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Abstract

Investigating the effects of priming of pop-out in the visual cortex offers

valuable insights into neural processing because it can reveal the dynam-

ics of how the cortex handles sensory information. The primary objective

of this research was to explore the processing of information in macaque’s

visual cortical area V4 during priming of pop-out in a visual search task

and examine whether there were differences compared to unprimed set-

tings. V4 can be organised in supragranular, granular and infragranular

layers, each being differently involved in information processes within V4

or between other areas of the brain. The analysis utilised local field poten-

tial (LFP) signals recorded from this area of two macaque’s cortex in 27

sessions, using laminar electrodes across 15 channels covering the entire

range of cortical layers. This allowed the sampling of different groups of

neurons in each session and a layer-specific analysis in V4. Power, phase

synchronisation, and information flow dynamics across layer levels in both

primed and unprimed states were investigated. Phase synchronisation

between cortical layers was measured by calculating pairwise phase co-

herence, phase locking values (PLV), phase lag indices (PLI) and pairwise

phase consistency (PPC) in the frequency band filtered LFP signals, and in-

formation flow dynamics were investigated by applying pairwise Granger

causality analysis on the LFP signals of the cortical layers.

The results showed a difference in power between unprimed and primed

trials across cortical layers, highlighting altered information processing

in primed visual tasks and a possible facilitation effect. No notable differ-

ences in phase synchronisation and functional connectivity between un-

primed and primed settings were observed, suggesting that the underly-

ing coordination between the cortical layers remains consistent and more

local within layers.
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1. Introduction

1.1 Background

Understanding the underlying mechanisms of how the brain processes vi-

sual information has been a deeply studied topic (e.g., Maljkovic and Nakayama

1994; Brascamp, Blake, and Kristjánsson 2011; Westerberg, Maier, and Schall

2020; Bichot and Schall 2002) and investigating priming of pop-out provides

insights into the neural processes of visual input and the adaption of the

brain to the exposure of repetitive visual stimuli. It explains how the brain

processes information and efficiently optimises its resources. This further

helps to study the underlying mechanisms of neuropsychiatric conditions

like schizophrenia and ADHD (e.g., L. V. Moran and Hong 2011).

In a visual search experiment, the observer’s task is to identify a unique tar-

get item among a group of distracting items. The target that "pops out", i.e.,

a noticeably different object compared to the surrounding objects, draws

attention and repetition of the target "primes" the brain (Westerberg and

Schall 2021). Knowledge of the underlying attention-driving feature changes

the approach used to complete the search task in subsequent trials. This

mechanism is passive and unconscious, improving both accuracy and re-

sponse time (Maljkovic and Nakayama 1994).

The visual cortex has a hierarchical structure: complex features are pro-

cessed in higher-level areas, and propagating information from higher to

lower areas is achieved through feedback (top-down) processes. Simpler

features are processed in lower cortical areas, and feedforward (bottom-up)

processes drive neurons in higher regions so that these areas can integrate

information and construct more complex receptive field properties (Klink

et al. 2017). In V4, the supragranular layers (layers II and III) are mainly

involved in feedback processes. They receive input from higher visual ar-

eas (Klink et al. 2017) and are responsible for goal-directed mechanisms like
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Introduction

attention (McMains and Kastner 2011), feature integration, and combining

various sensory inputs (Westerberg and Schall 2021). The granular layer

(layer IV) predominantly receives feedforward inputs from lower visual ar-

eas. It mainly processes simpler features and forwards information to the

supragranular and infragranular layers (Klink et al. 2017). The infragranu-

lar layers (layers V and VI) are part of the feedforward and feedback pro-

cesses. They forward information to higher visual areas, get feedback for

feature integration, and are responsible for combining various sensory in-

puts (Westerberg and Schall 2021). Feedforward processes are responsible

for stimulus-driven mechanisms, such as identifying parts that stand out in

the field of vision (McMains and Kastner 2011), and parallel feature process-

ing (Westerberg and Schall 2021). See Figure 1.1 as an illustration.

Priming, in general, can be stimulus-driven as well as object- and goal-

related. Thus, priming cannot be classified as solely influenced by bottom-

up mechanisms and depends on the specific task (Rauss and Pourtois 2013).

Whereas specifically, in priming of pop-out, the attention-focusing target

stands out on the basis of a single feature, resulting in fast and automatic

processes, and features do not need to be bound and integrated for target

identification. Therefore, bottom-up influences are likely the driving mech-

anisms in priming of pop-out (Westerberg and Schall 2021).

This research aims to identify the cognitive processes associated with prim-

ing of pop-out and evaluate the influence of cortical microcircuits organised

in layers on processing visual tasks.
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1.1 Background

Figure 1.1: Layer illustration of electrodes positioned in V4. Electrode’s upper
channels (1-5) correspond to supragranular layers II and III, middle channels
(6-10) to granular layer IV and deep channels (11-15) to infragranular layers V
and VI. The arrows represent feedforward processes (orange) that drive neu-
rons from lower to higher regions, feedback processes (green) that shift neu-
rons from higher to lower regions and intracortical processes (turquoise).

Not all types of repetition yield improvements in accuracy and response

time. Attentional selection is faster in situations of priming of pop-out when

the target and distractor features are repeated, and it is slower when the tar-

get location is repeated, i.e., inhibition of return (Bichot and Schall 2002,

Westerberg, Maier, and Schall 2020).

