
3D Gaussian Splatting for
Isolated Objects

MSc thesis in Computing Science for Utrecht University
and the Royal Dutch Aerospace Centre

Lourens R. Verhage
(6762115)

Author

Maxim van Oldenbeek NLR (Daily) Supervisor
Dr. Deb Panja UU Supervisor
Dr. Mihaela A. Mitici UU Supervisor

July 10, 2024

Abstract

This thesis outlines a new scene object isolation method that is capable of isolat-
ing centre scene objects from a set of images that captures the scene. Doing this
it shows some interesting quirks in the SMF data. The thesis experiments with
the different configurations for the object isolation method, and presents these
results. Beside this the thesis proposes some changes and extensions to Gaussian
splatting to enable it to optimize the isolated objects, and re-implements depth-
regularized Gaussian splatting. The modifications are explored by tweaking
their hyper parameters, and in doing so showing their influence on the accuracy
of the final trained object. The thesis is closed by speculating in possible im-
provements that could still be made to the object isolation method, and quickly
proposes a method that could be used to allow for multiple objects, from the
same scene, to be trained at the same time and be combined into one scene.

Cover figure: A Gaussian splatting optimized centre scene object overlapped
over the original input image. Other objects found in the image are highlighted
in different colors.

Layperson Summary

Lets say there are two or more pictures of the same scene, a segmentation
model could be used on a single picture to give an outline of every visible object
in that picture. This thesis describes a technique that can determine if two
objects in different pictures are actually the same object. Secondly it outlines
a few additions and modifications to a method known as Gaussian splatting.
Gaussian splatting can be used to create a 3D representation of a scene captured
by pictures from different positions and directions. By combining the technique
of determining if objects in different images are actually the same object, and
the modified Gaussian splatting, we are capable of creating a 3D representation
of a single object in a scene captured by multiple pictures.

Unfortunately the new technique is not flawless, and is therefore currently
only tuned to extract the object that is roughly at the centre of the scene.
Therefore at the end this thesis also proposes some additional modifications
that could be implemented to allow more objects to be extracted.

1

Preface

The thesis outlined in this document was made in collaboration between the
Utrecht University and the Royal Netherlands Aerospace Center. Due to the col-
laboration between the Utrecht University and the Royal Netherlands Aerospace
Centre the project has three supervisors, one supervisor at the Royal Nether-
lands Aerospace Centre and two supervisors at the Utrecht University.

The Ethics and Privacy Quick Scan of the Utrecht University Research Institute
of Information and Computing Sciences was conducted. It classified this research
as low-risk with no further ethics review or privacy assessment required.

2

Contents

1 Introduction 6
1.1 Problem Description . 6
1.2 Initial Background . 6
1.3 Research Questions . 8
1.4 Overview . 9

2 Related Work 9
2.1 Structure-From-Motion . 9
2.2 3D Gaussian Splatting . 12
2.3 Depth-Regularized Optimization 15
2.4 Segmentation . 16
2.5 Morphological Filters . 17

3 Methodology 20
3.1 Object Isolation . 20
3.2 Object Optimization . 25

4 Tools and Implementation 26
4.1 Tools and Libraries . 27
4.2 SFM Data . 27
4.3 Object Isolation . 27
4.4 Gaussian Splatting . 28

5 Results 28
5.1 Dataset . 29
5.2 Mask Creation . 29
5.3 Object Creation . 31
5.4 Object Optimization . 36

6 Conclusion 39

7 Future Work 41
7.1 Mask and Object Matching . 41
7.2 Object Combination . 41
7.3 Solid Objects . 41

A Structure Elements 42

B Segment Combination Algorithm 42

C Object Creation Algorithms 42

D Object Selection Algorithm 44

3

Symbols and Notations

The thesis contains a lot of symbols and notations, especially in the methodol-
ogy. Here is a short overview of the symbols and notations that are used.

Symbols

Symbol definition, unless stated otherwise.

Symbol Definition
I Image: 2D array
I Image set: {I}
H Structure element: 2D array
F Feature
F Feature set: {F}
p A 2D pixel position: (x, y)
x A 3D position: (x, y, z)
X 3D feature point: (F, x)
X 3D feature point set/cloud: {X}
S Segment mask: 2D array
S Segment mask set: {S}
M Mask: (S,X)
M Mask set: {M}
O Object: (S,X)
O Object set: {O}

Set Notation

Here follows a short description about the set notation that is used in this thesis.

Conditions. When putting a condition on an element extracted from a set,
the condition is written behind a vertical line (|). This vertical line | can be
read as where, multiple conditions are separated by a comma (,), for example
the set with all even numbers is: {n | n ∈ N, n/2 ∈ N}.

Sizes. The size of a set is written as #N. For example the size of the set
#(A = {1, 2, 3}) = 3.

For 2D array set types, like an image I, structure element H, or segment
mask S, the size #S is the total size of the array, width× height, regardless of
the values of the elements inside the array.

Indexing. 2D array set types, like an image I, structure element H, or seg-
ment mask S, can be indexed using a 2D pixel position p. Doing this I(p) will
return the value of the element at position p in the 2D array.

Tuple Extraction. Some elements are a tuple of multiple elements, like the
feature point X, mask M , and object O. To extract one of the elements from
the tuple a dot (.) is used. For example O.X extracts the feature point set X
from the object tuple O.

4

Abbreviations

Here is a table with abbreviations that are commonly used in this thesis.

D-GS Depth-regularized Gaussian Splatting
GPU Graphics Processing Unit
GS Gaussians Splatting
IoU Intersection over Union
IsO Isolated Object splatting

LPIPS Learned Perceptual Image Patch Similarity
NeRF Neural Radiance Fields
PSNR Peak Signal to Noise Ratio
SAM Segment Anything Model
SFM Structure-From-Motion
SH Spherical Harmonics
SIFT Scale Invariant Feature Transform
SQI Squared Intersection
SSIM Structural Similarity Index Measure

5

1 Introduction

The Royal Netherlands Aerospace Centre (NLR) is a research institute dedicated
to innovation in aerospace. Research at the NLR is done for both civilian
as military purposes. Aerospace Operations Training and Simulation (AOTS)
focuses its research on modelling, simulation, and training. A few research
projects within the NLR use techniques to reconstruct scenes based on images
that capture the scene, like NeRF [1, 2] and Gaussian splatting [3], and is some
case try to extract objects in these scenes.

The current way of extracting objects from scenes, for scene reconstruction,
all require that the entire scene is trained in advance. This thesis describes a
new method for isolating objects in a scene from images that capture the scene
prior to reconstructing the scene. This thesis also proposes a few changes and
additions to Gaussian splatting such that it is capable of training these isolated
objects.

This section will give the problem description, some initial background that
inspired this research, the research questions, and a short overview of what the
new method will look like. The following section explains all the related work
that is required to understand the new method. The third section gives an in
depth explanation of how the new method works. This is followed by a section
that gives a short explanation about how the new method was implemented and
the tools that were used for the implementation. The fifth section presents the
results, and the next section draws conclusions on the research questions based
on the results. The final section gives some pointers to what future work could
still attempted.

1.1 Problem Description

There are situations where intelligence gathering needs to be performed under
time pressure, for instance a house search or a fast overflying object. To gather
as much intelligence as possible images and video is often taken during these
situations, these images and video can then later be analysed to gather even
more data.

Images unfortunately do not always show the scale and position of objects
clearly, and determining them manually by looking at multiple images or video
is time consuming, and difficult. Therefore scene reconstruction (novel view
synthesis) methods like NeRF [1, 2] and 3D Gaussian splatting [3] are useful
to reconstruct the scene from the images and video. This allows someone to
look through the entire scene again and look for objects that might have been
missed.

If only a specific object is of interest, it would be useful to extract this single
object such that it can be more thoroughly examined. Extracting a single object
is also useful if this object can be analysed using other software, like extracting
an aircraft from a scene such that it can be analysed using simulation software.

1.2 Initial Background

The current way to isolate objects is by first training the entire scene, and later
extracting the relevant parts of the scene.

6

Figure 1: Figure from [4]. An initial image, and using a prompt a segment mask
M in

SAM is created. Using mask inverse rendering a part of the scene is isolated.
This isolated scene is rendered and combined with a render from the full scene
to create a new mask M (2), and using cross-view self-prompting a new segment

mask M
(2)
SAM is generated. This process is continuously repeated, till the entire

object is isolated.

Segment Anything NeRF [4] does this by first rendering a single image and
extracting a segment mask from this image. Using this mask, and inverse ren-
dering, a part of the scene is isolated. Using a new camera view a new image
is rendered from the entire scene and the isolated scene, and using cross-view
self-prompting a new mask is generated that used to expand the isolated scene.
This is repeatedly done till the entire object is isolated. See Fig. 1 for an
overview.

The method for Gaussian splatting is Segment Any 3D Gaussians [5]. This
method attaches a low-dimensional 3D feature to every Gaussian in the pre-
trained scene. For every image in the image set segment masks are extracted
and a neural network is used to extract features from the image. These features
are pooled using the segment masks to create query masks. These query masks
contain the features that belong to every segment mask. Now the features from
the pre-trained scene are rasterized using the same camera configuration as the
image. Using the query masks, these features are queried using the query masks,
and Gaussians are selected based on the features. The selected Gaussians are
rendered, and these renders are compared to the segment mask the query mask
was created from. The loss in the rendering and the segment mask is used to
update the 3D features in the Gaussians and the neural network that extracts
features from the images. When the process is done learning the 3D features
in the Gaussians and the neural network that extracts features from images are
trained such that now the correct Gaussians can be filtered given an image of
the scene and the segment mask of the object in that image. Figure 2 gives an
overview of the method.

Both methods, for NeRF and Gaussian splatting, use fully trained scenes,
and extract the object from the scene, or a combination of the scene and the

7

Figure 2: Figure from [5]. From image I segment masks (M1, ...,Mi) are
extracted, and a neural network (MLP) is used to extract features F ′

I from
the image. The features F ′

I are pooled by the segment masks (M1, ...,Mi)
to create the mask queries (TM1

, ..., TMi
). The 3D features are rasterized

into a rendered feature map F r
I , these features are filtered using the query

masks (TM1
, ..., TMi

) to select Gaussians and create rendered segment masks
(PM1 , ..., PMi). These rendered segment masks are compared with the original
segment masks (M1, ...,Mi), and the loss is used to update the MLP and the
3D features.

input images I. The Gaussian splatting method needs to undergo additional
training to train the 3D features in the Gaussians and the feature extracting
neural network. This thesis proposes a method that extracts the objects before
the scene is trained, and is capable of training these individual isolated objects.

