
Multimodal Immersive Systems for
Assembly in Mixed Reality

Luca Becheanu - 7630379
Supervisors: Dr. Wolfgang Hürst, Dr. Julian Frommel

Department of Information and Computing Sciences
Game and Media Technology

Master Thesis

July 3, 2024



Contents

Abstract 4

Acknowledgments 5

1 Introduction 6

2 Related Work 8
2.1 Extended Reality in Assembly . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Devices Used During Assembly . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Multimodal Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Technical Aspects and Tool Features . . . . . . . . . . . . . . . . . 12
2.4.2 Levels of Acceptance and Participant Attitude . . . . . . . . . . . . 13
2.4.3 Psychological Reactions . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.4 Level of Immersion . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Research Question 14

4 Methodology 15

5 Design and Architecture 15
5.1 Use Case Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2.1 User Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 Technical Requirements . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Development 27
6.1 Feasibility Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1.1 Technical Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.2 Operational Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.3 Time Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1.4 Summary of Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.2 Risk Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.3.1 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3.2 Application Walkthrough . . . . . . . . . . . . . . . . . . . . . . . . 36

7 User Study 37
7.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.4 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.5 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.6.1 Pre-training results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.6.2 Quantitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.6.3 Post-training results . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2



8 Discussion 50
8.1 Subquestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.1.1 How can we design an architecture that will take into account the
advantages of dialogue agents and MR for assembly? . . . . . . . . 50

8.1.2 How do we integrate dialogue agents with interactive MR systems
such that they are compatible and still highly performant? . . . . . 50

8.1.3 How can we evaluate the efficacy of AI-based MR training? . . . . . 51
8.2 Shortcomings and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 51

9 Conclusion 53

References 54

A Appendix 61
A.1 Application Enlarged Figures . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2.1 Informed Consent Form and Demographics Questionnaire . . . . . . 67
A.2.2 Tool Usability Form . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.2.3 Task Load Index Form . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.2.4 Preferred Instruction Medium Form . . . . . . . . . . . . . . . . . . 75

A.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3



Abstract

This paper explores the integration of Extended Reality and multimodal Artificial
Intelligence (AI) in the context of assembly tasks. The study investigates the use of
dialogue agents within Mixed Reality (MR) environments to enhance assembly processes,
focusing on whether training can be simplified and costs can be reduced by replacing the
human trainer. Methodologically, the research includes a use case analysis, feasibility
study, and system implementation, followed by a user study evaluating variables such
as task performance and user satisfaction. Results indicate that integrating dialogue
agents with MR systems may potentially improve assembly efficiency and user interaction,
although challenges in technical development and user acceptance remain. The proposed
method provides a good starting point for understanding the potential of AI-driven MR
applications in training and operational settings, suggesting a course of action for further
research and development.
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1 Introduction

The assembly phase is a pivotal component of the overall fabrication process for
two main reasons. Firstly, it represents a substantial portion of manufacturing costs,
accounting for an average of 30-40% of the total expenditure [4]. Secondly, the efficiency
of assembly tasks affects the final quality of the product, overall production time, and cost.
Despite the notable automation in processes like cutting, milling, and forming, assembly
remains predominantly conducted manually [62].

To help boost worker productivity, Extended Reality (XR) applications for sup-
porting task execution during manufacturing have been a subject of academic research
for many decades, and such tools have been built in Virtual Reality (VR), Augmented
Reality (AR), and Mixed Reality (MR), yet there are still limited examples of their actual
implementation in industries [14, 51]. The most recent studies highlight the need for vir-
tual assistant tools that provide the trainees with a means of asking for information [43],
the same way as they would do in the current industry standard of face-to-face training
[82].

Building these types of assembly helper software requires being aware of the specific
set of closely related instructions that produce the final result [11]. The variability of
product configurations in terms of components is very large, which forces workers to be
highly adaptive in performing tasks that could vary slightly but significantly in terms of
steps and operations [7]. With this state-of-the-art action recognition [24, 75, 87], next-
generation artificial intelligence (AI) assistants are capable of handling multimodal inputs
(e.g., vision, history of previous interactions, and the user’s utterances), and performing
multimodal actions (e.g., displaying a visual guide while generating the system’s utter-
ance) [44]. Combining these models that can make the dialogue agent understand more
than just one type of information, such as visuals and text in a shared embedding space
could ultimately provide assembly trainees with the best solution to resolving ambiguity
and correcting mistakes during assembly, enhancing accuracy in task completion [34, 63].

The research aims to address this gap by constructing an AI-assisted immersive
system for assembly training and determining whether it is more effective than tradi-
tional methods such as face-to-face training, introducing novel prospects in the domain of
personal assistant application development, with the general goal of replacing human-to-
human assembly traineeship with human-to-machine automation. We will first create an
application that will take into account the advantages of superimposing virtual objects
onto the physical world. Then, we will build up the interaction between the applica-
tion and the dialogue agent capable of generating human-like instructions. Last but not
least, we will investigate whether these systems can substitute human trainers in assem-
bly tasks, thereby reducing the substantial resources dedicated to worker training, and
evaluate the resulting improvements in work efficiency. Specifically, this study seeks to
tackle the following three research questions:

• How can we design an architecture that will take into account the advantages of
dialogue agents and MR for assembly?

• How do we integrate dialogue agents with interactive MR systems such that they
are compatible and still highly performant?

• How can we evaluate the efficacy of AI-based MR training?
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The upcoming sections are structured in the following way: Section 2 provides a
review of the background literature and Section 3 presents the research questions related to
the gaps found in the previous work. Following this, Section 4 describes the methodology
used to tackle the problem, in Section 5 we discuss the design and architecture of the
system, while Section 6 focuses on development and implementation. Section 7 reports
the user study and the experiment results, in Section 8 we analyze to what extent the
research questions have been answered and propose areas for future exploration, and
finally, Section 9 summarizes our main contributions.
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2 Related Work

This chapter is a comprehensive overview of existing research in XR, devices used
during assembly, recent developments in multimodal AI, and the evaluation metrics asso-
ciated with these technologies. Section 2.1 delves into the integration of XR technologies
in assembly processes. It examines how AR, VR, and MR are employed to enhance effi-
ciency and accuracy in assembly tasks. Studies highlight the impact of XR on training,
task guidance, and overall assembly performance. Section 2.2 focuses on the hardware
aspect, reviewing the various devices utilized in assembly processes. It covers modern
technologies as a new toolset for workers, such as phones and tablets, smart glasses, and
HMDs (head-mounted displays). The literature surveyed discusses the advantages and
limitations of these devices, their impact on ergonomics, and the overall effect on assembly
line productivity. Section 2.3 introduces Multimodal AI, exploring the synergies between
different sensory modalities (e.g., vision and speech) and their potential for integration
into assembly tasks. The research investigates how AI algorithms leverage multimodal
inputs to enhance decision-making and adaptability in dynamic assembly environments.
Section 2.4 is dedicated to the methodologies and metrics used to assess the success and
impact of XR in assembly tasks. It reviews both quantitative and qualitative evaluation
metrics, such as task completion time, error rates, user satisfaction, and learning curves.
The literature highlights the importance of selecting appropriate metrics to measure the
specific goals of the implemented technologies and offers insights into the challenges of
evaluating complex, interconnected systems.

2.1 Extended Reality in Assembly

XR is defined as ”a unifying concept to interpolate between the realities and to
eXtrapolate beyond them” [36], considered an umbrella term coined in 1991 to refer to
AR, VR, and MR. Table 1 gives an overview of the key differences of each XR technology.

Table 1. Key differences between VR, AR, and MR as defined by McMillan et al. [39].
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VR creates its own artificial three-dimensional (3D) environment in which the user
wearing a headset is immersed, having a physical presence in the virtual world [71]. This
technology thrives in training simulations of specific environments that can’t be replicated
in real life such as calamities [16], or that are very expensive to repetitively create in the
real world such as extinguishing fires in firefighter training [18].

AR is a technology that superimposes computer-generated images, sounds, or other
sensory information on a user’s view of the real world, allowing them to see an overlay of
digital information on physical world elements while keeping the real world environment
central [12]. Unlike VR, AR adds projections and holograms to the existing world as it
is. Many studies have been done to showcase its capability to give guidance and assist
workers during manufacturing tasks [14, 79].

MR is the latest technology that combines aspects of both the real-world and digital
elements, merging them to produce an enriched interactive environment such as simulat-
ing a virtual interactable workplace in the physical world [72]. While some recent MR
papers researching assembly training [8, 57] still refer to the Reality–Virtuality continuum
proposed by Milgram and Kishino [42] in 1994, a newly revised definition was put forward
by Rauschnabel et al. [55] which argues that MR lies on the AR continuum where users
experiences can range from a very low functional level (Assisted Reality) to highly inter-
active and realistic experiences (MR). The user usually wears an HMD and can interact
with physical and virtual items at the same time. This technology also allows the user to
immerse in this combination of worlds using their own hands, without the explicit need
for any other controllers [14]. The 3D content projected from the headset will react to
the user the same way as it would in the real world. Since this is the newest immersive
technology, the use cases for assembly tasks are still under development [33, 76, 86], yet
new advancements in the most recent headsets like the Apple Vision Pro [25] might pave
the way forward to a new type of Reality that lets the user switch back and forth between
virtual, augmented and mixed realities depending on use cases.

Table 2. XR technology usage in training as reviewed by Doolani et al. [14].

Our focus is on MR since it is the most flexible technology that can be used in all
manufacturing phases, and the only technology that can be used during the operational
phase of the manufacturing process that entails assembly as seen in Table 2, since it is not
completely immersive like VR and lets the user interact with the real world along with
digital models.
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2.2 Devices Used During Assembly

In order to decide which tools fit best in the development of a system, the tech-
nological limitations of the devices used need to be taken into account. Werrlich et al.
[79] survey most recent assembly studies and note that a limitation to most of these is
the usage of hand-held devices such as tablets and smartphones. However, headsets and
HMDs offer the trainee the possibility to work hands-free while providing users with the
necessary information to perform their tasks. This influences the development of new
applications on hardware that makes the trainee experience as helpful and ergonomic as
possible such as HMDs, which are becoming less bulky and lighter.

Research shows that millions of employees are going to use smart HMDs on a regular
basis for their on-job tasks and training by 2025 [22, 37, 59]. It is also very useful in
teaching trainees to prevent the risks of injury during construction or assembly in high-
consequence practical industries like healthcare [2, 45], aerospace [35], and manufacturing
[32], where mistakes can be deadly [54].

Learning applications have been implemented that make use of the new possibili-
ties of the most recent headsets [5]. Werrlich et al. [81] evaluated the efficacy of HMDs
using a user study with two groups and argued that a combination of the real and vir-
tual assembly phases strengthened the training transfer, exactly what the MR field offers.
Gonzalez-Franco et al. [21] developed an MR setup and tested it in implementing an
aircraft maintenance door to verify if it can replace other forms of face-to-face training.
While the collaborative interaction was between two humans and not between a human
and an AI model, it showed that the MR setup can potentially provide ways of collabo-
rative training.

MR training technologies encompass more than just hardware, the effectiveness and
quality of these platforms are also heavily reliant on the software they use. High-quality
software is essential for operating the hardware and for generating MR content. The
gap in the growth rates of software and hardware presents challenges for developers, who
must continually adapt to these evolving technologies and develop applications with new
functionalities [14]. Previously, applications and development engines needed separate
proprietary code for each device on the market. However recently, manufacturers now have
a specification they can follow to ensure their system is compatible with past, present,
and future applications. Application developers no longer need to worry about target
platforms as a new standard called OpenXR ensures the app will behave similarly on all
conformant devices [49]. Therefore our goal is to create software in the form of a MR
application that can work with any OpenXR-compliant HMD hardware.

2.3 Multimodal Artificial Intelligence

Large Language Models (LLMs) have shown significant advancements in dialogue
systems and their applications [47, 67, 88]. The majority of contemporary AI systems
are unimodal, meaning they are engineered to operate exclusively with a single data
type and utilize algorithms specifically designed for that modality [58]. For instance, an
unimodal AI system employs algorithms based on Natural Language Processing (NLP) to
interpret and derive meaning from textual content. Consequently, the sole form of output
this chatbot is capable of generating is text. In contrast, multimodal architectures that
can integrate and process multiple modalities simultaneously have the potential to receive
multiple inputs and produce more than one type of output, understanding and responding
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to spoken commands while simultaneously processing visual cues from the environment.
As part of the research on existing and upcoming products, companies are currently

pushing innovations towards having virtual assistants in XR that are connected to LLMs
and object detection modules to help with day-to-day tasks, such as translating foreign
languages, choosing the right clothing, and so on [73]. This applies to a teaching envi-
ronment too, where XR is making a huge impact on eLearning and training programs,
since most workers are practical learners, acquiring 70 percent of their skills and knowl-
edge from experiential learning [30, 46, 66]. However, limited work has been done to
replace the human trainer factor with AI modules. To this extent, further work is needed
to optimize the process as AI technologies are evolving toward high-performant dialogue
agents.

Remarkable breakthroughs in the field of computer vision have made it possible
for AI models to make very specific distinctions in classifications, recognizing images
belonging to a subordinate category [27, 31, 78, 85]. These new types of dialogue agents
work similarly to the human visual system, which is very capable of image reasoning,
telling the difference between a dog and a cat, but also distinguishing between different
dog breeds, despite some being very similar to one another.

Research on AI dialogue agents in training environments is highly valuable for a
future with seamless human-to-machine interaction, creating a synergy between human
intelligence and AI capabilities. Making increased automation more applicable to real-
world scenarios contributes to enhancing productivity and efficiency in various domains
[17]. Additionally, by focusing on training applications, researchers can explore ways to
enhance safety protocols, optimize production processes, and improve overall operational
efficiency, thereby paving the way for a more advanced and interconnected landscape.
The integration of AI dialogue agents in such settings not only streamlines tasks but also
opens up new possibilities for innovation and growth in various industries [14].

Related to dialogue agents, Padmakumar et al. [50] propose task-driven embodied
agents that can communicate via language. Their research provides a human-machine in-
teraction dataset specifically tailored for household tasks, however, they focus on training
the model using a human acting as the virtual agent trainer sending textual instructions
to the human trainee. While this research is needed to create performant dialogue AI
agents, they focus on an embodied agent in VR domains, which is an intelligent agent
that interacts with the environment through a physical body within that environment
[74]. However, as previously seen in Table 2, an embodied VR agent cannot be incorpo-
rated in the operational phase of assembly, due to the lack of seeing the physical parts
needed to be assembled.

Xu et al. [84] made use of ChatGPT to optimize the AR-based assembly tasks and
reduce the cognitive load required in analyzing complex text-based instructions, by taking
pictures with the virtual camera of the headset and projecting the AI model’s instructions
on a digital twin of the physical object. Currently, the most important limitation that
steers our goal away from Assisted Reality applications is the lack of interaction with
virtual projections. For a concrete example, even if the dialogue agent showcases the
missing parts of an object on top of the real-world object, the user has no ability to
physically interact with the digital parts at any given step, while participants in similar
studies wanted that as an option because the application is centered around 3D interaction
[43]. We would like to use the capabilities of LLMs in a similar fashion, however, the lack
of an important digital touch modality is the main difference compared to what we are
trying to achieve.
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2.4 Evaluation Metrics

Borsci et al. [7] conducted a comprehensive review of the effectiveness of VR and MR
tools for training operators, particularly in the context of car service maintenance. They
identified a trend among automotive researchers to focus their analysis only on car service
operators’ performance in terms of time and errors. However, they noted that important
pre- and post-training aspects that could affect the effectiveness of VR/MR tools to deliver
training content were often left unexplored. These aspects include people skills, previous
experience, cybersickness, presence and engagement, usability, and satisfaction. Their
work highlights the need for a more holistic approach to evaluating the effectiveness of
VR/MR tools for training, one that takes into account a wider range of factors beyond
just performance metrics, as seen in Table 3.

Evaluation criteria References

1
Technical aspects and tool features
Effect of designed features, expected system functioning

Bowman [9]
Stefanidis et al. [65]

2
Levels of acceptance of MR tools

Participants attitude/engagement

Gallagher et al. [20]
Kneebone et al. [26]
Sanchez-Vives and Slater [60]
Grantcharov et al. [23]

3 Psychological reactions - cognitive load, skills, stress
Witmer and Singer [83]
Seymour et al. [61]

4 Level of immersion
Robert S. Kennedy and Lilienthal [56]
Stanney et al. [64]

Table 3. List of evaluation criteria reported in the literature as important for testing the effectiveness
of VR/MR tools interaction and training as surveyed by Borsci et al. [7].

The following sections will discuss each main evaluation criterion and elaborate on
the studies that focus on the mentioned aspects and why they are needed in the evaluation
approach.

