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Abstract 

Background - Missing data is a problem that is common. It affects the accuracy and introduces 

biases in social network analysis, which can have a significant effect on the interpretation of 

findings. Relational event history (REH) data, a type of social network data, is becoming 

increasingly available due to new technological developments and can enhance the 

understanding of dynamic social networks. However, research on handling missing values in 

social network data is limited and statistical tools for incomplete REH data are underdeveloped. 

This paper focuses on using multiple imputation to handle missing values within REH data. 

Methods – Relational event history model analysis is first performed on the fully observed 

dataset to produce true estimates. Next, a simulation study is conducted to introduce 

missingness to this fully observed dataset, assuming missing completely at random (MCAR) and 

right-tailed missing at random (MAR). After multiple imputation, the relational event model is 

applied on the simulations and the results are compared to the analysis of the fully observed 

dataset. 

Results – The results of the relational event model of the simulations and the true estimates 

show inconsistency in the significance of the results. The simulations generally have a low bias, 

good coverage rate an low average width. A higher proportion of missingness resulted in a 

decrease in the performance. Multiple imputation thus produces unbiased inferences under the 

MCAR and MAR mechanism, however unexpected significant results are found.  

Conclusion – This study provides insights into the use of multiple imputation for producing valid 

inferences when applied on REH data. It shows that under the assumption of MCAR and MAR, 

multiple imputation can be a valid method for missing data in REH data when the percentage of 

missingness is not too high. Further research is needed confirm an expand upon the results 

obtained in this study. 
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1. Introduction 

Social networks are defined by a relation among a collection of individuals. Social 

network analysis seeks to understand social networks by examining the patterns and structures 

of these relationships. A specific type of social network data is relational event history (REH) 

data, which can be defined as time-ordered sequences of social interactions between a set of 

individuals or entities (Butts & Marcum, 2017, Meijerink-Bosman et al., 2022). This data has, 

unlike panel data, a high resolution precision and records all relational events at an exact 

moment in time. This makes REH data ideal for social researchers to deeply investigate social 

phenomena (Back, 2021). 

Missing data is a problem that is common across various research domains, affecting 

the accuracy of estimates and potentially introducing biases in parameter estimates. Thus, it 

can have a significant effect on the interpretation of findings. Most statistical analyses require 

complete data (Schouten et al., 2018). As a result, the presence of missing data may result in 

potentially wrong conclusions drawn from the data, which can lead to far-reaching 

consequences. Complete case analysis, a simple approach to handling missing data, involves 

removing the observations with missing values completely. However, this method causes loss of 

information, a decrease in statistical power and may introduce bias (Schafer & Graham, 2002). 

Multiple imputation (MI) offers a solution to this problem. MI is a method that creates multiple 

complete versions of the data by replacing missing values by plausible data values based on the 

patterns and relationships found in the observed data. By creating multiple complete versions, 

MI quantifies uncertainty in estimating missing values and is focused on preserving information, 

rather than throwing it away. It therefore minimizes the risk of drawing incorrect conclusions 

(Vink & Van Buuren, 2014). Understanding the appropriate techniques for addressing missing 

data according to specific circumstances is crucial.  

The impact of missing data is larger when the data has a complex structure. Network 

data, which is highly structured, is particularly affected by missingness as the network structure 

should be preserved (Borgatti et al., 2006; Smith et al., 2017). Missing values in REH data poses 

significant challenges for social researchers  to investigate complex social and behavioral 

phenomena as it can lead to invalid statistical inferences. However, research on the influence 

and how to handle missing values in social network data is limited (Huisman & Krause, 2017). 

Statistical tools for REH data are also currently almost underdeveloped. This paper focuses on 

using MI to address missing values within relational event history (REH) data and thereby 

enhances the understanding of the evolution of social relations in continuous time. 
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1.1 Multiple imputation 

Multiple imputation is a method used to handle missing data by estimating and replacing 

each missing value multiple times. Each missing value is imputed m > 2 times, leading to m 

completed datasets. The m completed datasets are then analyzed independently and pooled 

using Rubin’s rules for combining estimates and standard errors (Rubin, 1987, pp. 76; Schafer & 

Graham, 2002). Rubin’s rules take into account both within- and between-imputation variability 

(Van Buuren, 2018). MI differs from single-value imputation methods by imputing missing values 

multiple times, which creates multiple complete datasets. Single-value imputation methods 

estimate what each missing value might have been and replace it once with a single value. The 

multiple complete datasets generated with multiple imputation are analyzed separately. The 

results of the analyses are combined and multiple imputation thus accounts for the uncertainty 

in the imputation process, avoiding false precision that can occur with a single imputation 

method. Replacing a missing value with a single value in single-imputation may suggest an 

unrealistic accuracy and certainty. MI provides accurate estimates for the metrics of interest. It 

also minimizes the risk of drawing false-positive or false-negative conclusions (Li et al., 2015). 

 Multiple imputation consists of two stages. Firstly, imputations (replacement values) for 

missing values are generated. This results in many datasets with different replaced missing 

values, as is shown in the imputed data part in Figure 1. The imputations are generated based on 

statistical characteristics of the data. Secondly, the imputed datasets are analyzed (Analysis 

results in Figure 1) and the results of these analyses are combined (Li et al., 2015). This is the 

pooled result (Figure 1). 

Figure 1 

Steps in multiple imputation: imputation, analysis and pooling 

 

Note: Scheme of main steps in multiple imputation. From Flexible Imputation of Missing Data. 

(2nd edition., p.19), by S. van Buuren, 2018, CRC Press. Copyright by 2018 by Taylor & Francis 

Group, LLC. 
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It is often assumed that data when using MI, is sampled from infinite populations. 

However, if sampling from a finite population, the standard pooling rules may overestimate the 

variance of the estimates. This leads to a loss of statistical efficiency as confidence intervals are 

wider than necessary. In the case of pooling multiple imputations for finite populations, 

simplified pooling rules that exclude sampling variance and only account for the variation 

caused by the mechanism that created the missing data, need to be used (Vink & Van Buuren, 

2014). In accordance with the guidelines by Vink & Van Buuren (2014), these simplified pooling 

rules were applied in this study to combine multiple imputations for finite populations.  

1.2 Missingness mechanisms 

Solving a missing data problem is challenging. Although there are techniques such as 

multiple imputation (Rubin, 1987; Little & Rubin, 2002) which are proven to be effective and 

intuitive, it is important to think about the characteristics of the missingness. The degree to 

which the observed and unobserved data are connected, may be of great influence on the 

validity of the imputation method. Inclusion of a variable that correlates either with the 

incomplete variable or with the missing values improves parameter estimates (Collins et al., 

2001). This is the reason why predictor variables are often included in imputation methods.  

 Formulating beliefs about the extent to which the observed data also applies for the 

missing parts of the data is essential for handling missing data. We distinguish three different 

missingness mechanisms: 1) Missing Completely At Random (MCAR); the probability of being 

missing is the same for all cases. 2) Missing At Random (MAR); the probability of being missing is 

related to the observed data. 3) Missing Not At Random (MNAR); the probability of being missing 

varies for reasons unrelated to the observed data (Rubin, 1987; Van Buuren, 2018). In the current 

literature, MCAR is also referred to as Not Data Dependent (NDD), MAR as Seen Data Dependent 

and MNAR as Unseen Data Dependent (UDD) (Hand, 2020). The mechanisms can be further 

explained using a data matrix Y with 𝑦𝑖𝑗 either observed or missing, where Yobs is the observed 

data and Ymis is the missing data. Matrix R is considered the response indicator with R ij = 1 if yij is 

missing and Rij = 0 if yij is observed. Ψ are fixed parameters of the probability model (Van Buuren, 

2018). 

Missing Completely At Random (MCAR) 

 When the data is missing completely at random (MCAR), the probability of a variable 

being missing is independent from the observed and unobserved data. The missingness is thus 

not related to the data. This can be represented by the formula: 

𝑃𝑟(𝑅=1|𝑌𝑜𝑏𝑠,𝑌𝑚𝑖𝑠,ψ)=𝑃𝑟(𝑅=1|ψ) 
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The missing values are solely induced by ψ and independent from the observed and unobserved 

data. The observed data and the missing data are thus exact representations of the true data 

model. When the data are MCAR, the remaining data can be considered a simple random 

sample of the full dataset (Mack et al., 2018). MCAR missingness is also called ignorable 

missingness, because bias is not introduced and power can be restored with modern treatment 

(Rubin, 1967; Little et al., 2013). 

Missing At Random (MAR) 

With MAR mechanism, the probability of a value being missing depends on the values of 

the observed variable but not the unobserved data. This can be represented by the formula: 

𝑃𝑟(𝑅=1|𝑌𝑜𝑏𝑠,𝑌𝑚𝑖𝑠,ψ)=𝑃𝑟(𝑅=1|ψ,𝑌𝑜𝑏𝑠) 

The observed and missing data represent different parts of the population. MAR missingness, 

like MCAR, is also referred to as ignorable missingness, as the bias is recoverable and power can 

be restored with modern treatment, such as multiple imputation (Rubin, 1976; Little et al., 

2013). 

Missing Not At Random (MNAR) 

 With MNAR mechanism, the probability of a value being missing depends on unobserved 

information. The missingness is related to events or factors which are unknown. This can be 

noted as: 

𝑃𝑟(𝑅=1|𝑌𝑜𝑏𝑠,𝑌𝑚𝑖𝑠,ψ)=𝑃𝑟(𝑅=1|ψ,𝑌𝑜𝑏𝑠,𝑌𝑚𝑖𝑠) 

The observed data alone is not enough to infer about the population. The missing data are called 

nonignorable (Rubin, 1967). The observed and unobserved data represent different and unique 

parts of the true data. 