1.3 Research Questions

This all combines into the following research question:

Given a set of input images I that captures a single scene. Is it possible to
extract all the visible objects in the scene captured in the image set I, optimize
these individual objects using Gaussian splatting, and combine the objects again
to form a complete scene?

In this problem the following sub problems are identified:

1. Extracting objects from a single image I ∈ I can be done using a seg-
mentation model, resulting in a segment mask set S. To extract an object
from the image set I the same object in different images need to be iden-
tified as the same object in the image set I. Given two segment masks
(Sa ∈ Si, Sb ∈ Sj)|a ̸= b, is it possible to determine if they mask the same
scene object?

2. Gaussian splatting uses a feature point cloud X for its initial Gaussians.
Only a subset of the points in the feature point cloud belong to any given

8

object in the scene. Is it possible to filter the points belonging to a given
object from the initial point cloud X?

3. Gaussian splatting compares the entire input image I to the rendered
image I∗ to determine the loss. When optimizing for individual objects,
anything outside the object should be discarded. Is it possible to modify
the learning process of Gaussian splatting such that it is capable of only
training a single object and removing all the parts that do not belong to
the object?

4. When multiple objects are trained and they are combined objects might
intersect each other, due to parts of the scene being trained in multiple
objects. Directly combining the objects into one scene might result in an
incorrect representation due to the intersecting parts now containing more
Gaussians, and therefore the Gaussians behind it are no longer rendered.
Given multiple trained objects, is it possible to combine the objects in such
a way that the entire scene is correctly reconstructed?

1.4 Overview

Here a short overview of the new object isolation method is given. First an
image segment masks are generated. Next these segment masks are combined
into one large segment mask. From this large segment mask parts that are not
filled (missing regions) are extracted and used as additional segment masks.
The point cloud gets projected to an image using the camera parameters of the
original image Ii. The projected SFM points get filtered using both the original
segment Si masks, and the missing segment masks. This creates masksMi for
image Ii. This is done for every image in the image set I. Next masks of different
images are combined and created into objects O. This is done by determining if
the masks capture the same object, by checking if the masks contain the same
SFM points. Finally an object Oa ∈ O is selected for optimization. See Fig. 3
for an overview.

2 Related Work

In this section the fundamental methods and techniques that are needed to
understand the methodology of this thesis are explained. First structure-from-
motion (SFM) is explained, which is a fundamental part of (depth-regularized)
Gaussian splatting, and the new object isolation method. Next Gaussian splat-
ting and its continuation depth-regularized Gaussian splatting are explained,
these the models that optimize the Gaussians. After that a overview of segmen-
tation and masks is given, and finally morphological filters are explained, these
are all important for the new object isolation method.

2.1 Structure-From-Motion

Structure-From-Motion (SFM) [6, 7] is a method for acquiring 3D structures
from an image set I. The goal of SFM is to, given an image set I of a scene,
extract the camera parameters for the cameras that were used to create the
images, and reconstruct the geometry of the objects in the scene, represented

9

Figure 3: An overview of the object isolation method. The segment masks Si of
image Ii are generated and combined (+) to create the total segment mask S∗

i .
The missing segments are extracted (M) from the total mask S∗

i and combined
(∪) with the original segment masks Si. The SFM points get projected to an
image and get filtered using the segment masks, creating the masks Mi for the
image Ii. Having done this for every image, the masks are then combined (C)
into objects by checking matching SFM points, and an object Oa is chosen for
optimization.

10

Figure 4: Figure from [8, 9, 10]. Feature p is observed in all images and is
triangulated to point X1. Ri, ti are the rotation matrix and translation vector
of image Ii.

as a point cloud X . The camera parameters consist of the rotation matrix R,
the translation vector t, the type of camera, and the parameters specific to the
camera type such as focal length, principle point, and distortion parameters.
The final point cloud X records for every point X ∈ X the position, color and
reprojection error.

The most important parts of SFM are the feature extraction, feature match-
ing, and triangulation.

For a visual guide for SFM, see Fig. 4.

Feature Extraction. SFM extracts a feature set F from the images I in the
image set I. Every feature F in the extracted feature set F consists of a 2D
location x and a feature descriptor f . The features F outputted by a feature
model need to be invariant to change in position, rotation, and scale, such that
features can be accurately matched from different camera positions. Their are
many different feature extraction methods both learned and fixed algorithms.
Scale invariant feature transform (SIFT)[11, 12, 13] and variations on SIFT
[14] are commonly used for fixed algorithms. Local invariant feature detectors
(LIFD) [15] are common for learned feature extraction models.

Feature Matching. Now that for every image Ii ∈ I the features Fi have
been extracted, SFM tries to match features from different images together. The
result should be a set of possibly overlapping image pairs C = {(Ia, Ib) | Ia, Ib ∈
I, a < b}, and the feature matching that created this pair Mab ∈ Fa × Fb.

11

Features are matched based on their similarity. How the similarity score be-
tween a feature pair (Fa, Fb) ∈ (Fa,Fb) is determined depends on the method
that is used to generate the features F . For SIFT the feature descriptor is a
128-dimensional vector. The similarity between two features (Fa, Fb) is calcu-
lated as the distance between their vectors, where shorter distance means higher
similarity [13]:

dist(Fa, Fb) = ||fa − fb||

Because the feature matching only looks at the similarity of the features, and
not at their possible geometric positions, the image pair set C is later refined
and verified.

Triangulation. To convert the matching feature pairsMab to a point cloud
X the features need to be triangulated to a 3D position. The triangulation starts
with two images (Ia, Ib) ∈ C and triangulates the matching featuresMab to a 3D
position x. If a feature pair is triangulated, then both features (Fa, Fb) ∈ Mab

are registered as the same feature Fa = Fb. The 3D position x and the feature
F that was used to triangulate the 3D position are then added as a point
X = (x, F) to the point cloud X .

Now incrementally new images are added to the scene. The new image Ic
must have a matching feature pairs with at least one image Ia that is already in
the scene. The feature pair can be from an already existing point X, or it can
extend the points in the point cloud X by triangulating a not yet triangulated
feature F to a new pointX. Triangulating a pointX from more images increases
the robustness of the point X.

Over the course of the triangulation, the camera pose, position, rotation, and
scale, also get determined and refined. One of the ways to estimate the camera
pose is using random sample consensus (RanSaC) [16]. RanSaC does this by
taking a subset of triangulated feature points, and then estimating the camera
pose of the newly added image that correctly projects these feature points back
on the image. Next the remaining feature points get checked, and the feature
points that do not correctly project back on the image get discarded. This way
RanSaC also removes false feature matches.

The end result is a point set X of the features F that could be triangulated,
and the camera poses from where these images where observed.

2.2 3D Gaussian Splatting

3D Gaussian splatting [kerbl3DGaussians] is a novel view synthesis method
that uses 3D Gaussians to represent its scene. The goal of novel view synthesis
is, give a image set I, to create new views of the scene shown in the image
set I. A popular method for this is Neural Radiance Fields (NeRF), and its
derivatives [1, 2, 17, 18, 19]. NeRF accomplishes this by using a neural network,
the downside of this is the slow learning rate, and slow rendering. The goal of
Gaussian splatting is to improve the training time and rendering. This is done
by, instead of using a neural network, training (mean, scale, rotation, color,
opacity) parameters of a collection of 3D Gaussians.

3D Gaussians. To capture the geometry of the objects as best as possible
the Gaussians need to be anisotropic, not symmetric in every direction. To

12

accomplish this the Gaussian is represented by a full 3D covariance matrix Σ
[20]. The covariance matrix Σ only has a meaning if it is positive semi-definite.
Because Gaussian splatting uses gradient descend it is not possible to optimize
the covariance matrix Σ directly, it could result in an invalid covariance matrix.
Therefore the covariance matrix is build from a scaling matrix S, and a rotation
matrix R:

Σ = RSSTRT

Instead of optimizing the covariance matrix Σ the individual scaling S and
rotation R matrices are optimized. The density of the Gaussian centered at the
mean µ is then defined as:

G(x) = e−
1
2 (x)

TΣ−1(x) (1)

To project the 3D Gaussians to 2D for rendering a new covariance matrix Σ′

is needed. This new covariance matrix is created using the original covariance
matrix Σ, the viewing transformation matrix W , and a Jacobian matrix J that
approximates the projective transformation [20]:

Σ′ = JWΣWTJT

Removing the third row and column from Σ′ a 2×2 variance matrix is obtained
that can be used to directly get the density of the 2D projected Gaussian. Later
during the blending process the densities are multiplied by a opacity value α.

To gain directional color c for the Gaussians spherical harmonics (SH) [21,
22] are used. They achieve directional values by plotting continuous functions
on a sphere. All these functions are weighted and combined to create a single
output, these weights are the values that are trained during the optimization.
Every new SH band has 2 more functions than the previous band, with the first
band only having a single, continous, function. Gaussian splatting uses up to
4 SH bands per color channel, red, green, and blue, resulting in 48 weights.
Initially the Gaussians only use, and optimize, a single SH band, base color.
Every 1000 iterations a new SH band gets introduced until all 4 SH bands are
used.

Rasterization and Rendering. The fast rasterization is achieved by split-
ting the output render image I∗ into 16 × 16 tiles. The size of the projected
Gaussians is set to the 99% confidence interval. Then, for every tile a Gaussian
overlaps, the Gaussian is instantiated with an id. This id is based on the Gaus-
sians view space depth and the tile id it is instantiated on. The id is chosen in
such a way that when sorted, using a GPU Radix sort [23], the Gaussians are
sorted first based on tile, and then on depth. An example key function, given
that the tile id t for every tile is an unique number, is:

K(z, t) = (16× 16) ∗N ∗ t+ z

Where z is the depth of the Gaussian, and N is the number of Gaussians, see
Fig. 5. This sorted list is split into lists for every tile.