2.4.1 Technical Aspects and Tool Features

A criterion suggested in academic studies is employed to analyze the technical as-
pects of training tools, such as system operation, usability, user experience, and satisfac-
tion [9, 65]. These aspects are evaluated through questionnaires given before (for instance,
prior to training interaction with the technology) and after the training. The function-
ality of the tool at various levels (like a low usability level) could significantly influence
the content transfer during training by impacting the user’s experience with the tool. At
the same time, attributes like varying degrees of gamification in training can either en-
hance or diminish trainees’ motivation, presence, and engagement. Therefore, conducting
an analysis of these criteria before and after training enables researchers to effectively
oversee and understand the impact of these tools on the performance of trainees.

Furthermore, this analysis not only provides insights into the effectiveness of the
training tools but also helps in identifying areas for improvement. For instance, if the
pre-training interaction reveals a low level of tool usability, measures can be taken to
enhance this aspect before the actual training begins. This could involve making the
interface more user-friendly or providing additional guidance to the trainees on how to
use the tool effectively.
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2.4.2 Levels of Acceptance and Participant Attitude

Miller and Kalafatis [43] propose an experiment that guides the user through set-
ting up a piece of equipment, by projecting the digital twin of the equipment and in-
structions on how to make the assembly steps. They evaluate their system based on
efficiency (quickness in task completion), precision (mistakes made during assembly), and
complexity (difficulty in following steps). Questionnaires are used to determine the user
satisfaction level with the system output with questions related to the level of compre-
hension (whether instructions are enough and feel complete), and preference (preferred
method and which is more intuitive). They discussed the needed improvements after the
study and many participants noted that they wanted a means to ask for clarity which
would have been less confusing. This is exactly what we are trying to achieve using a dia-
logue agent. Another limitation they entail is that they mostly used animated holograms,
and had limited virtual interactions. We aim to improve this by giving the user the free
possibility to interact with virtual models to increase their interactive satisfaction.

2.4.3 Psychological Reactions

Due to the increased complexity in manual workplaces, demand has risen for soft-
ware solutions providing high practical usability and a low cognitive load on the worker
[82]. XR applications can be designed to train specific aspects of cognition such as making
problem-solving more efficient [14]. In most studies, these cognitive tasks are in terms of
the time taken to reach an objective, finish a specific task, or quantify the cognitive load
to project the increase in engagement during the task [7].

The reason why these metrics are important is that with an increase in cognitive
performance, higher cognitive levels would mean an easier adaptation to the tasks at
hand, making the worker more flexible in adjusting to new technology and completing the
training and re-training required in an evolving market [15]. However, in a comprehensive
overview of AR assembly training evaluations, Werrlich et al. [82] highlight that even if
many literature studies proved faster completion compared to traditional methods, count-
ing the time is an insufficient variable for assembly training, and adding measurements
for the quality and training transfer such as immediate recall should be favored when
evaluating training systems.

In a study by Werrlich et al. [79], the researchers demonstrate that AR systems out-
performed conventional training methods such as video instruction and printed textual
instructions in terms of both immediate and long-term recall post-training. Further-
more, it was observed that AR-based training imposed a lower cognitive load compared
to traditional training methodologies. The projection-based AR limitations in the field of
assembly tasks are also discussed, highlighting the important aspect of complex environ-
ments like an engine assembly line and the research gap on how to tackle such complex
issues that require many parts.

2.4.4 Level of Immersion

In VR, participants show good progress in immediate assessment after using the
headset applications and in further assessments after months, which proves stability in
long-term recall. However, compared to AR-based assembly training, in most subjective
evaluations VR showed a significantly higher perceived task load and a lower usability
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rating when simulating the real workspace [13], while it may also induce cybersickness as
a negative effect [56].

Given these drawbacks, while VR software is useful and proves effective in some
high-risk training scenarios where participants showed good progress in the immediate
and long-term recall [54], the main downside is the inability to see the real world, losing
the most important factor in assembling physical objects.

Another limitation to the current evaluation methods that needs to be taken into
account is that researchers tend to compare the training systems mostly against paper-
based or video-based solutions, and not as much against face-to-face training which is
the current training solution in industries [82]. We aim to fill this gap by basing our
hypotheses on whether there is a statistically significant difference between face-to-face
training and AI-assisted MR training.

Overall, hands-free MR applications with an interactive interface incorporating di-
alogue agents could be the best solution to increase the cognitive performance of workers
and automate the training process in order to make it more efficient and cost-effective.
We aim to understand the effectiveness of an MR virtual assistant that can process in-
formation the way people do and act as a replacement for a human trainer, which could
provide step-by-step guidance for performing tasks, specifying both the nature of the tasks
and their spatial context. Evaluating our system will follow best practices from related
literature as seen in Table 3, involving a combination of questionnaires for measuring the
usability of the system (System Usability Scale [1]), the perceived workload (NASA-TLX),
and the acceptance of technology (TAM).

3 Research Question

The research question is stated as follows: How can we develop and evaluate an
application for AI-assisted assembly training?

Following this, multiple sub-questions can be derived to tackle the research in a
step-by-step manner:

• How can we design an architecture that will take into account the advantages of
dialogue agents and MR for assembly?

For this subquestion, the focus is to create an easy-to-use and intuitive training
application that works similarly to other software tools that are used in the in-
dustry, following the design recommendations and guidelines for creating successful
applications with optimal information visualization proposed by Werrlich et al. [80].

• How do we integrate dialogue agents with interactive MR systems such that they
are compatible and still highly performant?

This subquestion along with the research material to be used will be expanded upon
in the Methodology section.

• How can we evaluate the efficacy of AI-based MR training?

To answer this subquestion, I will use the previous two subquestions to come up with
an optimal solution that will be evaluated with a user study on usability testing.
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4 Methodology

Based on the findings from related work, we will first identify a specific use case
for the system. This involves understanding the problem space, identifying the users,
and outlining the tasks the system will perform. Once the use case is defined, we will
establish the requirements for the software we are developing. These requirements will be
both functional (what the system should do) and non-functional (how the system should
perform). The requirements will guide the design of the system’s architecture. The archi-
tecture will outline the system’s components, their relationships, and their interactions,
providing a high-level view of how the system will be structured and how it will operate.

After determining the requirements, we will conduct a thorough feasibility and risk
analysis. The feasibility analysis will evaluate whether it’s possible to develop the system
within the given constraints, such as time and technology. It will ensure that the system
can incorporate all the proposed functionality and that it can be completed within the
required timeframe. The risk analysis will identify potential issues that could hinder the
system’s development or operation, such as technical challenges and resource constraints.
We will assess each risk’s likelihood and impact, and develop strategies to mitigate them.
After this, we will delve into the implementation of the application based on all findings
above, which will ellaborate the data transfer handling and the integration of the dialogue
agent into our system.

Finally, we will evaluate the application through a user study and an experiment.
The user study will involve selected users interacting with the system, while we observe
and gather data on their experiences. This will provide insights into the system’s usability,
effectiveness, and user satisfaction. The experiment will test the system under controlled
conditions to measure its performance and reliability. The findings from the user study
and experiment will determine the benefits and limitations of our software.

5 Design and Architecture

This section provides a review of the proposed system, beginning with an in-depth
use case analysis to comprehend its real-world application contexts. Following this, a
rigorous assessment of requirements is carried out to gain a solid understanding of the
essential features. Ultimately, the section explores the system architecture, detailing the
comprehensive design and framework that will facilitate the project’s successful execution.

5.1 Use Case Analysis

Use case analysis, the foundation upon which the system will be built, is a technique
used to identify the requirements of a system and the information used to define the needed
processes [28]. The application is meant to be used in the assembly lines of manufacturing
companies in which workers assemble components or parts of a larger piece using their
hands and a headset that will project digital models that are intractable. Moreover, the
users will be guided and supported by a dialogue agent in the form of a virtual assistant
that will be able to give instructions when prompted by verbal commands [84]. The
interaction with the virtual environment is facilitated solely through hand gestures (poke,
grab, pinch), eliminating the need for additional controllers [82]. The intended users are
novice trainees with some basic knowledge of the given scenario. This process helps to
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design our system from the user’s perspective in order for it to be complete and reach our
final goal of satisfying the user [14, 26, 60, 86]. These user needs are organized based on
the timeline of user interaction and are structured as follows:

• The user wants to build sets of components without the use of a manual.

• The user wants to visualize the pieces physically and digitally either prior to, during,
or after the complete assembly [43].

• The user wants to interact with the 3D Models using their hands, without having
to use controllers [79].

• The user wants to receive information about the necessary steps to be taken by
asking questions using his voice [84].

• The user wants to hear and see in his field of view the important textual information
received [82].

• The user wants to see the correct attachment points emphasized [43].

• The user wants to know when they have completed a step correctly [14].

• The user wants to keep track of his progress by seeing an overview of the steps they
have completed and those remaining [81].

5.2 Requirements

This section refers to the analysis of the requirements in accordance with our previ-
ous research on what already is in the field of options. The focus is to create an easy-to-use
and intuitive training application that works in a similar fashion to other software tools
that are used in the industry [14, 43, 81], following the design recommendations and guide-
lines for creating successful applications with optimal information visualization proposed
by Werrlich et al. [80] and the best practices for HMD development [82]:

• Visual Aids: Direct visual aids are permanently presented information such as 3D
models superimposed on the related real environment. Indirect visual aids are ad-
ditional information, only presented or available for the user when needed (e.g. text
annotations, documentation). This concept allows us to adapt information during
the learning process. Clear and detailed instructions at the beginning are necessary
for the trainee to understand and perform the tasks.

• Mental Model Building: The mental model of an assembly task describes the internal
representation of an entire task. Context information such as progress bars can help
create a mental model.

• Passive Learning: There should be a part in the training where the trainee is not
active and only receives information about the task. This concept can help to gain
a global picture of the entire task.

• User Interaction: The MR experience involves physical manipulation of object com-
ponents, where the user can ask for instructions to assemble an object. The user
interaction should be hands-on without controllers [79], and verbal engagement with
the virtual agent should also be possible.
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• The final application must show conclusive benefits.

• Performance must be similar to or better than traditional tools.

• User perception and satisfaction must be considered.

• Visual immersion must be a key instruction component.

• The objectives should be well defined, they should not impede a user’s self-efficacy
or self-confidence, and they must accurately measure the impact on human perfor-
mance in terms of efficiency, understanding, and accuracy. The user feedback should
be immediate and self-explanatory.

Based on the aforementioned recommendations in the literature, the list of func-
tional and non-functional requirements is structured as follows:

5.2.1 User Requirements

• The system must have a list of 3D Model pieces that the user can interact with.

• The trainee must be able to use their voice commands or hand gestures to manip-
ulate the 3D Models and interact with the environment.

• The user must interact with their hands and not with controllers [79].

• The system must have an intuitive interface that will not feel too cluttered for a
user.

• The system’s interface must provide the user with instructions and responses by the
dialogue agent.

• There should be on-demand help during the interaction, with support in either
textual, audible, or visual form.

• The dialogue agent should be used to generate information or responses based on
the detected states.

• The application could benefit from having a text-to-speech model to provide the
user with verbal instructions.

• The final system will not have its own authentication system to eliminate the need to
take into account the security of personal information and to prevent data breaches.

• The system will not support multiplayer, as each participant won’t have to collab-
orate with others.

5.2.2 Technical Requirements

• The client-side system shall be implemented in C# using the Unity game engine.

• The server-side system shall be implemented in Python.

• The system shall use cloud storage for storing the dialogue agent’s models.
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• The system shall store smaller models locally, such as text-to-speech and speech-to-
text.

• The system shall use Github for CI/CD and version management.

• The headset must have a good-quality camera in order for the user to see the physical
pieces that need to be assembled.

• The headset should be untethered to offer freedom of movement to the users.

• The application should be compliant to existing standards so that it can be easily
ported to a new device.

5.3 System Architecture

Creating the system architecture for an MR application can be challenging. How-
ever, previous studies have illustrated the essential layers required for MR applications,
as depicted in Figure 1. They include the user interface (UI), application logic, and mid-
dleware layers. The UI layer is responsible for rendering the virtual objects and managing
user interactions. The application logic layer handles the application’s core functionality
and controls the flow of the application. The middleware layer functions as a hidden trans-
lation layer, enabling communication between the interface and the server. Understanding
these layers and their interactions is crucial for the successful design and implementation
of an MR application, by guiding the architectural decisions and helping overcome the
challenges associated with MR development.

For our scenario, the Unity Engine will shape the architecture of our code base,
which incorporates the UI and Application layers similar to Figure 1. In our case, the
middleware layer will be the communication between the dialogue agent and the headset.
To model the findings for our specific use case, we propose a less generic framework that
integrates two major components, the cloud-based dialogue agent and the MR environ-
ment within the Unity game engine (Figure 2).

The workflow is structured as follows: the user will ask a question and send an
image of their camera feed which will be processed in Unity and sent to the cloud-based
dialogue agent. As a response, the AI agent will send the answer to the question and a
picture of the manual if needed, which will be displayed on the UI in the headset.

Given the proposed workflow and the requirements described in the previous section,
we define the following structure for our system, as seen in Figure 3. The architecture
has been designed in a way that allows easy replacement of modules, without disrupting
the overall system functionality. This modular approach ensures that each component
can operate independently, while still contributing to the collective system goal. Each
module and the functionalities they provide will further be described, as well as how they
interpolate.

The client-side architecture is shown on the left side of Figure 3, and contains
the OpenXR compatibility framework that provides cross-platform support for any XR
runtime system such as the Magic Leap 2, Microsoft Hololens, Oculus Quest, or the
HTC Vive. The user will then be able to see the Application Interface on any of the
OpenXR-compatible headsets (Figure 4).
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Figure 1. A MR framework split into layers as proposed by Rokhsaritalemi et al. [57].

Figure 2. High-level overview for the framework of the system showcasing the data flow between the user
and the dialogue agent.
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Figure 3. Overview of the system’s components and bi-directional data flow from the client to the server.

Figure 4. Application interface design containing the interactable dialogue boxes, menus, and models.

20



The application will be developed and tested on an MR headset, the interface above
as well as the overall application design were outlined following best practices for MR
development [29, 40, 52]:

• Start with a home screen. Starting with a home screen that is familiar and
consistent allows users to orient themselves initially. This also helps a user recognize
the app’s ”home base” when later using the buttons to navigate [29]. To achieve
that, before the main UI, the users will see a coaching UI and video player for
onboarding them into the application, providing instructions on interacting with
the dialogue agent and the interactive menu.

• Create simple ways forward and back. The user needs to have a clear path to
follow and to navigate forward and backward through the app [29], in our case by
pressing the Next Step and Previous Step buttons.

• “Billboarding”: orienting objects for readability and usability. In MR
users can view objects from various angles. With billboarding, UI elements will
rotate and always face the user, regardless of orientation. This is recommended to
increase the readability and usability of text and objects that contain important
information [52]. Our UI components will include this functionality.

• Make actions clear. Users need to know what, when, and how to choose an
appropriate action [29]. If the user chooses to ask a question, he can do it by
pressing the Ask Question button. If the dialogue agent responds and asks the user
to take a picture in order to get better information, the user can do so by pressing
the Send Picture button. Finally, if the user chooses to start the process over, he
can choose to press the Restart button.

• Give adequate feedback. Since users are required to give input to interact with
the application, the right feedback needs to be given when the state changes [29].
We will provide the user with visual feedback in the form of text and images re-
ceived from the dialogue agent, as well as audio feedback that dictates the sentences
received as text.

• Size and distance for proper depth perception. If objects are of small size,
users can get lost, therefore a best practice is to provide clear and visual-auditory
cues when displaying small-sized objects to guide users [52]. The user will have the
ability to scale the 3D Model in order to increase its size as much as it is needed.
In case the 3D Model is lost in the environment, the user will have the ability to
toggle an arrow that points towards the 3D Model.

• Support direct and indirect input interactions alike. Direct touch creates an
immersive and intuitive experience, designing support for ray-casting from hands
lets users interact with objects from a distance [52]. Our application will support
this feature such that the menus can be interacted with from any position without
the need of controllers.

• Avoid head-locked content. Displaying information around the user’s field of
view, similar to a heads-up display (HUD), is a popular method for UI design,
however in MR the information displayed around the user’s eyes can tire them
quickly and reduce usability [52]. The user interface will be fully customizable by
the user, with every box and object being movable, pinnable, and minimizable.
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• Design content with sufficient visual and audio cues. In MR, where virtual
objects are integrated into the physical world, it’s crucial to design content with
ample cues and feedback, given the lack of control over the user’s viewpoint. This
ensures users can explore and interact with virtual elements without losing their
way. Since physical and tactile feedback is absent, visual cues indicating states like
“hover” and “pressed” are essential for maintaining quality and usability. When
a user focuses on or hovers over interactive objects, visual feedback needs to be
provided. Additionally, audio/visual feedback must be incorporated, such as com-
pressing movement or highlighting upon pressing, accompanied by audio cues. [40,
52]. When hovered, the buttons of the application will provide an audio sound to
signal the user that they are selected, and when the user presses the button, the
color will change to fill it based on the depth it has been pressed. Once it is fully
pressed, audio feedback will be given to notify the user of the change.

• Design experiences to be spatially responsive. A user’s flow through space
needs to be taken into account, as they need an adequate and clear environment to
interact with the interface [40, 52]. The application will consider a viable assembly
environment, with minimum space of a desk/table as the surface needed to assemble
the model, while the UI will be projected similarly to a digital workplace [72].

