UTRECHT UNIVERSITY

Department of Information and Computing Science

Computing Science master thesis

Evaluating Dynamic Symbolic Execution in the OOX

based Symbolic Execution Engine

First examiner: Candidate:
Wishnu Prasetya Tristan Albers

Second examiner:
Gabrielle Keller

July 3, 2024

Abstract

Symbolic Execution is a technique which enables the complete verification of a piece
of code. It can search for violations of predefined assertions and can either report a
specific input which would trigger a violation or a valid verdict. However, these ver-
ification attempts costs large amounts of memory and computation power, especially
for larger and more complex pieces of code. In an attempt to still verify these more
complex programs we investigated Dynamic Symbolic Execution inside the OOX
Ecosystem. We showed that the technique is also applicable for intermediate verifi-
cation languages, is able to correctly validate and invalidate programs and on aver-
age does this faster and more reliable than previously implemented techniques. We
also compared our implementation to state-of-the-art tools like JDart, JavaRanger and
JBMC and showed that our proof of concept is competitive with their performance.
The foundations in this work can function as a basis for more in-depth research about
Dynamic Symbolic Execution.

Contents

1 Introduction

1.1 ResearchQuestions,
1.2 Contributions e
1.3 Thesis Structure e

2 Related Work

21 OOX ..
2.2 Heuristics for Complex Heap Programs
23 KLEE
24 JavaRanger
2.5 Incomplete Execution Techniques
2.6 JBMC: Bounded Model Checking for Java Bytecode
2.7 JDart ..o e e e
2.8 Genetic Algorithms and Dynamic Symbolic Execution
2.9 DSE Guidance with Partial Evaluation
210 SAGE
2.11 Mixed Concrete-Symbolic Solving
2.12 Automatic Exploit Generation
213 Mayhem
214 Driller.o

3 The OOX Ecosystem

31 Thelanguage
3.2 Symbolic Execution oL
33 Limitations

o N G

10
11
11
12
12
13
13
14
15
16
18
19

21
21
21
24

CONTENTS CONTENTS

4 Dynamic Symbolic Execution 25
4.1 General Technique 25
42 DSEinthe OOXecosystem 27
4.3 Fuzzing the concrete execution 32

5 Evaluation 38
51 DataSets 38
52 Fuzzer Comparison 39
5.3 Concolic to Symbolic Comparison 43
5.4 Concolic to State-Of-The-Art Comparison 47

6 Conclusion 53

Appendix

A MinDist Results 57

B Depth-First Results 59

C Concolic- Genetic Results 61

D Concolic-Random Results 63

E Fuzzer Comparisons 65

F State-Of-The-Art Results 68

Bibliography 73

Acronyms

AST Abstract Syntax Tree. 21, 22, 31

CFG Control Flow Graph. 12, 21, 22

DSE Dynamic Symbolic Execution. 6, 11-13, 24-27, 31, 38, 43-54
GA Genetic Algorithm. 33, 34

IVL Intermediate Verification Language. 21, 25, 27, 31

MD2U Minimal Distance To Uncovered. 43-46, 50, 53

OOX IVL of Utrecht University. 21, 22, 24, 27, 28, 31, 32

PC Path Constraint. 22, 23, 26

RNG Random Number Generator. 32, 33, 40

SEE Symbolic Execution Engine. 21-23, 26, 29, 31, 54
SMT Satisfiability Modulo Theories. 23, 24, 26, 29, 31, 32, 34

1. Introduction

Computer programs are essential for many industries in our society. Applications
made for the healthcare industry, banking and aviation run procedures and algorithms
which are vital. It is essential that these programs behave the way the stakeholders in-
tended otherwise there could be some dire consequences. An example of these conse-
quences would be the incidents with the Therac-25. Because of an erroneous computer
program, patients received an overdose of radiation [1].

Developers try to prevent incidents like this with the use of acceptance, integration
and unit tests. Unit testing, the practice of writing tests for each component of the
program to ensure no erroneous behavior takes place, is of particular interest because
of its resulting metrics. Given a test suite consisting of these unit tests, tools such as
Sonarqube can be used to gather the branch- and line coverage of the suite. These
metrics are then used by software developers to substantiate claims about the correct
behavior of the programs. However, this process is labor intensive and inherently in-
complete since consistently maintaining a branch/line coverage of 100% is not realistic.

Another approach is formal verification which is a form of verification where math-
ematical techniques are used to guarantee the correct behavior of a piece of code. A
form of formal verification is model checking. In model checking the program is first
modeled as an automata. After these automata are constructed we can use techniques
such as Linear Temporal Logic (LTL) to create specifications and check if the automata
behave as the stakeholders intended [2]. This has certain benefits, such as the fact
that verification can occur early in the design process. The drawbacks consist of the
fact that the models are an abstraction of the program under test and their consistency
must be checked. Another important fact about model checking is that there occurs a
state explosion during the modeling of complex programs, making it more difficult to
use the technique for industrial code.

Researchers in 1976 proposed a symbolic execution method for programs. This type
of execution would be performed by a custom symbolic executor that treated the in-
put variables as symbols instead of concrete values. The authors stated that if we treat
the inputs as symbols it would be possible to reason about all possible execution paths.
This is in contrast to concrete execution which can only reason about a single execution
path. This means that symbolic execution is a natural extension of concrete execution.
In this early work, the framework for symbolic execution was given for simple pro-
grams consisting of only signed integers, if-statements with "then" and "else" clauses
and "go-to" statements. The authors also described how to convert the symbolic input

Introduction

variables back to concrete variables using theorem proving. Using these features the
authors were able to reason about all possible executions, but also retrieve concrete
inputs to executions one might deem interesting. Finally, the authors concluded that
using symbolic execution to represent a large or infinite class of normal executions can
be useful in program testing [3].

The conclusions made by the researchers would prove to be true. The representation
of all normal executions was used by other researchers to prove the absence of bugs in
a piece of code, as well as reporting the bugs. However, the original representation of
a program was quite limiting and thus researchers expanded the framework so it more
accurately described the programs. Support for other variables like characters and
strings were added, arrays were introduced and the introduction of polymorphism
was researched. With the addition of these features, certain limitations were found.
Researchers observed exponential growth in the state space, resulting in the explosion
of execution paths. Memory limitations were also encountered, mainly due to the ab-
stract modeling of complex data structures and their initialization. These observations
resulted in a lot of different symbolic execution tools, each focussing on a specific lan-
guage and introducing novel techniques to combat the limitations [4].

Likewise, researchers at Utrecht University made a symbolic execution engine. Their
focus was the verification of an intermediate verification language called OOX. Cur-
rently, this system is able to verify concurrent programs and complex heap programs.
However, The programs this system can verify are not complex or deep. All the pre-
vious tests have been run with a maximum statement depth of 150, which is not even
deep enough to fully verify certain snippets of test code. In this work, we want to ac-
complish the verification of more complex programs with possibly deeper bugs. Pre-
vious research has shown that when trying to verify more complex programs which
possibly contain deeper bugs the current model checking and symbolic verification
techniques are not sufficient because memory, state and path explosions occur [4].

Because of the limitations of symbolic verification, a technique was created that at-
tempted to circumvent these limitations. In previous research, this technique is called
different names like Dynamic Symbolic Execution and Hybrid Symbolic Execution but
for consistency, we will refer to it as DSE (Dynamic Symbolic Execution). This tech-
nique uses concrete executions to quickly explore the state space of a program until it
is unable to progress any further. When the concrete part gets stuck DSE leverages the
complete nature of symbolic execution to retrieve inputs which leads to previously un-
covered paths. Thus, this approach tries to leverage the quick concrete execution times
and selective complete analysis of symbolic execution to circumvent the limitations of
symbolic verification.

1.1 Research Questions

To achieve the verification of more complex programs we will implement and re-
search the Dynamic Symbolic Execution technique in the existing OOX Ecosystem. As
described, this technique is used to circumvent the limitations of symbolic execution.
Examples of tools that implement the technique are SAGE, JDART, DSE, AEG, May-
hem and Driller. However, these tools all use Dynamic Symbolic Execution in a spe-
cific way to achieve different goals. SAGE is more focused on larger-scale verification,
while Mayhem, Driller and AEG all use the technique as an extra heuristic to guide
the search towards specific security-related bugs. In this work, we will apply Dynamic
Symbolic Execution to achieve the verification of complex programs with deeper bugs
but we will not focus on specific bugs or errors that would decrease the state space.
This is because we would preferably remain as complete as possible. This brings us to
the research questions this work will try to answer.

1.1 Research Questions

Our goal is to verify programs and find bugs that the current OOX ecosystem cannot
tind. The technique under investigation to achieve this goal is Dynamic Symbolic Ex-
ecution. The bugs we try to find are categorized as deep since we will go beyond the
150-depth limit of the previous research. The research questions we will answer are:

RQ 1) How does the introduction of Dynamic Symbolic Execution impact the speed,
correctness and completeness of the Symbolic Execution Engine?

RQ 2) What is the impact of random and genetic fuzzing algorithms on the speed and
correctness of Dynamic Symbolic Execution?

RQ 3) How does the OOX implementation of Dynamic Symbolic Execution compare to
other state-of-the-art tools?

The first question focuses on the impact of the Dynamic Symbolic Execution technique
and will compare its performance to the existing implementation. The second question
tries to answer a question that is more focused on the technique. A large portion of the
verification in Dynamic Symbolic Execution is performed with the help of a fuzzer,
but the technique does not specify anything about how the fuzzer should preferably
be implemented. We will take a closer look at this fuzzing element, comparing two
implementations to see what impact each of them has on the performance of the overall
technique.

Introduction

1.2 Contributions

The contributions of this work are the following;:

1. Introducing a Genetic Algorithm with test suite evolution into the Dynamic Sym-
bolic Execution technique.

2. A comparison between Dynamic Symbolic Execution and symbolic verification-
based techniques

3. Description on how to interpret the Dynamic Symbolic Execution technique for
an intermediate verification language.

4. Extension of the OOX Ecosystem with Dynamic Symbolic Execution.

5. Providing an overview of techniques/tools that enable deeper (symbolical) ex-
ploration of programs.

1.3 Thesis Structure

This work is structured as follows. First, a related work section is provided which
extensively covers all existing solutions pertaining to our work and details their work-
ings. We then provide a background of the existing OOX ecosystem to establish the ba-
sis upon which this research is built. After this we will dive into the Dynamic Symbolic
Execution technique, describing its general workings after which we explain how this
generic template is fitted within the ecosystem. Then an evaluation of the technique is
made, measuring the performance against the previous OOX ecosystem and state-of-
the-art tools. We will then conclude with a discussion and future work section.

2. Related Work

In the following sections, the background of this work will be discussed. Since this
research uses the work of D. van Vliet and S. Koppier as a basis, we will highlight el-
ements of their work. Thereafter the sections will contain information about related
work in the field. These sections will discuss influential tools that added novel contri-
butions and techniques that are used to answer the research questions.

21 00X

The basis of this research, and that of D. van Vliet, is the OOX language and its sym-
bolic execution engine. OOX was proposed by Koppier as an intermediate verification
language (IVL) which can be used to model concurrency of object-oriented languages
like Java. All the semantics and formalizations of the IVL can be found in his thesis
[5]. To accompany the IVL he also built an initial symbolic execution engine that is
able to execute the program and verify it. This analysis is complete, meaning that if
given unlimited resources the engine will find every bug. Besides the implementation,
he also formalized the algorithms. Symbolic execution can incur a long execution time
and memory explosions which is why Koppier also introduced several optimizations
which were Formula Caching and Expression Evaluation. Even given these optimiza-
tions, the complete exploration of large programs and thus the detection of deep bugs
is not possible.

2.2 Heuristics for Complex Heap Programs

A feature of object-oriented languages is inheritance and subtyping. While OOX was
made to describe OO languages support for inheritance was not available yet which is
why van Vliet added it to OOX. With this contribution, he also introduced a couple of
new search heuristics. While verifying the inheritance implementation van Vliet found
a state explosion. This occurred on a linked list which was declared with a super-type
whereafter sub-types were added. The research also found that the explosion scaled
exponentially after three sub-types where more than five sub-types caused a mem-
ory overflow. This occurred even with the optimized implementation of the aliasmap,
meaning that without the aliasmap this would’ve occurred earlier.

The research also looked into four different heuristics: MD2U, Depth-First, Random-
Path, and Round-Robin. The last one, Round-Robin, is a combination of Random-Path
and MD2U. The experiments proved that Depth-First or Random-Path were faster than

Related Work

the others. A remark that was made by the authors is that MD2U might prove more
effective in larger-scale applications. This is due to the fact that it utilizes caches whose
performance only starts to pay off in larger programs. These observations inspired our
work to look at these larger programs with deeper bugs.

2.3 KLEE

KLEE is a symbolic execution tool that can verify programs and generate tests for the
violated properties. KLEE is an improved version of EXE which was a similar tool pre-
viously created by the authors [6]. KLEE works directly with LLVM code and does not
use an IVL like OOX to verify properties.

KLEE as a tool has many features and is for example able to simulate a complete OS
environment. While it is not able to verify programs of industrial size, it works well on
medium-sized programs. Because of its optimizations and modular implementation,
many researchers have used this as a basis, especially if their research focussed on ver-
ifying properties of C++ [7].

The optimization techniques of KLEE are Compact State Representation, Query Opti-
mization, State Scheduling, and Environment Modelling. The most interesting to look
into in this thesis are the first three since OOX is not capable of interacting with the
environment and environment interaction is not in scope for this research [5].

The first optimization is the "Compact State Representation". The authors state that
since they track all memory objects, they can implement copy-on-write at the object
level. With this implementation, they saw a decrease in per-state memory require-
ments. Because of their implementation of the heap as an immutable map, portions of
the heap structure can be shared amongst multiple states.

Another optimization is query optimization. The authors state that the fastest query
is no query. To reduce the strain on the constraint solver as much as possible they do
a couple of things: Expression rewriting, Constraint set simplification, Implied Value
Concretization, Constraint Independence, and Counter-Example Cache. The previous
work of van Vliet has already implemented these optimizations besides Constraint In-
dependence and Counter-Example caching.

The state scheduling optimization is essentially a heuristic that chooses which exe-
cution path should be prioritized. KLEE implements a Random-Path heuristic and
a Coverage-Optimized Search heuristic where the latter aims to prioritize paths with
program statements that are not visited yet.

10

2.4 Java Ranger

2.4 Java Ranger

Java Ranger is an extension of the Symbolic PathFinder tool that employs the novel
techniques: Dynamic Method Region Inlining, Single-Path Cases and Early-Returns Sum-
marization [8][9]. To achieve Dynamic Method Region Inlining Java Ranger uses DSE
(Dynamic Symbolic Execution) to merge multiple paths into a singular "Region Con-
straint". This region constraint is then used in conjunction with the DSE path constraint
to describe the particular code region. After the creation of a region constraint the DSE
jumps to the next exit point, which is either the branch’s immediate post-dominator, a
return statement of a method, or a set of program locations that requires DSE explo-
ration, whereafter a new region constraint is generated. This process is repeated until
the program under test is fully explored.

The construction of a region constraint starts when an if-statement is encountered. The
"then" and "else" statement structure are encoded in Java Ranger’s Intermediate Rep-
resentation as a "Static Statement". The authors call this process statement recovery.
After the statement is recovered information from DSE is used to concretize the state-
ment further. The concretization of a static statement is a nine-step process explained
in detail in the paper. For the sake of summarization, we will omit the specific steps
but will mention that the steps eventually result in an instantiated statement. This in-
stantiated statement has been transformed in such a way that it no longer contains any
branching structure. Finally from this statement, a region constraint is generated.

In the experiment section, the authors compare the performance of Java Ranger to the
Symbolic PathFinder tool upon which it was built and observed a reduction of 38%
in execution time and a reduction of 71% in total execution paths. Furthermore, they
participated in the SVComp software verification competition and won in the category
"JavaOverall", which is a benchmarking set only consisting of Java programs. Lastly,
the authors believe Java Ranger is complete and sound but defer the proofs to future
work.

2.5 Incomplete Execution Techniques

Symbolic execution suffers from limitations like a path- and memory-explosion [4][10].
One way to mitigate these explosions is to relax the requirement of being fully com-
plete. An incomplete technique tries to find bugs whilst being performant enough
to verify larger programs. This is achieved by inspecting only the relevant execution
paths or leveraging information gathered from concrete executions. This approach is
often called Dynamic Symbolic Execution (DSE) but some researchers also refer to it
as "Concolic Execution" or "Hybrid Symbolic Execution". The following sections will
discuss incomplete tools, some using this approach, and their novel techniques.

11

Related Work

2.6 JBMC: Bounded Model Checking for Java Bytecode

JBMC is a verification tool that uses bounded model checking to find either violations
of a user-defined property, such as an assertion, or runtime exceptions. Its verification
approach consists of parsing both the Java bytecode and the Java operational model
of a program into a CFG (Control Flow Graph). This CFG consists of static single
assignments meaning that a single node can be considered a statement whereas an
edge can be viewed as a transition between two statements. From the CFG, verifica-
tion properties and a specified bounding parameter a verification condition is built.
If this verification condition is satisfiable a counterexample will be generated for the
program, otherwise the program is regarded as being valid. Because of the bounding
parameter, the verification of JBMC is inherently incomplete and can only be used to
prove the absence of violations up to the specified bounding parameter. Furthermore,
the verification condition is built as a quantifier-free formula.

Before the Java bytecode is converted to a CFG an extra translation step takes place.
The bytecode is converted into a GOTO program. The authors state that this translation
simplifies the representation of the program by replacing switch- and while-statements
with if- and goto-statements. Furthermore, a symbolic simulation is done of this GOTO
program. This simulation is responsible for unrolling loops and translating recursive
functions into simple verification conditions.

JBMC has several verification functionalities. It is able to: track security vulnerabil-
ities via taint-tracking, do equivalence checking on methods to further simplify the
code and able to handle polymorphism, strings, arrays and exceptions. In theory;, it is
also able to verify concurrent programs but the authors state that this has proven to be
quite difficult due to an occuring memory explosion [11].

2.7 JDart

JDart is a verification tool that uses DSE (Dynamic Symbolic Execution) to find vio-
lations. It is an extension of the Java Pathfinder tool and its main goal is to verify
larger programs by allowing the verification of larger paths than symbolic verification.
During a single DSE execution, JDart keeps track of both the symbolic values of the
variables and the possible concrete values. The concrete values are gathered via an
unspecified small meta-constraint solver which strives to find small concrete values.

JDarts implementation of dynamic symbolic execution is done via an executor and an
explorer. The executor symbolically executes the code recording both the concrete and
symbolic values of the inputs. When a decision point is reached this point is stored
by the executor so back-tracking can take place. The explorer receives the recorded
constraints of the executor and decides on its exploration strategy [12]. For the compe-
tition edition under review, this is a breath-first strategy [13]. The termination of JDart

12

2.8 Genetic Algorithms and Dynamic Symbolic Execution

happens either when a certain number of paths have been fully explored or when a
time limit is reached. This choice is configurable by the user of the tool, but for the
competition edition, the termination strategy is set to continue verification until the
time budget has been spent.

The completeness of the tool is neither discussed in the competition contribution nor
in the full paper of JDart. However, since the tool employs DSE and has no termination
strategy which focuses on the complete exploration of a program we can gather that
JDart is also an incomplete verification tool and thus cannot guarantee the absence of
bugs in a program.

2.8 Genetic Algorithms and Dynamic Symbolic Execu-
tion

Researchers investigating the detection of cross-site scripting exploits, XSS, investi-
gated a Dynamic Symbolic Execution approach for automated detection of these ex-
ploits [14]. This approach generates a test suite for the PHP code which could poten-
tially trigger the XSS exploits. They generated these test suites with a random fuzzer,
genetic fuzzer and DSE configured with a genetic fuzzer. They observed that there
was a similar performance between the test suites generated with the random and ge-
netic fuzzer, both approaches only found superficial bugs. When inspecting the DSE
technique configured with a genetic fuzzer, they found that the generated test suite
discovered more bugs than the other approaches.

Compared to our implementation of the DSE technique there are a couple of differ-
ences. Firstly, we implemented the technique for an IVL, meaning that our represen-
tation of the input is different than the representation of Avancini et al. since their
input is modeled after the input of a PHP program. Secondly, their implementation
of a Genetic Algorithm differs from ours. Where we are able to evolve multiple test
suites with each other which results in a number of new test suites, Avancini et al. only
evolve inputs with each other which results in a singular test suite.

2.9 DSE Guidance with Partial Evaluation

Researchers observed that static evaluation techniques, such as linters, can identify
parts of the code that may exhibit erroneous behavior. One example given in the pa-
per is an uncaught possibility of an overflow on an addition operator [15]. Since these
evaluations are often an over-approximation the authors note that DSE can be used to
investigate these evaluations further. An annotation system is proposed that explicitly
states every evaluation made by the static tools. These annotations are then added to
the code to be verified with the dynamic symbolic execution tool Pex. Besides verifica-
tion, Pex is also able to generate test cases about the verified properties.

13

Related Work

To prune the search space the authors created a method that removes verified paths.
The observation made here is that since the tools provide an over-approximation each
path that does not lead to an annotation can be pruned. This leads to more concise test
suites generated by Pex. Drawbacks to be considered are the effectiveness of the static
evaluation and the complete reliance on their annotations. The authors also state that
these annotations can be done manually but this is labor intensive.

210 SAGE

SAGE is a tool whose main contribution is a generational search heuristic for DSE.
The authors define Dynamic Symbolic Execution as a subset of an overall approach
named Whitebox fuzzing. This stems from black box fuzzing where random inputs
are used to test the program. These inputs are random or chosen arbitrarily and are
thus referred to as a black box. Whitebox fuzzing also uses arbitrarily chosen inputs
ranging from seeded inputs to inputs derived from a previously erroneous run. Where
the two techniques differ is in that whitebox fuzzing generates inputs for subsequent
runs based upon negated path constraints and are thus known or derived.

