
Dynamic task allocation for efficient container

handling at terminals

Wanne Wisse

June 2024

Abstract

This thesis addresses the problem of Automated Guided Vehicle (AGV)
scheduling by employing a Multi-Agent pickup and delivery problem (MAPD)
formulation, which we identified as a good approach compared to the other
approaches considered in this paper for tackling the related routing and
scheduling sub-problems inherent to this domain. We adjusted a sim-
ulation environment to experiment with different schedules and routes,
addressing critical factors such as collisions, reserved crane parking, and
the effects of randomness and variability. To optimize AGV operations,
we utilized three key heuristics: idle time, collision time, and drive time.
For routing, we implemented cooperative A* with deadlock prevention,
ensuring robust, collision-free task completion.We introduced a new ini-
tialization method, the greedy method, which uses simulation results to
generate a starting solution. Our approach explored the solution space
from this starting solution using local search algorithms, specifically ran-
dom, swap, and insertion operators combined with activity time blocks.
We enhanced the search process with Iterated Local Search (ILS), employ-
ing iterated greedy neighbors (IG) to improve the solution space explo-
ration, outperforming random neighbors (RN) by maintaining beneficial
solution characteristics. Periodic rescheduling was implemented to man-
age the randomness of crane times, with experimental results confirming
its necessity for improving solution robustness. Overall, our combined
heuristics and search strategies effectively minimized the total container
handling time at terminals.

1

1 Introduction

With the surge in container shipments in recent years, there has been consid-
erable interest in optimizing the process of loading and unloading containers
from ships. Container terminals, as dynamic complex systems, comprise several
interdependent planning processes.

The terminal can be divided into distinct areas: the quayside, the yard, and
the hinterland. The quayside is where ships dock and containers are transferred
between ships and the yard. The yard serves as temporary container storage,
where containers are stacked and stored. The hinterland refers to the area
between the main land and the yard, where containers are transferred by train
or truck (see Figure 1 for a visual representation).

Figure 1: Schematic overview general terminal

Optimization challenges within a container terminal are distributed across
these areas. Hinterland optimization involves planning truck and train move-
ments from the mainland. The yard area focuses on efficient container storage
and stacking. The quayside is concerned with ship planning, encompassing berth
allocation, storage planning, and crane assignment. Berth allocation deals with
the dock location of the ship, storage planning assigns containers to specific
areas in the ship, and crane assignment determines which crane is assigned to
which ship and how many cranes per ship.

In addition to ship planning, the quayside must address transportation chal-
lenges between the yard and the cranes. Often, this is done by manually driven
trucks, but in some harbors, they use, Automated Guided Vehicles, AGVs to
complete this challenge [Steenken et al. [2004]].

These area optimizations all primarily aim to minimize the berth time of
ships. The longer a ship remains docked, the greater the time and costs in-
curred. This means all optimization problems are dependent on each other to

2

successfully achieve the main goal. However, these optimization problems are
highly complex, prompting a recent trend toward solving them independently.

This study investigates the transportation challenges of the quayside at dif-
ferent ports [Hudson [2023]]. At these ports, AGVs play a pivotal role: upon a
ship’s arrival with containers, these vehicles swiftly navigate to the ship’s cranes.
The cranes then loads containers onto the waiting AGVs, which subsequently
transport them to designated ashore cranes for integration into container yards.
This process operates bidirectionally, facilitating both loading and unloading
activities.

Figure 2: Schematic overview of a port

ICT-group assumes the responsibility of assigning Automated Guided Ve-
hicles (AGVs) to containers task [ICT-group [2023]]. Their task encompasses
strategic decision-making regarding which AGV is assigned to each container
task and the sequence in which container tasks are performed.

The motivation of this paper is that the current implementation is going to
be replaced by a new system. The reason for this is that the system is old and
therefore hard to maintain. When building a new system, ICT group also wants
to look at other directions compared to the current algorithm. The current
approach relies on a Hungarian algorithm, as proposed by Kuhn Kuhn [1995],
grounded in a distance heuristic to facilitate these assignments. However, when
looking at the different activities in the terminal there are also other factors to
consider, particularly in handling route conflicts due to AGVs being unable to
access occupied positions on the drive lane, idle times when cranes are occupied
by other AGVs, and the omission of variety in crane times for container handling.

This paper seeks to investigate the efficacy of heuristic approaches in address-
ing the task assignment and to assess the performance relative to the currently
implemented Hungarian algorithm. The main research question which we try
to answer in this paper is the following:

3

How can heuristics be used for assignment of tasks to AGVs to
formulate a schedule that minimizes the overall time of the container
handling at terminals, accounting for the inherent randomness asso-
ciated with crane times?

The associated sub-questions with the main question are:

1. What are effective initialization methods recommended for initiating the
search process?

2. Which local search operators, operators which try to converge to local
optima, are considered effective for exploring the neighborhood of a solu-
tion?

3. What permutation operators, operators which try to jump out of local
optima to nearby promising solution spaces, can be used for efficiently
exploring new areas within the search space?

4. What meta heuristics can be integrated with local search and permutation
operators for enhanced search performance?

5. How can random crane times be managed effectively, and what strategies
perform well for rescheduling in response to them?

Aligned with this research question, several research objectives are identified:

1. Integration of Time-Block Optimizations: An AGV has to perform
multiple actions before finishing its task. These actions cost time. The
time which an AGV spends on a task can be divided in several blocks.
Idle time, Current Position to s Routing Time, s to g Routing Time and
Crane Time. These time blocks can be used as heuristics or objectives to
develop a comprehensive and effective schedule.

2. Determination of Rescheduling Timing: Ascertain the appropriate
timing for the execution of rescheduling operations. Recognizing that the
initial schedule will have difficulties in addressing random crane times,
adjustments become imperative as time elapses and deviations from the
schedule intensify.

3. Selection of Efficient Scheduling Algorithm: Choose a scheduling
algorithm that not only produces high-quality schedules but also operates
with swiftness. This is crucial to align with the timing requirements of
the rescheduling operation, ensuring adaptability to evolving conditions.

These research goals collectively aim to address the overarching question
and contribute valuable insights to the optimization of task assignments and
scheduling processes at terminals, particularly in the presence of unpredictable
crane times.

4

2 Literature Review

The scheduling of Automated Guided Vehicles (AGVs) involves three interre-
lated sub-problems: task scheduling, path planning, and collision avoidance
[Fazlollahtabar and Saidi-Mehrabad, 2015]. This study, however, focuses specif-
ically on task scheduling.

Scheduling, a well-established domain, revolves around strategically allocat-
ing resources to tasks within specified time-frames, aiming to optimize one or
multiple objectives [Renke et al., 2021]. In our scenario, AGVs constitute the
scheduling resources, and the tasks entail container tasks. The time-frames are
contingent on the task’s path and crane time calculated by adding costs: the
path from the current position of ai to si of a task, crane time ∆ts, and the path
from si to gi. The objective to optimize would be the make-span, representing
the time when the last task is completed [Renke et al., 2021].

2.1 Scheduling Methods

Various scheduling methodologies exist, including deterministic, stochastic, and
dynamic paradigms.

Deterministic scheduling relies on prior knowledge of all time and task pa-
rameters.

Conversely, stochastic scheduling lacks a prior knowledge but can be modeled
using probability distributions.

Dynamic scheduling operates in a fluctuating environment with unforesee-
able real-time events, termed reactive events. These events are categorized as
resource-related (e.g., machinery malfunctions, operator absenteeism) and job-
related (e.g., urgent tasks, task cancellations) [Renke et al., 2021].

While crane times are stochastic, increased variance may transition them
into dynamic events, hence our choice of a dynamic scheduling paradigm.