Following established best practices, the default interface will not be head-locked;
instead, it will appear in front of the user’s initial position. For instance, if the trainee
is seated at a desk, a prompt from the dialogue agent will be displayed in the upper
center of their field-of-view (FOV), the real model will be in the bottom center, and the
menu along with the virtual 3D model will be positioned on the sides. The interface is
designed to allow the user to see their current progress, the dialogue agent’s responses
when needed, the current step of the 3D model of the Lego set (a digital representation
of the physical Lego they have assembled up to that step) and an interactive menu with
all available options. Each UI element can be dragged, moved, and pinned wherever the
user prefers. Each element will also have a button to minimize the specific box. This
flexibility allows the trainee to customize the interface layout and remove any elements
that are unnecessary during specific assembly steps.

In the Application Interface, there are two modules, the Interactive Menu, and the
Dialogue Agent Replies. The Interactive Menu facilitates user interaction with buttons,
transmitting these interactions to the Application Logic. Meanwhile, the Dialogue Agent
Replies module receives text/image-based responses from the server via the Application
Logic.

The Interactive Menu module includes various UI components such as buttons,
progress indicators, and slates. These elements are part of the Mixed Reality Template,
a starting point for MR development in Unity [70]. This template is designed to speed
up the creation of MR and AR applications, offering a cross-platform input system and
foundational elements for spatial interactions and UI. For instance, the menu in the bot-
tom left of Figure 4 is a control element containing an array of buttons and other UI
components. The template also features the General Grab Transformer script, enabling
the 3D model in the bottom right to be moved, scaled, and rotated using one or two
hands.

The Application Logic module within the Unity Engine serves as the central con-
troller for other modules based on the application’s state. The main functionalities are
defined as follows:
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• Receives user interactions from the Interactive Menu module and returns the ade-
quate data depending on the application state in the Dialogue Agent Replies module
(next/previous 3D Lego piece requested and retrieved from the Asset Database, as
well as text, images, or audio responses from the Dialogue Agent).

• Creates and manages the bidirectional connection between the client and the server
using the WebSocket protocol, ensuring seamless and efficient communication for
exchanging real-time data and messages. This involves handling the creation of
connections, managing data transmission in both directions, maintaining connec-
tion stability, and handling any errors or disruptions that may occur during the
communication process.

• Establishes bi-directional communication with the Image Codec module to transmit
and receive images, facilitating their encoding/decoding and subsequent transmis-
sion/reception to/from the user/Dialogue Agent via WebSocket connections. For
instance, when a user captures an image through the headset camera, it is called
within the Application Logic, where it undergoes encoding using the Image Codec
module. Afterward, the encoded image is transmitted over the network through
the Media Stream module. Similarly, images received from the Dialogue Agent are
directed toward the user, following the opposite direction of the communication
flow.

• Facilitates bidirectional communication with the AI Models to handle the conversion
of speech to text or text to speech. If the user chooses to press the button that sends
a question to the server, the user’s speech will be transmitted by the Application
Logic to the Speech-to-Text Model (within the AI Models block). The Application
Logic will then receive the text converted from speech in a string format. The
Application Logic proceeds to transmit this text to the server through the Data
Stream module using the WebSocket connection. Upon receiving a response string
from the server via the WebSocket connection, the Application Logic transfers it to
the AI Models. The Text-to-Speech Model then transforms the text into phonemes,
which are sent back such that the resulting audio output is played in the user’s
headset.

The Asset Database module serves as an essential component within the Unity
Engine framework. Its primary responsibility lies in efficiently managing and providing
access to a wide array of resources, including 3D Lego pieces, as requested by the Appli-
cation Logic. This module ensures seamless integration and retrieval of assets within the
Unity environment, enabling the Application Logic to dynamically acquire and utilize the
necessary 3D elements for various functionalities and interactions within the application
(such as the UI components).

The AI Models play a pivotal role in the application’s functionality, specifically in
the interpretation and generation of speech. The Unity Engine offers a comprehensive
framework known as Unity Sentis, which enables the seamless integration and execution
of AI Models directly within applications [69]. Sentis harnesses the computational ca-
pabilities of end-user devices rather than relying on cloud infrastructure. This approach
eliminates the need for complex cloud setups, minimizes network latency, and eliminates
recurring costs associated with cloud-based inference.
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The AI is responsible for decoding the user’s spoken words, a task accomplished
through the utilization of a Speech-to-Text model, leveraging the capabilities of Generative
AI. This model processes the audio input, accurately transcribing it into textual format,
which is then relayed to the server for further processing. When the dialogue agent
formulates a response, it generates a textual output. The AI Models then undertake the
conversion of this text into phonemes, a process handled by a Text-to-Speech model. This
model incorporates an embedded dictionary to translate the textual representation into
phonetic units, which are synthesized into audible speech.

The Image Codec module in Unity Engine is utilized by the Application Logic to
prepare the images for transmitting the media to the Dialogue Agent or the user’s headset.
For instance, when a user captures an image using the integrated camera, the Image Codec
encodes the image and forwards it as a request to the dialogue agent. Upon receiving the
agent’s image response, the encoded data is decoded before presenting it to the user. It’s
worth noting that the display of most headsets and their camera have differing FOVs.
This discrepancy means that the display can render content that is vertically larger than
what the RGB camera can capture. Consequently, it is imperative that the capturable
area is of the right dimensions before a user captures an image. This ensures that the
physical model remains intact and prevents it from being cropped when transmitted to
the dialogue agent.

The WebSocket Connection Module creates a bidirectional communication between
the server and the client. The module initiates the WebSocket handshake process, allowing
the server and client to establish a persistent, full-duplex communication channel. During
the handshake, the server and client agree on the WebSocket protocol version to be used
for communication. Once the connection is established, both the server and client can
send and receive data asynchronously. This enables real-time data exchange between the
two parties.

Over the Network, segmenting data and media streams into separate channels, such
as a dedicated Data Stream for textual information and a distinct Media Stream for
handling images, offers significant advantages for WebSocket-based applications. This
approach enhances organizational clarity, streamlining data management and providing
easier navigation within the application architecture. By optimizing channels for specific
content types, it boosts overall efficiency and performance, ensuring swift transmission of
text and seamless rendering of images.

The server-side implementation, situated on the right side of Figure 3, comprises
a WebSocket backend responsible for the data exchange with the client. Incoming user
requests, transmitted over the network in either text format (Data Stream) or as encoded
images (Media Stream), are directed to the Dialogue Agent. The Dialogue Agent processes
these requests and formulates appropriate responses, which are then relayed back to the
user via the WebSocket connection. This setup enables seamless communication between
the client and server, facilitating real-time interaction and dialogue.

The system architecture provides a high-level overview of the entire system, in-
cluding the main components and their interactions. On the other hand, a control flow
diagram displays a more granular view of the system, showing the order of operations and
how the information flows between different parts of the system (Figure 5).
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Figure 5. Control Flow Diagram describing the functionality of the system.
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When the application starts, it establishes a WebSocket connection between the
headset and the server and after it is tethered, the server sends a welcome message to the
user, with instructions for interacting with the dialogue agent and the menu, as seen in
the best practices of MR development. If the connection fails, an error message will be
displayed to the user to check the connection to the internet. After the welcome text box
is dismissed by the user, they will digitally see in the 3D model box of the Application
interface, the first piece that he needs to find in the Lego set, to start the model assembly.

Once they find the piece and press the Next Step button, the Application Logic
module will fetch from the Asset Database the next piece that they will need to assemble,
which will be highlighted and positioned in the Lego model (displayed on the 3D model
box in the UI), connected to the previous digital representation of the piece.

If the user chooses to press the Previous Step button, and there is a previous step,
it will display the prior digital piece highlighted and positioned in the Lego model. Oth-
erwise, the first step of the building process will be displayed. The user always has an
option available on the UI to restart the operation within the application. If the Restart
button is pressed, the first piece of the 3D model will be displayed on the interface.

During the assembly procedure, the user can request assistance from the Dialogue
Agent. If he presses the Send Picture button to capture the physical environment using
the attached headset camera, the picture will be sent to the server, while the server will
send back instructions to the user with textual, audio, and visual assistance, based on the
current step in the building process that was received from the user. The Dialogue Agent
will explain the current step, and it will be displayed to the user as text (which is also
translated to speech as audio feedback), along with a picture with arrow signs indicating
where the current piece needs to be located in the built model. If the user presses the
Ask Question button, the microphone of the headset will be activated for them to receive
their question. The speech will be converted to text and sent to the server. As in the
previous case of the Send Picture button, the instructions from the Dialogue Agent will
be displayed on the UI.

If there are no more next steps, the build will be completed and the user can see
the full version of the digital 3D Model on the interface.
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6 Development

This section presents the proposed development of the application. A feasibility
study is undertaken to evaluate the project’s feasibility from technical, operational, and
time perspectives. The analysis further includes risk assessment, pinpointing potential
obstacles, and formulating strategies to counter them. Finally, the last section is focused
on detailing the implementation.

6.1 Feasibility Study

A feasibility study is used to decide whether, given a list of requirements and a
certain amount of time, the project can be completed, based on three main aspects.
This study was performed after finalizing the requirements for the final application. The
following sections will elaborate on each of the three parts that the study is built upon,
in order of appearance: technical, operational, and time feasibility.

6.1.1 Technical Feasibility

To determine the technical feasibility of the project, the technical decisions made,
regarding what will be used to approach the project, are discussed together with compli-
cations that could follow due to these decisions. The aim is to build the next generation
of personal assistants and to conduct research towards improving human-to-machine in-
teraction. The application is meant to engage and inform those new to assembly tasks,
as well as those who already know how to perform them well. The trainees would be able
to interact with 3D models using their hands as well as voice commands.

The needed technology is based on the discoveries made from the related work, which
means that for hardware we require a headset that can support MR and user interaction
without the need of controllers (hands-free support). We aim to use either a standalone
Oculus Quest 3 headset or the same headset tethered to a computer and the reasons
will be explained in the next section. We will also require a server that will host the AI
dialogue agent. No additional equipment is envisioned to be necessary for our experiment
as all interactions within the training environment occur with virtual holographic content
and audio information.

Regarding software, we use the C# based Unity engine to shape the architecture of
our code base. Unity Engine was used as it allows us to easily create graphical applications
that can load models and show data in a clear and well-organized fashion.

6.1.2 Operational Feasibility

Operational feasibility is a measure of how well a solution meets the identified system
requirements to solve the problems and take advantage of the opportunities envisioned
for the system [6]. To judge the operational feasibility of the project we have to take a
look at what is required to solve the problem at hand, our application and compare it
to the current trend of development. There are 2 types of XR technologies on the newly
revised continuum: AR (MR being a subset) and VR. Looking at the accessibility of these
technologies right now, AR is the most accessible as it works with our smartphones, which
means it is widely spread and easily attainable.
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Most AR research is currently conducted using HoloLens 2 headsets due to their
widespread use in businesses for creating step-by-step visual work instructions. However,
with the discontinuation and end of support for HoloLens 2 [41], exploring alternatives
like the Oculus Quest has become necessary, despite its primary use in VR. A study
comparing the Quest 2 to the HoloLens 2 concluded that the Quest is too constrained to
serve as a viable alternative, mainly due to its lack of features such as object recognition,
LiDAR, a depth sensor, high-resolution cameras, and access to the camera feed [10] [5].

However, recent advancements in MR have led Meta to release the Quest 3, which
includes dual 4MP cameras and a depth sensor (still only half the quality of the HoloLens’
8MP cameras) [53]. Along with this release, the Passthrough API has been updated, en-
abling developers to create simple MR applications using Quest headsets. These headsets
also have a microphone and speaker, which are beneficial for providing a dynamic lan-
guage experience with a virtual assistant during training sessions. We will be using the
Oculus Quest 3 since Utrecht University has one readily available for experiments.

One significant challenge in developing our application on a Quest device is Meta’s
restriction on capturing or streaming images or videos of the physical environment through
the Unity Editor due to privacy reasons. The Passthrough feature is rendered by a
dedicated service into a separate layer, where the cameras generate a sparse 3D point
cloud. This layer reprojects the camera views to match the depth of this point cloud,
and then color is added using the central color camera. To stream the image and perform
object detection, a standalone version of the application needs to be built inside the
headset, or a screen copy of the Unity Editor must be projected on a computer and then
sent to the dialogue agent. As mentioned, a computer will likely be used to host the
server-side MR application, which will communicate directly with the headset.

To demonstrate the capabilities of the application in assembly tasks, the best ap-
proach would be to experiment with real workers on an assembly line [81]. However, since
it is beyond the capabilities of the master thesis we will be focusing on a similar objective
that we can control which entails completing a training scenario offering Lego set-building
assembly training through the use of mixed-reality HMDs, as seen in previous studies [13].
Participants will engage in assembling Lego pieces using their hands and with the help of
digital 3D models that can be interacted with [43].

6.1.3 Time Feasibility

An important factor to consider in the feasibility study is the time required to
complete the project. With about 40 hours of work per week, this is deemed reasonable
given the 5-month deadline set by the master’s thesis. Initially, estimating the time needed
to implement various features was challenging due to limited experience in developing a
major experimental application and working with MR software. Nonetheless, considering
the time frame and the experience gained from previous projects, the requirements are
feasible and achievable.

6.1.4 Summary of Feasibility

In summary, since all three aspects of feasibility discussed above are achievable,
the project as a whole is feasible. Given the schedule, time constraints, and available
resources, the project and all implementation steps are technically, operationally, and
temporally feasible.
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6.2 Risk Analysis

Risk analysis is the process of identifying and analyzing potential issues that could
negatively impact key project goals. Research needs to be conducted about these issues,
identifying them, and coming up with some potential solutions. In order for the project
to be developed efficiently, with no incidents, it is important to know about what issues
may arise and how we might solve them.

We would like the final application to work on any type of headset. Porting an app
from one device to another is not always a simple process, there may be some challenges
and limitations that need to be considered. Firstly, the lack of experience with program-
ming software used primarily on headsets poses a risk, because of the unfamiliarity with
technologies and frameworks. Secondly, unlike computer applications, the user’s ability
to roam around with all degrees of freedom needs to be taken into account.

Another potential risk is the limitations of the hardware used to build the appli-
cation. Having a low-resolution display would make interacting with real-world objects
much harder [10]. In our current context, users might not be able to see small Lego pieces,
so in order to mitigate this, if it is a visible issue after the prototype implementation, larger
pieces should be preferred instead.

Working with LLM-powered dialogue agents presents storage challenges, often re-
quiring cloud hosting. This leads to costs associated with network traffic for every API
call during debugging and experimentation. Additionally, latency is a concern with AI
models, though smaller models that don’t need cloud hosting can help mitigate this issue.
Recently, Unity released an experimental feature called Unity Sentis, which allows AI
models to run directly on user devices through the Unity Runtime [69]. This approach
leverages the computing power of end-user devices, eliminating the need for complex
cloud infrastructure, network latency, and recurring inference costs for tasks like speech
recognition or object detection.

Finally, introducing such a system as a method for training should take into account
an array of factors, such as privacy concerns related to streaming the room surroundings
through the headset camera and the sending of user input over the network.

6.3 Implementation

The implementation phase involves translating the design and requirements into a
functional MR application. This section will detail the steps taken to bring the project
to life, including the development process and integration of various components, as well
as the final application walkthrough.

The primary challenge is organizing and managing the user’s input along with the
textual and visual instructions provided by the dialogue agent. Unity acts as the bridge
between the physical and virtual worlds, facilitating seamless data transfer between them.
Given that the AI agent is multimodal, the process involves converting the user’s speech
input into text and capturing their current view as a 2D image, which the user manually
sends over the network. Subsequently, the user receives a response consisting of a text-
based answer and a 2D image with visual instructions. Data is transmitted to Unity via
a Python-Unity socket, ensuring two-way communication between the Python script and
the Unity application. In this setup, Unity hosts the client, while the Python scripts
operate the server. The user can then view the dialogue agent’s response and decide the
next steps to complete the assembly task.
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6.3.1 Technical Details

Our tool is built upon the MR Template [70], which can be selected when starting
a project in Unity. This template includes the necessary packages for setting up an MR
application, such as gesture interactions and UI elements. The template already has
preinstalled the packages needed to support development on OpenXR platforms, as well
as gesture interactions and standardized UI elements. In addition, the Affordance system
provides feedback for the user with visual and auditory cues (e.g., when pressing buttons).
This requires the use of the XR Interactable Affordance State Provider with a specified
interactable source.

The 3D Lego models of a Lego Dump Truck and a Lego Truck Cabin used for the
experiment were created in Blender using online Lego brick models [68], scaled to match
the size of the physical Lego models. There are a total of 19 pieces per model. The
physical Lego pieces were purchased from an online store. The manuals for the models
were created using pictures of the 3D models, accompanied by text describing the pieces
to be assembled. The models have an XR General Grab Transformer and an XR Grab
Interactable component that allows the user to grab, rotate, and scale the object using
either a direct or ray interactor.