2.10.1 Generational Search

SAGE uses concrete inputs to drive the DSE. Where it differs from other tools using
this approach is in its path search heuristics [16]. The authors made the observation
that constraint solving can be costly and thus want to maximize the number of paths
discovered by a single dynamic execution. To achieve this they propose a generational
search algorithm. In this algorithm, the first generation concretely executes a path us-
ing random concrete inputs gathered from a seed. This results in a collection of path
constraints. These constraints are then individually and systematically negated in a dy-
namic execution to create new concrete inputs which lead to uncovered paths. Using
this approach a single dynamic execution with four conditional statements can create
concrete inputs which lead to four undiscovered execution paths. These four concrete
inputs are then collectively called the second generation. This cycle is repeated until a
violation is found or every path is covered.

An important aspect of this search algorithm is the fact that each newly discovered
input is scored by a heuristic meant to optimize block coverage as quickly as possible.
Since the input with the highest score is picked as the next execution, it is possible for
an input discovered by generation three to be executed before an input from genera-
tion two. This scoring system also solves the path divergence problem experienced in
other research. Path divergence occurs when a path constraint is negated and inputs
are generated which are supposed to follow path P but diverges to another previously
covered path P' [17] [18] [16] [19]. Since the scoring system optimizes block coverage
diverging inputs are scored lower and thus not picked to be executed. The authors

14

2.11 Mixed Concrete-Symbolic Solving

state that this technique is sufficient to deal with the divergence problem. This is be-
cause the diverging paths are never explored because of their low score. Furthermore,
this technique has the benefit that no computation time is wasted in pruning them.

2.10.2 Experiments

The programs verified with SAGE discovered previously unknown bugs and security
exploits in existing code bases. However, it must be noted that the bugs found were
shallow. Furthermore, the number of bugs found depended on the initial seed given
to SAGE where one seed would find only one bug a more optimal one could find six.
Another interesting observation was that the authors found no correlation between
block coverage and the amount of bugs found even though they hypothesized that
there could be one. Lastly, the authors mentioned that the generational search algo-
rithm would be fit for parallelization but did not implement it or elaborate on it any
turther.

2.10.3 SAGAN

In following work the authors introduced a logging tool for SAGE called SAGAN [17].
They added SAGAN to SAGE and ran this new tool for over 400 machine hours where-
after they reported their findings. The most significant reduction in time could be
found in optimizing the constraint solving with techniques such as the "unsat-core"
technique, caching, and constraint simplifications. These optimizations resulted in the
fact that 90% of all constraints were solved within 0.1 seconds and 99% in under 1
second. Furthermore, while they did find path divergences and found that they neg-
atively impacted the verification, they used the logging tool to find and fix these for a
more complete result. This concluded in 33% of all security violations found.

2.11 Mixed Concrete-Symbolic Solving

The paper titled "Symbolic Execution with Mixed Concrete-Symbolic Solving" builds
forth on the DART system [19]. The authors note the benefits of DSE, mainly its ability
to handle third-party calls, but also observe a shortcoming with this feature [18]. It is
possible that a library call is made whose argument is a symbolic value. This symbolic
value should be substituted with a concrete value to make the execution of the library
call possible. The way DART handles this is to first solve all the constraints regarding
the symbolic value, ascertain a valid range, and then randomly assign a concrete value
within this valid range, e.g. for the valid range x >= 0 the assignment x = 0 is chosen
and inputted in the library call 1ibrary_call(x) whose result can then be stored in a
value such as y. When a conditional statement is then made on the variable y things
can go awry. When trying to target one of the branches of the conditional statement
path divergences can occur due to side effects in function library_call().

15

Related Work

To target one of the branches of a conditional statement more directly the authors pro-
posed a system called concrete-symbolic, which splits up the path conditions (PC) into
three distinct parts. The first part is called the simplePC which refers to everything eas-
ily solvable by off-the-shelf solvers. These can be checked for satisfiability and when
they return unsat the authors state that per definition the whole PC is unsat. The
second part is called the complexPC which refers to PC’s where concrete variables are
necessary, such as the patch condition Y==0 && Y=foo(x) where a concrete value for
x is needed. The third and last part is called the extraPC and consists of extra equal-
ities needed to link some complex variables to simple ones, safeguarding the sound-
ness of the formulas. With this approach it is possible to construct PC of the form:
x>3 & y>10 & y=foo(x) where first the range of x is determined whereafter it is as-
signed a concrete value. This value is then inputted into the library call foo to retrieve
a value for y whereafter the whole constraint can be solved.

The authors state that their initial approach can still produce unsound results, but
does verify more paths than other approaches such as DART. To further combat the
unsoundness two heuristics are added, both of which are user-controlled. The first,
more automatic, approach is "Incremental Solving". Referring to the previous exam-
ple, not only x=0 is chosen as a concrete value, but subsequent runs are also done with
x=1 and x=2, etc. up to a user-defined bound. The other heuristic is called the "Par-
titioning Heuristic". This heuristic is an annotation-based method where the user can
define a partition at the top of the function to drive the symbolic value used in a library
call toward a more correct concrete value. An example of an annotation partition could
be x>3 && x<5. Applied to the previous example, the first concrete value filled in by
the system would be three instead of zero.

2.11.1 Results

The authors state the following observations about their contribution. Firstly, their con-
tribution is able to find more execution paths than DART but still remains inherently
incomplete. Secondly, while partitioning based on user-provided input can be viewed
as beneficial it can also be detrimental since it possibly restricts viable execution paths.

2.12 Automatic Exploit Generation

Automatic Exploit Generation (AEG) is a system consisting of several components
working together to find exploitable security bugs and generate exploits for them. The
exploit the authors focused on is buffer- or stack-overflows. With this exploit control-
flow hijacking is possible which can be used to execute third-party code or spawn a
shell with certain aspects. The proposed system is end-to-end and fully automatic, re-
quiring only user input to drive heuristics if the user wishes to do so [20]. The system
consists of six phases; pre-processing, source-analysis, bug-finding, dynamic binary
analysis (DBA), exploit generation, and exploit verification. We will focus on the novel

16

2.12 Automatic Exploit Generation

techniques in this paper which appear in the source-analysis, bug-finding, and DBA
phases while lightly covering the other phases.

2.12.1 Source Analysis

The AEG system takes as input the binary and the LLVM bytecode of the program
which can be generated from the source code of the program. Given these inputs, light-
weight static analysis is performed to gather information such as the max buffer length
used throughout the program. Given this information, AEG assigns a maximum value
to the symbolic variables used for buffer allocation as the largest found buffer plus
10%. This can later be used to drive DSM towards paths where an overflow is more
likely to occur.

2.12.2 Finding Bugs

Symbolic verification is used to find bugs in a target program. The authors acknowl-
edge the known limits of the technique and propose several optimizations to combat
them. They hypothesize that this should be possible since classic verification is trying
to prove the absence of bugs in a program and AEG doesn’t try to give this guarantee.
They relax this notion and state that every bug found with AEG is always exploitable.
They do state that they believe AEG is able to find all buffer overflow exploits but
don’t provide proof. The first technique they describe is called "Pre-conditioned Verifi-
cation". They state that since they are only interested in one certain bug they can prune
non-interesting paths by adding an initial path-constraint. This constraint is called
I1prec. Examples for Il are the known maximum length of inputs or a previously
known prefix.

Heuristics are also used to prune the state space further. Two heuristics the authors
propose are "buggy-path-first" and "loop exhaustion". Starting with the first, this is a
novel technique that is only able to be used in a case where finding a general bug is
insufficient. Classic verification would stop by the first bug found, but AEG is only
interested in exploitable bugs. When a non-exploitable bug is found the path where it
was found is given the highest priority to verify further. This heuristic was first based
on anecdotal evidence but proved true in the evaluation. The intuition behind this is
that if a buffer is misused once, the developer is probably prone to making more errors
later.

The loop exhaustion heuristic can be seen as a depth-first heuristic in the sense that
when a loop is encountered it is fully unrolled first before trying to exit it. Paths deeper
in the loop have a higher priority in this heuristic. To avoid getting stuck in deep loops
the authors propose to use preconditioned symbolic execution along with pruning to
reduce the number of interpreters or give the highest priority to the deepest path.

17

Related Work

2.13 Mayhem

Mayhem is a tool that continues the research done with AEG by taking the core tech-
niques, optimizing them, and splitting the computation between two different engines
where one is responsible for the concrete execution and the other is responsible for the
symbolic execution. Some core assumptions have also changed, Mayhem works solely
on the binary and does not assume it has the source code. It does also assume that
the pre-conditions, discussed with AEG, are fully provided by the developer [21]. The
static analysis was completely cut from the system with no clarifications from the au-
thors other than the statement that domain knowledge can help drive execution more
efficiently. We will discuss the different engines and how they interact and briefly de-
scribe all the optimizations the authors made.

2.13.1 Hybrid Symbolic Execution

The authors state that symbolic execution tools can be split into two categories called
offline and online. Offline tools are described as classical symbolic executors that
model everything fully symbolic whereas online tools are described as the concolic
executors that combine concrete values into their (partially) symbolic execution. They
state that Mayhem is a hybrid system, using the best features of online and offline tools.
These features are that it should be able to run indefinitely, not repeat work or throw
away previous work, and be able to reason about symbolic memory. To achieve this
Mayhem is split into a Concrete Executor Client (CEC) capable of executing the binary
on the CPU and a Symbolic Executor Server (SES) which drives execution, makes the
calls to the SMT solver, and chooses which path is most interesting.

The concrete part of Mayhem takes place in the CEC. It is capable of executing a bi-
nary with variables that are considered symbolic. It does taint analyses and whenever
a block is marked as tainted it is sent to the SES which can analyze the block and tell
the CEC how to proceed. The CEC is also capable of running multiple concrete runs in
tandem. In these runs everything up to the OS state is copied to ensure no side-effects
occur during context switches. When a context switch should occur is calculated in the
SES which in turn notifies the CEC.

Another part of Mayhem is checkpoints. Everything is stored in memory until a pre-
set cap is reached. After this cap is reached path splits are recorded as checkpoints
and put inside a queue. The queue is ordered based on which path is most interesting
per certain heuristics later discussed. The checkpoints however are not executed until
available memory comes free. This occurs when a path has been fully explored and
the symbolic execution of that path has ended. Since multiple of these copies can oc-
cur CEC shares state across execution states. The modification to these states is stored
to reduce the amount of storage needed.

18

2.14 Driller

The SES in Mayhem is an environment in which different symbolic executors may live.
The number of concurrent executors is set as per user definition and each computes
a different path. When the cap is reached checkpoints come into play again. They
function the same as with the memory cap, as soon as one executor is freed it sym-
bolically executes the most interesting checkpoint. Preconditioned symbolic execution
is still part of Mayhem and functions the same as in AEG only differing in how the
precondition is acquired. The path selection however is quite different from AEG. The
buggy-path-first is disregarded. Instead, the authors mainly focus on the existence of
symbolic pointers. The highest priority is given to paths where symbolic instruction
pointers are found, thereafter priority is given to paths that identify symbolic memory
access. The lowest amount of prioritization is given to the path that promises to cover
previously uncovered code. With these techniques, Mayhem symbolically executes its
programs.

2.14 Driller

Driller is a hybrid vulnerability excavation tool that uses whitebox fuzzing in combi-
nation with concolic execution to find different types of vulnerabilities that are deep in
the code [22]. The novelty of this tool is the fact that it combines fuzzing and concolic
execution to reach deep paths without limiting the types of vulnerabilities that can be
detected. We will describe this technique and its performance in finding bugs.

2.14.1 Hybrid approach

The authors note that fuzzing and concolic execution each have their limitations. Fuzzing
is particularly bad in reaching paths with specific guards like input == "0x0123 ABCD”
since the probability of guessing this input with a randomized approach is so low it can
be regarded as infinitely small. However, fuzzing does enjoy the benefit of being able
to quickly execute a path in contrast to the concolic approach. Concolic execution cre-
ates a fork at every decision point which causes memory constraints the deeper a path
travels thus is not scalable to reach deep points. However, it can solve the specific in-
puts needed to reach a certain instruction in the code. The authors observe that if they
are able to combine these techniques they can use fuzzing for "generic inputs" which
are defined as inputs that are not checked against specific guards. For these specific
guards, they can use concolic execution to generate an input that is able to satisfy or
negate the guard.

To achieve this the authors made whitebox-fuzzing the driving force behind path ex-
ploration. The fuzzer the authors used was AFL which uses a genetic approach to
generate new inputs. The fitness is decided by how many new statements the input
has reached with higher coverage of uncovered statements equalling a higher fitness.
To handle loops buckets are created where one bucket groups all the inputs which
reach the same depth. Important is that only the first input that reaches a certain depth

19

Related Work

is rewarded for covering the statements. This coverage check is also used to decide
whether the fuzzing part is "stuck" or not (Stuck being defined as unable to cover new
statements with the new generation). If the fuzzer is stuck the input is given to the
concolic executor.

The concolic executor uses the same index-memory representation as MAYHEM [21].
It uses the input received from the fuzzer as a precondition to ensure it walks the same
path as the fuzzer. Whenever the execution encounters a conditional branch the pre-
condition is lifted to solve it and check if it results in an uncovered statement. If this
is the case the new input is recorded and execution is continued. When the execution
hits the point where the fuzzer was stuck it solves the problematic branch and prefer-
ably a bit more. The authors state that concolic execution should resume a bit longer
to prevent the case where the fuzzer and concolic executor would go back and forth
too much, with the intuition being that one conditional branch may be followed by a
couple more.

2.14.2 Results

The authors tested Driller on the DARPA dataset used for their Cybersecurity compe-
tition. They found that Driller scored as high as the winner of the competition and
that it thus was competitive too. They do make the remark that this is not a definitive
benchmark and that more research would be needed to see which tool would per-
form better. There are still some limitations to Driller. Since it uses fuzzing to combat
the path explosion problem it relies on the fact that the fuzzer can make meaningful
progress. If this is not the case Driller is reduced to a concolic execution tool, which is
its worse-performing case.

20

3. The OOX Ecosystem

Several researchers at Utrecht University have studied symbolic verification. Their
combined effort resulted in the OOX Ecosystem which is a collection of tools imple-
menting novel techniques related to symbolic verification. In this chapter, we will
describe the previous work done by these researchers to ascertain the context wherein
our research takes place. The outline of this chapter is the following: First, we describe
the work done on the OOX language, then we take a closer look at the current state
of the symbolic execution engine. We will conclude with the current limitations of the
ecosystem and place our research in that context.

3.1 The language

The OOX language is an IVL (Intermediate Verification Language) proposed by S. Kop-
pier [5]. AnIVL is a language into which the program under test is transpiled, meaning
that a Java program under test first needs to be transpiled to OOX before verification
can take place. OOX is designed to work on object-oriented programs, treating objects
as first-class citizens, and has a strong type system. Its main feature was its capability to
model concurrency via a fork-join model. In the work of S. Koppier, it was stated that
while OOX was capable of modeling object-oriented languages its capabilities were
limited to declaring classes and using objects.

The introduction of inheritance and polymorphism in OOX came later with the work
of D. van Vliet which focussed on complex heap programs [23]. To be able to verify
complex heap programs with OOX the language was expanded to explicitly model in-
heritance and polymorphism. Besides this expansion, the verification engine, which
consumes an OOX program and produces a verdict, was also improved to lazily han-
dle object initialization.

3.2 Symbolic Execution

In the previous research symbolic execution is used to ascertain a verdict about the pro-
gram under test. This verdict communicates whether the program contains any pre-
defined violations or not. The tool that reasons about these violations and performs the
symbolic execution is called the SEE (Symbolic Execution Engine). Before the SEE can
reason about the program under test a couple of transformations need to take place.
First, the OOX program is parsed into an AST (Abstract Syntax Tree). This AST is then
passed through a control flow analysis which produces a CFG (Control Flow Graph).

21

© ® N G oA W N =

= e
N =R o

The OOX Ecosystem

Control flow analysis can be either interprocedural or intraprocedural. During the ini-
tial work on OOX by S. Koppier the design choice for intraprocedural analysis was
made and remained unchanged throughout the development of the ecosystem. This
means that one AST produces several disjoint CFGs, where each graph describes the
flow of a single function in the program. This results in the SEE taking the following
inputs: the AST of the program, the CFGs, a symbol table describing classes and fields
in the program and the entry point of the program. A visual representation of this ar-
chitecture is shown in Figure 3.1.

Figure 3.1: Overview of SEE architecture

D ®
<> Parser Control Flow E:g‘lcriltt:ili;
[C) Analysis iingine
00X AST —

The inputs given to the SEE provide the starting point and context for symbolic verifi-
cation. During the symbolic execution important data such as the stack, heap and PC
(Path Constraint) are tracked and stored in a state. The stack and heap are used to store
the concrete variables and objects respectively. The PCs are formulas collected while
executing a specific path. The formula of the PCs in a state describes the execution path
taken by that specific state. Let us use the code snippet from Figure 3.2 as an example
to illustrate the PCs and states.

Definition 1 (Path Constraint). Let oy, ...,0;, denote all the possible symbolic execu-
tions and Iy, ..., I, denote the input variables. The path constraint, denoted by PC, of a
path oy, is a formula that contains constraints upon the input variables I, ..., I, to follow
the respective path.

Figure 3.2: A code snippet of an OOX program

static int check(int x, int depth)
{
if (depth >= 100){
return O;
} else {
int count := O;
if (x == 30) {
count := 1;
}
return count;
}
}

The function body starts at line 3 with an if-statement. This means that at the start of
the execution we already need to split the state. Each state follows a unique execution

22

3.2 Symbolic Execution

path, one where the guard of the if-statement, depth >= 100, holds and one where it
does not hold. To achieve this two states with identical data for the stack and heap are
created. They only differ in the PC which for state; is "depth >= 100" and for state;
is "! (depth >= 100)". After this separation, each state can independently be further
executed. The process of choosing which state should be executed first is often dele-
gated to a heuristic of some kind. Continuing our example, state; would immediately
return 0. State, can still be further executed, at line 6 we add the variable "count" to
our stack with the value 0. Thereafter a new split needs to be made. The newly created
states will receive the new constraint of ! (x == 100), which is the negated guard of the
if-statement. After this addition, the count value is returned leaving the final PCs of
states at {!(depth >= 100), !(x == 100)}. Taking statez as an example, the stack and
heap give us the values the program would have if the conjunction of the PCs holds.
Visual representations of these states with respect to the program location is shown in
Figure 3.3.

Figure 3.3: Representation of states at program location in the OOX program

State4 State,
3 PC: { depth >= 100 } 3 PC: { (depth >=100) }
Stack: ¢ Stack: ¢
Y Y
State4 State,
4 PC: { depth >= 100 } 6 PC: { /(depth >=100) }
Stack: { return =0} Stack: { count=0}
States State,
7 PC: { /(depth >= 100), !(x == 30) } 7 PC: { !(depth >= 100), x == 30}
Stack: { count=0} Stack: { count=0}
Y Y
States State,
10 PC: { !(depth >=100), !(x == 30) } 8 PC: { (depth >= 100), x == 30}
Stack: { count = 0, return = count } Stack: { count=11}
Y
State,
10 PC: { !(depth >= 100), x == 30}
Stack: { count = 1, return = count }

The verdict is generated with the help of a SMT (Satisfiability Modulo Theories)
solver. The SMT solver used in this research is Z3 which was also a design choice made
by S. Koppier that remained unchanged. This solver consumes a formula and returns if
it is satisfiable or not. The formula the SEE passes to the solver is constructed from the
PCs and other state information. Because the SMT solver checks satisfiability, which
is to say it checks if there is an assignment to the values of the data that upholds all
the constraints, we cannot use the formula generated from the data directly. Instead,

23

The OOX Ecosystem

we take the formula generated from the collected data during the run and negate it.
Then we pass this negation to the SMT solver. If it returns the verdict as "satisfiable"
we know that a counterexample was found and the non-negated formula does not
hold. Vice versa, if it returns "unsatisfiable" we know that no counterexample was
found and thus the original formula holds. The holding of the original formula directly
corresponds to the verification verdict which is to say that if the SMT solver returns
"unsatisfiable" the program is correct and vice versa.

3.3 Limitations

The work of S. Koppier and D. van Vliet both focussed on the symbolic verification of
a program and used symbolic execution to achieve this. Koppier proposed this system
to verify concurrent programs and van Vliet expanded the system to work on complex
heap programs. However, symbolic execution has some inherent limitations. These
come forth from explosions that occur if the program size is too large. These explo-
sions mainly regard memory consumption and path size and are problematic enough
that they prevent symbolic execution from verifying larger code bases or unearthing
deeper bugs [4] [10]. This research will focus on that limitation, discussing a technique
called DSE (Dynamic Symbolic Execution) that extends the OOX ecosystem with the
capability to verify larger programs and find deeper bugs than symbolic execution.

24

4. Dynamic Symbolic Execution

A promising technique that is able to verify larger programs with deeper bugs is DSE
(Dynamic Symbolic Execution). This technique leverages the speed of concrete exe-
cution and completeness of symbolic execution to quickly and thoroughly inspect the
state space in search of violations. Different tools like SAGE [16], Mayhem [21], Driller
[22], AEG [20] all have used this technique or its architecture to successfully cover
larger programs and find deeper bugs. Based on their previous successes with this
technique this research will evaluate the impact of DSE on a custom IVL.

The outline of this chapter is as follows. Firstly, the general architecture of DSE is dis-
cussed. The individual components and their functions will be examined. Secondly,
the integration of DSE in the OOX ecosystem will be discussed. Lastly, the random
fuzzing of concrete inputs will be discussed, along with our own Genetic Fuzzer.

4.1 General Technique

The DSE technique consists of a concolic executor and a concrete executor working in
tandem to cover the program under test as thoroughly as possible. The executors are
controlled by a controlled by an "Observer" class. The observer is the most top-level
facing component and has a couple of functionalities. It should collect meta-data about
the run and pass information between the two executors. The information passed be-
tween the executors contains interim verdicts and information about the progression
of the search. If this verdict is "Invalid" a violation is found and should be propagated
upwards. When no violation is found the observer is responsible for making the deci-
sion to continue, time out, or prematurely abort a run. This decision is based on how
much of the program under test is covered and if any progress on the coverage of the
program can be made. When looking at the different implementations of DSE it has to
be noted that this class is not necessarily needed, and can be implemented as part of
another main or parent class.