For every tile list a thread block is launched, with a thread for every pixel in
the tile. In every thread the list is traversed front to back, and every Gaussian
is checked if it overlaps with the threads pixel. If a Gaussian overlaps with the

13

Figure 5: Gaussian instantiation and sorting of 5 Gaussians for 4 tiles.

pixel, its contribution to the pixel is calculated with the density (Eq. 1) and its
opacity value α. This contribution is added to the opacity value α of the pixel.
The final rendered color using the pixel opacity α is calculated as:

C =
∑
i∈N

ciαiTi (2)

Where
Ti =

∏
i∈N

(1− αi) (3)

The thread is finished when the pixel opacity α is saturated α >= 1. On the
backward pass the same list is used again, only now from back to front, starting
at the last Gaussian that contributed to the color of the pixel. Doing this, the
Gaussians only have to be sorted once every iteration.

Initialization. Gaussian splatting uses the point cloud X created by SFM
from the images I for its initialization. For every point X ∈ X a Gaussian is
initialized. The initial covariance matrix Σ is estimated for an isotropic Gaussian
with its size equal to the mean distance of the closest three points. The first
band of the SH color is set to the color of the point X from the SFM point cloud
X , the other three bands are initialized with 0.

Culling and Densification. To control the number of Gaussians during the
learning process, once every 100 iterations Gaussian culling and densification is
performed, and every 3000 iterations the opacity of the Gaussians is reset.

14

For the culling unwanted or unneeded Gaussians are removed. Gaussians
that are practically invisible, α < 0.005, are removed. After the first opacity
reset, the Gaussians that are large in world space max(S) > 0.1 ∗ scene extent,
or Gaussians that are large in view space max(S2D) > 20 are also removed
during the culling. S2D is the 2D projected size of the size S, the max extracts
the largest dimension.

The purpose of the densification is to populate the areas where the geometry
is not captured correctly with more Gaussians. There are two types of incor-
rectly captured geometry, under-reconstruction, where a small Gaussian cannot
capture the entire geometry, and over-reconstruction, where a large Gaussian
captures more than the intended geometry. It is observed that in both cases
the Gaussian has a average high view-space position gradient τpos > 0.0002.
Small Gaussians, under-reconstruction, max(S) <= 0.01 ∗ scene extent are
cloned. These Gaussians are copied and the new Gaussians are moved one step
in the direction of the positional gradient. Gaussians in over-reconstruction,
large Gaussians, max(S) > 0.01∗ scene extent cases are split. These Gaussians
are replaced by two new Gaussians that are identical to the original Gaussian,
except that they have their scale S devided by ϕ = 1.6.

To remove Gaussians that are stuck close to the camera, once every 3000
iterations the opacity α is set close to zero α = 0.01. During the optimization
the Gaussians that are needed will have their opacity α raised again, while the
culling process will remove all unnecessary Gaussians.

Optimization. The optimization is performed using a Stochastic Gradient
Descent, and a sigmoid activation function is used for the opacity α, and the
final calculated SH values, to clamp them between [0, 1].

The loss function that is used for Gaussian splatting is a combination of
two loss functions, the Lcolor, which is the absolute loss in color difference, and
the LDSSIM , which is the structural similarity loss. The structural similarity
index measure (SSIM) calculated a score, when comparing two images, between
[−1, 1]. Here -1 is perfect anti-correlation and 1 is perfect similarity. The
structural dissimilarity (DSSIM) score simply inverts this score and bounds it
between [0, 1] (DSSIM = 1−SSIM

2). These two loss functions are weighted
with a hyperparameters λSSIM resulting in a final loss function then looks as
follows:

L = (1− λSSIM)Lcolor + λSSIMLDSSIM (4)

2.3 Depth-Regularized Optimization

One of the downside of Gaussian splatting is that it requires a large number of
input images to correctly capture the geometry of the scene. Depth-regularized
guassian splatting [24] tries to mitigate this problem by adding depth data, to
the optimization process.

Depth Map. The depth map that is used for the depth regularization is
composed of two separate depth maps. The first depth map Ddense is a depth
map generated by a monocular depth estimation algorithm [25, 26]. Because this
depth map Ddense depth is not scaled to the scene a second depth map Dsparse

is used for scale. The second depth map Dsparse is generated by projecting

15

the point cloud X generated by SFM back onto the image and storing the
depth values. Using this second depth map Dsparse a scale s∗ and offset t∗ are
calculated:

s∗, t∗ = argmin
s,t

∑
X∈Dsparse

ω(X) ∗ ||Dsparse(X)− (s ∗Ddense(X) + t)||2

Where ω ∈ [0, 1] is used as a weight that represents the reliability of the feature
points. The final depth map D∗

dense is then calculated by using the calculate
scale s∗ and offset t∗:

D∗
dense = s∗ ∗Ddense + t∗

Optimization. The optimization adds two additional constraints to Gaussian
splatting (Eq. 4). The depth loss Ldepth is calculated as the absolute difference
in the depth from the depth map D∗

dense and the rendered depth D. The depth
is rendered in a similar way as the color (Eq. 2):

D =
∑
i∈N

diαiTi

Where di is the depth of Gaussian i.
Although the depth map D∗

dense is corrected using the SFM point cloud X ,
there are often still conflicts. These are conflicts where the depth map Ddense

estimates something to be in the foreground, while it should be in the back-
ground, or vice versa. To compensate for these conflicts another unsupervised
constrained is added. This additional loss function Lsmooth implies that neigh-
bouring pixels that are part of the same plane should have similar depths. This
is done by creating an edge map of the original image using a Canny edge de-
tector [13, 27]. Pixels (pi, pj) that are next to each other, and neither are on
an edge, are seen as part of the same plane. To ensure a larger loss for higher
differences, and low loss for small differences an exponential loss is used:

Lsmooth =
∑

pj∈adj(pi)

1ne(pi, pj) ∗ ||pi − pj ||2

where 1ne is a function that indicates if both di and dj are not in edge.
Both these new loss functions are weighted using a hyperparameters λdepth

and λsmooth, resulting in a total loss function:

L = (1− λSSIM)Lcolor + λSSIMLDSSIM + λdepthLdepth + λsmoothLsmooth (5)

2.4 Segmentation

Segmentation deals with the problem of creating a subdivision in an image
corresponding to an object. Although similar and related to object detection
there are differences. Object detection deals with identifying the type of object,
while segmentation deals with extracting an object. Object detection models
like Deformable Parts Models (DPM) [28], R-CNN [29], and You Only Look
Once (YOLO) [30, 31] combine object detection and segmentation by giving a
bounding box around the detected objects. Instead of a bounding box most
image segmentation models return a mask [32] corresponding to the object.

16

Masks. While a simple axis aligned bounding box can be described using
only 4 values, either two diagonal corner coordinates, or a corner with a width
and a height, a segment mask takes a lot more data. A bounding box gives a
general area the object is located, a segment mask is a lot more accurate with
the location and shape of the object. A simple boolean mask will state for each
pixel in the image if it belongs to the object the mask represents, while more
advanced masks give for each pixel a certainty of the pixel belonging to the
masked object.

Segment Anything. Segment Anything Model (SAM) [33] by Meta AI Re-
search published in April 2023 is a segmentation model trained on a large
dataset. The masks returned by same are all boolean masks. SAM allows
the user to query the image by selecting a point, multiple points, or a bounding
box within the image. Due to the ambiguity of the query, the point can select
the billboard, text, or letter, see Fig. 6, SAM can outputs multiple valid masks.
It was found that 3 masks was sufficient to address most common cases, and
this is used in the final model.

In its fully automatic mode SAM samples a grid of 32x32 points to extract
all the segments in the image. Because some points in the grid may select the
same object and return similar masks non-maximum suppression (NMS) [34] is
used to remove duplicate masks.

2.5 Morphological Filters

All information from the following section comes from the book Principles of
Digital Image Processing, Fundamental Techniques [35]. For a more in depth
explanation on the topic of morphological filters, look there.

”In their original form, morphological filters are aimed at binary images,
images with only two possible pixel values, 0 and 1 or black and white, respec-
tively.” [35]. Morphological filters morph the structures in the binary images by
shrinking and growing them.

A morphological filter uses a structuring elementH. The structuring element
is a binary structure with a hot spot at the origin of the structure, see Fig. 7.
This structuring element is then moved across the image to change the structures
in the image. There are two operations that can be performed using binary
morphological filters.

Dilation. Growing or dilation is a operation that uses the structuring element
H to grow the structures in the binary image I. This is done by overlapping
the hot spot of the structuring element H with the every pixel p with a 1 value
and pasting the 1 values from the structure element H to the output image I∗,
see Fig. 8 for an example using the structuring element H from Fig. 7. Using
the reflected structuring element H∗, see Fig. 7, dilation can be defined as:

I ⊕H = I∗ = ∀p | p ∈ I | I∗(p) = (∃q | q ∈ H∗ | I(p+ q) ∧H∗(q)) (6)

Where p and q are both 2D pixel coordinates, and p+ q = (p.x+ q.x, p.y+ q.y).

Erosion. Erosion does the opposite of from dilation, and shrinks the struc-
tures in the image I. Instead of overlapping the structure element H, and

17

Figure 6: Each column shows 3 valid masks generated by SAM from a single
ambiguous point prompt (green circle). (Directly from SAM paper [33])

Figure 7: A binary structure element H and its reflect H∗. The red cell is the
hot spot, cells with a 1 value are marked using a •, cells with a 0 value are
empty.

18

Figure 8: Dilation of image I using the structure element H from Fig. 7

Figure 9: Erosion of image I using the structure element H from Fig. 7

pasting the values to the output image I∗, it only keeps the 1 values from the
image I, if the 1 values in the structure element H all overlap with 1 values in
the image I, see Fig. 9 for an example. Erosion can be defined as:

I ⊖H = I∗ = ∀p | p ∈ I | I∗(p) = (∀q | q ∈ H | ¬H(q)∨ (I(p+ q)∧H(q))) (7)

Where p and q are both 2D pixel coordinates, and p+ q = (p.x+ q.x, p.y+ q.y).
Erosion can be performed using dilation by using the inverted image Ī,

performing dilation using the reflected structuring element H∗, and inverting
the end result:

I ⊖H = Ī ⊕H∗

Opening and Closing. A lot of operations can be performed by using dila-
tion and erosion together, two of these operations are opening and closing.

