐴,𝐶,𝐷] by calling 𝐼+.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝐵, 1). However, this is not
realizable. The IMS returns to the agent that adding intention 𝐵 is not realizable given the
current intention list. In this scenario however, the IMS will check what intentions should be
dropped if the agent would want to add intention 𝐵 with priority 1. The exact process for how
this is computed is described in Section 4.4.2.

5. The IMS starts by checking realizability by leaving out the intention with lowest priority: in-
tention𝐷 (right-most intention). The IMS now checks if the intentions [𝐴,𝐵, 𝐶] are realizable,
which appears not to be the case. The IMS checks again for realizability, now by leaving out
the intention with second-lowest priority: intention 𝐶 . The IMS now checks realizability for
intentions [𝐴,𝐵,𝐷], which appears to be realizable. The IMS returns to the agent that in order
to add intention 𝐵 to our intention list [𝐴,𝐶,𝐷], the agent would have to drop intention 𝐶
by calling update operation 𝐼+.𝑑𝑟𝑜𝑝(𝑘), where the priority of 𝐶 is represented by 𝑘. Whether
intention 𝐶 is actually dropped in order to add intention 𝐵 is decided by the agent. Note that
the IMS does not drop any intentions from the intention list when this is not commanded by
the agent. The IMS only gives feedback to the agent which intentions should be dropped in
order to add a given intention, based on its priority.
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6. Now, the agent continues the run as before. Whenever the agent wants to add- or drop an inten-
tion from the list of intentions, the process as described before is repeated, until all intentions
have been fulfilled.

4.4.2 Revision of the intention list by the 𝐼+.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘) query operation

In Section 4.4.1, an example is given where a new intention 𝜙 at priority 𝑘 is currently not realizable
in conjunction with a current intention list. As already mentioned, in this scenario the IMS will not
alter the intention list in order to add𝜙 at position 𝑘 in order to maximize utility, as in this research we
only want an agent to add- and drop intentions from the intention list, where the IMS only serves as
a tool for the agent in order to manage its intentions and for providing query- and update operations.

In Section 3.5 a formal description is already provided for how an intention list is revised for
giving feedback to an agent for maximizing utility when an agent wants to add a new intention. For
understanding this process of revision, we provide a more intuitive explanation.

The intention list could be seen as a binary encoding. When given an intention list for revision
[𝐴,𝐶,𝐷], and an agent calls 𝐼+.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝐵, 1), where realizability is checked for new intention
𝐵 at priority 1, a copy is made of the intention list is made in which intention 𝐵 is added, for which
realizability can be checked, without actually adding it to the current intention list. This copied list
with the new intention is represented as [𝐴,𝐵, 𝐶,𝐷].

Temporary intention list [𝐴,𝐵, 𝐶,𝐷] is transformed into a binary encoding [0, 0, 0, 0], where 0
implies an intention is included in the current intention list checked for realizability, and 1 implies an
intention is left out for the current check for realizability. If iteratively we would increase the binary
encoding for the set of intentions, this would stepwise be processed as follows:
[0, 0, 0, 0] = [𝐴,𝐵, 𝐶,𝐷]
[0, 0, 0, 1] = [𝐴,𝐵, 𝐶]
[0, 0, 1, 0] = [𝐴,𝐵,𝐷]
[0, 0, 1, 1] = [𝐴,𝐵]
...
until [1, 1, 1, 1] = ∅.

If during this iterative process for checking realizability a realizable set of intentions is found
which maximizes utility, this set is returned to the agent and the iterative search for other realizable
sets is stopped. If at no point a set is found which is realizable, the emptyset is returned. This provides
feedback for an agent on how a new intention can be added to an intention list, while maximizing
utility.

4.5 Individual components for constructing an LTL𝑓 formula
Within a domain, there are several components specifying the workings, restrictions, initialization,
and goal for both the agent and the environment. For our research, we will distinguish two types of
components: the domain specific components, and the problem specific components. The domain
components specify the workings/rules of a domain, which includes the mutual exclusion of agent
actions, the environment reactions to an agent action, the mutual exclusion of environment variables
(if applicable), the frame (unchanging environment variables over time), and the preconditions for
agent actions. The problem components includes the environment initialization and the initial goal.

The problem components can change depending on the proposed scenario, as this does not in-
fluence the workings/rules of the domain itself. Note here that even though the workings of the
environment are included in the domain workings/rules, these could change whenever a domain is
scaled up or down. For example, if we would take the slippery world domain described in Section
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6.8.1, we see that there are four rows and four columns. If we would scale up the rows and columns
to five, the workings/rules of the domain now also have to be applied to the fifth row and column,
as these are now also part of the domain. Below, we describe the components in the domain- and
problem specification:

Domain specification:

• 𝜙𝑎𝑔 𝑢𝑛𝑖𝑞 𝑎𝑐𝑡 : specifies the mutual exclusion of executing agent actions (agent executes exactly
one action at a time)

• 𝜙𝑒𝑛𝑣 𝑡𝑟𝑎𝑛𝑠 : specifies all (non-)deterministic reactions of the environment, given an agent action.
This also includes the frame, which describe environment variables which remain unchanged
over time. If applicable, mutual exclusion of environment variables can also be specified here.

• 𝜙𝑎𝑔 𝑎𝑐𝑡 𝑝𝑟𝑒𝑐 : specifies for the agent what the preconditions are in order to execute an action.
Problem specification:

• 𝜙𝑒𝑛𝑣 𝑖𝑛𝑖𝑡 : specifies what the initial values are for the environment variables.
• 𝜙𝑔𝑜𝑎𝑙 : specifies a conjunction of all intentions which an agent is dedicated to achieving.
As LTL𝑓 is based on propositional logic, we also need to define the variables, i.e. atomic propo-

sitions, for the agent and the environment, which are used for writing out the domain- and problem
specification.

Note that the manner of distinguishing components for a domain- and problem specification in
this section is how we have designed it for our research. This does not originate from previous re-
search, as we have designed this manner for distinguishing components as part of our implementation
of the IMS. We use these components in Section 4.6 and 4.7 to compose LTL𝑓 formulas for extracting
good agent- and environment moves, which is explained in more detail in these sections.

4.5.1 Description of the decision tree domain

In the previous Section, we have described the individual components from which we compose an
LTL𝑓 formula to extract good agent moves. In order to explain how this would look like for an actual
domain we use for evaluating our implementation of the IMS, we first give an example. This example
is given using the ’decision tree domain’.

This domain is designed by ourselves, with the purpose of describing a FOND domain in one of
its simplest forms. An advantage of this domain is that it is easy to explain, and simple to write out
in LTL𝑓 . An example with a visual representation of this domain is displayed in Figure 7. In this
example, there are 6 environment states in total, although the amount of states can be easily scaled
to preference. The agent has 2 action variables: left and right. The environment has 6 variables: s1,
s2, s3, s4, s5, and s6, for which the environment can place the agent in only one state at a time. An
example run in this domain is described as follows:

• The environment initializes in state s1. The goal for the agent is to eventually reach goal s5.
• In the initial state, s1, the agent can perform action left or right.
• The environment can respond to this by indicating in which state the agent will be next. In this

example, the environment applies a non-deterministic effect in s1, where it does not matter if
the agent executes left or right, since the environment will place the agent non-deterministically
next in either state s2 or s3.
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• In the next domain state, the agent will be located in either state s2 or s3, which it cannot
determine beforehand.

• In this next domain state, the agent has to reevaluate what action it needs to perform in order
to eventually reach state s5. In s2 this would be action right, and in s3 this would be action
left.

Figure 7: Decision tree domain

4.5.2 Example of individual components for composing an LTL𝑓 formula in the decision tree
domain

In this Section we describe an example domain- and initialization setting for the decision tree domain.
The decision tree domain is described in more detail in Section 4.5.1. In this scenario, the domain is
represented identical to the description given in Section 4.5.1, where the environment initializes in
state 𝑠1, and the agent eventually has to reach state 𝑠5.

Before writing out the domain- and problem specification, we need to have the set of agent- and
environment variables. These are as follows:

• agent variables: {𝑙, 𝑟}
• environment variables: {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6}
For which agent variable 𝑙 is action ’left’ and 𝑟 is action ’right’.
Using the individual components of an LTL𝑓 formula as described in Section 4.5 and the agent-

and environment variables described above, we can write out the following components:
Domain specification:

• 𝜙𝑎𝑔 𝑢𝑛𝑖𝑞 𝑎𝑐𝑡 : (𝑙 ∨ 𝑟) ∧ ¬(𝑙 ∧ 𝑟)

• 𝜙𝑒𝑛𝑣 𝑡𝑟𝑎𝑛𝑠 :
– mutual exclusion of environment variables :
(𝑠1 ∨ 𝑠2 ∨ 𝑠3 ∨ 𝑠4 ∨ 𝑠5 ∨ 𝑠6) ∧ ¬(𝑠1 ∧ 𝑠2) ∧ ¬(𝑠1 ∧ 𝑠3) ∧ ¬(𝑠1 ∧ 𝑠4) ∧ ¬(𝑠1 ∧ 𝑠5) ∧ ¬(𝑠1 ∧
𝑠6) ∧¬(𝑠2∧ 𝑠3) ∧¬(𝑠2∧ 𝑠4) ∧¬(𝑠2∧ 𝑠5) ∧¬(𝑠2∧ 𝑠6) ∧¬(𝑠3∧ 𝑠4) ∧¬(𝑠3∧ 𝑠5) ∧¬(𝑠3∧
𝑠6) ∧ ¬(𝑠4 ∧ 𝑠5) ∧ ¬(𝑠4 ∧ 𝑠6) ∧ ¬(𝑠5 ∧ 𝑠6)
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– environment reactions : (𝑠1 → ○(𝑙 → (𝑠2 ∨ 𝑠3))) ∧ (𝑠1 → ○(𝑟 → (𝑠2 ∨ 𝑠3))) ∧ (𝑠2 →
○(𝑙 → 𝑠4)) ∧ (𝑠2 → ○(𝑟 → 𝑠5)) ∧ (𝑠3 → ○(𝑙 → 𝑠5)) ∧ (𝑠3 → ○(𝑟 → 𝑠6)) ∧ (𝑠4 →
○((𝑙 ∨ 𝑟) → 𝑠4)) ∧ (𝑠5 → ○((𝑙 ∨ 𝑟) → 𝑠5)) ∧ (𝑠6 → ○((𝑙 ∨ 𝑟) → 𝑠6))

– frame : -
• 𝜙𝑎𝑔 𝑎𝑐𝑡 𝑝𝑟𝑒𝑐 : (𝑙 ∨ 𝑟) → (𝑠1 ∨ 𝑠2 ∨ 𝑠3 ∨ 𝑠4 ∨ 𝑠5 ∨ 𝑠6)

Problem specification:

• 𝜙𝑒𝑛𝑣 𝑖𝑛𝑖𝑡 : 𝑠1
• 𝜙𝑔𝑜𝑎𝑙 : ◊(𝑠5)

As already mentioned before, 𝜙𝑒𝑛𝑣 𝑖𝑛𝑖𝑡 and 𝜙𝑔𝑜𝑎𝑙 will change depending on the proposed problem
specification. During a run, 𝜙𝑔𝑜𝑎𝑙 will change as new intentions get added and dropped.

4.6 LTL𝑓 formula composition for extracting good agent moves
We want to extract strategies for the agent, given a domain and problem specification, for which we
can make sure that the agent can reach its goal, as long as both the agent and the environment play
according to the rules of a given domain specification. This means that whenever the agent breaks a
rule of the domain, e.g. perform two actions at the same time when in the domain it is only allowed
to perform one action at a time, the entire LTL𝑓 specification does not hold anymore, and as a result
the agent has no valid strategy anymore in which it can fulfill all its intentions. Likewise, the agent
only cares about reaching its goal whenever the environment plays according to the rules. Otherwise,
it might be that the environment breaks the domain specification/rules, which makes it impossible
for the agent to reach its goal.

If for the agent there is a precondition where an action can only be executed whenever the agent is
in an environment state, but the environment breaks the domain specification by saying that the agent
is currently not in any environment state, the agent is blocked from performing any actions, and will
be unable to eventually fulfill all its intentions. As this is the case, the agent should only care about
following the domain rules whenever the environment also follows the domain rules. Otherwise, the
agent is blocked from executing any actions, where we can say that the environment ’cheated’ in the
game arena, for which the agent wins by default.

In order to extract such strategies in which both the agent and environment have to follow the rules
of the given domain, we compose the following formula, using the individual components described
in Section 4.5:

(□ (𝜙𝑎𝑔 𝑢𝑛𝑖𝑞 𝑎𝑐𝑡)) ∧ ((𝜙𝑒𝑛𝑣 𝑖𝑛𝑖𝑡 ∧□ (𝜙𝑒𝑛𝑣 𝑡𝑟𝑎𝑛𝑠)) → ((□ (○ 𝑡𝑟𝑢𝑒→ 𝜙𝑎𝑔 𝑎𝑐𝑡 𝑝𝑟𝑒𝑐)) ∧ 𝜙𝑔𝑜𝑎𝑙))

We use this formula for extracting a DFA, using LTL𝑓 synthesis. How a DFA can be obtained
using an LTL𝑓 specification is described in Section 2.8. The resulting DFA represents the FOND do-
main and intentions of an agent, from which it can be extracted what agent- and environment actions
will result in which next states. Using this, agent strategies can be extracted which guarantee the
agent to eventually fulfill all its intentions. We use this DFA for extracting the maximally permissive
strategy and for mapping the winning region. Important here is to note that this is just one way for
extracting good agent moves. There are possibly different manners for extracting these moves more
efficiently. However, since exploring all manners for extracting good agent moves is not the goal of
this research, we do not explore this in more detail.
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To show in which cases the above formula holds, we write out a truth table. Since for writing out
a truth table we only care about the semantics used in propositional logic, we leave out the LTL𝑓 -
specific semantics, which leaves us with the following simplified formula:

𝜙𝑎𝑔 𝑢𝑛𝑖𝑞 𝑎𝑐𝑡 ∧ (𝜙𝑒𝑛𝑣 𝑡𝑟𝑎𝑛𝑠 → (𝜙𝑎𝑔 𝑎𝑐𝑡 𝑝𝑟𝑒𝑐 ∧ 𝜙𝑔𝑜𝑎𝑙))

Since𝜙𝑒𝑛𝑣 𝑖𝑛𝑖𝑡 and𝜙𝑒𝑛𝑣 𝑡𝑟𝑎𝑛𝑠 are both controlled by the environment, we join these in the simplified
formula.

For the simplified formula, we attain the truth table displayed in Table 1.

𝜙𝑎𝑔 𝑢𝑛𝑖𝑞 𝑎𝑐𝑡 𝜙𝑒𝑛𝑣 𝜙𝑎𝑔 𝑎𝑐𝑡 𝑝𝑟𝑒𝑐 𝜙𝑔𝑜𝑎𝑙 𝜙𝑎𝑔 𝑝𝑟𝑒𝑐 ∧ 𝜙𝑔𝑜𝑎𝑙
𝜙𝑒𝑛𝑣 →

(𝜙𝑎𝑔 𝑝𝑟𝑒𝑐 ∧ 𝜙𝑔𝑜𝑎𝑙)
𝜙𝑎𝑔 𝑢𝑛𝑖𝑞 𝑎𝑐𝑡 ∧

(𝜙𝑒𝑛𝑣 → (𝜙𝑎𝑔 𝑝𝑟𝑒𝑐 ∧ 𝜙𝑔𝑜𝑎𝑙))

1 1 1 1 1 1 1
1 1 1 0 0 0 0
1 1 0 1 0 0 0
1 1 0 0 0 0 0
1 0 1 1 1 1 1
1 0 1 0 0 1 1
1 0 0 1 0 1 1
1 0 0 0 0 1 1
0 1 1 1 1 1 0
0 1 1 0 0 0 0
0 1 0 1 0 0 0
0 1 0 0 0 0 0
0 0 1 1 1 1 0
0 0 1 0 0 1 0
0 0 0 1 0 1 0
0 0 0 0 0 1 0

Table 1: Truth table for LTL𝑓 specification of a domain

With this truth-table, there are five scenarios in which the agent wins:
1. The agent and environment both play according to the rules, and the goal is achievable for the

agent. Agent picks unique action and follows precondition. Environment sets init correctly
and follows specified transitions. Goal is achievable

2. The agent plays according to the rules, but the environment does not, but the goal is still
achievable

3. The agent plays according to the rules, but the environment does not, and the goal is not achiev-
able. However, because the environment does not play fair, we do not have to reach the goal
anymore. Note that the subformula 𝜙𝑒𝑛𝑣 → (𝜙𝑎𝑔 𝑝𝑟𝑒𝑐 ∧𝜙𝑔𝑜𝑎𝑙) says the following in natural lan-
guage: “if the environment plays according to the specification, then the agent plays according
to the preconditions and the agent reaches the goal.”. Since the environment does not play
according to the specification in this scenario, the agent does not care about the goal anymore,
and the complete formula becomes true.