2.2 Handling Reactive Events

Addressing reactive events in a dynamic scheduling paradigm involves choosing
between reactive scheduling, predictive-reactive scheduling, or robust pro-active
scheduling. Reactive scheduling reacts to events using dispatch rules without
proactive planning. Predictive-reactive scheduling adapts an initial schedule as
events occur, and robust pro-active scheduling allocates extra time to accom-
modate unpredictable events [Renke et al., 2021].

Balancing speed and predictability is crucial when handling reactive events.
Reactive scheduling aims for quick, on-the-fly local solutions, while predictive-
reactive scheduling assumes minimal changes to the initial schedule, adjusting
only for minor alterations. When significant deviations occur, prioritizing accu-
racy over speed becomes essential in schedule repair.

5

2.3 Rescheduling Strategies

Implementing predictive-reactive scheduling involves decisions on when and how
to reschedule.

Timing for rescheduling can be periodic, event-driven, or a hybrid of both.
Event-driven rescheduling is commonly preferred for its lower computational
load and higher predictability.

Rescheduling strategies range from localized adjustments (schedule repair)
to complete rescheduling, each affecting computational load, schedule stability,
and production continuity [Ouelhadj and Petrovic, 2009].

AGV scheduling also necessitates decisions on when and how to reschedule.
An option might be to reschedule when an AGV is loaded/unloaded, balancing
speed and solution quality.

2.4 Dynamic Scheduling Algorithms

Beyond problem type considerations, attention shifts to algorithms for reschedul-
ing. These algorithms can be organized into two strategies: centralized and
decentralized.

Centralized solutions control all agents and tasks through a single govern-
ing entity, while decentralized approaches delegate decision-making to smaller
agent groups. Decentralization minimizes scheduling delays and increases sys-
tem robustness against individual machine failures but presents challenges in
achieving a comprehensive global optimum [Renke et al., 2021].

2.4.1 Exact Methods

Exact solutions for small-scale AGV scheduling problems have been investigated
in previous studies, as demonstrated by Bean et al. [1991] and Fazlollahtabar
and Hassanli [2018]. However, their applicability is confined to small instances.
Given our problem entails a minimum of 15 AGVs and over 100 container tasks,
exact solutions become impractical. Furthermore, our research focuses exclu-
sively on heuristic approaches rather than exact methods.

2.4.2 Heuristics

Heuristics, relying on problem-specific properties, provide sub-optimal yet prac-
tical solutions within reasonable time frames. Heuristics can be divided into
heuristics to create an initial solution, to local search the neighborhood of the
current solution and to perturbate the current solution.

The initial solution heuristics are used to create the solution to start from.
Examples of this heuristics are: random initialisation, greedy construction and
initialisation using dispatch rules [Ulaga et al. [2022]].

Local search heuristics are used to repair a solution or find the local optima
in the neighborhood of the current solution. Examples of these operators are:
job insertion, job swap, group swap, random removal, worst removal, and ”Shaw
removal” [Ropke and Pisinger [2006] Xu et al. [2022]]. Additionally, a shortest

6

distance heuristic, often combined with meta heuristics, constructs sub-optimal
solutions for complete rescheduling [Chen et al. [2020], Queiroz et al. [2023]].

the perturbation heuristics are used to change the solution to escape local
optima and search other promising solution spaces. Examples of perturbation
heuristics are: Iterated greedy; remove certain number of jobs and place else-
where and Random neighbor; insert a job in a other position or swap two jobs
[Ropke and Pisinger [2006] Ulaga et al. [2022]].

The studies related to AGV scheduling lack exploration of heuristics address-
ing collisions or wait times factors we expect to significantly impact solutions
in our context.

2.4.3 Meta-heuristics

As problem scales increase, numerous local solutions emerge. Several meta-
heuristic solutions exist, including simulated annealing, two-stage ant colony
algorithm and particle swarm optimization algorithm [Hamzeei et al. [2013],
Li et al. [2019] and Qiuyun et al. [2021]]. However, these approaches strive for
exceedingly optimal schedules under the assumption of infinite calculation time,
which isn’t practical in scenarios involving reactive events like fluctuations in
crane times.

Considering our dynamic scheduling scenario with reactive events, speed
becomes crucial. Research by Queiroz et al. [2023] employs Genetic Algorithm
(GA) for task allocation among agents, exploring combinations of objectives
using the Non-dominated Sorting Genetic Algorithm II (NSGA-II) in a dynamic
setting with randomly added tasks.

A study by Jin [2016] combined AGV scheduling with quay crane scheduling.
This study emphasises that AGV scheduling at container terminals is a dynamic
problem. They also suggest that a scheduling horizon should be used. In the
study they used a GA with a horizon of two containers per AGV.

Another study by Hu et al. [2023] adopts a hierarchical planning method,
combining genetic algorithms and tabu search for a more efficient approach,
taking advantage of speed without compromising on solution quality. They also
adopt the shortest distance heuristic to create the initial population.

2.4.4 Artificial intelligence

Knowledge systems can utilize expert knowledge to derive practical conclusions.
Notable examples include ISIS for job scheduling and OPIS for manufacturing
production [Renke et al. [2021]].

Another prevalent methodology involves employing neural networks to pre-
dict schedules, necessitating the transformation of the combinatorial optimiza-
tion problem into a classification problem. Weckman et al. achieved this by
utilizing a genetic algorithm to solve various problems, using the obtained so-
lutions as training data for the neural network. This method prioritizes task
properties to predict ranges of priority. One limitation is the fixed schedule size,

7

but the results demonstrate strong generalization capabilities and near-optimal
solutions Weckman et al. [2008].

An alternative approach includes training a neural network with a knowledge
base and using it to guide a genetic algorithm, exhibiting superior performance
compared to a random initial population Noorul Haq et al. [2010].

Additionally, another strategy involves predicting a dispatch rule based on
environmental characteristics such as processing time, queue size, and machine
failures Mouelhi-Chibani and Pierreval [2010].

Neural networks excel in dynamic scheduling due to their rapid prediction
process, yet they encounter challenges in accommodating variable input and
output sizes when dealing with different amounts of AGVs or tasks for scheduling
Weckman et al. [2008].

When the speed of a method becomes a concern, capturing the behavior of
the algorithm in a neural network proves to be a viable approach.

Lately there has also been a shift to solving this problem using reinforcement
learning. Zheng et al. applied a deep Q-network to the problem by using the
amount of tasks, distances to task and current position as state. The output of
the network is a combination of a schedule rule and an AGV. This paper also
compared the results to a GA and for their specific simulation deep-q-networks
had better performance for large instances [Zheng et al. [2022]].

In addition to deep Q-learning, Monte Carlo Tree Search (MCTS) is some-
times employed. MCTS is particularly suitable for sequential problems with
large state spaces where conducting numerous simulations is feasible. The al-
gorithm represents all possible states from the initial state as a tree, assigning
a value to each state based on its desirability. During each iteration, the algo-
rithm selects the state with the highest value and conducts a simulation from
that state. The resulting value from the simulation is then propagated from the
chosen state up to the root, updating the values of the states along the way.
The objective is to prioritize exploration of states with higher values, thereby
minimizing traversal of less desirable parts of the tree during simulation. In
the context of scheduling, MCTS is employed by representing nodes as partial
schedules, allowing simulations to evaluate the quality of these partial sched-
ules using heuristics. This approach is compared with a GA, demonstrating
significantly faster execution times for large problem instances [Li et al. [2021]].

3 Problem definition

The problem to be solved is defined as special instance of the Multi-agent pickup
and delivery problem (MAPD) [Hu et al. [2023]]. This MAPD consists of a set
of M AGVs ta1, a2, ..., aMu, a set of N tasks tt1, t2, ..., tNu and the quayside
which can be represented as a grid, Gpo, pq, where o is the amount of vertices
per row and p is the amount of vertices per column. An AGV am can be located
on the grid at a position pi, jq where i ă“ o and j ă“ p. A vertex can represent
a road vertex or a crane vertex. The road vertices are vertices which are used
by the AGV, am, to travel between crane vertices by the roads connected to the

8

road vertices. The crane vertices can be further divided into vertices of ashore
cranes and vertices of ship cranes. At these vertices AGVs can load or unload
a container.