Maljkovic et al. found that target colour had a greater facilitation effect

(Maljkovic and Nakayama 1994), whereas other studies did not find a sig-

nificant difference in the magnitude of the contributions of target enhance-

ment and distractor suppression (Bichot and Schall 2002). Priming can be

observed for a period of about half a minute, where the influence weakens
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gradually over consecutive trials (Maljkovic and Nakayama 1994).

1.2 Research Focus

This research aimed to examine whether there are differences in how the

brain processes information during pop-out searches in unprimed and primed

conditions. Compared to previous studies, this study further investigated

layer-specific characteristics in V4 to gain detailed insights into the infor-

mation flow processes. The power and phase characteristics in different

frequency bands across the depth of the cortex in area V4 in two macaques

were explored in multiple sessions. Each session consisted of recordings

from laminar electrodes across 15 channels covering the entire range of cor-

tical layers (again, see Figure 1.1 as an illustration). The characteristics were

compared between unprimed and primed settings.

Power analysis was used to evaluate the amplitude of neural oscillations

in the different frequency bands, which aimed to give clarity about the un-

derlying neural activity, and by comparing unprimed and primed power

spectra, differences in the neural dynamics in V4 were examined. This was

further used to investigate layer-specific neural activity. Previous studies

(e.g., Maier et al. 2010) found that gamma band activity (>30 Hz) was high-

est in supragranular layers (in V1). Our analysis aimed to further give in-

sights into how priming of pop-out influences the processing of visual input

across different cortical layers in V4.

Phase synchronisation analysis was applied to investigate the coordination

of neural oscillations across supragranular (layers II and III), granular (layer

IV) and infragranular (layers V and VI) layers, essential for information in-

tegration. By calculating different phase synchronisation measures, it was

investigated whether the underlying mechanisms were different in priming

of pop-out.

Further investigations on how the cortical layers influenced each other were

made to observe insights into the underlying cognitive processes and to in-

vestigate the layer-specific operations in detail. For this purpose, a Granger

causality analysis was conducted to assess how supragranular, granular,
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1.2 Research Focus

and infragranular layers influenced each other and whether this was dif-

ferent in primed situations. We aimed to see whether the processes were

mainly feedforward or feedback and if priming of pop-out changed this

behaviour. This indicated how each of the layers in V4 contributes to the

information-shifting process in unprimed and primed conditions.

To summarise, we aimed to observe how power, phase synchronisation, and

Granger causality in cortical layers were modulated by priming and linked

the results to findings in the literature to describe the underlying processes.

The thesis is structured as follows: Chapter 2 provides a description of the

data used for the analysis. Chapter 3 describes the methodology used for

data processing and analysis. Chapter 4 presents the results. Finally, Chap-

ter 5 reviews the outcomes of the analysis in the context of literature.
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2. Data

Local field potential (LFP) signals in V4 in 15 cortical channels were recorded

by J. A. Westerberg (Westerberg, Maier, and Schall 2020) from two male

Macaca radiata performing a pop-out visual search task with the colour

as the relevant feature. This was done in 19 and 8 sessions for the two

macaques, each session on a different day. The sessions consisted of mul-

tiple trials where the macaques were shown an array of one outstanding

target dot of red or green and five distractor dots in the other colour. In

each trial, the object representing the target was randomly relocated. The

trials were organised in blocks, and the target and distractor colours were

held constant within each block and swapped at the end of each block (see

Figure 2.1 as an illustration). This study design resulted in the possibility

of observing unprimed trials, corresponding to the first two trials within a

block, and primed trials, i.e., the remaining ones within the block before the

colours were switched. When the macaque moved their gaze to the target,

it was rewarded with juice; otherwise, it was not, motivating the macaque

to participate (Westerberg, Maier, and Schall 2020).

The LFP signals were measured at 15 cortical channels on a laminar elec-

trode with the electrodes orthogonal to the cortical surface to span the dif-

ferent cortical layers, resulting in 15 time series for each trial (see Figure

2.2 as an example). The electrodes were positioned consecutively in V4 at

0.1mm intervals, ranging from 0mm to 1.4mm. The reference point was

channel 10, such that ca. 1mm of cortex above channel 10 and ca. 0.5mm

below channel 10 were included (Westerberg, Maier, and Schall 2020). The

measurements of channels 1 to 5 resembled the supragranular layers (lay-

ers II and III), channels 6 to 10 resembled the granular layer (layer IV), and

channels 11 to 15 resembled the infragranular layers (layers V and VI). The

sampling rate was 1017.253 Hz (Westerberg, Maier, and Schall 2020).
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Figure 2.1: Example illustration of the structure of the visual search task. The
trials were organised in blocks, and the target and distractor colours were held
constant within each block and swapped at the end of each block.

Figure 2.2: LFP signal of a sample trial over time measured at 15 cortical chan-
nels using electrodes to span the different cortical layers.
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3. Methods

3.1 Data Preprocessing

Baseline corrections were applied to the data by J. A. Westerberg (Wester-

berg, Maier, and Schall 2020). For this research, the LFP signals between

stimulus onset and the macaque’s reaction (i.e., the eye movement) were

investigated, and only trials where the macaques moved their gaze to the

correct item, i.e., the attention-focusing feature, were considered.

During a cognitive task, the macaque brain’s activity changes very quickly,

leading to non-stationary LFP signals (Kamiński et al. 2001). However, an

assumption for Granger causality analysis, which will be utilised, is that

the data is (weakly) stationary, meaning that each time series’s mean and

variance are stable over time (Seth 2010). To achieve this, only the LFP sig-

nals after stimulus onset up until 10 milliseconds before the eye movement

were considered. Moreover, several steps following Seth 2010; Seth, Bar-

rett, and Barnett 2015; Kamiński et al. 2001 and Ding, Bressler, et al. 2000

were applied to improve stationarity in the LFP signals. In more detail, the

following procedure was done for each session:

1. Removal of possible linear trends by detrending each trial.

2. Removal of the temporal mean and division by the temporal standard

deviation (z-scoring): The mean of each LFP trial was subtracted from

each time point, and each resulting time point was then divided by

the standard deviation of the trial, such that the LFP signal in each

trial was given equal weight.