4. The agent picks a unique action, but the environment does not follow the rules, the agent does
not follow the preconditions to execute a specific action, and the goal is achievable. Since the
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agent only has to follow preconditions when the environment plays according to the rules, the
formula becomes true.

5. The agent picks a unique action, but the environment does not follow the rules, the agent does
not follow the preconditions to execute a specific action, and the goal is not achievable. In the
formula, achieving the goal is only of relevance whenever the environment plays according to
the rules. Since the environment does not play according to the rules in this scenario, achieving
the goal becomes irrelevant. Since the agent does pick a unique action, this makes the formula
true.

4.7 LTL𝑓 formula composition for extracting good environment moves
With the formula we composed in Section 4.6, we are only able to extract in each state what actions
the agent can do in order to stay in the winning region, where the rules of the domain are followed
by the agent. However, we cannot use this to extract proper reactions for the environment which
follow the rules of the domain, preventing the environment from ’cheating’ in the game arena, and
letting the agent fulfill the LTL𝑓 specification instantly. For this, we have to compose a new formula
for the environment which, similar to the agent formula specification, ensures that the environment
only picks reactions which are according to the domain rules/specification. For this, we compose the
following formula, using the individual components described in Section 4.5:

𝜙𝑒𝑛𝑣 𝑖𝑛𝑖𝑡 ∧ (□ (𝜙𝑎𝑔 𝑢𝑛𝑖𝑞 𝑎𝑐𝑡 ∧ 𝜙𝑎𝑔 𝑎𝑐𝑡 𝑝𝑟𝑒𝑐) → □ (𝜙𝑒𝑛𝑣 𝑡𝑟𝑎𝑛𝑠))

Similar to the description in Section 4.6 for extracting good agent moves, also for extracting good
environment moves it is true that this is just one way of retrieving the good environment moves. Since
this is only meant for evaluating the IMS as a proof of concept, we do not go into more detail for
alternative formula forms for extracting good environment moves.

In natural language, the above formula says the following: “The environment initializes correctly,
and if the agent always picks a unique action and follows the action preconditions, then always the
environment follows the correct transitions.”. By rewriting this formula by only extracting the se-
mantics of propositional logic, we can simplify the formula as follows:

𝜙𝑒𝑛𝑣 𝑖𝑛𝑖𝑡 ∧ ((𝜙𝑎𝑔 𝑢𝑛𝑖𝑞 𝑎𝑐𝑡 ∧ 𝜙𝑎𝑔 𝑎𝑐𝑡 𝑝𝑟𝑒𝑐) → 𝜙𝑒𝑛𝑣 𝑡𝑟𝑎𝑛𝑠)

With this simplified formula, we attain the following truth table displayed in Table 2.
In the truth table above, we do not care about if the agent plays fair, as long as the environment

(the protagonist) plays according to the specification ONLY in the scenarios where the agent also
does so. However, independent on if the agent plays according to the specification, the environment
always has to initialize according to the specification.

Using the above specification, a DFA can be extracted which can be used for extracting good
environment strategies, where the environment chooses actions which are in alignment with the ef-
fects of the domain specification, whenever the agent also plays according to the rules. The max-
imally permissive strategy can also be extracted for the environment moves, showing what moves
the environment can execute in order to comply to the domain specification/rules. We can use these
environment reactions as a response to the actions of the agent which are extracted from the other
DFA (for the agent) as described in Section 4.6. Using these two DFA’s, we extract moves for the
agent and the environment, which both follow the respective formula specifications such that we can
simulate a run in which both players try their best to win the game and do not break the domain
specification/rules.
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𝜙𝑒𝑛𝑣 𝑖𝑛𝑖𝑡 𝜙𝑎𝑔 𝑢𝑛𝑖𝑞 𝑎𝑐𝑡 𝜙𝑎𝑔 𝑝𝑟𝑒𝑐 𝜙𝑒𝑛𝑣 𝑡𝑟𝑎𝑛𝑠
𝜙𝑎𝑔 𝑢𝑛𝑖𝑞 𝑎𝑐𝑡 ∧
𝜙𝑎𝑔 𝑝𝑟𝑒𝑐

(𝜙𝑎𝑔 𝑢𝑛𝑖𝑞 𝑎𝑐𝑡 ∧ 𝜙𝑎𝑔 𝑝𝑟𝑒𝑐 )
→ 𝜙𝑒𝑛𝑣 𝑡𝑟𝑎𝑛𝑠

𝜙𝑒𝑛𝑣 𝑖𝑛𝑖𝑡 ∧
((𝜙𝑎𝑔 𝑢𝑛𝑖𝑞 𝑎𝑐𝑡 ∧ 𝜙𝑎𝑔 𝑝𝑟𝑒𝑐 )

→ 𝜙𝑒𝑛𝑣 𝑡𝑟𝑎𝑛𝑠)

1 1 1 1 1 1 1
1 1 1 0 1 0 0
1 1 0 1 0 1 1
1 1 0 0 0 1 1
1 0 1 1 0 1 1
1 0 1 0 0 1 1
1 0 0 1 0 1 1
1 0 0 0 0 1 1
0 1 1 1 1 1 0
0 1 1 0 1 0 0
0 1 0 1 0 1 0
0 1 0 0 0 1 0
0 0 1 1 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 1 0
0 0 0 0 0 1 0

Table 2: Truth table for LTL𝑓 specification of the environment playing according to the rules of a
domain

4.8 Application of BDD’s
As already seen in Section 4.2, within the design for the IMS, the IMS state contains several com-
ponents which are represented as a BDD, also referred to as an ROBDD. As described in Section
2.10, a BDD is used for compactly representing propositional functions. Two or more BDD’s can
be conjoined whenever they contain all the same variables (e.g. 𝑋1, 𝑋2, and 𝑋3), where essentially
the function corresponding to the invidual BDD’s are conjoined into a new function. From this con-
joined function, a new ROBDD can be extracted, representing the two conjoined BDD functions.
This is especially helpful when we want to extract the moves which keep an agent in the winning
region in a current DFA state, as we will use will use in our design.

We provide an example usage as follows:
• We start off with four ordered variables used in a BDD: [𝑋1,𝑋2,𝑋3,𝑋4], where𝑋1 represents

an agent action ’left’, 𝑋2 represents agent action ’right’, 𝑋3 represents domain state ’s1’, and
𝑋4 represents domain state ’s2’.

• When we would extract procrastinating moves from the maximally permissive strategy, this
will tell us in each domain state, which actions the agent can execute in order to remain in
the winning region. This could be resembled with the usage of cubes, as discussed in Section
2.10, as follows:
[1, 0, 0, 1]
[0, 1, 1, 0]
As we know the ordering of each variable within a BDD, and the truth valuations is indicated
above, we can extract that in order to remain in the winning region, the agent has to execute
action ’left’ (𝑋1) when in domain state ’s2’ (𝑋4), and has to execute action ’right’ (𝑋2) when
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in domain state ’s1’ (𝑋3). As a function, this could be represented as ((𝑋1 ∧ ¬𝑋2 ∧ ¬𝑋3 ∧
𝑋4) ∨ (¬𝑋1 ∧𝑋2 ∧𝑋3 ∧ ¬𝑋4)).

• If we now want to extract which moves to execute when the agent is in DFA state ’s1’, we
combine the function for the BDD of the procrastinating strategy as described above with the
function for the BDD of DFA state ’s1’, for which the cubes look as follows:
[2, 2, 1, 0]
where ’2’ represents a ’do not care’-value, and can take on both value 0 and 1. Note here that
the BDD for DFA state ’s1’ only contains a single cube satisfying the condition. The function
for this BDD looks as follows: (𝑋3 ∧¬𝑋4). Note that in this function, variables 𝑥1 and 𝑥2 are
irrelevant, as they are valued as 2, and can take on either value 0 or 1.

• We conjoin the function of the BDD for the procrastinating moves with the function for the
BDD for DFA state ’s1’, resulting in the following function: ((𝑋1∧¬𝑋2∧¬𝑋3∧𝑋4)∨(¬𝑋1∧
𝑋2 ∧𝑋3 ∧ ¬𝑋4)) ∧ (𝑋3 ∧ ¬𝑋4). This formula can be simplified to: (¬𝑋1 ∧𝑋2 ∧𝑋3 ∧ ¬𝑋4),as this produces an equivalent truth table.

• After conjoining the function of both BDD’s and extracting a new function, we can obtain the
cubes from the corresponding BDD graph. This results in the following cube: [0, 1, 1, 0], as
this is the only variable valuation satisfying the function (¬𝑋1 ∧𝑋2 ∧𝑋3 ∧ ¬𝑋4).

• The resulting cubes tell the agent what actions can performed in the current DFA state, ’s1’, in
order to remain in the winning region. From the cube we can extract that the agent can execute
action ’right’ (𝑥2) and not ’left’ (𝑥1) in order to remain in the winning region.

• We have now successfully extracted an agent move in the current DFA state.
As strategies, winning regions, DFA states, and the valuations of agent- and environment vari-

ables can be easily represented using (RO)BDD’s, we apply this in the design for the IMS. This helps
the IMS with efficiently querying good agent moves, query if the current DFA state is either a final
state or is in the winning region, and all other possible queries as specified in Section 3.5.
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5 Implementation of the IMS
In this Section we describe the actual implementation of the IMS in a proof of concept, which is based
on the definition and design for the IMS, as described in Section 3 and 4. We take the description
for the usage of the IMS and software, described in Section 3.8, 5.1.1, and 5.1.2, respectively, and
translate this into a usable proof of concept in the form of software4.

As the IMS does not operate by itself during a run, it requires an agent in order to have the
query- and update operations to be called. By itself, the IMS can be considered as a class that solely
provides various query- and update operations, while saving all necessary information for the IMS
state during a run. The agent can use the implementation of these query- and update operations of
the IMS during an actual run of a FOND domain and problem, as described in Section 5.2.

5.1 Software used for the implementation
The IMS as a proof of concept is built upon other software, which are called Lydia and Syftmax.
Lydia is used for extracting a DFA from a given LTL𝑓 formula and for checking realizability, and
Syftmax is used for extracting the maximally permissive strategy. More detailed descriptions on
Lydia and Syftmax are given in Section 5.1.1 and 5.1.2.

5.1.1 Lydia

• What can the software do:
– Translate LTL𝑓 /LDL𝑓 to a DFA.
– Do synthesis over an LTL𝑓 /LDL𝑓 formula (retrieve single winning strategy).
– Check for realizability of an LTL𝑓 /LDL𝑓 formula.

• Input:
– Specification of an LTL𝑓 /LDL𝑓 formula.
– Specification of the environment (= inputs) and the agent (= outputs) variables.

• Output:
– A DFA.
– A single winning strategy.
– Realizability for an LTL𝑓 /LDL𝑓 formula (Boolean value).

Lydia5 [8] can translate LTL𝑓 and LDL𝑓 formulas into a DFA, and is also able to synthesize a
winning strategy. The input for Lydia can be either an LTL𝑓 or an LDL𝑓 formula. This formula is
translated into a DFA, which is represented as a BDD. To perform synthesis of an LTL𝑓 formula
(retrieve a winning strategy), it also has to be specified which variables are of the agent and environ-
ment.

5.1.2 SyftMax

• What can the software do:
4Source code for the IMS software, with installation instructions: [31]
5Source for code of Lydia: [35]
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– Synthesize the maximally permissive strategy (the set of all winning strategies). This
consists of both the set of procrastinating moves, and non-procrastinating moves.

• Possible input:
– Specification of an LTL𝑓 /LDL𝑓 formula.
– Specification of the environment (= inputs) and the agent (= outputs) variables.

• Output:
– The maximally permissive strategy, split up as the procrastinating- and

the non-procrastinating strategy.
SyftMax6 [40] builds upon Lydia, and is able to synthesize the maximally permissive strategy.

Just like Lydia, the input for Syftmax can be either an LTL𝑓 or an LDL𝑓 formula, where it is also
specified which variables are of the agent and which are of the environment.

5.2 Usage of the IMS by an agent
Now that we know the requirements for the IMS, what the operational environment is, what infor-
mation goes in and out of the IMS during a run, and how the IMS can keep track of progression for
intentions, we can describe how the IMS is used by an agent during runtime. This is implemented
in an agent simulator which can be customized in various ways, which is displayed in Algorithm 1.

We will stepwise go through this algorithm to explain what happens in each step:
1. A FOND domain and partition file are provided externally, where the domain is provided as an

LTL𝑓 formula. Here, the partition file indicates what are the agent- and environment variables.
The FOND domain is saved in variable 𝜙𝐷, and the partition variables in 𝑝.

2. An initial set of intentions, expressed as LTL𝑓 formulas, is provided by an agent, which is
saved in variable 𝐿.

3. In method ’𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝐴𝑔𝑒𝑛𝑡𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝜙𝐷, 𝐿)’, 𝜙𝐷 and 𝐿 (the FOND domain and initial list of
intentions) are joined into a single formula ’𝜙𝑓 ’, where the formula is composed as specified
in Section 4.6.

4. The resulting formula 𝜙𝑓 and partition file 𝑝 are given as input to Lydia (5.1.1), which returns
a DFA and is saved in variable DFA.

5. Using Lydia, we check if DFA is realizable.
6. If DFA is indeed realizable, we initialize the IMS state 𝐼+, and save variables 𝜙𝐷, 𝐿, and DFA

in 𝐼+.
7. We can now extract the maximally permissive strategy for the agent using Syftmax (5.1.2),

given𝜙𝑓 and 𝑝. This returns both the set of procrastinating- and non-procrastinating strategies.
The sets of procrastinating- and non-procrastinating strategies are then saved in the IMS state.

8. From the DFA, the initial DFA state is extracted. This is set as the current DFA state: 𝐼+.𝑠DFA.
9. The domain is now initialized, and the main loop of the simulation starts. The loop does not

stop, until the agent calls the update operation 𝐼+.ℎ𝑎𝑙𝑡.
6Source for code of Syftmax: [39]
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10. The set of winning moves in the current DFA state is requested using query
𝐼+.𝑔𝑒𝑡𝑊 𝑖𝑛𝑛𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠(), where the current DFA state 𝐼+.𝑠DFA and the entire set of procras-
tinating strategies 𝐼+.𝑝𝑠 are given as input. The BDD for the current DFA state and the BDD
of procrastinating strategies are conjoined, as explained in Section 4.8, returning only the set
of procrastinating strategies which are possible in the current DFA state.

11. The same is done for requesting the non-procrastinating moves, calling query
𝐼+.𝑔𝑒𝑡𝑃 𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠(), giving the current DFA state 𝐼+.𝑠DFA and the entire set of non-
procrastinating strategies 𝐼+.𝑛𝑝𝑠 as input, where the BDD’s for these are conjoined, as ex-
plained in Section 4.8, and return the set of non-procrastinating strategies in the current DFA
state.

12. The agent chooses an action, where in our design this can be selected from either the
procrastinating- or non-procrastinating actions in the current DFA state.

13. Update operation 𝐼+.𝑑𝑜(𝑎) is called, where the chosen agent action 𝑎, the entire DFA 𝐼+.DFA,
and the current DFA state 𝐼+.𝑠DFA are used. The environment chooses a reaction, given the
agent action. The chosen agent- and environment actions form a new domain state, 𝐼+.𝑠, which
is internally used for transitioning the DFA into a new state. For this transition, the transition
function of 𝐼+.DFA is applied to 𝐼+.𝑠 in the current DFA state 𝐼+.𝑠DFA. This alters 𝐼+.𝑠 and
𝐼+.𝑠DFA, which are updated in the IMS state. As already mentioned in the description for the
update operation 𝐼+.𝑑𝑜(𝑎) of Section 3.6 and 4.3, the intentions from intention list 𝐼+.𝐿 are
progressed and updated internally.

14. The simulator checks if the agent wants to perform an update operation. If so, we enter the
switch-statement. If not, the switch-statement is skipped.

15. If the agent wants to perform an update operation, read which operation this is.
16. Enter case ’𝐼+.𝑎𝑑𝑜𝑝𝑡(𝜙, 𝑘)’, which is for attempting to add a new intention, 𝜙, to the intention

list at position 𝑘.
17. 𝐼+.𝑎𝑑𝑜𝑝𝑡(𝜙, 𝑘) is executed. If this returns 𝑇 𝑟𝑢𝑒, new intention 𝜙 is adopted at priority 𝑘 and

𝜙𝑎𝑑𝑜𝑝𝑡𝑒𝑑 is set to 𝑇 𝑟𝑢𝑒. As 𝐼+.𝐿 is updated when a new intention is adopted, 𝐼+.DFA, 𝐼+.𝑠DFA,
𝐼+.𝑤, 𝐼+.𝑝𝑠, and 𝐼+.𝑛𝑝𝑠 are recomputed and replaced in the IMS state, as these have changed
as a result of change in 𝐼+.𝐿. Syftmax is called internally for recomputing 𝐼+.𝑝𝑠 and 𝐼+.𝑛𝑝𝑠.