Figure 3: Problem representation

The Multi-Agent Pickup and Delivery (MAPD) problem consists of two sub-
problems: the assignment problem and the routing problem. There are two
approaches to address this problem: solving the sub-problems separately or
integrating them into a single problem. Integrating the sub-problems into one
problem expands the solution space and allows for the possibility of finding a
global optimum. However, in real-world scenarios, it is crucial to find a solution
within a reasonable time frame. Therefore, we have chosen to solve the sub-
problems separately, with a primary focus on the assignment problem.

3.1 Goal

The goal is to assign every task, ti, to a single AGV, aj , in order to minimise
the total time, ts, to complete all tasks.

3.2 Tasks

Table 1: Example set of tasks
TaskId Ashore crane Ship crane Load status

parking position parking position
1 (1,1) (3,4) ”load”
2 (1,1) (3,4) ”unload”
3 (2,1) (5,4) ”unload”

Every task, ti has a corresponding starting point, tis and a goal point tig.
These points represent crane vertices on the quayside, either Ashore or Ship
crane vertices. A container can be loaded or unloaded on an AGV, ai, at the

9

crane vertices. Every ti also has a load status, L “ tload, unloadu. A task,
ti, with load status, load, means that a container from ashore needs to be
transferred to a ship. So the starting position tis is an ashore crane vertex
and the endpoint, tig is a ship crane vertex. When the load status was instead
unload, The tis and tig would have been swapped. The AGVs always start at
a crane vertex.

An example can be found in table 1. A specific example from the table
would be TaskId 1, t1, first look at the load status, this is ”load”. This means
in order to complete this task an AGV, ai, first needs to get the container from
ashore and then travel to the ship in order to ”load” the ship. So the ai first
needs to travel to the ashore crane p1, 1q which is his t1s. When having loaded
the container, the AGV needs to travel to the goal t1g which is, in this case,
a ship crane at p3, 4q. A schematic overview of this example can be found in
figure 4.

Figure 4: Schematic overview of TaskId 1 from table 1 processed by an AGV

When looking at TaskId 2, the load status is ”unload”, so the t1s and t1g
are performed in opposite order.

3.3 Assignment

The goal is to assign tasks, ti, to AGVs, ai, to generate an assignment list,
ait1, ajt2, ..., aktM . An AGV can thus have multiple tasks but a task can only
have one AGV. The AGVs need to execute their assigned tasks in the order
which is specified in the list. We can look at table 2 for a specific example.
AGV 1, first executes TaskId 1, when this task is done it performs TaskId 3.

3.4 Routing

When the AGVs are assigned to tasks, the AGVs need routing to the s or g
of their assigned tasks, aitj . The routing consist of two steps: routing from
current position of ai to the s of the aitj , next the AGV needs to route from
the s to the g of aitj .

10

Table 2: Example set of tasks assigned to AGVs
TaskId Ashore crane Ship crane Load status AGV

parking position parking position
1 (1,1) (3,4) ”load” 1
2 (1,1) (3,4) ”unload” 2
3 (2,1) (5,4) ”unload” 1

Routing should be done collision free. This means that two or more AGVs
can not travel by the same road at the same time, ts. The AGVs also can
not be at the same vertex at the same time, ts. See figure 10 for a schematic
representation. This is also known as the Multi-agent Routing problem.

Figure 5: Collision problems: left represents multiple AGVs same vertex at
same time and right represents multiple AGVs same edge at same time

4 Current Method

In the current method, ICT-group has chosen to use the Hungarian algorithm
for the scheduling problem Kuhn [1995]. This method involves creating a cost
matrix for all unassigned tasks, where the rows represent the tasks and the
columns represent the Automated Guided Vehicles (AGVs). Each element of
the cost matrix, corresponding to a combination of an AGV ai and a task ti,
is populated with the Manhattan distance between the AGV’s current position
and the start position of task ti. The AGV’s position is determined by the goal
position of its previously assigned task, tjg.

Using the filled cost matrix, the Hungarian algorithm assigns each AGV ai
to the task ti that minimizes the total cost, effectively trying to find the optimal
task for each AGV. Once tasks are assigned, they are removed from the pool of
remaining tasks, and this process is repeated until no tasks are left.

For routing, predefined routes are employed where each vehicle checks, at
each time-step, to reserve the next segment of its route. If the segment is already
reserved, the vehicle will wait at its current position.

11

5 Proposed Method

To develop a new method, we investigated the environment by consulting stake-
holders, examining the old simulation, and reviewing the current method.

We characterized the environment by analyzing the activities of an AGV.
The activities of an AGV are organized based on the time spent on each activity.
There are multiple activities an AGV must perform to complete a single task,
each with a specific time cost. An overview of these activities is provided in
Figure 6. We further categorized these activities into three groups: Idle time,
Drive time, and Crane time. To optimize the total time required to complete
all tasks, it is crucial to minimize the time spent on each task. This involves
optimizing the time spent in all three activity groups across all tasks, which
can be achieved by assigning each task to the most suitable AGV at the right
position in the sequence. The current method focuses solely on drive time,
neglecting idle and crane time, which are also significant factors in scheduling.
Since idle and crane times are challenging to predict without an actual roll out,
we decided to create a simulation to evaluate these factors.

Figure 6: Overview of Activities

5.1 Algorithm overview

The processes of scheduling and routing AGVs are highly complex and can
be approached from multiple perspectives. One popular method is to solve
these challenges simultaneously. The advantage of this integrated approach is
that it allows the algorithm to adapt routing and scheduling together, avoiding
suboptimal solutions that could arise from treating them separately. However,
the complexity of this combined approach can sometimes prevent the algorithm
from finding a satisfactory solution for either process, potentially resulting in
no solution.

Alternatively, the problem can be divided into two sub-problems: routing
and scheduling, each solved separately. This approach simplifies each sub-
problem, increasing the likelihood of finding a solution. However, this can lead to
sub-optimal overall solutions since the algorithms may not be well-coordinated.
For instance, an optimal schedule might not align well with the routing policy.

For the ICT-group, robustness is important, especially to avoid AGV col-
lisions. Thus, a deterministic and comprehensible routing policy is essential.
To achieve this, we decided to address routing and scheduling separately, while
maintaining some interdependence. The routing policy is deterministic and

12

straightforward, while the scheduling process can be more complex and stochas-
tic. This paper presents a routing policy based on the A* algorithm, which uses
a pre-determined task schedule for each AGV, detailed in the Routing Policy
section. The scheduling policy, based on Iterative Local Search (ILS), takes all
tasks, AGVs, and the routing policy as inputs, and outputs the optimal task
allocation according to the deterministic routing policy. This is discussed in
section 8.

The stochastic nature of the environment, particularly variable crane times,
presents another challenge. Instead of adjusting the routing and scheduling
policies to handle these variations, we employ a rescheduling policy. This policy
reschedules tasks using the overall policy at fixed intervals to adapt to varying
crane times, as explained in section 9. An overview of the algorithms and their
inter-dependencies is shown in Figure 7.

Figure 7: Overview of Algorithms

5.2 Solution Encoding

An important decision when addressing the Multi-AGV Pickup and Delivery
(MAPD) problem is how to encode the solution. The chosen encoding impacts
which algorithms can be used for AGV scheduling and routing problems. Given
our interest in using evolutionary algorithms, we require a representation that
allows easy modification of the sequence and placement of tasks. In this work,
the schedule is encoded using a dictionary, where the keys are AGVs and the
values are the corresponding tasks along with their performance on the three
activity time blocks. An AGV’s task list can be empty if it has no tasks to
perform. The sequence of tasks in the list indicates the order in which the AGV
will execute them. Completed tasks are deleted from the schedule.