3. LFP measures are known to be susceptible to line noise (Seth 2010).

Subsequently, line noise was removed using a 60 Hz notch filter. The

best filter order was determined for each trial by minimising the ratio

of non-stationary trials. The filter order that led to the minimal per-
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3.2 Frequency Bands

centage of non-stationary trials identified doing an Augmented Dickey-

Fuller test was then used for the final notch filter. In detail, each trial

without a notch filter and a range of filter orders from 1 to 20 were

tested for stationarity. It is known that by not removing line noise,

Granger causality analysis can be disrupted. However, notch filters

can also induce casual network artefacts, but these are less severe, and

higher MVAR model orders can reduce these artefacts (Seth 2010).

An Augmented Dickey-Fuller test was conducted to measure non-stationarity,

where the null hypothesis resembled non-stationarity, and a significance

level of 0.05 was used. Furthermore, stationary LFP signals typically have

an autocorrelation that sharply declines with increasing lags (Seth 2010).

Therefore, the autocorrelation function of various sample trials was exam-

ined by investigating the corresponding autocorrelation plots as a helpful

tool in detecting non-stationarity.

3.2 Frequency Bands

The following methods were used to analyse power and phase synchrony

in the different frequency bands associated with different cognitive states to

get insights into the underlying processes between unprimed and primed

conditions. The discrete frequency bands were chosen as follows: theta (4–8

Hz), alpha (8–12 Hz), beta (12-30 Hz) and gamma (>30 Hz) (L. V. Moran and

Hong 2011). The specific filtering methods are described in the following

sections.

3.3 Analysis of Cortical Layer and Priming Status

Dependent Induced Spectral Power

Analysing power in the aforementioned frequency bands aimed to get in-

sights into the underlying processes between unprimed and primed condi-

tions. Each trial was first Hanning windowed and then fast Fourier trans-

formed to observe the power spectra. A window (or tapering) function is
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a function that returns non-zero values inside and zero values outside an

interval (Podder et al. 2014). The Hanning window was chosen because

it is known to be a good choice to control for leakage, which could dis-

tort frequency domain representations if it was not controlled for (Braun

2001). A window length of 1.5 times the minimum duration that is re-

quired to obtain the lowest frequency of interest, i.e., 4 (the lower bound

of the theta band), was chosen to observe good frequency resolution while

at the same time not distorting the signals. These Hanning windowed sig-

nals were then fast Fourier transformed to obtain the frequency content by

transforming the signals from their time domain into their frequency do-

mains (Nussbaumer 1982; Heideman, Johnson, and Burrus 1985). To cal-

culate the power within each frequency band, frequency bins, i.e., the fre-

quencies at which the power spectrum was calculated, were defined. These

frequency bins ranged from 0 to the Nyquist frequency, i.e., half of the sam-

pling rate. The Nyquist-Shannon sampling theorem states that to reproduce

the waveform accurately, the signal has to be sampled twice its highest fre-

quency (Shannon 1949). This means that half the sampling rate, i.e., the

Nyquist frequency, is the highest frequency that can be accurately repre-

sented. Hence, in the case of the used data with a sampling rate of 1017.253,

1017.253/2 = 508.6263 was the highest frequency that could be examined.

The spacing between the frequency bins, i.e., the frequency resolution, cor-

responded to the ratio of the sampling rate to the length of the given LFP

trial.

As a next step, the total power corresponding to the sum of power values of

the frequency bins was calculated within each frequency band.

This procedure was applied to all LFP signals in all 15 cortical channels in

unprimed and primed trials. The mean bands power in each channel was

calculated, resulting in each 15 power values for the 4 different frequency

bands for both unprimed and primed trials. The calculations were done for

all sessions and then averaged.
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3.4 Phase Synchronisation Analysis - Phase Coherence, PLV, PLI and PPC

3.4 Phase Synchronisation Analysis - Phase Co-

herence, PLV, PLI and PPC

Phase describes the angle corresponding to the momentary deflection of

an oscillation or the position within a cycle at a moment in time (Fell and

Axmacher 2011). If the rhythms of two LFP signals coincide, the signals

are said to be synchronous and prior analyses showed that the emergence

of phase synchronisation correlates with attentive and perceptuomotor be-

haviours (Varela et al. 2001). Phase synchronisation analysis gives insight

into how the different cortical layers in V4 coordinate their activity for in-

formation processing. By comparing unprimed and primed phase synchro-

nisation outcomes, it can be evaluated how priming affects phase synchro-

nisation patterns and if priming might alter these patterns to improve effi-

ciency.

Multiple metrics can be used to quantify phase synchronisation, including

phase coherence, PLV, PLI and PPC.

Phase coherence was calculated to measure the consistency of the phase

relationship in the cortical layers. As a first step, each LFP trial was filtered

in the different frequency bands using a bandpass Butterworth filter with

filter order 2, as this worked best for all trials. A Butterworth filter had the

property that the frequency response in the passband was maximally flat,

providing a consistent output (Kyu, Aung, and Naing 2009). The filter was

applied forwards and backwards (zero-phase filtering) to correct for phase

shifts and, therefore, for phase distortion (Ang, Krichane, and Sim 2006).