Initially, the application client will connect to the server hosting the dialogue agent.
This involves configuring the IP and ports on both the client and server sides to send and
receive data. Once this configuration is complete, both the application and the server
need to run simultaneously. The trainer will then select the model to be assembled and
the microphone to be used during the assembly. After these steps are completed, the
headset can be handed over to the trainee.

Figure 6. The start screen of the application which includes the 3D Model to be assembled as well as
the onboarding instruction cards.

30



The spatial UI enables both near and far interactions with UI elements and includes
a coaching UI to onboard users into the MR application, as shown in Figure 6. These on-
boarding cards guide users through the features, providing instructions on how to interact
with the menu and the dialogue agent, as well as how to grab, rotate, and scale the model.
The Coaching UI GameObject is managed by the Goal Manager utility class within the
MR Interaction Setup. The Goal Manager acts as the main controller of the application,
handling the Application Logic as depicted in the System Architecture diagram (Figure
3). It oversees the progression of content within the UI, toggles related GameObjects on
and off, and adjusts the Lazy Follow behavior of the UI based on the instructions for each
step.

After the onboarding goals are either skipped or completed, the user will see the
Interactive Menu, the 3D Model, and a panel containing input instructions (Figure 7).
These UI elements adhere to the standards used in the default UI of Meta headsets. The
Tutorial Video Panel GameObject within the UI includes a video player that demonstrates
basic input mapping using pinching. To the top right of the panel, there is a button
that once pressed, showcases the second video explaining poking interaction. Users can
move the canvas in space by grabbing either the header or the handle at the bottom
of the canvas. To adhere to the best practices discussed in Section 5.3, the billboarding
component is enabled on the prefab by default, with the canvas’s positional transformation
determined by direct/ray interaction. This functionality is also utilized in the Interactive
Menu Manipulator and Helper Menu Manipulator GameObjects, allowing users to interact
with the model and the dialogue agent.

Figure 7. User view after completing the onboarding cards. They will see the interactive menu to their
left, the 3D Model to the right, and the input instruction videos towards the middle.
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When the user presses the ’Start Assembly’ button, the 3D model will then display
the first piece to be assembled. The tutorial videos will disappear (unless already closed
by the user), and a progress bar along with a textual response from the dialogue agent will
appear in their place to display the main UI (Figure 8). The user can navigate through
the assembly steps using the ’Next Step’ or ’Previous Step’ buttons. The NextStep() and
PreviousStep() functions within the GoalManager utility class handle the progression of
the 3D Model through the steps, update the elements, and perform the color animations.

Figure 8. The main UI containing an interactive menu that displays all the interactable buttons, a
progress bar as well as a text prompt from the dialogue agent.

Interaction with the dialogue agent is initiated by pressing the ’Ask Question’ but-
ton. Upon pressing, the button text changes to ’Stop Recording’. If the user does not
manually press the button again to stop the recording, it will automatically terminate af-
ter 10 seconds. The AskQuestion() method handles recording the user’s question through
the microphone and sends it to the AI model for transcribing the given audio to text.
These models are stored within the StreamingAssets folder, Unity’s default location for
runtime data loading. This approach ensures models are loaded only when needed, con-
serving memory and minimizing performance impact. After converting the speech into
text, the resulting string is sent to the Application Logic’s GoalManager, which starts a
coroutine to transmit the question to the dialogue agent. This involves sending the text
over a WebSocket connection as part of the Data Stream.
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When the question reaches the server, the dialogue agent processes it and returns
a text response. On the client side, the UdpSocket class takes the textual answer and
dispatches it to the main thread to be transformed into speech. The script loads the
necessary text-to-speech model and phoneme dictionary, performs text-to-phoneme con-
version, runs the AI model inference, and plays the generated speech audio. Additionally,
the text is displayed in the dialogue box on the UI.

If the trainee’s question lacks sufficient information for the agent to provide a re-
sponse, the dialogue agent may request additional visual data. In the scenario present in
Figure 9, the dialogue agent cannot establish by itself the current step of the user and
requests a picture to be sent back with the real-world Lego set.

Figure 9. User view after pressing the ’Ask Question’ button. In this case, instructions are given within
the dialogue agent text box to send a picture of the real-world model.

When the ’Send Picture’ button is pressed, the SendPicture() method within the
GoalManager initiates a coroutine to send the picture to the dialogue agent. Once acti-
vated, the button text changes to ’Please wait...’, indicating to the user that the picture
is being transmitted over the network. The coroutine starts by capturing the screen from
the trainee’s current view. Due to the high resolution of the camera, the default screen
capture results in a very large file, which is too big to send in a single packet to the server.
To address this, the screenshot is first encoded to JPEG, a format known for its lossy
compression that reduces file size by discarding some image details. The compression
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level is adjustable, balancing image quality and file size. Currently, the compression is set
to medium quality (50 on a scale from 0 to 100), providing an optimal balance to ensure
the AI model performs well in object recognition while keeping the file size manageable.
Depending on how well the AI detects the current step in the Lego set assembly, the
compression level can either be set higher or lower.

When the encoding process is completed, the packet’s chunk size is specified, cur-
rently set to 8192 bytes. On average, this results in about 20 chunks per screen capture.
The image is segmented into these chunks, encoded into base 64, and transmitted over
the network. Subsequently, the server verifies if all chunks have been received; if not, it
requests the client to resend the image. This is necessary due to potential packet loss
during transmission over a WebSocket connection. After receiving all packets, the base
64 encoded image data is extracted and decoded into bytes. These decoded chunks are
accumulated into a byte array, allowing for the reconstruction of the image on the server
side.

Once reconstructed, the dialogue agent can ascertain the current step of the trainee
in the assembly process. Having identified the current step, the dialogue agent prepares a
response to send to the client side. This response includes instructions from the manual
presented in both text and image formats, depicted in Figure 10.

Figure 10. User view after pressing the ’Send Picture’ button. The dialogue agent sends a picture from
the manual as well as textual assembly instructions.

34



The textual response adheres to the structure used with the ’Ask Question’ button.
Similarly, the image response replicates the chunk reconstruction process implemented
on the client side. On the server side, the Python code mirrors the functionality of the
C# functions implemented in the Unity client. Images are transmitted over the socket as
byte chunks encoded in base 64. Once all packets are received on the client side, the UI
is updated to display the dialogue agent response, Moreover, the text is converted into
speech to provide auditory feedback to the trainee.

Once the Lego set is assembled, pressing the ’Restart’ button will reset the assembly
process to its initial state. For data logging purposes, which are used for result analysis,
the Restart() method also includes functionality to send the server data regarding the
number of UI elements pressed and interactions with the 3D model.

Figure 11. Additional Helper Menu containing toggles to assist the user in case something goes wrong
during the experiment.

Positioned 90 degrees to the right of the user’s main view is an additional helper
menu, intended for use if something goes awry during the experiment (Figure 11). If a
button is accidentally pressed during the initial onboarding, the user can use the relaunch
button on the helper menu to revisit the welcome instructions. Additionally, the user can
switch between VR and MR by toggling the passthrough feature, allowing them to view
the digital 3D model directly in VR instead of the real world. This feature is also useful
for relocating the model if it is accidentally lost during assembly. The progress bar can
be toggled on and off to manage the amount of information displayed on the UI. The
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tutorial videos for basic input mapping, such as pinching and poking, can be replayed
using this menu. Lastly, there is a toggle for a model finder, which activates an arrow
pointing toward the 3D model if it becomes misplaced in the assembly process.

To integrate the latest Unity features, including Unity Sentis, which allows for
the use of built-in AI models at runtime without the need for API calls, the project is
currently utilizing Unity 6 Beta version 6000.0.0b16. In addition to the packages from the
Mixed Reality Template, the project employs several external libraries: TextMeshPro,
Newtonsoft JSON, Sentis, and Demigiant DOTween. Development was conducted using
a Meta Quest 3 Advanced All-in-One VR Headset, which boasts a resolution of 2064x2208
pixels per eye, a 120Hz refresh rate, a maximum FOV of 104 degrees, a Qualcomm
Snapdragon XR2 Gen 2 processor, 8 GB of RAM, an IPD range of 58 to 71mm, and
6-DoF Inside/Out tracking. The device also features two 4MP front-facing cameras with
full-color pass-through capability.

The enlarged versions of the figures from this chapter can be found in Appendix
A.1. The codebase is publicly available via the following link: GitHub Repository - MR
Tool. The repository includes a README file that provides a comprehensive overview of
the project structure, along with detailed descriptions of the main classes that contain the
core functionality, and how to connect the server to the application running on a headset.
For any inquiries regarding the setup or use of the application, please feel free to reach
out to Luca Becheanu at luca.becheanu@students.uu.nl.

6.3.2 Application Walkthrough

At the beginning, the trainer selects the model that needs to be assembled, as well
as the microphone to be used during assembly. After this initial step, the headset can be
given to the trainee which will see four instruction cards detailing the experiment setup
and how to interact with the environment. Once the cards are either skipped or read,
the user will see the real world and his UI. Before starting the assembly, there are two
tutorial videos explaining pinching and poking. To the left, the interactive menu can be
found, while on the right lies the 3D Model. Further to the right there is another helper
menu to be used just in case something does not go as intended. It contains a toggle for
the tutorial videos, the onboarding cards, the progress bar, the passthrough (the switch
between VR and MR), and a model finder (an arrow that points toward the 3D Model in
case it gets lost during assembly).

Once the user presses on the ’Start Assembly’ button, the tutorial videos will disap-
pear (if they were not already closed by the user) and a progress bar as well as a textual
response of the dialogue agent will appear in their place. The 3D Model will now show
the first piece that needs to be assembled. The user can press either the ’Next Step’ or
’Previous Step’ button to change the assembly step. The dialogue-agent interaction can
be done with either the ’Ask Question’ or ’Send Picture’ button. Finally, the Restart
button will reset the assembly to the beginning. Since the application is highly dynamic,
the results are best visualized inside a video, rather than in figures. For a visual walk-
through, the following link is available: Multimodal Immersive Systems for Assembly in
Mixed Reality.
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7 User Study

This section focuses on the investigation of variables, hypotheses, experimental
setup, tasks, and participants. It starts by identifying and classifying variables that
are significant to the research. Hypotheses are then developed to predict the expected
results based on these variables. The experimental setup is elaborately explained, provid-
ing details about the environment, equipment, and conditions under which the research
will take place. The tasks that will be carried out during the experiment are specified,
clarifying the particular actions or processes that participants will engage in. The subjects
involved in the study are described in terms of selection criteria. Finally, the results will
be analyzed, and the evaluation will ascertain whether the hypothesis is supported.

7.1 Variables

Many variables are involved in the experimental process, and some variables have
to be controlled to prevent the influence of the results. Those variables are divided into
different types such as control variables, independent variables, and dependent variables.

The control variables are not the subjects of the research, but they can affect the
experimental results. For example, different devices have different capabilities based on
their hardware. A low-quality camera from some HMDs could influence the usability of the
application as the pieces would be harder to distinguish. When performing our experiment
we will be evaluating our study on the same device. In the case of the independent variable,
we will focus on the instructions given by a person with a manual compared to the
instructions given by a dialogue agent. Finally, the dependent variables are performance
(how fast a person goes from the initial state to the end state), quality (measured by
mistakes made during assembly), the number of questions asked, and cognitive load (with
questionnaires).

7.2 Hypotheses

Based on the related work highlighting the research gaps, this study aims to evaluate
how well AI-based MR can be used to train a user in performing assembly tasks, as
compared to the traditional following instructions from physical manuals and face-to-face
training. We propose the following hypotheses:

H0: There is no statistically significant difference between following instructions
from face-to-face training and AI-assisted MR training.

H1: There is a statistically significant difference between following instructions from
face-to-face training and AI-assisted MR training.

7.3 Experiment Setup

To ensure our experiment would not be affected by other factors, the tasks are
performed in a private space, within the rooms provided by Utrecht University. The
participants are briefed on the tasks they have to accomplish and they are provided
with instructions on how the application works. The training will focus on a single user
participating in the environment at a time.
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The experiment follows a within-subjects design, in which all subjects test both
conditions of face-to-face training and AI-assisted MR training. Although the second
assembly attempt is inherently biased since participants have completed a similar task
before, this setup is chosen such that the participants can provide feedback on both
methods and determine which method they would rather use in an assembly scenario.
The order in which the methods are presented will be counterbalanced across partici-
pants to mitigate potential biases that might arise from the sequence in which the tasks
are performed. The participants will be randomly assigned to one of the four possible
combinations of training methods:

• Using the MR tool to assemble a Lego Dump Truck, followed by face-to-face training
to assemble a Lego Truck Cabin

• Face-to-face training to assemble a Lego Dump Truck, followed by using the MR
tool to assemble a Lego Truck Cabin

• Using the MR tool to assemble a Lego Truck Cabin, followed by face-to-face training
to assemble a Lego Dump Truck

• Face-to-face training to assemble a Lego Truck Cabin, followed by using the MR
tool to assemble a Lego Dump Truck

To address any partiality, we will use Lego sets with different steps and a few
different pieces for each assembly task. This variation helps ensure that participants are
not simply repeating the same process, providing a more accurate assessment of each
training method’s effectiveness. The insights gained from their feedback will highlight
what aspects worked well, suggest areas for future improvements, and identify the system’s
limitations.

An Oculus Quest 3 is used to immerse the user, with the application running stan-
dalone on the headset. The standalone nature of the headset allows users to move freely
and interact naturally with the virtual components, making the assembly process more
enjoyable and effective. A computer hosts the server where the dialogue agent resides.
The user receives support through textual information and pictures indicating where to
insert the parts for the current step. This process continues until all parts of the Lego set
are assembled.

Unfortunately, at the time the experiment took place, we did not have access to
an AI dialogue agent trained on a Lego dataset that could provide the functionality we
require, therefore we will be using the Wizard of Oz approach in our experiment [38]. The
subjects will interact with the system believing it is autonomous, but instead, the server
side of the system is partially operated by a human being (in this case the trainer, as seen
in Figure 12).

Modifications have been implemented in the Python script to manage questions
directed at the dialogue using the keyboard instead. The trainer can type a response
directly into the server’s console when a user asks a question. If the question relates to
the user’s current step, the dialogue agent (the trainer) will prompt the trainee to send a
picture of the Lego set. When the trainee presses the ’Send Picture’ button, the updated
Unity C# script also sends the current step of the virtual 3D model over the network.
This serves as a workaround for not having an AI model capable of performing object
recognition.
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The trainer then has the option to send the instructions for the current step from
the manual or determine if the user is stuck on a previous step. If the user is behind, the
trainer can send the relevant text and image for that earlier step instead. This ensures
that the user receives the appropriate guidance based on their progress and any difficulties
they may encounter.

Figure 12. A trainee conducting the experiment is scaling a virtual 3D model. The laptop at the bottom
of the picture runs the Python server hosting the dialogue agent. The trainer responds to the trainee’s
questions by typing answers into the server’s console.

7.4 Tasks

Before the experiment, the subject will fill in a consent form with information about
the participant’s rights, and a short briefing on the task they have to accomplish, followed
by a demographics form (Appendix A.2.1). Afterward, the two Lego set-building training
methods will be investigated, one with the MR tool, and the other with face-to-face
training. The participant is assigned one of the methods. If the MR tool training is
assigned first, the user will wear the headset and complete the pre-training setup, which
includes reviewing the onboarding cards and video tutorials, as well as customizing the
interface to meet their preferences. The trainee will be given as much time as needed
to familiarize themselves with the MR tool, practicing button presses using poking or
pinching gestures.
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Once the pre-training is complete, the user will press the ’Start Assembly’ button,
initiating a timer that will stop when the Lego set is fully assembled. During the MR
tool training, various metrics such as button presses, the number of times the digital
Lego model is grabbed, questions asked, and mistakes made during assembly are logged
for further analysis. The trainee will follow the assembly steps using gestures to interact
with the virtual 3D model, and they can ask the dialogue agent questions to receive verbal
instructions and pictures from the manual if needed. After completing the assembly, the
trainee will fill out a Tool Usability Form (Appendix A.2.2). This form is based on the
Technology Acceptance Model and the System Usability Scale questionnaires but includes
perceived usefulness questions tailored for assembly scenarios. The final questions of
the form are taken from the NASA-TLX questionnaire to assess the mental workload
experienced during the assembly.

With the first part of the experiment complete, the trainee will assemble the second
Lego set with the assistance of a human trainer. Once again, the time taken to complete
the assembly, any mistakes made during the process, and the number of questions asked
are recorded. When the user is prepared to begin, the timer will start, and the trainer
will give verbal instructions for each step of the assembly. If the user has difficulty
understanding which parts to pick up and where to place them, the trainer will show
a picture from the manual for additional context. Once the assembly is finished, the
trainee will complete The Task Load Index Form (Appendix A.2.2), which includes the
NASA-TLX questions to assess cognitive load.