Concrete Executor

The concrete executor is responsible for exploring and verifying the program under
test by executing code. Since this should be an actual execution of the program a crash
of any sort should be handled as a violation of a safety property. Furthermore, this
should be handled in such a way that the execution of the observer can continue. This
way meta-data about the found violation can be reported and propagated up. If no
violation is found the concrete executor should report that finding to the observer.

25

Dynamic Symbolic Execution

From this point, the implementation of the "concrete executor" starts to differ between
implementations. Most of them create a wrapper around the concrete executor in the
form of a fuzzer or other sort of algorithm. This wrapper can generate input values
for the program and continuously call the concrete executor to explore the state-space.
This is often done up to a pre-defined limit. An example of a wrapper like this is the
generational algorithm in SAGE and the AFL fuzzer of Driller.

Figure 4.1: Information flow of DSE components

Observer
Concolic Executor Fuzzer
SEE Concrete Executor

Concolic Executor

The concolic executor is used to explore the program under test by finding input values
that lead to previously uncovered code. While the exploration of the program during
the concrete phase is fast, it often gets stuck whereafter it is unable to achieve any
meaningful progression. When this occurs concolic execution is invoked to find input
values leading to uncovered paths. This process is what enables DSE to explore deeper
than for example fuzzing techniques.

An example of a program location that is hard to reach with a fuzzer can be seen in Fig-
ure 3.2 at line 7. The transition to the "true" branch can only be taken with the satisfied
constraint that the value of x exactly equals 30. However, it is difficult for our concrete
executor to guess that exact value, even with a fuzzer in place. While this value is small
and thus could eventually be guessed it is an example of the limitations of concrete ex-
ecution, which are exacerbated with more specific constraints like an equal constraint
on two strings.

Symbolic execution does not guess the value of x but treats it symbolically. The SEE
can reason about the value that x should be to reach line 8. This is done by looking
at the PC gathered up until line 7 in conjunction with the guard. Figure 3.3 shows an
example of this at the transition from program location 6 to 7. The state that copies the
guard follows the "true" branch, whereas the negation of the guard follows the false
branch. If, from this example, one would need to infer the value of x at the true branch
we get a formula that we can solve, namely "x == 30 && !(depth >= 100)". To get the
answer to this formula it can be passed to an SMT solver like Z3. When retrieved, the

values Z3 found for "x" and "depth" can then be inputted into the program to follow
that specific path.

26

4.2 DSE in the OOX ecosystem

Concolic Execution

Concolic execution uses the information gathered by the concrete execution in com-
bination with symbolic execution to discover new paths. Firstly, when the concrete
executor cannot progress in finding new paths, the last program input which covers
new statements is passed to the concolic executor. After receiving these input values
the concolic executor walks the same path as the concrete exector. This is achieved
via the pre-constraining of the path condition with the received values from the con-
crete executor. For example, let us take the program from Figure 3.2 and state that the
concrete executor returned the set {x = 802, depth = 55}. The concolic executor, be-
fore execution begins, treats the received set as a constraint named "PCpre" on the path
condition. This pre-constraining of the path condition ensures that the concolic execu-
tor walks the same path as the concrete executor. When we now encounter decision
points like if-statements we can calculate which branch is already covered by the con-
crete executor, and for which branch we would need to calculate the input values as to
cover the previously uncovered statements. We will deliberate further on this process
in the next section where we explain how the previously discussed methods work in
the OOX ecosystem.

Definition 2 (Pre-Constraint). Let oy denote a program input and ¢, denote the exe-
cution path of input v. We can ensure that our concolic executor walks path ¢, by
adding a pre-constraint to the path constraint. This pre-constraint, denoted by PCy,
constrains the input variables with the concrete values as described in . E.g. if we
take the previously mentioned input y of {x = 802, depth = 55} our pre-constraint is
PCpre = {x == 802, depth == 55}.

4.2 DSE in the OOX ecosystem

Earlier work using the DSE technique only verified programs written in C [16][22]. To
make the technique compatible with a custom IVL changes need to be made to the
concolic and concrete executor. In this section, these changes to the technique will be
discussed alongside any optimizations or improvements to the DSE technique.

421 Observer

The observer used in this work contains a list of every transition made between two
program locations, alongside a count of how many times that specific transition has
been encountered. The structure of this progression metric is shown in formula 4.1 and
used throughout this work. The formula denotes the transition from a statement "one"
to a statement "two", which is denoted by /; to I; and a which count is denoted by c.
The count can be referred to as an iteration metric, containing how many times we have
iterated over, or visited, a certain transition. This structure is a more coarse version of
the concept named "bucketization", which enables deeper exploration by monitoring

27

Dynamic Symbolic Execution

the number of times the exploration iterated over a transition [24]. Using this concept
the observer is able to target paths that iterate multiple times over a certain transition
and treat them uniquely based on their iteration count. We state that a program cannot
be explored further if a) no new transitions, I; to I;, can be found and b) the count
associated with each transition does not increase. This check is run every time after
the concrete and concolic executor have reported their findings. This constraint on
progression can also be formulated the following way: If the concolic executor cannot
increase the transition set any further we conclude our verification effort. In practice,
this means that the technique returns a "Valid" verdict about the program under test.

{ ((ll/ ZZ)/ C)l FARRTT ((lk/ Zm)/ C)n } (41)

Besides this addition to the tracking of progression, the observer behaves the same as
in the standard technique, which is to say that it invokes the concrete and concolic
executor in a loop and passes information between them while collecting meta-data
about the run. The described workflow of the observer is illustrated in algorithm 1.
Here we mention the requirement of a fuzzer and a concolic execution function. This
is done to highlight the fact that these components are decoupled from the observer
algorithm. Lastly, it is important to mention that this function only returns a verdict
that is either "Valid" or "Invalid".

Algorithm 1 Observer algorithm that controls DSE

Require: fuzzer, concolic_execution

total_coverage < &

new_inputs < &

while True do
(coverage, last_input, validity) < fuzzer(new_inputs)
prev_total_coverage <— total_coverage
total_coverage.update(coverage)
if validity == False then

return(Invalid) > Found bug
else if prev_total_coverage == total_coverage then

return(Valid) > Cannot progress
end if

new_inputs < concolic_execution(last_input)
collect_metadata()
end while

4.2.2 Concolic Executor

The concolic executor receives the input values from the last execution of the concrete
executor which covered new statements. It is then tasked with finding new program
inputs that can cover previously uncovered statements of the program. In the OOX

28

4.2 DSE in the OOX ecosystem

ecosystem this functionality is built directly on the SEE and functions as a heuristic,
deciding which path to take based on a pre-constraint. This results in a total path con-
straint during concolic execution of PCyy = PCpye U PCexec. When a decision point
is reached, denoted in the SEE as an assume statement, there exists an opportunity
for the executor to find input values leading to new paths. When an assumption is
encountered it is checked for feasibility. This is done by converting the assumption to
an assertion, negating the whole formula and passing it to the SMT solver Z3. If the
solver returns that the formula is feasible we know that the path under investigation
is the path previously walked by the concrete executor. This is true since we checked
the feasibility with PC;,, which includes PCyy,. If it returns unfeasible there can be
two causes for this result. Either the specific branch this path tries to take can never
be taken, or the PCy, constrains the input variables in such a way that that path can-
not be taken. This is checked by temporarily lifting the PC,, constraints, effectively
checking the satisfiability of the formula with only PCey,. If this returns unsatisfiable
we conclude the statements are unreachable. However, if the solver does return that
the formula is satisfiable we have found a path that can be taken by the program, but
not with the input values from the PC. constraint. To get the inputs that lead to the
newly discovered path we request the model from Z3 and retrieve the values of the in-
put variables leading to this new path. These values are stored and concolic execution
continues until the end of the path which PC;,;,; follows is reached.

Figure 4.2: Flowchart of the check function.

Check Entry

False—< depth >= 100 >—True

v v

count =0 Return 0

< x== 30 >-True——

Y

Fa‘lse

Y

Return Count

The collection of new inputs is calculated for every assume statement encountered
by the concolic executor. For example, given the input set "{x = 10, depth = 10}" the
concolic executor calculates new inputs twice. A flowchart of the example program is
given in Figure 4.2. Each if-statement, denoted by the blue color, causes the executor
to do this calculation when encountered. The collection algorithm can be viewed in
Algorithm 2.

To help the algorithm perform better some optimizations were introduced. The
optimizations are focused on reducing the amount of times the SMT solver will be in-
voked, since this proved to be the most computationally heavy part of the technique.

29

Dynamic Symbolic Execution

Algorithm 2 Collection of new inputs

Require: stmt, PCpre, PC
procedure collect_inputs(stmt)
if stmt is assumption then
expr <— get_expression(stmt)
resy < satisfiable_check(expr A PCpr A PC)
if res; = false then
resy <— satis fiable_check(expr A PC) > Lifting PCpye
if resy = true then
input < solve(expr A PC)
collect_input(input)
end if
end if
end if
end procedure

Recalling the progression of covering new statements, as shown in 4.1, each transi-
tion consists of two statement locations and an iteration count. The concolic executor
only tries to generate new inputs if the statement after the assume 1) results in a pre-
viously unseen transition between Iy and /;;, or 2) covers an already existing transition
but increases the iteration count c. Some work also went into trying to track which
transitions between statements are always unsatisfiable, but this proved to be rather
unstable causing an overly eager estimation that would skip over feasible program
paths. This is due to the fact that a transition being unfeasible in one execution would
not always mean it is unfeasible in another.

Algorithm 3 Concolic Execution

Require: program_counter, start_statement, coverage_set, input_variables
procedure concolic_execution(input_variables, coverage_set)
new_inputs < &
o < preconstrain_program(start_statement, input_variables)
tree < single_execution_step (o, program_counter)
while tree is not null do
current_root < tree.get_root()
current_pc <— current_root.pc
for child in tree do
next_pc < child.pc
if (current_pc, next_pc) not in coverage_set then
new_inputs <— collect_inputs(child.statement)
end if
end for
program_counter < program_counter + 1
tree <— single_execution_step (o, program_counter)
end while
end procedure

30

4.2 DSE in the OOX ecosystem

In algorithm 3 we denoted the previously described workflow of concolic execu-
tion. We use the ¢ notation to denote a program, which has information such as the
current program counter and a starting statement. From this starting statement the SEE
constructs a tree that continuously grows with each execution step. A single execution
step essentially furthers the program by one atomic action, allowing us the inspect the
program statement by statement. After each of these execution steps the possible tran-
sitions the program can take, denoted by the children, are checked against the existing
coverage set to determine if there are any new transitions. If this is the case then we
invoke the input collection in algorithm 2, otherwise the tree is extended and the root
is set to the new statement resulting from the single execution step.

4.2.3 Concrete Executor

DSE relies on the performance of concrete execution to quickly discover the search
space, covering statements that were previously uncovered. However, since OOXis an
IVL it does not have an interpreter or compiler which can be leveraged. To circumvent
this limitation the SEE is repurposed, enabling it to concretely execute the program.
As demonstrated with concolic execution, by pre-constraining the path condition we
can force the SEE to follow a certain path, essentially mimicking execution. However,
the problem with this solution is the fact that the inputs are still marked as symbolic
by the engine. To resolve these symbolic elements the SMT solver is invoked, which
incurs a large computational cost. Given that these elements need to be resolved on
every decision point to steer the executor towards the right path, the overall execution
speed suffers greatly.

Since pre-constraining the path does not reduce the symbolic reasoning of the SEE we
considered the use of stack insertion. With stack insertion the meaning of the AST
is altered in a significant way, essentially inserting new statements initializing and
declaring the input variables. Since only the inputs of a program are symbolical di-
rectly inserting their values in the stack completely removes the symbolical reasoning.
This in combination with the already existing optimizations like expression evalua-
tion results in fast execution speeds. From our observations, these execution speeds
approximate the execution speed of interpreters like that of Python, but more impor-
tantly were about 100 times faster than the pre-constraining method.

Besides the repurposing of the SEE, a wrapper around the concrete executor in the
form of a fuzzer was created. To gauge the impact of a fuzzer on DSE two types of
fuzzers were implemented and tested. The fuzzing techniques and their implementa-
tion will be discussed next.

31

Dynamic Symbolic Execution

4.3 Fuzzing the concrete execution

A fuzzer is a tool that generates values for inputs. The generation of these values is
often informed guesses, meaning that some algorithm is basing the generation of the
value on a certain heuristic. In the context of the concrete executor, the fuzzer is re-
sponsible for invoking concrete execution with its generated values for the inputs. The
metrics upon which it can base its decision are: the result of the run, the encountered
transitions of the last run, the total found transitions and a list of found inputs from
the concolic executor in the form of formulas. In this section we will discuss a fuzzer
that uses a RNG (Random Number Generator) to generate its values, called the "Ran-
dom Fuzzer", and a fuzzer that uses a form of genetic algorithms to generate its values
called the "Genetic Fuzzer".

4.3.1 Random Fuzzer

The Random Fuzzer was initially created to assist the concrete execution with the gen-
eration of values. The first type of generation is based on the program inputs. A list
of the inputs and their respective type is provided whereafter the Random Fuzzer in-
vokes the RNG for each input to get a value. Depending on the input type the value is
converted to their respective type. For integers and floats the RNG is called with the
respective ranges, as defined per OOX language. For booleans, the RNG has a proba-
bility of 0.5 to return true. Lastly, for chars we defined a character set, generate a value
between 0 and the length of the set and return the character at the index of the gener-
ated value.

The second type of generation is based upon the formulas received from the concolic
executor. To extract a value from these formulas we pass them to the SMT Z3, which
responds with a model. This model contains a value for each input that was present in
the formula. In some cases, it is possible that the formula doesn’t contain every input
variable. This occurs because the gathering of input values is invoked at each decision
point. When looking at Figure 4.2 we can see that the first decision point does not men-
tion the input variable "x" at all. Thus it follows that if an alternative input is generated
from this decision point no constraints exist on the variable "x". For this reason, when
value generation is done based upon the formula an extra check is performed to ensure
all inputs have concrete values. If this is not the case the RNG is invoked to generate

the value.

When the Random Fuzzer is enabled it controls the concrete exploration of the pro-
gram. It achieves this by first executing the program with all the inputs found by the
concolic executor, if any. These inputs are initially reported as formulas but trans-
formed to concrete variables to enable concrete execution. During each execution, it
keeps track if there is progress in the exploration of the program. If the input values
progress the exploration they are temporarily stored and the set of total found tran-

32

4.3 Fuzzing the concrete execution

sitions is updated with the found transitions of the run. After all the input values
of the concolic executor, if any, have been executed exploration with the RNG starts.
Input values are generated and concretely executed, its values stored if it progressed
exploration. The Random Fuzzer keeps running until it determines it is stuck. This is
tracked via a counter, which increases if the concrete execution doesn’t progress explo-
ration. If the counter reaches five the fuzzer stops and gives the last progressing input
values to the concolic executor to see if it can provide input values that cover new parts
of the code. This process is also illustrated in Algorithm 4.

Algorithm 4 Random Fuzzer algorithm

Require: formula
procedure Random_Fuzz(formula)
for formula in concolic_inputs
fuzz_execution(formula)
end for

while count < 5do
progression <— fuzz_execution ()
if progression is false then
count = count +1
else
count =0
end if
end while
return(last_covering_input)
end procedure

function fuzz_execution(formula) > Either formula containing input or &
input < fuzz_input(formula) > Returns random input if formula = &
(verdict, progression) <— execute(input)
if verdict is false then
throw verdict
end if
if progression is true then
last_covering_input = input
end if
return progression
end function

4.3.2 Genetic Fuzzer

As an alternative to the Random Fuzzer a Genetic Fuzzer was created. The motivation
behind the use of a GA (Genetic Algorithm) lies in its evolutionary properties. GAs
are a sort of algorithm inspired by the biological process of genetic evolution which
mutates genotypes and genes to increase their fitness [25]. This fitness increases until
either a maximum is found or a specific boundary, such as execution time, is exceeded.

33

Dynamic Symbolic Execution

If we define the fitness as the total coverage of a program we can use a GA to increase
the capability of finding new transitions without invoking the computationally heavy
SMT solver. That is if we are able to convert the data that needs to be evolved into the
architecture of an GA.

Problem Definition

The first step in the creation of the Genetic Fuzzer was the problem definition. The goal
is to increase the total coverage of a program, but the data that needs to be evolved has
to fit the genetic mold, which is to say that it should be converted to genes that can
be mutated. Towards this goal, we could translate each singular input of a program
to a gene and assign it a fitness. However, this definition is not coarse enough since
we cannot assign the coverage of a program to a singular input. To alleviate this we
took inspiration from EvoSuite which is a tool that uses GA on the level of test-suites.
It does not only mutate the finely detailed genes but also the coarsely defined test-
suites [26][27]. There are three levels of detail, the finest being the gene. A singular
gene denotes a singular variable, describing its type and value. A bit more coarse on
the second level we have the genotype. The genotype denotes a collection of genes and
can be seen as the actual input of the program, that is to say, we can convert a genotype
into values for the input of the program. Since a genotype can be seen as a single run of
the program, each genotype tracks its personal coverage. The coarsest level is the suite,
which is a collection of genotypes and corresponds to the test-suite of EvoSuite. This
suite essentially consists of test-cases, denoted by genotypes, and has its own coverage
which is the cumulative coverage of all its genotypes. Using this definition it is now
possible to 1) mutate specific inputs in the form of genes 2) mutate specific test-cases
in the form of genotypes and 3) mutate whole suites where the goal is to find a suite
with the highest coverage of the program.

Algorithm

A genetic algorithm mainly uses two types of modification, inspired by biology [25],
which are mutations and crossovers. A mutation can be seen as modifying the value
of a gene. A modification on a more coarse level is the crossover, which creates a new
genotype by combining the first half of a genotype with the latter half of another geno-
type. These modifications are left to chance, meaning that a mutation or crossover will
take place with a certain probability. From these basic algorithmic principles and some
inspiration from EvoSuite our Genetic Fuzzer was created.

From a cold start, the Genetic Fuzzer creates six suites, each with ten randomly gen-
erated test cases, "genotypes". We then evolve this initial population of six suites for
six generations. This process of evolving to the next generation starts with calculating
the fitness of each suite. The fitness should correctly describe the best suite. Since we
describe progress in the form of transitions and their count, the fitness function should
reflect this. We define an ordering where firstly the highest amount of branches, or

34

4.3 Fuzzing the concrete execution

unique transitions, is considered the most fit. However, if two suites have an identi-
cal amount of transitions, the number of times transitions have been encountered, also
called iterations, are summed. The suite with the highest value is deemed the most fit.
To calculate this fitness we need the transition set, as defined by 4.1, for each suite. The
set for each suite is the union of the sets generated by the genotypes. The transition set
of the genotypes is calculated by converting the genotype to the program input and
concretely executing it. Now that the fitness has been calculated we can evolve our
population to the next generation.

Definition 3 (Fitness Function). Let the coverage set be

{((h, 12),¢)1, o, (It Im), ¢)un }, let n denote the amount of unique transitions,
(I, Im), in the coverage setand « = n. Let = }_!' ; ¢; be the sum over all the iteration
counts in the coverage set. Then our fitness function takes a coverage set of a suite and
returns a tuple (a, B). The fittest suite has the highest « value. When suites have the
same « value, the fittest suite has the highest p value. Otherwise, the fittest suite is
chosen undeterministicly.

When evolving we first sort the suites based on their fitness. The suite with the highest
fitness is then copied straight to the new generation. The reason for this is that we
want to keep our best solution between generations. This is because evolving a popu-
lation may produce fitter suites, but this is not guaranteed. From our observations, the
evolved suites could even be worse than the initial population. Thus to prevent losing
our best solution we do not edit it and copy it into the next generation. We then start
with the crossover modification.

Figure 4.3: The crossover mutation between a suite "alpha" and a suite "beta"

alpha, alpha, beta, beta,

|

alpha,,,,, beta, .,

The crossover modification has a probability of 0.8 and "breeds" two suites into two
new suites. The suite that is targeted for breeding is either bred with our fittest suite
or our second fittest suite with a probability of 0.5. The breeding of a suite with one of
the fittest suites is done to try to improve the best suites as often as possible. Breed-
ing a suite alpha with a suite beta goes as follows. First a split point between 1 and
the length of the genotype list minus 1 is randomly chosen. We then split both suites
and combine the split parts into new suites. For example, suite aplhaye, would consist
of alpha; and beta, whereas suite beta,.,, would consist of the splitted lists beta; and

35

Dynamic Symbolic Execution

alphay. During these modifications, it is ensured that the total amount of genotypes
does not exceed the length of the amount of genotypes in the parents. If this is not
done the genotypes in the suits could grow indefinitely, which is not preferred.

After the crossover modification, we mutate the newly created suites. Similar to Evo-
Suite we have two types of mutation on the suite level. The first type of mutation is
the mutation of an individual test case with the probability of 1/T where T denotes
the number of test cases in the suite. This mutation essentially triggers the mutation of
every individual gene of the genotype, resulting in the negation of a boolean value, or
an increase in the value of an integer. The other mutation regards the size of the suite.
If the amount of genotypes in the suite is below a set maximum, there is a probability
of 0.1 that a new genotype will be added. This is actually a loop, where there is a 0.1
chance that a single test case will be added. If that chance is taken there is a 0.12 chance
that a second test case will be added to that suite and so forth. After these mutations,
the suites are added to the new generation and the cycle starts again.