This resulted in the frequency-filtered LFP trials si(t).

The auto spectral densities ASD1 and ASD2 of pairs of frequency band fil-

tered signals, and the cross-power spectral density CSD between these two

frequency band filtered signals were calculated. The phase coherence was

then obtained by calculating

C =
| CSD |2

ASD1 ∗ ASD2
(3.1)
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Where | CSD | corresponds to the magnitude of the cross-power spectral

density (Vinck et al. 2010). The phase coherence C takes values between 0

and 1, where 0 means that no phase synchronisation exists between the two

signals at the given frequency, and 1 resembles a perfect phase synchronisa-

tion and totally coordinated oscillatory activity (Koopmans 1995).

This was calculated between all channels for all unprimed and primed trials

to get Cunprimed and Cprimed in each frequency band.

A limitation is that classical tools for measuring coherence based on Fourier

transformations require stationarity (Le Van Quyen et al. 2001). To tackle

this problem, various stationarity transformations were applied to the LFP

signals, as mentioned in Chapter 2.2. However, some remaining non-stationary

LFP signals were still present. Further, phase coherence can’t distinguish be-

tween the effects of amplitude and phase between two signals since it is a

measure of spectral covariance. Therefore, phase coherence can’t explicitly

be used to say whether phase synchronisation is the relevant mechanism

of brain integration and only provides a rough indication (Le Van Quyen

et al. 2001). Therefore, further measures, i.e., the phase locking value (PLV),

phase lag index (PLI) and pairwise phase consistency (PPC), were calcu-

lated to get a deeper insight.

The formulas of Aydore, Pantazis, and Leahy 2013; and Vinck et al. 2010

were applied in R in the following way:

To obtain the analytical signals zi(t), the frequency-filtered LFP trials si(t)

were Hilbert transformed by convoluting the signal with the function 1
πt (Le

Van Quyen et al. 2001). The pairwise relative phase or phase difference

∆ϕ(t) = arg(
z1(t)z∗2(t)

| z1(t) || z2(t) |
) (3.2)

was calculated between all cortical channels and for each frequency band

(Aydore, Pantazis, and Leahy 2013). The phase lag value (PLV) between

14



3.4 Phase Synchronisation Analysis - Phase Coherence, PLV, PLI and PPC

two signals was then obtained from

| E(exp(i∆ϕ(t))) | (3.3)

where i =
√
−1 (Vinck et al. 2010; Aydore, Pantazis, and Leahy 2013).

The PLV ranges from 0 to 1, with 0 indicating no phase synchrony and 1

indicating a consistent relative phase between two signals.

The phase lag index (PLI) between two signals was calculated as

| E(sign(∆ϕ(t))) | (3.4)

(Aydore, Pantazis, and Leahy 2013).

The reason for investigating both PLV and PLI was that nonzero PLV val-

ues can occur from a single source, influencing both signals. This could

happen because the LFP electrode also detects signals from neurons located

close to the measured neurons, leading to a single source contributing to

both signals. This would result in no phase lag between the two signals

and, therefore, in a large PLV value, which would lead to the wrong detec-

tion of phase locking between distinct signals, although the aforementioned

properties were the decisive underlying mechanisms. Therefore, PLI was

additionally used to investigate phase synchronisation, which was zero in

the given case. It accomplishes this by focusing on the asymmetry of the

phase difference distribution around zero. The PLI will be zero if the anal-

ysed LFP signals are linearly mixed from the same source (Aydore, Pantazis,

and Leahy 2013), and it will be 1 if perfect phase locking is present (Stam,

Nolte, and Daffertshofer 2007). In comparison to phase coherence, Stam et

al. found that by investigating different measures of phase synchronisation

in multi-channel MEG and EEG, even though phase coherence was just as

well suited to detecting changes in synchronisation, PLI was less influenced

by common sources (Stam, Nolte, and Daffertshofer 2007).

PLVunprimed, PLVprimed, PLIunprimed and PLIprimed for each frequency band
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were then calculated by averaging over all trials within a session:

PLV =
1
N

N

∑
n=1

exp(i∆ϕn(t)) (3.5)

PLI =
1
N

N

∑
n=1

sign(∆ϕn(t)) (3.6)

where N resembles the number of trials (Aydore, Pantazis, and Leahy 2013).

It is further known that phase coherence and PLV give biased estimates for

finite sample sizes. Therefore, pairwise phase consistency (PPC) was cal-

culated as another alternative measure, which resembles the cosine of the

absolute angular distance for all pairs of relative phases. It is, therefore, a

measure of how similar the relative phases between two signals are. Since

the PPC is based on sequential pairs of observations, it is not biased (Vinck

et al. 2010).

For computing the PPC, again, the phase components were extracted from

the analytical signals zi(t) by doing a Hilbert transformation. The pairwise

PPC between two cortical channels was then calculated as

PPC =
2

N∗(N∗ − 1)

N∗−1

∑
j=1

N∗

∑
k=(j+1)

f (θ1, θ2) (3.7)

where

f (θ1, θ2) = cos(θ1) cos(θ2) + sin(θ1) sin(θ2). (3.8)

and N∗ resembles the length of the phase differences. The PPC ranges be-

tween -1 and 1 (Vinck et al. 2010).

PPCunprimed and PPCprimed for each frequency band were then calculated by
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3.5 Granger Causality Analysis

averaging over all trials within a session.