Opening is used to open the structures in the image I by first eroding and
then dilating the image I.

I ◦H = (I ⊖H)⊕H

This results in small structures and smaller parts of bigger structures being re-
moved, while larger and more solid structures remain unaffected, for an example
see Fig. 10.

19

Figure 10: Opening operation with a small structuring element H. The small
structures are removed from the image I.

Figure 11: Closing operation with a small structuring element H. The small
empty spaces inside or between structures in the image I are closed.

Closing does the opposite of opening. Closing first dilates the image I and
then erodes the image I.

I •H = (I ⊕H)⊖H

Resulting in small openings inside or between structures being closed, for an
example see Fig. 11.

3 Methodology

The next section describes how the objects in the images are isolated and se-
lected, and how (depth-regularized) Gaussian splatting is modified to correctly
optimize using these. It also describes problems in the SFM data that resulted
in the focus shifting from optimizing multiple objects and later combining them,
into only looking at centre scene objects.

3.1 Object Isolation

The goal of the object isolation stage is to create, for every object O, for every
image I, a segment mask S that masks the object in that image. The segment
masks S of an object O can then later be used to optimize that individual object.

To isolate objects from the input images the segments are used together with
the generated SFM data of the scene.

20

Figure 12: Left: combined segments S∗, region labeling would turn the red
area into one large new segment. Right: closed combined segments S∗ •H, the
region labeling now splits the original read area into multiple larger areas (red
and blue), and multiple smaller areas (green).

Gathering Segments. To reduce the amount of memory needed during the
object isolation stage, all segments are gathered and processed per image Ii
from the input images I. The index i denotes the current image that is being
worked on.

The first stage of the isolation stage is to gather the segment masks Si, of
the image Ii, that were generated using SAM.

Adding Missing Segments. Unfortunately the segment masks Si created
using SAM do not always cover the entire image, these missing region could
still be part of objects and therefore should still be added to the total segments
set Si.

To extract the missing segment masks all segment masks Sa ∈ Si are com-
bined into one large segment mask S∗

i . A closing filter with a 5×5 cross structure
element H, see App. A, is used on this segment mask S∗

i •H. This is done to
remove the very small segments or the narrow spaces between segments. Very
small segments removed by closing are to small to add anything useful, while
the narrow spaces between segments are removed to completely separate two
larger missing regions.

Next a region labeling algorithm [36] is used to extract the missing regions
S∗
i •H as new segment masks. Every region discovered with the region labeling

is used as a new segment mask, these new segments masks are added to the
image segment mask set Si. While SAM can create segment masks with multiple
disjoint segments, the region labeling extracts every segment as a new segment
mask, even when they might be part of the same object, just split by another
object in the foreground.

Creating Masks. The next step is to gather the points, from the SFM gen-
erated point cloud X , that were originally also visible on the image:

Xi = {X | X ∈ X , X.F ∈ Fi}

Where Fi is the feature set of image Ii. Using these points Xi a mask is created
by combining the subset of these points Xia ∈ Xi with the segment mask Sa

21

they are projected on:

Ma = (Sa,Xia = {X | X ∈ Xi, Sa(X)})

Where Sa(X) is true if point the projection of the 3D position x of point X is
inside segment Sa. This is done for every segment mask Sa ∈ Si, creating the
mask set Mi. All masks Ma ∈ Mi that do not have any points #Ma.X = 0
inside its segment mask are, for now, discarded.

Add Discarded Segments. Some of the discarded segments masks might
still be part of objects, but are sub parts that have no features triangulated and
were therefore discarded. Because these segments could still be part of objects,
they should still be added.

To try and add back a discarded mask Sa, it is first dilated using a s × 3
cross structure element H, see App. A. This is done to enlarge the segment
mask Sa by one pixel along the edges. If the discarded segment mask Sa did
not originally have an overlap with another, not discarded, segment mask S,
but was directly next to one, it will have an overlap when enlarged Sa⊕H. The
enlarged segment mask Sa⊕H is combined with the segment mask Sb ∈ Si that
has the most overlap Sa ∩ Sb:

S∗
b = (Mb.S |Mb ∈Mi, b = argmax

c
(#(Sa ∩ (Mc.S |Mc ∈Mi))))

This combined segment mask Sab = Sa∪S∗
b is stored as the new segment mask of

the mask M∗
b whose segment mask S∗

b the discarded segment Sa was combined
with.

Combine Masks. The next step is to combine masks in the same image
(Ma,Mb) ∈Mi×Mi that have a lot of overlap. Segment masks created by SAM
are not all disjoint from each other, and can have overlap. The overlap of masks
is determined by the number of points they have in common Ma.X ∩Mb.X .
There are two ways that are used for calculating an overlap score of two masks
Q(Ma,Mb), the first is intersection over union (IoU):

QIoU (Ma,Mb) =
#(Ma.X ∩Mb.X)
#(Ma.X ∪Mb.X)

(8)

This is a standard score between [0, 1] that calculates how similar the two masks
(Ma,Mb) are. Here 0 means that there is no similarity, while 1 means perfect
similarity.

This might not be a good score for the purpose of combining masks, because
masks that are completely within another mask Ma.X ⊂Mb.X while still being
significantly smaller will result in a small IoU score. This is counter intuitive,
small masks fully within large masks should still get a decent score, therefore
another new score is created. This new score, squared intersection score (SQI),
tries to mitigate this problem:

QSQI(Mj ,Mk) = (
#(Ma.X ∩Mb.X)

#Ma.X
)2 + (

#(Ma.X ∩Mb.X)
#Mb.X

)2 (9)

SQI returns in a score between [0, 2]. Here 0 still means that there is no simi-
larity, and the upper bound 2 still means perfect similarity, but all mask com-
binations where one mask is within another mask have a score > 1.

22

For the combination the size of a mask Ma is determined by the number of
points #Ma.X that are inside the mask. The largest mask Ma is selected first,
and is combined with the mask Mb where the score QSQI(Ma,Mb) is highest
and higher than the set threshold tmasks. The threshold is set relatively low
tmask = 0.1, this is to ensure that most masks have no longer any overlap in
points. This is done till no masks can be added to the mask Ma, then the next
largest mask is selected. See App. B for the algorithm.

When combining two masks (Ma,Mb) both the segment masks, and the point
sets get combined Mab = (Ma.S ∪Mb.S,Ma.X ∪Mb.X). This new mask Mab

replaces the original chosen mask Ma, and the combined mask Mb is removed.

Create Objects. When all images have their masks created and combined
the masks are stored in a global mask set M. With the global mask set M
the objects O can be created. Objects are a collection of segment masks from
different images. The objects are created in a similar way that the masks are
combined. Masks from different images are combined using the same scores (Eq.
8, 9).

There are two different algorithms for combining masks to create objects,
growing and non-growing object creation. The growing algorithm directly trans-
forms all masks into objects O = {O = ({M.S},M.X) | M ∈ M}, and similar
to mask combination the object Oa with the most points #Oa.X is selected
first and combined with the object Ob with the highest score Q(Oa, Ob) above
the threshold tobject. This threshold can be set depending on the scene and the
score function Q that is used. The new larger object is then again checked for
objects to match with, see App. C for the algorithm.

The downside of the growing algorithm is that, because the object keeps
growing, the score over time decreases. The non-growing algorithm mitigates
this. Similar to the growing algorithm, the non-growing algorithm transforms
all masks into objects O = {O = ({M.S},M.X) | M ∈ M}, and it also se-
lects the object Oa with the most points #Oa.X . All objects Ob with a score
Q(Oa, Ob) higher then the threshold tobject are selected for combination, but
are not combined yet. Once all objects have been checked the objects that were
selected for combination are combined. This way the objects do not grow during
the algorithm, see App. C for the algorithm.

During the combination of two objects (Oa, Ob), similar to the mask com-
bination, the new object Oab = (Sab,Xab) replaces the initial selected object
Oa, and the combined object Ob is removed. The points get directly com-
bined Xab = Oa.X ∪ Ob.X . For the segment masks (Oa.S, Ob.S) of the ob-
jects, if two segment masks came from the same image, they are combined
Sab = Sa ∪ Sb | Sa ∈ (Si ∩Oa.S), Sb ∈ (Sj ∩Ob.S), i = j and stored in the new
segment mask set Sab. The other segment masks get added directly to the new
segment mask set Sab. Therefore in the end, an object O ∈ O has at most the
same number of segments masks as there are images.

Object Selection. Now that the objects have been created an object needs
to be selected for optimization. Unfortunately one object Oi does not always
completely encapsulate the entire object. This is due to features in SFM not
matching over all images, and therefore creating separate objects for the same
scene object, see Fig. 13 for example. Therefore it is very difficult to select

23

Figure 13: The green dots and the orange dots are both the same feature but
could not be matched, resulting in two separate objects being created. Red
crossed lines should be matched, but are not.

multiple objects, optimize them, and then later combine them. Thus the focus
only lies on the object that is in the centre of most of the input images, a centre
scene object.

To create the final object O∗ that is going to be optimized, one or multiple
objects need to be selected and combined. During the selection there is also a
gathered images I∗ set that keeps track of all the images Ii ∈ I that are no
longer considered.

An object Oa ∈ O is selected to be part of the final object O∗, if it is the
object with most segment masks Si ∈ Oa.S at the center point c of the image
Ii. Only segments Si where the original image is not in the gathered images set
Ii /∈ I∗ are counted:

O∗
a = Oa | Oa ∈ O, a = argmax

b
(#{Si | Si ∈ Ob.S, Ii /∈ I∗, Si(c) > 0})

Once an object O∗
a has been selected, the mean size of all the segment masks

Si, where the original image is not in the gathered images set Ii /∈ I∗, is cal-
culated. All the original images Ii /∈ I∗, where the size of the segment mask is
larger than half the mean size #{p | p ∈ Si, Si(p) > 0} > 0.5 ∗mean, are added
to the gathered images set I∗.

This is done until, either the gathered images set contains all images #I∗ =
#I, or no objects with segment masks in the center can be found. Because the
algorithm only looks at segment masks Si for which the original image is not in
the gathered images set Ii /∈ I∗, every iteration adds at least one new image Ii
to the gathered images set I∗. Thus the algorithm runs at most the number of
iterations as there are images. For the algorithm see App. D.