18. If in the previous step 𝜙𝑎𝑑𝑜𝑝𝑡𝑒𝑑 was set to 𝐹𝑎𝑙𝑠𝑒, we enter an if-statement.
19. 𝐼+.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘) is called, which will return a subset of realizable intentions. The set

difference is taken of 𝐼+.𝐿 and the realizable subset returned by 𝐼+.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘), re-
sulting in the set of unrealizable intentions, i.e. the set of intentions which would have to be
dropped in order to add new intention 𝜙 to 𝐼+.𝐿.

20. Feedback is given to the agent on which set of intentions needs to be dropped in order to add
new intention 𝜙 to 𝐼+.𝐿.

21. Enter case ’𝐼+.𝑑𝑟𝑜𝑝(𝑘)’, where the agent wants to drop the intention at priority 𝑘 from the
intention list, 𝐼+.𝐿.

22. 𝐼+.𝑑𝑟𝑜𝑝(𝑘) is executed, removing the intention at priority 𝑘 from 𝐼+.𝐿. After dropping this
intention, 𝐼+.𝐿, 𝐼+.DFA, 𝐼+.𝑠DFA, 𝐼+.𝑤, 𝐼+.𝑝𝑠, and 𝐼+.𝑛𝑝𝑠 are recomputed and updated in the
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IMS state, as these have changed as a result of change in 𝐼+.𝐿. Syftmax is called internally
for recomputing 𝐼+.𝑝𝑠 and 𝐼+.𝑛𝑝𝑠. Note that here we do not have to check for realizability of
the DFA. Since 𝐼+.𝐿 was already realizable in the previous step, any subset of 𝐼+.𝐿 will also
be realizable.

23. Enter case ’𝐼+.ℎ𝑎𝑙𝑡’
24. Update operation ’𝐼+.ℎ𝑎𝑙𝑡’ is called, and the system’s operation is terminated.
25. We enter the case in which the agent does not give a correct update operation.
26. Continue the loop.
27. Query operation 𝐼+.𝑖𝑠𝐼𝑛𝐹 𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒() is called, which checks if the current DFA state 𝐼+.𝑠DFAis in 𝐼+.𝑤, and if 𝐼+.𝐿 is empty. If this is the case, the query returns 𝑇 𝑟𝑢𝑒. Otherwise, returns

𝐹𝑎𝑙𝑠𝑒.
28. Feedback is given if the current state is indeed a final state.
29. If the agent is in a final state, the agent can decide to call update operation 𝐼+.ℎ𝑎𝑙𝑡.
30. If agent calls update operation 𝐼+.ℎ𝑎𝑙𝑡, the system’s operation is terminated.
31. If the initial DFA in the beginning of the program is not realizable, the main loop for the

program is not started. An else-statement is entered.
32. Feedback is provided to the agent, indicating that the initial DFA is not realizable.

As can be noticed, this proposed usage of the IMS by an agent does not include all query oper-
ations as specified in Section 3.5 and 4.3. This method of usage is to indicate in what manner our
design for the IMS could be used by an agent, for which this happens to also be our manner for im-
plementing the design for the IMS as software. There are several manners for implementing the IMS
in software for an agent to use, although in this research we will only cover our way of implementing.

Now that we have a notion of how the IMS can be used by an agent in order to fulfill all the
intentions an agent might have, we will evaluate the implementation of the IMS on some actual
FOND domains and problems in Section 6.
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Algorithm 1: Usage of the IMS by an agent simulator
1 𝜙𝐷, 𝑝← FOND domain and partition file are provided externally, where the domain is

expressed as an LTL𝑓 formula;
2 𝐿← set the current intention list as the initial list of intentions given by an agent;
3 𝜙𝑓 ← 𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝐴𝑔𝑒𝑛𝑡𝐹𝑜𝑟𝑚𝑢𝑙𝑎(𝜙𝐷, 𝐿, 𝑝);
4 DFA ← Lydia.getDFA(𝜙𝑓 , 𝑝);
5 if Lydia.getRealizability(DFA) == true then
6 𝐼+ ← intializeIMSState(𝜙𝐷, 𝐿,DFA);
7 𝐼+.𝑝𝑠, 𝐼+.𝑚𝑝𝑠← Syftmax.getMaximallyPermissiveStrategy(𝜙𝑓 , 𝑝);
8 𝐼+.𝑠DFA ← 𝐼+.DFA.𝑔𝑒𝑡𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑡𝑎𝑡𝑒();
9 while 𝑡𝑟𝑢𝑒 do

10 𝑝𝑠𝑐𝑢𝑟𝑟 ← 𝐼+.𝑔𝑒𝑡𝑊 𝑖𝑛𝑛𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠();
11 𝑛𝑝𝑠𝑐𝑢𝑟𝑟 ← 𝐼+.𝑔𝑒𝑡𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑛𝑔𝐴𝑐𝑡𝑖𝑜𝑛𝑠();
12 a ← pickAgentMove(𝑝𝑠𝑐𝑢𝑟𝑟, 𝑛𝑝𝑠𝑐𝑢𝑟𝑟);
13 𝐼+.𝑠, 𝐼+.𝐿, 𝐼+.𝑠DFA ← 𝐼+.𝑑𝑜(𝑎);
14 while readUpdateOperation() != empty do
15 switch readUpdateOperation() do
16 case 𝐼+.𝑎𝑑𝑜𝑝𝑡(𝜙, 𝑘) do
17 𝜙𝑎𝑑𝑜𝑝𝑡𝑒𝑑 , 𝐼+.𝐿, 𝐼+.DFA, 𝐼+.𝑠DFA, 𝐼+.𝑤, 𝐼+.𝑝𝑠, 𝐼+.𝑛𝑝𝑠← 𝐼+.𝑎𝑑𝑜𝑝𝑡(𝜙, 𝑘);
18 if 𝜙𝑎𝑑𝑜𝑝𝑡𝑒𝑑 == False then
19 𝐿𝑢𝑛𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒 ← (𝐼+.𝐿⧵ 𝐼+.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘)) ;
20 print("drop these to make new intention realizable: ", 𝐿𝑢𝑛𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒);
21 case 𝐼+.𝑑𝑟𝑜𝑝(𝑘) do
22 𝐼+.𝐿, 𝐼+.DFA, 𝐼+.𝑠DFA, 𝐼+.𝑤, 𝐼+.𝑝𝑠, 𝐼+.𝑛𝑝𝑠 ← 𝐼+.𝑑𝑟𝑜𝑝(𝑘);
23 case 𝐼+.ℎ𝑎𝑙𝑡 do
24 𝐼+.ℎ𝑎𝑙𝑡;
25 otherwise do
26 continue;
27 if 𝐼+.𝑖𝑠𝐼𝑛𝐹 𝑖𝑛𝑎𝑙𝑆𝑡𝑎𝑡𝑒() then
28 print("final state reached. stop program?");
29 if readAgentUpdate() == halt then
30 𝐼+.ℎ𝑎𝑙𝑡;
31 else
32 print("not realizable");
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6 Evaluation of the IMS implementation
In this Section, we evaluate the actual implementation of the IMS, described in Section 5, on a set
of benchmark FOND domains and problems. For each domain, it is described if the IMS operates
according to the IMS specification, and to which extend the IMS is able to handle the FOND domains
when specified in LTL𝑓 .

6.1 Translation of FOND domains from PDDL into LTL𝑓

Initially, a subgoal for this research was to directly translate a FOND domain, expressed in PDDL,
into LTL𝑓 . This has proven to be harder than expected, as PDDL is expressed in a different manner as
opposed to LTL𝑓 . In Section 2.5 it is already mentioned how in PDDL the frame axioms, i.e. what
remains the same after an action is executed, are not specified. This deviates from expressions in
LTL𝑓 , as here both the effects and frame axioms have to be expressed. Besides of expressing frame
axioms, PDDL also differs from LTL𝑓 as to where PDDL is a relational language, but it is assumed
that the object domain is finite, for which the predicates and operators can be grounded in order to
obtain a propositional expression. On the contrary, LTL𝑓 is already propositional by definition.

In [11] it is explained how LTL𝑓 expressions can be translated into first-order logic. Although
PDDL is not fully based upon first-order logic, PDDL and first-order logic are both relational lan-
guages, for which some of this knowledge can be applied when translating between LTL𝑓 and PDDL.
In [17], a more concrete method is provided for translating among LTL𝑓 and PDDL.

Since the frame axioms are not included in PDDL, and the grounding of predicates and operators
is not a direct translation from PDDL into LTL𝑓 , translating PDDL directly into LTL𝑓 appears to
be a greater challenge than anticipated. Several approaches and softwares have been investigated in
order to directly translate PDDL into LTL𝑓 , however this has proven to be more challenging than
expected. Considering the scope and duration of this research, a decision has been made to generate
the individual LTL𝑓 domain specifications using Python scripts7, which we developed ourselves.
These scripts are made to be adjustable, such that domains can be easily adjusted in size. The scripts
have been written for generating the Triangle-Tireworld and slippery world domain, as these are too
labour intensive and repetitive to write out by hand. The decision tree domain is compact enough to
write out by hand, so no script for generating this domain has been written.

6.1.1 Comparison of specifying a FOND domain in PDDL and LTL𝑓
As already mentioned in Section 2.5, PDDL is expressed as a domain file using relational language,
and a problem file as an object domain, where expressions are not grounded yet, i.e. no rules/effects
have been applied directly to any propositions yet. For example, if we take a relational expres-
sion, possibly expressed in PDDL, 𝑚𝑜𝑣𝑒(𝑥1, 𝑥2) where we have the object constants 𝐴𝑚𝑠𝑡𝑒𝑟𝑑𝑎𝑚
and 𝑅𝑜𝑚𝑒, we can ground formula 𝑚𝑜𝑣𝑒(𝑥1, 𝑥2) using the given object constants. This results in
𝑚𝑜𝑣𝑒(𝐴𝑚𝑠𝑡𝑒𝑟𝑑𝑎𝑚,𝑅𝑜𝑚𝑒), and 𝑚𝑜𝑣𝑒(𝑅𝑜𝑚𝑒,𝐴𝑚𝑠𝑡𝑒𝑟𝑑𝑎𝑚). This deviates from LTL𝑓 , where LTL𝑓already applies all rules/effects to all propositions, resulting in a grounded expression from the start.
Since PDDL is not written as a grounded expression, it can be represented significantly more compact
as opposed to an equivalent LTL𝑓 expression.

In the problem-file for PDDL, the agent- and environment variables, initial state, and goal state
are defined which, as can be seen in the example in Section 6.9.2, is also rather compact compared
to LTL𝑓 expressions. Since for PDDL the domain always remains the same throughout runs, only
the problem file needs to be altered in order to change a problem scenario.

7Source of Python scripts for domain generation: [31]
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As LTL𝑓 is based on propositional logic, the rules/effects of a domain are directly applied to
all agent- and environment variables, i.e. atomic propositions. Because of this, whenever a domain
is scaled up in terms of atomic propositions, the LTL𝑓 specification becomes significantly larger
compared to an equivalent FOND domain which is expressed in PDDL.

When comparing the PDDL and LTL𝑓 specification written out in Section 6.9.2 and 6.9.3, it can
be seen that the LTL𝑓 expression is significantly larger. However, as Lydia and Syftmax are not able
to process PDDL specifications, this research is limited to using LTL𝑓 specifications for expressing
domains and problem scenarios.

6.2 Benchmark domains and problems
As described in Section 6.1, converting a PDDL specification of a FOND domain into an LTL𝑓 spec-
ification brings certain complications. As each agent- and environment variable has to be grounded
when converting from PDDL into LTL𝑓 , the LTL𝑓 specification becomes significantly larger. Be-
sides this, also the frame axiom is not included within a PDDL specification, as we have already
described in Section 2.5.

Initially, we planned on testing the IMS on several benchmark FOND planning domains used in
related research [38, 29] and intention progression competitions8, for which the domains are provided
in PDDL. However as already mentioned, during our research we have discovered that translating
PDDL into LTL𝑓 comes with some complications. Our plan was to test the IMS on the Triangle-
Tireworld domain [38, 29], the Miconic-N domain, and the Logistics domain, as are used in the
International Intention Progression Competition. After the Triangle-Tireworld already caused diffi-
culty for translating into LTL𝑓 and using this within our software, we left the other FOND domains
expressed in PDDL for usage in potential future work, and for now developed FOND domains which
could be expressed in LTL𝑓 more compactly.

For one of the most well-known FOND domain, the Triangle-Tireworld, only a handwritten log
is given by the IMS, as the LTL𝑓 specification for this became too long to be processed by Lydia
and Syftmax. After translating the PDDL specification for the Triangle-Tireworld into LTL𝑓 , it
quickly became clear that this is not an efficient domain for testing in LTL𝑓 , as grounding the PDDL
specification to be expressed as propositional logic increases the size of the expression to a degree in
which it is not computationally efficient anymore for evaluating the IMS as a proof of concept, as the
proof of concept is not able to process the resulting LTL𝑓 formula anymore, given our computational
resources. In Section 6.3 a specification is given for which hard- and software has been used for
developing and running the IMS as a proof of concept.

After encountering the complications for translating the Triangle-Tireworld domain into LTL𝑓and running this on our hard- and software, we have decided to not translate and use any other
benchmark FOND domains from PDDL into LTL𝑓 , as these would most likely result in similar
complications as we have encountered with the Triangle-Tireworld domain. We have been developing
two new types of FOND domains, called the decision tree domain (4.5.1) and the slippery world
domain (6.8.1), which can be expressed rather compactly in LTL𝑓 . These domains deal to some
degree with compressing the length of an LTL𝑓 specification.

In more detail regarding the slippery world domain, an agent is placed by the environment in a
singular row and column, for which the domain consists out of several rows and columns. By applying
mutual exclusion on the rows and columns, there is no need for a separate environment variable
for each individual location. In the scenario where there would be four rows and four columns,
normally this would be expressed by having 16 individual locations, as is done in the Triangle-
Tireworld domain. However, if we use a combination of a single row and a single column, we get

8Website for the Intention Progression Competition (IPC): [5]
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a grid which is expressed as a cartesian product, in which we can specify coordinates for the agent
location. Instead of having 16 individual location variables, we can now express the locations by
only having eight environment variables in total, which in turn compresses the LTL𝑓 specification
significantly. This has proven to work rather well for expressing a domain in LTL𝑓 , for which it has
been included as a domain for evaluating the IMS.

Secondly, the decision tree domain uses the most intuitive and basic characteristics possible
within a FOND domain, for which it can be expressed rather compact as an LTL𝑓 expression, as
shown in Section 4.5.2. This also makes for an easily explainable domain for testing the IMS on,
for which this can be considered as a baseline FOND domain for evaluating the IMS as a proof of
concept.

Both the decision tree domain and the slippery world domain have been tested for usage within
the IMS as a proof of concept, obtaining a DFA and maximally permissive strategy by Lydia and
Syftmax, for which these domains were able to be used without any complications. For this rea-
son, we have decided to include these FOND domains for evaluating the IMS, as it could then be
demonstrated that the IMS operates as required in practice.

In summary, for evaluating the IMS as a proof of concept, the following FOND domains have
been used: 1). decision tree domain (4.5.1), 2). slippery world domain (6.8.1), and 3). Triangle-
Tireworld domain (6.9.1). Each domain provides a source with a detailed description. These domains
have been chosen since they are either easy to comprehend, or are well known within the field of
planning, as the goal for this research is to demonstrate how an IMS can maintain consistency among
a changing set of temporally extended goals within a FOND domain.

6.3 Hard- and software specification for developing and running the IMS
The hard- and software specifications in which the IMS has been developed and ran is as follows:

• Operating system + type: Ubuntu 20.04.3 LTS, 64-bit (ran in Oracle VM VirtualBox)
• RAM: 10.5 GB
• Processor: AMD Ryzen 7 5800h with radeon graphics x 8
• Graphics: llvmpipe (LLVM 15.07, 128 bits)
• Disk capacity: 60.5 GB

6.4 Design of benchmark problems
To evaluate our proof of concept, the problems provided in PDDL-format would have to be altered.
The original PDDL-problems only provide an initial set of intentions, which means it does not add
new intentions to the agent’s list of intentions as it progresses.