3.5 Granger Causality Analysis

To assess whether the influences or communication among the cortical lay-

ers were different in unprimed and primed settings, Granger causality anal-

ysis was conducted. This analysis is particularly suited for detecting differ-

ences in the functional connectivity between experimental conditions, mak-

ing it a valuable tool for our research. Further, electrophysiological data like

LFP signals is well suited to Granger causality analysis because of its high

temporal resolution (Seth, Barrett, and Barnett 2015).

The concept of Granger causality is that one can say that a time series X

Granger causes a time series Y if the variance of the prediction error of time

series Y at the present time is reduced by including past measurements of

time series X (Ding, Chen, and Bressler 2006). Granger causality analysis

is, therefore, a measure to detect directional influence but does not measure

true causality and rather provides a surrogate measure of causal relation-

ships. It reflects a statistical relationship among the observed time series

but may not be identical to the underlying physical mechanism (Seth 2010).

To analyse Granger causality, a multivariate autoregressive (MVAR) model

for the LFP signals of the 15 cortical channels was created for each unprimed

and primed trial. In an MVAR model, the value of a time series at a time

point is modelled as a weighted sum of its own past and the past of the

other time series. By fitting an MVAR model, the optimal weights are found

by minimising the estimation errors (Seth, Barrett, and Barnett 2015). The

model order or time-lags of the MVAR model, describing the number of past

observations (time-steps) to be included in the MVAR models, is a crucial

step in defining the model. The goal is to balance model complexity against

error (Seth, Barrett, and Barnett 2015). Too few lags would lead to poor rep-

resentations of the data and, therefore, underfitting the data, whereas using

too many lags would lead to rising model complexity and can further cause

overfitting (Seth, Barrett, and Barnett 2015) and problems of model estima-

tion, which might be an issue for trials with a smaller number of data points
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(Seth 2010). AIC was used as a first indicator for finding the optimal model

order because it is a criterion that balances the variance accounted for by

the model against the number of coefficients to be estimated (Seth 2010). It

was observed that the AIC monotonically decreased with increasing lags

without plateauing, which was also observed in a study by Brovelli et al.

(Brovelli et al. 2004). To keep the complexity as small as possible but as

large as needed, two different approaches, i.e., using a small model order

of 2 for all sessions and using different larger model orders for each ses-

sion, were applied and compared. To ensure that the MVAR models with

the given model orders adequately captured the correlation structure of the

LFP signals, several checks were applied following Seth et al. (Seth 2010).

The adjusted sum-square error was calculated to assess the amount of vari-

ance accounted for by the model, and the MVAR model’s consistency was

checked (Seth 2010). Further, it was assessed whether there was autocor-

relation in the residuals by performing a Portmanteau test and a Breusch-

Godfrey test and by investigating residual plots for each cortical channel

in randomly sampled MVAR models. The latter also provided a first indi-

cation of how to choose the optimal lag order (Battaglia 1990 and Breusch

1978).

The resulting MVAR models were then used to get unconditional Granger

causality magnitudes within the MVAR models, which were calculated as

the ratio of the variance of the prediction error terms for the MVAR model

containing all time series and an MVAR model omitting the potential cause

X. If the prediction error for Y of the full MVAR model was significantly

smaller than the prediction error of the reduced MVAR model, one could

say that X Granger caused Y without accounting for potential influencing

signals from other cortical channels (Seth, Barrett, and Barnett 2015).

This analysis was applied pairwise to all 15 cortical channel combinations

and evaluated by grouping the results by upper (1-5), middle (6-10) and

deep (11-15) cortical channels, resembling supragranular (layers II and III),

granular (layer IV) and infragranular (layers V and VI) layers. However,

it is important to mention that because unconditional Granger causality

was used, it could not be assessed whether the influence between the two
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3.5 Granger Causality Analysis

analysed cortical channels was direct or mediated by the other channels

(Kamiński et al. 2001).

P-values from an F-Test of the Granger causality magnitudes using a signif-

icance level of 0.05 were extracted for each cortical channel pair. To correct

for multiple comparisons, the p-values were Bonferroni corrected, which

controlled for the expected number of type 1 errors (Seth 2010). A p-value

<0.05 meant that the null hypothesis of no causal influence could be rejected.

This procedure was then repeated for all unprimed and primed trials within

each session to assess whether there were differences between the priming

conditions.

A standard Granger causality analysis limitation is that it can only model

linear interactions. However, all relevant variance for normally distributed

data and most of the relevant variance of approximately normally distributed

data can be captured by a linear MVAR model, and nonlinear interactions

can sometimes be approximated by a linear MVAR model with a larger

model order (Seth, Barrett, and Barnett 2015).

Also, it is crucial to keep in mind that in the presence of unknown (exoge-

nous) or latent variables, the confounding effect on the causal inference can-

not be eliminated (Barnett and Seth 2014).
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4. Results

The investigation into power as a function of priming status has yielded sig-

nificant findings. The mean bands power calculated in each cortical channel

and for each frequency band was analysed and averaged over all 27 ses-

sions. We observed that power was consistently higher for all frequency

bands and cortical layers in unprimed conditions (see Figure 4.1 and Table

4.1). The difference in power between unprimed and primed settings was

highest in beta (12-30 Hz) and gamma (>30 Hz) bands. Gamma band ac-

tivity (>30 Hz) was highest in supragranular layers for both unprimed and

primed trials, whereas alpha (8-12 Hz), beta (12-30 Hz) and theta (4-8 Hz)

frequencies were higher in infragranular layers than in supragranular lay-

ers (see Table 4.1).