Since the trainee used both training methods, the post-experiment procedure is
to complete the final questionnaire, which is the Preferred Instruction Medium Form
(Appendix A.2.4). Participants are asked about their preference for the training methods,
including which method they found more intuitive and detailed in providing information.
The remaining questions are open-ended, focusing on their overall experiences with the
application and face-to-face training, as well as suggestions for improving both training
methods.

In the other scenario, where the assembly is firstly assisted by a human trainer,
the user will start by completing the Informed Consent Form, assemble the Lego set, and
then fill out the Task Load Index Form. Following this, the user will put on the headset
to experience the MR tool training, complete the Tool Usability Form, and finally fill out
the Preferred Instruction Medium Form.

7.5 Subjects

Previous studies typically involve around 25 professional participants to evaluate
their applications. Given our limited resources, we are unable to recruit real assembly
line workers. Instead, we aim to gather students who have some basic experience with
head-mounted displays (HMDs) and building Lego sets. These students, although not
professional assembly workers, possess the necessary basic skills and familiarity with the
technology to provide valuable insights into the usability and effectiveness of our applica-
tion. This approach allows us to conduct a meaningful evaluation while accommodating
our resource limitations.
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7.6 Results

In this section, the first chapter details the findings from the pre-experiment ques-
tionnaires, outlining participants’ demographics, prior experiences, and initial expecta-
tions. This is followed by a comprehensive analysis of the quantitative results obtained
during the training sessions, including metrics on time efficiency, accuracy, and interac-
tion frequency. Finally, after the training, participants provided detailed feedback on their
preferences and experiences, highlighting their views on the intuitiveness and effectiveness
of each training method, as well as suggestions for future improvements.

7.6.1 Pre-training results

The user study involved recruiting a total of 16 participants, with 4 trainees as-
signed to each combination of training methods. Informed consent was obtained from all
participants to emphasize the ethical considerations taken to protect participant rights
and well-being throughout the research process. The ages of the subjects ranged from
18 to 54 years, with an average age of 26.5 years and a standard deviation of approxi-
mately 7.22 years (Appendix A.3 Figure 20). Given that the experiment was conducted
at Utrecht University, it was anticipated that the majority of the participants would be
Master’s students. Consequently, a significant portion of the subjects fell within the 18-24
and 24-34 age groups. This age distribution reflects the typical demographic of Master’s
students at the university, who are often engaged in advanced studies in fields such as
Computer Science. This context is important as it provides insight into the background
and experience levels of the participants, which may influence their interactions with the
training methods being evaluated.

Unfortunately, the gender distribution among the participants is not as balanced
as desired, with 12 male participants and only 4 female participants (Appendix A.3 Fig-
ure 21). This imbalance is somewhat expected since most participants are students from
Utrecht University, particularly those studying Computer Science, a field traditionally
dominated by males. Ideally, a more balanced demographic distribution is required to
ensure the reliability and validity of the statistical analysis. A more diverse participant
pool would help mitigate any potential biases and provide a more comprehensive un-
derstanding of the application’s usability and effectiveness across different demographics.
Efforts to achieve a more balanced gender distribution in future studies will be crucial for
enhancing the generalizability of the findings.

The experiment was conducted in English, however, 14 participants indicated that
English is not their primary language (Appendix A.3 Figure 22). Despite this, it is unlikely
that a language barrier affected their performance. This is because Utrecht University re-
quires an advanced level of English proficiency for students enrolled in English-taught
Master’s courses. Consequently, all participants are expected to have a high degree
of fluency in English, sufficient to understand and engage with the experimental tasks
and materials effectively. This requirement ensures that participants can follow instruc-
tions, interact with the MR system, and complete the questionnaires without significant
language-related difficulties. Therefore, the results of the experiment are considered reli-
able and not compromised by language proficiency issues. The consideration is important
for maintaining the integrity of the study’s findings and ensuring that any conclusions
drawn are based on the subjects’ interactions with the MR system rather than their
language abilities.
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Regarding experience with MR, the participants had varying levels of familiarity
(Appendix A.3 Figure 23). Six participants reported having no prior experience with
MR, seven participants indicated that they had used MR before but not frequently, two
participants stated that they use MR regularly, and one participant mentioned using it
often. Given the subjects’ backgrounds, it was likely that they would have some, albeit
limited, experience with MR, as it is a current research topic, and the state-of-the-art
courses they have taken require knowledge in this area.

Participants with little to no experience with MR generally performed worse on
average with the hardware. They required a longer time to become familiar with the sys-
tem, particularly with the pinching and poking interactions that are standard for gesture
control in all current MR headsets. This initial adjustment period was necessary for these
participants to effectively navigate and manipulate objects within the MR environment.

The discrepancy in experience highlights the importance of considering users’ fa-
miliarity with MR technology when designing and implementing MR systems. It also
underlines the need for comprehensive introductory sessions to ensure all participants,
regardless of their prior experience, can engage effectively with the MR applications. Ad-
dressing these differences in experience is crucial for obtaining accurate and reliable data
on the usability and effectiveness of MR systems, as well as for developing training pro-
grams that can cater to users with varying levels of expertise. We aimed to mitigate this
inconsistency by letting the users take as much time as they need to get comfortable with
the application before starting the experiment.

Prior to the experiment, participants were asked to report their susceptibility to mo-
tion sickness. Eight participants indicated that they did not suffer from motion sickness,
while the other eight mentioned that they occasionally experienced mild motion sickness
(Appendix A.3 Figure 24). None of the participants reported suffering from severe motion
sickness. Individuals who might have had severe motion sickness were to be excluded from
participating in the experiment due to the potential risks of cyber sickness.

Participants who reported mild motion sickness were informed about the concept of
cyber sickness and were instructed to stop the experiment immediately if they experienced
any symptoms. Given the nature of the experiment, where participants remained seated
throughout, the likelihood of experiencing motion sickness was considered low. This
precautionary measure ensured the safety and well-being of all participants while allowing
the experiment to proceed smoothly. Certifying that participants understood the potential
risks and how to manage them was important for maintaining the integrity and ethical
standards of the study. The approach helped to minimize any discomfort and ensured
that the collected data was not compromised by participants experiencing motion sickness
during the experiment.

Finally, participants were asked to rate their experience with building Lego sets
(Appendix A.3 Figure 25). The majority (12 participants) indicated that they had built
Lego sets before but no longer do so or only rarely engage in this activity. Three partic-
ipants reported that they build Lego sets regularly, and one participant mentioned that
they often build Lego sets.

It was expected that most participants would have some prior experience with build-
ing Lego sets. Those who continue to build Lego sets regularly or often performed better
on average during the experiment. Their familiarity with the process of sorting pieces
and intuitively understanding where each piece should be placed gave them an advan-
tage, allowing them to complete tasks more efficiently even before specific instructions
were given. This prior experience with hands-on construction tasks translated into better
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performance and quicker adaptation to the training methods being evaluated, highlighting
the importance of practical experience in enhancing task performance and emphasizing
the potential benefits of recruiting participants with relevant backgrounds for studies
involving assembly and construction tasks.

7.6.2 Quantitative results

After completing the initial pre-experiment questionnaire, the trainees were pre-
pared to proceed with the two training methods. None of the subjects reported experi-
encing motion sickness during or after the MR experiment. This is a positive indicator
of the system’s usability and comfort, as motion sickness can often be a concern in im-
mersive environments. The entire experiment, from start to finish, took an average of
40 minutes to complete. This time frame included several key components: filling in the
pre-experiment questionnaires; the initial UI setup, which familiarized trainees with the
system; practicing essential interactions such as poking and pinching, which are critical
for navigating and manipulating objects within the MR environment; performing both
training methods, which constituted the core activities of the study; and finally, filling
out the post-training questionnaires that gathered data on participants’ experiences and
feedback. The comprehensive nature of the experiment ensured that participants had
ample opportunity to engage with the MR system and provide detailed insights into its
effectiveness and user-friendliness. This structured approach also helped in systematically
capturing the various dimensions of user interaction, from technical setup to experiential
feedback.

The quantitative results indicate that performance-wise, assembly training took
longer when using a headset, and trainees required approximately 33% more time to
complete the experiment using the MR tool. The trainees required an average of 5.07
minutes, with a standard deviation of 1.62 minutes. In contrast, the face-to-face training
method took significantly less time, averaging 3.42 minutes with a standard deviation of
0.87 minutes. These results highlight a noticeable difference in the time efficiency of the
two training methods. The greater time required for the MR tool can be attributed to
the initial learning curve associated with familiarizing participants with the technology
and interface. The higher standard deviation in the MR tool’s completion time indicates
more variability in how quickly different participants adapted to and navigated the tool.
Conversely, the face-to-face training method showed less variation in completion times,
suggesting a more consistent training pace across participants. This could be due to the
direct and immediate feedback provided by a human trainer, which may streamline the
learning process. Overall, while the MR tool offers innovative and interactive training
opportunities, these findings suggest that it may initially require more time for users to
become proficient. However, as users become more accustomed to the MR tool, their
efficiency is likely to improve, potentially narrowing the time gap compared to traditional
face-to-face training.

The quality of the training outcome was evaluated by counting the number of mis-
takes made, with fewer mistakes signifying better trainee performance. On average, par-
ticipants using the MR tool made 0.375 mistakes, translating to an accuracy rate of
98.03%. In comparison, those who underwent face-to-face training made an average of
0.4375 mistakes, corresponding to an accuracy rate of 97.63%. This comparison suggests
that, on average, trainees using the MR tool achieved slightly fewer mistakes compared to
those using face-to-face training. The lower error rate with the MR tool may be attributed
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to its visual and interactive nature, which can provide clearer instructions during the as-
sembly process. In contrast, face-to-face training, while offering direct interaction and
communication with a trainer, might involve more subjective interpretations and verbal
instructions that could lead to slightly higher error rates.

Across the study, the 16 participants collectively asked a total of 18 questions, split
evenly between the two training methods. Specifically, they posed 9 questions to the
dialogue agent while using the MR tool and another 9 questions during the face-to-face
training sessions.

This equal distribution of questions indicates that participants sought a comparable
level of clarification and assistance regardless of the training method. The dialogue agent
in the MR tool was as frequently utilized for inquiries as the human trainer in the face-to-
face sessions. This suggests that the MR tool’s dialogue agent was effective in engaging
participants and encouraging them to seek help when needed, comparable to the human
interaction provided in traditional training.

Regarding cognitive load, the average score on the Task Load Index questionnaire
for face-to-face training was 12.68 out of 30, with a standard deviation of 1.887. In com-
parison, the MR training scored slightly higher with an average of 12.93 and a standard
deviation of 2.61. These scores indicate that both training methods impose a similar cog-
nitive load on participants. Although the MR training method has a marginally higher
cognitive load, the difference is not substantial. The standard deviations suggest a slightly
greater variability in cognitive load experiences among participants in the MR training,
which could be due to the varying levels of familiarity with the MR interface and technol-
ogy. The relatively close average scores demonstrate that, despite the added complexity
of using MR technology, participants did not experience a significantly higher cognitive
load compared to traditional face-to-face training. This suggests that the MR tool, while
innovative and technologically advanced, is designed in a way that does not excessively
burden users cognitively, making it a viable alternative to conventional training methods.

Given that each participant completed both types of training in different sequences,
we need to account for the paired nature of the data when analyzing the differences be-
tween the two training methods. This can be effectively addressed using paired statistical
tests such as the paired t-test and the Wilcoxon signed-rank test. These tests are designed
for paired or dependent samples, meaning the same participants are measured under two
different conditions.

To proceed with the analysis, we will first group the data based on the initial
training order (i.e., whether the participant started with MR training or face-to-face
training). Next, we will use the Shapiro-Wilk test to assess the normality of the data
distribution for each dependent variable. If the Shapiro-Wilk test indicates that the data
is normally distributed, we will use the paired t-test to compare the means of the two
training methods. However, if the Shapiro-Wilk test suggests that the data is not normally
distributed, we will employ the Wilcoxon signed-rank test. The Wilcoxon signed-rank test
is a non-parametric alternative to the paired t-test and does not assume normality.
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Training Order Normality t/W-value p-value Significant difference
Performance MR first, F2F second No 1 0.01 Yes

F2F first, MR second Yes -3.61 0.008 Yes
Quality MR first, F2F second No 3 1 No

F2F first, MR second No 2 0.56 No
Questions Asked MR first, F2F second No 1.5 0.19 No

F2F first, MR second No 7 0.45 No
Cognitive Load MR first, F2F second Yes -1.04 0.32 No

F2F first, MR second No 0.101 0.92 No

Table 4. Significance test based on the training order, either MR or face-to-face (F2F) first.

Table 4 presents the results of the paired statistical tests conducted to determine the
significance of differences between the MR and face-to-face training methods. Significance
is determined by a null hypothesis criteria p lower than 0.05, indicating that the observed
differences are statistically significant and not due to random chance.

For the Wilcoxon signed-rank test, the test statistic is denoted by the W-value.
This value is derived from the ranks of the differences between paired observations. The
W-value is then compared against a critical value from the Wilcoxon signed-rank distri-
bution to determine if the difference is significant. A smaller W-value indicates a more
pronounced difference between the pairs.

For the paired t-test, the test statistic is represented by the t-value. The t-value is
a ratio that measures the difference between the sample means relative to the variation
within the sample data. It is calculated by taking the difference between the means of the
paired observations and dividing it by the standard error of the differences. The larger the
absolute t-value, the greater the difference between the pairs. This t-value is compared
against a critical value from the t-distribution to assess significance.

Analyzing the result table, it is evident that there is a statistically significant dif-
ference in performance between the MR training and face-to-face training methods. This
difference can primarily be attributed to the additional time required for participants to
acclimate to the MR training environment. Specifically, the MR training method demands
more initial familiarization, which affects overall performance time.

However, the analysis reveals that for the other three dependent variables (the qual-
ity of the training outcomes, number of questions asked, and cognitive load) there is no
statistically significant difference between the MR tool and face-to-face training. This
indicates that despite the longer time needed to get used to the MR tool, it performs
comparably to traditional face-to-face training in terms of the accuracy of the assembly
task (as indicated by the number of mistakes made), the frequency of questions asked for
clarification, and the cognitive load experienced by the trainees. The lack of significant
differences in these areas suggests that the MR tool, once mastered, is just as effective
and manageable as face-to-face training. This points to the potential of MR tools to be
integrated into training programs to make them more efficient and cost-effective, provided
that users are given sufficient time to adapt to the new technology. Future iterations of
the MR tool could focus on reducing the learning curve to enhance overall performance
and user satisfaction. Given that the analysis of the three dependent variables (quality
of training outcomes, number of questions asked, and cognitive load) revealed no statis-
tically significant differences between the MR training and face-to-face training methods,
we accept the null hypothesis (H0) and reject the alternative hypothesis (H1) for these
variables. This means that we do not find sufficient evidence to conclude that there is a
difference between the two training methods in terms of these specific outcomes.
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The System Usability Scale part of the Tool Usability Form (Figure 13) received
an overall score of 74.5, indicating a good usability level for the MR AI-assisted assembly
training tool. The score ranges from 0 to 100, with a higher score indicating better
usability. A score above 68 is generally considered above average, suggesting that users
find the tool relatively easy to use and well-integrated into their tasks.

Figure 13. Individual item results for the System Usability Scale questionnaire.

Examining the individual scores for each question, we see that participants rated
the tool highly in terms of ease of use (3.5), integration of functions (4.0), quickness to
learn (3.9), confidence in using the tool (3.9), and how frequently they would use it (3.4).
These positive ratings highlight the tool’s effectiveness and user-friendly design.

However, there are some areas that need improvement, such as reducing perceived
complexity (1.5), the need for support to use the tool (1.6), inconsistencies in the tool
(1.8), and awkwardness in use (2.3). Addressing these issues could further enhance the
overall user experience and increase the score, potentially making the tool more intuitive
and accessible for users.

To evaluate the quality of the user experience, the Tool Usability Form incorpo-
rated questions derived from the Technology Acceptance Model questionnaire. The form
emphasizes that perceived usefulness and perceived ease of use are critical factors influ-
encing the adoption rate of new technology. Participants rated the perceived usefulness of
the MR training tool with an average score of 3.74 out of 5, accompanied by a standard
deviation of 0.77. This moderately positive rating suggests that users generally found
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the tool beneficial for their training needs. The score reflects a consensus that the MR
tool effectively supports the training process, although there is room for improvement to
enhance its perceived value further. For perceived ease of use, the MR training tool re-
ceived an average rating of 3.99 out of 5, with a standard deviation of 0.46. This positive
rating indicates that participants found the tool relatively easy to use. The low standard
deviation signifies that most users shared a similar positive experience regarding the tool’s
usability. This high ease-of-use score is highly important for technology adoption, as it
suggests that users can quickly learn and operate the tool with minimal difficulty.

On average, subjects interacted with the menu by pressing buttons 21 times, po-
tentially indicating the level of engagement with the interface. The number of button
presses required to complete the assembly is 19, suggesting that some users revisited pre-
vious steps to review their work or correct mistakes, as well as ask questions. Additionally,
the 3D model was grabbed an average of 18 times during the session. This observation
could imply that users found manipulating rotations of the 3D model easier to control
than interpreting instructions verbally provided by a trainer. These metrics provide in-
sights into user behavior and preferences during the assembly training. The frequency of
menu interactions and 3D model manipulations reflects how participants engaged with
the MR tool’s interface and utilized its features.