When the variables in a dataset show low correlations, the identification between MAR and 

MCAR missingness for the observed data may become difficult. This is because low correlations 

provide less information about the relationships between variables, which makes it difficult to 

determine whether the missingness is completely at random (MCAR) or related to other 

observed variables (MAR). MI with MAR mechanisms would then primarily limit statistical power 

and increase variance without necessarily reducing the bias. This is also true for assuming 

MNAR missingness when data is highly correlated, as strong correlations can make it difficult to 

distinguish whether the missingness is related to the unobserved variables or only related to the 

observed variables. Therefore, it is important to consider which mechanism to assume based on 
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the observed data structure (Schouten & Vink, 2018). Imputation methods can yield valid results 

provided that the missingness mechanism is not MNAR. The percentage of missingness should 

also not be too high as this can lead to biased imputation models and inaccurate results (Li et 

al., 2015; Sterne et al., 2009). 

1.3 Networks 

 Network data is highly structured, missing data can therefore have a large impact on 

this type of data. Networks are a collection of nodes (points) joined together in pairs by edges 

(lines). There are many examples of systems which can be represented by networks in the 

physical, biological and social sciences. These sciences all have different types of networks, 

which can be divided into four broad categories: technological networks, information networks, 

biological networks and social networks (Newman, 2018). Here, we will focus on social 

networks.  

Social networks 

 Social networks can be defined as any network in which the nodes (actors) 

represent individuals, such as friends, family members or classmates, and the edges (ties) 

represent the relationships/connection between them, such as friendships or interactions 

(Newman, 2018). Social networks are based on the representation of social structure in terms of 

a set of social entities, such as people and organizations, that are connected via relationships 

(Wasserman & Faust, 1994; Carrington et al., 2005). Social networks are not always static, the 

relationships can be dynamic, they can change over time. However, some social networks 

exhibit stability over time. Dynamic social networks require different models than static 

networks (e.g. Snijders, 2001; Krivitsky & Handcock, 2014).  Social networks have a high 

flexibility, many different definitions of an edge are possible, and they can thus serve as a good 

representation of different social phenomena (Butts, 2009; Newman, 2018). Most current 

models view relationships as evolving over time, discrete or continuous. The changes in the 

relationships are driven by mechanisms, such as reciprocity (the tendency for directed ties to be 

reciprocated) or transitivity (the tendency for nodes connected to the same node to also be 

connected to each other). The presence and strength of these mechanisms can be estimated 

from the intertemporal network data. These models thus allow for better understanding of social 

networks. Many researchers are interested in the network perspective because it provides a 

framework to understand patterns in relationships among interacting units within a social 

environment (Wasserman & Faust, 1994).  
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 Social network analysis can provide insight into the underlying relationships 

between individuals, which can reveal patterns (in e.g. interactions, communication, 

relationships) that cannot be detected from the individual observations alone. Social network 

analysis is based on the assumption that relationships among interacting individuals are 

important (Wasserman & Faust, 1994; Serrat, 2017).  It shows the formal and informal 

relationships between individuals and can be used to understand what facilitates or impedes 

the existence of ties between edges. Social network analysis has gotten much more interest in 

social and behavioral sciences as the availability and technical tools of social network data are 

increasing (Carrington et al., 2005). 

1.4 Relational Event History data 

Relational Event History (REH) data is a type of social network data, which describes a time-

ordered series of interactions between actors in a network. These interactions are also known as 

relational events. Minimally, the relational events contains information about the actors that are 

involved in the event and the time of the event (Meijerink-Bosman et al., 2023). It captures an 

action initiated by one entity and directed toward another entity within its environment at a 

specific point in time (Butts & Marcum, 2017).  

Table 1 provides an example of a REH dataset, showing the relational events per row. The 

relational event consists of a sender, receiver and time, in which the sender is the sender of the 

action, the receiver the receiver of the action, and the time shows the time at when the 

interaction took place (see Table 1). Both the sender and receiver can consist of humans, 

animals, objects or a combination of multiple type of actors. Actions can consist of a variety of 

relationships between the actors. Multiple of these events combined and ordered by time given 

a time window, result in REH data (Marcum & Butts, 2015). 

Table 1 

Example of Relational Event History (REH) dataset  

Time Sender ID Receiver ID 

11849.2 18 2 

11854.2 2 18 

11885.2 18 2 

11890.2 2 18 

12232.2 2 17 
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Note. Adapted from Apollo 13 dataset. Time is in seconds from onset of the Apollo 13 mission. 

Sender ID and Receiver ID represents respectively the sender and receiver of the message, 

indicated with a number. 

The interactions between social entities in REH data are discrete instances. This is in 

contrast to the conventional social network setting in which the ties are temporally extensive 

such as friendships or family members. REH data focuses on individual interactions that occur 

at specific time moments, as in conventional social network data the relationships are 

presented as ongoing over time (Butts, 2008).  

REH data is becoming increasingly available due to the development of technology and 

has the potential to greatly contribute to the understanding of dynamic social networks. REH 

data also has a high precision, which makes it particularly useful for analyzing social networks. 

REH data is distinct from panel data in the sense that the ties in REH data are short lasting, there 

are no unobserved tie changes and relational events occur in exact moments in time. These 

differences in combination with the rapid increase of available REH data, its high precision and 

the potential to greatly contribute to the understanding of dynamic social networks, make REH 

data valuable for understanding social networks.  

1.5 Relational Event Model 

 Analysis of REH data can help researchers answer complicated research questions, 

such as at the most basic level “what drives what happens next?” in a complex sequence of 

interdependent events (Marcum & Butts, 2015). In more detail it can give insight into who is 

interacting with whom at what specific time, predict future interactions, reveal how interaction 

dynamics change over time, assess the impact of past events on future interactions and identify 

what drives interactions. Therefore, this type of data is becoming more and more popular for the 

analysis of relational dynamics. Relational event dynamics are fundamentally about sequential 

relational structures, which differs from the conventional social network analysis as the primary 

interest thereof is the simultaneous relational structure. 

REH data is characterized by the inherent dependency between nodes and edges 

(Meijerink-Bosman et al., 2023). Consequently, this type of data is not handled very well by 

traditional statistical methods such as linear regression because this does not take into account 

the temporal sequencing and interdependence of events. Specialized tools are therefore needed 

for analysis. Relational Event Model (REM) is a gold standard statistical model that can take this 

into account (Butts, 2008). The REM is built to analyze continuous, detailed, social interaction 

data, such as is found in REH data (Meijerink et al., 2023). It is used to understand 
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communication/interaction structures based on observed social interactions in real-time (Butts, 

2008).  

 REM can be used to examine the frequency and time to activation among relational 

events. The probability of future interactions can be determined by the event rate (λ). This can be 

represented as follows: 

 

where the event rate between sender “s” and receiver “r” at time point “t”,  λ(s, r, t), is modelled 

as a loglinear function of statistics (both endogenous and exogenous statistics can be included), 

which shows the propensity of an event to occur. In the loglinear function, Xp(s,r,t) refers to the  

p-th statistic for the actor pair (s, r) at time “t” and βp refers to the model parameter related to the 

statistic Xp. The endogenous statistics contain the internal information until a given time point 

(e.g. past interactions), while the exogenous statistics contain external information (e.g. 

attributes, age, sex). With the REM, endogenous and exogenous factors can be investigated that 

predict the probability of subsequent events happening (Butts, 2008). The risk set consists of all 

possible interactions at time “t” and usually consist of N(N-1) events, with N being the total 

number of actors in the network. It is constructed to calculate the event rate for all possible 

events at specific time point and for predicting the future events. The event rate, λ(s, r, t), thus 

represents the rate of occurrence at time “t” for sender-receiver pair (s, r). The outcome of the 

REM shows the extent to which the specified statistics affect social interaction behavior in the 

network (Meijerink-Bosman et al., 2023).  

1.6 Current research 

 REH data is important as it is becoming increasingly available, offers a high resolution 

and captures detailed histories of events. This makes this type of data valuable for studying 

complex social systems and addressing crucial research questions. REM is used to analyze REH 

data. We already established that missing data can cause serious problems. This is especially 

the case for complex structures, such as in REH data, because the network structure should be 

preserved (Borgatti et al., 2006; Smith et al., 2017). REM is very sensitive to missingness. Failing 

to address missing data appropriately or using naïve approaches can lead to potentially wrong 

conclusions in the analysis. Currently, research on the impact and how to handle missing values 

in social network data is limited (Huisman, 2009; Huisman & Krause, 2017). Statistical tools for 

addressing missingness in REH data are also currently underdeveloped, although REH data is 
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everywhere. Therefore, developing valid methodologies to address missingness in REH data is 

essential. 

This paper gives more insight into the use of MI as an approach to missingness in REH 

data. It aims to assess the effectiveness of MI to produce accurate estimates of missing data 

and evaluates its impact on the REM estimates. The research question of this paper is: How 

effective is multiple imputation in handling missing data in Relational Event History data to 

produce valid inferences? The remainder of this paper has the following structure. First, I will 

provide information about the data used in the study. I will then outline the methods used in the 

study in the third section and present the results and analysis in the fourth section. In the fifth 

section, the conclusion and limitations of these findings will be discussed. 

2. Data 

The REH data used in this study is part of the Apollo 13 dataset. Apollo was a program by 

NASA in which people aimed to travel to the moon for the first time, Apollo 13 was the seventh 

mission in this program. The mission ended early due to an explosion in the oxygen tank. The 

communication between the flight and ground crew ensured a safe return on the ground. This 

unusual occurrence resulted in a well-documented dataset capturing the crisis communication 

between the flight and ground crew. The real-time playback of the events following the incident 

is available on the Apollo 13 Real-time website (Apollo 13 Real-time, n.d.). The full Apollo 13 

dataset after the incident is also publicly accessible on GitHub (Tseng, 2017). 

The part of the Apollo 13 dataset used, consists in total of 38982 rows and three 

columns: time, sender and receiver. Each row represents a single, directed communication 

event, which is the relational event. The sender column represents the actors that initiated the 

communication at a corresponding time point. The receiver column represents the actors that 

were the target of this communication initiated by the sender. The time column consists of 

unique exact time points of the communication initiated. The actors in the sender and receiver 

column are indicated with numbers, with numbers 1-16 representing the ground crew and 17-19 

representing the flight crew. The subset of the Apollo 13 dataset used, includes 16 unique 

actors. Numbers 14 to 16 were not present in this particular subset. The dataset is fully 

observed, no data preparation is needed. The Apollo 13 dataset gives an ideal illustration for the 

use of MI on handling missing values in REH data. 
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3. Method 

To assess the effectiveness of MI on handling missing values in REH data, the criteria for 

evaluation must be determined. First, missing values are induced in the complete dataset 

(amputation) and the missingness mechanism and proportion of missingness are defined. 