To thoroughly investigate the priming effect’s influence on the phase re-

lationships between the different layers in the various frequency bands,

phase coherence, PLV, PLI, and PPC between the cortical channels within

each frequency band were calculated. The results were averaged over all

sessions for each measure. Importantly, the differences between unprimed

and primed settings for all measures (phase coherence, PLV, PLI and PPC)

were very small (<0.1) but consistent over the different sessions. Compar-

ing primed against unprimed conditions, PPC was higher in gamma (>30

Hz) band between all layers and in beta (12-30 Hz) band between all layers

but between infragranular and supragranular layers, where the PPC was

higher for unprimed compared to primed conditions. Also, in theta (4-8

Hz) bands, PPC was higher in unprimed than in primed conditions for all

layers but within infragranular layers. Within infragranular layers, no dif-

ferences between unprimed and primed conditions were observed. In alpha

(8-12 Hz) band, PPC was equal between the priming conditions for all layer

levels (see Figure 4.2 C). Results for PLV, PLI and phase coherence were sim-

ilar.
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For both priming conditions, phase coherence for distant cortical layers was

lowest in gamma band (>30 Hz) compared to the other frequency bands,

and phase coherence was higher in infragranular layers in theta (4-8 Hz),

alpha (8-12 Hz) and beta (12-30 Hz) bands than in supragranular layers (see

Figure 4.2 A), PLV, PLI and PPC yielded similar results. Further, higher PLI

values for theta (4-8 Hz) and alpha (8-12 Hz) than for beta (12-30 Hz) and

gamma (>30 Hz) for both unprimed and primed trials were observed (see

Table 4.2).

Figure 4.1: Average power in the 15 cortical channels for each frequency band.
Lighter triangles resemble unprimed settings, and darker circles resemble
primed settings. Upper to deep cortical channels resemble rows 1 to 15 in de-
scending order.

unprimed setting primed setting
theta (4-8 Hz) alpha (8-12 Hz) beta (12-30 Hz) gamma (>30 Hz) theta (4-8 Hz) alpha (8-12 Hz) beta (12-30 Hz) gamma (>30 Hz)

supragranular layers 8.1 5.5 16.5 12.5 7.9 5.2 15.8 11.4
granular layer 7.5 5.7 16.6 12.1 7.2 5.4 15.8 11.1

infragranular layers 9.1 6.1 18.2 11.2 8.7 5.9 17.1 10.3

Table 4.1: Mean bands power in unprimed and primed settings grouped
for upper (1-5), middle (6-10) and deep (11-15) cortical channels resembling
supragranular layers II and III, granular layer IV and infragranular layers V
and VI, respectively (rounded to one decimal).

unprimed setting primed setting
theta (4-8 Hz) alpha (8-12 Hz) beta (12-30 Hz) gamma (>30 Hz) theta (4-8 Hz) alpha (8-12 Hz) beta (12-30 Hz) gamma (>30 Hz)

min(PLI) 0.75 0.75 0.39 0.17 0.73 0.75 0.39 0.18
mean(PLI) 0.77 0.79 0.48 0.31 0.74 0.79 0.46 0.32

Table 4.2: Minimum and mean PLI in the frequency bands for unprimed and
primed settings (rounded to two decimals).
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Results

Figure 4.2: Average phase coherence (A) and average pairwise phase con-
sistency (PPC) (B) in the 15 cortical channels for each frequency band in
primed settings. Difference in PPC between unprimed and primed conditions
(PPCprimed - PPCunprimed) (C). Upper to deep cortical channels resemble rows
and columns 1 to 15 in descending order, corresponding to supragranular lay-
ers II and III, granular layer IV and infragranular layers V and VI, respectively.
Coherence and PPC are symmetric (by definition), and the results for PLV and
PLI were similar.

Further investigating functional connectivity by doing Granger causality

analysis (Barnett and Seth 2014) showed no significant differences between

unprimed and primed settings (with a maximal absolute difference between

unprimed and primed conditions of the ratio of significant Granger causal

influences between cortical channels of under 0.1). For both priming states,

upper cortical channels (1-5) resembling supragranular layers II and III had

the most Granger causal influence on other channels in terms of the percent-

age of significant Granger causal influences (see Figure 4.3). Deep cortical
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channels (10-15) resembling infragranular layers V and VI had the least sig-

nificant Granger causal influence on supragranular layers, and the most sig-

nificant Granger causal influences were observed in the direction of supra-

granular to infragranular layers.

Because non-stationarity is a critical requirement for Granger causality and

because some LFP trials remained non-stationary even after applying var-

ious transformations mentioned in Chapter 3.1, Granger causality analysis

was conducted for both the trials with remaining non-stationarity and af-

ter removing them, to check for robustness of the results. No severe dif-

ferences in the results could be assessed: the ratio of significant Granger

causal influences did not change. It was further investigated whether higher

MVAR model orders would affect the results, but also no differences were

observed.

Figure 4.3: Strength of Granger causal directed influences between upper (1-
5), middle (6-10) and deep (11-15) cortical channels resembling supragranular
layers II and III, granular layer IV and infragranular layers V and VI, respec-
tively, in primed settings. The strength of influence is measured in terms of the
ratio of significant Granger causal influences between pairwise cortical chan-
nels. Dark blue edges correspond to a stronger influence, and light blue edges
resemble a weaker influence. Results in unprimed settings were similar.
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5. Discussion

This study sought to determine whether priming of pop-out changed the

brain’s processing mechanisms investigated in LFP signals recorded during

a visual search task in macaques V4. The rationale for this research was

based on the assumption that priming modulates neural processing, which

can be observed in altered patterns in LFP signals. This helped to perceive

the underlying neural mechanisms in priming of pop-out and how repeated

exposure to visual stimuli affected the cortical area V4.