7.6.3 Post-training results

In the post-training questionnaire, participants were asked about their preferred
method of training. Eight participants reported that they preferred the MR tool, finding
it to be an effective training method. Only one participant expressed a preference for face-
to-face training, while seven participants indicated that they preferred a combination of
both the MR tool and face-to-face training methods (Appendix A.3 Figure 26).

The majority’s preference for the MR tool highlights its potential as a valuable train-
ing method, possibly due to its interactive and immersive nature. Those who preferred
both methods appreciated the complementary strengths of each approach (the immersive,
hands-on experience provided by the MR tool and the direct, personalized guidance avail-
able through face-to-face training). This mixed-method preference suggests that until
dialogue agents fully become human-like, a hybrid approach could offer the most com-
prehensive training experience, leveraging the advantages of advanced technology while
retaining the benefits of traditional, personal interaction.

Regarding which training method felt more intuitive to use, the results were fairly
balanced. Five participants indicated that the MR tool was more intuitive, while another
five felt that the face-to-face method was more intuitive. Finally, six participants found
both methods to be equally intuitive (Appendix A.3 Figure 27).

This distribution suggests that there is no clear consensus on the intuitiveness of
either method. The equal preference indicates that both training approaches have their
own strengths in terms of user-friendliness and ease of use. Participants who found the
MR tool intuitive likely appreciated the 3D model interaction and immersive aspects of
the technology, which can make complex tasks easier to understand and perform. On the
other hand, those who preferred the face-to-face method might have valued the direct,
personal interaction and immediate feedback that this traditional approach offers. The
group that found both methods intuitive underscores the potential benefit of integrating
both MR and face-to-face training to accommodate different learning preferences and
enhance overall training effectiveness.
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Finally, when asked which method provided more detailed information, 13 par-
ticipants indicated a preference for the MR tool, while only 3 participants found the
face-to-face method to be more detailed (Appendix A.3 Figure 28).

This overwhelming preference for the MR tool suggests that participants found it
to be superior in delivering comprehensive and detailed information. The MR tool’s
ability to visually demonstrate procedures and provide real-time, interactive feedback
likely contributed to this perception. The immersive environment of MR can offer a depth
of detail and clarity that is harder to achieve through face-to-face training alone. This
descriptive information delivery is crucial for complex assembly tasks where understanding
the nuances and specifics is essential for successful execution. The fact that only a small
number of participants favored face-to-face training as more detailed indicates that while
personal interaction has its benefits, it may not be as effective in conveying intricate details
as the MR tool. These findings highlight the potential of MR technology to enhance
training programs by providing detailed, easily accessible information, thus improving
learning outcomes and efficiency.

For the open-ended questions regarding what participants liked about the MR tool,
several key themes emerged. Participants appreciated the visual clarity provided by the
MR tool, noting that it is more effective to see things directly rather than having them
explained verbally. The MR tool allowed participants to see the different pieces clearly,
eliminating any ambiguity in the description of pieces or their placements.

Additionally, the ability to zoom in and rotate the model was highlighted as partic-
ularly useful. This feature enabled participants to examine details closely and understand
the assembly process from different angles. The tutorial videos were also praised for ef-
fectively showcasing the basic input mapping, helping users quickly learn how to interact
with the MR environment.

Participants also valued the flexibility of placing the virtual model anywhere and
in any orientation. This adaptability was seen as especially beneficial for more complex
models, where such features would significantly enhance the assembly process. The pre-
cision of the instructions provided by the MR tool was another advantage, as it left no
room for confusion about which piece was needed and where it should be placed.

Regarding areas for improvement for the MR tool, participants provided several
suggestions. Some participants, particularly those with no prior MR experience, requested
additional practice with clicking the buttons. Despite having unlimited time to practice,
some trainees chose to rush through this stage and later realized they needed more practice
before the assembly process.

Many participants noted that the ’Next Step’ button, which was the most frequently
used, was difficult to click repeatedly. This issue was exacerbated by the limitations of the
headset’s hand-tracking capabilities. Although the interface was designed with current
standards in mind and works smoothly with controllers, gesture interaction proved chal-
lenging due to the suboptimal hand tracking of the available headset. The quality of the
camera was another point of criticism. Participants mentioned that better visualization of
the real world, where pieces could be more easily recognized, would have prevented some
mistakes. In future work, the use of a high-quality headset could mitigate these issues.

Some participants suggested implementing voice activation for the buttons. How-
ever, this feature was not included because the current speech-to-text models do not
support continuous voice capture. Implementing voice activation would necessitate press-
ing a button each time a user wants to speak and another button press to stop, effectively
doubling the workload compared to the frequent need to press the ’Next Step’ button.
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These suggestions point to several areas for future improvements. One area is exper-
imenting with headsets that offer enhanced hand-tracking capabilities as well as improved
camera quality for better real-world visualization. Additionally, exploring more advanced
voice activation technologies that can capture speech continuously without needing addi-
tional button presses is recommended.

For the other training method, participants highlighted several advantages of face-
to-face training. One notable benefit is that the absence of interface interaction makes
communication feel more natural and fluid. Participants appreciated the ability to double-
check information with the trainer, making it easier to clarify doubts immediately.

Trainees also mentioned that it feels more comfortable to ask for help in a face-to-
face setting, as they receive instant replies to their questions. This immediate feedback is
crucial for effective learning and quick problem resolution. Additionally, the opportunity
to engage in small talk and discuss topics beyond the task at hand was seen as a positive
aspect, fostering a more relaxed and supportive learning environment.

Overall, participants found it easier to make queries to a real person who can provide
direct and immediate answers, in contrast to an AI system that requires time to analyze
the environment before responding. However, future advancements in AI models could
potentially improve the speed and accuracy of responses, making interactions with AI
trainers as simple and effective as those with human trainers.

Participants identified several areas for improvement in face-to-face training. They
mentioned that ambiguous terms used for pieces or placements often made the process
more difficult, and the instructions were not always clear. A visual manual for the as-
sembler would simplify the process, but this is not feasible in current assembly scenarios
where manuals contain hundreds of pages and training is conducted verbally.

Trainees noted that visual stimulation is beneficial, and having a visual model simi-
lar to the MR tool would enhance understanding. However, in real-life assembly training,
where the process is lengthy and involves numerous pieces, it is impractical to have a per-
son provide a 3D representation of the object being assembled due to time and material
constraints.

This feedback highlights the need for integrating more visual aids into face-to-face
training to improve clarity and reduce ambiguity. Future advancements could focus on
developing hybrid training methods that combine the interactive, visual elements of MR
tools with the personal interaction of face-to-face training. This approach could provide
a more comprehensive and effective training experience, leveraging the strengths of both
methods to overcome their respective limitations.
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8 Discussion

This project entails the development of a fully functional MR application aimed
at assisting with assembly tasks. The study examines the feasibility and technological
readiness of creating a standardized method to produce realistic and beneficial augmented
graphics in a real, dynamic environment, integrated with a dialogue agent.

The primary goal of the application was to design an effective, efficient, and user-
friendly MR system specifically for assembly training. This involved ensuring that the
MR tool could deliver high-quality, immersive experiences to facilitate learning and exe-
cuting assembly tasks. The system is designed to enhance training outcomes by providing
intuitive, interactive visual aids seamlessly integrated into the user’s physical workspace,
while also allowing users the freedom to communicate and ask questions.

This section assesses how well the research questions have been answered, followed
by a discussion of the study’s limitations, shortcomings, and suggestions for future re-
search.

8.1 Subquestions

From the main research question, three sub-questions related to performance and
accessibility were presented. These sub-questions aimed to evaluate the design, effective-
ness, efficiency, and user-friendliness of the MR system for assembly training purposes.
By addressing these aspects, the study sought to understand how well the MR applica-
tion could facilitate training and identify any limitations that might impact its broader
adoption in practical scenarios.

8.1.1 How can we design an architecture that will take into account the
advantages of dialogue agents and MR for assembly?

As detailed in Section 5, we conducted a use case analysis to determine the re-
quirements necessary for creating an easy-to-use and intuitive training application. This
involved following design recommendations and guidance from existing software tools used
in the industry. All requirements were successfully implemented in the final version of the
application, with the system architecture based on previous studies. The architectural
layers were structured to be highly modular, adhering to established best practices for
MR development. The approach ensures that the application can be easily updated and
maintained, facilitating future enhancements and scalability.

8.1.2 How do we integrate dialogue agents with interactive MR systems such
that they are compatible and still highly performant?

As outlined in Section 6, we first conducted a feasibility study to determine if the
project requirements were achievable. This included a risk analysis to identify potential
issues and develop mitigation strategies. Following this, we implemented the proposed
system by translating the design and requirements into a functional MR application. The
integration of dialogue agents with the MR system was carefully engineered to maintain
high performance, ensuring that the interactive elements remained responsive and the user
experience was not compromised. This seamless integration was achieved by optimizing
the communication between the dialogue agents and the MR system, allowing for real-time
interactions and effective training support.
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8.1.3 How can we evaluate the efficacy of AI-based MR training?

In accordance with best practices for evaluation described in the related work from
Section 2, we employed a combination of questionnaires to measure various aspects of
the system. These included the System Usability Scale to assess usability, the NASA
Task Load Index to gauge perceived workload, and the Technology Acceptance Model to
evaluate acceptance of the technology. Additionally, as seen in Section 7, we analyzed
the performance of trainees by examining metrics such as the quality of assembly tasks
completed, the number and nature of questions asked, and the frequency and type of
user interface interactions. This comprehensive evaluation approach provided a robust
assessment of the MR training tool’s effectiveness and highlighted areas for potential
improvement.

8.2 Shortcomings and Future Work

The results underscore a pivotal challenge in XR applications: the necessity for
communication methods that go beyond mere physical interactions to enable effective
human-computer collaboration. For XR systems to reach their full potential, they must
incorporate advanced communication channels that facilitate seamless interaction between
users and the virtual environment. This could include sophisticated voice recognition
systems, natural language processing, and intuitive gesture controls that allow users to
communicate effortlessly with the system.

Participants have highlighted the importance of clear and precise instructions, which
are sometimes better conveyed through advanced interaction techniques than through
traditional commmunication. For instance, incorporating continuous voice recognition
could significantly reduce the need for repetitive button presses, streamlining the user
experience. Similarly, improved hand-tracking capabilities can ensure more accurate and
responsive gesture controls, making the interaction more fluid and less prone to errors.
The latest headsets on the market, such as the Apple Vision Pro, already incorporate state-
of-the-art interaction features. For instance, this HMD is capable of accurate eye tracking,
which allows users to interact with buttons simply by looking at them and tapping their
fingers together to click, providing a more seamless and natural user experience. [3].

The Meta Quest 3, used during the experiment, although a recently released headset,
does not perform at the level of more expensive business-to-business products such as
the Magic Leap 2 or the Apple Vision Pro. Experimental findings highlighted several
limitations of the Meta Quest 3. Participants reported occasional lag, which can disrupt
the immersive experience and affect training efficiency. Additionally, the Quest 3’s camera
struggled with accurately recognizing black pieces, indicating a need for either a different
color scheme for assembly models or the adoption of a higher-quality headset.

Moreover, innovative headsets like Galea integrate cognitive sensors capable of track-
ing and measuring cognitive load [19]. This advancement can replace traditional user
questionnaires, such as the Task Load Index form, with real-time, objective data on user
cognitive load. By adopting these advanced HMDs, future experiments can achieve more
accurate measurements and provide a more effective and immersive training experience
tailored specifically for each user.

Furthermore, integrating advanced communication methods can effectively bridge
the gap between the benefits of MR tools and face-to-face training. MR tools provide
clear, unambiguous instructions and the ability to manipulate 3D models, while face-to-
face training offers the immediacy of human feedback and natural communication ease.
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In our study, we used the Wizard of Oz approach to mimic a dialogue agent, rather
than training and testing an actual AI model. This allowed us to simulate an interactive
experience without fully implementing an AI system. Future work can leverage state-of-
the-art models to analyze the potential of AI in enhancing MR applications. For instance,
GPT-4o represents a significant advancement toward more natural human-computer in-
teraction. It is capable of processing text, audio, image, and video inputs, and generating
corresponding outputs. This model responds to audio inputs in as little as 232 millisec-
onds, with an average response time of 320 milliseconds, which is comparable to human
conversation speed [48].

An important limitation of this study is the composition of the participant pool.
The sample predominantly consisted of university students, who may not accurately rep-
resent the broader population of potential users, such as professional assembly workers.
According to Webel et al. [77], performing assembly tasks requires cognitive skills such
as procedural memory and fine motor skills. While MR can effectively train procedu-
ral skills, it is less capable of developing fine motor skills, which are typically acquired
through years of experience in the assembly field. Compared to experienced assembly
workers, students may exhibit slower performance and lower assembly quality when using
the same technology. To address this limitation, future studies should recruit a more
diverse participant group, including professional assembly workers, to obtain more gen-
eralizable results. This approach will ensure that the findings are applicable to a wider
range of users and scenarios. Additionally, the gender imbalance among participants could
have influenced the study’s outcomes, as different genders might interact with technology
in varied ways. Achieving a more balanced gender distribution in future research will
help mitigate potential biases and provide a more comprehensive understanding of the
MR training system’s effectiveness.

Due to resource limitations, we opted to utilize simple assembly tasks, such as
assembling Lego models. However, it is important to note that the results obtained from
these relatively straightforward tasks may not be entirely reliable when extrapolated to
more complex environments, such as an engine assembly line. In more intricate and
demanding settings, the challenges and requirements for MR training could be significantly
different. Factors such as the precision needed, the variety of components involved, and
the potential for human error could all vary substantially compared to assembling Lego
models. Conducting a similar study in a complex assembly environment would provide
a more comprehensive understanding of how MR applications perform under real-world
industrial conditions.

Finally, conducting longitudinal studies, as observed in related research, represents a
crucial next step to evaluate both short-term and long-term recall in MR training systems.
These studies offer valuable insights into the sustained effectiveness and usability of MR
technology over extended periods of time, shedding light on its lasting impacts on learning
and performance.
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9 Conclusion

This study focuses on the development and evaluation of an MR application designed
specifically for training tasks in engine assembly, aiming to quantify its impact on various
metrics such as assembly time, quality, questions asked, and cognitive load. By directly
comparing AI-assisted MR training with traditional face-to-face training, the research
provided valuable insights into the relative strengths and weaknesses of each method.

This comparison helps to understand how modern technology can complement or
even surpass traditional training approaches in certain aspects. Our findings indicate that
MR training, while requiring more time initially for familiarization with the technology,
offers significant advantages such as providing clear, unambiguous instructions and slightly
reducing assembly mistakes. In contrast, face-to-face training excels in facilitating natural
communication and immediate support but may suffer from ambiguities in instructional
delivery.

The feedback from participants underscores the preference for direct interaction with
human trainers, who can offer immediate responses and personalized support. In com-
parison, interactions with AI-driven systems often require processing time to analyze the
environment before providing answers. However, advancements in AI technology, exem-
plified by models like GPT-4o, hold promise for improving response speed and accuracy,
potentially bridging the gap between human and AI interaction in training scenarios.

Participants also highlighted the possible benefits of integrating more visual aids
into face-to-face training to enhance clarity and reduce ambiguity in instruction. Future
developments could explore hybrid training approaches that combine the interactive, vi-
sual features of MR tools with the interpersonal dynamics of face-to-face training. This
hybrid model could offer a more comprehensive and effective training experience, lever-
aging the strengths of both methodologies to mitigate their respective limitations.

Moreover, introducing slight automation into training processes could prove benefi-
cial in reducing overall training costs while maintaining or improving training effectiveness.
By using a dialogue agent for routine or repetitive training scenarios, resources can be
optimized, allowing trainers to focus more on other related tasks.

In conclusion, while this study highlights the current strengths and limitations of
MR tools in assembly training, ongoing advancements in both MR technology and AI
capabilities offer exciting opportunities for further enhancement. Future research should
continue to explore these avenues to refine and optimize MR applications for assembly
and other industrial training contexts, ultimately aiming to elevate training efficiency,
quality, and learner satisfaction.
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[8] F. Bosché, M. Abdel-Wahab, and L. Carozza. “Towards a Mixed Reality System for
Construction Trade Training”. In: Journal of Computing in Civil Engineering 30.2
(2016), p. 04015016. doi: 10.1061/(ASCE)CP.1943-5487.0000479. eprint: https:
//ascelibrary.org/doi/pdf/10.1061/%28ASCE%29CP.1943-5487.0000479. url:
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000479.

[9] D. A. Bowman. “A Survey of Usability Evaluation in Virtual Environments: Classi-
fication and Comparison of Methods”. In: Presence: Teleoperators & Virtual Envi-
ronments 11 (2002), pp. 404–424. url: https://api.semanticscholar.org/CorpusID:
1983971.