Subsequently MI is performed, generating multiple complete datasets, each of which is 

analyzed using REM. The results of these analyses are combined (pooled). Additionally, the REM 

is applied to the fully complete dataset. The accuracy of estimates of MI and its impact on the 

REM estimates is examined. Below, each step will be discussed in more detail (see Appendix B 

for full R code). 

3.1 Missing data generation  

The generation of missing values in a complete dataset is called amputation. The Apollo 13 

dataset is a fully observed dataset. To evaluate MI on this dataset, missing values have to be 

induced. The package MICE (Multivariate Imputation via Chained Equations) (Van Buuren & 

Groothuis-Oudshoorn, 2011) is used in R (R Core Team, 2023). This implements a method to 

handle missing data. The method is based on Fully Conditional Specification (FCS), which 

imputes each incomplete variable using separate models, such as regression models and 

predictive mean matching. MICE works by iteratively imputing missing values using predictive 

models depending on the observed data (Van Buuren & Groothuis-Oudshoorn, 2011).  

Based on “Strategies for simulated missingness” (Vink, 2022), missingness was 

simulated with the “ampute()” function (Schouten et al., 2018) from the package MICE. Model-

based finite populations was used, where a single finite observed set is taken as the 

comparative truth and missingness is induced via simulation. Monte Carlo simulations refer to 

simulations in which many random values are sampled from a posterior distribution, which 

allows for uncertainty, variability and distribution in the estimates. The induced missingness 

provides the necessary variation for a Monte Carlo simulation (Hammersley & Handscomb, 

1964). The sampling variance from the evaluations of the imputation performance can be 

eliminated as the sampling variance becomes irrelevant when dealing with a finite population 

(Vink and Buuren, 2014). Once every element in the population has been included in the sample, 

no variance is left to estimate. The noise induced by the sampling mechanism will not be taken 

into account, as this is not the topic of interest of this research.  

In this study the proportions of missing is set to 10%, 30% and 50% to simulate real-

world scenarios in which data might be incomplete with different percentages of missingness. 

The percentage of missingness indicates the percentage of data rows that will have missing 



14 
 

values in either the sender or receiver column or both. Missingness was simulated a hundred 

times to ensure the validity of the results and to minimalize the Monte Carlo error. The missing 

data generation process was conducted two times: once assuming MCAR as the missingness 

mechanism and once assuming right-tailed MAR. In real-world datasets, MCAR is rarely the 

case, because it is often unrealistic to assume that the probability of missing values is 

completely independent of other observed variables (Van Buuren, 2018). The likelihood of data 

being missing often depends on the values of the observed dataset, therefore this study also 

observes multiple imputation assuming MAR. A right-tailed MAR mechanism indicates that the 

probability of the data being missing increases with higher values. The Apollo dataset contains 

categorical variables for sender and receiver. Because sender and receiver are not continuous 

variables, right-tailed MAR could be interpreted in the context of having implicit ordered IDs 

within the categorical variables. The categorical variables can be thought of as having an implicit 

order, higher IDs could correlate with more influential or active actors which makes them having 

a higher chance of being missing. By assuming a right-tailed MAR mechanism, the performance 

of multiple imputation under conditions that are more complex and realistic than MCAR can be 

tested.  

The ampute() function in MICE creates pattern-based missingness, where the patterns 

govern the relation between missingness and observed data. The weights for ampute() patterns 

are not specified, resulting in all patterns occurring with equal probability. To prevent a 

combination of actors from going completely missing in the dataset, 1500 observations were 

conserved from the dataset and not amputed. This way, all dyads (pairs of variables) are still 

covered, thereby preserving necessary dyads for comparison with the true data after imputation.  

The missing data pattern considered for amputation are all possible combinations of 

missingness involving sender (actor 1) and receiver (actor 2) per missingness mechanism and 

percentage (Figure 2). Each row in the missing data pattern represents an unique missingness 

pattern. The numbers on the left indicate the frequency of each pattern for all simulations per 

missingness mechanism and proportion combined. Cells highlighted in red indicate missing 

values, while blue cells indicate observed values. The numbers at the bottom illustrate the 

count of missing values in each column. 
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Figure 2 

Missing data pattern of all simulations combined per missingness percentage and missingness 

mechanism 

 

 

Note. The rows represents the missingness patterns. The numbers on the left indicate the 

frequency of each missing data pattern. Red cells indicate missing values in those specific rows. 

Blue cells indicate the observed values. The numbers at the bottom indicate the count of 

missing values in each column. 

3.2 Multiple imputation 

 The variables sender, receiver and time are used as predictors for the missing values. 

Other variables (exogenous statistics) that can be derived from the variables present in the 

dataset, such as whether the sender and receiver are in the same location, are not included as 

predictors as it is not realistic to assume that it is known whether sender and receiver were in 

the same location if one of them was missing. However, using this information could improve 

the performance. In the past, it was thought that using a lower number of imputations, around 3-

5 imputations, was sufficient to obtain excellent results (Schafer & Olsen, 1998). The number of 

imputations refers to the number of datasets generated, each containing missing values 

generated based on the number of iterations. More recent research by Van Buuren (2018) and 
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Graham et al. (2007) show that a higher number of imputations than previously recommended, 

would lead to better outcomes. However, considering the computational efficiency, the number 

of imputations is set to five. The number of iterations is also set to five, as inferential validity is 

often achieved after five to ten iterations. Proper convergence is generally assumed to be 

achieved in 5 to 20 iterations (Oberman et al., 2021). The number of iterations refers to the 

number of iterations through each variable to estimate new values for missing data (Van Buuren, 

2018). 

A custom version of the predictive mean matching (pmm) method (Van Buuren, 2018), 

“pmm.conditional” (Vink, 2023) is used as the method for imputation. This method works by first 

selecting a small set of candidate donors that are the closest to the missing value from the other 

variables. One randomly drawn donor from the set of candidate donors is taken to replace the 

missing value. Predictive mean matching avoids creating loops in the data, which makes it 

possible to use time as a predictor and prevents actors initiating interactions with themselves. 

The imputed value for the corresponding receiver or sender cannot be the same, this will be 

ensured using the “pmm.conditional” method. The generation of MCAR missingness can be 

seen as the situation in which all weight values are zero because there is no relationship 

between the data values and the missing data. Since the probability of values being missing 

under the MAR mechanism by definition depends on the value of the observed variables, only 

the weights of the variables that will be amputed is set to zero (Schouten et al., 2018).  

The convergence and plausibility of the imputation is checked. The convergence is 

checked by the convergence plot for MAR and MCAR simulations. The convergence plot shows 

the change in imputation estimates as the number of imputations increases and can thus tell 

whether the algorithm has stabilized, or further iterations are needed for reliable imputations. 

Plausibility is checked by the density plots for MAR and MCAR simulations. The density plots 

show the distribution of the imputed values and the skewness of the imputed data distribution. 

The quantile-quantile also shows the distribution of the imputed values (Nguyen et al., 2017). 

The Kolmogorov-Smirnov test (Kolmogorov & Smirnov, 1933) is used to compare the distribution 

of the imputed values to a theoretical distribution in the quantile-quantile plot.  

3.3 Data analysis 

The statistics (effects) to be included in the REM are defined. The remify() function (Arena 

et. al, 2023) and remstats() (Meijerink-Bosman et al., 2023) are used to calculate the statistics 

on the dataset. The model includes three endogenous statistics, as used by Shafiee Kamalabad 
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et al. (2023): reciprocity, indegree sender and outdegree receiver. Additionally, one exogenous 

statistic is included: same location. The definitions of the statistics are: 

 Reciprocity 

 Reciprocity measures the tendency for directed ties to be reciprocated, which reflects 

the propensity of person A to initiate an event towards person B as a function of the volume of 

past events A received from B. Thus, the rate of a relational event occurring from A to B is 

positively affected by the volume of prior instances of a relational event from B to A (Leenders et 

al., 2016, Coleman et al., 1990).  

 Indegree sender 

 Indegree sender reflects the tendency for senders with a high number of incoming ties to 

initiate ties. This indicates whether individuals who frequently receive interactions are more or 

less likely to initiate interactions themselves (Carrington et al., 2005). 

 Outdegree receiver 

 Outdegree receiver reflects the tendency for receivers with a high number of outgoing 

ties to receive ties from others. This indicates whether individuals who frequently initiate 

interactions are more or less likely to receive interactions themselves (Carrington et al., 2005). 

 Same location 

 Same location reflects the tendency of more interactions when the sender and receiver 

are both at mission control/both in space.  

The data is processed to create a dataset for use with the Cox proportional hazard 

(coxph) function from the survival package (Therneau, 2023). A risk set is created, consisting of 

every possible interaction at a given time combined with the status of whether that interaction 

took place in the observed data and whether the actors are at the same location. The status 

column indicates 1 if interaction took place and 0 if it did not. The same location column 

indicates 1 if the actors were in the same place and 0 if not. Then, the REM is fitted on all 

simulations and the results are pooled. The analysis is run over a hundred simulations for the 

imputed datasets, assuming MCAR and MAR. These results are pooled and averaged for both 

MCAR and MAR. The imputation method is evaluated using the following measures, as proposed 

by Van Buuren (2018):  

• Raw Bias (RB) and Percent Bias (PB): measures difference between the expected value of 

the estimate and the true value of the estimate. RB should be close to zero and is defined 
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as: RB = E(β^) – β. PB is calculated by dividing the RB by the true estimate and 

multiplying by hundred. PB should not exceed 5%.  