In our research, the agent should be able to adopt and drop intentions over time, which is why
we cannot directly use the PDDL domain- and problem specifications as they are provided for usage
in planning competitions. As mentioned in Section 6.2, the translation of PDDL specifications into
LTL𝑓 comes with several complications, which is why we have chosen to use a FOND domain which
can be expressed more compactly in LTL𝑓 . To demonstrate the extend to which the IMS can operate,
several temporally extended goals are added during the problem scenario, demonstrating to which
extend the IMS is able to handle the adding and dropping of intentions.

As input, the proof of concept system will be provided with an LTL𝑓 specification of a FOND
domain, for which intentions can be added and dropped by the agent during a run. The intentions
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used in the scenarios are represented as LTL𝑓 formulas. Progression of intentions is demonstrated
in the simulations, where the intentions can be expressed as any type of LTL𝑓 expression.

Lastly, to demonstrate the IMS functions exactly as intended, we give a simulation run for the
Triangle-Tireworld domain in Section A, which corresponds exactly to the initial example problem
described in Section 3.1 which the design for the IMS is based on.

6.5 Development of benchmark domains and problems
As already mentioned in the introduction of Section 6, Python scripts have been written in order
to generate the FOND domains as LTL𝑓 specifications, for which the domains can be altered to be
scaled up or down. As the problem scenarios change during a run, not all which the IMS needs to
be tested on can be specified in the LTL𝑓 specification before a run starts. During a run, the agent
can add and drop intentions, by which the initial LTL𝑓 specification is altered. The initial LTL𝑓specification is only used for starting the run.

Since the problem scenarios which the IMS should be able to handle cannot be fully specified
in LTL𝑓 before the run starts, this will be handled after a run starts. The agent can add and drop
intentions, for which the intention can be any LTL𝑓 specification. In these problem scenarios, the
IMS will be evaluated on all query- and update operations, as is specified in Section 3.5 and 3.6.

6.6 Simulation of a run
A simulation can be ran either automatically or manually. Whenever a simulation is ran automatically,
actions and reactions are arbitrarily picked by the agent and environment. In a manual simulation, at
each time step a set of actions and reactions is given, where a user can select what action and reaction
should be played. In this way, specific scenarios can be executed in order to cover edge cases, which
is what we have used for evaluating the IMS as a proof of concept.

6.7 Decision tree domain
We will evaluate the IMS using a simulation of the decision tree domain, for which an explanation
has been provided earlier in Section 4.5.1. For simulating the decision tree domain, we compose a
formula for extracting good agent moves, described in Section 4.6, and a formula for extracting good
environment moves, as described in Section 4.7. These formulas are composed using the components
described in Section 4.5.2. In this context, we will use a decision tree with three layers, which results
in a total of six states, as visually displayed in Figure 7. The decision tree domain is meant as a
simple example of a FOND domain, which can easily show the basic functionality of the IMS as a
proof of concept.

6.7.1 Representation of the decision tree domain in LTL𝑓
In Section 4.5.2, a specification for the decision tree domain in LTL𝑓 has already been provided. We
will use this specification for simulating a scenario in the decision tree domain, which is described
in more detail in Section 6.7.2.

6.7.2 Simulation of the decision tree domain

Here we see the log output when the IMS is operating in the decision tree domain. In this run the
IMS demonstrates the queries for dropping and adopting, where also the scenario is shown in which
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a new intention is not realizable in conjunction with the current intention list. The output below is
directly copied from the IMS terminal output, where the blue text is added to indicate what is hap-
pening during each step in the program, and what is user input.

Log of the terminal output:
(an initial list of intentions is provided, for which realizabilty is checked)
initial intentions:
F(s5)

formula agent: (G((l | r) & !(l & r))) & (((s1) & G(((s1 | s2 |
s3 | s4 | s5 | s6) & !(s1 & s2) & !(s1 & s3) & !(s1 & s4) & !(s1 & s5)
& !(s1 & s6) & !(s2 & s3) & !(s2 & s4) & !(s2 & s5) & !(s2 & s6) & !(s3
& s4) & !(s3 & s5) & !(s3 & s6) & !(s4 & s5) & !(s4 & s6) & !(s5 & s6)
& (s1 -> X(l -> (s2 | s3))) & (s1 -> X(r -> (s2 | s3))) & (s2 -> X(l
-> s4)) & (s2 -> X(r -> s5)) & (s3 -> X(l -> s5)) & (s3 -> X(r -> s6))
& (s4 -> X((l | r) -> s4)) & (s5 -> X((l | r) -> s5)) & (s6 -> X((l
| r) -> s6))))) -> ((G((tt))) & (F(s5) )))

formula environment: ((s1) & ((G((l | r) & !(l & r))) -> (G(((s1
| s2 | s3 | s4 | s5 | s6) & !(s1 & s2) & !(s1 & s3) & !(s1 & s4) & !(s1
& s5) & !(s1 & s6) & !(s2 & s3) & !(s2 & s4) & !(s2 & s5) & !(s2 & s6)
& !(s3 & s4) & !(s3 & s5) & !(s3 & s6) & !(s4 & s5) & !(s4 & s6) & !(s5
& s6) & (s1 -> X(l -> (s2 | s3))) & (s1 -> X(r -> (s2 | s3))) & (s2
-> X(l -> s4)) & (s2 -> X(r -> s5)) & (s3 -> X(l -> s5)) & (s3 -> X(r
-> s6)) & (s4 -> X((l | r) -> s4)) & (s5 -> X((l | r) -> s5)) & (s6
-> X((l | r) -> s6)))))))

The environment formula is realizable
The agent formula is realizable
--------------- NEW LOOP STARTS HERE! -----------------

(agent chooses if it wants to retrieve the procrastinating- or non-procrastinating moves for the
current state)

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 2

(this is a ’dummy’ move for the agent which has no effect, as the agent starts, and the environment
reacts. However, in the first move the environment needs to initialize, since otherwise there is no
effect for the agent action)

possible agent moves in current state:
r
l

pick an action, using index (nr. from 1 to 2): 1
move selected: r

(only one option is given here for the environment: the initial environment value as written in
the LTL𝑓 specification)
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possible environment moves in current state:
s1

random environment move picked: s1

current env vars set to true:
s1

(the agent is now located in environment state s1)

progressed intentions:
before: Fs5 -> after: Fs5

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 2

(from here on, the first effective move is executed by the agent)
possible agent moves in current state:
r
l

pick an action, using index (nr. from 1 to 2): 2
move selected: l

(the environment can pick either of two non-deterministic effects)
possible environment moves in current state:
s3
s2

random environment move picked: s3

current env vars set to true:
s3

(the agent is now located in environment state s3)



6.7 Decision tree domain 53

progressed intentions:
before: Fs5 -> after: Fs5

call update operation? [y/n]: y

would you like to add an intention [1], drop [2] an intention, or
stop the entire system [3]?: 1

give new intention: F(s6)
set priority using an index (position in the intention list. 0 is

highest priority): 0
trying to add new intention ’F(s6)’ to intention list:

(the agent tries to add intention ’F(s6)’ to the intention list. However, as the agent moves down
the tree and cannot eventually reach both states, this is not realizable)

new goal: Fs5 & F(s6)
adding new intention is not realizable.

(adding ’F(s6)’ is currently not realizable, and the intention list remains as it was)

would you like to revise the current intentions in order to add the
new intention? [y/n]: y
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binary intention list dropout: 00
the following intentions are tested for realizability: F(s6) & Fs5
The formula is not realizable with these intentions.

binary intention list dropout: 01
the following intentions are tested for realizability: F(s6)
Formula is realizable if the following intentions are dropped:
Fs5
call update operation? [y/n]: y

would you like to add an intention [1], drop [2] an intention, or
stop the entire system [3]?: 2

which intention should be dropped from the list?: (index 1 until
1)

options:
1 : Fs5
index chosen: 1
binary intention list dropout:
new formula agent: (G((l | r) & !(l & r))) & (((s3) & G(((s1 | s2

| s3 | s4 | s5 | s6) & !(s1 & s2) & !(s1 & s3) & !(s1 & s4) & !(s1 &
s5) & !(s1 & s6) & !(s2 & s3) & !(s2 & s4) & !(s2 & s5) & !(s2 & s6)
& !(s3 & s4) & !(s3 & s5) & !(s3 & s6) & !(s4 & s5) & !(s4 & s6) & !(s5
& s6) & (s1 -> X(l -> (s2 | s3))) & (s1 -> X(r -> (s2 | s3))) & (s2
-> X(l -> s4)) & (s2 -> X(r -> s5)) & (s3 -> X(l -> s5)) & (s3 -> X(r
-> s6)) & (s4 -> X((l | r) -> s4)) & (s5 -> X((l | r) -> s5)) & (s6
-> X((l | r) -> s6))))) -> ((G((tt))) & (tt)))

(intention ’F(s5)’ is dropped, resulting in an empty intention list)

call update operation? [y/n]: y

would you like to add an intention [1], drop [2] an intention, or
stop the entire system [3]?: 1

give new intention: F(s6)
set priority using an index (position in the intention list. 0 is

highest priority): 0
trying to add new intention ’F(s6)’ to intention list:
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new goal: F(s6)
adding new intention is realizable! new intention is adopted and

DFA is recomputed
new formula agent: (G((l | r) & !(l & r))) & (((s3) & G(((s1 | s2

| s3 | s4 | s5 | s6) & !(s1 & s2) & !(s1 & s3) & !(s1 & s4) & !(s1 &
s5) & !(s1 & s6) & !(s2 & s3) & !(s2 & s4) & !(s2 & s5) & !(s2 & s6)
& !(s3 & s4) & !(s3 & s5) & !(s3 & s6) & !(s4 & s5) & !(s4 & s6) & !(s5
& s6) & (s1 -> X(l -> (s2 | s3))) & (s1 -> X(r -> (s2 | s3))) & (s2
-> X(l -> s4)) & (s2 -> X(r -> s5)) & (s3 -> X(l -> s5)) & (s3 -> X(r
-> s6)) & (s4 -> X((l | r) -> s4)) & (s5 -> X((l | r) -> s5)) & (s6
-> X((l | r) -> s6))))) -> ((G((tt))) & (F(s6))))

(intention ’F(s6)’ has been added to the intention list)

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 2

possible agent moves in current state:
r

pick an action, using index (nr. from 1 to 1): 1
move selected: r

possible environment moves in current state:
s6

random environment move picked: s6

current env vars set to true:
s6

(the agent is now located in environment state s6: a final state of the DFA. All intentions of the
intention list have been fulfilled)

progressed intentions:
before: Fs6 -> after: 1
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intention ’Fs6’ has been fulfilled and is removed from the intention
list

final state reached!

(agent calls update operation ’halt’ to stop the program)
stop program? [y/n]: y
program stopped

Process finished with exit code 0

6.7.3 Evaluation of IMS in the decision tree domain

In Section 6.7.2 we display the log output for a run in the decision tree domain. Here, we test to
which extent the IMS is able to maintain consistency in terms of realizability of intentions, where
priority of the intentions and recalculation of the maximally permissive strategy is taken into account
by the IMS. Important here is to note that it does not matter in this scenario if the agent chooses
either the procrastinating- or the non-procrastinating actions, as in this domain these sets of actions
are equivalent, as it is not possible to procrastinate. This evaluation is a basic demonstration of
how the IMS operates during a run, using the algorithm described in Algorithm 1. In this domain,
no complicated LTL𝑓 intentions are provided yet. However, all query- and update operations as
described in Section 3.5 and 3.6 have been used in this problem scenario.

6.8 Slippery world domain
In Section 6.8.1 a description is provided of the ’slippery world’ FOND domain. As already men-
tioned in Section 6.2, this domain is designed by ourselves, which is used to express a FOND domain
in LTL𝑓 as compact as possible. The domain is easily scalable, without causing the LTL𝑓 formula
to increase significantly in size, as is the case when the Triangle-Tireworld is expressed in LTL𝑓 .
As opposed to the decision tree domain and the Triangle-Tireworld domain, in the slippery world
domain an agent can always go back to a previous state, for which we can demonstrate the adding
and dropping of temporally extended goals by the IMS in more detail. The individual components
used for composing an LTL𝑓 formula for the slippery world domain are shown in Section 6.8.2.

6.8.1 Description of the slippery world domain

In Figure 8 we see a visual representation of the slippery world domain: a domain which is designed
by ourselves. In this Figure we see a grid, consisting of several rows and columns, where in this
example we have a total of four rows and four columns. The agent is restricted to performing the
actions of going up, down, left, or right. The environment is restricted by having mutual exclusion
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on rows and columns, meaning that the environment can only place the agent in one row and one
column at a time. Whenever the agent performs an action, e.g. ’right’, in environment state ’r1’ and
’c1’, the environment can react with a non-deterministic effect by either moving the agent one, or
two positions in the direction indicated by the agent. This would result in the environment placing
the agent in either environment state ’r1’ and ’c2’, or environment state ’r1’ and ’c3’. This works
similar for all other directions, where if the agent would perform action ’down’ in environment state
’r1’ and ’c1’, the environment reacts by placing the agent in either ’r2’ and ’c1’, or in ’r3’ and ’c1’.

Figure 8: Slippery world domain

6.8.2 Representation of the slippery world domain in LTL𝑓
For describing the slippery world domain in LTL𝑓 , we will break up the domain into components,
as described in Section 4.5:

Agent- and environment variables:

• agent variables : {𝑙, 𝑟, 𝑢, 𝑑}
• environment variables : {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑐1, 𝑐2, 𝑐3, 𝑐4}
Where agent variables 𝑙, 𝑟, 𝑢, and 𝑑 imply action ’left’, ’right’, ’up’, and ’down’, respectively.

For the environment variables, 𝑟1 until 𝑟4 specifies the row variables, while 𝑐1 until 𝑐4 specifies the
column variables.

Domain specification:

• 𝜙𝑎𝑔 𝑢𝑛𝑖𝑞 𝑎𝑐𝑡 : (𝑙 ∨ 𝑟 ∨ 𝑢 ∨ 𝑑) ∧ ¬(𝑙 ∧ 𝑟) ∧ ¬(𝑙 ∧ 𝑢) ∧ ¬(𝑙 ∧ 𝑑) ∧ ¬(𝑟 ∧ 𝑢) ∧ ¬(𝑟 ∧ 𝑑) ∧ ¬(𝑢 ∧ 𝑑)

• 𝜙𝑒𝑛𝑣 𝑡𝑟𝑎𝑛𝑠 :
– mutual exclusion of environment variables :
((𝑟1∨𝑟2∨𝑟3∨𝑟4)∧¬(𝑟1∧𝑟2)∧¬(𝑟1∧𝑟3)∧¬(𝑟1∧𝑟4)∧¬(𝑟2∧𝑟3)∧¬(𝑟2∧𝑟4)∧¬(𝑟3∧𝑟4))∧
((𝑐1∨𝑐2∨𝑐3∨𝑐4)∧¬(𝑐1∧𝑐2)∧¬(𝑐1∧𝑐3)∧¬(𝑐1∧𝑐4)∧¬(𝑐2∧𝑐3)∧¬(𝑐2∧𝑐4)∧¬(𝑐3∧𝑐4))
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– environment reactions :
(𝑐2 → ○(𝑙 → 𝑐1))∧(𝑐3 → ○(𝑙 → (𝑐2∨𝑐1)))∧(𝑐4 → ○(𝑙 → (𝑐3∨𝑐2)))∧(𝑐1 → ○(𝑟→
(𝑐2∨ 𝑐3)))∧ (𝑐2 → ○(𝑟→ (𝑐3∨ 𝑐4)))∧ (𝑐3 → ○(𝑟→ 𝑐4))∧ (𝑟2 → ○(𝑢 → 𝑟1))∧ (𝑟3 →
○(𝑢 → (𝑟2 ∨ 𝑟1))) ∧ (𝑟4 → ○(𝑢 → (𝑟3 ∨ 𝑟2))) ∧ (𝑟1 → ○(𝑑 → (𝑟2 ∨ 𝑟3))) ∧ (𝑟2 →
○(𝑑 → (𝑟3 ∨ 𝑟4))) ∧ (𝑟3 → ○(𝑑 → 𝑟4))

– frame :
(𝑐1 → ○(𝑢 → 𝑐1)) ∧ (𝑐1 → ○(𝑑 → 𝑐1)) ∧ (𝑐2 → ○(𝑢 → 𝑐2)) ∧ (𝑐2 → ○(𝑑 →
𝑐2)) ∧ (𝑐3 → ○(𝑢 → 𝑐3)) ∧ (𝑐3 → ○(𝑑 → 𝑐3)) ∧ (𝑐4 → ○(𝑢 → 𝑐4)) ∧ (𝑐4 → ○(𝑑 →
𝑐4)) ∧ (𝑟1 → ○(𝑙 → 𝑟1)) ∧ (𝑟1 → ○(𝑟 → 𝑟1)) ∧ (𝑟2 → ○(𝑙 → 𝑟2)) ∧ (𝑟2 → ○(𝑟 →
𝑟2)) ∧ (𝑟3 → ○(𝑙 → 𝑟3)) ∧ (𝑟3 → ○(𝑟→ 𝑟3)) ∧ (𝑟4 → ○(𝑙 → 𝑟4)) ∧ (𝑟4 → ○(𝑟→ 𝑟4))

• 𝜙𝑎𝑔 𝑎𝑐𝑡 𝑝𝑟𝑒𝑐 : (𝑐1 → ○(¬𝑙)) ∧ (𝑐4 → ○(¬𝑟)) ∧ (𝑟1 → ○(¬𝑢)) ∧ (𝑟4 → ○(¬𝑑))

Problem specification:

• 𝜙𝑒𝑛𝑣 𝑖𝑛𝑖𝑡 : 𝑟1 ∧ 𝑐1
• 𝜙𝑔𝑜𝑎𝑙 : ◊(𝑟4 ∧ 𝑐4)

6.8.3 Simulation of the slippery world domain (scenario 1)

For this simulation, the log outputs have been taken directly from the software for the IMS, where
the blue text is added to indicate what is happening during each step in the program, and what is user
input. In this simulation it is demonstrated how the IMS handles cases where a new intention can
currently not be added, where the intention list is revised for checking which intentions should be
dropped to add this new intention. Besides this, it is demonstrated how the IMS handles the dropping
of intentions, and how intentions are progressed during a run.