[10] “Can the Oculus 2 with passthrough API take the place of HoloLens”. In: (2021).
url: https ://www.qualium- systems.com/blog/ar- vr/can- the- oculus- 2-with-
passthrough-api-take-the-place-of-hololens-2-checking-the-hypothesis/.

54

https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776
https://doi.org/https://doi.org/10.1016/j.ecns.2017.09.008
https://doi.org/https://doi.org/10.1016/j.ecns.2017.09.008
https://www.sciencedirect.com/science/article/pii/S1876139917301263
https://www.sciencedirect.com/science/article/pii/S1876139917301263
https://support.apple.com/guide/apple-vision-pro/type-with-the-virtual-keyboard-tana14220eef/visionos#:~:text=Enter%20text%20with%20the%20virtual%20keyboard&text=Look%20at%20each%20key%2C%20then,show%20special%20characters%20and%20accents.
https://support.apple.com/guide/apple-vision-pro/type-with-the-virtual-keyboard-tana14220eef/visionos#:~:text=Enter%20text%20with%20the%20virtual%20keyboard&text=Look%20at%20each%20key%2C%20then,show%20special%20characters%20and%20accents.
https://support.apple.com/guide/apple-vision-pro/type-with-the-virtual-keyboard-tana14220eef/visionos#:~:text=Enter%20text%20with%20the%20virtual%20keyboard&text=Look%20at%20each%20key%2C%20then,show%20special%20characters%20and%20accents.
https://support.apple.com/guide/apple-vision-pro/type-with-the-virtual-keyboard-tana14220eef/visionos#:~:text=Enter%20text%20with%20the%20virtual%20keyboard&text=Look%20at%20each%20key%2C%20then,show%20special%20characters%20and%20accents.
https://doi.org/10.1177/0954406215584633
https://doi.org/10.1177/0954406215584633
https://doi.org/10.1177/0954406215584633
https://doi.org/10.1109/MMUL.2022.3232892
https://doi.org/https://doi.org/10.1016/j.compind.2014.12.002
https://www.sciencedirect.com/science/article/pii/S0166361514002073
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000479
https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%29CP.1943-5487.0000479
https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%29CP.1943-5487.0000479
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000479
https://api.semanticscholar.org/CorpusID:1983971
https://api.semanticscholar.org/CorpusID:1983971
https://www.qualium-systems.com/blog/ar-vr/can-the-oculus-2-with-passthrough-api-take-the-place-of-hololens-2-checking-the-hypothesis/
https://www.qualium-systems.com/blog/ar-vr/can-the-oculus-2-with-passthrough-api-take-the-place-of-hololens-2-checking-the-hypothesis/


[11] H. Chen, N. Zendehdel, M. C. Leu, and Z. Yin. “Fine-grained activity classification
in assembly based on multi-visual modalities”. In: Journal of Intelligent Manu-
facturing (June 2023). issn: 1572-8145. doi: 10.1007/s10845-023-02152-x. url:
https://doi.org/10.1007/s10845-023-02152-x.

[12] P. Cipresso, I. A. C. Giglioli, M. A. Raya, and G. Riva. “The past, present, and
future of virtual and augmented reality research: A network and cluster analysis of
the literature”. en. In: Front. Psychol. 9 (Nov. 2018), p. 2086.

[13] L. M. Daling, M. Tenbrock, I. Isenhardt, and S. J. Schlittmeier. “Assemble it like
this! - Is AR- or VR-based training an effective alternative to video-based training
in manual assembly?” In: Applied ergonomics 110 (2023), p. 104021. url: https:
//api.semanticscholar.org/CorpusID:257885935.

[14] S. Doolani, C. Wessels, V. Kanal, C. Sevastopoulos, A. Jaiswal, H. R. Nambiappan,
and F. Makedon. “A Review of Extended Reality (XR) Technologies for Manufac-
turing Training”. In: Technologies (2020). url: https://api.semanticscholar.org/
CorpusID:230533679.

[15] S. Erol, A. Jäger, P. Hold, K. Ott, and W. Sihn. “Tangible Industry 4.0: A Scenario-
Based Approach to Learning for the Future of Production”. In: Procedia CIRP 54
(2016), pp. 13–18. url: https://api.semanticscholar.org/CorpusID:14203404.

[16] S. L. Farra, E. T. Miller, N. Timm, and J. C. Schafer. “Improved Training for
Disasters Using 3-D Virtual Reality Simulation”. In: Western Journal of Nursing
Research 35 (2013), pp. 655–671. url: https://api.semanticscholar.org/CorpusID:
8390188.

[17] C. G. Fidalgo, Y. Yan, H. Cho, M. Sousa, D. Lindlbauer, and J. Jorge. A Survey
on Remote Assistance and Training in Mixed Reality Environments. 2023. doi: 10.
1109/TVCG.2023.3247081.

[18] “Fully immersive VR learning solutions for training in hazardous and emergency
situations”. In: (2023). url: https://flaimsystems.com/.

[19] Galea. “The World’s Most Advanced Biosensing Headset”. In: (2024). url: https:
//galea.co/#home.

[20] A. Gallagher, E. M. Ritter, H. Champion, G. Higgins, M. Fried, G. Moses, C. Smith,
and R. Satava. “Virtual Reality Simulation for the Operating Room: Proficiency-
Based Training as a Paradigm Shift in Surgical Skills Training”. In: Annals of
surgery 241 (Mar. 2005), pp. 364–72. doi: 10.1002/bjs.1800840237.

[21] M. Gonzalez-Franco, R. Pizarro, J. Cermeron, K. Li, J. Thorn, W. Hutabarat, A.
Tiwari, and P. Bermell-Garcia. “Immersive Mixed Reality for Manufacturing Train-
ing”. In: Frontiers in Robotics and AI 4 (2017). issn: 2296-9144. doi: 10.3389/frobt.
2017.00003. url: https://www.frontiersin.org/articles/10.3389/frobt.2017.00003.

[22] J. P. Gownder. “How Enterprise Smart Glasses Will Drive Workforce Enablement”.
In: (2016). url: https://www.forrester.com/report/How-Enterprise-Smart-Glasses-
Will-Drive-Workforce-Enablement/RES133722.

55

https://doi.org/10.1007/s10845-023-02152-x
https://doi.org/10.1007/s10845-023-02152-x
https://api.semanticscholar.org/CorpusID:257885935
https://api.semanticscholar.org/CorpusID:257885935
https://api.semanticscholar.org/CorpusID:230533679
https://api.semanticscholar.org/CorpusID:230533679
https://api.semanticscholar.org/CorpusID:14203404
https://api.semanticscholar.org/CorpusID:8390188
https://api.semanticscholar.org/CorpusID:8390188
https://doi.org/10.1109/TVCG.2023.3247081
https://doi.org/10.1109/TVCG.2023.3247081
https://flaimsystems.com/
https://galea.co/#home
https://galea.co/#home
https://doi.org/10.1002/bjs.1800840237
https://doi.org/10.3389/frobt.2017.00003
https://doi.org/10.3389/frobt.2017.00003
https://www.frontiersin.org/articles/10.3389/frobt.2017.00003
https://www.forrester.com/report/How-Enterprise-Smart-Glasses-Will-Drive-Workforce-Enablement/RES133722
https://www.forrester.com/report/How-Enterprise-Smart-Glasses-Will-Drive-Workforce-Enablement/RES133722


[23] T. P. Grantcharov, L. Bardram, P. Funch-Jensen, and J. Rosenberg. “Learning
curves and impact of previous operative experience on performance on a virtual
reality simulator to test laparoscopic surgical skills”. In: The American Journal of
Surgery 185.2 (2003), pp. 146–149. issn: 0002-9610. doi: https://doi.org/10.1016/
S0002-9610(02)01213-8. url: https://www.sciencedirect.com/science/article/pii/
S0002961002012138.

[24] Z. Hu, T. Yu, Y. Zhang, and S. Pan. “Fine-grained Activities Recognition with
Coarse-grained Labeled Multi-modal Data”. In: Sept. 2020. doi: 10.1145/3410530.
3414320.

[25] “Introducing Apple Vision Pro: Apple’s first spatial computer”. In: (2023). url:
https://www.apple.com/newsroom/2023/06/introducing-apple-vision-pro/.

[26] R. Kneebone, W. Scott, A. Darzi, and M. Horrocks. “Simulation and clinical prac-
tice: Strengthening the relationship”. In:Medical education 38 (Nov. 2004), pp. 1095–
102. doi: 10.1111/j.1365-2929.2004.01959.x.

[27] J. Krause, T. Gebru, J. Deng, L.-J. Li, and L. Fei-Fei. “Learning Features and Parts
for Fine-Grained Recognition”. In: 2014 22nd International Conference on Pattern
Recognition. 2014, pp. 26–33. doi: 10.1109/ICPR.2014.15.

[28] D. Kulak and E. Guiney. Use cases: requirements in context. Addison-Wesley, 2012.

[29] M. Leap. “Landscape Design”. In: (2019). url: https://ml1-developer.magicleap.
com/en-us/learn/guides/design-landscape.

[30] K. Lee. “Augmented Reality in Education and Training”. In: TechTrends 56.2 (Mar.
2012), pp. 13–21. issn: 1559-7075. doi: 10.1007/s11528-012-0559-3. url: https:
//doi.org/10.1007/s11528-012-0559-3.

[31] A. Li, Z. Lu, L. Wang, T. Xiang, X. Li, and J.-R. Wen. Zero-Shot Fine-Grained
Classification by Deep Feature Learning with Semantics. 2017. arXiv: 1707.00785
[cs.CV].

[32] X. Li, W. Yi, H.-L. Chi, X. Wang, and A. P. Chan. “A critical review of virtual and
augmented reality (VR/AR) applications in construction safety”. In: Automation
in Construction 86 (2018), pp. 150–162. issn: 0926-5805. doi: https://doi.org/10.
1016/j.autcon.2017.11.003. url: https://www.sciencedirect.com/science/article/
pii/S0926580517309962.

[33] A. Liverani, G. Amati, and G. Caligiana. “Interactive control of manufacturing as-
semblies with Mixed Reality”. In: Integrated Computer-Aided Engineering 13 (2006).
2, pp. 163–172. issn: 1875-8835. doi: 10.3233/ICA-2006-13205. url: https://doi.
org/10.3233/ICA-2006-13205.

[34] M. Lysakowski, K. Zywanowski, A. Banaszczyk, M. R. Nowicki, P. Skrzypczyn-
ski, and S. K. Tadeja. Real-Time Onboard Object Detection for Augmented Reality:
Enhancing Head-Mounted Display with YOLOv8. 2023. arXiv: 2306.03537 [cs.CV].

[35] N. Macchiarella and D. Vincenzi. “Augmented reality in a learning paradigm for
flight aerospace maintenance training”. In: The 23rd Digital Avionics Systems Con-
ference (IEEE Cat. No.04CH37576). Vol. 1. 2004, pp. 5.D.1–5.1. doi: 10 .1109/
DASC.2004.1391342.

56

https://doi.org/https://doi.org/10.1016/S0002-9610(02)01213-8
https://doi.org/https://doi.org/10.1016/S0002-9610(02)01213-8
https://www.sciencedirect.com/science/article/pii/S0002961002012138
https://www.sciencedirect.com/science/article/pii/S0002961002012138
https://doi.org/10.1145/3410530.3414320
https://doi.org/10.1145/3410530.3414320
https://www.apple.com/newsroom/2023/06/introducing-apple-vision-pro/
https://doi.org/10.1111/j.1365-2929.2004.01959.x
https://doi.org/10.1109/ICPR.2014.15
https://ml1-developer.magicleap.com/en-us/learn/guides/design-landscape
https://ml1-developer.magicleap.com/en-us/learn/guides/design-landscape
https://doi.org/10.1007/s11528-012-0559-3
https://doi.org/10.1007/s11528-012-0559-3
https://doi.org/10.1007/s11528-012-0559-3
https://arxiv.org/abs/1707.00785
https://arxiv.org/abs/1707.00785
https://doi.org/https://doi.org/10.1016/j.autcon.2017.11.003
https://doi.org/https://doi.org/10.1016/j.autcon.2017.11.003
https://www.sciencedirect.com/science/article/pii/S0926580517309962
https://www.sciencedirect.com/science/article/pii/S0926580517309962
https://doi.org/10.3233/ICA-2006-13205
https://doi.org/10.3233/ICA-2006-13205
https://doi.org/10.3233/ICA-2006-13205
https://arxiv.org/abs/2306.03537
https://doi.org/10.1109/DASC.2004.1391342
https://doi.org/10.1109/DASC.2004.1391342


[36] S. Mann, Y. Yuan, F. Lamberti, A. E. Saddik, R. Thawonmas, and F. G. Prattico.
“eXtended meta-uni-omni-Verse (XV): Introduction, Taxonomy, and State-of-the-
Art”. In: IEEE Consumer Electronics Magazine (2023), pp. 1–9. doi: 10 . 1109/
MCE.2023.3283728.

[37] N. R. Marc Carrel-Billiard Dan Guenther. “Meeting the new reality: immersive
learning”. In: (2021). url: https://www.accenture.com/us-en/insights/technology/
immersive-learning.

[38] B. Martin and B. Hanington. Universal Methods of Design: 100 Ways to Research
Complex Problems, Develop Innovative Ideas, and Design Effective Solutions. Rock-
port Publishers, 2012.

[39] K. McMillan, K. Flood, and R. Glaeser. “Virtual reality, augmented reality, mixed
reality, and the marine conservation movement”. In: Aquatic Conservation: Marine
and Freshwater Ecosystems 27 (Sept. 2017), pp. 162–168. doi: 10.1002/aqc.2820.

[40] Microsoft. “Start designing and prototyping”. In: (2022). url: https : / / learn .
microsoft.com/en-us/windows/mixed-reality/design/design.

[41] “Microsoft is discontinuing Windows Mixed Reality”. In: (2023). url: https://www.
theverge.com/2023/12/21/24010787/microsoft-windows-mixed-reality-deprecated.

[42] P. Milgram and F. Kishino. “A Taxonomy of Mixed Reality Visual Displays”. In:
IEICE Transactions on Information and Systems 77 (1994), pp. 1321–1329. url:
https://api.semanticscholar.org/CorpusID:17783728.

[43] A. J. Miller and S. Kalafatis. “Mixed Reality Equipment Training: A Pilot Study Ex-
ploring the Potential Use of Mixed Reality to Train Users on Technical Equipment”.
In: Proceedings of the 2023 7th International Conference on Virtual and Augmented
Reality Simulations. ICVARS ’23. , Sydney, Australia, Association for Computing
Machinery, 2023, pp. 105–113. isbn: 9781450397469. doi: 10.1145/3603421.3603436.
url: https://doi.org/10.1145/3603421.3603436.

[44] S. Moon, S. Kottur, P. Crook, A. De, S. Poddar, T. Levin, D. Whitney, D. Difranco,
A. Beirami, E. Cho, R. Subba, and A. Geramifard. “Situated and Interactive Multi-
modal Conversations”. In: Proceedings of the 28th International Conference on Com-
putational Linguistics. Ed. by D. Scott, N. Bel, and C. Zong. Barcelona, Spain (On-
line): International Committee on Computational Linguistics, Dec. 2020, pp. 1103–
1121. doi: 10.18653/v1/2020.coling-main.96. url: https://aclanthology.org/2020.
coling-main.96.

[45] C. Moro, J. Birt, Z. Stromberga, C. Phelps, J. Clark, P. Glasziou, and A. M.
Scott. “Virtual and Augmented Reality Enhancements to Medical and Science Stu-
dent Physiology and Anatomy Test Performance: A Systematic Review and Meta-
Analysis”. In: Anatomical Sciences Education 14.3 (2021), pp. 368–376. doi: https:
//doi.org/10.1002/ase.2049. eprint: https://anatomypubs.onlinelibrary.wiley.com/
doi/pdf/10.1002/ase.2049. url: https://anatomypubs.onlinelibrary.wiley.com/doi/
abs/10.1002/ase.2049.

57

https://doi.org/10.1109/MCE.2023.3283728
https://doi.org/10.1109/MCE.2023.3283728
https://www.accenture.com/us-en/insights/technology/immersive-learning
https://www.accenture.com/us-en/insights/technology/immersive-learning
https://doi.org/10.1002/aqc.2820
https://learn.microsoft.com/en-us/windows/mixed-reality/design/design
https://learn.microsoft.com/en-us/windows/mixed-reality/design/design
https://www.theverge.com/2023/12/21/24010787/microsoft-windows-mixed-reality-deprecated
https://www.theverge.com/2023/12/21/24010787/microsoft-windows-mixed-reality-deprecated
https://api.semanticscholar.org/CorpusID:17783728
https://doi.org/10.1145/3603421.3603436
https://doi.org/10.1145/3603421.3603436
https://doi.org/10.18653/v1/2020.coling-main.96
https://aclanthology.org/2020.coling-main.96
https://aclanthology.org/2020.coling-main.96
https://doi.org/https://doi.org/10.1002/ase.2049
https://doi.org/https://doi.org/10.1002/ase.2049
https://anatomypubs.onlinelibrary.wiley.com/doi/pdf/10.1002/ase.2049
https://anatomypubs.onlinelibrary.wiley.com/doi/pdf/10.1002/ase.2049
https://anatomypubs.onlinelibrary.wiley.com/doi/abs/10.1002/ase.2049
https://anatomypubs.onlinelibrary.wiley.com/doi/abs/10.1002/ase.2049


[46] C. Moro, C. Phelps, P. Redmond, and Z. Stromberga. “HoloLens and mobile aug-
mented reality in medical and health science education: A randomised controlled
trial”. In: British Journal of Educational Technology 52.2 (2021), pp. 680–694. doi:
https://doi.org/10.1111/bjet.13049. eprint: https://bera- journals.onlinelibrary.
wiley.com/doi/pdf/10.1111/bjet.13049. url: https://bera-journals.onlinelibrary.
wiley.com/doi/abs/10.1111/bjet.13049.