Algorithm 5 Genetic Fuzzer algorithm

Require: suites, max_generations

procedure Gentic_Fuzz(suites, max_generations)
calculate_fitness(suites)
for generation in max_generations

suites < evolve(suites)

end for
fittest < get_fittest_suite(suites)
return(fittest)

end procedure

function evolve(suites)
suite_list <— rank_by_fittness(suites)
new_gen <— empty_list
topy_suite <— pop(suite_list)
topy_suite < pop(suite_list)
new_gen.add(topy_suite)
target_suite <— topy_suite
while target_suite is not null do
(s1,52) < crossover(target_suite, topl_suite)
(s1,82) < mutate(sq,s7)
new_gen.add(sq)
new_gen.add(sy)
target_suite <— pop(suite_list)
end while
return(new_gen)
end function

36

4.3 Fuzzing the concrete execution

The population of suites is evolved six times whereafter the Genetic Fuzzer starts col-
lecting data for the concolic executor. The choice for six generations was made based
on observations that more generations, test suites, or test cases did not greatly increase
the coverage but did have a noticeable effect on the execution time. The collection
starts with the ordering of the suites based on rank. We then call the fittest suite and
ask which input most recently covered new statements. This input is the input later
used by the concolic executor to gather new paths. The genetic fuzzer also resets its
complete population, except for the fittest suite. It then waits for the result of the con-
colic executor. When it receives the formulas containing new inputs it solves them all
and adds all these inputs as new genotypes into the previously most fit suite. The
Genetic Fuzzer then starts generating new suites to create the population for the first
generation, adds the fittest suites with all the genotypes containing the inputs from the
concolic executor and starts the process again.

37

5. Evaluation

The research questions we formulated in Section 1.1 were:

RQ 1) How does the introduction of Dynamic Symbolic Execution impact the speed,
correctness and completeness of the Symbolic Execution Engine?

RQ 2) What is the impact of random and genetic fuzzing algorithms on the speed and
correctness of Dynamic Symbolic Execution?

RQ 3) How does the OOX implementation of Dynamic Symbolic Execution compare to
other state-of-the-art tools?

To answer the research questions we have performed several experiments. In these
experiments, the tools and configurations under investigation are tasked to verify pro-
grams in three different data sets. These data sets are called: Deep-Set, MinePump
and Jayhorn-Recursive. The MinePump and Jayhorn-Recursive sets originate from the
software verification competition named SVComp. The programs in these sets were
originally written in Java and were transpiled to OOX so our tool can verify them. The
Deep-Set contains custom-made programs, some containing artificial bugs. We will
turther elaborate on the nature of the programs in these sets in a later section.

The output of the experiments will be used to draw comparisons. The first comparison
will ascertain the influence of the fuzzer on DSE technique. We will investigate runs
with the genetic fuzzer enabled and runs with the random fuzzer enabled. Using this
comparison we can answer research question RQ 2. From these two configurations,
the best-performing one will be used in a comparison with the symbolic execution ap-
proach of van Vliet [23]. This is done to ascertain the effect of DSE on the performance
of the OOX ecosystem which will answer research question RQ 1. Lastly, a comparison
will be made between the DSE technique and the top-performing tools of the SVComp
2022 competition, which are JDART, JBMC and Java-Ranger. This is done to ascertain
the performance of DSE in relation to the state-of-the-art and will research question
RQ 3. In this chapter, we will first elaborate on the programs in the data sets, after
which we will analyze the proposed comparisons.

5.1 Data Sets

The data sets used for the experiments are chosen because of the nature of their bugs,
which should preferably be deep, and the complexity of the programs. This follows
from the hypothesis that the DSE technique should be able to find deeper bugs than
the classical symbolic approach, which we can verify using these data sets. The choice

38

5.2 Fuzzer Comparison

for the Jayhorn-Recursive and MinePump data sets follows from the observation that
they are used by the software verification competition SVComp, which has stated that
they provide data sets that can be used for comparisons of verification tools in an aca-
demic setting. Given this fact in addition to the fact that their programs are either
complex, with several layers of recursion, or have deep bugs, in the MinePump set the
bugs appear at the conclusion of the program, they are fit for our research purposes.

The custom data set, named Deep-Set, consists of an example program from the Driller
paper [22] and two custom programs we created. All of these programs have a valid
version, free of bugs and an invalid version with bugs. The bug in the Driller program
only triggers if more than 80% of the elements in the array are a specific number. For
these programs, the array itself is the input. This is a hard problem since it consists
of a specific if-guard and requires a program to loop multiple times over the elements
in the array. The custom programs we created follow the same principle but relax the
difficulty of the guard and requires the program to loop three more times over the ele-
ments in the array which increases the overall depth. For all the programs in this set, it
is required to walk the maximum depth of the program before a verdict can take place,
which is the main difficulty of this set.

5.2 Fuzzer Comparison

In this first comparison, we aim to answer RQ 2 by means of looking at the perfor-
mance of the concolic execution with either the random fuzzer enabled or the genetic
fuzzer enabled. In this experiment, we verify all the programs of the data set ten times
for each configuration. The machine upon which the following experiments were run
has an AMD Ryzen 7 2700X Eight-Core processor and 32 gigabytes of RAM. The met-
rics upon which we will base our comparisons are the branch coverage, the amount
of concolic invocations, the amount of iterations and the percentage of how much of
the program is discovered by the fuzzing algorithm. The coverage percentage and it-
eration count indicate how much of the program has been explored and how many
iterations have been found. Using this metric we can gauge the completeness of the
configuration. The concolic invocations metric indicates how many times the concolic
executor has been called. This metric should preferably be as low as possible, a lower
count indicating that our fuzzer can explore the program efficiently. This is an impor-
tant performance metric since invoking the concolic executor costs a lot of computation
time. In the same spirit, the metric of fuzzer percentage is used, which indicates how
much of our discovered progression is due to the fuzzing algorithm. Preferably this
percentage should be as high as possible, indicating that our fuzzing algorithm can
discover unique program transitions without invoking the costly concolic executor.
Lastly, the iteration count can be used to gauge the number of times the configuration
iterated over previously discovered statements. Given two runs with similar coverage,
the iteration count can be used to see which program iterated more over statements,
with a higher count indicating a deeper exploration. It has to be noted that this compar-

39

Evaluation

ison is only relevant if two results have similar branch coverage since branch coverage
is more important for progression than iterating over previously found transitions.

5.2.1 The Jayhorn Recursive Set

The overall average results over the Jayhorn-Recursive set are given in Table 5.1. We
can see that the average time to verify a program is similar between the configurations,
as is the branch coverage and percentage of transitions solely found by the fuzzing al-
gorithm. Interestingly to note is the fact that while the percentage of transitions found
by the fuzzing algorithm, denoted by the fuzzer% metric, is higher for the Genetic
fuzzer, it also invoked the concolic executor more often. This can be seen while in-
specting the c_invocs metric. We would expect this result to have a negative impact on
both the execution time and fuzzer% metrics, but this is not the case for this set. This
means that the genetic algorithm uses the inputs received from the concolic executor
more efficiently. This efficient use stems from the genetic behaviour which mixes the
provided inputs with random inputs to discover more transitions. In contrast, the ran-
dom algorithm doesn’t use the provided information to guide its search in any way
but rather uses it as a checklist of paths that should be executed once. The metrics that
show more significant differences are the completed paths, explored paths and deep-
est layer. While the explored paths metric is higher, these are not necessarily unique
paths. This in combination with the fact that the genetic algorithm uses multiple test
suites with different, possibly duplicate inputs explains the large difference. Lastly, the
deepest layer metric denotes the deepest statement depth the verification has reached.
We can see that the genetic algorithm covers more statements, in combination with the
higher iteration count indicates that the Genetic fuzzer explores the programs under
tests more thoroughly than the Random fuzzer does, albeit slightly.

Table 5.1: Average over Jayhorn Recursive Set

fuzzer | time | coverage | completed paths | paths explored | deepest_layer | c_invocs | iterations | fuzzer%

Genetic | 38.17 | 89.64% 414.45 22706.15 1029.39 5.87 2201.49
Random | 38.31 | 89.03% 53.45 3745.42 1018.10 4.21 2067.49

We can inspect the fuzzer% metric more in detail in figures 5.1 and 5.2. These fig-
ures describe the percentage of transition tuples found solely by the fuzzing algorithm
after each concolic execution. The red line denotes the percentage of the random al-
gorithm whereas the blue line denotes the percentage of the genetic algorithm. Figure
5.1 describes programs where the genetic algorithm found more transitions and Figure
5.2 programs where the random fuzzer found more transitions. In total, there are 10
program unique programs of which six clearly prefer the genetic algorithm and four
prefer the random algorithm. The reason that these four programs prefer a random
algorithm is because they are more favorable towards large varying inputs, which is
what our RNG for the random fuzzer generates while the genetic fuzzer focuses more
on incremental steps. The random fuzzer does have some downsides. While it does
explore quickly in large steps it does not learn from the inputs it received from the

40

5.2 Fuzzer Comparison

concolic executor whereas genetic does learn from this. This results in the four pro-
grams from Figure 5.2 having a lower overall branch coverage when using the random
algorithm.

Figure 5.1: Comparison of what percentage of the transition coverage is caused by the
fuzzing algorithm after each concolic invocation, showing the genetic fuzzer performance

SatEven0ddol Addition SatAckermann01

— Genetic — Genetic — Genetic
% — Random %0 — Random %0 — Random

g 70 /—— o 70 @ 70

s 7 g 60 9 50

“%Transition Cover
9%Transition Cor
9%Transition Cov

o 5 10 15 20 25 30 3 4 o 5 10 15 20 25 30 o 1 2 3 a i 6 7
Concolic Invocations Concolic Invocations Concolic Invocations

UnsatAckermann0l SatHanoiol SatFibonacciol

— Genetic — Genetic — Genetic
901 — Random %0 — Random 904 — Random

50 80 0
o 7 g g 7
5 60 3 60 T 60

9%Transition Cov
s4Transition Coy
s4Transition Cover

00 05 1o 15 20 25 30 35 40 4 1 2 3 4 5 6 [os 10 15 20 25 30
Concolic Invocations Concolic Invocations Concolic Invocations

Figure 5.2: Comparison of what percentage of the transition coverage is caused by the
fuzzing algorithm after each concolic invocation, showing the genetic random perfor-
mance

Ackermann01 SatAddition01 SatGed SatPrimes01

— Genetic 00— — Genetic — Genetic
%0 — Random % . — Random %0 — Random

% Transition C
3 8 &
sTransition C¢
%Transition C:

10 5 20 25
Concolic Invocations

5.2.2 The Deep Set

The overall average results over the Deep-Set are given in Table 5.2. Compared to the
other sets it consists of fewer programs and the results of both configurations are very
similar. The metrics that differ the most between the configurations are time, deepest
statement layer reached and iteration count. While on average the genetic fuzzer is
about three seconds slower, it does cover more statements (denoted by the deepest_-
layer metric) and has significantly more iterations, indicating that while it is slower
it is more thorough than the random fuzzer. This is consistent with the observations
made in the Jayhorn-Recursive set. The reason the performance of the fuzzers is similar
follows from the fact that most bugs in this set are discovered by the concolic executor.
This fact is supported by the concolic invocation count, which is similar between the

41

Evaluation

two configurations. The reason that the genetic fuzzer does cover more statements and
has more iterations is due to the test suites it generates, giving it a slight edge over the
random fuzzer.

Table 5.2: Average over Deep Set

fuzzer | time | coverage | completed paths | paths explored | deepest_layer | c_invocs | iterations | fuzzer%
Genetic | 66.62 | 97.27% 13667.44 59413.66 413.82 8.10 931.80 77.96
Random | 63.71 | 97.29% 1799.32 8644.04 412.40 8.04 855.86 78.61

To further support this observation the ten-run average of each program using each
configuration is given in Table 5.3. Here we can see the similar performance between
the configurations and notice that for the programs that take longer with the genetic
fuzzer, like SatDeep01, the genetic fuzzer does cover deeper statements and more iter-
ations. The only outlier is the program "UnsatDriller". The reason the random fuzzer
performed better on average is because it had ten similar seeded runs. The genetic
fuzzer had one run that started with a bad seed, resulting in a worse average perfor-
mance compared to the random fuzzer. From this observation, we can remark that the
initial seed of the fuzzer can play a crucial role in its performance.

Table 5.3: Concolic Random vs Concolic Genetic Deep Set, 10 run average with a depth of

1500
program fuzzer | time verdict | coverage | completed paths | paths explored | error_layer | deepest_layer | c_invocs | iterations | fuzzer%
SatDeep01 Genetic | 73.85 | VALID 98.40% 13890.40 38674.60 0.00 399.00 3.70 602.80 99.08
SatDeep01 | Random | 63.76 | VALID 98.40% 1961.00 6061.20 0.00 396.60 3.10 587.80 98.46
SatDriller | Genetic | 120.08 | VALID | 9470% | 20849.30 101893.30 0.00 448.00 1480 | 63180 | 9730
SatDriller | Random | 120.09 | VALID 94.70% 2640.20 14471.70 0.00 448.00 15.10 632.10 97.30
UnsatDeep01 | Genetic | 0.08 | INVALID | 97.82% 76.20 272.70 375.80 377.90 0.00 1031.60 0.00
UnsatDeep01 | Random | 0.07 | INVALID | 97.66% 57.30 215.10 375.40 376.60 0.00 639.40 0.00
UnsatDeep02 | Genetic | 20.54 | INVALID | 98.30% 3901.90 10907.90 390.20 396.20 1.00 1177.00 98.44
UnsatDeep02 | Random | 20.00 | INVALID | 98.30% 655.50 2083.20 385.80 392.80 1.00 1144.00 100.00
UnsatDriller | Genetic | 118.53 | INVALID | 97.13% 29619.40 145319.80 400.50 448.00 21.00 1215.80 94.99
UnsatDriller | Random | 114.62 | INVALID | 97.40% 3682.60 20389.00 445.00 448.00 21.00 1276.00 97.30
5.2.3 The MinePump Set
The overall average results over the MinePump set are given in Table 5.4. Interestingly,
all of the bugs in the invalid programs have been found with zero concolic invocations.
This means that any type of fuzzer is sufficient for finding the bugs in this set. Despite
this fact, the same trend between the two configurations observed in the Deep-Set and
Jayhorn-Recursive set continues. That is, the performance between the two configu-
rations is similar, where the genetic fuzzer is slightly slower but does cover deeper
statements and more iterations.
Table 5.4: Average over MinePump Set
fuzzer | time | coverage | completed paths | paths explored | deepest_layer | c_invocs | iterations | fuzzer%
Genetic | 7.80 | 76.28% 700.45 8257.16 872.28 0.63 2278.63 19.35
Random | 6.76 | 75.99% 161.51 2000.76 837.37 0.55 1777.78 19.33

42

5.3 Concolic to Symbolic Comparison

5.2.4 Fuzzer Comparison Conclusion

RQ 2 states that we need to look at the impact of the random and genetic fuzzer on
the speed and correctness of DSE. The two proposed DSE configurations, concolic ex-
ecution with a genetic fuzzer and concolic execution with a random fuzzer, have sim-
ilar results when looking at the averages over each data set. However, this does not
necessarily mean that one configuration is always better than the other. To achieve
an optimal performance regarding speed and correctness one would need to exam-
ine which properties are preferential and choose the configuration accordingly. If the
program under test benefits from large random numbers, either positive or negative,
the random fuzzer would be ideal. If the program under test benefits from incremen-
tal search the genetic fuzzer would be the better option. Having said that, it must be
stated that while on average the genetic fuzzer is slightly slower it also covers more
statements, more iterations and has a slightly larger branch coverage which increases
its correctness when the program under test is valid. Because of this observation, the
use of concolic execution with the genetic fuzzer is preferred as the default configura-
tion. Additional comparison tables containing per-program comparisons can be found
in Appendix E.

To answer RQ 2, on average both configurations have a similar execution speed but
the genetic fuzzer can be regarded as more correct since it has the higher coverage
regarding branches, found transitions and iteration count.

5.3 Concolic to Symbolic Comparison

In this section, we will try to answer RQ 1 by making a comparison between the DSE
technique configured with a genetic fuzzer and two existing heuristics in the OOX
ecosystem. One of the existing heuristics is MD2U (Minimal Distance To Uncovered),
proposed and implemented by van Vliet. This heuristic computes a distance for all
statements in each method. This distance either denotes the distance to the first un-
covered statement or the closest distance to the end of the method. It first prioritizes
exploration of the statements within the method, after which it prioritizes leaving the
method as soon as possible. In his work, he compared this heuristic to the classic
Depth-First heuristic, which prioritizes the verification of deeper paths. This heuris-
tic uses the amount of consecutive covered statements as a depth measurement. In
his work, he concluded that the MD2U heuristic performed worse than Depth-First
and hypothesized that this is due to the performance cost of the distance calculations.
He stated that in larger programs it might perform better since the exploration would
benefit from the distance calculations and the cache optimizations would outperform a
Depth-First heuristic. Because this work focuses on larger programs with deeper bugs
than the work of van Vliet we will compare our DSE implementation with both the
MD2U and Depth-First heuristic.

43

Evaluation

5.3.1 The Jayhorn Recursive Set

The hypothesis that MD2U would perform better in larger or more complex programs
can be substantiated by its results on the Jayhorn-Recursive set. From the seven in-
valid programs it correctly invalidates five of them, whereas the Depth-First heuristic
only correctly invalidates three. Both heuristics have difficulties correctly validating
the valid programs since they were able to only correctly validate two of the thirteen
valid programs.

The DSE technique is able to correctly validate and invalidate every program of the
Jayhorn-Recursive set. It must be noted that for the valid programs, the DSE technique
has more similarities to testing than symbolical verification. While the DSE technique
correctly validates programs without bugs, this verdict is the result of its inability to
progress the exploration of the program. When the technique is not able to progress
any further it assumes that it inspected every reachable statement and returns a valid
verdict, though this assumption is not always true. This is in contrast with symboli-
cal verification whose verdict holds more weight since it guarantees the exploration of
the whole program. That being said, the valid verdict both symbolic approaches give
occurs due to a time limit being reached. If within this time budget no violations have
been found the symbolic approach reports a valid verdict, meaning that these verdicts
do not correspond with a complete exploration of the program. This in turn makes the
verdicts more comparable to the verdicts of the DSE technique.

Table 5.5 describes the average result of each heuristic on the Jayhorn-Recursive set.
Besides correctly validating and invalidating programs we can see that the DSE tech-
nique also does this quicker and with higher branch coverage than the other tech-
niques. While DSE does not reach statements as deep as the Depth-First heuristic,
it does achieve a higher branch coverage. Tables containing per-program results for
MD2U, Depth-First and Concolic Execution with a genetic fuzzer can be found in Ap-
pendix A, B and C respectively.

Table 5.5: Comparision of average result of heuristics on the Jayhorn Recursive set

heuristic time | coverage | deepest_layer
ConcolicExecution | 38.17 | 89.64% 1029.39
DepthFirstSearch | 90.81 | 86.34% 1311.90
MinDist2Uncovered | 99.49 | 89.23% 686.02

Lastly, a remark about the execution speed of the symbolic heuristics in the Jayhorn-
Recursive set. In Table 5.6 we averaged the performance of each heuristic on the pro-
grams they correctly invalidated, leaving out all the programs they incorrectly vali-
dated. This table shows that if the symbolic approaches correctly invalidated a pro-
gram they did so very fast while the DSE technique takes more time, but finds all
the bugs. A probable reason for these low execution times can be extracted from the
average deepest statement reached. The fastest heuristic, MD2U, shows an average

44

5.3 Concolic to Symbolic Comparison

deepest layer of ten. This means that the bugs in these programs were shallow, which
also explains why the Depth-First has on average a higher execution time.

Table 5.6: Comparision of heuristics averages on their correctly invalidated Jayhorn Re-
cursive programs

heuristic time | coverage | deepest_layer
ConcolicExecution | 23.89 | 83.88% 946.37
DepthFirstSearch | 0.07 | 88.70% 503.67
MinDist2Uncovered | 0.03 | 78.71% 10.14

5.3.2 The Deep Set

The Deep-Set contains two valid programs and three invalid programs. Furthermore,
the bugs in this set can be found around a statement depth of 400, given the right
constraints on the inputs. The MD2U heuristic was not able to correctly validate or
invalidate any program in this set. This can be explained by the statement depth the
heuristic reached, which is only 334 and thus too low to encounter the bugs. The
Depth-First heuristic is better able to verify these types of programs since it prioritizes
the exploration of the deepest path. While Depth-First is not able to validate the correct
programs within the time budget of two minutes it does find the bugs in two out of
the three programs. The average results per heuristic on this data set, shown in Table
5.7, support the observations previously made in the Jayhorn-Recursive set. The DSE
technique correctly validates and invalidates all the programs using less execution time
and achieves a higher branch coverage and statement depth.

Table 5.7: Comparision of heuristics on the Deep set

heuristic time | coverage | deepest_layer
ConcolicExecution | 75.58 | 90.42% 594.85
DepthFirstSearch | 97.27 | 83.19% 570.83
MinDist2Uncovered | 138.66 | 67.22% 237.15

5.3.3 The MinePump Set

The programs in the MinePump set are derived from a singular program of which there
are 25 invalid variations and six valid variations. The bugs in these programs appear
around a statement depth of roughly 350. The MD2U heuristic achieves a maximum
statement depth of around 300, meaning it is unable to find any bugs. This is similar
to its performance on the Deep-Set. In addition to this, the heuristic is also not able
to completely verify the valid programs, reaching the time limit of 2 minutes on every
single run for every program in this set. For this particular set the MD2U heuristic is
not fit to symbolically verify any program.

45

Evaluation

The Depth-First heuristic does perform well. It is able to correctly validate and in-
validate the programs within the allotted time budget of two minutes, meaning that
the reportedly valid programs are symbolically verified in a complete sense. This is an
interesting observation because one would not expect such a large difference between
two symbolic approaches using different heuristics. This does point towards the cal-
culation performed by the MD2U heuristic to be very costly, not bringing any benefit
in either the exploration or computation time of these programs.