This encoding is efficient for simulation, allowing us to find the next task for
an AGV in O(1) time. Additionally, it enables us to identify which tasks are
eligible for local search, specifically those that are under-performing according
to the three time blocks and should be switched. For the local search, tasks can

13

be inserted or swapped. When inserting, we consider the task’s position and
place it before or after the target task in the schedule. If the insert is out of
range of the AGV’s task list, the task is placed at the start of another AGV’s
task list.

Figure 8: Example of a schedule

For routing, we do not determine all routes before the simulation starts, as
the environment can change. Therefore, we have chosen to define a route policy.
A policy is a set of rules executed to determine the path from the starting point
of a task to its endpoint. Each time an AGV requires routing, it consults
the policy for guidance. The policy provides a route in the form of a list of
collision-free edges over time. We employ the A* search algorithm combined
with a reservation table to handle the time dimension, known in the literature
as ”Cooperative A* search” Silver [2005]. Additionally, this policy includes logic
for handling deadlock situations, where AGVs are unable to move.

Figure 9: Example of a route

6 Simulation

In order to verify the performance of the routing and scheduling policies a
discrete-event simulation is created and used.

There are several rationales for assessing the efficacy of routing and schedul-
ing algorithms through simulation. The current solution and other literature
solely relies on shortest distances to ascertain the most efficient assignment list
[Ropke and Pisinger [2006], Xu et al. [2022]]. However, our contention remains
that AGVs must navigate without encountering collisions. Practically, this ne-
cessitates AGVs to search for alternative routes rather than the shortest one to

14

reach a crane.
Another crucial aspect are the effects of occupied crane vertices. When a

crane vertex is taken by AGV ai, and another AGV, aj , requires the same spot,
it leads to a scenario where aj has to wait a certain amount of time, we termed
this the idle time, until ai vacates the parking space.

Moreover, the influence of randomness in crane times needs to be covered,
which can be validated by manipulating the variance of distributions within the
simulation.

Finally, the complexity of terminal behavior, given the changes over time,
underlines the need to adapt the simulation to mirror these developments.

6.1 Assumptions and Simplifications in Simulation Design

Numerous simplifications and assumptions underpin the creation of this simu-
lation. Regarding tasks, we simplify the issue by establishing a fixed quantity
of known tasks before the simulation commencement. Furthermore, we assume
a lack of prescribed task order, acknowledging the complexity involved in task
entry is beyond the scope of this research.

As for AGV simplifications, we limit their movement to one vertex per
time step. This simplification aims to narrow the study’s focus onto the task-
assignment problem rather than focusing on path planning, despite the inherent
connection between the two. Additionally, we presume each AGV to handle only
a single container.

When considering crane times, we simplify their distribution to a normal
distribution. This choice allows us to explore diverse variances, to see how this
impacts the created algorithms,

6.2 Environment description

The environment is designed to emulate terminal operations, focusing on the
dynamics of activities on the driving side. Within this environment, several
entities interact, including cranes, Automated Guided Vehicles (AGVs), tasks,
and segments categorized as non-driving or driving.

The visual representation of the simulation is presented in the following
figure:

15

Figure 10: Visual representation

The simulation is adapted as a multi agent-based simulation within a rein-
forcement learning framework. This is based on a ”Gym environment” [Brock-
man et al. [2016]]. We have done this to make sure the simulation can be
used with other optimisation frameworks such as reinforcement learning. This
framework entails various functions: initialization, stepping through time, re-
setting, setting and getting schedules, and obtaining the current state of the
environment. Let’s briefly explain each of these functions:

1. Initialization: This function establishes an instance of the environment,
requiring parameters such as the number of AGVs and tasks, along with
a routing policy.

2. Step Function: It progresses the simulation by one discrete time step,
allowing AGVs to move along segments or facilitating the loading of con-
tainers onto AGVs when they’re positioned at cranes.

3. Reset Function: It restores the environment to its initial state.

4. Set Schedule Function: This function assigns tasks encoded in a specific
format to the relevant AGVs within the environment.

5. Get Schedule Function: It retrieves the tasks designated for each AGV.

6. Get State Function: This function provides the current state of the envi-
ronment, encompassing the AGVs’ locations, the passage of time, current
routes, etc.

16

7. Set State Function: It updates the current state of the environment
based on the given parameters.

Upon completion of all tasks, the step function returns a boolean value of
”True,” indicating the simulation’s conclusion. Additionally, it furnishes statis-
tical data on task performance categorized into three time groups: idle time,
drive time, and crane time for each task performed by every AGV.

When using a simulation for optimization, it is crucial that the simulation
runs relatively quickly, especially when employing algorithms that require nu-
merous roll-outs, such as Monte Carlo Tree Search (MCTS).

Table 3 shows how the simulation performs as the solution scales up.

Amount AGVs Amount Tasks Execution Time (s)
10 60 0.003
10 80 0.008
10 100 0.010

Table 3: Execution Time for Different Amounts of Tasks with 10 AGVs

As observed, more tasks result in longer simulation times. This increase is
mainly due to the routing required for all the AGVs. For every task, a route
to the start and end crane must be determined. Therefore, we will gradually
increase the complexity of the algorithms to ensure that they run within an
acceptable amount of time.

7 Routing policy

As described earlier, a task has two points: a start crane, s, and a goal crane,
g. To navigate to these locations, an AGV must follow a route that does not
overlap with other AGVs’ routes at the same moment in time. Most routing
policies represent the environment as a grid with points and edges connecting
these points. This problem is also represented as a grid, consistent with how
AGVs navigate in the real world. A common challenge in standard routing
algorithms is the time aspect, which is often ignored. For example, an edge
occupied at time-step 1 may be free at time-step n. Without considering time,
an edge could be incorrectly marked as permanently blocked.

To address the time aspect, the routing policy used in this study is based on
David Silver’s ”Cooperative A* Search.” This policy includes a structure that
tracks the reservation of edges over time Silver [2005]. Specifically, there is a
reservation table where each row corresponds to a discrete time step, and each
column corresponds to an edge on the grid. The value of an entry in the table
indicates which AGV has reserved a particular edge at a given time step.

Figure 11 illustrates Cooperative A*. In the figure, a blue car needs to move
to the position at coordinates (2,2), while an orange car needs to move to the
position at coordinates (1,1). Both cars reserve their routes in the reservation

17

Figure 11: Cooperative A*

table, meaning they reserve the edges they traverse for each time step. This
allows them to use the same edges at different times without conflict.

AGVs calculate routes and reserve edges sequentially to avoid overlapping
reservations and race conditions. Using the reservation table, a standard routing
algorithm can then find the best route. Routing algorithms typically use an
adjacency list of points on the grid. In addition to the adjacency list, the
reservation table is employed. To apply the reservation table, a time index is
incorporated into the search. Each time a new edge is found using the routing
algorithm, the time counter is incremented by one.

In this environment, it is crucial to balance finding routes efficiently and
finding short routes that lead to optimal solutions. This study uses A* search
with the Manhattan distance to the next crane as the heuristic. A* search is
chosen because it finds a path relatively quickly compared to breadth-first search
and finds shorter routes compared to greedy best-first search[Silver [2005]]. An
algorithmic description can be found in the underneath algorithm.