Diffuse Segments. As a final step, because the masks are not always perfect
at the edges, the segment masks of the final object are diffused using a 7 × 7

24

Gaussian filter [13] with a σ = 1:

G(x, y) = e−
x2+y2

2σ2

This turns the boolean segment masks into floating point segment masks, these
segment masks are used during the optimization as weights in the optimization
functions.

In the end an object is returned with a floating point segment mask S∼
i with

values between [0, 1] for every image Ii ∈ I, and a point set of the points that
was used to create this object O = (S∼,X).

3.2 Object Optimization

Now that the an object has been selected for optimization it needs to be ini-
tialized and then optimized. While the initialization, and optimization of the
Gaussians differs from Gaussian splatting or depth-regularized guassian splat-
ting, the densification of the Gaussians has not changed.

Object Initialization. The Gaussians for the objects are initialized similar to
how Gaussian splatting initializes its Gaussians. The difference is that, instead
of initializing all points from the SFM point cloud into Gaussians, only the
points that are also part of the object are initialized.

Segmented Loss. Depth-regularize Gaussian splatting consists of four sepa-
rate loss functions (Lcolor,LDSSIM ,Ldepth,Lsmooth), these loss functions com-
pare the entire render I∗i with the image Ii. Because only the Gaussians of
the selected object are initialized most of the render I∗i is empty. This empty
space will have a fixed depth and background color, differing from the im-
age Ii, resulting in a high loss value. This will also result in that Gaus-
sians will start to move towards the empty space, to get the correct color and
depth, to reduce the high loss. Therefore eventually the entire scene will be
trained again, instead of only the selected object. Therefore the loss functions
(Lcolor,LDSSIM ,Ldepth,Lsmooth) need to be changed.

The loss functions (Lcolor,LDSSIM ,Ldepth,Lsmooth) are changed by multi-
plying every pixel p with the same pixel in the segment mask S∼

i of the image Ii.
This will only give a loss to pixels p inside the segment mask S∼

i , and therefore
only change the Gaussians that have pixels inside the segment mask S∼

i . The
downside of this is that this will result in a 0 loss value for pixels that are not in
the segment mask S∼

i and are not of interest. This results in the loss functions
being lower when the objects segment mask S∼

i is smaller. As a result it is
also difficult to directly compare the quality of objects in two different scenes,
because the loss is now also dependant on the size of the segment mask S∼

i .
Therefore only the pixels p in the segmentation mask S∼

i where S∼
i (p) > 0 are

counted. Making the final Lcolor loss function:

Lcolor =

∑
p∈S∗

i
||S∼

i (p) ∗ (Ii(p)− I∗i (p))||
#{p | p ∈ Ii, S∼

i (p) > 0}

This is done for all loss functions (Lcolor,LDSSIM ,Ldepth,Lsmooth).

25

Segment Bound Constraint. The modified loss functions no longer con-
strain any part of Gaussians that are completely outside the object segment
mask S∼

i . This needs to changed, otherwise Gaussians at the edge of objects
can grow infinitely into the empty space. To do this a new loss function is intro-
duced, this new loss function Lbounds penalizes any Gaussians that grow outside
the object segment mask S∼

i , while it does not do anything with Gaussians that
are completely within the object segment mask S∼

i .
The new loss function is similar to the Lcolor loss function. Because the color

does not matter, and only how visible a Gaussian is outside the object segment
mask S∼

i , the loss function Lbounds does not look at the color but at the alpha
α of the pixel. It calculates the absolute difference between the alpha α of the
render image I∗i and the image Ii. The alpha α value of a pixel is calculated
as 1− Tfinal, see Eq. 3. Where Tfinal is the T value of the last Gaussian that
contributed to the pixel.

To ensure that only a loss is applied to the Gaussians with a part outside
the object segment mask S∼

i , the absolute alpha difference is weight using the
inverse object segment mask 1−S∼

i . Finally to ensure that the size of the object
does not influence the loss, only pixels p where 1 − S∼

i (p) > 0 are considered.
The final Lbounds loss function looks like:

Lbounds =

∑
p∈S∗

i
||(1− S∼

i (p))((Ii(p).α ∗ S∼
i (p))− I∗i (p).α)||

#{p | p ∈ Ii, 1− S∼
i (p) > 0}

This new loss function Lbounds is now added to the total loss function (Eq.
5), and is weighted using a hyperparameter λbounds:

L = (1− λSSIM)Lcolor + λSSIMLD−SSIM

+λdepthLdepth + λsmoothLsmooth + λboundsLbounds

Scoring. Three scoring functions are used to compare a final rendered image
I∗ with the ground truth image I. These are the Peak Signal-to-Noise Ra-
tion (PSNR), the Structural Similarity Index Measure (SSIM), and the Learned
Perceptual Image Patch Similarity (LPIPS).

The PSNR score uses the mean squared error (MSE) over the entire image

and render MSE =
∑

p∈I(I(p)−I∗(p))2

#I . PSNR directly compares pixels in the
images and does not look at the structures. For the PSNR score, higher scores
are better.

The SSIM score is different from the PSNR score in that it does look at
structures in the images. The SSIM score looks at structures and neighbouring
pixels by diffusing the images. In SSIM higher scores represent more similar
images.

The LPIPS score is a learned score that uses a pre-trained neural network
that compares images. For this score, lower scores are better.

4 Tools and Implementation

There are a number of different tools that are used in the implementation of ob-
ject isolation, and the Gaussian optimization model. While some of these tools
can be changed for others, some, like the depth models, have direct influence on
the result of the method.

26

4.1 Tools and Libraries

The main program is implemented in Python 3.11.5, this was the newest python
version at the start of the project. although lower python versions could also
be used.

The primary library used for the implementation is PyTorch. PyTorch is
also used by (depth-regularized) Gaussian splatting, SAM, and Marigold. Py-
Torch is useful for optimization models, because it already has a back propagate
already implemented in its tensors and functions, therefore mitigating the need
to manually implement them.

All GPU code is implemented using CUDA kernels, and is compiled using
NVIDIA CUDA Compiler (NVCC). Ninja 1.10.2 is used to create the build.

4.2 SFM Data

The SFM data is generated using PyColmap, which is a python implementation
of Colmap [6]. The SFM features are extracted using SIFT, and matched using
exhaustive feature matching.

4.3 Object Isolation

Object isolation uses a lot of different techniques. Some of these techniques are
implemented on the GPU to speed up performance.

Segment Generation. Segments are generated using fully automatic SAM
[33]. All settings are kept as default.

Filters. The morphological filters, and the Gaussian filter are all implemented
on the GPU. The filters are implemented in such a way that for every pixel off
the output a thread is initialized that only writes to that pixel in the output,
seen in Eq. 6 and 7. This is done to remove racing condition, where multiple
threads try to write to a single pixel.

Matching SFM Points to Segment. To speed up the process of matching
SFM points to segments, this is also implemented on the GPU.

SFM already stores the projection of the original image Ii points Xi, therefore
mitigating the need to manually filter and project the points Xi from the entire
point cloud X .

All points X ∈ Xi are stored in an array. For every point X a thread is
initialized that checks if the point is inside the currently checked segment mask
Sa. The result of this check is written back into an array of the same size as
the point array. This boolean array is later used as a mask to filter the correct
points from the point set Xi.

Region Labeling. The region labeling algorithm is an implementation of
the sequential region labeling algorithm outlined in Principles of Digital Image
Processing, Core Algorithms [36]. The regions are labeled using a 8-connected
neighbourhood, therefore also connecting diagonal regions.

27

4.4 Gaussian Splatting

Due to the initial lack of access to the depth-regularized Gaussian splatting
code [24, 37], there are two implementations of the optimization. The first
is a modified version of the depth-regularized Gaussian splatting code. And
the second is a complete new implementation based on GSplat [38, 39], named
Isolated Object splatting (IsO).

Depth Maps. The original depth-regularized Gaussian splatting uses ZoeDepth
[26] for the generation of its Ddense depth maps. Therefore the modified version
also makes use of this for the generation of its Ddense depth maps. The new
implementation uses Marigold [25] for its Ddense depth map generation.

Both methods work in a similar way in that they directly estimate the depth
of a single image, zero shot, without looking at the other images. Both also
return an estimated depth per pixel for the entire image. Marigold was chosen
for the new method because it was a slightly newer method than ZoeDepth.

For determining the scale S∗ and offset t∗, that are used to compensate the
depth map Ddense, a separate optimization model is used. This model uses
gradient descend to find the optimal scale S∗ and offset t∗. This optimization
model stops its search when the difference in loss between two iterations is
smaller than 1e− 5.

Edge Map. The edge map for the Lsmooth loss function is created the same
way as in depth-regularized Gaussian splatting, using the Canny edge detector
from OpenCV (openv-python 4.9.0.80). The Canny edge thresholds are set with
a high threshold thigh = 150/255 and a low threshold tlow = 50/255.

Optimization. The modified depth-regularized Gaussian splatting has not
only its loss functions changed such that they are capable of using the new
object segment masks, but also has its backwards CUDA kernel updated such
that it handles the delta opacity from the bounds loss Lbounds.

The new implementation uses a clone of the GSplat CUDA kernels for its
forward and backward pass. GSplat was chosen as a base, because it implements
Gaussian splatting in separate projection and rasterization steps, this made for
easier debugging.

The GSplat kernels do not initially return the depth value of the pixel,
therefore they have been updated to also return the depth value, and back
propagate the depth loss. The rest of the implementation, like the densification
and culling, tries to mimic the original Gaussian splatting paper [3] as close as
possible, by using the same criteria, and the same thresholds.

5 Results

The experiment results are subdivided into two sections, the first is focussed on
the new object isolation section, while the second looks at the optimization of
the objects.

28

Fern Flower Fortress Fountain Horns

Leaves Orchids Room Trex

Figure 14: Dataset

5.1 Dataset

The dataset that is used is the same dataset as the depth-regularized Gaussian
splatting paper [24]. This dataset consists of 8 scenes: Fern, Flower, Fortress,
Horns, Leaves, Orchids, Room, and Trex, see Fig. 14. One additional scene is
added to the test set, the Fountain scene is provided as a test scene for colmap,
and is also used. The images of the fountain scene are scaled back to 1200×800
to be of similar size to the other scenes.