The DSE technique is able to correctly validate and invalidate the programs in this
set. Its execution time for the verification of invalid programs is about 60 times faster
than the Depth-First heuristic, as can be seen in Table 5.8. The reason for this lies in the
nature of the bugs in the MinePump set. All of these bugs are able to be found with
any kind of fuzzer. This results in the concolic executor not being invoked during the
verification of these invalid programs. For valid programs, the DSE technique takes
more than twice as long compared to the Depth-First technique. This is shown in Ta-
ble 5.9. As previously noted, the valid verdict of the DSE technique is not as strong
as a valid verdict from symbolic verification. However, when looking at the branch
coverage in Table 5.8 we can see that the DSE technique does achieve the exact same
branch coverage as the symbolic technique. This shows that the valid verdict of the
DSE technique does have some merit, but it must be noted that its completed paths
and explored paths are much lower than the Depth-First heuristic. This indicates that
the statement coverage of the Depth-First heuristic is much higher and thus its valid
verdict holds more weight.

Table 5.8: Comparision of heuristics averages on the valid MinePump programs

heuristic time | coverage | completed paths | paths explored | deepest_layer
ConcolicExecution | 39.52 | 89.17% 3513.58 41486.30 1493.18
DepthFirstSearch | 15.90 | 89.17% 9822.33 626429.67 1500.00
MinDist2Uncovered | 122.25 | 72.63% 2097.83 14740.43 304.30

Table 5.9: Comparision of heuristics averages on the invalid MinePump programs

heuristic time | coverage | completed paths | paths explored | deepest_layer
ConcolicExecution | 0.19 73.19% 25.30 282.16 723.27
DepthFirstSearch 6.89 85.89% 517.44 34701.40 1394.72
MinDist2Uncovered | 122.05 | 74.90% 1999.90 15510.85 306.64

5.3.4 Concolic vs Symbolic Conclusion

RQ 1 states that we need to look at the speed, correctness and completeness of all
the tools we compared in this section. When looking at the results of MD2U we can
state that this heuristic is not preferable for these data sets. While it did perform well
on the complex programs in the Jayhorn-Recursive set it was unable to verify any
deeper bugs. Even in the Jayhorn-Recursive set, it discovered mainly shallow bugs.

46

5.4 Concolic to State-Of-The-Art Comparison

The Depth-First heuristic performed well overall but could not verify the valid pro-
grams of the Jayhorn-Recursive and Deep sets completely, even showing less branch
coverage than the DSE technique. In this regard the DSE technique is more reliable
for finding bugs and its valid verdicts arguably hold the same or more weight for this
particular set. However, this is not the case for the MinePump set where Depth-First
was able to completely verify all the valid programs and find all the bugs. That being
said the performance for actually finding bugs, especially in terms of execution time,
was worse compared to the DSE technique.

To answer RQ 1, for finding deep bugs in complex programs the DSE technique was
shown to be a reliable alternative to the symbolic approaches. Even when returning
a valid verdict it often had a comparable or higher branch coverage than the sym-
bolic techniques. While it cannot provide the same guarantees as symbolic verification
regarding completeness it has shown to be a valuable alternative to this technique es-
pecially regarding execution time and correctness.

5.4 Concolic to State-Of-The-Art Comparison

To answer RQ 3 we will make one last comparison between the DSE technique and
the state-of-the-art tools JDart, JBMC and Java-Ranger. These tools were chosen for
comparison since they scored first, second and third respectively in the "JavaOverall"
category of the SVComp software verification competition held in 2022. The datasets
used in this work are a subset of the datasets used during this competition. The verifi-
cation tools executed these data sets using the BenchExec benchmarking tool. To keep
the experiments as similar as possible we created a BenchExec configuration for our
DSE verification tool with the genetic fuzzer configuration. We then executed all the
data sets in this section using the BenchExec tool. To spare computation time we will
compare these results to the reported results of the state-of-the-art tools posted by SV-
Comp. Our custom data set was also added to BenchExec and all the state-of-the-art
tools executed this custom data via BenchExec. In this section, we will first briefly de-
scribe the tools and the novel concepts they employ for verification after which we will
inspect the results of each data set in more detail.

5.4.1 SVComp Tools

JDart is a tool which is implemented as an extension of the Java Pathfinder framework
and employs dynamic symbolic verification to reach its verdict. It uses an executor
that executes the program while tracking constraints and an explorer that determines
the search strategy [12]. Of the three tools, JDart is the most similar to our DSE imple-
mentation, the difference being that DSE has a separate concrete and concolic executor
while the executor of JDart performs both tasks simultaneously. The explorer of JDart
is comparable with our fuzzer. In DSE the fuzzer is responsible for the exploration
while JDart uses undefined configurations which steer the path in directions these con-

47

Evaluation

figurations deems interesting.

JBMC stands for Java Bounded Model Checking and is based on CMBC. As the name
implies it uses a bounded model checker to verify the program. After analyzing the
Java bytecode the program under test is parsed to a large bounded formula and passed
to a solver. From this result, it determines if the program is valid or not [28].

Java Ranger is a symbolic execution tool whose novelty lies in a technique called
veritesting. This technique enables the tool to merge multiple paths, mitigating the
path explosion problem. It further recognizes the small dynamically dispatched meth-
ods inside Java programs and employs a technique called dynamic inlining to ensure
these methods are handled correctly while merging paths [8].

5.4.2 The Jayhorn Recursive Set

The programs in the Jayhorn Recursive Set proved to be difficult to verify for the tools.
Of the 19 programs, the JBMC tool reported an Out Of Memory (OOM) verdict eight
times and an Error or Unknown verdict another five times resulting in the verification
of only 6 of the 19 programs. Of the 7 invalid programs in this set JBMC correctly
reported an Invalid verdict on six of them, reporting an error on the seventh. This in-
dicates that for these types of programs, the JBMC struggles to completely verify valid
programs, either running out of memory or reporting an error.

The JDart tool reported a TimeOut verdict for 10 of the 19 programs in this set. On
top of this, it also took more than 120 seconds on three other programs. Of the seven
invalid programs it correctly found the bugs in six of them. This finding supports the
previous observation that verifying the valid programs in this set is a difficult task.

The JavaRanger tool reported an Unknown verdict for 10 of the 19 programs in this
set. Furthermore, on four occasions it reported a Valid verdict when it was close to
completely spending its time budget. It must be stated that these programs were in-
deed valid and thus the verdict was correct. However, a more skeptical view could be
that the tool reports a valid finding when it is close to reaching its time budget. Since
we have no access to the source code we cannot state this as a fact but more research
could be done to ascertain if this is actually the case or not. Of the seven invalid pro-
grams it correctly found the violations in only four of them, which is less than JDart
and JBMC.

Running our DSE implementation with BenchExec didn’t change much in the results.
We were still able to correctly validate and invalidate all the programs in the set. Ta-
ble 5.10 shows the average execution time for each tool on the set. Here we can see
that DSE is much faster than the other tools. This is due to the reported time-outs and
unknown verdicts of the other verification tools.

48

5.4 Concolic to State-Of-The-Art Comparison

Table 5.10: Average Comparison Concolic, JDart, JBMC, Java-Ranger on the Jayhorn Re-
cursive set

heuristic time
DSE 33.20
JBMC 470.54
JDart 478.07
JavaRanger | 572.44

While DSE is more reliable than the other techniques, in individual cases, it can
be significantly slower. In Table 5.11 we show two invalid programs of the Jahorn
Recursive set, namely UnsatEvenOdd01 and UnsatAckermannQ1. In the case of Un-
satEvenOdd01 we can see that DSE takes much longer than the other tools, while in
the case of UnsatAckermann01 it is only surpassed by JBMC since the other tools are
unable to correctly invalidate the program.

Table 5.11: Comparison DSE, JDart, JBMC, Java-Ranger on two programs of the Jayhorn
Recursive set

program tool time verdict
UnsatEvenOdd01 DSE 35.78 | INVALID
UnsatEvenOddo01 JBMC 1.10 INVALID
UnsatEvenOddo01 JDart 3.70 INVALID
UnsatEvenOdd01 | JavaRanger | 8.20 | INVALID
UnsatAckermann01 DSE 23.90 | INVALID
UnsatAckermann0O1 JBMC 4.80 INVALID
UnsatAckermann0O1 JDart 900.00 | TIMEOUT
UnsatAckermann01 | JavaRanger | 800.00 | UNKOWN

5.4.3 The Deep Set

The per-program results of the verification tools on the deep set are given in Table 5.12.
For these programs, the verification tools need to reach a statement depth of c.a. 400
with the correct constraints to find the bugs. It consists of multiple while loops itera-
tion over an array of 20 elements, pushing the verification tools to their limit. Starting
with the Java Ranger tool we can see that it can only correctly verify one program,
SatDriller. In the comparison of the Jayhorn Recursive set we speculated that this ver-
ification tool could report a valid verdict when its execution time nears the time limit.
We can see a similar effect occurring here. While the tool reported a correct "Valid"
verdict on the SatDriller program, it reported an incorrect "Valid" verdict on the Un-
satDriller program. Both executions exceeded the 800 seconds mark, indicating that
our speculation may be right and Java Ranger indeed reports a "Valid" verdict when
nearing its time limit.

Of the 5 programs, the JDart tool reported a "TimeOut" verdict on three programs,

49

Evaluation

of which two were valid and one was invalid. Noticeably the other two invalid pro-
grams were correctly reported as "Invalid" within 5 seconds. The JBMC tool was the
best performing tool on this data set, correctly validating and invalidating every pro-
gram of this set within 4 seconds. This is quite surprising since all other symbolic tools
under investigation, (Java Ranger and OOX with the depth-first and MD2U heuristic)
found this task difficult. Its performance is the result of the bounded model checking
technique and proves, in this set, to be the best performing technique. Regarding our
DSE tool, it remains reliable, able to correctly validate and invalidate all the programs
in this set albeit with a larger computation time. This is due to the fact that the com-
putationally costly concolic executor is invoked quite often during the verification of
these programs.

Table 5.12: JDart, Java-Ranger and JBMC results on Deep Set, 5 run average

program tool time verdict
SatDeep01 DSE 56.51 VALID
SatDeep01 JDart 901.70 | TIMEOUT
SatDeep01 JBMC 2.76 VALID
SatDeep0l1 | JavaRanger | 8.60 | UNKOWN
SatDriller DSE 91.91 VALID
SatDriller JDart 902.19 | TIMEOUT
SatDriller JBMC 3.60 VALID
SatDriller | JavaRanger | 829.43 | VALID
UnsatDeep01 DSE 0.05 | INVALID
UnsatDeep01 JDart 4.01 INVALID
UnsatDeep01 JBMC 250 | INVALID
UnsatDeep01 | JavaRanger | 7.90 | UNKOWN
UnsatDeep02 DSE 9.56 | INVALID
UnsatDeep02 JDart 448 | INVALID
UnsatDeep02 JBMC 250 | INVALID
UnsatDeep02 | JavaRanger | 7.84 | UNKOWN
UnsatDriller DSE 86.10 | INVALID
UnsatDriller JDart 902.10 | TIMEOUT
UnsatDriller JBMC 3.34 | INVALID
UnsatDriller | JavaRanger | 829.06 | VALID

5.4.4 The MinePump Set

The MinePump set was chosen because the violations inside the programs occur at a
statement depth of c.a. 500. We also previously stated that while this depth might
be considered deep the programs are not complex. This claim is substantiated by the
performance of all the verification tools on this set. Every tool was able to correctly
validate and invalidate every program in this set. Since this is the case we split this
analysis based on the validity of the programs, first discussing the performance of the
verification tools on the invalid programs in the set after which we discuss the perfor-
mance of the tools on the valid programs of the set.

The average performance of the verification tools over the invalid programs in the set
is given in Table 5.13. Here we can clearly see that the DSE technique is the quickest

50

5.4 Concolic to State-Of-The-Art Comparison

in finding all the bugs of the program. As previously mentioned this is because every
bug is found solely by the fuzzer, with no invocation to the costly concolic executor.
This finding indicates that first invoking a fuzzer when validating a program before
using symbolic verification results in large computational gains.

Table 5.13: Average Comparison Concolic, JDart, JBMC, Java-Ranger on Invalid
Minepump Programs

tool time
DSE 0.15
JBMC 241
JDart 4.13
JavaRanger | 10.06

The average performance of the verification tools over the invalid programs in the
set is given in Table 5.14. Here we can see that JBMC completely verifies the program
the quickest. This in conjunction with the fact that it was the best performing state-of-
the-art tool in the invalid set makes this tool the overall best performing verification
tool of this set. JDart comes in second, taking on average 24 seconds to completely
verify a program. Regarding the Java Ranger tool, while it was quick to find the bugs
in the invalid programes, it takes on average more than 10 times longer than JDart to
verify valid programs. Comparing the results of these tools to the DSE technique we
can see that two of them take less computation time, making DSE not needed for these
programs. One could argue that the DSE technique outperforms the Java Ranger tool,
but Java Ranger uses symbolical verification. As discussed previously, a valid verdict
from a symbolic verification tool is more complete than a valid verdict from the DSE
technique since DSE is not able to verify a program in a complete sense. Because of this
fact, compared to the state-of-the-art tools the DSE technique falls short on this specific
set and one should preferably use one of the other verification tools.

Table 5.14: Average Comparison Concolic, JDart, JBMC, Java-Ranger on Valid Minepump
Programs

tool time
DSE 33.05
JBMC 3.17
JDart 24.33
JavaRanger | 325.00

5.4.5 State-Of-The-Art Conclusion

In this comparison, we have highlighted the strengths and weaknesses of the tools un-
der investigation. To answer RQ 3 we will first summarize their strengths, then con-
tinue with their limitations while comparing their results to DSE. During the analysis,

51

Evaluation

it became evident that for less complex programs and shallow bugs, these tools are su-
perior to DSE. Their guarantees are much stronger and their execution times are much
lower. A clear example of this was the MinePump set, in which these tools excelled.
When these tools were tasked with the verification of the deep set certain problems
arose. Only the JBMC tool confidently reported its findings and averaged a lower ex-
ecution time than DSE. At this point, a case could still be made that optimizations
to these techniques could push the performance of these tools to verify more complex
programs with deeper bugs, albeit with the Bounded Model Checking approach rather
than the techniques used in JDart or Java Ranger. Lastly, when the tools were tasked
with the verification of the Jayhorn Recursive set we encountered the limits of these
techniques. The complete verification of valid programs was no guarantee, each tool
at different programs either spent its entire time budget, reported an error, or reported
an unknown verdict. While these problems occurred less for the invalid programs in
this set, the tools were still not able to verify around 30% of the programs. The DSE
technique outperformed them not only on execution time but maybe more importantly
on reliability. A special case should be made for JBMC. While it was not able to ver-
ify a large portion of the valid programs, it correctly invalidated all programs except
for one, with a far smaller execution time. Concluding, in comparison with the state-
of-the-art the DSE technique certainly has shown to be reliable and correct enough to
compete with them on complex programs and programs with deeper bugs. Its average
execution time is lower than the state-of-the-art tools, but higher if we only average the
results of the correctly invalidated programs.

52

6. Conclusion

In this work, we have discussed several techniques that can be used to mitigate the
explosions that take place in symbolic verification. The related work section describes
these techniques and the tools that implement them in detail. We continued with a de-
scription of the current status of the OOX ecosystem, describing which optimizations
and techniques were added by the researchers who previously worked on this system.
After describing the basis upon which we would continue our research we gave an
overview of the Dynamic Symbolic Execution technique. We started by describing the
general principles of this technique after which we explained our interpretation of this
technique. This included the algorithms we have implemented for the concolic execu-
tor as well as the two different fuzzers that control the concrete executor.

We evaluated our DSE implementation with several analyses. First, we looked at the
impact of the fuzzer on DSE to ascertain which configuration performed best. The
results showed a similar performance when looking at the average execution time of
both configurations. Furthermore, there was a slight difference in the explored depth
between the configurations. The genetic fuzzer reached a deeper statement depth, had
more iterations and found more progress with solely the fuzzer. It was also observed
that the branch coverage was slightly higher with the genetic fuzzer enabled. Because
of the similar execution speed and similar correctness, we chose to continue our exper-
iments with the genetic fuzzer since its higher branch coverage indicated it was more
complete than the random fuzzer.

After this analysis, we took the DSE configuration with the genetic fuzzer and com-
pared its performance against the performance of the MD2U and Depth-First heuristic
to ascertain the impact of DSE on the OOX ecosystem in accordance with research
question R1. Here we observed that the MD2U heuristic performed best on complex
programs with shallow bugs and the Depth-First heuristic performed best on programs
where the bug occurs in deeper sections. However, compared to DSE both these heuris-
tics performed worse. Neither heuristic was able to verify all the programs, reaching
the set time limit in several cases. Furthermore, for two data sets, we showed that the
heuristics were not able to completely verify valid programs. Regarding these valid
programs, DSE showed a higher branch coverage using less execution time than both
heuristics. From this, we can conclude that while the DSE is not able to symbolically
verify programs, its valid verdicts are strong considering the branch coverage. In the
MinePump set we saw that Depth-First was able to correctly validate and invalidate
every program. For this specific data set, we must conclude that DSE is not preferable.
While it was significantly quicker in finding violations, it was slower in validating cor-

53

Conclusion

rect programs. It also had a similar branch coverage to the symbolic approaches, but
less path coverage, making the valid verdict of DSE holding less weight. In conclusion
DSE was superior regarding execution speed and correctness, but is not as complete as
symbolic approaches.

Lastly, we compared our DSE implementation to three state-of-the-art tools whose per-
formance placed them in the top three of the SVComp software verification competi-
tion of 2022. Using this comparison we could ascertain how our DSE implementation
compared against other tools. We showed that our DSE implementation was com-
petitive with these tools, being more reliable and on average faster than two of them.
Besides the average performances we also highlighted individual cases, continuing the
trend that while a program may perform the best on average, this does not mean it per-
forms the best on every single program. We also discussed the surprising performance
of the JBMC tool, which on occasion was leagues ahead of the competition regarding
execution times. However, we could not find a satisfying explanation for this perfor-
mance, ultimately regarding this performance gain as an inherent benefit of the novel
technique employed by the JBMC tool.

Future Work

This work gives a lot of opportunities for future work since it consists of several con-
cepts which individually can be explored further. We will list these concepts and re-
search ideas for future work below.

Optimizations for the concolic executor. During the implementation of the concolic
executor we found a possibility to optimize the search for inputs. Currently, every as-
sumption the executor encounters is checked by the SMT solver for interesting inputs.
However, not every assume statement leads to an interesting input. Stripping all of the
unimportant invocations of the SMT solver would optimize the DSE implementation.
This also applies to any other optimizations of the SEE.

Investigating and optimizing fuzzer techniques. As shown in our evaluation the
fuzzer used by DSE is essential for the efficient discovery of statement transitions. Be-
sides our proposed random and genetic fuzzer other options might work even better.
The genetic fuzzer itself could also be researched further. Research regarding the mu-
tation and optimization of the test suite may improve its performance further.

Adding symbolic inputs to the fuzzer. Currently, the inputs received from the con-
colic executor are in the form of a formula like "x > 10". This is solved with an SMT
solver to get a single satisfiable input. However, the fact that the inputs are reported
in formula form can be exploited further, generating a range of inputs that satisfy the
formula instead of a single one.

54

Investigating the JBMC tool. During the evaluation of the state-of-the-art tools the
JBMC tool showed impressive performance compared to the competition. Further re-
search into this phenomenon is needed to asses if the OOX Ecosystem could benefit
from the introduction of this kind of bounded model checking.