• Coverage Rate (CR): proportion of confidence intervals that contain the true parameter 

value. CR is affected by the estimate and the confidence interval. The CR should not fall 

below the nominal rate. The nominal rate is a pre-specified rate at which the true 

estimate is expected to fall in the confidence interval. The CR should ideally be around 

the nominal rate. In this study, the nominal is set at 90%. If the CR falls below the 

nominal rate, the method is too optimistic, leading to false positives. Conversely, a too 

high CR, above 95%, indicates a too wide CI and an inefficient method that leads to too 

conservative inferences. 

• Average width (AW): difference between lower and upper end of the confidence interval 

(CI), average width for the CI. AW should be as small as possible, but not lower than 

nominal rate. Small AW indicates statistical efficiency, but should not be too small to 

cause the CR to fall below 90%. AW is also an indication for how well the standard 

deviations are estimated. 

An optimal method has a raw bias close to zero and a coverage rate near 0.95. Methods that 

fulfill these assumptions are called randomization valid (Rubin, 1987). A shorter confidence 

interval is preferred over a longer confidence interval (Van Buuren, 2018). The estimates 

generated from the imputations are compared to the true estimates. These measures are 

compared for the three proportions of missingness in combination with the mechanisms of 

MCAR and MAR.  

4. Results and analysis 

The convergence and plausibility of the imputation are checked through convergence 

plots and density plots (see Appendix A). The convergence plots derived from a single 

imputation illustrate that complete convergence is not fully achieved, however after 

approximately 5 iterations most plots show some convergence. Figure 3 shows one of the 

convergence plots under the MAR assumption with 30% missingness. 

 

 

 



19 
 

Figure 3 

Convergence plot under MAR assumptions with 30% missingness, derived from a single 

imputation 

  

 

 

 

 

 

 

The convergence of MI could probably improve with more iterations. Considering the 

computational efficiency, the number of imputations in this study was set to five. The 

distribution of the imputed values is shown by the quantile-quantile plots (Nguyen et al., 2017). 

The quantile-quantile plots, see Figure 4 for an example under MCAR and MAR 30% 

missingness, show that the estimates are not normally distributed for all statistics after all, with 

some showing more extreme deviations than others. 

Figure 4 

Quantile-quantile plots for distribution of estimates for each statistic under MCAR and MAR 

assumptions with 30% missingness 
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The density plots for both MCAR and MAR show a (slight) deviation from the theoretical 

distribution assumption (see Appendix A). The distribution for MAR missingness is less skewed 

towards the right than the distribution for MCAR missingness. This is not what we would expect, 

as a right-tailed MAR mechanism is used. Even though the missingness is higher on the right 

side with right-tailed MAR mechanism, the distribution of the missingness is less skewed 

towards the right compared to MCAR. 

Results true analysis 

The REM applied on the fully observed data gives the true model of the subset of Apollo 

13 data, enabling comparison with the REM results of the simulations under MCAR and MAR. 

Table 1 shows a positive but not significant effect for reciprocity (β = 0.0233, p = .209), which 

indicates a very small tendency for individuals to reciprocate interactions. However, this effect is 

not statistically significant. There is no strong evidence to support that individuals tend to 

reciprocate interactions. Outdegree receiver has a negative but also not significant effect             

(β = -9.023e-5, p = .225). The effect of outdegree receiver is not statistically significant, which 

implies no evidence for the negative fact that individuals who initiate more interactions, receive 

less interactions. The small positive significant indegree sender estimate indicates that 

individuals with a higher indegree (i.e., who are more likely to receive ties from others) have a 

higher tendency to initiate interactions (β = 0.0004, p < .001). The negative significant effect of 

same location suggests that individuals being in the same location (both in the flight or ground 

crew) leads to fewer interactions (β = -0.8629, p < .001).  

Table 1  

REM results on a subset of the Apollo 13 dataset 

Statistic Estimate Standard Error p-value 

Reciprocity 2.332e-2 1.856e-2 0.209 

Indegree sender 4.314e-4 7.398e-5 < .001 

Outdegree receiver -9.023e-5 7.437e-5 0.225 

Same location -8.629e-1 3.217e-2 < .001 

Note: The subset consists of the first 38982 rows of the Apollo 13 dataset  

Results simulations assuming MCAR 

Table 2 shows the REM results of the simulations averaged assuming MCAR. The 

simulations are conducted with different proportion of missingness: 10%, 30% and 50%. The 

raw bias of the estimates are for all missingness percentages close to zero, which indicates that 

the bias is negligible. The percent bias is below 5% for all statistics with a missingness 

proportion of 10%, which indicates that there is very little bias. The missingness being assumed 
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MCAR could explain this (Oberman & Vink, 2023). However, increasing the proportion of 

missingness to 30% and 50% created a percent bias above 5% for outdegree receiver, 

reciprocity and same location, which can be due to the nature of the statistics to rely on the 

structure of the network. These statistics are influenced significantly by the network itself and if 

a higher percentage of the data is missing, there is less information available for accurate 

imputation, possibly resulting in a higher bias after imputation. The coverage rate of reciprocity 

and indegree receiver with missingness proportion of 30% and 50% are below 90%, which is a 

suboptimal coverage. The coverage rate of same location for all missingness percentages is 

extremely low, which can potentially be due to the fact that it is dependent on the same location 

column in the risk set, which is not based on the imputed network like the other statistics. This 

can lead to an identical status in the same location column in each risk set across simulations 

and thus result in very similar estimates. In case of low nominal coverage, there is a likelihood of 

drawing false positive conclusions, which is also known as a type I error. The coverage rate of 

reciprocity with 10% missingness, indegree sender with 10% missingness and outdegree 

receiver for all missingness proportions fall within the acceptable range. The confidence interval 

is small under all missingness proportions for all the statistics, reciprocity, indegree sender, 

outdegree receiver and same location. The average width is close to zero for all effects. The 

estimates of the imputed model are all significant, which differs from the true model in which 

only the estimate of indegree sender and same location is significant.  

Table 2 

Averaged REM results on the simulations under the MCAR assumption for each missingness 

proportion 

Statistic  Prop Estimate Std. error P-value CI CV RB PB AW 
Reciprocity 0.1 2.38e-2 5.34e-4 < .001 [2.23e-2, 2.53e-2] 0.93 5.11e-4 2.55 2.97e-3 
 0.3 2.49e-2 9.75e-4 < .001 [2.22e-2, 4.47e-2] 0.84 1.60e-3 6.92 5.41e-3 
 0.5 2.58e-2 1.37e-3 < .001 [2.27e-2, 2.82e-2] 0.77 2.51e-3 10.76 7.59e-3 
Indegree sender 0.1 4.28e-4 5.34e-6 < .001 [4.13e-4, 4.42e-4] 0.93 -3.89e-6 1.24 2.97e-5 
 0.3 4.20e-4 9.70e-6 < .001 [3.93e-4, 4.47e-4] 0.89 -1.16e-5 2.99 5.39e-5 
 0.5 4.11e-4 1.31e-5 < .001 [3.78e-4, 4.46e-4] 0.76 -2.01e-5 4.79 7.26e-5 
Outdegree receiver 0.1 -9.11e-5 2.01e-6 < .001 [-9.67e-5, -8.56e-5] 0.92 -9.09e-7 2.53 1.12e-5 
 0.3 -9.36e-5 3.92e-6 < .001 [-1.04e-4, -8.27e-5] 0.93 -3.32e-6 5.30 2.18e-5 
 0.5 -9.48e-5 5.39e-6 < .001 [-1.02e-4, -8.84e-5] 0.91 -4.55e-6 6.61 3.00e-5 
Same location 0.1 -8.78e-1 4.77e-3 < .001 [-8.91e-1, -8.65e-1] 0.39 -1.53e-2 1.78 2.65e-2 
 0.3 -9.04e-1 1.10e-2 < .001 [-9.34e-1, -8.73e-1] 0.24 -4.09e-2 4.74 6.12e-2 
 0.5 -9.28e-1 1.71e-2 < .001 [-9.76e-1, -8.81e-1] 0.19 -6.54e-2 7.57 9.48e-2 

Prop = Proportion of missingness; Std. error = Standard error; CI = Confidence interval; CV = Coverage, RB = Raw bias; PB = Percent bias;  AW = Average 

width 

Results simulations assuming MAR 

Table 3 shows the REM results of the simulations averaged assuming MAR. The 

simulations are also conducted with different proportion of missingness: 10%, 30% and 50%. 

The raw bias of the estimates for all missingness proportions are close to zero, indicating  that 
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the bias is negligible. The percent bias is below 5% for almost all statistics, which indicates that 

there is very little bias. Only reciprocity with a missingness proportion of 50% and same location 

with a missing proportion of 30% and 50% have a percent bias above 5%. The percent bias is 

overall lower for MAR than by assuming MCAR, except for same location. The coverage rate of 

reciprocity and indegree sender with 10% and 30% missingness and outdegree receiver with 

10% missingness are slightly below 90% which is suboptimal. It is not extremely low, but there is 

a chance of creating a type I error. A chance of creating a type I error is high with same location, 

as the coverage rate of same location is extremely low for all missingness proportions. The 

coverage rate of indegree sender with 30% and 50% missingness, outdegree receiver with 50% 

missingness are relatively high. The confidence interval is small for all the statistics. The average 

width is close to zero for all effects. The estimates of the imputed model are all significant, 

which differs from the true model in which only the estimate of indegree sender and same 

location is significant.  