Differences were observed in the power spectra, but only small differences

were found in phase synchronisation patterns and information flow dynam-

ics in the cortical layers between unprimed and primed settings.

5.1 Power Analysis

In more detail, using power spectral analysis, we observed that power was

consistently higher in unprimed conditions for all frequency bands and cor-

tical layers. This indicates that priming of pop-out leads to reduced neural

activity (Grill-Spector, Henson, and Martin 2006). The underlying mecha-

nism might be explained by memory trace processes. With each trial, the

memory traces weaken, but if there are consecutive trials with the same

attention-focusing feature present, i.e., the primed condition, the memory

traces do not vanish, and the primed element gets easier to identify, lead-

ing to the "pop-out" effect. In unprimed conditions, the memory trace for

the attention-focusing feature has not yet been strongly established. More

neural activity is needed for target detection, leading to higher LFP power

in these unprimed states (Maljkovic and Nakayama 1994).

Gamma band activity (>30 Hz) was highest in supragranular layers (layers

II and III) for both unprimed and primed trials, indicating that supragran-

ular layers are important for high-frequency oscillations. Alpha (8-12 Hz),
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5.1 Power Analysis

beta (12-30 Hz) and theta (4-8 Hz) frequencies were mainly observed in in-

fragranular layers (layers V and VI). Consistent with the results, previous

studies (e.g., Maier et al. 2010) observed similar outcomes (in V1).

Gamma band activity is associated with perception, attention, memory, con-

sciousness, and motor control (Amo et al. 2017). High gamma activity in

supragranular layers suggests that these layers are mainly involved in pro-

cessing the visual inputs in a visual search task that requires attentional

focus, which is in line with the theory discussed in Chapter 1.1 that supra-

granular layers in V4 are mainly involved in goal-directed mechanisms like

attention (McMains and Kastner 2011), feature integration, and combining

various sensory inputs (Westerberg and Schall 2021). Theta band activity

is mainly involved in memory processes (Herweg, Solomon, and Kahana

2020), alpha band activity is linked to inhibitory processes and attentional

suppression and selection, allowing controlled knowledge access (Klimesch

2012) and beta band activity is involved in somatosensory processing and

motor control (Barone and Rossiter 2021) and the maintenance of the cur-

rent sensorimotor or cognitive state (Engel and Fries 2010). Higher activity

of theta (4-8 Hz), alpha (8-12 Hz) and beta (12-30 Hz) bands in infragran-

ular layers compared to supragranular layers suggests that infragranular

layers are more involved in memory processing, controlled knowledge ac-

cess and motor planning. Infragranular layers may facilitate the integra-

tion of the memory from previous trials with the attention-focusing feature.

Controlled knowledge access in infragranular layers may help to get access

to information from previous trials, prioritising relevant inputs to improve

performance. The motor planning ability, mainly observed in infragranular

layers, may contribute to quicker eye movements and further improved ef-

ficiency.

However, it is also important to mention that while some studies (e.g., Maier

et al. 2010) supported these findings, others detected higher alpha oscilla-

tions in supragranular layers, arguing that previous studies were biased due

to the lack of using locally specific LFP measurements implicating a more

complex distribution of alpha bands (Haegens, Barczak, et al. 2015; Giesel-

mann and Thiele 2022). This suggests that also the location of recorded
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neural activity has a profound influence on the outcome.

Decreased alpha band (8-12 Hz) activity in primed conditions compared to

unprimed conditions further suggests promoted processing in task-relevant

areas (Haegens, Nácher, et al. 2011), indicating enhanced processing of the

visual target stimulus, in terms of standing out more compared to the dis-

tractor stimuli.

The biggest differences in band power between unprimed and primed set-

tings in terms of the difference of mean normalised band power grouped for

supragranular, granular and infragranular cortical layers occurred in supra-

granular gamma (>30 Hz) bands (difference of 1.1 grouped mean theta os-

cillatory normalised power; see Table 4.1) and infragranular beta (12-30 Hz)

bands (difference of 1.1 grouped mean beta oscillatory normalised power).

These differences in the priming states suggest that priming particularly al-

tered attention, memory, and somatosensory processing.

Supragranular layers are also known to be primarily involved in feedback

processes, meaning top-down processes, to receive input from higher brain

areas (Klink et al. 2017), and they are responsible for goal-directed mech-

anisms, like attention (McMains and Kastner 2011). The reduced power,

especially in supragranular gamma bands in primed conditions, suggests

that these layers may need less neural activity because of better feedback

processing and attention modulation.

5.2 Phase Synchronisation Analysis

By analysing the dynamics among the cortical layers, we found that prim-

ing did not severely influence the phase synchronisation patterns between

the cortical layers. For both priming conditions, phase coherence for dis-

tant cortical layers was lowest in gamma band (>30 Hz) compared to the

other frequency bands, meaning that the signals measured at distant corti-

cal layers were less synchronised in gamma bands. Supporting these find-

ings, Buffalo et al. did not find spike-field coherence in gamma frequen-

cies in infragranular layers, but they did observe gamma frequencies in the

supragranular layers (Buffalo et al. 2011). Our findings suggest that prim-
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5.2 Phase Synchronisation Analysis

ing does not strongly influence the synchronisation and coordination of the

oscillatory signals. This indicates that, compared to the observed facilita-

tion process measured with calculating power, the underlying coordination

between the cortical layers remains consistent and more local.