55

Conclusion

Appendices

56

A. MinDist Results

Table A.1: MinDist Heuristic on Deep Set, 10 run average with a depth of 1500

name time | result | coverage | completed paths | paths explored | error_layer | deepest_layer
SatDeep(O1 | 147.25 | VALID | 68.90 12860.50 21040.70 0.00 189.10
SatDriller | 125.56 | VALID | 92.10 7792.30 21485.90 0.00 337.80
UnsatDeep01 | 144.14 | VALID | 70.00 12394.70 21520.90 0.00 185.30
UnsatDeep02 | 146.02 | VALID | 70.00 14962.90 24886.50 0.00 185.80
UnsatDeep03 | 143.04 | VALID | 10.20 10862.50 18881.80 0.00 190.80
UnsatDriller | 125.98 | VALID | 92.10 6941.10 19152.30 0.00 334.10

Table A.2: MinDist Heuristic on Jayhorn Set, 10 run average with a depth of 1500

name time result | coverage | completed paths | paths explored | error_layer | deepest_layer
Addition 152.57 | VALID 94.10 10229.40 10228.40 0.00 141.70
SatAckermannO1 | 141.82 | VALID 85.70 6256.70 12241.30 0.00 1114.90
SatAckermann02 | 142.63 | VALID 85.70 7135.90 13976.80 0.00 1189.50
SatAckermann(03 | 143.03 | VALID 85.70 7385.60 14471.60 0.00 1202.00
SatAddition01 156.26 | VALID 94.60 13265.90 13264.90 0.00 117.10
SatEvenOdd01 31.19 VALID 97.90 925.00 1350.00 0.00 1500.00
SatFibonacciO1l 164.31 | VALID 97.03 10937.80 10936.80 0.00 1500.00
SatFibonacci02 0.03 VALID 96.20 1.00 198.00 0.00 727.00
SatFibonacci03 162.50 | VALID 98.35 9048.00 9047.00 0.00 1500.00
SatGed 14531 | VALID 95.70 8506.80 8505.80 0.00 198.30
SatHanoi01 129.01 | VALID 96.60 6995.30 13766.00 0.00 1500.00
SatMccarthy91 175.76 | VALID 95.66 9748.10 9747.10 0.00 1500.00
SatPrimes(01 146.52 | VALID 91.56 12367.30 12367.80 0.00 127.50
Ackermann(1 0.04 | INVALID 7191 1.00 4.40 16.00 16.90
InfiniteLoop 0.03 | INVALID | 88.90 0.00 1.00 6.00 6.00
UnsatAckermann01 | 143.66 | VALID 84.60 7757.20 15205.90 0.00 1241.20
UnsatAddition01 | 15498 | VALID 91.70 13414.50 13413.50 0.00 110.60
UnsatAddition02 0.01 | INVALID 85.70 0.00 0.00 5.00 5.00
UnsatEvenOdd01 0.03 | INVALID 77.65 1.00 6.30 16.20 16.80
UnsatMccarthy91 0.02 | INVALID 69.37 0.00 1.00 6.00 6.00

57

MinDist Results

Table A.3: MinDist Heuristic on MinePump Set, 10 run average with a depth of 1500

name time | result | coverage | completed paths | paths explored | error_layer | deepest_layer
specl-5_product59 | 122.82 | VALID | 68.16 2227.90 13310.40 0.00 291.50
specl-5_product60 | 122.51 | VALID | 71.57 2465.30 16053.20 0.00 302.20
specl-5_product61 | 121.77 | VALID | 75.04 1517.40 13648.50 0.00 316.90
specl-5_product62 | 121.73 | VALID | 75.17 1526.30 13766.50 0.00 311.50
specl-5_product63 | 122.35 | VALID 71.74 2398.80 15523.70 0.00 296.50
specl-5_product64 | 122.32 | VALID | 74.12 2451.30 16140.30 0.00 307.20
specl-5_productl | 121.66 | VALID | 76.52 1558.20 15013.80 0.00 307.80
specl-5_product10 | 121.37 | VALID | 78.60 1610.50 17296.60 0.00 327.50
specl-5_product1l | 122.25 | VALID | 76.19 2616.00 17717.00 0.00 299.10
specl-5_productl2 | 123.11 | VALID | 75.48 2231.80 13620.90 0.00 293.30
specl-5_productl3 | 121.87 | VALID | 73.97 1482.40 13137.00 0.00 298.40
specl-5_productl4 | 121.87 | VALID 74.38 1505.80 13702.70 0.00 301.50
specl-5_productl5 | 122.53 | VALID | 72.48 2531.80 16217.90 0.00 297.10
specl-5_product16 | 122.49 | VALID | 74.22 2501.30 16303.20 0.00 297.90
specl-5_product2 | 121.49 | VALID | 78.27 1603.90 16530.60 0.00 316.20
specl-5_product3 | 122.80 | VALID | 75.07 2427.20 15288.50 0.00 294.10
specl-5_product4 | 122.83 | VALID 74.06 2376.80 15028.20 0.00 298.60
specl-5_product48 | 121.93 | VALID | 72.11 1478.50 12251.90 0.00 302.10
specl-5_product49 | 121.99 | VALID | 71.45 1492.20 12814.90 0.00 310.50
specl-5_product5 | 121.39 | VALID | 75.25 1594.80 16463.80 0.00 312.10
specl-5_product50 | 121.43 | VALID | 74.32 1591.60 15486.10 0.00 317.10
specl-5_product51 | 122.35 | VALID | 70.11 2557.50 16614.60 0.00 297.20
specl-5_product52 | 122.33 | VALID | 72.73 2505.50 16459.50 0.00 305.60
specl-5_product53 | 121.42 | VALID | 76.09 1569.10 15208.10 0.00 316.20
specl-5_product54 | 121.50 | VALID | 76.10 1559.70 14984.30 0.00 320.40
specl-5_product55 | 122.32 | VALID | 74.40 2547.70 16659.80 0.00 304.60
specl-5_product56 | 122.74 | VALID 75.49 2319.60 14961.60 0.00 309.50
specl-5_product6 | 121.57 | VALID | 76.19 1536.40 14459.50 0.00 316.50
specl-5_product?7 | 122.28 | VALID | 74.59 2610.00 17367.20 0.00 297.60
specl-5_product8 | 122.24 | VALID | 75.21 2571.10 17239.50 0.00 303.40
specl-5_product9 | 121.44 | VALID | 79.18 1618.00 16944.00 0.00 321.70

58

B. Depth-First Results

Table B.1: Depth-First Heuristic on Deep Set, 10 run average with a depth of 1500

name time result | coverage | completed paths | paths explored | error_layer | deepest_layer
SatDeep0l.oox | 120.04 | VALID 90.20 14869.60 29722.90 0.00 347.00
SatDriller.oox | 120.02 | VALID 94.70 3257926.00 11402608.90 0.00 448.00
UnsatDeep0l.o0x | 120.03 | VALID 90.00 15985.20 31954.40 0.00 336.00
UnsatDeep02.00ox | 0.05 | INVALID | 76.70 1.00 116.00 345.00 346.00
UnsatDriller.oox | 103.32 | INVALID | 97.13 4174992.30 14612543.70 400.50 448.00

Table B.2: Depth-First Heuristic on Jayhorn Recursive Set, 10 run average with a depth of

1500
name time result | coverage | completed paths | paths explored | error_layer | deepest_layer

Addition.oox 120.05 | VALID 88.20 284536.60 284535.60 0.00 1500.00
SatAckermannOl.oox | 120.02 | VALID 92.90 4562661.30 6756293.60 0.00 1500.00
SatAckermann02.0ox | 120.02 | VALID 92.90 4870375.50 7213899.90 0.00 1500.00
SatAckermann03.oox | 120.02 | VALID 92.90 5203290.30 7702983.50 0.00 1500.00
SatAddition01.00x 120.03 | VALID 75.70 423257.90 423256.90 0.00 1500.00
SatEvenOdd01.00x 15.54 | VALID 97.90 925.00 1350.00 0.00 1500.00
SatFibonacci0l.00x 120.03 | VALID 76.70 1194193.70 1194192.70 0.00 1500.00
SatFibonacci02.00x 0.01 VALID 96.20 1.00 198.00 0.00 727.00
SatFibonacci03.00x 120.02 | VALID 76.70 1253013.60 1253012.60 0.00 1500.00
SatGed.oox 120.04 | VALID 95.70 16095.50 16094.50 0.00 1500.00
SatHanoi01.00x 120.02 | VALID 54.20 1834508.50 2870709.40 0.00 1500.00
SatMccarthy91.00x 120.03 | VALID 87.50 476823.50 476822.50 0.00 1500.00
SatPrimes(01.00x 120.04 | VALID 97.40 3237915.40 3237927.40 0.00 1500.00
Ackermann01.oox 120.04 | VALID 81.00 3995388.70 5918750.70 0.00 1500.00

InfiniteLoop.oox 0.04 | INVALID | 88.90 0.00 1.00 6.00 6.00
UnsatAckermann0l.oox | 120.01 | VALID 92.30 5416389.20 8045627.80 0.00 1500.00
UnsatAddition0l.oox | 120.03 | VALID 75.00 505512.60 505511.60 0.00 1500.00

UnsatAddition02.00x 0.01 | INVALID | 85.70 0.00 0.00 5.00 5.00
UnsatEvenOdd0l.oox | 0.16 | INVALID | 91.50 76.00 504.00 1495.00 1500.00
UnsatMccarthy91.0ox | 120.03 | VALID 87.50 473480.40 473479.40 0.00 1500.00

59

Depth-First Results

Table B.3: Depth-First Heuristic on MinePump Set, 10 run average with a depth of 1500

name time result | coverage | completed paths | paths explored | error_layer | deepest_layer
specl-5_product59.00x | 11.62 | VALID 89.70 9767.00 474656.00 0.00 1500.00
specl-5_product60.00x | 14.80 | VALID 89.80 9767.00 578720.00 0.00 1500.00
specl-5_product6l.oox | 20.55 | VALID 88.10 9921.00 821498.00 0.00 1500.00
specl-5_product62.0ox | 21.45 | VALID 87.60 9921.00 821498.00 0.00 1500.00
specl-5_product63.00x | 11.48 | VALID 89.90 9779.00 478455.00 0.00 1500.00
specl-5_product64.00x | 15.46 | VALID 89.90 9779.00 583751.00 0.00 1500.00
specl-5_productl.oox | 7.15 | INVALID | 83.00 513.00 37208.00 338.00 1311.00
specl-5_productl0.00x | 7.04 | INVALID | 82.50 513.00 37208.00 338.00 1311.00
specl-5_productll.oox | 4.55 | INVALID | 84.60 513.00 26064.00 338.00 1275.00
specl-5_product12.0ox | 4.98 | INVALID | 84.70 513.00 27792.00 338.00 1275.00
specl-5_product13.0ox | 7.31 | INVALID | 82.90 513.00 39448.00 355.00 1396.00
specl-5_productl4.oox | 9.08 | INVALID | 82.40 513.00 39448.00 355.00 1396.00
specl-5_productl5.00x | 6.38 | INVALID | 84.90 513.00 27472.00 355.00 1360.00
specl-5_productl6.0oox | 8.89 | INVALID | 85.00 513.00 29328.00 355.00 1360.00
specl-5_product2.oox | 12.86 | INVALID | 82.50 513.00 37208.00 338.00 1311.00
specl-5_product3.oox | 840 | INVALID | 84.60 513.00 26064.00 338.00 1275.00
specl-5_product4.oox | 9.14 | INVALID | 84.70 513.00 27792.00 338.00 1275.00
specl-5_product48.oox | 4.12 | INVALID | 88.90 530.00 42871.00 343.00 1500.00
specl-5_product49.00x | 4.26 | INVALID | 88.90 530.00 42871.00 343.00 1500.00
specl-5_productb.oox | 12.71 | INVALID | 82.90 513.00 39448.00 355.00 1396.00
specl-5_product50.00x | 4.17 | INVALID | 88.40 530.00 42871.00 343.00 1500.00
specl-5_product5l.oox | 3.06 | INVALID | 90.70 521.00 29915.00 343.00 1500.00
specl-5_product52.00x | 3.45 | INVALID | 90.80 521.00 31991.00 343.00 1500.00
specl-5_product53.00x | 4.01 | INVALID | 89.10 527.00 43314.00 340.00 1500.00
specl-5_product54.0ox | 4.03 | INVALID | 88.60 527.00 43314.00 340.00 1500.00
specl-5_product55.00x | 2.91 | INVALID | 90.90 521.00 30176.00 340.00 1500.00
specl-5_product56.00x | 3.24 | INVALID | 90.90 521.00 32276.00 340.00 1500.00
specl-5_product6.oox | 12.54 | INVALID | 82.40 513.00 39448.00 355.00 1396.00
specl-5_product7.oox | 7.99 | INVALID | 84.90 513.00 27472.00 355.00 1360.00
specl-5_product8.oox | 8.74 | INVALID | 85.00 513.00 29328.00 355.00 1360.00
specl-5_product9.oox | 11.12 | INVALID | 83.00 513.00 37208.00 338.00 1311.00

60

C. Concolic- Genetic Results

Table C.1: Concolic Genetic Deep Set, 10 run average with a depth of 1500

name time result | coverage | completed paths | paths explored | error_layer | deepest_layer | c_invocs | iterations | fuzzer%
SatDeepOl.oox | 73.85 | VALID 98.40 13890.40 38674.60 0.00 399.00 3.70 602.80 99.08
SatDriller.oox | 120.08 | VALID 94.70 20849.30 101893.30 0.00 448.00 14.80 631.80 97.30
UnsatDeep0l.oox | 0.08 | INVALID | 97.82 76.20 272.70 375.80 377.90 0.00 1031.60 0.00
UnsatDeep02.00x | 20.54 | INVALID | 98.30 3901.90 10907.90 390.20 396.20 1.00 1177.00 98.44
UnsatDriller.oox | 118.53 | INVALID | 97.13 29619.40 145319.80 400.50 448.00 21.00 1215.80 94.99

Table C.2: Concolic Genetic Jayhorn Set, 10 run average with a depth of 1500

name time result | coverage | completed paths | paths explored | error_layer | deepest_layer | c_invocs | iterations | fuzzer%
Addition.oox 85.03 | VALID 91.20 1494.50 5321.80 0.00 267.90 21.70 390.30 60.57
SatAckermann0l.oox | 26.80 | VALID 100.00 26.40 1887.80 0.00 1436.00 4.80 2056.80 78.12
SatAckermann02.00x | 20.93 | VALID 100.00 24.40 1777.70 0.00 1372.00 4.60 1964.40 87.50
SatAckermann03.00ox | 26.37 | VALID 100.00 23.30 1696.90 0.00 1436.00 5.00 2055.70 78.12
SatAddition01.00x 71.36 | VALID 89.20 1332.40 4846.20 0.00 199.30 18.90 312.80 44.32
SatEvenOdd01.00x 8731 | VALID 93.60 884.70 151532.10 0.00 1500.00 11.60 2310.20 69.70
SatFibonacci0l.00x 13.70 | VALID 78.70 208.40 1445.60 0.00 607.80 1.80 955.00 85.90
SatFibonacci02.00x 856 | VALID 96.20 157.80 31244.40 0.00 727.00 1.00 1144.00 | 100.00
SatFibonacci03.00x 35.54 | VALID 96.70 288.20 2552.50 0.00 1500.00 3.00 2353.60 58.21
SatGed.oox 39.92 | VALID 95.70 933.30 3011.90 0.00 417.20 12.70 628.10 28.12
SatHanoi01.00x 33.31 | VALID 94.90 398.20 3492.40 0.00 1500.00 4.80 2497 .40 35.56
SatMccarthy91.00x 56.99 | VALID 86.84 423.20 53796.40 0.00 1500.00 3.10 2520.80 95.00
SatPrimes01.00x 90.34 | VALID 82.50 1247.70 27831.20 0.00 1500.00 16.40 3927.30 6.75
Ackermann(1.00x 043 | INVALID | 59.50 162.20 169.00 16.00 16.00 2.00 52.00 23.09
InfiniteLoop.oox 0.04 | INVALID | 84.46 2.00 376.00 6.00 603.60 0.00 1509.60 0.00
UnsatAckermann01.00x | 29.68 | INVALID | 100.00 273.50 78794.80 32.00 1500.00 3.00 4787.90 86.67
UnsatAddition0l.oox | 57.90 | INVALID | 85.82 180.60 45154.00 15.00 1500.00 1.00 5513.20 70.83
UnsatAddition02.00x | 0.01 | INVALID | 85.70 0.00 0.00 5.00 5.00 0.00 12.00 0.00
UnsatEvenOdd0l.oox | 54.05 | INVALID | 82.98 85.10 20658.60 22.30 1500.00 1.00 4524.00 73.22
UnsatMccarthy91.oox | 25.15 | INVALID | 88.72 143.00 18533.70 10.00 1500.00 1.00 4514.80 93.33

61

Concolic- Genetic Results

Table C.3: Concolic Genetic MinePump Set, 10 run average with a depth of 1500

name time result | coverage | completed paths | paths explored | error_layer | deepest_layer | c_invocs | iterations | fuzzer%
specl-5_product59.00x | 30.90 | VALID 89.70 3298.20 30628.20 0.00 1484.70 2.90 2594.90 | 100.00
specl-5_product60.00x | 37.14 | VALID 89.80 3322.00 36441.40 0.00 1488.80 3.00 2573.70 | 100.00
specl-5_product6l.oox | 52.73 | VALID 88.10 3642.60 55728.30 0.00 1500.00 3.40 2695.90 | 100.00
specl-5_product62.00x | 41.03 | VALID 87.60 3120.30 47673.50 0.00 1500.00 2.70 2688.80 | 100.00
specl-5_product63.00x | 35.67 | VALID 89.90 3865.60 36628.00 0.00 1500.00 3.70 2574.10 | 100.00
specl-5_product64.00x | 39.62 | VALID 89.90 3832.80 41818.40 0.00 1485.60 3.70 2539.10 99.94
specl-5_productl.oox | 0.15 | INVALID | 77.05 15.90 234.30 430.70 775.70 0.00 2274.20 0.00
specl-5_productl0.00x | 0.16 | INVALID | 69.15 9.80 153.60 458.50 618.50 0.00 1744.80 0.00
specl-5_productll.oox | 0.15 | INVALID | 79.89 54.50 433.20 384.40 719.50 0.00 2377.00 0.00
specl-5_product12.00x | 0.15 | INVALID | 74.57 27.60 284.00 448.00 653.20 0.00 1989.40 0.00
specl-5_product13.00x | 0.15 | INVALID | 70.31 6.60 115.40 490.50 638.30 0.00 1795.40 0.00
specl-5_productl4.0oox | 0.19 | INVALID | 70.13 15.50 235.30 504.40 684.10 0.00 2008.20 0.00
specl-5_product15.00x | 0.17 | INVALID | 70.54 25.60 219.00 402.70 549.80 0.00 1809.80 0.00
specl-5_productl6.00x | 0.17 | INVALID | 70.61 15.70 179.90 391.90 570.50 0.00 1714.40 0.00
specl-5_product2.oox | 0.15 | INVALID | 7091 9.50 165.90 433.50 700.10 0.00 1998.40 0.00
specl-5_product3.oox | 0.17 | INVALID | 77.35 59.00 464.30 404.30 713.50 0.00 2342.00 0.00
specl-5_product4.oox | 0.17 | INVALID | 68.13 18.90 193.20 340.00 548.90 0.00 1705.00 0.00
specl-5_product48.0ox | 0.18 | INVALID | 68.27 18.90 284.80 389.20 722.70 0.00 2144.80 0.00
specl-5_product49.00x | 0.18 | INVALID | 81.13 24.00 361.30 422.60 1049.00 0.00 3161.80 0.00
specl-5_product5.00x | 0.19 | INVALID | 70.69 16.90 240.40 374.70 734.00 0.00 2160.60 0.00
specl-5_product50.00x | 0.27 | INVALID | 79.41 26.00 378.80 281.80 1004.40 0.00 2992.80 0.00
specl-5_product51.0oox | 0.21 | INVALID | 74.38 51.80 44170 308.70 770.10 0.00 2496.00 0.00
specl-5_product52.00x | 0.21 | INVALID 75.42 28.40 318.70 314.50 852.10 0.00 2670.40 0.00
specl-5_product53.00x | 0.22 | INVALID | 75.64 24.60 361.50 390.60 930.90 0.00 2815.00 0.00
specl-5_product54.00x | 0.22 | INVALID | 69.87 18.80 292.20 319.30 858.40 0.00 2563.20 0.00
specl-5_product55.00x | 0.21 | INVALID | 76.94 73.00 646.90 266.40 780.10 0.00 2520.80 0.00
specl-5_product56.00x | 0.26 | INVALID | 76.79 36.20 392.20 389.50 838.50 0.00 2682.80 0.00
specl-5_product6.oox | 0.24 | INVALID | 71.18 5.80 105.60 518.20 593.30 0.00 1640.60 0.00
specl-5_product7.oox | 0.21 | INVALID | 69.79 22.10 206.30 386.60 539.10 0.00 1682.80 0.00
specl-5_product8.oox | 0.20 | INVALID | 69.33 14.00 151.70 378.90 557.00 0.00 1690.60 0.00
specl-5_product9.oox | 0.20 | INVALID | 72.22 13.40 193.90 370.70 680.00 0.00 1990.20 0.00

62

D. Concolic-cRandom Results

Table D.1: Concolic Random Deep Set, 10 run average with a depth of 1500

name time result | coverage | completed paths | paths explored | error_layer | deepest_layer | c_invocs | iterations | fuzzer%
SatDeep01 | 63.76 | VALID 98.40 1961.00 6061.20 0.00 396.60 3.10 587.80 98.46
SatDriller | 120.09 | VALID 94.70 2640.20 14471.70 0.00 448.00 15.10 632.10 97.30
UnsatDeep01 | 0.07 | INVALID | 97.66 57.30 215.10 375.40 376.60 0.00 639.40 0.00
UnsatDeep02 | 20.00 | INVALID | 98.30 655.50 2083.20 385.80 392.80 1.00 1144.00 | 100.00
UnsatDriller | 114.62 | INVALID | 97.40 3682.60 20389.00 445.00 448.00 21.00 1276.00 97.30
Table D.2: Concolic Random Jayhorn Set, 10 run average with a depth of 1500
name time result | coverage | completed paths | paths explored | error_layer | deepest_layer | c_invocs | iterations | fuzzer%
Addition 105.19 | VALID 91.20 159.00 1769.60 0.00 1500.00 13.40 2093.00 50.57
SatAckermann01 4.22 VALID 100.00 14.00 93.00 0.00 125.00 6.00 180.00 6.25
SatAckermann02 4.20 VALID 100.00 14.00 93.00 0.00 125.00 6.00 180.00 6.25
SatAckermann03 4.23 VALID 100.00 14.00 93.00 0.00 125.00 6.00 180.00 6.25
SatAddition01 8431 | VALID 78.13 208.30 10612.70 0.00 1500.00 11.80 2318.40 85.83
SatEvenOdd01 104.23 | VALID 88.73 123.40 15163.30 0.00 1500.00 8.50 2319.60 61.10
SatFibonacci0l 13.45 | VALID 78.70 26.30 564.10 0.00 607.80 1.80 955.00 81.54
SatFibonacci02 7.14 VALID 96.20 14.00 2772.00 0.00 727.00 1.00 1144.00 | 100.00
SatFibonacci03 3543 | VALID 96.70 37.70 1180.50 0.00 1500.00 3.00 2353.60 53.85
SatGed 111.41 | VALID 95.70 115.90 2248.70 0.00 1359.20 3.00 2019.60 | 100.00
SatHanoi01 25.03 | VALID 94.90 53.10 1659.30 0.00 1500.00 5.00 2496.10 9.52
SatMccarthy91 58.56 | VALID 96.24 57.10 7631.20 0.00 1500.00 3.20 2763.50 96.67
SatPrimes01 54.72 | VALID 70.44 133.90 12786.30 0.00 1500.00 7.50 3332.60 63.66
Ackermann(1 0.60 | INVALID | 59.02 16.00 22.00 16.00 16.00 2.00 26.00 46.15
InfiniteLoop 0.03 | INVALID | 86.68 1.40 263.50 6.00 902.40 0.00 2251.20 0.00
UnsatAckermann01 | 1890 | VALID 100.00 37.00 8790.00 0.00 1500.00 3.00 2281.00 60.00
UnsatAddition01 | 60.48 | INVALID | 84.56 19.00 4754.00 15.00 1500.00 1.00 5498.00 | 100.00
UnsatAddition02 0.01 | INVALID | 85.70 0.00 0.00 5.00 5.00 0.00 0.00 0.00
UnsatEvenOdd01 | 52.60 | INVALID | 83.40 10.50 2705.80 22.30 1500.00 1.00 4502.00 | 100.00
UnsatMccarthy91 | 21.52 | INVALID | 94.36 14.50 1706.30 28.00 1369.60 0.90 4456.20 90.00