5.2 Mask Creation

The methodology of the object isolation, see Sec. 3, describes eight stages in the
object isolation method: gathering segments, adding missing segments, create
masks, add discarded segments, combine masks, create objects, object selection,
and diffuse segments. This section covers the results of the first five stages of
the object isolation method.

The thresholds for the scoring function, in the combine mask stage, is fixed to
tSQI = 0.1, see Eq. 9. Table 1 shows the progression of the number of segment
masks and masks throughout first five stages of the object isolation method. The
number of segment masks gathered in the gathering segments stage (initial), the
number of missing segment masks found in the adding missing segments stage
(missing), the number of masks created and discarded in the create masks stage
(created, discarded), the number of discarded segment masks added back in the
adding missing segments stage (added), the number of masks combined in the
combine masks stage (combined), and the final number of masks at the end of
the combine masks stage (combine).

The number of initial segment mask and missing segment masks combined
should equal the number of created and discarded segment masks initial +
missing = created+discarded. Similarly the number of final segments is equal
to the number of combined segments subtracted from the number of created
segments final = created− combined.

Ablations. The mask creation has a few ablations that can be explored. The
first is the effect that the closing filter, in the missing adding segments stage,
has on the number of missing segments that are extracted. The number of
missing segments extracted for closed and not closed can be found in table 2.

29

initial missing created discarded added combined final

Fern 1784 1278 1863 1199 1183 683 1180
Flower 6364 3094 7535 1923 1909 2285 5250
Fortress 1109 571 838 842 794 464 374
Fountain 1087 234 898 423 410 748 150
Horns 7349 2728 7469 2608 2597 3909 3560
Leaves 5450 795 2230 4015 3571 445 1785
Orchids 6586 3162 5764 3984 3739 1866 3898
Room 5469 1812 5247 2034 1995 2610 2637
Trex 6591 2116 6792 1915 1869 2987 3805

Table 1: Number of segment masks and mask during first five stages in the
object isolation method, see Sec. 3. The number of initial segment masks, the
number of missing segment masks, the number of masks created and discarded
from the segment masks, the number of discarded masks that were added back,
the number of masks that were combined, and the final number of masks at the
end of the combine masks stage.

missing segments closed not closed

Fern 1278 2707
Flower 3094 14713
Fortress 571 2900
Fountain 234 1146
Horns 2728 20364
Leaves 795 4104
Orchids 3162 12103
Room 1812 9428
Trex 2116 13489

Table 2: The number of missing segment masks extracted in the missing seg-
ments stage of the object isolation method, with or without using the closing
filter.

Here it is visible that the closing filter reduces the number of missing segments
extracted. This is because, although the closing filter is capable of splitting one
large missing segment into multiple smaller segments, see Fig. 12, the number
of small missing segments that are completely removed by the closing filter is
larger.

The next is effect the dilation filter, in the add discarded segments stage,
has on the number of segment masks added back. The number of segments
added back is shown in table 3. It is peculiar that without using the dilation
filter on the discarded segment masks, no segment masks are added back. This
shows that none of the discarded segment masks have any overlap with another
segment mask. This is most likely because these were either small missing
segment masks, who by the way that the missing segment masks are extracted
do not have an overlap, or they are segment masks of completely disjoint objects
where there are no features.

The last ablation study shows the effect the different scoring methods (QIoU , QSQI)
have on the number of masks that are combined in the combine masks stage, visi-

30

added segments dilated not dilated

Fern 1183 0
Flower 1909 0
Fortress 794 0
Fountain 410 0
Horns 2597 0
Leaves 3571 0
Orchids 3739 0
Room 1995 0
Trex 1869 0

Table 3: The number of discarded segment masks that are added back in the
add discarded segments stage, with or without using the dilation filter.

masks combined SQI IoU

Fern 683 536
Flower 2285 1783
Fortress 464 256
Fountain 748 228
Horns 3909 2310
Leaves 445 367
Orchids 1866 1604
Room 2610 2103
Trex 2987 2079

Table 4: The number of masks combined in the combine masks stage using
either the SQI or IoU scoring function. Both scoring functions have a threshold
of t = 0.1.

ble in table 4. Both scoring methods have the same threshold tIoU = tSQI = 0.1.
Here it is visible that for every scene the QIoU (Eq. 8) scoring method combines
less masks than the QSQI (Eq. 9) method. This is due to small masks with very
few feature points inside larger masks with more feature points not reaching the
threshold in the QIoU scoring method, while in the QSQI scoring method they
have a score of at least 1.

5.3 Object Creation

This section covers the results of the last three stages, create objects, object
selection, diffuse segments, of the object isolation method. The create objects
stage uses the masks created by the previous stages, using all filters and com-
bined using the SQI scoring method tSQI = 0.1. These masks are combined
into objects using the growing object creation algorithm with SQI scoring using
a threshold of tSQI = 0.75. This threshold was chosen as a good balance for
combining objects, even when they do not completely overlap, and not com-
bining objects when very little feature points overlap, like the feature points
at the edges of the segment mask. The growing object creation algorithm was
selected to prevent the objects from growing too much, and therefore no longer
containing a single scene object. Finally object selection stage selects the centre

31

final masks created objects selected objects

Fern 1180 434 20
Flower 5250 876 1
Fortress 347 106 1
Fountain 150 33 1
Horns 3560 1697 1
Leaves 1785 49 1
Orchids 3898 1566 1
Room 2637 979 30
Trex 3805 1258 50

Table 5: Number of created objects, and number of selected objects for every
scene. Objects are created using the growing object creation algorithm with an
SQI threshold tSQI = 0.75. Selected objects boldface 1 are the centre scene
objects that are correctly fully created by the object creation algorithm.

scene object.
Table 5 shows for every scene the number of objects created, in the create

objects stage, from the final masks, see table 1, and the number of objects
selected for the centre scene object by the object selection stage. Fig. 15 shows
a selection of the segment masks of the selected centre scene object.

From the data it appears that, when there is a solid centre scene object, like
Flower, Fortress, Fountain, Horns, or Orchids, the object creation algorithm
will be able to fully construct the correct masks into a single object. It also
shows that objects that are in the centre of the screen, but can not be correctly
created into a single object due to the SFM data quirk, see Fig. 13, like Fern
and Room, can still be correctly selected using the selection algorithm. Also
is of note that sometimes additional parts get added, like Horns or Room, or
parts get left behind, like Flower. Finally, scenes where there is no solid centre
scene object, like Leaves and Trex, the algorithm is incapable of creating and
selecting the correct object. In Leaves everything gets cluttered together into
one large object, while in Trex there is a total mismatch.

Ablations. For the ablations both versions of the object creation algorithm,
growing and non-growing, are used, with both scoring functions, QIoU Eq. 8
and QSQI Eq. 9, on different values of their scoring thresholds tIoU and tSQI .
When using the IoU scoring in the object creation, the IoU scoring is also used
during mask creation, similar with the SQI scoring. 81 different thresholds
are used for every object creation algorithm and scoring method combination.
The extracted data is the number of objects created and the number of objects
selected.

The graph in figure 16 shows, for every combination of object creation al-
gorithm and scoring method, the average number of masks per object. The
object creation algorithm at most turns every mask into a single object. The
average number of masks for a specific object creation algorithm and scoring
combination at a threshold t is calculated by combining the average number of
masks per object for every scene, and dividing that by the number of scenes.

The graph directly shows that, as expected, in almost all cases the SQI scor-
ing combines more masks into a single object than the IoU scoring. It is also

32

Fern

Flower

Fortress

Fountain

Horns

Leaves

Orchids

Room

Trex

Figure 15: Final segment masks of the selected objects. The objects are created
using the growing object creation algorithm with a SQI threshold tSQI = 0.75.

33

Figure 16: Graph of the average number of final masks per object for different
object creation algorithms and scoring methods (g: growing algorithm, ng: non-
growing algorithm).

34

Figure 17: Graph of the number of objects selected for the centre scene object
per image in the scene for different object creation algorithms and scoring meth-
ods (g: growing algorithm, ng: non-growing algorithm).

visible that the non growing algorithm combines more masks into a single object
than the growing algorithm for both scoring functions. This can be explained
by how the growing algorithm creates the objects. It grows the objects, adding
more masks, therefore slowly no new masks will reach the threshold due to the
size of the object. The non-growing algorithm does not do this, and therefore
continues to add masks to the objects. Also of note is that at t = 1 the number
of masks per object significantly decreases for all score and method combina-
tions. For the SQI score function this can be explained by the objects that are
completely inside other objects, here they will stop all being combined into one
single object.

The graph in Fig. 17 shows the average number of objects selected, by the
object selection algorithm, per image for every threshold t. The object selection
algorithm selects at least 1 object, and at most 1 object per image. The average
number of objects selected per image for a threshold t is calculated by combining
the average number of objects selected per image for every scene, and dividing
that by the number of scenes.

Here it is visible that the non-growing algorithm with SQI scoring, till a
threshold t = 1, combines enough masks of different images into one object to
create large objects such that only a few objects have to be selected for the
centre scene object. Although this looks good, this might also show that it
keeps combining objects too many objects, and therefore not only the wanted

35

Figure 18: Fern segments created with the non-growing object creation algo-
rithm using SQI scoring with tSQI = 0.75.

object is in the masks of the centre scene object, see Fig. 18. There is also
a strange dip in the non-growing algorithm with SQI scoring around t = 0.75,
this is a result of the Room scene all of a sudden selecting less objects around
this point. It is unclear what causes this.

5.4 Object Optimization

For the optimization Gaussian splatting is run with objects created using a
object creation scoring threshold tSQI = 0.75. To test how solid the scene is,
the scenes are trained on a black (0) background, and verified on a white (1)
background. If a scene is completely solid, then the background color should not
matter. Table 6 shows the scores for the trained scenes after 30.000 iterations
of three different methods. The original Gaussian splatting (GS) method, the
depth-regularized Gaussian splatting (D-GS) method, and the self implemented
method, isolated object splatting (IsO). The base version is trained without any
masking, and is verified over the entire scene. The mask version uses the centre
scene object’s segment masks, generated using the non-growing algorithm with
SQI scoring (tSQI = 0.75). These are verified by applying the segment masks
over the ground truth images:

I∗gt = Igt ∗ S∼ + white ∗ (1− S∼)

Where S∼ is the floating point segment mask from the diffuse segments stage,
and white is an image with all values as 1. Figure 19 shows the resulting
rendered images.