Log of the terminal output:
(initial list of intentions is retrieved)
initial intentions:
F(r4 & c4)

formula agent: (G((l | r | u | d) & !(l & r) & !(l & u) & !(l &
d) & !(r & u) & !(r & d) & !(u & d))) & (((r1 & c1) & G(((r1 | r2 |
r3 | r4) & !(r1 & r2) & !(r1 & r3) & !(r1 & r4) & !(r2 & r3) & !(r2
& r4) & !(r3 & r4)) & ((c1 | c2 | c3 | c4) & !(c1 & c2) & !(c1 & c3)
& !(c1 & c4) & !(c2 & c3) & !(c2 & c4) & !(c3 & c4)) & ((c2 -> X(l ->
c1)) & (c3 -> X(l -> (c2 | c1))) & (c4 -> X(l -> (c3 | c2))) & (c1 ->
X(r -> (c2 | c3))) & (c2 -> X(r -> (c3 | c4))) & (c3 -> X(r -> c4))
& (r2 -> X(u -> r1)) & (r3 -> X(u -> (r2 | r1))) & (r4 -> X(u -> (r3
| r2))) & (r1 -> X(d -> (r2 | r3))) & (r2 -> X(d -> (r3 | r4))) & (r3
-> X(d -> r4)) & (c1 -> X(u -> c1)) & (c1 -> X(d -> c1)) & (c2 -> X(u
-> c2)) & (c2 -> X(d -> c2)) & (c3 -> X(u -> c3)) & (c3 -> X(d -> c3))
& (c4 -> X(u -> c4)) & (c4 -> X(d -> c4)) & (r1 -> X(l -> r1)) & (r1
-> X(r -> r1)) & (r2 -> X(l -> r2)) & (r2 -> X(r -> r2)) & (r3 -> X(l
-> r3)) & (r3 -> X(r -> r3)) & (r4 -> X(l -> r4)) & (r4 -> X(r -> r4)))))
-> ((G((X(c1 | !c1)) -> ((c1 -> X(!l)) & (c4 -> X(!r)) & (r1 -> X(!u))
& (r4 -> X(!d))))) & (F(r4 & c4) )))
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formula environment: ((r1 & c1) & ((G((l | r | u | d) & !(l & r)
& !(l & u) & !(l & d) & !(r & u) & !(r & d) & !(u & d))) -> (G(((r1
| r2 | r3 | r4) & !(r1 & r2) & !(r1 & r3) & !(r1 & r4) & !(r2 & r3)
& !(r2 & r4) & !(r3 & r4)) & ((c1 | c2 | c3 | c4) & !(c1 & c2) & !(c1
& c3) & !(c1 & c4) & !(c2 & c3) & !(c2 & c4) & !(c3 & c4)) & ((c2 ->
X(l -> c1)) & (c3 -> X(l -> (c2 | c1))) & (c4 -> X(l -> (c3 | c2)))
& (c1 -> X(r -> (c2 | c3))) & (c2 -> X(r -> (c3 | c4))) & (c3 -> X(r
-> c4)) & (r2 -> X(u -> r1)) & (r3 -> X(u -> (r2 | r1))) & (r4 -> X(u
-> (r3 | r2))) & (r1 -> X(d -> (r2 | r3))) & (r2 -> X(d -> (r3 | r4)))
& (r3 -> X(d -> r4)) & (c1 -> X(u -> c1)) & (c1 -> X(d -> c1)) & (c2
-> X(u -> c2)) & (c2 -> X(d -> c2)) & (c3 -> X(u -> c3)) & (c3 -> X(d
-> c3)) & (c4 -> X(u -> c4)) & (c4 -> X(d -> c4)) & (r1 -> X(l -> r1))
& (r1 -> X(r -> r1)) & (r2 -> X(l -> r2)) & (r2 -> X(r -> r2)) & (r3
-> X(l -> r3)) & (r3 -> X(r -> r3)) & (r4 -> X(l -> r4)) & (r4 -> X(r
-> r4)))))))

The environment formula is realizable
The agent formula is realizable
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
d
u
r
l

(this is a dummy move for the agent, which has no effect, as the environment first needs to ini-
tialize)

pick an action, using index (nr. from 1 to 4): 3
move selected: r

(the environment has one option: initializing according to the LTL𝑓 specification)
possible environment moves in current state:
r1 & c1

random environment move picked: r1 & c1

current env vars set to true:
r1
c1

(intentions remain unchanged)
progressed intentions:
before: F(c4 & r4) -> after: F(c4 & r4)
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call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

(agent is now located in world state r1, c1. The domain looks as follows:)

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
d
r

(first real move of the agent is picked)
pick an action, using index (nr. from 1 to 2): 2
move selected: r

(environment can pick any of the two non-deterministic effects)
possible environment moves in current state:
r1 & c3
r1 & c2

random environment move picked: r1 & c2

current env vars set to true:
r1
c2

progressed intentions:
before: F(c4 & r4) -> after: F(c4 & r4)

(agent calls for an update operation)
call update operation? [y/n]: y

would you like to add an intention [1], drop [2] an intention, or
stop the entire system [3]?: 1
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(agent attempts to add a new intention ’G!(c1)’ at priority 0, the highest priority. the intention
specifies that the agent should never enter column 1)

give new intention: G(!c1)
set priority using an index (position in the intention list. 0 is

highest priority): 0
trying to add new intention ’G(!c1)’ to intention list:

(new intention is realizable and is adopted into the intention list)
new goal: F(c4 & r4) & G(!c1)
adding new intention is realizable! new intention is adopted and

DFA is recomputed
new formula agent: (not outputted here, as formula is too long)
call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

(agent is located in world state r1, c2)
get procrastinating (index 1) or non-procrastinating moves (index

2)? [1 or 2]: 1
possible agent moves in current state:
d
r
l

pick an action, using index (nr. from 1 to 3): 1
move selected: d

possible environment moves in current state:
r3 & c2
r2 & c2

random environment move picked: r3 & c2

current env vars set to true:
r3
c2

(intentions remain unchanged)
progressed intentions:
before: G!c1 -> after: G!c1
before: F(c4 & r4) -> after: F(c4 & r4)

call update operation? [y/n]: y

(agent attempts to add a new intention)
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would you like to add an intention [1], drop [2] an intention, or
stop the entire system [3]?: 1

(agent tries to add intention ’F(r4 & c1 & XF(r1 & c1)’ at the highest priority)
give new intention: F(r4 & c1 & XF(r1 & c1))
set priority using an index (position in the intention list. 0 is

highest priority): 0
trying to add new intention ’F(r4 & c1 & XF(r1 & c1))’ to intention

list:

(adding the new intention is not realizable)
new goal: F(c4 & r4) & G!c1 & F(r4 & c1 & XF(r1 & c1))
adding new intention is not realizable.

(agent wants to revise the intentions, which will return which intentions from the intention list
would have to be dropped to add the new intention)

would you like to revise the current intentions in order to add the
new intention? [y/n]: y

binary intention list dropout: 000
the following intentions are tested for realizability: F(r4 & c1

& XF(r1 & c1)) & G!c1 & F(c4 & r4)
The formula is not realizable with these intentions.

binary intention list dropout: 001
the following intentions are tested for realizability: F(r4 & c1

& XF(r1 & c1)) & G!c1
The formula is not realizable with these intentions.

(IMS returns that intention ’G!c1’ has to be dropped in order to add intention ’F(r4 & c1 & XF(r1
& c1))’)

binary intention list dropout: 010
the following intentions are tested for realizability: F(r4 & c1

& XF(r1 & c1)) & F(c4 & r4)
Formula is realizable if the following intentions are dropped:
G!c1
call update operation? [y/n]: y

would you like to add an intention [1], drop [2] an intention, or
stop the entire system [3]?: 2

(agent drops intention ’G!c1’)
which intention should be dropped from the list?: (index 1 until

2)
options:
1 : G!c1
2 : F(c4 & r4)
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index chosen: 1

new formula agent: (not outputted here, as formula is too long)
call update operation? [y/n]: y

would you like to add an intention [1], drop [2] an intention, or
stop the entire system [3]?: 1

(agent attempts to add new intention again)
give new intention: F(r4 & c1 & XF(r1 & c1))
set priority using an index (position in the intention list. 0 is

highest priority): 0
trying to add new intention ’F(r4 & c1 & XF(r1 & c1))’ to intention

list:

(new intention is now realizable in conjunction with the intentions from the intention list)
new goal: F(c4 & r4) & F(r4 & c1 & XF(r1 & c1))
adding new intention is realizable! new intention is adopted and

DFA is recomputed
new formula agent: (not outputted here, as formula is too long)
call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
d
u
r
l

pick an action, using index (nr. from 1 to 4): 4
move selected: l

possible environment moves in current state:
r3 & c1

random environment move picked: r3 & c1

current env vars set to true:
r3
c1

progressed intentions:
before: F(c1 & r4 & XF(c1 & r1)) -> after: F(c1 & r4 & XF(c1 &

r1))
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before: F(c4 & r4) -> after: F(c4 & r4)

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
d
u
r

pick an action, using index (nr. from 1 to 3): 1
move selected: d

possible environment moves in current state:
r4 & c1

random environment move picked: r4 & c1

current env vars set to true:
r4
c1

(intention ’F(c1 & r4 & XF(c1 & r1))’ is progressed, as the current world state is ’c1 & r4’)
progressed intentions:
before: F(c1 & r4 & XF(c1 & r1)) -> after: F(c1 & r1) | F(c1 &

r4 & XF(c1 & r1))
before: F(c4 & r4) -> after: F(c4 & r4)

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
u
r

pick an action, using index (nr. from 1 to 2): 1
move selected: u

possible environment moves in current state:
r3 & c1
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r2 & c1

random environment move picked: r3 & c1

current env vars set to true:
r3
c1

progressed intentions:
before: F(c1 & r1) | F(c1 & r4 & XF(c1 & r1)) -> after: F(c1 &

r1) | F(c1 & r4 & XF(c1 & r1))
before: F(c4 & r4) -> after: F(c4 & r4)

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
d
u
r

pick an action, using index (nr. from 1 to 3): 2
move selected: u

possible environment moves in current state:
r2 & c1
r1 & c1

random environment move picked: r1 & c1

current env vars set to true:
r1
c1

(intention ’F(c1 & r1) | F(c1 & r4 & XF(c1 & r1))’ has now been achieved, and is removed from
the intention list)

progressed intentions:
before: F(c1 & r1) | F(c1 & r4 & XF(c1 & r1)) -> after: 1
intention ’F(c1 & r1) | F(c1 & r4 & XF(c1 & r1))’ has been fulfilled

and is removed from the intention list
before: F(c4 & r4) -> after: F(c4 & r4)

call update operation? [y/n]: n
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run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
d
r

pick an action, using index (nr. from 1 to 2): 2
move selected: r

possible environment moves in current state:
r1 & c3
r1 & c2

random environment move picked: r1 & c2

current env vars set to true:
r1
c2

progressed intentions:
before: F(c4 & r4) -> after: F(c4 & r4)

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
d
r
l

pick an action, using index (nr. from 1 to 3): 2
move selected: r

possible environment moves in current state:
r1 & c4
r1 & c3

random environment move picked: r1 & c4

current env vars set to true:
r1
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c4

progressed intentions:
before: F(c4 & r4) -> after: F(c4 & r4)

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
d
l

pick an action, using index (nr. from 1 to 2): 1
move selected: d

possible environment moves in current state:
r3 & c4
r2 & c4

random environment move picked: r3 & c4

current env vars set to true:
r3
c4

progressed intentions:
before: F(c4 & r4) -> after: F(c4 & r4)

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
d
u
l

pick an action, using index (nr. from 1 to 3): 1
move selected: d

possible environment moves in current state:
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r4 & c4

random environment move picked: r4 & c4

current env vars set to true:
r4
c4

(all intentions have been achieved)
progressed intentions:
before: F(c4 & r4) -> after: 1
intention ’F(c4 & r4)’ has been fulfilled and is removed from the

intention list

(IMS gives feedback to agent that a final state has been reached, and asks if the program should
be stopped. The agent calls update operation ’halt’, and the program stops)

final state reached!
stop program? [y/n]: y
program stopped

Process finished with exit code 0

6.8.4 Simulation of the slippery world domain (scenario 2)

For this simulation, the log outputs have been taken directly from the software for the IMS, where
the blue text is added to indicate what is happening during each step in the program, and what is user
input. In this simulation it is demonstrated how the IMS handles progressing intentions, while also
handling an LTL𝑓 intention which contains the ’until’-operator.

Log of the terminal output:
(initial list of intentions is retrieved)
initial intentions:
F(r1 & c1)

formula agent: (G((l | r | u | d) & !(l & r) & !(l & u) & !(l &
d) & !(r & u) & !(r & d) & !(u & d))) & (((r2 & c4) & G(((r1 | r2 |
r3 | r4) & !(r1 & r2) & !(r1 & r3) & !(r1 & r4) & !(r2 & r3) & !(r2
& r4) & !(r3 & r4)) & ((c1 | c2 | c3 | c4) & !(c1 & c2) & !(c1 & c3)
& !(c1 & c4) & !(c2 & c3) & !(c2 & c4) & !(c3 & c4)) & ((c2 -> X(l ->
c1)) & (c3 -> X(l -> (c2 | c1))) & (c4 -> X(l -> (c3 | c2))) & (c1 ->
X(r -> (c2 | c3))) & (c2 -> X(r -> (c3 | c4))) & (c3 -> X(r -> c4))
& (r2 -> X(u -> r1)) & (r3 -> X(u -> (r2 | r1))) & (r4 -> X(u -> (r3
| r2))) & (r1 -> X(d -> (r2 | r3))) & (r2 -> X(d -> (r3 | r4))) & (r3
-> X(d -> r4)) & (c1 -> X(u -> c1)) & (c1 -> X(d -> c1)) & (c2 -> X(u
-> c2)) & (c2 -> X(d -> c2)) & (c3 -> X(u -> c3)) & (c3 -> X(d -> c3))
& (c4 -> X(u -> c4)) & (c4 -> X(d -> c4)) & (r1 -> X(l -> r1)) & (r1
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-> X(r -> r1)) & (r2 -> X(l -> r2)) & (r2 -> X(r -> r2)) & (r3 -> X(l
-> r3)) & (r3 -> X(r -> r3)) & (r4 -> X(l -> r4)) & (r4 -> X(r -> r4)))))
-> ((G((X(tt)) -> ((c1 -> X(!l)) & (c4 -> X(!r)) & (r1 -> X(!u)) & (r4
-> X(!d))))) & (F(r1 & c1) )))

formula environment: ((r2 & c4) & ((G((l | r | u | d) & !(l & r)
& !(l & u) & !(l & d) & !(r & u) & !(r & d) & !(u & d))) -> (G(((r1
| r2 | r3 | r4) & !(r1 & r2) & !(r1 & r3) & !(r1 & r4) & !(r2 & r3)
& !(r2 & r4) & !(r3 & r4)) & ((c1 | c2 | c3 | c4) & !(c1 & c2) & !(c1
& c3) & !(c1 & c4) & !(c2 & c3) & !(c2 & c4) & !(c3 & c4)) & ((c2 ->
X(l -> c1)) & (c3 -> X(l -> (c2 | c1))) & (c4 -> X(l -> (c3 | c2)))
& (c1 -> X(r -> (c2 | c3))) & (c2 -> X(r -> (c3 | c4))) & (c3 -> X(r
-> c4)) & (r2 -> X(u -> r1)) & (r3 -> X(u -> (r2 | r1))) & (r4 -> X(u
-> (r3 | r2))) & (r1 -> X(d -> (r2 | r3))) & (r2 -> X(d -> (r3 | r4)))
& (r3 -> X(d -> r4)) & (c1 -> X(u -> c1)) & (c1 -> X(d -> c1)) & (c2
-> X(u -> c2)) & (c2 -> X(d -> c2)) & (c3 -> X(u -> c3)) & (c3 -> X(d
-> c3)) & (c4 -> X(u -> c4)) & (c4 -> X(d -> c4)) & (r1 -> X(l -> r1))
& (r1 -> X(r -> r1)) & (r2 -> X(l -> r2)) & (r2 -> X(r -> r2)) & (r3
-> X(l -> r3)) & (r3 -> X(r -> r3)) & (r4 -> X(l -> r4)) & (r4 -> X(r
-> r4)))))))