Table 3 

Averaged REM results on the simulations under the MAR assumption for each missingness 

proportion 

Statistic  Prop Estimate Std. error P-value CI CV RB PB AW 
Reciprocity 0.1 2.35e-2 3.85e-4 < .001 [2.24e-2, 2.46e-2] 0.83 1.95e-4 2.00 2.14e-3 
 0.3 2.42e-2 7.57e-4 < .001 [2.22e-2, 2.64e-2] 0.85 9.35e-4 4.43 4.20e-3 
 0.5 2.50e-2 1.20e-3 < .001 [2.17e-2, 2.83e-2] 0.91 1.70e-3 7.35 6.67e-3 
Indegree sender 0.1 4.33e-4 4.34e-6 < .001 [4.21e-4, 4.45e-4] 0.92 1.47e-6 0.87 2.41e-5 
 0.3 4.34e-4 8.46e-6 < .001 [4.11e-4, 4.58e-4] 0.97 2.73e-5 1.54 4.70e-5 
 0.5 4.32e-4 1.13e-5 < .001 [4.01e-4, 4.64e-4] 0.99 8.18e-7 1.90 6.25e-5 
Outdegree receiver 0.1 -8.93e-5 1.82e-6 < .001 [-9.43e-5, -8.42e-5] 0.87 9.68e-7 2.41 1.01e-5 
 0.3 -8.89e-5 3.63e-6 < .001 [-9.90e-5, -7.88e-5] 0.93 1.34e-6 3.79 2.02e-5 
 0.5 -8.90e-5 4.73e-6 < .001 [-1.02e-4, -7.59e-5] 0.96 1.24e-6 4.74 2.63e-5 
Same location 0.1 -8.82e-1 5.90e-3 < .001 [-8.98e-1, -8.65e-1] 0.37 -1.88e-2 2.18 3.27e-2 
 0.3 -9.13e-1 1.29e-2 < .001 [-9.49e-1, -8.77e-1] 0.16 -4.99e-2 5.79 7.14e-2 
 0.5 -9.38e-1 1.80e-2 < .001 [-9.88e-1, -8.88e-1] 0.13 -7.52e-2 8.71 9.97e-2 

Prop = Proportion of missingness; Std. error = Standard error; CI = Confidence interval; CV = Coverage, RB = Raw bias; PB = Percent bias;  AW = Average 

width 

Comparison results 

The simulated results assuming both MCAR and MAR show a significant effect of 

reciprocity and outdegree receiver with much smaller standard errors compared to the true 

model. A higher precision is achieved in these models with smaller standard errors compared to 

the true analysis, because multiple imputation uses the underlying data distribution of the 

observed data for the imputation. This can reduce the variability which was present before 

amputation and thus result in a higher precision. The estimates of both simulations are close to 

the true model’s estimate, but the significance differs, making the simulations show significant 

results while the true model does not. This can be due to using a fixed set to keep all actors in 

the data and thus missingness is only generated in a part of the data, resulting in a small 
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between variance, smaller confidence intervals and smaller p-values (Van Buuren, 2018). The 

sampling variance has not been considered in the simulation evaluations of the imputation 

performance due to the use of finite populations (Vink & Van Buuren, 2014). A constant was 

introduced by this variance, which represents the conserved part of the dataset. This leaded to 

an underestimation of the variance and can thus be the reason for the significant effects 

observed in the analysis of the simulations. 

For indegree sender and same location, the REM results under both mechanisms show 

significant effects with estimates very close to the true model’s estimate with also much smaller 

standard errors than for the true model. A higher proportion of missingness resulted in an 

increased bias for both MCAR and MAR, likely because there is less data available for multiple 

imputation. This can also be the reason for increase in the standard error and confidence 

interval when the missingness proportion increases with MAR, indicating less accurate 

estimates. For MCAR this is not found for all statistics, which can be explained that the 

imputation of missing values is not dependent on the observed values. However, the bias in MAR 

simulations was mostly below 5%, indicating better results than assuming MCAR. Multiple 

imputation thus produces unbiased inferences under the MAR assumptions, however 

unexpected significant results are found.  

5. Discussion and conclusion 

This study provides insights into the use of multiple imputation for producing valid 

inferences when applied on REH data. The estimates of a REM of the complete data are 

compared to the REM analysis results of the simulations where the data is MCAR or MAR. The 

statistics considered were reciprocity, indegree sender, outdegree receiver and same location. 

The true model showed non-significant effects for reciprocity and outdegree receiver, the 

analysis on the simulated models showed for both MAR and MCAR significant effects for all four 

predictors. This can be due to the missingness being only generated in a part of the data, 

resulting in a reduced variability, smaller confidence intervals and smaller p-values in 

combination with not accounting for sampling variance due to the finite population, which leads 

to an underestimation of the variance (Van Buuren 2018; Vink & Van Buuren, 2014). However, 

despite the inconsistency in the significance of the results, the use of MI under both MCAR and 

MAR shows potential benefits, such as improving the accuracy and reliability of analyses, with 

handling missing data in REH data.  

Additionally, the proportion of missing data was set at 10%, 30% and 50% for both MCAR 

and MAR. Previous research already suggests that the percentage of missingness should not be 
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too high when using imputation methods (Li et al., 2015; Sterne et al., 2009). This study confirms 

these findings: the bias increased significantly with a higher proportion of missingness, making 

the use of multiple imputation less effective when the missing data percentage is high. This is 

not a characteristic specifically for multiple imputation but holds for all imputation methods. 

This study has several limitations that are important to consider. The choice of the 

statistics included in the REM can have an effect on the outcomes. Three out of four statistics 

used in this study are endogenous statistics, which used internal information until a given time 

point. Using more exogenous statistics can give more insight into the effect of external 

information on REH data. More attribute variables can also be added to the data and used as 

exogenous predictors for imputation. This can potentially improve the imputation method. 

Another limitation is the preserving of a part of the dataset, which can have a negative impact on 

the variance estimates. It can potentially have introduced or preserved some selective biases or 

inaccuracies in the results. Further studies need to examine the impact of this to ensure more 

accurate and reliable results. Additionally, the number of imputations was set to five due to the 

computational efficiency, increasing the number of imputations can possibly improve the 

outcomes. Besides, in this study a right-tailed MAR mechanism was used, as this is known to 

mimic a severe missingness scenario realistic in real-world datasets. However, to get more 

insight into the effectiveness of MI under different conditions, it is valuable to consider other 

directions, such as left- and mid-tailed MAR mechanisms. Finally, it is important to consider the 

unexpected significant results and improved precision that are found in the analysis of the 

simulation. 

Further research is needed to investigate the effectiveness of multiple imputation to 

produce valid inferences assuming all possible missingness patterns and mechanisms. 

Additionally, increasing the number of imputations and iterations, considering more statistics 

and using the entire dataset instead of just a part of the dataset could provide more robust 

findings. The conservation of only part of the dataset negatively impact the variance of the 

estimates, which could be addressed in future studies. Future research should also explore the 

effects of varying the proportion of missing data and different weights to determine the 

frequency of each pattern. 

In conclusion, this study provides valuable insight into the use of MI on REH data. It 

shows that under the assumption of MCAR and MAR, MI can be a valid method for missing data 

in REH data when the percentage of missingness is not too high. The limitations highlight the 

need for further research to confirm an expand upon the results obtained in this study. 
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Appendix A 

Figure A1 
Density plots for simulations for each statistic under MAR and MCAR assumptions with 10% 
missingness (blue dotted line indicates the population value of true analysis) 

 

Figure A2 
Density plots for simulations for each statistic under MAR and MCAR assumptions with 30% 
missingness (blue dotted line indicates the population value of true analysis) 
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Figure A3 
Density plots for simulations for each statistic under MAR and MCAR assumptions with 50% 
missingness (blue dotted line indicates the population value of true analysis) 

 

Figure A4 
Quantile-quantile plots for distribution of estimates for each statistic under MCAR and MAR 
assumptions with 10% missingness 
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Figure A5 
Quantile-quantile plots for distribution of estimates for each statistic under MCAR and MAR 
assumptions with 30% missingness 

Figure A6 
Quantile-quantile plots for distribution of estimates for each statistic under MCAR and MAR 
assumptions with 50% missingness 
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Figure A7 
Convergence plots under MCAR and MAR assumptions with 10% missingness, derived from a 
single imputation  

Figure A8 
Convergence plots under MCAR and MAR assumptions with 30% missingness, derived from a 
single imputation 

 

 

Figure A9 
Convergence plots under MCAR and MAR assumptions with 50% missingness 

 

 

 

 

 



33 
 

Appendix B 

Prins, M., Myrthe_2024 (2024). GitHub repository, 

https://github.com/mshafieek/ADS-Missing-data-social-network/tree/main/Myrthe_2024  

##### Main RCode 

knitr::opts_chunk$set(echo = TRUE) 

 

devtools::install_github("TilburgNetworkGroup/remify") 

devtools::install_github("TilburgNetworkGroup/remstats") 

devtools::install_github("gerkovink/mice@match_conditional") 

 

##### Load packages 

library(mice, warn.conflicts = FALSE)       # For imputation and amputation 

library(purrr, warn.conflicts = FALSE)      # For functional programming 

library(furrr, warn.conflicts = FALSE)      # For functional futures 

library(magrittr, warn.conflicts = FALSE)   # For pipes 

library(dplyr, warn.conflicts = FALSE)      # For data manipulation 

library(tibble, warn.conflicts = FALSE)     # For tibbles 

library(remstats, warn.conflicts = FALSE)   # For REM statistics 

library(remify, warn.conflicts = FALSE)     # For converting   

library(data.table, warn.conflicts = FALSE) # For data manipulation   

library(survival, warn.conflicts = FALSE)   # For REM analysis 

library(tidyverse, warn.conflicts = FALSE)  # For data analysis 

library(ggplot2, warn.conflicts = FALSE)    # For data visualisation 

library(patchwork, warn.conflicts = FALSE)  # For combining plots 

library(ggpubr, warn.conflicts = FALSE)     # For publication ready plots 

set.seed(123) 

 

#### Load data 

Con <- url("https://github.com/mshafieek/ADS-Missing-data-social-

network/raw/main/literature_%20REM/Tutorial_REM_REH_DATA/UUsummerschool.Rda

ta") 

load(Con) 

apollo <- as_tibble(PartOfApollo_13) %>% # Making the dataset a tibble 

  rename( 

    actor1 = sender, 

    actor2 = receiver 

  ) 

 

rm(Class, Twitter_data_rem3, WTCPoliceCalls, ClassIntercept, ClassIsFemale, 

 ClassIsTeacher, WTCPoliceIsICR, Con) # Remove data that is not used 

 

#### Create sufficient set 

indic <- sample(1:nrow(apollo), 1500) 

remify(apollo[indic, ], model = "tie") %>% dim()  