From the data it is visible that the original Gaussian splatting (GS) almost
always outperforms the other two methods. While this is not surprising for
the isolated object splatting (IsO) method, due to it being a complete new
implementation, this is somewhat peculiar for the depth-regularized Gaussian
splatting (D-GS) method. The loss in accuracy for the D-GS comes from the
over compensation of the depth data, the method tries to get the correct depths
and therefore removes Gaussians in the back to get the correct depth, and it will
start to rely more on the background color. This is also visible when looking at
the images.

Ablations. For the ablations the optimization is done with five different
Lbounds values (0.00, 0.25, 0.50, 0.75, 1.00), and with a random color chang-
ing background. This is done for both the modified depth-regularized Gaussian
splatting (D-GS), and isolated object splatting (IsO). All scenes are trained for
30.000 iterations. Table 7 shows the PSNR scores of the ablations, and figure

36

PSNR ↑ SSIM ↑ LPIPS ↓
base mask base mask base mask

GS 20.89 17.48 0.796 0.840 0.121 0.124
Fern D-GS 20.79 15.51 0.809 0.838 0.144 0.197

IsO 18.78 17.46 0.609 0.710 0.476 0.333
GS 17.53 20.57 0.701 0.934 0.161 0.057

Flower D-GS 15.03 15.88 0.637 0.800 0.237 0.294
IsO 20.25 18.40 0.663 0.885 0.343 0.168
GS 28.17 31.47 0.922 0.974 0.044 0.015

Fortress D-GS 19.36 23.60 0.874 0.952 0.088 0.053
IsO 18.73 26.87 0.768 0.912 0.198 0.091
GS 30.48 29.85 0.965 0.978 0.022 0.016

Fountain D-GS 22.49 15.53 0.943 0.873 0.054 0.133
IsO 26.74 26.30 0.855 0.932 0.196 0.099
GS 20.15 24.22 0.808 0.968 0.113 0.033

Horns D-GS 21.16 15.97 0.790 0.900 0.176 0.138
IsO 18.42 17.31 0.617 0.860 0.502 0.189
GS 14.25 7.99 0.449 0.349 0.336 0.478

Leaves D-GS 12.615 8.92 0.384 0.375 0.416 0.484
IsO 10.77 6.83 0.189 0.221 0.782 0.756
GS 16.19 31.12 0.694 0.992 0.148 0.016

Orchids D-GS 14.84 18.03 0.649 0.917 0.224 0.113
IsO 17.47 20.66 0.506 0.961 0.475 0.061
GS 29.00 23.89 0.947 0.981 0.044 0.026

Room D-GS 20.95 30.73 0.860 0.981 0.147 0.040
IsO 20.66 22.23 0.803 0.960 0.432 0.075
GS 17.05 14.14 0.799 0.861 0.107 0.247

Trex D-GS 19.45 13.61 0.790 0.826 0.193 0.269
IsO 15.48 10.94 0.631 0.753 0.486 0.410

Table 6: Scores for final trained scenes after 30.000 iterations. Loss function
weights, where applicable: LSSIM = 0.8,Ldepth = 0.5,Lsmooth = 1.0,Lbounds =
1.0. Boldface are the highest scores.

37

Fern

Flower

Fortress

Fountain

Horns

Leaves

Orchids

Room

Trex
GT GS D-GS Black-D-

GS
IsO

Figure 19: Renders from the different optimization methods. Ground truth
(GT), Gaussian splatting (GS), depth-regularized Gaussian splatting (D-GS),
result of depth-regularized Gaussian splatting rendered on a black background
(Black-D-GS), isolated object splatting (IsO).

38

PSNR ↑ 0.00 0.25 0.50 0.75 1.00 rb

Fern D-GS 9.09 16.36 15.81 15.29 15.51 7.59
IsO 10.91 16.12 16.74 17.05 17.46 9.84

Flower D-GS 9.99 13.88 15.31 15.71 15.88 9.96
IsO 8.11 17.20 17.70 18.17 18.40 8.43

Fortress D-GS 17.10 23.86 23.87 23.81 23.60 16.36
IsO 18.91 26.37 26.57 26.73 26.87 18.14

Fountain D-GS 6.33 17.12 15.13 15.90 15.53 5.60
IsO 6.09 22.62 24.36 25.51 26.30 5.78

Horns D-GS 7.27 14.50 15.59 15.77 15.97 6.61
IsO 4.26 15.22 16.72 17.02 17.31 5.67

Leaves D-GS 11.67 11.56 10.90 9.96 8.92 12.14
IsO 7.42 6.84 11.15 6.80 6.83 9.77∗

Orchids D-GS 10.49 14.68 16.07 16.78 18.03 9.08
IsO 6.26 19.60 19.84 20.31 20.66 6.72

Room D-GS 14.97 28.90 31.14 30.71 30.73 14.75
IsO 8.10 19.08 20.65 21.62 22.23 5.85

Trex D-GS 5.84 11.80 13.21 13.48 13.61 5.45
IsO 6.57 9.38 10.26 10.63 10.94 6.15

Table 7: PSNR ↑ scores for the Lbounds ablations and the random background
(rb). Boldface are the highest scores, red are the lowest scores, and orange
are the second lowest scores. IsO Leaves rb (∗) is evaluated at 7.000 iterations
instead of 30.000 iterations. This method did not reach the 30.000 iterations,
all Gaussians were culled.

20 shows the resulting renders for the Fountain scene. Similar to the other ex-
periments, the Gaussians are trained on a black background, and verified on a
white background. For the random background the Gaussians are trained on
the random background color, this color is in the training also applied to the
ground truth images, but still verified on a white background.

The data, see table 7 and 20, clearly shows that without the λbounds loss
function (Lbounds = 0.00) there is no control over over the Gaussians outside
the centre scene object. Using a random color changing background for the
optimization is also no compensation for the λbounds loss function. While the
isolated object splatting (IsO) method prefers a high Lbounds value, the modified
depth-regularized Gaussian splatting (D-GS) prefers a lower Lbounds. This is
most likely due to the Gaussians moving to the edge to get a correct edge at
higher Lbounds values, and thus removing Gaussians from the centre. In the
centre the Gaussians are then optimized in such a way that they still result in
the correct color and depth, but now no longer for a completely solid object.
When trained on a black background and verified on a white background this
becomes visible.

6 Conclusion

Due to the quirks in the SFM data described in Sec. 3.1 Create Objects, it
was not viable to accurately extract complete objects from the images. This

39

D-GS

IsO
0.00 0.25 0.50 0.75 1.00 rb

Figure 20: Fountain scene optimized under different Lbounds values, and random
background (rb).

resulted in the focus shifting from extracting all objects to selecting only a
single centre scene object. This also dropped the plan of combining multiple
objects to reconstruct the entire scene. Although currently the conditions of the
initial research question can not be satisfied, future improvements might still
accomplish the initial goal.

When comparing the different Gaussian splatting methods it is visible that
in most cases the original Gaussian splatting methods outperforms all other
methods when optimizing a single object. Depth-regularized Gaussian splatting
causes parts of the object to become opaque due to trying get the correct depth.

Looking at the individual sub problems:

1. Given two segment masks (Sa ∈ Si, Sb ∈ Sj)|a ̸= b, is it possible to
determine if they mask the same scene object? This is limited by the
SFM data. While it will never match segments masks that do not belong
to the same object, it does miss segment masks that should be matched
due to the quirks in the SFM data.

2. Is it possible to filter the points belonging to a given object from the initial
point cloud X? Yes, the point cloud X is generated by SFM and is also
used in the creation of the objects, therefore selecting the points that
belong to the object is already a part of the creation of the object itself.

3. Is it possible to modify the learning process of Gaussian splatting such that
it is capable of only training a single object and removing all the parts that
do not belong to the object? Yes, the modifications to the loss functions
and the introduction of the new bounds loss λbounds allow Gaussian splat-
ting to train individual objects. Although depending on the Gaussian
splatting method used the trained objects are not always solid.

4. Given multiple trained objects, is it possible to combine the objects in such
a way that the entire scene is correctly reconstructed? Due to the fact
that only one object was selected for every scene, combination of multiple
objects was never attempted. This leaves this question open for future
research.

40

7 Future Work

7.1 Mask and Object Matching

Object isolation uses the SFM feature points X to both, combine masks, and
create objects, by scoring them based on the number of matching features, see
Eq. 8, 9. The scoring equation only counts features that are matched by SFM,
due to the feature matching quirks, see Fig. 13, this can result in multiple
seperate objects of the same scene object.

A possible way to improve this is by having a weighted scoring function that
not only looks at the direct matched feature points, but also compares points
(xa, Xb) that are close to each other in the point cloud X . Even though the
features are not directly matched (Fig. 13 green and orange dots), because they
are on the same position of the object, they should be triangulated close to each
other in the point cloud X . Doing this might improve the matching of masks
and objects.

7.2 Object Combination

Currently due to the quirks in the SFM data and the limitations in the object
isolation method, only a single, centre scene, object is selected for optimization.
If the object isolation can be improved to extract multiple objects, it could be
possible to train multiple individual objects, and then later combine them again
into one full scene.

This would pose a series of new challenges, primarily maintaining the train-
ing and rendering speed advantage Gaussian splatting has. A possible way this
might be done is by still sorting the Gaussians only once, and having a indexed
boolean array for every object that, given the id of Gaussian g returns if this
Gaussian is part of the currently trained object. This way the optimization of
only sorting the Gaussians once is maintained.

7.3 Solid Objects

Currently there are no constraints to ensure that the object is optimized as a
solid object, an additional loss function might mitigate this problem, and could
therefore significantly improve the accuracy of the modified depth-regularized
Gaussian splatting method.

41

A Structure Elements

0 1 1 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
0 1 1 1 0

The 5× 5 structure element used for closing when extracting missing segments.

0 1 0
1 1 1
0 1 0

The 3 × 3 structure element used for the dilation when adding discarded seg-
ments.