As discussed in Chapter 1.1, bottom-up influences are likely the driving

mechanisms in priming of pop-out (Westerberg and Schall 2021). Bosman

et al. and Bastos et al. found that both gamma and theta oscillations are

stronger in the bottom-up direction than in the top-down direction (Bosman

et al. 2012; Bastos et al. 2015). Alpha oscillatory activity has been associ-

ated with top-down directions (Buffalo et al. 2011; Klimesch, Sauseng, and

Hanslmayr 2007). Further, Zareian et al. investigated the influence of at-

tention on the LFP phase coherence in rhesus monkeys’ visual area MT.

They found that with attention, phase coherence increased in low-frequency

oscillatory neural activities, indicating improved processing of the stim-

uli, which was also aligned with faster reaction time to stimulus change.

They found the highest attentional modulation of phase coherence in the

alpha band (Zareian et al. 2018). Alpha phase synchronisation between

task-relevant brain regions is known to increase so neurons can activate

common target cells through synchronisation in the alpha band (Klimesch,

Sauseng, and Hanslmayr 2007). Buffalo et al. found that the synchronisa-

tion of gamma oscillations increased under an attentive state in supragran-

ular layers (Buffalo et al. 2011). This indicates extended processing. They

also investigated decreased alpha oscillations under an attentive state in in-

fragranular layers (Buffalo et al. 2011).

We observed higher alpha (8-12 Hz) phase coherence in infragranular layers

than in supragranular layers (for both priming conditions). The results are

consistent with previous studies by Buffalo et al., which also yielded sim-

ilar outcomes (Buffalo et al. 2011). This indicates that when the macaque

focused on the visual stimuli, this resulted in synchronisation in the alpha

band, which corresponded to the top-down process with inhibition of irrel-

evant stimuli, here especially seen in the infragranular layers.

When subjects withhold or control the execution of a response, event-related

synchronisation (ERS) occurs, which can be observed by increasing alpha
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band activity. This means that alpha ERS is linked to top-down, inhibitory

control processes, such that alpha synchronisation increases when specific

actions are suppressed or controlled for, playing an important role in infor-

mation processing (Klimesch, Sauseng, and Hanslmayr 2007).

However, Bauer et al. observed that alpha modulations increase if the target

is more easily predictable and that the enhancement of gamma oscillations

decreases (Bauer et al. 2014). This indicates that in primed situations, less

attentional adjustment is needed and that alpha oscillations are important

for processing predictable input, i.e., input in primed situations, whereas

gamma oscillations are more involved in processing new input, i.e., in un-

primed situations.

We did not observe significant differences in alpha (8-12 Hz) band phase co-

herence in unprimed compared to primed settings that would support the

findings of either one of the results of the aforementioned studies, indicating

no difference in action suppression between unprimed and primed states.

We observed a slight increase of gamma (>30 Hz) band phase synchronisa-

tion in primed compared to unprimed settings, which does not support the

findings of Bauer et al.

5.3 Granger Causality Analysis

To further investigate functional connectivity (Barnett and Seth 2014), Granger

causality was chosen for this research since, for other connectivity analyses

like dynamic causal modelling (DCM), specific a priori assumptions about

the underlying generative mechanisms that produced the data have to be

made and are, therefore, less useful for an exploratory analysis (Barnett and

Seth 2014) and require specific hypotheses to be tested (Friston, R. Moran,

and Seth 2013). Granger causality is also widely used in the field of neuro-

science, especially to investigate directional influences among cortical lay-

ers in LFP data in the frequency and time domains (e.g., Brovelli et al. 2004;

Gieselmann and Thiele 2022; Bosman et al. 2012).

Supragranular layers exhibited stronger Granger causal influence towards

infragranular and granular layers rather than in the other directions, and no
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5.3 Granger Causality Analysis

significant differences in Granger causal influences were observed between

unprimed and primed settings. These findings suggest that deeper layers

receive inputs from upper layers in V4, also in primed states and indicate a

stable hierarchical structure where higher-order areas guide this processing,

and priming seems not to influence these processes. Priming might alter the

processing more in individual cortical layers than influence the information

flow and communication between layers. The findings that supragranular

layers had the most Granger causal influence on other layers align with the

theory discussed in Chapter 1.1 and Figure 1.1. Supragranular layers are

mainly involved in top-down processes. Therefore, they are important for

integrating top-down information, and it might indicate that these layers

enhance the processing of relevant features in the other layers in attentive

states.

However, the results have to be handled with care. Stokes et al. showed

that Granger causality can be highly sensitive to variations in the estimated

model parameters. They also found that the Granger causality measure can

be biased when using a low model order in the MVAR model. On the other

hand, the variance can increase by using a high model order, resulting in

spurious peaks in the frequency-domain Granger causalities. To minimise

these factors, various tests on the MVAR models and Granger causality anal-

ysis on different MVAR model orders were conducted (see Chapters 3.5 and

4). Further, since Granger causality measures both the effects of the source

cortical channel and the pathway from that to the influenced cortical chan-

nel, the results of Granger causality analysis require a precise understanding

of the dynamics of these parts (Stokes and Purdon 2017). This implies that

significant Granger causalities can be interpreted as an influence between

the signals of two cortical channels, but it does not provide information on

how the signals of the cortical channel are influenced. It is further important

to mention that in this analysis, unconditional Granger causality was con-

ducted due to the limitations in the used R package. Therefore, it could not

be assessed whether the influence between the two analysed cortical chan-

nels was direct or mediated by the other channels. (Kamiński et al. 2001).
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To summarise, priming of pop-out led to differences in power in all fre-

quency bands and little variation in functional connectivity. Supragranular,

granular, and infragranular layers showed different behaviour in the power

spectra, and upper cortical layers had the most Granger causal influence on

other cortical layers.
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