63

Concolic-Random Results

Table D.3: Concolic Random MinePump Set, 10 run average with a depth of 1500

name time result | coverage | completed paths | paths explored | error_layer | deepest_layer | c_invocs | iterations | fuzzer%
specl-5_product59.00x | 26.83 | VALID 89.70 649.30 6389.50 0.00 1467.40 2.40 2529.30 99.83
specl-5_product60.00x | 35.39 | VALID 89.78 820.70 9270.60 0.00 1421.10 3.30 2482.10 99.78
specl-5_product6l.oox | 44.99 | VALID 88.10 795.80 12885.90 0.00 1500.00 3.20 2652.20 100.00
specl-5_product62.00x | 41.97 | VALID 87.60 740.30 12024.30 0.00 1500.00 2.90 2675.10 100.00
specl-5_product63.00x | 25.15 | VALID 89.82 721.20 6746.70 0.00 1483.50 2.70 2558.00 99.78
specl-5_product64.00x | 28.36 | VALID 89.90 775.00 8868.70 0.00 1469.60 2.70 2599.00 99.72
specl-5_productl.oox | 0.27 | INVALID 78.16 26.00 352.00 464.30 902.10 0.00 2441.60 0.00
specl-5_productl0.00x | 0.36 | INVALID 67.99 17.20 253.50 384.70 611.10 0.00 1051.40 0.00
specl-5_productll.oox | 0.33 | INVALID 71.45 35.30 288.70 392.70 525.30 0.00 1322.40 0.00
specl-5_productl2.0ox | 0.31 | INVALID 76.42 19.70 205.80 399.30 608.30 0.00 1470.20 0.00
specl-5_productl3.0ox | 0.28 | INVALID 67.83 11.30 166.00 340.80 681.60 0.00 1424.60 0.00
specl-5_productl4.oox | 0.28 | INVALID 69.65 11.60 178.40 412.60 682.70 0.00 1346.00 0.00
specl-5_productl5.00x | 0.26 | INVALID 7291 24.00 201.90 393.90 513.00 0.00 1030.60 0.00
specl-5_productl6.00x | 0.27 | INVALID 70.69 17.70 167.90 451.40 519.70 0.00 1015.00 0.00
specl-5_product2.0o0x | 0.24 | INVALID | 65.06 8.00 122.00 376.40 537.80 0.00 815.80 0.00
specl-5_product3.oox | 0.25 | INVALID | 73.81 24.80 236.60 326.90 622.70 0.00 1718.00 0.00
specl-5_productd.oox | 0.23 | INVALID 64.88 11.30 109.20 326.80 411.30 0.00 621.40 0.00
specl-5_product48.0ox | 0.28 | INVALID 70.78 12.10 205.30 385.60 770.70 0.00 1546.80 0.00
specl-5_product49.0ox | 0.30 | INVALID 72.45 16.40 261.00 355.80 843.00 0.00 1907.60 0.00
specl-5_product5.00x | 0.24 | INVALID 73.60 10.70 163.90 340.60 779.60 0.00 2000.00 0.00
specl-5_product50.00x | 0.30 | INVALID 74.40 13.00 209.50 419.60 777.80 0.00 1662.80 0.00
specl-5_product51.0ox | 0.28 | INVALID 71.02 21.80 182.10 287.70 508.60 0.00 1352.20 0.00
specl-5_product52.00x | 0.29 | INVALID | 69.84 19.60 211.40 334.80 625.70 0.00 1534.00 0.00
specl-5_product53.00x | 0.29 | INVALID | 72.14 17.60 275.90 426.90 813.00 0.00 2092.80 0.00
specl-5_product54.0ox | 0.29 | INVALID 72.27 14.40 227.20 384.00 808.80 0.00 1746.00 0.00
specl-5_product55.00x | 0.30 | INVALID 74.37 40.60 387.00 358.20 735.30 0.00 1832.80 0.00
specl-5_product56.00x | 0.28 | INVALID 82.31 32.00 341.90 393.70 859.20 0.00 2463.60 0.00
specl-5_product6.oox | 0.31 | INVALID 75.35 18.50 281.50 480.30 846.50 0.00 1997.80 0.00
specl-5_product7.oox | 0.27 | INVALID 79.80 41.50 367.20 340.70 812.70 0.00 2498.20 0.00
specl-5_product8.oox | 0.25 | INVALID 82.07 31.30 305.10 410.90 725.30 0.00 1981.60 0.00
specl-5_product9.oox | 0.26 | INVALID 71.54 8.10 136.80 433.50 595.10 0.00 742.20 0.00

64

E. Fuzzer Comparisons

Table E.1: Concolic Random vs Concolic Genetic MinePump Set, 10 run average with a
depth of 1500

name fuzzer | time result | coverage | completed paths | paths explored | error_layer | deepest_layer | c_invocs | iterations | fuzzer%
specl-5_productl | Genetic | 0.15 | INVALID 77.05 15.90 234.30 430.70 775.70 0.00 2274.20 0.00
specl-5_productl | Random | 0.27 | INVALID 78.16 26.00 352.00 464.30 902.10 0.00 2441.60 0.00
specl-5_productl0 | Genetic | 0.16 | INVALID 69.15 9.80 153.60 458.50 618.50 0.00 1744.80 0.00
specl-5_productl0 | Random | 0.36 | INVALID 67.99 17.20 253.50 384.70 611.10 0.00 1051.40 0.00
specl-5_productll | Genetic | 0.15 | INVALID 79.89 54.50 433.20 384.40 719.50 0.00 2377.00 0.00
specl-5_productll | Random | 0.33 | INVALID 71.45 35.30 288.70 392.70 525.30 0.00 1322.40 0.00
specl-5_product12 | Genetic | 0.15 | INVALID 74.57 27.60 284.00 448.00 653.20 0.00 1989.40 0.00
specl-5_product]12 | Random | 0.31 | INVALID | 76.42 19.70 205.80 399.30 608.30 0.00 1470.20 0.00
specl-5_productl13 | Genetic | 0.15 | INVALID | 70.31 6.60 115.40 490.50 638.30 0.00 1795.40 0.00
specl-5_product13 | Random | 0.28 | INVALID | 67.83 11.30 166.00 340.80 681.60 0.00 1424.60 0.00
specl-5_productl4 | Genetic | 0.19 | INVALID | 70.13 15.50 235.30 504.40 684.10 0.00 2008.20 0.00
specl-5_productl4 | Random | 0.28 | INVALID 69.65 11.60 178.40 412.60 682.70 0.00 1346.00 0.00
specl-5_productl5 | Genetic | 0.17 | INVALID 70.54 25.60 219.00 402.70 549.80 0.00 1809.80 0.00
specl-5_productl5 | Random | 0.26 | INVALID 7291 24.00 201.90 393.90 513.00 0.00 1030.60 0.00
specl-5_product16 | Genetic | 0.17 | INVALID 70.61 15.70 179.90 391.90 570.50 0.00 1714.40 0.00
specl-5_productl6 | Random | 0.27 | INVALID 70.69 17.70 167.90 451.40 519.70 0.00 1015.00 0.00
specl-5_product2 | Genetic | 0.15 | INVALID | 70.91 9.50 165.90 433.50 700.10 0.00 1998.40 0.00
specl-5_product?2 | Random | 0.24 | INVALID | 65.06 8.00 122.00 376.40 537.80 0.00 815.80 0.00
specl-5_product3 | Genetic | 0.17 | INVALID | 77.35 59.00 464.30 404.30 713.50 0.00 2342.00 0.00
specl-5_product3 | Random | 0.25 | INVALID | 73.81 24.80 236.60 326.90 622.70 0.00 1718.00 0.00
specl-5_product4 | Genetic | 0.17 | INVALID | 68.13 18.90 193.20 340.00 548.90 0.00 1705.00 0.00
specl-5_product4 | Random | 0.23 | INVALID 64.88 11.30 109.20 326.80 411.30 0.00 621.40 0.00
specl-5_product48 | Genetic | 0.18 | INVALID 68.27 18.90 284.80 389.20 722.70 0.00 2144.80 0.00
specl-5_product48 | Random | 0.28 | INVALID 70.78 12.10 205.30 385.60 770.70 0.00 1546.80 0.00
specl-5_product49 | Genetic | 0.18 | INVALID 81.13 24.00 361.30 422.60 1049.00 0.00 3161.80 0.00
specl-5_product49 | Random | 0.30 | INVALID | 7245 16.40 261.00 355.80 843.00 0.00 1907.60 0.00
specl-5_product5 | Genetic | 0.19 | INVALID | 70.69 16.90 240.40 374.70 734.00 0.00 2160.60 0.00
specl-5_product5 | Random | 0.24 | INVALID | 73.60 10.70 163.90 340.60 779.60 0.00 2000.00 0.00
specl-5_product50 | Genetic | 0.27 | INVALID | 79.41 26.00 378.80 281.80 1004.40 0.00 2992.80 0.00
specl-5_product50 | Random | 0.30 | INVALID | 7440 13.00 209.50 419.60 777.80 0.00 1662.80 0.00
specl-5_product51 | Genetic | 0.21 | INVALID 74.38 51.80 441.70 308.70 770.10 0.00 2496.00 0.00
specl-5_product51 | Random | 0.28 | INVALID 71.02 21.80 182.10 287.70 508.60 0.00 1352.20 0.00
specl-5_product52 | Genetic | 0.21 | INVALID 75.42 28.40 318.70 314.50 852.10 0.00 2670.40 0.00
specl-5_product52 | Random | 0.29 | INVALID 69.84 19.60 211.40 334.80 625.70 0.00 1534.00 0.00
specl-5_product53 | Genetic | 0.22 | INVALID | 75.64 24.60 361.50 390.60 930.90 0.00 2815.00 0.00
specl-5_product53 | Random | 0.29 | INVALID | 72.14 17.60 275.90 426.90 813.00 0.00 2092.80 0.00
specl-5_product54 | Genetic | 0.22 | INVALID | 69.87 18.80 292.20 319.30 858.40 0.00 2563.20 0.00
specl-5_product54 | Random | 0.29 | INVALID | 7227 14.40 227.20 384.00 808.80 0.00 1746.00 0.00
specl-5_product55 | Genetic | 0.21 | INVALID | 76.94 73.00 646.90 266.40 780.10 0.00 2520.80 0.00
specl-5_product55 | Random | 0.30 | INVALID | 74.37 40.60 387.00 358.20 735.30 0.00 1832.80 0.00
specl-5_product56 | Genetic | 0.26 | INVALID 76.79 36.20 392.20 389.50 838.50 0.00 2682.80 0.00
specl-5_product56 | Random | 0.28 | INVALID 82.31 32.00 341.90 393.70 859.20 0.00 2463.60 0.00
specl-5_product59 | Genetic | 30.90 | VALID 89.70 3298.20 30628.20 0.00 1484.70 2.90 2594.90 100.00
specl-5_product59 | Random | 26.83 | VALID 89.70 649.30 6389.50 0.00 1467.40 2.40 2529.30 99.83
specl-5_product6 | Genetic | 0.24 | INVALID | 71.18 5.80 105.60 518.20 593.30 0.00 1640.60 0.00
specl-5_product6 | Random | 0.31 | INVALID | 7535 18.50 281.50 480.30 846.50 0.00 1997.80 0.00
specl-5_product60 | Genetic | 37.14 | VALID 89.80 3322.00 36441.40 0.00 1488.80 3.00 2573.70 | 100.00
specl-5_product60 | Random | 35.39 | VALID 89.78 820.70 9270.60 0.00 1421.10 3.30 2482.10 99.78
specl-5_product6l | Genetic | 52.73 | VALID 88.10 3642.60 55728.30 0.00 1500.00 3.40 2695.90 | 100.00
specl-5_product6l | Random | 44.99 | VALID 88.10 795.80 12885.90 0.00 1500.00 3.20 2652.20 100.00
specl-5_product62 | Genetic | 41.03 | VALID 87.60 3120.30 47673.50 0.00 1500.00 2.70 2688.80 100.00
specl-5_product62 | Random | 41.97 | VALID 87.60 740.30 12024.30 0.00 1500.00 2.90 2675.10 100.00
specl-5_product63 | Genetic | 35.67 | VALID 89.90 3865.60 36628.00 0.00 1500.00 3.70 2574.10 100.00
specl-5_product63 | Random | 25.15 | VALID 89.82 721.20 6746.70 0.00 1483.50 2.70 2558.00 99.78
specl-5_product64 | Genetic | 39.62 | VALID 89.90 3832.80 41818.40 0.00 1485.60 3.70 2539.10 99.94
specl-5_product64 | Random | 28.36 | VALID 89.90 775.00 8868.70 0.00 1469.60 2.70 2599.00 99.72
specl-5_product7 | Genetic | 0.21 | INVALID | 69.79 22.10 206.30 386.60 539.10 0.00 1682.80 0.00
specl-5_product? | Random | 0.27 | INVALID 79.80 41.50 367.20 340.70 812.70 0.00 2498.20 0.00
specl-5_product8 | Genetic | 0.20 | INVALID 69.33 14.00 151.70 378.90 557.00 0.00 1690.60 0.00
specl-5_product8 | Random | 0.25 | INVALID 82.07 31.30 305.10 410.90 725.30 0.00 1981.60 0.00
specl-5_product9 | Genetic | 0.20 | INVALID 72.22 13.40 193.90 370.70 680.00 0.00 1990.20 0.00
specl-5_product9 | Random | 0.26 | INVALID 71.54 8.10 136.80 433.50 595.10 0.00 742.20 0.00

65

Fuzzer Comparisons

Figure E.1: Comparison of what percentage of the transition coverage is caused by the
fuzzing algorithm after each concolic invocation

00 Ackermann01 . Addition SatAckermann01 SatGed
100
9% Genetic = Genetic —— Genetic 100 — — Genetic
Random %20 —— Random 90 ~—— Random %0 —— Random
80 80 3
80
g 70 o 70 g 70 3
g & 3 R
g g 0 € 0 §
o 2 3 3 60
s s S » § 8
2 H § § s0
fw o))
g £ £ £
& 2 H
* 30 * 30 3
20
20 20 20 /
10 10 10 10
0 o o
00 02 Cn i 1 ts 08 Lo o 5 5 30 0 1 2 3 4 6 7 o 5 10 15 20 25 30
oncolic Invocations Concolic Invocations Concolic Invocations Concolic Invocations
SatAckermann02 SatAckermann03 SatAddition01 SatHanoiol
100 100 100 100
— Genetic — Genetic — Genetic
90 — Random % — Random % £ — Random
80 80 80 80
o 7 s 70 P g ™
§ e £ o0 § & § e
8 8 8 8 w
s % s %) s
1) ! . { .
£ £ £ £
2 3 ® 3 ® 3 £ 30
20 20 20 20
10 10 10 { = Genetic 10
— Random
0 o o o
o 1 2 3 5 6 o 1 3 H 3 o H 2 EY) 1 2 3 4 H 6
Concolic Invocations Concolic Invocations Concolic Invocations Concolic Invocations
SatEvenOddo1 SatFibonacciol SatFibonacci03 SatPrimes01
100 100 100 100
— Genetic — Genetic — Genetic — Genetic
%0 —— Random 901 —— Random % —— Random 90 —— Random
50 0 80 80
s 70) —— W o ™ g ™
T 60 T 60 2 60 T 60
8 S 8 8
s s g 50 g %0 Y
o S Y E o
£ £ £ E
B 2 30 * 30 £ 30
20 20 20 20
10 10 10 10
o o
[B 20 25 3 B 4 00 05 10 15 20 25 30 00 05 ¥ ¥ 25 30 o s 10 1 3
Concolic Invocations Concolic Invocations Concolic Invocations Concolic Invocations
UnsatAckermann01
100
— Genetic
90{ — Random
80
o 70
2 60
8
s s
2w
g
2 30
20
10

00 05 10 15 20 25 30 35 40
concolic Invocations

66

Table E.2: Concolic Random vs Concolic Genetic Deep Set, 10 run average with a depth of

1500
name fuzzer | time result | coverage | completed paths | paths explored | error_layer | deepest_layer | c_invocs | iterations | fuzzer%
SatDeep01 | Genetic | 73.85 | VALID 98.40 13890.40 38674.60 0.00 399.00 3.70 602.80 99.08
SatDeep01 | Random | 63.76 | VALID 98.40 1961.00 6061.20 0.00 396.60 3.10 587.80 98.46
SatDriller Genetic | 120.08 | VALID 94.70 20849.30 101893.30 0.00 448.00 14.80 631.80 97.30
SatDriller | Random | 120.09 | VALID 94.70 2640.20 14471.70 0.00 448.00 15.10 632.10 97.30
UnsatDeep01 | Genetic | 0.08 | INVALID | 97.82 76.20 272.70 375.80 377.90 0.00 1031.60 0.00
UnsatDeep01 | Random | 0.07 | INVALID | 97.66 57.30 215.10 375.40 376.60 0.00 639.40 0.00
UnsatDeep02 | Genetic | 20.54 | INVALID | 98.30 3901.90 10907.90 390.20 396.20 1.00 1177.00 98.44
UnsatDeep02 | Random | 20.00 | INVALID | 98.30 655.50 2083.20 385.80 392.80 1.00 1144.00 | 100.00
UnsatDriller | Genetic | 118.53 | INVALID | 97.13 29619.40 145319.80 400.50 448.00 21.00 1215.80 94.99
UnsatDriller | Random | 114.62 | INVALID | 97.40 3682.60 20389.00 445.00 448.00 21.00 1276.00 97.30
Table E.3: Concolic Random vs Concolic Genetic Jayhorn Set, 10 run average with a depth
of 1500
name fuzzer | time result | coverage | completed paths | paths explored | error_layer | deepest_layer | c_invocs | iterations | fuzzer%
Addition Genetic | 85.03 | VALID 91.20 1494.50 5321.80 0.00 267.90 21.70 390.30 60.57
Addition Random | 105.19 | VALID 91.20 159.00 1769.60 0.00 1500.00 13.40 2093.00 50.57
SatAckermann01 | Genetic | 26.80 | VALID 100.00 26.40 1887.80 0.00 1436.00 4.80 2056.80 78.12
SatAckermann01 | Random | 422 | VALID 100.00 14.00 93.00 0.00 125.00 6.00 180.00 6.25
SatAckermann02 Genetic | 20.93 | VALID 100.00 24.40 1777.70 0.00 1372.00 4.60 1964.40 87.50
SatAckermann(02 | Random | 4.20 VALID 100.00 14.00 93.00 0.00 125.00 6.00 180.00 6.25
SatAckermann03 Genetic | 2637 | VALID 100.00 23.30 1696.90 0.00 1436.00 5.00 2055.70 78.12
SatAckermann03 | Random | 4.23 VALID 100.00 14.00 93.00 0.00 125.00 6.00 180.00 6.25
SatAddition01 Genetic | 71.36 | VALID 89.20 1332.40 4846.20 0.00 199.30 18.90 312.80 44.32
SatAddition01 Random | 84.31 VALID 78.13 208.30 10612.70 0.00 1500.00 11.80 2318.40 85.83
SatEvenOdd01 Genetic | 8731 | VALID 93.60 884.70 151532.10 0.00 1500.00 11.60 2310.20 69.70
SatEvenOdd01 Random | 104.23 | VALID 88.73 123.40 15163.30 0.00 1500.00 8.50 2319.60 61.10
SatFibonacci0l Genetic | 13.70 | VALID 78.70 208.40 1445.60 0.00 607.80 1.80 955.00 85.90
SatFibonacci0l Random | 1345 | VALID 78.70 26.30 564.10 0.00 607.80 1.80 955.00 81.54
SatFibonacci02 Genetic | 8.56 VALID 96.20 157.80 31244.40 0.00 727.00 1.00 1144.00 100.00
SatFibonacci02 Random | 7.14 VALID 96.20 14.00 2772.00 0.00 727.00 1.00 1144.00 100.00
SatFibonacci03 Genetic | 3554 | VALID 96.70 288.20 2552.50 0.00 1500.00 3.00 2353.60 58.21
SatFibonacci03 Random | 3543 | VALID 96.70 37.70 1180.50 0.00 1500.00 3.00 2353.60 53.85
SatGed Genetic | 39.92 | VALID 95.70 933.30 3011.90 0.00 417.20 12.70 628.10 28.12
SatGed Random | 11141 | VALID 95.70 115.90 2248.70 0.00 1359.20 3.00 2019.60 | 100.00
SatHanoi01 Genetic | 33.31 | VALID 94.90 398.20 3492.40 0.00 1500.00 4.80 2497.40 35.56
SatHanoi01 Random | 25.03 | VALID 94.90 53.10 1659.30 0.00 1500.00 5.00 2496.10 9.52
SatMccarthy91 Genetic | 56.99 | VALID 86.84 423.20 53796.40 0.00 1500.00 3.10 2520.80 95.00
SatMccarthy91 Random | 58.56 | VALID 96.24 57.10 7631.20 0.00 1500.00 3.20 2763.50 96.67
SatPrimes01 Genetic | 90.34 | VALID 82.50 1247.70 27831.20 0.00 1500.00 16.40 3927.30 6.75
SatPrimes01 Random | 54.72 | VALID 70.44 133.90 12786.30 0.00 1500.00 7.50 3332.60 63.66
Ackermann(01 Genetic | 043 | INVALID 59.50 162.20 169.00 16.00 16.00 2.00 52.00 23.09
Ackermann(1 Random | 0.60 | INVALID 59.02 16.00 22.00 16.00 16.00 2.00 26.00 46.15
InfiniteLoop Genetic | 0.04 | INVALID 84.46 2.00 376.00 6.00 603.60 0.00 1509.60 0.00
InfiniteLoop Random | 0.03 | INVALID | 86.68 1.40 263.50 6.00 902.40 0.00 2251.20 0.00
UnsatAckermann01 | Genetic | 29.68 | INVALID | 100.00 273.50 78794.80 32.00 1500.00 3.00 4787.90 86.67
UnsatAckermann01 | Random | 18.90 | VALID 100.00 37.00 8790.00 0.00 1500.00 3.00 2281.00 60.00
UnsatAddition01 | Genetic | 57.90 | INVALID | 85.82 180.60 45154.00 15.00 1500.00 1.00 5513.20 70.83
UnsatAddition01 | Random | 60.48 | INVALID 84.56 19.00 4754.00 15.00 1500.00 1.00 5498.00 100.00
UnsatAddition02 | Genetic | 0.01 | INVALID 85.70 0.00 0.00 5.00 5.00 0.00 12.00 0.00
UnsatAddition02 | Random | 0.01 | INVALID 85.70 0.00 0.00 5.00 5.00 0.00 0.00 0.00
UnsatEvenOdd01 | Genetic | 54.05 | INVALID 82.98 85.10 20658.60 22.30 1500.00 1.00 4524.00 73.22
UnsatEvenOdd01 | Random | 52.60 | INVALID 83.40 10.50 2705.80 22.30 1500.00 1.00 4502.00 100.00
UnsatMccarthy91 | Genetic | 25.15 | INVALID | 88.72 143.00 18533.70 10.00 1500.00 1.00 4514.80 93.33
UnsatMccarthy91l | Random | 21.52 | INVALID | 94.36 14.50 1706.30 28.00 1369.60 0.90 4456.20 90.00