[47] J. Ni, T. Young, V. Pandelea, F. Xue, and E. Cambria. Recent Advances in Deep
Learning Based Dialogue Systems: A Systematic Survey. 2022. arXiv: 2105.04387
[cs.CL].

[48] OpenAI. “Hello GPT-4o”. In: (2024). url: https://openai.com/index/hello-gpt-
4o/.

[49] “OpenXR Unifying Reality”. In: (2024). url: https://www.khronos.org/openxr/.

[50] A. Padmakumar, J. Thomason, A. Shrivastava, P. Lange, A. Narayan-Chen, S.
Gella, R. Piramuthu, G. Tur, and D. Hakkani-Tur. TEACh: Task-driven Embodied
Agents that Chat. 2021. arXiv: 2110.00534 [cs.CV].

[51] R. Palmarini, J. A. Erkoyuncu, R. Roy, and H. Torabmostaedi. “A systematic review
of augmented reality applications in maintenance”. In: Robotics and Computer-
Integrated Manufacturing 49 (2018), pp. 215–228. issn: 0736-5845. doi: https://
doi.org/10.1016/j.rcim.2017.06.002. url: https://www.sciencedirect.com/science/
article/pii/S0736584517300686.

[52] M. Quest. “Best Practices”. In: (2024). url: https : / / developer . oculus . com /
resources/mr-design-guideline/.

[53] “Quest 3 vs Quest Pro vs HoloLens 2 (Comparison)”. In: (2023). url: https://vr-
compare.com/compare?h1=0q3goALzg&h2=-MpSqv-rB&h3=EkSDYv0cW.

[54] A. P. Rafael Sacks and R. Barak. “Construction safety training using immersive vir-
tual reality”. In: Construction Management and Economics 31.9 (2013), pp. 1005–
1017. doi: 10 . 1080 /01446193 . 2013 . 828844. eprint: https : / /doi . org / 10 . 1080 /
01446193.2013.828844. url: https://doi.org/10.1080/01446193.2013.828844.

[55] P. A. Rauschnabel, R. Felix, C. Hinsch, H. Shahab, and F. Alt. “What is XR?
Towards a Framework for Augmented and Virtual Reality”. In: Computers in Hu-
man Behavior 133 (2022), p. 107289. issn: 0747-5632. doi: https://doi.org/10.
1016/j.chb.2022.107289. url: https://www.sciencedirect.com/science/article/pii/
S074756322200111X.

[56] K. S. B. Robert S. Kennedy Norman E. Lane and M. G. Lilienthal. “Simulator
Sickness Questionnaire: An Enhanced Method for Quantifying Simulator Sickness”.
In: The International Journal of Aviation Psychology 3.3 (1993), pp. 203–220. doi:
10.1207/s15327108ijap0303\ 3. eprint: https://doi.org/10.1207/s15327108ijap0303
3. url: https://doi.org/10.1207/s15327108ijap0303 3.

[57] S. Rokhsaritalemi, A. Sadeghi-Niaraki, and S.-M. Choi. “A Review on Mixed Real-
ity: Current Trends, Challenges and Prospects”. In: Applied Sciences (2020). url:
https://api.semanticscholar.org/CorpusID:212907412.

[58] M. Rouse. “What Is Multimodal AI?” In: (2023). url: https://www.techopedia.
com/definition/multimodal-ai-multimodal-artificial-intelligence.

58

https://doi.org/https://doi.org/10.1111/bjet.13049
https://bera-journals.onlinelibrary.wiley.com/doi/pdf/10.1111/bjet.13049
https://bera-journals.onlinelibrary.wiley.com/doi/pdf/10.1111/bjet.13049
https://bera-journals.onlinelibrary.wiley.com/doi/abs/10.1111/bjet.13049
https://bera-journals.onlinelibrary.wiley.com/doi/abs/10.1111/bjet.13049
https://arxiv.org/abs/2105.04387
https://arxiv.org/abs/2105.04387
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://www.khronos.org/openxr/
https://arxiv.org/abs/2110.00534
https://doi.org/https://doi.org/10.1016/j.rcim.2017.06.002
https://doi.org/https://doi.org/10.1016/j.rcim.2017.06.002
https://www.sciencedirect.com/science/article/pii/S0736584517300686
https://www.sciencedirect.com/science/article/pii/S0736584517300686
https://developer.oculus.com/resources/mr-design-guideline/
https://developer.oculus.com/resources/mr-design-guideline/
https://vr-compare.com/compare?h1=0q3goALzg&h2=-MpSqv-rB&h3=EkSDYv0cW
https://vr-compare.com/compare?h1=0q3goALzg&h2=-MpSqv-rB&h3=EkSDYv0cW
https://doi.org/10.1080/01446193.2013.828844
https://doi.org/10.1080/01446193.2013.828844
https://doi.org/10.1080/01446193.2013.828844
https://doi.org/10.1080/01446193.2013.828844
https://doi.org/https://doi.org/10.1016/j.chb.2022.107289
https://doi.org/https://doi.org/10.1016/j.chb.2022.107289
https://www.sciencedirect.com/science/article/pii/S074756322200111X
https://www.sciencedirect.com/science/article/pii/S074756322200111X
https://doi.org/10.1207/s15327108ijap0303\_3
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.1207/s15327108ijap0303_3
https://doi.org/10.1207/s15327108ijap0303_3
https://api.semanticscholar.org/CorpusID:212907412
https://www.techopedia.com/definition/multimodal-ai-multimodal-artificial-intelligence
https://www.techopedia.com/definition/multimodal-ai-multimodal-artificial-intelligence


[59] W. T. Ryan Jones. “Mid-Market Technology Trends Report”. In: (2023). url: https:
//www2.deloitte.com/us/en/pages/deloitte-private/articles/technology-trends-
middle-market-companies-survey.html.

[60] M. V. Sanchez-Vives and M. Slater. “From presence to consciousness through virtual
reality”. In: Nature Reviews Neuroscience 6.4 (Apr. 2005), pp. 332–339. issn: 1471-
0048. doi: 10.1038/nrn1651. url: https://doi.org/10.1038/nrn1651.

[61] N. Seymour, A. Gallagher, S. Roman, M. O’Brien, V. Bansal, D. Andersen, and R.
Satava. “Virtual reality training improves operating room performance: Results of a
randomized, double-blinded study”. In: Annals of surgery 236 (Oct. 2002), 458–63,
discussion 463. doi: 10.1097/01.SLA.0000028969.51489.B4.

[62] J. Slotwinski and R. Tilove. “Smart assembly: industry needs and challenges”. In:
(Aug. 2007), pp. 257–262. doi: 10.1145/1660877.1660914.

[63] State-Aware Configuration Detection for Augmented Reality Step-by-Step Tutorials.
2023. doi: 10.1109/ISMAR59233.2023.00030.

[64] K. Stanney, R. Mourant, and R. Kennedy. “Human Factors Issues in Virtual En-
vironments: A Review of the Literature”. In: Presence 7 (Aug. 1998), pp. 327–351.
doi: 10.1162/105474698565767.

[65] D. Stefanidis, J. R. Korndorffer, R. Sierra, C. Touchard, J. B. Dunne, and D. J.
Scott. “Skill retention following proficiency-based laparoscopic simulator training”.
In: Surgery 138.2 (2005), pp. 165–170. issn: 0039-6060. doi: https://doi.org/10.
1016/j.surg.2005.06.002. url: https://www.sciencedirect.com/science/article/pii/
S0039606005002722.

[66] “The 70-20-10 Model”. In: (2016). url: https://www.bridgespan.org/insights/the-
70-20-10-leadership-development-model.

[67] R. Thoppilan et al. “LaMDA: Language Models for Dialog Applications”. In: CoRR
abs/2201.08239 (2022). arXiv: 2201.08239. url: https://arxiv.org/abs/2201.08239.

[68] TurboSquid. “3D Lego Bricks”. In: (2018). url: https://www.turbosquid.com/3d-
models/random-lego-bricks-1313942.

[69] Unity. “Sentis Overview”. In: (2023). url: https://docs.unity3d.com/Packages/
com.unity.sentis@1.5/manual/index.html.

[70] Unity. “Mixed Reality Template”. In: (2024). url: https ://docs .unity3d .com/
Packages/com.unity.template.mixed-reality@1.0/manual/index.html.

[71] “Virtual Reality”. In: (2024). url: https : / /www . britannica . com/ technology /
virtual-reality.
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A Appendix

A.1 Application Enlarged Figures

Figure 14. The start screen of the application which includes the 3D Model to be assembled as well as
the onboarding instruction cards.
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Figure 15. User view after completing the onboarding cards. They will see the interactive menu to their
left, the 3D Model to the right, and the input instruction videos towards the middle.
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Figure 16. The main UI containing an interactive menu that displays all the interactable buttons, a
progress bar as well as a text prompt from the dialogue agent.

63



Figure 17. User view after pressing the ’Ask Question’ button. In this case, instructions are given
within the dialogue agent text box to send a picture of the real world model.
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Figure 18. User view after pressing the ’Send Picture’ button. The dialogue agent sends a picture from
the manual as well as textual assembly instructions.
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Figure 19. Additional Helper Menu containing toggles to assist the user in case something goes wrong
during the experiment.
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A.2 Experiment

A.2.1 Informed Consent Form and Demographics Questionnaire

* Required

Informed Consent Form
This consent form will inform you (the participant) about your rights in the upcoming experiment. I (the researcher) have 
explained the purpose and structure of this experiment, which is part of the Master Thesis of Luca Becheanu, supervised 
by Wolfgang Hürst. 

You are aware that during the experiment, data will be gathered about the interaction between you and the software. 
This includes basic demographics (gender, age, etc.), interview responses, performance data and screen captures. All data 
gathered at the experiment may only be for the purpose of this research, including publishment in the form of a master 
thesis. All data gathered in the experiment will be anonymized and treated confidentially.
You understand that participation in the experiment is voluntary: You may abort the experiment at any moment when 
you desire, and you do not have to provide a reason to us. You are aware that you will suffer no negative consequences 
from aborting, and that all data gathered during the experiment will be destroyed immediately, and therefore not be 
used in the research.

You are aware that if you decide to partake in this experiment, it is your responsibility to stop it immediately and inform 
us in case you experience any discomfort or unwellness, such as dizziness or motion sickness.
You may send further questions about the research to Luca Becheanu (l.becheanu@students.uu.nl) or Wolfgang Hürst 
(huest@uu.nl). If you suspect that your rights as a participant are violated, you may contact the Research Integrity 
Committee (vertrouwenspersoon-wi@uu.nl).   

I (the participant) have read the and understood the above test, and I consent that data collected from my
participation may be used and published in this research.

 * 1.
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Demographics Form
Please fill in exactly one box per question

18-24

25-34

35-44

45-54

55-64

Above 65

Would not disclose

Age * 2.

Man

Woman

Prefer not to say

Gender * 3.

English

Other

Primary Language * 4.

None

I have used MR before, but not often

I use MR regularly (more than once per month)

I use MR often (more than once per week)

Experience with Mixed Reality (MR) * 5.

I do not suffer from motion sickness

I ocasionally suffer from (mild) motion sickness

I often suffer from motion sickness, and the symptoms can be severe. (if you select this option, you may not
partake in this experiment.)

Don't know (if you select this option and experience motion sickness, stop and inform us as soon as possible)

Motion Sickness * 6.
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This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

None

I have built Lego sets before, but don't or rarely do it anymore

I build Lego sets regularly (more than once per month)

I build Lego sets often (more than once per week)

Experience with building Lego sets * 7.
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A.2.2 Tool Usability Form

* Required

Tool Usability Form

Perceived Ease of Use
Give each question a score between one and five based on how much you agree with the question, with 1 being "Strongly 
Disagree" and 5 being "Strongly Agree"

Strongly Disagree Strongly Agree

I think I would like to use this tool frequently * 1.

1 2 3 4 5

Strongly Disagree Strongly Agree

I found the tool unnecessarily complex * 2.

1 2 3 4 5

Strongly Disagree Strongly Agree

I thought this tool was easy to use * 3.

1 2 3 4 5

Strongly Disagree Strongly Agree

I think that I would need the support of a technical person to be able to use this tool * 4.

1 2 3 4 5

Strongly Disagree Strongly Agree

I found the various functions in this tool were well integrated * 5.

1 2 3 4 5

Strongly Disagree Strongly Agree

I thought there was too much inconsistency in this tool * 6.

1 2 3 4 5

Strongly Disagree Strongly Agree

I would imagine that most people would learn to use this product very quickly * 7.

1 2 3 4 5

70



Strongly Disagree Strongly Agree

I found this tool very awkward to use * 8.

1 2 3 4 5

Strongly Disagree Strongly Agree

I felt very confident using this tool * 9.

1 2 3 4 5

Strongly Disagree Strongly Agree

I needed to learn a lot of things before i could get going with this tool * 10.

1 2 3 4 5
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Perceived Usefulness
Give each question a score between one and five based on how much you agree with the question, with 1 being "Strongly 
Disagree" and 5 being "Strongly Agree"

Strongly Disagree Strongly Agree

Using this tool while assembling would help me complete the tasks faster * 11.

1 2 3 4 5

Strongly Disagree Strongly Agree

Using this tool would improve my assembling performance * 12.

1 2 3 4 5

Strongly Disagree Strongly Agree

Using this tool would increase my productivity * 13.

1 2 3 4 5

Strongly Disagree Strongly Agree

Using this tool enhances my assembling effectiveness * 14.

1 2 3 4 5

Strongly Disagree Strongly Agree

Using this tool makes it easier to perform assembly tasks * 15.

1 2 3 4 5

Strongly Disagree Strongly Agree

I find this tool useful for performing assembly tasks * 16.

1 2 3 4 5
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This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

Task Load Index
Give each question a score between one and five based on how much you agree with the question, with 1 being "Very Low" 
and 5 being "Very high"

Very Low Very High

How mentally demanding was the task? * 17.

1 2 3 4 5

Very Low Very High

How physically demanding was the task? * 18.

1 2 3 4 5

Very Low Very High

How hurried or rushed was the pace of the task? * 19.

1 2 3 4 5

Very Low Very High

How successful were you in accomplishing what you were asked to do? * 20.

1 2 3 4 5

Very Low Very High

How hard did you have to work to accomplish your level of performance? * 21.

1 2 3 4 5

Very Low Very High

How insecure, discouraged, irritated, stressed, and annoyed were you? * 22.

1 2 3 4 5
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A.2.3 Task Load Index Form

* Required

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

Task Load Index
Give each question a score between one and five based on how much you agree with the question, with 1 being "Very 
Low" and 5 being "Very high"

Very Low Very High

How mentally demanding was the task? * 1.

1 2 3 4 5

Very Low Very High

How physically demanding was the task? * 2.

1 2 3 4 5

Very Low Very High

How hurried or rushed was the pace of the task? * 3.

1 2 3 4 5

Very Low Very High

How successful were you in accomplishing what you were asked to do? * 4.

1 2 3 4 5

Very Low Very High

How hard did you have to work to accomplish your level of performance? * 5.

1 2 3 4 5

Very Low Very High

How insecure, discouraged, irritated, stressed, and annoyed were you? * 6.

1 2 3 4 5
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A.2.4 Preferred Instruction Medium Form

* Required

Preffered Instruction Medium

Mixed Reality Tool

Face-to-face

Both

Which method of training do you prefer? * 1.

Mixed Reality Tool

Face-to-face

Both

Which method felt more intuitive to use? * 2.

Mixed Reality Tool

Face-to-face

Both

Which method was more detailed in providing information? * 3.

Name one or more things you liked about the Mixed Reality tool * 4.

Name one or more things you would like to see improved in the Mixed Reality tool * 5.

Name one or more things you liked about the face-to-face training * 6.
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This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms

Name one or more things you would like to see improved in the face-to-face training * 7.
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A.3 Results

Figure 20. Age distribution of participants.

Figure 21. Gender distribution of participants.

Figure 22. Primary language distribution of participants.
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Figure 23. MR experience distribution of participants.

Figure 24. Motion sickness distribution of participants.
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Figure 25. Lego set building experience distribution of participants.

Figure 26. Preferred method of training of participants.

Figure 27. Most intuitive method of training to participants.
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Figure 28. Most detailed method of training to participants.
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