 

#### Combine the sufficient set and the incomplete set 

### MCAR 

make_missing_MCAR <- function(x, indic, prop){ 

  sufficient <- x[indic, ] 

  miss <- x[-c(indic), ] |> 

    ampute(prop = prop,  

           mech = "MCAR", # Data has the same probability of being amputed 

           patterns = matrix(c(1,0,1, 

                               1,1,0, 

                               1,0,0),  

                             nrow=3,  

                             byrow=TRUE)) %>%  

https://github.com/mshafieek/ADS-Missing-data-social-network/tree/main/Myrthe_2024
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    .$amp 

  combined <- rbind(sufficient,  

                    miss) 

  return(combined[order(combined$time), ]) # Sort by the 'time' variable 

}   

 

### MAR 

make_missing_MAR <- function(x, indic, prop){ 

  sufficient <- x[indic, ] 

  miss <- x[-c(indic), ] |> 

    ampute(prop = prop,  

           mech = "MAR", # Information about the missing data is in the 

observed data 

           patterns = matrix(c(1,0,1, 

                               1,1,0, 

                               1,0,0),  

                             nrow=3,  

                             byrow=TRUE), 

           type = "RIGHT") %>% # Influences missingness direction 

    .$amp 

  combined <- rbind(sufficient,  

                    miss) 

  return(combined[order(combined$time), ]) # Sort by the 'time' variable 

} 

 

### Predictor matrix for imputations 

pred <- matrix(c(0,1,1,1,0,1,1,1,0), nrow=3, byrow=TRUE) 

 

### Which column 

whichcol <- c("", "actor2", "actor1")# Actor 1 and Actor 2 cannot be the 

same value imputed in the same row 

names(whichcol) <- colnames(apollo) 

 

### Use the custom pmm conditional method 

method <- make.method(apollo) 

method[c(2,3)] <- "pmm.conditional" 

 

### Model-based finite populations MCAR 

## 10% missingness 

mbased_finite_apollo_MCAR_10 <- 

  furrr::future_map(1:100, ~ { # Map over 100 simulations 

    make_missing_MCAR(apollo, indic, prop = 0.1) %>% 

      mice(m = 5,  

           maxit = 5, 

           method = method, 

           whichcolumn = whichcol, 

           predictorMatrix = pred, 

           print = FALSE) 

  }, .options = furrr_options(seed = 123)) 

 

## 30% missingness 

mbased_finite_apollo_MCAR_30 <- 

  furrr::future_map(1:100, ~ { # Map over 100 simulations 

    make_missing_MCAR(apollo, indic, prop = 0.3) %>% 

      mice(m = 5,  

           maxit = 5, 

           method = method, 

           whichcolumn = whichcol, 

           predictorMatrix = pred, 

           print = FALSE) 

  }, .options = furrr_options(seed = 123)) 
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## 50% missingness 

mbased_finite_apollo_MCAR_50 <- 

  furrr::future_map(1:100, ~ { # Map over 100 simulations 

    make_missing_MCAR(apollo, indic, prop = 0.5) %>% 

      mice(m = 5,  

           maxit = 5, 

           method = method, 

           whichcolumn = whichcol, 

           predictorMatrix = pred, 

           print = FALSE) 

  }, .options = furrr_options(seed = 123)) 

 

### Model-based finite populations MAR 

## 10% missingness 

mbased_finite_apollo_MAR_10 <- 

  furrr::future_map(1:100, ~ { 

    make_missing_MAR(apollo, indic, prop = 0.1) %>% 

      mice(m = 5,  

           maxit = 5, 

           method = method, 

           whichcolumn = whichcol, 

           predictorMatrix = pred, 

           print = FALSE) 

  }, .options = furrr_options(seed = 123)) 

 

## 30% missingness 

mbased_finite_apollo_MAR_30 <- 

  furrr::future_map(1:100, ~ { 

    make_missing_MAR(apollo, indic, prop = 0.3) %>% 

      mice(m = 5,  

           maxit = 5, 

           method = method, 

           whichcolumn = whichcol, 

           predictorMatrix = pred, 

           print = FALSE) 

  }, .options = furrr_options(seed = 123)) 

 

## 50% missingness 

mbased_finite_apollo_MAR_50 <- 

  furrr::future_map(1:100, ~ { 

    make_missing_MAR(apollo, indic, prop = 0.5) %>% 

      mice(m = 5,  

           maxit = 5, 

           method = method, 

           whichcolumn = whichcol, 

           predictorMatrix = pred, 

           print = FALSE) 

  }, .options = furrr_options(seed = 123)) 

 

### Missing data pattern of all simulations 

missing_pattern_MCAR_10 <- mbased_finite_apollo_MCAR_10 %>%  

  map(~.x %>% .$data) %>% 

  do.call("rbind", .) %>% 

  setNames(c("time", "sender", "receiver")) %>% # Rename the columns 

  md.pattern() 

 

missing_pattern_MCAR_30 <- mbased_finite_apollo_MCAR_30 %>%  

  map(~.x %>% .$data) %>% 

  do.call("rbind", .) %>% 

  setNames(c("time", "sender", "receiver")) %>% # Rename the columns 
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  md.pattern() 

 

missing_pattern_MCAR_50 <- mbased_finite_apollo_MCAR_50 %>%  

  map(~.x %>% .$data) %>% 

  do.call("rbind", .) %>% 

  setNames(c("time", "sender", "receiver")) %>% # Rename the columns 

  md.pattern() 

 

missing_pattern_MAR_10 <- mbased_finite_apollo_MAR_10 %>%  

  map(~.x %>% .$data) %>% 

  do.call("rbind", .) %>% 

  setNames(c("time", "sender", "receiver")) %>% # Rename the columns 

  md.pattern() 

 

missing_pattern_MAR_30 <- mbased_finite_apollo_MAR_30 %>%  

  map(~.x %>% .$data) %>% 

  do.call("rbind", .) %>% 

  setNames(c("time", "sender", "receiver")) %>% # Rename the columns 

  md.pattern() 

 

missing_pattern_MAR_50 <- mbased_finite_apollo_MAR_50 %>%  

  map(~.x %>% .$data) %>% 

  do.call("rbind", .) %>% 

  setNames(c("time", "sender", "receiver")) %>% # Rename the columns 

  md.pattern() 

 

### Run analysis 

 

##### Defining effects for the relational event model 

effects <- ~ -1 + reciprocity(scaling = ("std")) + indegreeSender() + 

outdegreeReceiver()  

 

 

##### Function to get the statistics of the previously defined effects. 

stats_function <- function(data) { 

 

  # remify the data 

  reh <- remify::remify(edgelist = data, model = "tie") 

   

  # calculate effect statistics 

  statsObject_imp <- remstats(reh = reh, tie_effects = effects) 

 

  # Return the statistics 

  return(statsObject_imp) 

} 

 

##### Function for making the data compatible with coxph() 

prepare_coxph_data <- function(statsObject, apollo) { 

  risk_sets <- attr(statsObject, "riskset") 

  risk_sets <- risk_sets %>% select(-'id') 

 

  # Get the times 

  time <- apollo$time 

 

  # Merge riskset with each timepoint 

  combined <- merge(risk_sets, time, by = NULL) 

   

  # Create matrices for subtraction to make a status column for coxph 

  combined <- combined %>% rename("time" = "y") 

  combined <- lapply(combined, as.numeric) 

  combined <- as.data.frame(combined) 
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  combined_matrix <- data.matrix(combined) 

   

  matrix_rows <- nrow(combined) 

   

  repeated_df <- apollo[rep(seq_len(nrow(apollo)), each = 240), ] 

  repeated_df <- repeated_df[, c(2, 3, 1)] 

   

  apollo_matrix <- data.matrix(repeated_df) 

   

  status_matrix <- apollo_matrix - combined_matrix 

 

  # Create a status column 

  status <- as.integer(rowSums(status_matrix == 0) == ncol(status_matrix)) 

  status <- as.data.frame(status) 

   

  # Create s_ast and r_ast for each row in the combined dataframe 

  combined$s_ast <- ifelse(combined$sender > 16, 1, 0) 

  combined$r_ast <- ifelse(combined$receiver > 16, 1, 0) 

  combined$sameLoc <- ifelse(combined$s_ast == combined$r_ast, 1, 0) 

   

  # Add status to the combined set 

  combined <- cbind(combined, status) 

 

  # Extract statistics and add them to the dataframe 

  reciprocity <- statsObject[,,1] 

  indegreeSender <- statsObject[,,2] 

  outdegreeReceiver <- statsObject[,,3] 

   

  combined$reciprocity <- c(reciprocity) 

  combined$indegreeSender <- c(indegreeSender) 

  combined$outdegreeReceiver <- c(outdegreeReceiver) 

   

  # Remove temporary columns 

  combined <- combined %>% select(-s_ast, -r_ast) 

   

  return(combined) 

} 

 

##### True analysis 

true.reh <- remify(edgelist = apollo,  

                   model = "tie") 

# Calculate stats 

stats <- remstats(tie_effects = effects,  

                  reh = true.reh) 

# Use the function to create the correct format of the dataframe 

true.cox.set <- prepare_coxph_data(stats, PartOfApollo_13) 

 

# Fit cox model  

true.cox.fit <- coxph(Surv(time, status) ~ reciprocity + indegreeSender +  

                        outdegreeReceiver + sameLoc,  

                      data=true.cox.set) 

true <- coefficients(true.cox.fit) 

 

true.cox.fit 

 

# Source the scripts to process 

source("Results_MCAR_MAR_10.R") 

source("Results_MCAR_MAR_30.R") 

source("Results_MCAR_MAR_50.R") 
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# Function for average width and percentage bias. 