The environment formula is realizable
The agent formula is realizable
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
d
u
r
l

(this is a dummy move for the agent, which has no effect, as the environment first needs to ini-
tialize)

pick an action, using index (nr. from 1 to 4): 4
move selected: l

(the environment has one option: initializing according to the LTL𝑓 specification)
possible environment moves in current state:
r2 & c4

random environment move picked: r2 & c4

current env vars set to true:
r2
c4

progressed intentions:
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before: F(c1 & r1) -> after: F(c1 & r1)

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

(agent is now located in world state r2, c4. The domain looks as follows:)

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
d
u
l

pick an action, using index (nr. from 1 to 3): 2
move selected: u

possible environment moves in current state:
r1 & c4

random environment move picked: r1 & c4

current env vars set to true:
r1
c4

(intentions remain unchanged)
progressed intentions:
before: F(c1 & r1) -> after: F(c1 & r1)

call update operation? [y/n]: y

would you like to add an intention [1], drop [2] an intention, or
stop the entire system [3]?: 1

(agent attempts to add a new intention ’F(c1 U r4)’ at priority 1)
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give new intention: F(c1 U r4)
set priority using an index (position in the intention list. 0 is

highest priority): 1
trying to add new intention ’F(c1 U r4)’ to intention list:

(new intention is realizable and is adopted into the intention list. DFA and maximally permissive
strategy are recomputed)

new goal: F(c1 U r4) & F(c1 & r1)
adding new intention is realizable! new intention is adopted and

DFA is recomputed
new formula agent: (not outputted here, as formula is too long)
call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
d
l

pick an action, using index (nr. from 1 to 2): 2
move selected: l

possible environment moves in current state:
r1 & c3
r1 & c2

random environment move picked: r1 & c2

current env vars set to true:
r1
c2

progressed intentions:
before: F(c1 & r1) -> after: F(c1 & r1)
before: F(c1 U r4) -> after: F(c1 U r4)

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
d
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r
l

pick an action, using index (nr. from 1 to 3): 3

move selected: l

possible environment moves in current state:
r1 & c1

random environment move picked: r1 & c1

current env vars set to true:
r1
c1

(intention ’F(c1 & r1)’ is fulfilled and removed from the intention list. Also, since the agent is
now in column 1, intention ’F(c1 U r4)’ is progressed into ’(c1 U r4) | F(c1 U r4)’)

progressed intentions:
before: F(c1 & r1) -> after: 1
intention ’F(c1 & r1)’ has been fulfilled and is removed from the

intention list
before: F(c1 U r4) -> after: (c1 U r4) | F(c1 U r4)

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 2

possible agent moves in current state:
d

(as the agent asked for the non-procrastinating moves, only the moves are shown which make the
agent fulfill the remaining intentions in as little steps as possible)

pick an action, using index (nr. from 1 to 1): 1
move selected: d

possible environment moves in current state:
r3 & c1
r2 & c1

random environment move picked: r3 & c1

current env vars set to true:
r3
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c1

progressed intentions:
before: (c1 U r4) | F(c1 U r4) -> after: (c1 U r4) | F(c1 U r4)

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 2

possible agent moves in current state:
d

pick an action, using index (nr. from 1 to 1): 1
move selected: d

possible environment moves in current state:
r4 & c1

random environment move picked: r4 & c1

current env vars set to true:
r4
c1

(the final intention of the intention list has now been fulfilled)
progressed intentions:
before: (c1 U r4) | F(c1 U r4) -> after: 1
intention ’(c1 U r4) | F(c1 U r4)’ has been fulfilled and is removed

from the intention list

(since a final state is reached, IMS asks if the agent want to stop the program. The agent calls
update operation ’halt’, and the program is stopped)

final state reached!
stop program? [y/n]: y
program stopped

Process finished with exit code 0

6.8.5 Evaluation of IMS in the slippery world domain

After attempting translation of the Triangle-Tireworld from PDDL into LTL𝑓 , the number of atomic
propositions was kept as low as possible for expressing the slippery world domain as compactly as
possible. This appeared to be a successful manner for expressing a FOND domain in LTL𝑓 , as Lydia
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and Syftmax had no issues computing the resulting DFA’s and maximally permissive strategy for
this.

In Section 6.8.3 and 6.8.4, the logs of simulations are provided, which are extracted directly from
the IMS log output. In these simulations, the adding and dropping of temporally extended goals is
demonstrated, while the IMS also dynamically checks for the realizability of adding new intentions.
In the simulation in Section 6.8.3, also a demonstration is given of how the IMS recomputes which
intentions should be dropped, in case the agent wants to add an intention which is currently not
realizable, but becomes realizable when another intention of the intention list is dropped.

In both simulations, the progression of intentions is also demonstrated. At various points through-
out the simulations the agent requests the non-procrastinating moves from the IMS, returning to the
agent which actions to perform in order to fulfill all remaining intentions in as little steps as possible.
These simulations demonstrate how the IMS satisfies the description of an IMS as provided in Sec-
tion 3, while implementing the design for the IMS as provided in Section 4, and operates according
to the specification provided in Section 5.

6.9 Triangle-Tireworld domain
In Section 6.9.1, an explanation is provided for the Triangle-Tireworld FOND domain. As already
mentioned in Section 6.2, the Triangle-Tireworld domain is a well known FOND domains within the
area of planning related research and competitions, for which we have included this domain in our
research.

The Triangle-Tireworld domain is most commonly expressed in PDDL, for which an example
domain and problem description are provided in Section 6.9.2. As can be seen, this domain can be
represented rather compact using PDDL, as the rules of the domain are in an abstract form, i.e. not
grounded yet using the atomic propositions. However, for LTL𝑓 , the rules of the domain are directly
applied to all atomic propositions, which results in a significantly greater expression for writing out
the domain specification. This expression is given in Section 6.9.3. The PDDL and LTL𝑓 expression
describe the same FOND domain, as where it can be seen that using PDDL is easier for scaling and
expressing the domain more compactly.

Note that in the domain expressions provided in Section 6.9.2 and 6.9.3, there are only a total of
six environment states, for which the domain would be represented as shown in Figure 9. Would we
add even more states to this, the LTL𝑓 expression would grow exponentially with each extra state.
For example purposes, we only write down the version with six states in Section 6.9.2 and 6.9.3.

Figure 9: Triangle-Tireworld domain with six states
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6.9.1 Description of the Triangle-Tireworld domain

One of the most well-known FOND domain models is the Triangle-Tireworld, where locations are
connected by roads, and the agent can drive through them. The objective is to drive from one location
to another. However, while driving between locations, a tire may go flat, and if there is a spare tire in
the car’s location, then the agent can use it to fix the flat tire. Figure 10 illustrates a FOND planning
problem for the Triangle-Tireworld domain, where circles are locations, arrows represent roads, spare
tires are depicted as tires, and the agent is depicted as a car [16]. In this example, the goal for the
agent is to eventually reach state 15. The agent cannot go in a straight line here, as state 13 does not
have a spare tire, and might put the agent in risk for not being able to change a tire in case it goes
flat. For this, a more sophisticated strategy has to be planned out in order to reach state 15.

Figure 10: Triangle-Tireworld domain

6.9.2 Representation of the Triangle-Tireworld domain in PDDL

The Triangle-Tireworld domain is most commonly expressed in PDDL9. An explanation of how this
is expressed, is described in Section 2.5. Below, we find how the Triangle-Tireworld is expressed in
PDDL, both the domain- and an example problem.

domain file:
(define (domain triangle-tire)

(:requirements :typing :strips :non-deterministic)
(:types location)
(:predicates (vehicle-at ?loc - location)

(spare-in ?loc - location)
(road ?from - location ?to - location)
(not-flattire))

(:action move-car
9Source for Triangle-Tireworld domain and problems in PDDL format: [21]
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:parameters (?from - location ?to - location)
:precondition (and (vehicle-at ?from) (road ?from ?to) (not-flattire))
:effect (and

(oneof (and (vehicle-at ?to) (not (vehicle-at ?from)))
(and (vehicle-at ?to) (not (vehicle-at ?from)) (not (not-flattire))))))

(:action changetire
:parameters (?loc - location)
:precondition (and (spare-in ?loc) (vehicle-at ?loc))
:effect (and (not (spare-in ?loc)) (not-flattire))))

problem file:
(define (problem triangle-tire-1)

(:domain triangle-tire)
(:objects l-1-1 l-1-2 l-1-3 l-2-1 l-2-2 l-2-3 l-3-1 l-3-2 l-3-3 - location)
(:init (vehicle-at l-1-1)(road l-1-1 l-1-2)(road l-1-2 l-1-3)(road l-1-1 l-2-1)(road l-1-2 l-2-2)

(road l-2-1 l-1-2)(road l-2-2 l-1-3)(spare-in l-2-1)(spare-in l-2-2)(road l-2-1 l-3-1)
(road l-3-1 l-2-2)(spare-in l-3-1)(spare-in l-3-1)(not-flattire))

(:goal (vehicle-at l-1-3)))
For PDDL, only the problem file changes, depending on the scenario. The domain file remains

the same throughout the different problem scenarios. In the problem file, all variables are defined,
although not grounded yet.

6.9.3 Representation of the Triangle-Tireworld domain in LTL𝑓
For describing the Triangle-Tireworld domain in LTL𝑓 , we will break up the domain into compo-
nents, as described in Section 4.5:

Agent- and environment variables:

• agent variables : {movecar_11_21, movecar_11_12, movecar_12_21, movecar_12_11, move-
car_12_22, movecar_12_13, movecar_21_12, movecar_21_11, movecar_21_31,
movecar_21_22, movecar_13_22, movecar_13_12, movecar_22_31, movecar_22_13, move-
car_22_21, movecar_22_12, movecar_31_22, movecar_31_21, changetire_11, changetire_12,
changetire_21, changetire_13, changetire_22, changetire_31}

• environment variables : {vehicleat_11, vehicleat_12, vehicleat_21, vehicleat_13, vehicleat_22,
vehicleat_31, sparein_11, sparein_12, sparein_21, sparein_13, sparein_22, sparein_31,
road_11_21, road_11_12, road_12_21, road_12_11, road_12_22, road_12_13, road_21_12,
road_21_11, road_21_31, road_21_22, road_13_22, road_13_12, road_22_31, road_22_13,
road_22_21, road_22_12, road_31_22, road_31_21, flattire}

Domain specification:

• 𝜙𝑎𝑔 𝑢𝑛𝑖𝑞 𝑎𝑐𝑡 :
(mutual exlusion is applied over all agent variables which are specified above, for which
the entire resulting formula is too long to be written out here fully)

• 𝜙𝑒𝑛𝑣 𝑡𝑟𝑎𝑛𝑠 :
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– mutual exclusion of environment variables :
(mutual exlusion is applied over all environment variables which are specified above,
for which the entire resulting formula is too long to be written out here fully)

– environment reactions :
(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_11 → ○(𝑚𝑜𝑣𝑒𝑐𝑎𝑟_11_21 → (𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_21 ∧ (𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒 ∨ ¬𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒)))) ∧
(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_11 → ○(𝑚𝑜𝑣𝑒𝑐𝑎𝑟_11_12 → (𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_12 ∧ (𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒 ∨ ¬𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒))))∧
(from here on similar expressions for all other states and possible transitions)
(𝑠𝑝𝑎𝑟𝑒𝑖𝑛_11 ∧ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_11 → ○(𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒_11 → (¬𝑠𝑝𝑎𝑟𝑒𝑖𝑛_11 ∧ ¬𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒∧
𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_11))) ∧ (𝑠𝑝𝑎𝑟𝑒𝑖𝑛_12∧ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_12 → ○(𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒_12 → (¬𝑠𝑝𝑎𝑟𝑒𝑖𝑛_12∧
¬𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒 ∧ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_12)))
(from here on similar expressions for all other states and possible transitions)

– frame :
(𝑟𝑜𝑎𝑑_11_21∧𝑟𝑜𝑎𝑑_11_12∧𝑟𝑜𝑎𝑑_12_21∧𝑟𝑜𝑎𝑑_12_11∧𝑟𝑜𝑎𝑑_12_22∧𝑟𝑜𝑎𝑑_12_13∧
𝑟𝑜𝑎𝑑_21_12∧ 𝑟𝑜𝑎𝑑_21_11∧ 𝑟𝑜𝑎𝑑_21_31∧ 𝑟𝑜𝑎𝑑_21_22∧ 𝑟𝑜𝑎𝑑_13_22∧ 𝑟𝑜𝑎𝑑_13_12∧
𝑟𝑜𝑎𝑑_22_31∧ 𝑟𝑜𝑎𝑑_22_13∧ 𝑟𝑜𝑎𝑑_22_21∧ 𝑟𝑜𝑎𝑑_22_12∧ 𝑟𝑜𝑎𝑑_31_22∧ 𝑟𝑜𝑎𝑑_31_21∧
(¬𝑠𝑝𝑎𝑟𝑒𝑖𝑛_11 → ○(¬𝑠𝑝𝑎𝑟𝑒𝑖𝑛_11))∧((𝑠𝑝𝑎𝑟𝑒𝑖𝑛_11∧¬𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒_11) → ○(𝑠𝑝𝑎𝑟𝑒𝑖𝑛_11))∧
(¬𝑠𝑝𝑎𝑟𝑒𝑖𝑛_12 → ○(¬𝑠𝑝𝑎𝑟𝑒𝑖𝑛_12))∧((𝑠𝑝𝑎𝑟𝑒𝑖𝑛_12∧¬𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒_12) → ○(𝑠𝑝𝑎𝑟𝑒𝑖𝑛_12))∧
(¬𝑠𝑝𝑎𝑟𝑒𝑖𝑛_21 → ○(¬𝑠𝑝𝑎𝑟𝑒𝑖𝑛_21))∧((𝑠𝑝𝑎𝑟𝑒𝑖𝑛_21∧¬𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒_21) → ○(𝑠𝑝𝑎𝑟𝑒𝑖𝑛_21))∧
(¬𝑠𝑝𝑎𝑟𝑒𝑖𝑛_13 → ○(¬𝑠𝑝𝑎𝑟𝑒𝑖𝑛_13))∧((𝑠𝑝𝑎𝑟𝑒𝑖𝑛_13∧¬𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒_13) → ○(𝑠𝑝𝑎𝑟𝑒𝑖𝑛_13))∧
(¬𝑠𝑝𝑎𝑟𝑒𝑖𝑛_22 → ○(¬𝑠𝑝𝑎𝑟𝑒𝑖𝑛_22))∧((𝑠𝑝𝑎𝑟𝑒𝑖𝑛_22∧¬𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒_22) → ○(𝑠𝑝𝑎𝑟𝑒𝑖𝑛_22))∧
(¬𝑠𝑝𝑎𝑟𝑒𝑖𝑛_31 → ○(¬𝑠𝑝𝑎𝑟𝑒𝑖𝑛_31))∧((𝑠𝑝𝑎𝑟𝑒𝑖𝑛_31∧¬𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒_31) → ○(𝑠𝑝𝑎𝑟𝑒𝑖𝑛_31)))