Algorithm 1 Cooperative A* algorithm

0: Inputs: AGVs, Grid, T
0: for each AGV in AGVs do
0: search T Ð T
0: route Ð []
0: if AGV has no route then
0: while route not found do
0: if A* finds edge on grid on search T which is not in reservation table

then
0: add edge to route
0: search T `“ 1
0: end if
0: end while
0: end if
0: end for=0

Another challenge with routing is the ”deadlock problem,” which is relevant
to the environment studied. Deadlocks occur when AGVs attempt to reserve
each other’s cranes, forming a cycle that causes the AGVs to freeze in place.
These cycles can range from involving just two AGVs to encompassing all AGVs.

A strategy to address this challenge is to use a time counter for each AGV,
which tracks how many time steps an AGV has been waiting for a crane. When

18

this counter exceeds a certain threshold, the AGV moves to another random
crane to break the cycle. This is a simple yet effective approach. However, a
downside is that the AGV moving to a random crane incurs additional drive
time.

Figure 12: Deadlock Example

An example of the deadlock problem is shown in Figure 12. Here, the green
AGV at crane 1 wants to reserve crane 2, which the orange AGV occupies. The
orange AGV wants to reserve crane 3, which the yellow AGV occupies. The
yellow AGV wants to reserve crane 1, which the green AGV occupies. Without
a deadlock resolution algorithm, these AGVs will be stuck waiting for each other
indefinitely.

19

8 Scheduling policies

Before we tackle the intricacies of dealing with randomly distributed crane times,
it’s essential to identify an algorithm that performs effectively in a static envi-
ronment.

8.1 Selection criteria

In selecting an algorithm, two key aspects require consideration: the quality
of the solution and the number of simulations required to find it. Given that
each simulation takes approximately 0.003 seconds and we need to reschedule
frequently in order to find the optimal schedule given the current situation, we
need to focus on algorithms with a low simulation count.

To evaluate various algorithms, we established a standardized experimental
setup. We tested with four different combinations of AGVs and tasks: 5x20,
5x40, and 5x60. In each scenario, we conducted 40 simulations where tasks
were evenly distributed across the cranes, mirroring real-world conditions. The
simulations varied in the s and g points of the tasks, ensuring a comprehensive
assessment. Subsequently, we analyzed the minimum, median, and maximum
results from these simulations.

8.2 Greedy

The approach to finding a solution with the fewest simulation runs involves
employing a greedy search. We’ve employed two types of greedy strategies: the
Hungarian strategy and a novel approach, which we will call the greedy strategy.

The Hungarian strategy is rooted in the original algorithm outlined in the
Current Method section. It entails creating a table where each task-AGV com-
bination is assigned a cost. This cost is calculated as the Manhattan drive time
from the current position of the AGV to the start.

The new greedy strategy also involves selecting tasks one by one. Beginning
with an empty schedule, a task is chosen randomly and placed as the last task
for every AGV in the current schedule. Subsequently, a simulation is run for
each new schedule, and the schedule with the lowest total time is chosen greedily.
This process is repeated until all tasks are incorporated into the schedule. The
difference with the current method lies in the fact that a simulation run looks at
all time activities instead of only the drive time. However, this approach is, just
as the Hungarian algorithm, sub-optimal as it selects tasks randomly in each
iteration, potentially resulting in tasks being executed earlier or later without
consideration of their impact on overall efficiency. A detailed description of the
algorithm can be found in Algorithm: 2.

20

8.2.1 Experiment

For the experiment, We evaluated the two strategies according to the established
experimental setup. Additionally, we tested random schedules to compare the
efficacy of the strategies. The results are presented in Table 4.

Table 4: Experimental Results
Algorithm AGV x Task Performance Measures

Min Median Max

Hungarian
5x20 203 220 224
5x40 278 290 302
5x60 403 420 440

Greedy
5x20 145 153 155
5x40 235 245 264
5x60 365 374 382

Random
5x20 262 283 302
5x40 342 360 376
5x60 453 470 490

Based on the results, the new greedy strategy appears to outperform the old
Hungarian algorithm, primarily because it considers idle times. However, the
drawback of the greedy strategy is that it necessitates a higher number of sim-
ulations, equal to the product of the number of AGVs and tasks. Nevertheless,
this quantity of simulations remains minimal when looking at the total time
spend on searching for a solution.

21

8.3 Local Search

Having established that we can achieve better solutions with a minimal number
of simulations, we can now explore the neighborhood of the solution to further
improve. This can be accomplished through the use of local search operators.

In local search, task selection plays a crucial role, and it can be guided
by considering the three activity time groups; idle time, drive time and crane
time. An AGV-task combination with high idle and drive times indicates poor
performance. By prioritizing the movement of these tasks, we can expedite the
creation of better solutions faster. The heuristic used with the local search is
x1˚idletime`x2˚drivetime where x1`x2 “ 1. In the experiments we used 0.5
as value for both x1 and x2. Therefore idle and drive time have the same impact
at how a solution performs. It is also possible to experiment with different values
of x1 and x2. These local search operators have a prefix ”heuristic”.

Further we did some small sized experiments with first-improvement and
best-improvement and found that first-improvement resulted in using less sim-
ulation runs and often finds the same optimum [Ochoa et al. [2010]]. Several
local search operators were tested:

• Swap: Swaps the positions of two items.

• Insertion: Places a task at a different position in the schedule.

• Swap first-improvement: Continuously swaps one task with others until a
better position is found. A detailed description of the algorithm can be
found in Algorithm: 4.

• Insertion first-improvement: Continuously inserts one task at different
positions until a better position is found. A detailed description of the
algorithm can be found in Algorithm: 3.

• Heuristic Swap first-improvement: Prioritizes tasks based on idle and drive
times, then continuously swaps them until a better position is found.

• Heuristic Insertion first-improvement: Prioritizes tasks based on idle and
drive times, then continuously inserts them at different positions until a
better position is found.

• Heuristic Swap Insertion first-improvement: Combines swapping and in-
sertion operations, prioritizing tasks based on idle and drive times, until
a better position is found.

8.3.1 Experiment

For the experiment, We tested these local search operators according to the
established experimental setup. The results are presented in Table 5.

22

Table 5: Experimental Results
Algorithm AGV x Task Performance Measures

Min Med Max

Swap
5x20 143 145 150
5x40 235 252 253
5x60 360 371 376

Insertion
5x20 142 142 150
5x40 236 250 253
5x60 363 373 376

Swap first-improvement
5x20 132 136 140
5x40 233 243 253
5x60 361 375 376

Insertion first-improvement
5x20 140 141 145
5x40 232 248 253
5x60 359 374 376

Heuristic Swap first-improvement
5x20 132 135 140
5x40 235 242 253
5x60 370 373 376

Heuristic Insertion first-improvement
5x20 133 136 141
5x40 235 249 253
5x60 365 373 376

Heuristic Swap Insertion first-improvement
5x20 127 129 131
5x40 235 243 245
5x60 365 372 376

Swap Insertion first-improvement
5x20 129 134 138
5x40 235 238 250
5x60 365 373 376

From the table, it’s evident that the first-improvement search operators out-
perform the random operators. Additionally, combining the swap and insertion
neighborhoods leads to the discovery of new and improved solutions.

Once the local searcher has converged, we can stop the search to conserve
simulation runs. To determine convergence, we have set a criterion: if the
algorithm fails to find a new solution after a certain number of episodes, we
terminate the local search and infer that it has reached a local optimum.

23

Figure 13: Results local search over time; the number of simulations required to converge
to a local optimum for 5 AGVs and 20 tasks.

Figure 14: Results local search over time; the number of simulations required to converge
to a local optimum for 5 AGVs and 40 tasks.

Figure 15: Results local search over time; the number of simulations required to converge
to a local optimum for 5 AGVs and 60 tasks.

24

Figure 13, 14, 15 showcases the number of simulations needed to achieve the
local optimum. In these figures the x-axis represent the amount of simulation
runs, the y-axis represents the ts of the simulation. In the legend the s represents
swap, i represents insertion and h represents heuristic, Notably, local searching
in larger instances, such as the 5x40 scenario, can already require up to 10,000
simulation runs.