B Segment Combination Algorithm

Algorithm 1 Mask combination algorithm
masks :M = {(S,X)}
tmask: threshold for feature matching

1: function CombineMask(masks, tmask)
2: maskStack ← Sort(masks)
3: while #maskQueue > 0 do
4: Ma ← maskStack.Pop()
5: scores← { }
6: for Mb ∈ maskStack do
7: scores[Mb]← Q(Ma,Mb)
8: end for
9: Mb ←Max(scores)

10: if Mb > tmask then
11: maskStack.Remove(Mb)
12: masks.Remove(Ma)
13: masks.Remove(Mb)
14: Ma ← Combine(Ma,Mb)
15: masks.Add(Ma)
16: maskStack.Push(Ma)
17: end if
18: end while
19: end function

C Object Creation Algorithms

42

Algorithm 2 Growing object creation algorithm
masks :M = {(S,X)}
tobject: threshold for feature matching

1: function GrowingCreateObjects(masks, tobject)
2: objectStack ← Sort(Object(masks))
3: objects← { }
4: while #objectStack > 0 do
5: Oa ← objectStack.Pop()
6: scores← { }
7: for Ob ∈ objectStack do
8: scores[Ob]← Q(Oa, Ob)
9: end for

10: Ob ←Max(scores)
11: if Ob > tobject then
12: objectStack.Remove(Ob)
13: Oa ← Combine(Oa, Ob)
14: objectStack.Push(Oa)
15: else
16: objects.Add(Oa)
17: end if
18: end while
19: return objects
20: end function

Algorithm 3 Non-growing object creation algorithm
masks :M = {(S,X)}
tobject: threshold for feature matching

1: function NonGrowingCreateObjects(masks, tobject)
2: objectStack ← Sort(Object(masks))
3: combineObjects← { }
4: objects← { }
5: while #objectStack > 0 do
6: Oa ← objectStack.Pop()
7: for Ob ∈ objectStack do
8: if Ob > tobject then
9: combineObjects.Add((Oa, Ob))

10: end if
11: end for
12: end while
13: objects← CombineObjects(combineObjects)
14: return objects
15: end function

43

D Object Selection Algorithm

Algorithm 4 Object selection algorithm
objects : O = {(S,X)}
images : I = {I}
1: function ObjectSelection(objects, images)
2: gatheredImages← { }
3: finalObject← {({}, {})}
4: while #gatheredImages < #images do
5: centerSegments← { }
6: for Oa ∈ objects do
7: centers← 0
8: for Si ∈ Oa.S do
9: ▷ Ii is the image Si came from

10: if Ii ∈ gatheredImages then
11: continue
12: end if
13: if CheckCenter(Si, Ii) then
14: centers← centers+ 1
15: end if
16: end for
17: centerSegments[Oa]← centers
18: end for
19: O∗

a,maxCenters←Max(centerSegments)
20: if maxCenters = 0 then
21: break
22: end if
23: meanSize←MeanSize(O∗

a.S, gatheredImages)
24: for Si ∈ O∗

a.S do
25: if #{p | p ∈ Si, Si(p) > 0} > meanSize/2 then
26: ▷ Ii is the image Si came from
27: gatheredImages.Add(Ii)
28: end if
29: end for
30: objects.Remove(O∗

a)
31: finalObject← Combine(finalObject, O∗

a)
32: end while
33: return finalObject
34: end function

MeanSize(O∗
a.S, gatheredImages) returns the means size of the masks Si ∈

O∗
a.S where the original image Ii is not in the gatheredImages set.

44

References

[1] Ben Mildenhall et al. “Nerf: Representing scenes as neural radiance fields
for view synthesis”. In: Communications of the ACM 65.1 (2021), pp. 99–
106.

[2] Kyle Gao et al. “Nerf: Neural radiance field in 3d vision, a comprehensive
review”. In: arXiv preprint arXiv:2210.00379 (2022).

[3] Bernhard Kerbl et al. “3D Gaussian Splatting for Real-Time Radiance
Field Rendering”. In: ACM Transactions on Graphics 42.4 (July 2023).
url: https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/.

[4] Jiazhong Cen et al. “Segment anything in 3d with nerfs”. In: arXiv prepring
arXiv:2304.12308 (2023).

[5] Jiazhong Cen et al. “Segment any 3d gaussians”. In: arXiv preprint arXiv:2312.00860
(2023).

[6] Johannes L Schonberger and Jan-Michael Frahm. “Structure-from-motion
revisited”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 4104–4113.

[7] Shimon Ullman. “The interpretation of structure from motion”. In: Pro-
ceedings of the Royal Society of London. Series B. Biological Sciences
203.1153 (1979), pp. 405–426.

[8] Stereo and kinect fusion for continuous 3D reconstruction and visual odom-
etry - Scientific Figure on ResearchGate. accessed 1 Jun, 2024. url: https:
//www.researchgate.net/figure/Structure- from- Motion- SfM-

process-is-illustrated-The-structure-in-the_fig2_269327935.

[9] Ozgur Yilmaz and Fatih Karakus. “Stereo and kinect fusion for continuous
3D reconstruction and visual odometry”. In: Nov. 2013, pp. 115–118. isbn:
978-1-4799-3343-3. doi: 10.1109/ICECCO.2013.6718242.

[10] Sameer Agarwal et al. “Building rome in a day”. In: Communications of
the ACM 54.10 (2011), pp. 105–112.

[11] David G Lowe. “Distinctive image features from scale-invariant keypoints”.
In: International journal of computer vision 60 (2004), pp. 91–110.

[12] David G Lowe. “Object recognition from local scale-invariant features”.
In: Proceedings of the seventh IEEE international conference on computer
vision. Vol. 2. Ieee. 1999, pp. 1150–1157.

[13] Wilhelm Burger and Mark J Burge. Principles of Digital Imge Process-
ing, Advanced Methods. Springer, 2013. isbn: 978-1-84882-918-3. doi: 10.
1007/978-1-84882-919-0.

[14] Tinne Tuytelaars, Krystian Mikolajczyk, et al. “Local invariant feature
detectors: a survey”. In: Foundations and trends® in computer graphics
and vision 3.3 (2008), pp. 177–280.

[15] Matthew Brown, Gang Hua, and Simon Winder. “Discriminative learning
of local image descriptors”. In: IEEE transactions on pattern analysis and
machine intelligence 33.1 (2010), pp. 43–57.

[16] H Cantzler. “Random sample consensus (ransac)”. In: Institute for Per-
ception, Action and Behaviour, Division of Informatics, University of Ed-
inburgh 3 (1981).

45

[17] Tao Hu et al. “Efficientnerf efficient neural radiance fields”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 2022, pp. 12902–12911.

[18] Stephan J Garbin et al. “Fastnerf: High-fidelity neural rendering at 200fps”.
In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2021, pp. 14346–14355.

[19] Jonathan T Barron et al. “Mip-nerf 360: Unbounded anti-aliased neural
radiance fields”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2022, pp. 5470–5479.

[20] Matthias Zwicker et al. “EWA volume splatting”. In: Proceedings Visual-
ization, 2001. VIS’01. IEEE. 2001, pp. 29–538.

[21] Volker Schönefeld. “Spherical harmonics”. In: Computer Graphics and
Multimedia Group, Technical Note. RWTH Aachen University, Germany
(2005), p. 18.

[22] Sara Fridovich-Keil et al. “Plenoxels: Radiance fields without neural net-
works”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2022, pp. 5501–5510.

[23] Duane GMerrill and Andrew S Grimshaw. “Revisiting sorting for GPGPU
stream architectures”. In: Proceedings of the 19th international conference
on Parallel architectures and compilation techniques. 2010, pp. 545–546.

[24] Jaeyoung Chung, Jeongtaek Oh, and Kyoung Mu Lee. “Depth-Regularized
Optimization for 3D Gaussian Splatting in Few-Shot Images”. In: arXiv
preprint arXiv:2311.13398 (2024).

[25] Bingxin Ke et al. “Repurposing Diffusion-Based Image Generators for
Monocular Depth Estimation”. In: arXiv preprint arXiv:2312.02145 (2023).

[26] Shariq Farooq Bhat et al. “Zoedepth: Zero-shot transfer by combining
relative and metric depth”. In: arXiv preprint arXiv:2302.12288 (2023).

[27] John Canny. “A computational approach to edge detection”. In: IEEE
Transactions on pattern analysis and machine intelligence 6 (1986), pp. 679–
698.

[28] In: IEEE transactions on pattern analysis and machine intelligence 32.9
(2009), pp. 1627–1645.

[29] Ross Girshick et al. “Rich feature hierarchies for accurate object detection
and semantic segmentation”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2014, pp. 580–587.

[30] Joseph Redmon et al. “You only look once: Unified, real-time object de-
tection”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 779–788.

[31] Peiyuan Jiang et al. “A Review of Yolo algorithm developments”. In:
Procedia Computer Science 199 (2022), pp. 1066–1073.

[32] Shervin Minaee et al. “Image segmentation using deep learning: A survey”.
In: IEEE transactions on pattern analysis and machine intelligence 44.7
(2021), pp. 3523–3542.

[33] Alexander Kirillov et al. “Segment anything”. In: arXiv preprint arXiv:2304.02643
(2023).

46

[34] Jan Hosang, Rodrigo Benenson, and Bernt Schiele. “Learning non-maximum
suppression”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017, pp. 4507–4515.

[35] Wilhelm Burger and Mark J Burge. Priniciples of Digital Image Pro-
cessing, Fundamental Techniques. Springer, 2009. isbn: 978-1-84800-190-
9. doi: 10.1007/978-1-84800-191-6.

[36] Wilhelm Burger and Mark J Burge. Principles of Digital Imge Processing,
Core Algorithms. Springer, 2009. isbn: 978-1-84800-194-7. doi: 10.1007/
978-1-84800-195-4.

[37] Jaeyoung Chung, Jeongtaek Oh, and Kyoung Mu Lee. DepthRegular-
izedGS. url: https://github.com/robot0321/DepthRegularizedGS.

[38] Vickie Ye and Angjoo Kanazawa.Mathematical Supplement for the gsplat
Library. 2023. arXiv: 2312.02121 [cs.MS].

[39] Vickie Ye, Matias Turkulainen, and the Nerfstudio team. gsplat. url:
https://github.com/nerfstudio-project/gsplat.

47