• 𝜙𝑎𝑔 𝑎𝑐𝑡 𝑝𝑟𝑒𝑐 : (¬(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_11 ∧ 𝑟𝑜𝑎𝑑_11_21 ∧ ¬𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒) → ○(¬𝑚𝑜𝑣𝑒𝑐𝑎𝑟_11_21))∧
(¬(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_11 ∧ 𝑟𝑜𝑎𝑑_11_12 ∧ ¬𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒) → ○(¬𝑚𝑜𝑣𝑒𝑐𝑎𝑟_11_12)) ∧ (¬(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_12 ∧
𝑟𝑜𝑎𝑑_12_21∧¬𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒) → ○(¬𝑚𝑜𝑣𝑒𝑐𝑎𝑟_12_21))∧(¬(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_12∧𝑟𝑜𝑎𝑑_12_11∧¬𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒)
→ ○(¬𝑚𝑜𝑣𝑒𝑐𝑎𝑟_12_11))∧(¬(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_12∧𝑟𝑜𝑎𝑑_12_22∧¬𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒) → ○(¬𝑚𝑜𝑣𝑒𝑐𝑎𝑟_12_22))
∧(¬(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_12 ∧ 𝑟𝑜𝑎𝑑_12_13 ∧ ¬𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒) → ○(¬𝑚𝑜𝑣𝑒𝑐𝑎𝑟_12_13))
(from here on similar expressions for all other states and possible transitions)
∧(¬(𝑠𝑝𝑎𝑟𝑒𝑖𝑛_11 ∧ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_11 ∧ 𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒) → ○(¬𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒_11)) ∧ (¬(𝑠𝑝𝑎𝑟𝑒𝑖𝑛_12∧
𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_12∧𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒) → ○(¬𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒_12))∧(¬(𝑠𝑝𝑎𝑟𝑒𝑖𝑛_21∧𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_21∧𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒) →
○(¬𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒_21)) ∧ (¬(𝑠𝑝𝑎𝑟𝑒𝑖𝑛_13 ∧ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_13 ∧ 𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒) → ○(¬𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒_13)) ∧
(¬(𝑠𝑝𝑎𝑟𝑒𝑖𝑛_22 ∧ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_22 ∧ 𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒) → ○(¬𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒_22)) ∧ (¬(𝑠𝑝𝑎𝑟𝑒𝑖𝑛_31∧
𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_31 ∧ 𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒) → ○(¬𝑐ℎ𝑎𝑛𝑔𝑒𝑡𝑖𝑟𝑒_31))

Problem specification:

• 𝜙𝑒𝑛𝑣 𝑖𝑛𝑖𝑡 : (¬𝑓𝑙𝑎𝑡𝑡𝑖𝑟𝑒∧𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_11∧ 𝑠𝑝𝑎𝑟𝑒𝑖𝑛_12∧ 𝑠𝑝𝑎𝑟𝑒𝑖𝑛_11∧ 𝑠𝑝𝑎𝑟𝑒𝑖𝑛_21∧ 𝑠𝑝𝑎𝑟𝑒𝑖𝑛_13∧
𝑠𝑝𝑎𝑟𝑒𝑖𝑛_22 ∧ 𝑠𝑝𝑎𝑟𝑒𝑖𝑛_31)

• 𝜙𝑔𝑜𝑎𝑙 : ◊(𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑎𝑡_13)

6.9.4 Simulation of the Triangle-Tireworld domain

During the evaluation of the Triangle-Tireworld domain, it became clear that translating PDDL into
LTL𝑓 is more complicated than anticipated. As a PDDL domain can be expressed in a relational
language, i.e. without being grounded, it can be expressed rather compact. Whenever this expression
is translated to LTL𝑓 , the domain needs to be grounded using the atomic propositions, for which
it became clear that this is not an efficient manner for translation. Would we want to express an
equivalent domain into LTL𝑓 , it might be best to express agent- and environment actions as, for
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example, ’down-left’, instead of talking about moves from one exact position to another, such as
’movecar_11_21’, as this decreases the amount of agent- and environment actions significantly. For
this, it is inefficient to translate PDDL directly to LTL𝑓 , as it would be more effient to lower the
amount of atomic propositions available in LTL𝑓 as much as possible.

As already mentioned in Section 6.2, translating the PDDL specification of the Triangle-Tireworld
as described in the example of Section 3.1 into an LTL𝑓 specification results in a specification which
is too large to use in our software. The resulting LTL𝑓 formula affected the software too much, for
which Lydia and Syftmax were not able anymore to extract a DFA and maximally permissive strat-
egy within a reasonable amount of time, where also too much computational power was required in
order to simulate a run. The hard- and software specification on which the IMS software has been
developed and run on, is described in Section 6.3.

As we could not run the resulting LTL𝑓 formula on our hard- and software, we only provide
a handwritten run for the Triangle-Tireworld, provided in Section A, in which it is described how
the IMS would work for the Triangle-Tireworld if the computational resources could process this
formula. In this handwritten run, we replicate the example scenario as described in Section 3.1, for
this demonstrates if the IMS operates as intended. In Section 6.9.5, an evaluation is given for how
well the IMS functions in the Triangle-Tireworld domain.

6.9.5 Evaluation of IMS in the Triangle-Tireworld domain

Despite the length of the resulting LTL𝑓 formula, the IMS is still able to operate exactly as specified
within a handwritten benchmark simulation. All query- and update operations which were required
for operating could be used, resulting in a handwritten simulation which corresponds to the definition
and design for the IMS as described in Section 3 and 4. The handwritten simulation described in
Section A is identical to how the IMS operates in the initial example scenario described in Section
3.1, proving that the IMS is capable of doing exactly what it is supposed to do.

6.10 General evaluation of the IMS implementation
The simulations which the IMS has been evaluated on are described in Section 6.7.2, 6.8.3, 6.8.4,
and appendix A. For each simulation, a short description is given of what functions of the IMS have
been tested, and to which degree the IMS functions as expected.

In Section 6.7.3, 6.8.5, and 6.9.5 (handwritten log output), evaluations are already provided for
the simulations which have been ran in each individual domain. The only complication which we
have come across during the evaluation of the IMS was the processing of the LTL𝑓 formula for the
Triangle-Tireworld domain. However, this complication was not caused by the IMS, as Lydia was
simply not able to computationally handle the resulting LTL𝑓 formula when the PDDL specification
for the Triangle-Tireworld was translated into LTL𝑓 .

When considering all these evaluations, the implementation of the IMS covers all functionalities
as how it was specified, where the IMS is able to handle all query- and update operations as described
in Section 3.5 and 3.6, keep track of an intention list, progress LTL𝑓 intentions during a run, compose
an LTL𝑓 formula for extracting moves which keep an agent in the winning region, recompose this
formula also during runtime when intentions and the current domain state change, compose a formula
for the environment for extracting good moves, compute a DFA and maximally permissive strategy,
check for realizability, handle temporally extended goals, among all other functionalities of the IMS.
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7 Related work
In the introduction of this research, a brief insight is given on what related work our research is based
upon. A great amount of research has already been done related to intention revision, going back
nearly 30 years. Although we will not cover all of this, we discuss some of the major approaches and
how our approach relates to these.

As our research is about managing the intentions of agents, we need to understand what intentions
are and how they relate to intelligent agents. In [36, p. 28–42], the mental state of intelligent agents is
discussed, which is based upon the beliefs, desires, and intentions which an agent might have. Agents
who are designed using this type of architecture are often referred to as BDI-agents (Beliefs, Desires,
and Intentions). For the mental state of an agent, beliefs represent the informational state which an
agent beliefs about the world it is in. Desires represent the motivational state of an agent: what does
the agent desire to accomplish? Intentions represent the deliberative state of an agent: what has an
agent already dedicated itself to achieving? Intentions can be considered as desires which an agent
has committed to achieving. Our research only applies to the intentions which an agent might have,
as the agent decides to which intentions it wants to commit to, and the IMS serves as a tool for the
agent to manage these intentions and extract plans for achieving these intentions.

In [34], automata-theoretic approaches for LTL are already discussed. LTL specification are
translated into automata, which are then used for performing synthesis, i.e. verify that the automata
meet the given LTL specifications. Also, these automata can be used for checking realizability,
i.e. finding at least one strategy for an agent which eventually fulfills the entire specification. In
our research, this means that an agent eventually has to fulfill all the intentions as provided in the
intention list. This is the very essence what our research is based upon, as [34] covers the translation
of LTL/LTL𝑓 to automata, perform synthesis, and checking for realizability.

In [12] it is discussed how synthesis can be performed for LTL𝑓 and LDL𝑓 expressions, where an
agent operates within a FOND environment. Although in this paper the term ’FOND’ is not explicitly
mentioned yet, it is discussed that the agent deals in an environment where it has no control over the
environment variables, while it does have full observability. The extraction of a winning strategy is
covered, which is based upon the synthesis problem. In this paper, it is mentioned that performing
synthesis is actually equivalent to computing a winning strategy, as when synthesis is performed, it
is analyzed if there exists at least one strategy which can guarantee for the agent to fulfill the entire
specification, no matter how the environment reacts, i.e. the variables which the agent has no control
over. In [10] the research of [12] is applied, where this describes the automata-theoretic foundations
of FOND planning for both LTL𝑓 and LDL𝑓 temporally exteded goals. It explains how a DFA can
be computed using their proposed algorithm, given a domain and goal, specified as an LTL𝑓 formula.
From the resulting DFA, a winning strategy can then be extracted.

The idea for extracting a winning strategy is later exploited in [40]. They describe how to compute
the entire set of winning strategies, instead of only a single strategy. This includes both the set of
deferring- and non-deferring strategies, together forming the ’maximally permissive strategy’. Here,
a deferring strategy refers to actions of an agent which guarantee to remain in the winning region,
while deferring the winning moment. A non-deferring strategy refers to actions which guarantee an
agent to both stay in the winning region, and also progress towards a goal state. In our research, we
use the maximally permissive strategy for giving the agent as much freedom as possible in choosing
an action. In the implementation of the maximally permissive strategy within our design of the IMS,
we make use of Syftmax (5.1.2), where Syftmax was developed as an implementation tool in the
paper of [40]. In [25], an approach is described for computing more than a singular plan for reaching
a goal state, as is also done in [40] when a maximally permissive strategy is computed. Although
[25] uses a somewhat related approach to that of [40] in terms of providing the agent with flexibility
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in choosing actions during a run, in [25] the possible environment reactions are not specified and the
plans are not guaranteed to be winning. The research of [25] is focused on avoiding goal conflicts,
where goal plan trees (GPT) are made in which several plans are expressed for achieving an agent’s
goal. This GPT represents the goals, plans, and actions for an agent, which is somewhat related to
the winning region of [40], although in [25] the environment reactions are not included, and also in
GPT’s an agent plan is not guaranteed to be winning. In [25], intentions are revised based on the
desires and beliefs of an agent, although in our research we only use the intentions of an agent. The
research of [25] presents a model of goal processing, named ’GROVE’, which is used for providing
choices over executing possible agent plans which are consistent with the agent’s beliefs. In the
introduction of this research, more on the research of [25] is discussed, and how this relates to our
research.

In Section 3.5, we describe the query operation 𝐼.𝑖𝑠𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑏𝑙𝑒(𝜙, 𝑘). Here, an intention is given
with a certain priority, where the priority indicates the position within a list of intentions. Whenever
an intention is given to the IMS which is not consistent with the intention list, the intention list is
revised to check which intentions should be dropped from the intention list in order to add intention
𝜙, maximizing utility. Important here is to note that the IMS does not drop- or add any intentions
by itself, as only the agent is allowed to do so. This approach of dynamic goal revision is already
proposed in [24]. Although in our research we do not implement this manner of goal revision directly,
is it quite similar. In [24], no goals or intentions are ever dropped from the list they keep track of.
This list is also prioritized, for which goals/intentions can only be set to active or inactive, but are not
dropped. The active goals/intentions of this list are dynamically revised in order to maximize utility.
In our approach, we only deal with intentions. This implies that an agent is already dedicated to
achieving them, for which it should be that all intentions from the intention list should be realizable.
If this is not the case, the agent should choose which intentions to drop or add, as we are not dealing
with goals for which the goal is to maximize utility.

In [33] and [32] the problem of conflicting goals is also addressed, which discuss the representa-
tion and reasoning mechanisms for identifying these conflicts. Both papers discuss in what manner
conflicting goals can be expressed. In [33], a logical language for expressing goals is introduced,
where the semantics of these goals can be used in several manners in order to add expressivity,
which can then be used to identify any conflicting goals. Another method for handling conflicting
goals is proposed in [32], where a mechanism is provided for avoiding that the conditions of one goal
undo the conditions for fulfilling another goal. This method schedules in which order goals should
be executed in order to avoid such conflicts. Both these studies deal with the interaction of goals/in-
tentions in a different manner as opposed to our research, as our manner for dealing with conflicting
goals is based upon that of [24], where priorities are given to goals for indicating their importance.

Although in our research we do not let the list of intentions be dynamically adjusted by the IMS
itself, as opposed to the approach proposed in [24], in our research and implementation for the IMS
an agent is able to add and drop intentions from the intention list during a run. In our manner of
implementating the IMS design, the DFA is recomputed, consisting of the FOND domain and the
entire list of intentions. As in our research we are dealing with temporally extended goals, if we would
recompute the DFA somewhere during a run, this could cause the progress in any partially fulfilled
intentions to be lost, as some subgoals of the temporally extended goals could already have been
fulfilled. For this is the case, there is a need for progressing intentions, such that the IMS will know
to which degree each intention has already been fulfilled. A manner for progressing linear temporal
logic expressions is proposed in [1], which we have used in our research for progressing temporally
extended goals expressed in LTL𝑓 . The paper discusses an approach for domain-dependent search
control knowledge, which includes a declarative semantics for this search control knowledge. These
semantics are used to check how an LTL expression progresses whenever a part of this expression
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complies to a given state. For example, if in a next state formula 𝑓1 is true, the LTL expression ○𝑓1progresses into 𝑓1.
As already mentioned in the begin of this Section, the revision- and progression of intentions

is an active area of research for roughly 30 years already. During these years, the research in this
field seems to have become rather inconsistent among each other in terms of terminology and how
intentions are represented, among other inconsistencies. In order to address these inconsistencies
and make research in this field more coherent, [27] has proposed a call for a competition related
to intention progression. In [6], this proposal for an intention progression competition (IPC)10 is
formalized, where the competition is mainly focused on how plans for an agent can be refined given
a set of intentions, and which intentions can be advanced in order to successfully execute a plan. This
problem of intention progression within BDI-agents is covered by [37], which focuses on estimating
the likelihood of any conflicting intentions which an agent might have. Monte-Carlo Tree Search
(MCTS) is applied during runtime simulations, which has shown promising results in relation to the
intention progression problem. Similar to most research we discuss in this Section, [37] applies to
BDI-agent architectures, for which the goal is to maximize utility for an agent. Would our research
be expanded for application directly within the architecture of a BDI-agent, it might be interesting to
look more into the research by [37].

In terms of extracting a DFA which represents a FOND domain and agent intentions, [8] proposes
a method for inductively transforming each LTL𝑓 /LDL𝑓 subformula of an entire LTL𝑓 /LDL𝑓 speci-
fication into a DFA, and combining them through automata operators. This differs from our research,
where we extract a singular DFA from the entire LTL𝑓 specification. The method for computing sev-
eral DFA’s to represent the FOND domain and agent intentions would be an interesting approach to
investigate for building further upon our design for the IMS, as this would be less computationally
expensive in terms of recomputation when a change is made to the list of intentions. In our approach,
the DFA for the entire specification has to be recomputed whenever a change is made to the list of
intentions. However, if a DFA would be computed for the specification of the FOND domain and for
each individual intention of the intention list, a new DFA would only have to be computed whenever
a new intention is added to the intention list.

In [17], another approach is described for FOND planning, using both LTL𝑓 and PLTL𝑓 (pure-
past LTL𝑓 ). This is a master’s thesis extract which make use of PDDL. An LTL𝑓 specification can be
given for a temporally extended goal, for which a DFA is computed using a tool called LTL𝑓2DFA11.
The resulting DFA is then encoded into the FOND domain for which the goal is specified. Although
this approach makes usage of domains which are expressed in PDDL, this might be interesting to
implement if future work, where the IMS is able to handle PDDL specifications.

Lastly, our research is based upon that of [26], in which LTL𝑓 synthesis techniques are inves-
tigated for maintaining consistency among intentions. The motivation for our research approach is
discussed in [26], in which the issue we tackle related to intention management in our research is
discussed more generally. Although in our research we do not deal with certain subjects discussed
in [26], such as committing to intentions based on the desires an agent might have, it does provide
more context and motivation for our research which is useful for future research.

10Website for the IPC: [5]
11Source for LTL𝑓 2/DFA-tool: [15]
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8 Conclusion
We have started off this research by asking ourselves what properties an intention management system
needs in order to handle goal change in a FOND domain, while maintaining consistency among a
changing set of temporally extended goal. To answer this question, we have started by writing out an
example scenario, provided in Section 3.1, which such a system should be able to handle. Based on
this example, we extract which parties interact with the IMS, and what information goes in- and out
of this IMS. The information saved in the state of an IMS is described based on this information in
Section 3.4, which is then used for executing query- and update operations as described in Sections
3.5 and 3.6. An example of how the IMS can be used by an agent is described in Section 3.8, giving
an idea how the IMS could be used in practice.