8.4 ILS

Having explored the immediate neighborhood of the greedy solution, we can now
venture into nearby neighborhoods to potentially obtain better results. This can
be accomplished using ILS (Iterated Local Search), an algorithm that combines
local search with perturbations—small changes to the solution to reach superior
neighborhoods. The concept involves iterative improving upon a given solution.
To execute ILS, a perturbation or mutation operator is essential to modify the
current solution and transition to another neighborhood [Ulaga et al. [2022]]. A
detailed description of the algorithm can be found in Algorithm: 7.

In this study, we examine two perturbation operators:

• IG (Iterative Greedy): Selects x tasks from the current schedule and greed-
ily places them back into the schedule. A detailed description of the algo-
rithm can be found in Algorithm: 5.

• RN (Random Neighbor): Selects x tasks from the current schedule and
randomly places them back into the schedule. A detailed description of
the algorithm can be found in Algorithm: 6.

25

8.4.1 Experiment

For the experiment, We tested the heuristic swap insertion local searcher in
combination with the two perturbation operators according to the established
experimental setup. The results are presented in Table 6.

Table 6: Experimental Results
Algorithm AGV x Task Performance Measures

Min Med Max

IG Heuristic Swap Insertion best-first 1
5x20 124 129 131
5x40 234 243 235
5x60 363 370 376

IG Heuristic Swap Insertion best-first 3
5x20 126 127 129
5x40 220 229 235
5x60 355 360 370

IG Heuristic Swap Insertion best-first 5
5x20 125 127 128
5x40 220 229 235
5x60 363 372 374

RN Heuristic Swap Insertion best-first 1
5x20 127 128 129
5x40 230 241 245
5x60 364 370 376

RN Heuristic Swap Insertion best-first 3
5x20 127 129 131
5x40 235 243 245
5x60 362 372 376

RN Heuristic Swap Insertion best-first 5
5x20 127 129 131
5x40 235 243 245
5x60 362 372 376

From the results, it’s evident that IG outperforms RN. One possible expla-
nation for this could be that IG generates solutions that are still in the nearby
neighborhood of the current solution. This suggests that even small adjust-
ments to the schedule can significantly impact its performance, highlighting the
complexity of the environment’s behavior.

Looking at the IG algorithms, we observe that switching three tasks yields
the best results across all instances. It might be worthwhile to explore combining
different jump factors, starting with a small number of tasks and adjusting based
on performance to optimize the search process.

26

Figure 16: Results ILS over time; the number of simulations required to converge
to a local optimum. The blue line represents IG with 1 mutated task, the orange
line represents IG with 3 mutated tasks, the green line represents IG with 5
mutated tasks and the red line represents IG with 10 mutated tasks

In figure 16 we tested an even larger instance with 100 tasks. In this figure
the x-axis represent the amount of simulation runs, the y-axis represents the ts
of the simulation. Every time the results get worse means a jump in the solution
space, after this jump it tries to local search again, converging in sometimes even
better solutions, again we can observe the best results by switching three tasks.

However, as ILS requires a rapid increase in simulation runs, and considering
the objective of this study is to develop an algorithm capable of finding solutions
quickly for rescheduling purposes, we have chosen not to delve further into
investigating more complex algorithms such as Genetic algorithms.

27

9 Rescheduling Policy

In this section, we introduce variability into the scenario and use a rescheduling
policy in combination with the routing and scheduling policy, initially designed
for a static environment, to adapt to these changes.

Randomness is introduced by modeling crane times as a probability distri-
bution based on empirical data. According to the literature, crane times can
be seen as reactive events, which are job or task-related. Consequently, we can
model this as a stochastic scheduling problem. However, the real environment
also includes unpredictable events, such as crane operator breaks or delayed
ships, which are not yet simulated. Therefore, we also handle the crane-times
within the dynamic scheduling paradigm.

To address reactive events, we employ a predictive-reactive scheduling ap-
proach. This method involves making incremental adjustments to the initial
schedule to accommodate changes in the real environment. We selected this ap-
proach because we assume that not every reactive event necessitates a complete
rescheduling. Additionally, this approach minimizes the number of simulation
runs, maintaining algorithm efficiency, whereas starting from scratch would re-
quire significantly more simulations.

We reschedule periodically because the timing of reactive events, such as a
crane operator’s break, is unpredictable. For instance, we reschedule every ts
time steps.

An example illustrating the necessity of rescheduling is as follows: consider
two AGVs, AGV1 and AGV2. ILS initially distributes tasks equally among
the AGVs, considering idle time, crane time, and drive time, resulting in a
schedule like {AGV1: [Task1, Task2, Task3], AGV2: [Task4, Task5, Task6]}.
If AGV1 encounters an issue with its vehicle or experiences a high crane time
while performing Task1, it will pause. Meanwhile, AGV2 completes Task4,
Task5, and Task6. Without rescheduling, AGV2 will idle, wasting time, while
it could have taken over Task2 or Task3 from AGV1. Periodic rescheduling
would redistribute tasks, resulting in a more efficient schedule.

The procedure is as follows: there are two environments—the real and the
simulation environments. The real environment is where AGVs execute tasks
and crane times are unpredictable. Initially, before the real environment be-
gins, the simulation environment, using the positions of AGVs from the real
environment, applies Iterative Local Search (ILS) to find a starting solution. In
the simulation environment, crane times are set to their mean values. Once a
solution is found, the real environment operates for t time steps. After every t
time steps, ILS is applied again in the simulation environment, using the current
state of the real environment, to find a new solution until all tasks are finished.

28

9.1 Experiment

In this experiment, we maintain the same setup as in the static environment,
but introduce a rescheduling interval of 5 time steps, which is based on experi-
ments on smaller instances. Further exploration may involve testing with longer
intervals to gauge their impact.

Table 7: Experimental Results
Algorithm AGV x Task Performance Measures

Min Med Max

no rescheduling
5x20 140 150 155
5x40 260 273 284
5x60 450 487 502

rescheduling
5x20 133 142 150
5x40 240 243 270
5x60 396 413 449

From the results in table 7 we can see that rescheduling helps in dealing with
randomness. Especially in larger instances we can see that without reschedul-
ing the amount of time-steps will increase overtime. With the rescheduling
procedure we can see that this deviation can be kept to a minimum.

10 Conclusion

From the original textual problem representation, we concluded that the Multi-
Agent Decision Process (MADP) formulation can be used for addressing the
given problem. This conclusion is primarily based on the routing and scheduling
sub-problems, which are fundamental to AGV scheduling.

We identified three main activity time blocks essential for optimizing the
total time required for AGVs to complete all container tasks: idle time, collision
time, and drive time. To experiment with different schedules and routes, we
adjusted a simulation environment. This decision was driven by the need to
handle collisions, reserved crane parking places, and to examine the effects of
randomness and variability in the problem domain.

For the routing policy, we employed cooperative A* routing with deadlock
prevention to route AGVs based on a given schedule. This policy is robust,
ensuring that collisions are avoided and container tasks are always completed
given any schedule.

To determine a schedule, we initially search for a feasible solution. Previous
work only considered drive time from the activity time blocks as a heuristic.
However, with our simulation, we could evaluate how other activity time blocks
perform with the given solution. We introduced a new initialization method, the
greedy method, which leverages the simulation to generate a starting solution.

Using this initial solution, we explored its neighbourhood by employing var-
ious local search algorithms such as random, swap, and insertion operators in

29

combination with the activity time blocks. Our experiments indicated that a
combination of swap and insertion operator neighbourhoods with the activity
time blocks yielded the best performance.