AW <- function(df) df[["97.5 %"]] - df[["2.5 %"]] 

PB <- function(df) 100 * abs((df[["estimate"]] - df[["true"]]) / 

df[["true"]]) 

 

Results_with_extra_MCAR_10 <- lapply(Results_MCAR_10, function(df) { 

  df$PB <- PB(df) 

  df$AW <- AW(df) 

  df 

}) 

 

Results_with_extra_MAR_10 <- lapply(Results_MAR_10, function(df) { 

  df$PB <- PB(df) 

  df$AW <- AW(df) 

  df 

}) 

 

Results_with_extra_MCAR_30 <- lapply(Results_MCAR_30, function(df) { 

  df$PB <- PB(df) 

  df$AW <- AW(df) 

  df 

}) 

 

Results_with_extra_MAR_30 <- lapply(Results_MAR_30, function(df) { 

  df$PB <- PB(df) 

  df$AW <- AW(df) 

  df 

}) 

 

Results_with_extra_MCAR_50 <- lapply(Results_MCAR_50, function(df) { 

  df$PB <- PB(df) 

  df$AW <- AW(df) 

  df 

}) 

 

Results_with_extra_MAR_50 <- lapply(Results_MAR_50, function(df) { 

  df$PB <- PB(df) 

  df$AW <- AW(df) 

  df 

}) 

 

Reduce("+", Results_with_extra_MCAR_10) / 

length(mbased_finite_apollo_MCAR_10) 

Reduce("+", Results_with_extra_MAR_10) / 

length(mbased_finite_apollo_MAR_10) 

Reduce("+", Results_with_extra_MCAR_30) / 

length(mbased_finite_apollo_MCAR_30) 

Reduce("+", Results_with_extra_MAR_30) / 

length(mbased_finite_apollo_MAR_30) 

Reduce("+", Results_with_extra_MCAR_50) / 

length(mbased_finite_apollo_MCAR_50) 

Reduce("+", Results_with_extra_MAR_50) / 

length(mbased_finite_apollo_MAR_50) 

 

# Long data frame 

reciprocity_MCAR_10 <- Results_with_extra_MCAR_10 %>% 

 map(~.x %>% .["reciprocity", ]) %>% # Select row reciprocity 

 do.call("rbind", .) 

indegreeSender_MCAR_10 <- Results_with_extra_MCAR_10 %>% 

 map(~.x %>% .["indegreeSender", ]) %>% # Select row indegreeSender 

 do.call("rbind", .) 
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outdegreeReceiver_MCAR_10 <- Results_with_extra_MCAR_10 %>% 

 map(~.x %>% .["outdegreeReceiver", ]) %>% # Select row samelocation 

 do.call("rbind", .) 

samelocation_MCAR_10 <- Results_with_extra_MCAR_10 %>% 

 map(~.x %>% .["sameLoc", ]) %>% # Select row indegreeSender 

 do.call("rbind", .) 

reciprocity_MAR_10 <- Results_with_extra_MAR_10 %>% 

 map(~.x %>% .["reciprocity", ]) %>% # Select row reciprocity 

 do.call("rbind", .) 

indegreeSender_MAR_10 <- Results_with_extra_MAR_10 %>% 

 map(~.x %>% .["indegreeSender", ]) %>% # Select row indegreeSender 

 do.call("rbind", .) 

outdegreeReceiver_MAR_10 <- Results_with_extra_MAR_10 %>% 

 map(~.x %>% .["outdegreeReceiver", ]) %>% # Select row outdegreeReceiver 

 do.call("rbind", .) 

samelocation_MAR_10 <- Results_with_extra_MAR_10 %>% 

 map(~.x %>% .["sameLoc", ]) %>% # Select row samelocation 

 do.call("rbind", .) 

 

# Define function to create plot for each variable 

create_plot <- function(data, true_value, variable) { 

  ggplot(data, aes(x = estimate)) + 

    geom_density() +  

    geom_vline(xintercept = true_value, color = "blue", linetype = 

"dashed") +  

    theme_classic() +  

    theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 

    labs(x = paste(variable), y = "Density") 

} 

 

iS_MCAR_10 <- create_plot(indegreeSender_MCAR_10, true["indegreeSender"], 

'MCAR Ind. Sender') 

iR_MCAR_10 <- create_plot(outdegreeReceiver_MCAR_10, 

true["outdegreeReceiver"], 'MCAR Outd. Receiver') 

rc_MCAR_10 <- create_plot(reciprocity_MCAR_10, true["reciprocity"], 'MCAR 

Reciprocity') 

iS_MAR_10 <- create_plot(indegreeSender_MAR_10, true["indegreeSender"], 

'MAR Ind. Sender') 

iR_MAR_10 <- create_plot(outdegreeReceiver_MAR_10, 

true["outdegreeReceiver"], 'MAR Outd. Receiver') 

rc_MAR_10 <- create_plot(reciprocity_MAR_10, true["reciprocity"], 'MAR 

Reciprocity') 

sL_MCAR_10 <- create_plot(samelocation_MCAR_10, true["sameLoc"], 'MCAR Same 

loc.') 

sL_MAR_10 <- create_plot(samelocation_MAR_10, true["sameLoc"], 'MAR Same 

loc.') 

 

# Arrange plots 

plots_10 <- (iS_MCAR_10 | iR_MCAR_10 | rc_MCAR_10 | sL_MCAR_10) / 

(iS_MAR_10 | iR_MAR_10 | rc_MAR_10 | sL_MAR_10) 

plots_10 

 

# Long data frame 

reciprocity_MCAR_30 <- Results_with_extra_MCAR_30 %>% 

 map(~.x %>% .["reciprocity", ]) %>% # Select row reciprocity 

 do.call("rbind", .) 

indegreeSender_MCAR_30 <- Results_with_extra_MCAR_30 %>% 

 map(~.x %>% .["indegreeSender", ]) %>% # Select row indegreeSender 

 do.call("rbind", .) 

outdegreeReceiver_MCAR_30 <- Results_with_extra_MCAR_30 %>% 

 map(~.x %>% .["outdegreeReceiver", ]) %>% # Select row samelocation 
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 do.call("rbind", .) 

samelocation_MCAR_30 <- Results_with_extra_MCAR_30 %>% 

 map(~.x %>% .["sameLoc", ]) %>% # Select row indegreeSender 

 do.call("rbind", .) 

reciprocity_MAR_30 <- Results_with_extra_MAR_30 %>% 

 map(~.x %>% .["reciprocity", ]) %>% # Select row reciprocity 

 do.call("rbind", .) 

indegreeSender_MAR_30 <- Results_with_extra_MAR_30 %>% 

 map(~.x %>% .["indegreeSender", ]) %>% # Select row indegreeSender 

 do.call("rbind", .) 

outdegreeReceiver_MAR_30 <- Results_with_extra_MAR_30 %>% 

 map(~.x %>% .["outdegreeReceiver", ]) %>% # Select row outdegreeReceiver 

 do.call("rbind", .) 

samelocation_MAR_30 <- Results_with_extra_MAR_30 %>% 

 map(~.x %>% .["sameLoc", ]) %>% # Select row samelocation 

 do.call("rbind", .) 

 

iS_MCAR_30 <- create_plot(indegreeSender_MCAR_30, true["indegreeSender"], 

'MCAR Ind. Sender') 

iR_MCAR_30 <- create_plot(outdegreeReceiver_MCAR_30, 

true["outdegreeReceiver"], 'MCAR Outd. Receiver') 

rc_MCAR_30 <- create_plot(reciprocity_MCAR_30, true["reciprocity"], 'MCAR 

Reciprocity') 

iS_MAR_30 <- create_plot(indegreeSender_MAR_30, true["indegreeSender"], 

'MAR Ind. Sender') 

iR_MAR_30 <- create_plot(outdegreeReceiver_MAR_30, 

true["outdegreeReceiver"], 'MAR Outd. Receiver') 

rc_MAR_30 <- create_plot(reciprocity_MAR_30, true["reciprocity"], 'MAR 

Reciprocity') 

sL_MCAR_30 <- create_plot(samelocation_MCAR_30, true["sameLoc"], 'MCAR Same 

loc.') 

sL_MAR_30 <- create_plot(samelocation_MAR_30, true["sameLoc"], 'MAR Same 

loc.') 

 

# Arrange plots 

plots_30 <- (iS_MCAR_30 | iR_MCAR_30 | rc_MCAR_30 | sL_MCAR_30) / 

(iS_MAR_30 | iR_MAR_30 | rc_MAR_30 | sL_MAR_30) 

plots_30 

 

# Long data frame 

reciprocity_MCAR_50 <- Results_with_extra_MCAR_50 %>% 

 map(~.x %>% .["reciprocity", ]) %>% # Select row reciprocity 

 do.call("rbind", .) 

indegreeSender_MCAR_50 <- Results_with_extra_MCAR_50 %>% 

 map(~.x %>% .["indegreeSender", ]) %>% # Select row indegreeSender 

 do.call("rbind", .) 

outdegreeReceiver_MCAR_50 <- Results_with_extra_MCAR_50 %>% 

 map(~.x %>% .["outdegreeReceiver", ]) %>% # Select row samelocation 

 do.call("rbind", .) 

samelocation_MCAR_50 <- Results_with_extra_MCAR_50 %>% 

 map(~.x %>% .["sameLoc", ]) %>% # Select row indegreeSender 

 do.call("rbind", .) 

reciprocity_MAR_50 <- Results_with_extra_MAR_50 %>% 

 map(~.x %>% .["reciprocity", ]) %>% # Select row reciprocity 

 do.call("rbind", .) 

indegreeSender_MAR_50 <- Results_with_extra_MAR_50 %>% 

 map(~.x %>% .["indegreeSender", ]) %>% # Select row indegreeSender 

 do.call("rbind", .) 

outdegreeReceiver_MAR_50 <- Results_with_extra_MAR_50 %>% 

 map(~.x %>% .["outdegreeReceiver", ]) %>% # Select row outdegreeReceiver 

 do.call("rbind", .) 
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samelocation_MAR_50 <- Results_with_extra_MAR_50 %>% 

 map(~.x %>% .["sameLoc", ]) %>% # Select row samelocation 

 do.call("rbind", .) 