Based on the formal description of an IMS, we have proposed a design for an IMS in Section
4, which we later turned into a proof of concept in the form of software. For doing so, we took the
abstract description for an IMS state and the query- and update operations provided in Section 3, and
gave a more formal description of what exact information is needed within the IMS state in order to
execute the update- and query operations in practice, as described in Section 4.3. This design has
been used for developing the actual proof of concept as software, for which a description is given
how an agent would use this, and what changes within the state of an IMS during each step of these
operations.

Lastly, the IMS as software has been evaluated on three FOND domains, expressed in LTL𝑓 . An
initial objective for this research was to translate benchmark FOND domains, expressed in PDDL,
into LTL𝑓 . However, no useable software appeared to be available for this. Several attempts have
been made to make such software ourselves, however this proved to be more complex than antic-
ipated. As an alternative option, one FOND domain expressed in PDDL, the Triangle-Tireworld
domain, has been taken, and a Python script has been written to produce an equivalent FOND do-
main, expressed in LTL𝑓 . Although the resulting LTL𝑓 formula was usable in our software when
the domain is scaled down significantly to only three environment states, this expression became
expontentially larger when more environment states were added, to a point where this LTL𝑓 could
no longer be used for extracting a DFA and maximally permissive strategy. As our computational
resources could not handle this, a handwritten log output has been provided, describing how the IMS
operates if the software could handle the length of the given LTL𝑓 expression.

As translating the PDDL specification of the Triangle-Tireworld domain into LTL𝑓 proved to be
inefficient, we have developed two other FOND domains by ourselves which could be more compact
in LTL𝑓 : the decision tree domain, and the slippery world domain. The IMS has been tested on
several simulations within these domains, where the IMS has proven in practice to operate exactly
as initially specified in the original goal statement.

The IMS has demonstrated to be able to handle temporally extended goals, apply intention pro-
gression, dynamically alter the list of intentions and the accompanying strategies for fulfilling these
intentions, and to perform all query- and update operations as intended. By doing so, we show that
our description of an IMS gives answer to our initial research question.
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9 Future work
One of the more remarkable findings in this research has been that the direct translation from PDDL
into LTL𝑓 appears to be more difficult than anticipated. As already mentioned, previous work has
been done on this, but no concrete software is, as far as we could find, available for performing this
translation. In future research, it would be beneficial to find a more efficient manner for directly
translating PDDL into LTL𝑓 , without the resulting expression becoming unnecessarily large. As
the frame of a domain is not captured in PDDL, this is something which needs to be added when
generating the LTL𝑓 expression. Also, a more compact representation should be found for expressing
actions and environment variables. As we saw in Section 6.9.3, when PDDL was translated directly
into LTL𝑓 , the resuling expression grew exponentially with each new variable added, as there were
no universal actions, such as ’left’ or ’right’.

Since the translation from PDDL into LTL𝑓 is too computationally expensive using our approach,
it might be interesting to explore manners for directly extracting a DFA from a PDDL expression.
As this would avoid the expensive computation of the DFA from an LTL𝑓 expression, the IMS could
potentially handle more extensive FOND domains.

Besides of the translation from PDDL into LTL𝑓 , the computation of the domain and intentions
into a DFA could also be improved. In our approach, the domain, initialization, and intentions were
conjoined into a singular LTL𝑓 formula, from which a singular DFA was extracted. This might be
one of the simplest way for extracting a DFA which represents the winning region for an agent, but
it is more computationally expensive doing so compared to computing the DFA separately for the
domain and each individual intention, as these will be smaller compared to the conjoined product.
Also, when using a singular DFA, each time a new intention is added or dropped, the entire DFA is
recomputed, which makes it even more computationally expensive. If we would add or drop a new
intention when we have separate DFA’s for each component, we would only have to compute a new
DFA for the new intention specification, or drop a DFA of an intention which is dropped.

As for the design of the IMS, this research has mainly only covered the managing of LTL𝑓 in-
tentions. However, as how the IMS is set up currently, it would only require minor adjustments in
order to also be able to handle LDL𝑓 expressions, in which we could also talk about agent actions.
To do so, adjustments would have to be made in how the intentions are currently progressed, as this
now is only able to handle LTL/LTL𝑓 intentions.

Lastly, the IMS could also be altered to not only deal with intentions, but to also deal with goals
or desires. The agent would not have to drop intentions by itself, but the IMS would be able to
manage intentions dynamically by keeping track of a list of goals, sorted on priority, for which it is
checked which intentions with highest priority are realizable in conjunction. As how the IMS is set
up currently, to achieve this the design only needs minor adjustments in the ’I.adopt’ update query,
and how the intentions are saved and dropped.
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A Triangle-Tireworld domain simulation (handwritten log out-
put)

Here we see the handwritten log output when the IMS is operating in the Triangle-Tireworld domain,
where we replicate the exact example scenario described in Section 3.1. The output below is written
down as to how the IMS software theoretically operates, since the resulting LTL𝑓 formula was too
elaborate for Lydia and Syftmax to process. In this handwritten simulation, the bold text indicates
user input.

As already mentioned in Section 3.1, we assume that the domain layout is exactly as in Figure
11, except that there is a spare at location 13 and there is no spare at locations 22 and 33.

Figure 11: Visual representation of the Triangle-Tireworld domain

Log of the terminal output:
(an initial list of intentions is provided, for which realizabilty is checked. The intention says in

natural language: "eventually be in location 32, and next there cannot be another state", which means
that the agent needs to have state 32 as a final state)

initial intentions:
F(vehicleat_32 & X(ff))

formula agent: (not outputted here, as formula is too long)
formula environment: (not outputted here, as formula is too long)
The environment formula is realizable
The agent formula is realizable
--------------- NEW LOOP STARTS HERE! -----------------

(agent chooses if it wants to retrieve the procrastinating- or non-procrastinating moves for the
current state)

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

(this is a ’dummy’ move for the agent which has no effect, as the agent starts, and the environment
reacts. However, in the first move the environment needs to initialize, since otherwise there is no
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effect for the agent action)
possible agent moves in current state:
movecar_11_21
movecar_11_12

pick an action, using index (nr. from 1 to 2): 1
move selected: movecar_11_21

(only one option is given here for the environment: the initial environment values as written in
the LTL𝑓 specification)

possible environment moves in current state:
(!flattire & vehicleat_11 & sparein_21 & sparein_12 & sparein_31

& sparein_13 & sparein_41 & sparein_23 & sparein_14 & sparein_51 & sparein_42&
sparein_24)

random environment move picked: (!flattire & vehicleat_11 & sparein_21
& sparein_12 & sparein_31 & sparein_13 & sparein_41 & sparein_23 & sparein_14
& sparein_51 & sparein_42& sparein_24)

current env vars set to true:
vehicleat_11
sparein_21
sparein_12
sparein_31
sparein_13
sparein_41
sparein_23
sparein_14
sparein_51
sparein_42
sparein_24

(the agent is now located in environment state vehicleat_11)
progressed intentions:
before: F(vehicleat_32 & X(ff)) -> after: F(vehicleat_32 & X(ff))

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
movecar_11_21
movecar_11_12
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pick an action, using index (nr. from 1 to 2): 2
move selected: movecar_11_12

(the environment can pick either of two non-deterministic effects. for displaying purposes, we
will not show all environment variables which have remained unchanged)

possible environment moves in current state:
(!flattire & vehicleat_12)
(flattire & vehicleat_12)

random environment move picked: (flattire & vehicleat_12)

current env vars set to true:
flattire
vehicleat_12
sparein_21
sparein_12
sparein_31
sparein_13
sparein_41
sparein_23
sparein_14
sparein_51
sparein_42
sparein_24

(the agent is now located in environment state vehicleat_12 with a flat tire)
progressed intentions:
before: F(vehicleat_32 & X(ff)) -> after: F(vehicleat_32 & X(ff))

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
changetire_12

pick an action, using index (nr. from 1 to 1): 1
move selected: changetire_12

possible environment moves in current state:
(!flattire & vehicleat_12 & !sparein_12)

random environment move picked: (!flattire & vehicleat_12 & !sparein_12)
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current env vars set to true:
vehicleat_12
sparein_21
sparein_31
sparein_13
sparein_41
sparein_23
sparein_14
sparein_51
sparein_42
sparein_24

(the spare tire in environment state 12 is now removed)
progressed intentions:
before: F(vehicleat_32 & X(ff)) -> after: F(vehicleat_32 & X(ff))

call update operation? [y/n]: y

would you like to add an intention [1], drop [2] an intention, or
stop the entire system [3]?: 1

give new intention: F(vehicleat_41 & XF(vehicleat_32))
set priority using an index (position in the intention list. 0 is

highest priority): 1
trying to add new intention ’F(vehicleat_41 & XF(vehicleat_32))’

to intention list:

(adding the new intention is realizable, so the new goal becomes conjunction of all intentions)
new goal: F(vehicleat_32 & X(ff)) & F(vehicleat_41 & XF(vehicleat_32))
adding new intention is realizable! new intention is adopted and

DFA is recomputed
new formula agent: (not outputted here, as formula is too long)

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
movecar_12_21

pick an action, using index (nr. from 1 to 1): 1
move selected: movecar_11_21
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(the environment can pick either of two non-deterministic effects. for displaying purposes, we
will not show all environment variables which have remained unchanged)

possible environment moves in current state:
(!flattire & vehicleat_21)
(flattire & vehicleat_21)

random environment move picked: (flattire & vehicleat_21)

current env vars set to true:
flattire
vehicleat_21
sparein_21
sparein_31
sparein_13
sparein_41
sparein_23
sparein_14
sparein_51
sparein_42
sparein_24

(the agent is now located in environment state vehicleat_21 with a flat tire)
progressed intentions:
before: F(vehicleat_32 & X(ff)) -> after: F(vehicleat_32 & X(ff))
before: F(vehicleat_41 & XF(vehicleat_32)) -> after: F(vehicleat_41

& XF(vehicleat_32))

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
changetire_21

pick an action, using index (nr. from 1 to 1): 1
move selected: changetire_21

(the environment can pick either of two non-deterministic effects. for displaying purposes, we
will not show all environment variables which have remained unchanged)

possible environment moves in current state:
(!flattire & vehicleat_21 & !sparein_21)

random environment move picked: (!flattire & vehicleat_21 & !sparein_21)
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current env vars set to true:
flattire
vehicleat_21
sparein_31
sparein_13
sparein_41
sparein_23
sparein_14
sparein_51
sparein_42
sparein_24

(the spare tire in environment state 21 is now removed)
progressed intentions:
before: F(vehicleat_32 & X(ff)) -> after: F(vehicleat_32 & X(ff))
before: F(vehicleat_41 & XF(vehicleat_32)) -> after: F(vehicleat_41

& XF(vehicleat_32))

call update operation? [y/n]: y

would you like to add an intention [1], drop [2] an intention, or
stop the entire system [3]?: 1

give new intention: F(vehicleat_42 & XF(vehicleat_32))
set priority using an index (position in the intention list. 0 is

highest priority): 2
trying to add new intention ’F(vehicleat_42 & XF(vehicleat_32))’

to intention list:

new goal: F(vehicleat_32 & X(ff)) & F(vehicleat_41 & XF(vehicleat_32))
& F(vehicleat_42 & XF(vehicleat_32))

adding new intention is realizable! new intention is adopted and
DFA is recomputed

new formula agent: (not outputted here, as formula is too long)

(intention ’F(vehicleat_42 & XF(vehicleat_32))’ has been added to the intention list)
call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
movecar_21_31

pick an action, using index (nr. from 1 to 1): 1



94 A Triangle-Tireworld domain simulation (handwritten log output)

move selected: movecar_21_31

(the environment can pick either of two non-deterministic effects. for displaying purposes, we
will not show all environment variables which have remained unchanged)

possible environment moves in current state:
(!flattire & vehicleat_31)
(flattire & vehicleat_31)

random environment move picked: (flattire & vehicleat_31)

current env vars set to true:
flattire
vehicleat_31
sparein_31
sparein_13
sparein_41
sparein_23
sparein_14
sparein_51
sparein_42
sparein_24

(the agent is now located in environment state vehicleat_31 with a flat tire)
progressed intentions:
before: F(vehicleat_32 & X(ff)) -> after: F(vehicleat_32 & X(ff))
before: F(vehicleat_41 & XF(vehicleat_32)) -> after: F(vehicleat_41

& XF(vehicleat_32))
before: F(vehicleat_42 & XF(vehicleat_32)) -> after: F(vehicleat_42

& XF(vehicleat_32))

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
changetire_31

pick an action, using index (nr. from 1 to 1): 1
move selected: changetire_31

possible environment moves in current state:
(!flattire & vehicleat_31 & !sparein_31)



95

random environment move picked: (!flattire & vehicleat_31 & !sparein_31)

current env vars set to true:
vehicleat_31
sparein_13
sparein_41
sparein_23
sparein_14
sparein_51
sparein_42
sparein_24

(the spare tire in environment state 31 is now removed)
progressed intentions:
before: F(vehicleat_32 & X(ff)) -> after: F(vehicleat_32 & X(ff))
before: F(vehicleat_41 & XF(vehicleat_32)) -> after: F(vehicleat_41

& XF(vehicleat_32))
before: F(vehicleat_42 & XF(vehicleat_32)) -> after: F(vehicleat_42

& XF(vehicleat_32))

call update operation? [y/n]: n

run continues without update operation
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
movecar_31_41

pick an action, using index (nr. from 1 to 1): 1
move selected: movecar_31_41

possible environment moves in current state:
(!flattire & vehicleat_41)
(flattire & vehicleat_41)

random environment move picked: (flattire & vehicleat_41)

current env vars set to true:
flattire
vehicleat_41
sparein_13
sparein_41
sparein_23
sparein_14
sparein_51
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sparein_42
sparein_24

(the agent is now located in environment state vehicleat_41 with a flat tire)
progressed intentions:
before: F(vehicleat_32 & X(ff)) -> after: F(vehicleat_32 & X(ff))
before: F(vehicleat_41 & XF(vehicleat_32)) -> after: F(vehicleat_32)
before: F(vehicleat_42 & XF(vehicleat_32)) -> after: F(vehicleat_42

& XF(vehicleat_32))

call update operation? [y/n]: n
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
changetire_41

pick an action, using index (nr. from 1 to 1): 1
move selected: changetire_41

possible environment moves in current state:
(!flattire & vehicleat_41 & !sparein_41)

random environment move picked: (!flattire & vehicleat_41 & !sparein_41)

current env vars set to true:
vehicleat_41
sparein_13
sparein_23
sparein_14
sparein_51
sparein_42
sparein_24

(the spare tire in environment state 41 is now removed)
progressed intentions:
before: F(vehicleat_32 & X(ff)) -> after: F(vehicleat_32 & X(ff))
before: F(vehicleat_32) -> after: F(vehicleat_32)
before: F(vehicleat_42 & XF(vehicleat_32)) -> after: F(vehicleat_42

& XF(vehicleat_32))

call update operation? [y/n]: y

would you like to add an intention [1], drop [2] an intention, or
stop the entire system [3]?: 2
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which intention should be dropped from the list?: (index 1 until
3)

options:
1 : F(vehicleat_32 & X(ff))
2 : F(vehicleat_32)
3 : F(vehicleat_42 & XF(vehicleat_32))
index chosen: 3
new formula agent: (not outputted here, as formula is too long)
(intention ’F(vehicleat_42 & XF(vehicleat_32))’ is dropped, and a new DFA and maximally per-

missive strategy are computed in the backend of the IMS)
call update operation? [y/n]: n
--------------- NEW LOOP STARTS HERE! -----------------

get procrastinating (index 1) or non-procrastinating moves (index
2)? [1 or 2]: 1

possible agent moves in current state:
movecar_41_32
movecar_41_42

pick an action, using index (nr. from 1 to 2): 1
move selected: movecar_41_32

possible environment moves in current state:
(!flattire & vehicleat_32)
(flattire & vehicleat_32)

random environment move picked: (flattire & vehicleat_32)

current env vars set to true:
flattire
vehicleat_32
sparein_13
sparein_23
sparein_14
sparein_51
sparein_42
sparein_24

(the agent is now located in environment state vehicleat_32 with a flat tire)
progressed intentions:
before: F(vehicleat_32 & X(ff)) -> after: X(ff)
before: F(vehicleat_32) -> after: 1

(all intentions are now almost fulfilled. ’X(ff)’ implies that there cannot be a next state, so in
order to fulfill this also, the agent has to halt the program)

call update operation? [y/n]: y
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would you like to add an intention [1], drop [2] an intention, or
stop the entire system [3]?: 3

program stopped

Process finished with exit code 0
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