We further enhanced our search process by employing Iterated Local Search
(ILS), using the local search operators to broaden the search region and iden-
tify other optima. We experimented with random neighbors (RN) and iterated
greedy neighbors (IG) as mutation operators. IG outperformed RN as it al-
tered the solution sufficiently to explore new neighborhoods without excessive
deviation from the current solution. Our experiments demonstrated that minor
modifications to the solution could lead to significantly different solution spaces.

To address the randomness of crane times, we implemented a periodic reschedul-
ing strategy. Our experiments confirmed that rescheduling is essential for man-
aging randomness, as results with rescheduling were superior. Overall, we con-
clude that various heuristics, such as activity time blocks combined with local
and global search strategies, can be effectively utilized for task assignment.
This approach results in a schedule that minimizes the overall time for con-
tainer handling at terminals, outperforming the current Hungarian algorithm.
The rescheduling strategy also effectively mitigates the inherent randomness of
crane times.

11 Discussion

In this research, we have demonstrated that combining heuristics with a reschedul-
ing procedure can be effective for task assignment in automated guided vehi-
cle (AGV) scheduling. We implemented three initialization methods, with the
greedy method performing the best. In each iteration, the algorithm randomly
selects a task and places it in the optimal position within the current schedule.
The random selection of tasks also determines the sequence of task execution,
whether early or late. It would be beneficial to develop a method for predicting
in advance which tasks should be scheduled early and which should be scheduled
later.

We also experimented with different local search operators, such as swap
and insertion, and combined them with meta-heuristics using Iterative Greedy
and Random Neighbor mutation strategies. These methods proved effective in
finding solutions with low completion times for this problem. However, evalu-
ating the true effectiveness of the solutions remains challenging due to the lack
of knowledge about the global minimum time for this problem. Our approach
begins with an initial solution and explores the neighboring solution space. This
method is advantageous because it yields better results than Hungarian schedul-
ing and can find a sub-optimal solution within a reasonable number of simulation
runs. However, this strategy may lead to local optima, which can significantly
differ in quality from the global optimum.

To address this, we conducted some tests using Multi-start Local Search
(MLS) from random solutions to obtain a broader overview of the search space.
These tests did not yield optima of significantly better quality. This underscores

30

the inherent trade-off in search problems between exploration and exploitation.
Given more simulation runs and extended research time, it would be beneficial
to explore the search space more extensively.

Simulation design should accurately represent the real-world environment,
particularly in complex settings such as a harbour, where factors such as AGV
availability, route maintenance, and changes in storage locations can vary. We
consulted stakeholders and reviewed related literature to incorporate key as-
pects, but there are also some simplifications made, especially in routing and
timing. For example, we assumed that AGVs travel exactly one unit to the
right, left, up, or down in one time step, which does not account for variations
in AGV speed or turning degrees. Despite these limitations, simulation testing
proved valuable for understanding both the algorithms and the environment.
Simulations provide a visual representation of system dynamics, which aids in
stakeholder discussions and in analysing algorithm behaviour to devise new so-
lutions.

Our algorithms were designed with the goal of computing solutions quickly
to facilitate more frequent rescheduling. Given that simulations consume the
majority of computation time, the number of simulations is crucial for designing
a fast algorithm. Currently, the simulation is implemented in Python, a rela-
tively slow language unless optimized with C++ libraries. Reducing simulation
time would enable more simulation runs, allowing us to employ algorithms that
require more simulations or explore more of the search space.

During our experiments, we tested various parameters but kept some con-
stants that could be varied to potentially yield new solutions. For Iterated
Local Search (ILS), we experimented with the parameter of the number of tasks
to mutate. In the experiments we used constant values. However a dynamic
approach could start with a small number of tasks and increase it if no opti-
mum is found after several iterations, then decrease it when necessary to avoid
overshooting the optimum.

The AGV scheduling and routing problems were defined as multi-agent de-
cision processes (MADP) solved by a central agent. An alternative formulation
would treat routing and scheduling as a single problem, potentially facilitat-
ing the discovery of a global optimum due to the interdependence of the sub-
problems. Instead of a central agent scheduling all tasks, each AGV could also
act as an agent choosing its tasks based on the environment. This decentral-
ized approach eliminates the need for a complete upfront schedule, continuous
rescheduling and routing strategies.

31

12 Appendix

In this section, we detail some of the algorithms that performed well during the
experiments.

12.1 Initialisation algorithm

Algorithm 2 Greedy Scheduling

0: initial solution Ð tAGV : rs for AGV in AGVsu
0: tasks to schedule Ð rTaskss
0: AGV s Ð rAGVss
0: sim Ð Simulation
0: while lenptasks to scheduleq ‰ 0 do
0: task to schedule Ð random.choiceptasks to scheduleq

0: best AGV Ð None
0: best time Ð 8

0: for each AGV in AGV s do
0: new schedule Ð copypinitial solutionq

0: new schedulerAGV s.appendptask to scheduleq

0: sim result Ð sim.runpnew scheduleq

0: if sim result.time ă best time then
0: best time Ð sim result.time
0: best AGV Ð AGV
0: end if
0: end for
0: initial solutionrbest AGV s.appendptask to scheduleq

0: tasks to schedule.removeptask to scheduleq

0: end while=0

32

12.2 Local search algorithms

Algorithm 3 Local Search Insertion First Improvement

0: function local search insertion first improvement(current schedule,
sim, iterations)

0: pAGV index, task indexq Ð get random task to move(current schedule)
0: task Ð current schedulerAGV indexsrtask indexs

0: current time Ð sim.run(current schedule)
0: tried positions Ð rs

0: tried positions.append(pAGV index, task indexq)
0: while iterations ą 0 do
0: prand AGV index, rand task indexq Ð

0: get random position from schedule(current schedule,
tried positions)

0: tried positions.append(prand AGV index, rand task indexq)
0: current schedule[AGV index].delete(task)
0: current schedule[rand AGV index].insert(task, rand task index)
0: new time Ð sim.run(current schedule)
0: if new time ă current time then
0: return current schedule
0: else
0: current schedule[rand AGV index].delete(task)
0: current schedule[AGV index].insert(task, task index)
0: end if
0: iterations Ð iterations - 1
0: end while
0: end function=0

33

Algorithm 4 Local Search Swap First Improvement

0: function local search swap first improvement(current schedule,
sim, iterations)

0: pAGV index, task indexq Ð get random task to move(current schedule)
0: task Ð current schedulerAGV indexsrtask indexs

0: current time Ð sim.run(current schedule)
0: tried positions Ð rs

0: tried positions.append(pAGV index, task indexq)
0: while iterations ą 0 do
0: prand AGV index, rand task indexq Ð

get random position from schedule(current schedule,
tried positions)

0: rand task Ð current schedulerrand AGV indexsrrand task indexs

0: current schedulerAGV indexsrtask indexs Ð rand task
0: current schedulerrand AGV indexsrrand task indexs Ð task
0: tried positions.append(prand AGV index, rand task indexq)
0: new time Ð sim.run(current schedule)
0: if new time ă current time then
0: return current schedule
0: else
0: current schedulerAGV indexsrtask indexs Ð task
0: current schedulerrand AGV indexsrrand task indexs Ð

rand task
0: end if
0: iterations Ð iterations ´ 1
0: end while
0: end function=0

34

12.3 Mutation algorithms

Algorithm 5 Iterative Greedy

0: function Iterative Greedy(current schedule, sim, n)
0: pAGV indices, task indicesq Ð get n random tasks(current schedule,

sim, n)
0: tasks to reinsert Ð rs

0: for i Ð 0 to |AGV indices| ´ 1 do
0: AGV index Ð AGV indicesris
0: task index Ð task indicesris
0: task Ð current schedulerAGV indexsrtask indexs