 

iS_MCAR_50 <- create_plot(indegreeSender_MCAR_50, true["indegreeSender"], 

'MCAR Ind. Sender') 

iR_MCAR_50 <- create_plot(outdegreeReceiver_MCAR_50, 

true["outdegreeReceiver"], 'MCAR Outd. Receiver') 

rc_MCAR_50 <- create_plot(reciprocity_MCAR_50, true["reciprocity"], 'MCAR 

Reciprocity') 

iS_MAR_50 <- create_plot(indegreeSender_MAR_50, true["indegreeSender"], 

'MAR Ind. Sender') 

iR_MAR_50 <- create_plot(outdegreeReceiver_MAR_50, 

true["outdegreeReceiver"], 'MAR Outd. Receiver') 

rc_MAR_50 <- create_plot(reciprocity_MAR_50, true["reciprocity"], 'MAR 

Reciprocity') 

sL_MCAR_50 <- create_plot(samelocation_MCAR_50, true["sameLoc"], 'MCAR Same 

loc.') 

sL_MAR_50 <- create_plot(samelocation_MAR_50, true["sameLoc"], 'MAR Same 

loc.') 

 

# Arrange plots 

plots_50 <- (iS_MCAR_50 | iR_MCAR_50 | rc_MCAR_50 | sL_MCAR_50) / 

(iS_MAR_50 | iR_MAR_50 | rc_MAR_50 | sL_MAR_50) 

plots_50 

 

# Quantile-quantile plot 10% missingness 

qrc_MCAR_10 <- ggqqplot(reciprocity_MCAR_10$estimate, ylab = "MCAR 

Reciprocity") # Visualize the distribution of estimates 

ks.test(reciprocity_MCAR_10$estimate, "pnorm") # Kolmogorov-Smirnov test to 

compare the distribution to a theoretical distribution 

qiS_MCAR_10 <- ggqqplot(indegreeSender_MCAR_10$estimate, ylab = "MCAR ID 

sender")  

ks.test(indegreeSender_MCAR_10$estimate, "pnorm") 

qoR_MCAR_10 <- ggqqplot(outdegreeReceiver_MCAR_10$estimate, ylab = "MCAR OD 

receiver") 

ks.test(outdegreeReceiver_MCAR_10$estimate, "pnorm") 

qsL_MCAR_10 <- ggqqplot(samelocation_MCAR_10$estimate, ylab = "MCAR Same 

loc.") 

ks.test(samelocation_MCAR_10$estimate, "pnorm") 

qrc_MAR_10 <- ggqqplot(reciprocity_MAR_10$estimate, ylab = "MAR 

Reciprocity") # Visualize the distribution of estimates 

ks.test(reciprocity_MAR_10$estimate, "pnorm") # Kolmogorov-Smirnov test to 

compare the distribution to a theoretical distribution 

qiS_MAR_10 <- ggqqplot(indegreeSender_MAR_10$estimate, ylab = "MAR ID 

sender")  

ks.test(indegreeSender_MAR_10$estimate, "pnorm") 

qoR_MAR_10 <- ggqqplot(outdegreeReceiver_MAR_10$estimate, ylab = "MAR OD 

receiver") 

ks.test(outdegreeReceiver_MAR_10$estimate, "pnorm") 

qsL_MAR_10 <- ggqqplot(samelocation_MAR_10$estimate, ylab = "MAR Same 

loc.") 

ks.test(samelocation_MAR_10$estimate, "pnorm") 

 

# Arrange plots 

plots_q_10 <- (qiS_MCAR_10 | qoR_MCAR_10 | qrc_MCAR_10 | qsL_MCAR_10) / 

(qiS_MAR_10 | qoR_MAR_10 | qrc_MAR_10 | qsL_MAR_10) 

plots_q_10 

 

# Quantile-quantile plot 30% missingness 
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qrc_MCAR_30 <- ggqqplot(reciprocity_MCAR_30$estimate, ylab = "MCAR 

Reciprocity") # Visualize the distribution of estimates 

ks.test(reciprocity_MCAR_30$estimate, "pnorm") # Kolmogorov-Smirnov test to 

compare the distribution to a theoretical distribution 

qiS_MCAR_30 <- ggqqplot(indegreeSender_MCAR_30$estimate, ylab = "MCAR ID 

sender")  

ks.test(indegreeSender_MCAR_30$estimate, "pnorm") 

qoR_MCAR_30 <- ggqqplot(outdegreeReceiver_MCAR_30$estimate, ylab = "MCAR OD 

receiver") 

ks.test(outdegreeReceiver_MCAR_30$estimate, "pnorm") 

qsL_MCAR_30 <- ggqqplot(samelocation_MCAR_30$estimate, ylab = "MCAR Same 

loc.") 

ks.test(samelocation_MCAR_30$estimate, "pnorm") 

qrc_MAR_30 <- ggqqplot(reciprocity_MAR_30$estimate, ylab = "MAR 

Reciprocity") # Visualize the distribution of estimates 

ks.test(reciprocity_MAR_30$estimate, "pnorm") # Kolmogorov-Smirnov test to 

compare the distribution to a theoretical distribution 

qiS_MAR_30 <- ggqqplot(indegreeSender_MAR_30$estimate, ylab = "MAR ID 

sender")  

ks.test(indegreeSender_MAR_30$estimate, "pnorm") 

qoR_MAR_30 <- ggqqplot(outdegreeReceiver_MAR_30$estimate, ylab = "MAR OD 

receiver") 

ks.test(outdegreeReceiver_MAR_30$estimate, "pnorm") 

qsL_MAR_30 <- ggqqplot(samelocation_MAR_30$estimate, ylab = "MAR Same 

loc.") 

ks.test(samelocation_MAR_30$estimate, "pnorm") 

 

# Arrange plots 

plots_q_30 <- (qiS_MCAR_30 | qoR_MCAR_30 | qrc_MCAR_30 | qsL_MCAR_30) / 

(qiS_MAR_30 | qoR_MAR_30 | qrc_MAR_30 | qsL_MAR_30) 

plots_q_30 

 

# Quantile-quantile plot 50% missingness 

qrc_MCAR_50 <- ggqqplot(reciprocity_MCAR_50$estimate, ylab = "MCAR 

Reciprocity") # Visualize the distribution of estimates 

ks.test(reciprocity_MCAR_50$estimate, "pnorm") # Kolmogorov-Smirnov test to 

compare the distribution to a theoretical distribution 

qiS_MCAR_50 <- ggqqplot(indegreeSender_MCAR_50$estimate, ylab = "MCAR ID 

sender")  

ks.test(indegreeSender_MCAR_50$estimate, "pnorm") 

qoR_MCAR_50 <- ggqqplot(outdegreeReceiver_MCAR_50$estimate, ylab = "MCAR OD 

receiver") 

ks.test(outdegreeReceiver_MCAR_50$estimate, "pnorm") 

qsL_MCAR_50 <- ggqqplot(samelocation_MCAR_50$estimate, ylab = "MCAR Same 

loc.") 

ks.test(samelocation_MCAR_50$estimate, "pnorm") 

qrc_MAR_50 <- ggqqplot(reciprocity_MAR_50$estimate, ylab = "MAR 

Reciprocity") # Visualize the distribution of estimates 

ks.test(reciprocity_MAR_50$estimate, "pnorm") # Kolmogorov-Smirnov test to 

compare the distribution to a theoretical distribution 

qiS_MAR_50 <- ggqqplot(indegreeSender_MAR_50$estimate, ylab = "MAR ID 

sender")  

ks.test(indegreeSender_MAR_50$estimate, "pnorm") 

qoR_MAR_50 <- ggqqplot(outdegreeReceiver_MAR_50$estimate, ylab = "MAR OD 

receiver") 

ks.test(outdegreeReceiver_MAR_50$estimate, "pnorm") 

qsL_MAR_50 <- ggqqplot(samelocation_MAR_50$estimate, ylab = "MAR Same 

loc.") 

ks.test(samelocation_MAR_50$estimate, "pnorm") 

 

# Arrange plots 
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plots_q_50 <- (qiS_MCAR_50 | qoR_MCAR_50 | qrc_MCAR_50 | qsL_MCAR_50) / 

(qiS_MAR_50 | qoR_MAR_50 | qrc_MAR_50 | qsL_MAR_50) 

plots_q_50 

 

# Checking convergence 

convergence_MCAR_10 <- lapply(mbased_finite_apollo_MCAR_10, plot) # plot 

mean and sd  

convergence_MAR_10 <- lapply(mbased_finite_apollo_MCAR_10, plot) 

 

plot(mbased_finite_apollo_MCAR_10[[53]], 

     print=F, 

     y = "actor1", 

     layout = c(2,1), 

     main = "MCAR convergence") # plot one of the plots 

 

plot(mbased_finite_apollo_MAR_10[[53]], 

     print=F, 

     y = "actor1", 

     layout = c(2,1), 

     main = "MAR covergence") # plot one of the plots) 

 

# Checking convergence 

convergence_MCAR_30 <- lapply(mbased_finite_apollo_MCAR_10, plot) # plot 

mean and sd 

convergence_MAR_30 <- lapply(mbased_finite_apollo_MCAR_10, plot) 

 

plot(mbased_finite_apollo_MCAR_30[[53]], 

     print=F, 

     y = "actor1", 

     layout = c(2,1), 

     main = "MCAR convergence") # plot one of the plots 

 

plot(mbased_finite_apollo_MAR_30[[53]], 

     print=F, 

     y = "actor1", 

     layout = c(2,1), 

     main = "MAR covergence") # plot one of the plots) 

 

# Checking convergence 

convergence_MCAR_50 <- lapply(mbased_finite_apollo_MCAR_10, plot) # plot 

mean and sd 

convergence_MAR_50 <- lapply(mbased_finite_apollo_MCAR_10, plot) 

 

plot(mbased_finite_apollo_MCAR_50[[53]], 

     print=F, 

     y = "actor1", 

     layout = c(2,1), 

     main = "MCAR convergence") # plot one of the plots 

 

plot(mbased_finite_apollo_MAR_50[[53]], 

     print=F, 

     y = "actor1", 

     layout = c(2,1), 

     main = "MAR covergence") # plot one of the plots) 