67

F. State-Of-The-Art Results

Table E1: Average Comparison Concolic, JDart, JBMC, Java-Ranger on Invalid Minepump

Programs

Table E.2: Average Comparison Concolic, JDart, JBMC, Java-Ranger on Valid Minepump

Programs

Table E.3: Average Comparison Concolic, JDart, JBMC, Java-Ranger on the Deep set

heuristic | time
DSE 0.15
JBMC 241
JDart 4.13
JavaRanger | 10.06

heuristic time
DSE 33.05
JBMC 3.17
JDart 24.33
JavaRanger | 325.00

heuristic time
DSE 48.83

JBMC 2.94
JDart 542.90
JavaRanger | 336.57

68

Table F.4: JDart, Java-Ranger and JBMC results on Deep Set, 5 run average

program tool time verdict
SatDeep01 DSE 56.51 VALID
SatDeep01 JDart 901.70 | TIMEOUT
SatDeep01 JBMC 2.76 VALID
SatDeep01 | JavaRanger | 8.60 | UNKOWN
SatDriller DSE 91.91 VALID
SatDriller JDart 902.19 | TIMEOUT
SatDriller JBMC 3.60 VALID
SatDriller | JavaRanger | 829.43 | VALID
UnsatDeep01 DSE 0.05 | INVALID
UnsatDeep01 JDart 4.01 INVALID
UnsatDeep01 JBMC 2.50 INVALID
UnsatDeep01 | JavaRanger | 7.90 | UNKOWN
UnsatDeep02 DSE 9.56 | INVALID
UnsatDeep02 JDart 448 | INVALID
UnsatDeep02 JBMC 2.50 | INVALID
UnsatDeep02 | JavaRanger | 7.84 | UNKOWN
UnsatDriller DSE 86.10 | INVALID
UnsatDriller JDart 902.10 | TIMEOUT
UnsatDriller JBMC 3.34 | INVALID
UnsatDriller | JavaRanger | 829.06 VALID

69

State-Of-The-Art Results

Table E.5: JDart, Java-Ranger and JBMC results on Jayhorn Recursive Set, SVComp Results

name heuristic time result name heuristic time result
Ackermann(1 DSE 0.35 INVALID SatGed DSE 22.50 VALID
Ackermann01 JBMC 140 | INVALID SatGed JBMC 880.00 | ERROR
Ackermann01 JDart 3.60 INVALID SatGed JDart 900.00 | TIMEOUT
Ackermann01 | JavaRanger | 8.80 | INVALID SatGed JavaRanger | 610.00 | UNKOWN
Addition DSE 109.10 VALID SatHanoi01 DSE 29.97 VALID
Addition JBMC 880.00 | UNKOWN SatHanoi01 JBMC 580.00 OOM
Addition JDart 130.00 | VALID SatHanoi01 JDart 900.00 | TIMEOUT
Addition JavaRanger | 630.00 | UNKOWN SatHanoi01 JavaRanger | 810.00 | VALID
InfiniteLoop DSE 0.02 | INVALID SatMccarthy91 DSE 48.97 VALID
InfiniteLoop JBMC 1.00 | INVALID SatMccarthy91 JBMC 710.00 OOM
InfiniteLoop JDart 3.70 | INVALID SatMccarthy91 JDart 900.00 | TIMEOUT
InfiniteLoop JavaRanger | 8.40 | INVALID SatMccarthy91 JavaRanger | 820.00 | VALID
SatAckermann01 DSE 12.65 VALID SatPrimes01 DSE 65.46 VALID
SatAckermann(01 JBMC 500.00 OOM SatPrimes01 JBMC 450.00 OOM
SatAckermann(O1 JDart 900.00 | TIMEOUT SatPrimes01 JDart 900.00 | TIMEOUT
SatAckermannO1 | JavaRanger | 800.00 | UNKOWN SatPrimes01 JavaRanger | 800.00 | UNKOWN
SatAckermann02 DSE 12.32 VALID UnsatAckermann01 DSE 2390 | INVALID
SatAckermann(2 JBMC 450.00 OOM UnsatAckermann01 JBMC 480 | INVALID
SatAckermann(2 JDart 680.00 | TIMEOUT || UnsatAckermann01 JDart 900.00 | TIMEOUT
SatAckermann02 | JavaRanger | 560.00 | UNKOWN || UnsatAckermannO1 | JavaRanger | 800.00 | UNKOWN
SatAckermann03 DSE 9.94 VALID UnsatAddition01 DSE 54.63 | INVALID
SatAckermann03 JBMC 470.00 OOM UnsatAddition01 JBMC 0.91 INVALID
SatAckermann03 JDart 900.00 | TIMEOUT UnsatAddition01 JDart 3.70 INVALID
SatAckermannO3 | JavaRanger | 800.00 | UNKOWN || UnsatAddition01 | JavaRanger | 800.00 | UNKOWN
SatAddition01 DSE 110.08 | VALID UnsatAddition02 DSE 0.01 | INVALID
SatAddition01 JBMC 880.00 | ERROR UnsatAddition02 JBMC 880.00 | ERROR
SatAddition01 JDart 140.00 VALID UnsatAddition02 JDart 460.00 | INVALID
SatAddition01 | JavaRanger | 800.00 | UNKOWN || UnsatAddition02 | JavaRanger | 800.00 | UNKOWN
SatEvenOdd01 DSE 65.20 VALID UnsatEvenOdd01 DSE 35.78 | INVALID
SatEvenOdd01 JBMC 880.00 | ERROR UnsatEvenOdd01 JBMC 1.10 | INVALID
SatEvenOddo1 JDart 35.00 VALID UnsatEvenOddo01 JDart 3.70 | INVALID
SatEvenOdd01 | JavaRanger | 73.00 VALID UnsatEvenOdd01 | JavaRanger | 8.20 | INVALID
SatFibonacciOl DSE 16.35 VALID UnsatMccarthy91 DSE 10.76 | INVALID
SatFibonacciOl JBMC 700.00 OOM UnsatMccarthy91 JBMC 1.10 | INVALID
SatFibonacciO1 JDart 420.00 | TIMEOUT UnsatMccarthy91 JDart 3.70 | INVALID
SatFibonacci0l | JavaRanger | 870.00 VALID UnsatMccarthy91 | JavaRanger | 8.00 INVALD
SatFibonacci03 DSE 27.76 VALID
SatFibonacci03 JBMC 670.00 OOM
SatFibonacci03 JDart 900.00 | TIMEOUT
SatFibonacci03 | JavaRanger | 870.00 VALID

70

Table F.6: JDart, Java-Ranger and JBMC results on MinePump set, SVComp Results

name heuristic | time result name heuristic time result
specl-5_productl DSE 0.13 | INVALID || specl-5_product52 DSE 0.17 | INVALID
specl-5_productl JBMC 2.30 | INVALID || specl-5_product52 JBMC 240 | INVALID
specl-5_productl JDart 4.50 | INVALID || specl-5_product52 JDart 450 | INVALID
specl-5_productl | JavaRanger | 8.80 | INVALID || specl-5_product52 | JavaRanger | 8.90 | INVALID
specl-5_product10 DSE 0.13 | INVALID || specl-5_product53 DSE 0.16 | INVALID
specl-5_product10 JBMC 2.30 | INVALID || specl-5_product53 JBMC 2.60 | INVALID
specl-5_product10 JDart 3.90 | INVALID || specl-5_product53 JDart 4.60 | INVALID
specl-5_productl0 | JavaRanger | 9.00 | INVALID || specl-5_product53 | JavaRanger | 9.10 | INVALID
specl-5_productll DSE 0.16 | INVALID || specl-5_product54 DSE 0.16 | INVALID
specl-5_productll JBMC 2.50 | INVALID || specl-5_product54 JBMC 250 | INVALID
specl-5_productll JDart 3.80 | INVALID || specl-5_product54 JDart 450 | INVALID
specl-5_productll | JavaRanger | 9.40 | INVALID || specl-5_product54 | JavaRanger | 8.80 | INVALID
specl-5_product12 DSE 0.14 | INVALID || specl-5_product55 DSE 0.16 | INVALID
specl-5_product12 JBMC 2.50 | INVALID || specl-5_product55 JBMC 2.70 | INVALID
specl-5_product12 JDart 3.80 | INVALID || specl-5_product55 JDart 450 | INVALID
specl-5_productl2 | JavaRanger | 9.10 | INVALID || specl-5_product55 | JavaRanger | 8.50 | INVALID
specl-5_product13 DSE 0.16 | INVALID || specl-5_product56 DSE 0.17 | INVALID
specl-5_product13 JBMC 2.40 | INVALID || specl-5_product56 JBMC 2.40 | INVALID
specl-5_product13 JDart 3.80 | INVALID || specl-5_product56 JDart 450 | INVALID
specl-5_productl3 | JavaRanger | 8.40 | INVALID || specl-5_product56 | JavaRanger | 9.40 | INVALID
specl-5_productl4 DSE 0.15 | INVALID || specl-5_product59 DSE 25.69 | VALID
specl-5_productl4 JBMC 2.20 | INVALID || specl-5_product59 JBMC 3.30 VALID
specl-5_productl4 JDart 3.90 | INVALID || specl-5_product59 JDart 24.00 | VALID
specl-5_productl4 | JavaRanger | 9.20 | INVALID || specl-5_product59 | JavaRanger | 330.00 | VALID
specl-5_product15 DSE 0.15 | INVALID || specl-5_product6 DSE 0.14 | INVALID
specl-5_product15 JBMC 2.40 | INVALID || specl-5_product6 JBMC 220 | INVALID
specl-5_product15 JDart 3.90 | INVALID || specl-5_product6 JDart 3.80 | INVALID
specl-5_productl5 | JavaRanger | 8.90 | INVALID || specl-5_product6 | JavaRanger | 8.40 | INVALID
specl-5_productl6 DSE 0.14 | INVALID || specl-5_product60 DSE 3497 | VALID
specl-5_productl6 JBMC 2.30 | INVALID || specl-5_product60 JBMC 3.20 VALID
specl-5_productl6 JDart 3.90 | INVALID || specl-5_product60 JDart 24.00 | VALID
specl-5_productl6 | JavaRanger | 8.50 | INVALID || specl-5_product60 | JavaRanger | 460.00 | VALID
specl-5_product2 DSE 0.14 | INVALID || specl-5_product61 DSE 3754 | VALID
specl-5_product2 JBMC 2.40 | INVALID || specl-5_product6l JBMC 3.00 VALID
specl-5_product2 JDart 3.80 | INVALID || specl-5_product6l JDart 25.00 | VALID
specl-5_product2 | JavaRanger | 8.50 | INVALID || specl-5_product6l | JavaRanger | 160.00 | VALID
specl-5_product3 DSE 0.13 | INVALID || specl-5_product62 DSE 3476 | VALID
specl-5_product3 JBMC 2.40 | INVALID || specl-5_product62 JBMC 3.00 VALID
specl-5_product3 JDart 4.10 | INVALID || specl-5_product62 JDart 25.00 | VALID
specl-5_product3 | JavaRanger | 9.30 | INVALID || specl-5_product62 | JavaRanger | 160.00 | VALID
specl-5_product4 DSE 0.14 | INVALID || specl-5_product63 DSE 33.08 | VALID
specl-5_product4 JBMC 2.20 | INVALID || specl-5_product63 JBMC 3.20 VALID
specl-5_product4 JDart 3.90 | INVALID || specl-5_product63 JDart 24.00 | VALID
specl-5_product4 | JavaRanger | 9.50 | INVALID || specl-5_product63 | JavaRanger | 360.00 | VALID
specl-5_product48 DSE 0.15 | INVALID || specl-5_product64 DSE 32.26 | VALID
specl-5_product48 JBMC 2.80 | INVALID || specl-5_product64 JBMC 3.30 VALID
specl-5_product48 JDart 3.80 | INVALID || specl-5_product64 JDart 24.00 | VALID
specl-5_product48 | JavaRanger | 39.00 | INVALID || specl-5_product64 | JavaRanger | 480.00 | VALID
specl-5_product49 DSE 0.18 | INVALID || specl-5_product? DSE 0.13 | INVALID
specl-5_product49 JBMC 2.70 | INVALID || specl-5_product? JBMC 250 | INVALID
specl-5_product49 JDart 4.40 | INVALID || specl-5_product? JDart 3.90 | INVALID
specl-5_product49 | JavaRanger | 8.20 | INVALID || specl-5_product? | JavaRanger | 8.50 | INVALID
specl-5_product5 DSE 0.13 | INVALID || specl-5_product8 DSE 0.13 | INVALID
specl-5_product5 JBMC 220 | INVALID || specl-5_product8 JBMC 230 | INVALID
specl-5_product5 JDart 4.60 | INVALID || specl-5_product8 JDart 3.90 | INVALID
specl-5_product5 | JavaRanger | 8.90 | INVALID || specl-5_product8 | JavaRanger | 9.00 | INVALID
specl-5_product50 DSE 0.16 | INVALID || specl-5_product9 DSE 0.14 | INVALID
specl-5_product50 JBMC 2.50 | INVALID || specl-5_product9 JBMC 220 | INVALID
specl-5_product50 JDart 440 | INVALID || specl-5_product9 JDart 4.00 | INVALID
specl-5_product50 | JavaRanger | 8.40 | INVALID || specl-5_product9 | JavaRanger | 8.30 | INVALID
specl-5_product51 DSE 0.15 | INVALID
specl-5_product51 JBMC 2.40 | INVALID
specl-5_product51 JDart 450 | INVALID
specl-5_product51 | JavaRanger | 9.40 | INVALID

71

Bibliography

[1]
2]
[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

N. G. Leveson and C. S. Turner, “An investigation of the therac-25 accidents,”
Computer, vol. 26, no. 7, pp. 18-41, 1993.

K. Y. Rozier, “Linear temporal logic symbolic model checking,” Computer Sci-
ence Review, vol. 5, no. 2, pp. 163-203, 2011.

J. C. King, “Symbolic execution and program testing,” Commun. ACM, vol. 19,
no. 7, pp. 385-394, Jul. 1976, 1ssN: 0001-0782. DOI: 10. 1145/360248 . 360252.
[Online]. Available: https://doi.org/10.1145/360248.360252.

R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey
of symbolic execution techniques,” ACM Computing Surveys (CSUR), vol. 51,
no. 3, pp. 1-39, 2018.

S. Koppier, “The path explosion problem in symbolic execution: An approach
to the effects of concurrency and aliasing,” M.S. thesis, 2020.

C. Cadar, D. Dunbar, D. R. Engler, et al., “Klee: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs.,” in OSDI, vol. 8,
2008, pp. 209-224.

E. E Rizzi, S. Elbaum, and M. B. Dwyer, “On the techniques we create, the
tools we build, and their misalignments: A study of klee,” in Proceedings of the
38th International Conference on Software Engineering, 2016, pp. 132-143.

V. Sharma, S. Hussein, M. W. Whalen, S. McCamant, and W. Visser, “Java
ranger: Statically summarizing regions for efficient symbolic execution of java,”
in Proceedings of the 28th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering, 2020,
pp- 123-134.

V. Sharma, S. Hussein, M. W. Whalen, S. McCamant, and W. Visser, “Java
ranger at sv-comp 2020 (competition contribution),” in International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, Springer,
2020, pp. 393-397.

C. Cadar and K. Sen, “Symbolic execution for software testing: Three decades
later,” Communications of the ACM, vol. 56, no. 2, pp. 82-90, 2013.

R. Brenguier, L. Cordeiro, D. Kroening, and P. Schrammel, “Jbmc: A bounded
model checking tool for java bytecode,” arXiv preprint arXiv:2302.02381, 2023.
K. Luckow, M. Dimjasevi¢, D. Giannakopoulou, et al., “Jd art: A dynamic sym-
bolic analysis framework,” in Tools and Algorithms for the Construction and Anal-
ysis of Systems: 22nd International Conference, TACAS 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eind-
hoven, The Netherlands, April 2-8, 2016, Proceedings 22, Springer, 2016, pp. 442—
459.

M. Mues and F. Howar, “JDart: Portfolio solving, breadth-first search and SMT-
Lib strings (competition contribution),” in Proc. TACAS (2), ser. LNCS 12652,
Springer, 2021, pp. 448-452. DOI: 10.1007/978-3-030-72013-1_30.

72

https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-030-72013-1_30

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]
[24]
[25]
[26]
[27]

[28]

A. Avancini and M. Ceccato, “Comparison and integration of genetic algo-
rithms and dynamic symbolic execution for security testing of cross-site script-
ing vulnerabilities,” Information and Software Technology, vol. 55, no. 12, pp. 2209-
2222, 2013.

M. Christakis, P. Miiller, and V. Wiistholz, “Guiding dynamic symbolic execu-
tion toward unverified program executions,” in Proceedings of the 38th Interna-
tional Conference on Software Engineering, 2016, pp. 144-155.

P. Godefroid, M. Y. Levin, D. A. Molnar, et al., “ Automated whitebox fuzz test-
ing.,” in NDSS, vol. 8, 2008, pp. 151-166.

E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions of con-
straints: Whitebox fuzz testing in production,” in 2013 35th International Con-
ference on Software Engineering (ICSE), IEEE, 2013, pp. 122-131.

C. S. Pasareanu, N. Rungta, and W. Visser, “Symbolic execution with mixed
concrete-symbolic solving,” ser. ISSTA 11, Toronto, Ontario, Canada: Associ-
ation for Computing Machinery, 2011, pp. 3444, 1SBN: 9781450305624. DOTI:
10.1145/2001420.2001425. [Online]. Available: https://doi.org/10.1145/
2001420.2001425.

P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated random test-
ing,” in Proceedings of the 2005 ACM SIGPLAN conference on Programming lan-
guage design and implementation, 2005, pp. 213-223.

T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and D. Brumley,
“Automatic exploit generation,” Communications of the ACM, vol. 57, no. 2,
pp- 74-84, 2014.

S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem
on binary code,” in 2012 IEEE Symposium on Security and Privacy, IEEE, 2012,
pp- 380-394.

N. Stephens, J. Grosen, C. Salls, et al., “Driller: Augmenting fuzzing through
selective symbolic execution.,” in NDSS, vol. 16, 2016, pp. 1-16.

D. van Vliet, “A heuristic approach to the path explosion problem for complex
heap programs,” Jul. 2023.

A. Fioraldi, A. Mantovani, D. Maier, and D. Balzarotti, “Dissecting american
fuzzy lop: A fuzzbench evaluation,” ACM transactions on software engineering
and methodology, vol. 32, no. 2, pp. 1-26, 2023.

M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.

G. Fraser and A. Arcuri, “Evolutionary generation of whole test suites,” in
2011 11th International Conference on Quality Software, IEEE, 2011, pp. 31-40.

G. Fraser, A. Arcuri, and P. McMinn, “A memetic algorithm for whole test suite
generation,” Journal of Systems and Software, vol. 103, pp. 311-327, 2015.

L. Cordeiro, P. Kesseli, D. Kroening, P. Schrammel, and M. Trtik, “Jbmc: A
bounded model checking tool for verifying java bytecode,” in International
Conference on Computer Aided Verification, Springer, 2018, pp. 183-190.

73

https://doi.org/10.1145/2001420.2001425
https://doi.org/10.1145/2001420.2001425
https://doi.org/10.1145/2001420.2001425

	Introduction
	Research Questions
	Contributions
	Thesis Structure

	Related Work
	OOX
	Heuristics for Complex Heap Programs
	KLEE
	Java Ranger
	Incomplete Execution Techniques
	JBMC: Bounded Model Checking for Java Bytecode
	JDart
	Genetic Algorithms and Dynamic Symbolic Execution
	DSE Guidance with Partial Evaluation
	SAGE
	Mixed Concrete-Symbolic Solving
	Automatic Exploit Generation
	Mayhem
	Driller

	The OOX Ecosystem
	The language
	Symbolic Execution
	Limitations

	Dynamic Symbolic Execution
	General Technique
	DSE in the OOX ecosystem
	Fuzzing the concrete execution

	Evaluation
	Data Sets
	Fuzzer Comparison
	Concolic to Symbolic Comparison
	Concolic to State-Of-The-Art Comparison

	Conclusion
	MinDist Results
	Depth-First Results
	Concolic- Genetic Results
	Concolic-Random Results
	Fuzzer Comparisons
	State-Of-The-Art Results
	Bibliography