0: current schedule[AGV index].delete(task)
0: tasks to reinsert.appendptaskq

0: end for
0: for task in tasks to reinsert do
0: best time Ð 8

0: best AGV Ð None
0: best task position Ð None
0: for AGV in current schedule.keys do
0: for position Ð 0 to |current schedule[AGV]| do
0: current schedule[AGV].insert(task, position)
0: new time Ð sim.run(current schedule)
0: if new time ă best time then
0: best time Ð new time
0: best AGV Ð AGV
0: best task position Ð position
0: end if
0: current schedule[AGV].delete(task)
0: end for
0: end for
0: current schedule[best AGV].insert(task, best task position)
0: end for
0: return current schedule
0: end function=0

35

Algorithm 6 Random Neighbor

0: function Random Neighbor(current schedule, sim, n)
0: pAGV indices, task indicesq Ð get n random tasks(current schedule,

sim, n)
0: tasks to reinsert Ð rs

0: for i Ð 0 to |AGV indices| ´ 1 do
0: AGV index Ð AGV indicesris
0: task index Ð task indicesris
0: task Ð current schedulerAGV indexsrtask indexs

0: current schedule[AGV index].delete(task)
0: tasks to reinsert.appendptaskq

0: end for
0: for task in tasks to reinsert do
0: prandom AGV index, random task indexq Ð

get random position from schedule(current schedule)
0: current schedule[random AGV index].insert(task, ran-

dom task index)
0: end for
0: return current schedule
0: end function=0

12.4 Iterative local Search, ILS

Algorithm 7 Iterative Local Search

0: function Iterative Local Search(sim, amount mutated tasks, iterations)
0: global schedule, global time, iterations Ð

0: greedy init(sim, iterations) or
0: random init(iterations) or
0: hungarian init(iterations)
0: while iterations ą 0 do
0: mutated schedule, iterations Ð

0: Iterative Greedy(global schedule, sim, amount mutated tasks)or
0: Random Neighbor(global schedule, sim, amount mutated tasks)
0: local schedule, local time, iterations Ð

0: localsearch swap first improvement(mutated schedule, sim, iterations)or/and
0: localsearch insertion first improvement(mutated schedule, sim, iterations)or/and
0: heursitic localsearch insertion first improvement(mutated schedule, sim, iterations)or/and
0: heursitc localsearch swap first improvement(mutated schedule, sim, iterations)
0: if local time ă global time then
0: global time Ð local time
0: global schedule Ð local schedule
0: end if
0: end while
0: return global schedule
0: end function=0

36

References

James C Bean, John R Birge, John Mittenthal, and Charles E Noon. Matchup
scheduling with multiple resources, release dates and disruptions. Operations
Research, 39(3):470–483, 1991.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym. 2016.

Guang Chen, Jing Hou, Jinhu Dong, Zhijun Li, Shangding Gu, Bo Zhang,
Junwei Yu, and Alois Knoll. Multiobjective scheduling strategy with genetic
algorithm and time-enhanced A* planning for autonomous parking robotics in
high-density unmanned parking lots. IEEE/ASME Transactions on Mecha-
tronics, 26(3):1547–1557, 2020.

Hamed Fazlollahtabar and Samaneh Hassanli. Hybrid cost and time path plan-
ning for multiple autonomous guided vehicles. Applied Intelligence, 48:482–
498, 2018.

Hamed Fazlollahtabar and Mohammad Saidi-Mehrabad. Methodologies to op-
timize automated guided vehicle scheduling and routing problems: A review
study. Journal of Intelligent & Robotic Systems, 77:525–545, 2015.

Mahdi Hamzeei, Reza Zanjirani Farahani, and Hannaneh Rashidi-Bejgan. An
exact and a simulated annealing algorithm for simultaneously determining
flow path and the location of P/D stations in bidirectional path. Journal of
Manufacturing Systems, 32(4):648–654, 2013.

Enze Hu, Jianjun He, and Shuai Shen. A dynamic integrated scheduling method
based on hierarchical planning for heterogeneous AGV fleets in warehouses.
Frontiers in Neurorobotics, 16:1053067, 2023.

Hudson. ECT-Delta. https://www.ect.nl/nl/terminals/hutchison-ports-ect-
delta, 2023.

ICT-group. Ict-group. https://www.ict.eu/en, 2023.

Jian Jin. Multi-AGV scheduling problem in a GV scheduling problem in auto-
mated container terminal. Journal of Marine Science and Technology, 24:5,
2016.

H. W. Kuhn. The Hungarian method for the assignment problem. Naval Re-
search Logistics Quarterly, 1995.

Guomin Li, Xinyu Li, Liang Gao, and Bing Zeng. Tasks assigning and se-
quencing of multiple AGVs based on an improved harmony search algorithm.
Journal of Ambient Intelligence and Humanized Computing, 10:4533–4546,
2019.

37

Kexin Li, Qianwang Deng, Like Zhang, Qing Fan, Guiliang Gong, and Sun Ding.
An effective MCTS-based algorithm for minimizing makespan in dynamic
flexible job shop scheduling problem. Computers & Industrial Engineering,
155:107211, 2021.

Wiem Mouelhi-Chibani and Henri Pierreval. Training a neural network to select
dispatching rules in real time. Computers & Industrial Engineering, 58(2):
249–256, 2010.

A Noorul Haq, T Radha Ramanan, Kulkarni Sarang Shashikant, and R Srid-
haran. A hybrid neural network–genetic algorithm approach for permutation
flow shop scheduling. International Journal of Production Research, 48(14):
4217–4231, 2010.

Gabriela Ochoa, Sébastien Verel, and Marco Tomassini. First-improvement vs.
best-improvement local optima networks of NK landscapes. In International
Conference on Parallel Problem Solving from Nature, pages 104–113. Springer,
2010.

Djamila Ouelhadj and Sanja Petrovic. A survey of dynamic scheduling in man-
ufacturing systems. Journal of Scheduling, 12:417–431, 2009.

Tao Qiuyun, Sang Hongyan, Guo Hengwei, and Wang Ping. Improved particle
swarm optimization algorithm for AGV path planning. IEEE Access, 9:33522–
33531, 2021.

Ana Carolina Queiroz, Alex Vieira, and Heder Bernardino. Solving multi-agent
pickup and delivery problems using multiobjective optimization. Journal of
Intelligent & Robotic Systems, 109(2):26, 2023.

Liu Renke, Rajesh Piplani, and Carlos Toro. A review of dynamic scheduling:
Context, techniques and prospects. Implementing Industry 4.0: The Model
Factory as the Key Enabler for the Future of Manufacturing, pages 229–258,
2021.

Stefan Ropke and David Pisinger. An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows. Trans-
portation Science, 40(4):455–472, 2006.

David Silver. Cooperative-A*. https://www.davidsilver.uk/wp-
content/uploads/2020/03/coop-path-AIIDE.pdf, 2005.

Dirk Steenken, Stefan Voß, and Robert Stahlbock. Container terminal operation
and operations research: A classification and literature review. OR Spectrum,
26:3–49, 2004.

Lucija Ulaga, Marko urasević, and Domagoj Jakobović. Local search based
methods for scheduling in the unrelated parallel machines environment. Ex-
pert Systems with Applications, 199:116909, 2022.

38

Gary R Weckman, Chandrasekhar V Ganduri, and David A Koonce. A neural
network job-shop scheduler. Journal of Intelligent Manufacturing, 19:191–
201, 2008.

Qinghong Xu, Jiaoyang Li, Sven Koenig, and Hang Ma. Multi-goal multi-
agent pickup and delivery. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 9964–9971. IEEE, 2022.

Xiyan Zheng, Chengji Liang, Yu Wang, Jian Shi, and Gino Lim. Multi-AGV dy-
namic scheduling in an automated container terminal: A deep reinforcement
learning approach. Mathematics, 10(23):4575, 2022.

39

