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Candidate:

Natalia Kurdanova

In cooperation with:

Knights Advanced Analytics

July 4, 2024



Abstract

One of the tasks of natural language processing (NLP) is information extraction, which

aims to transform unstructured text data into structured information. Key components

of this task include Named Entity Recognition (NER) and Relation Extraction (RE), which

focus on the identification and classification of entities and the relations between them

within the text. The areas of application for NER and RE models include constructing

knowledge graphs and supporting applications like machine translation and automated

question-answering systems [1], [2]. In recent years, deep learning models, including trans-

formers, have achieved state-of-the-art performance in NER and RE tasks.

This thesis examines the performance of the transformer-based model LUKE (Language

Understanding with Knowledge-based Embeddings) [3] for NER and RE tasks. We bench-

mark LUKE against the spaCy1 solution for NER and the REBEL (Relation Extraction By

End-to-End Language Generation) [4] model for RE using a manually labeled dataset of

335 news articles.

Here we show that while LUKE demonstrates strong performance in NER, it is outper-

formed by the fine-tuned spaCy model on our specific dataset. For RE tasks, LUKE’s rela-

tion classifier shows outstanding performance, but the sequential LUKE-based RE pipeline

does not match the performance of the end-to-end REBEL model. These results provide in-

sights into the strengths and limitations of LUKE, guiding future efforts in model selection.

1https://spacy.io/

https://spacy.io/
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1. Introduction

In the fast-evolving field of natural language processing (NLP), extracting meaningful in-

formation from unstructured text is one of the key tasks. Industries and companies gen-

erate and receive vast amounts of unstructured text data daily, including emails, reports,

customer reviews, and news articles. Efficiently processing and extracting valuable in-

sights from this data can enhance decision-making, improve customer service, and stream-

line operations. For example, online news platforms can automatically tag articles with

relevant keywords extracted from the texts, thereby enhancing content availability and im-

proving the overall reading experience. These benefits of information extraction motivate

companies and research institutions to develop and implement various methods aimed

at transforming unstructured text data into structured information. One of the recently

emerged approaches is the use of models based on transformer architecture, which will be

discussed in detail later. This study, conducted in collaboration with Knights Advanced

Analytics, aims to evaluate the performance of a transformer-based model for information

extraction tasks using a dataset of online news articles provided by the company. The main

goal of the company is to determine which model is more effective and can be further used

for constructing a knowledge graph supporting an automated question-answering system.

Proceeding to the details of the information extraction task, it encompasses several sub-

tasks, among which Named Entity Recognition (NER) and Relation Extraction (RE). NER

focuses on identifying and classifying entities such as persons, organizations, and locations

within a text. For example, in the sentence "Apple Inc. was founded by Steve Jobs." NER would

identify "Apple Inc." as an organization and "Steve Jobs" as a person. RE goes a step fur-

ther, aiming to identify and classify the relationships between these entities. For instance,

it would identify the relationship f ounded_by between "Apple Inc." and "Steve Jobs." NER

and RE are essential for tasks like building knowledge graphs, which organize information

in a computer-processable form and act as a backbone for various applications including

search engines [5]. Furthermore, together, NER and RE models underpin a wide range

of solutions, from automated question answering to sophisticated text summarization and

machine translation systems [1], [2].

While various solutions are available for NER and RE tasks, deep learning has emerged

as a popular approach due to its greater performance compared to traditional methods

[1], [2]. Unlike traditional methods such as rule-based approaches and supervised learn-

ing, deep learning models learn important patterns and features directly from data, re-

ducing the need for manually designed features. A separate class of deep learning solu-

tions is transformer-based models. These models utilize a self-attention mechanism, al-
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Introduction

lowing them to capture dependencies between words in a input sequence more efficiently

compared to, for example, recurrent neural networks (RNN) [6]. This capability helps

transformer-based solutions achieve great performance in tasks such as NER and RE that

require understanding the relations between entities in a large text corpora.

However, one of the main disadvantages of most transformer-based models for NER

and RE is that they consider the entities on the word level, splitting them into multiple

parts. As a result, these models may struggle to detect entities and relationships between

them when entities consist of multiple words [3]. LUKE (Language Understanding with

Knowledge-based Embeddings) [3] is a transformer based model that aims to solve this

issue. It was specifically developed for entity-related tasks and its main distinction from

other transformer-based models is that it treats not only words but also entities as tokens.

As a result, LUKE is better suited for the detection of entities and relationships between

them [3]. The underlying mechanisms of these models are further discussed in Section 2.

This thesis aims to compare LUKE with baseline models, specifically focusing on LUKE’s

performance in NER and RE tasks. For NER, we compare LUKE with the baseline spaCy1

solution, while for RE, we compare LUKE with the REBEL (Relation Extraction By End-

to-End Language Generation) [4] model. The models’ performance is evaluated using a

manually labeled dataset of 335 news articles. By evaluating the models, this study seeks

to provide insights into the models’ strengths and limitations, answering the following re-

search questions:

• RQ1: How effective is the LUKE model for NER compared to the baseline spaCy

solution?

• RQ2: How effective is fine-tuning the LUKE model for NER?

• RQ3: How effective is fine-tuning the LUKE model for RE compared to the REBEL

model?

To answer these questions, we conducted a series of experiments using the dataset pro-

vided by Knights Advanced Analytics. To answer the first research question, we com-

pared the performance of the LUKE model with the spaCy solution for NER without prior

fine-tuning on the manually labeled dataset. To answer the second research question, we

fine-tuned the models based on the labeled dataset and then compared their performance.

Finally, to answer the last question, we fine-tuned and implemented a LUKE pipeline solu-

tion that includes first NER using LUKE and then relation classification between the iden-

tified entities, also using LUKE. We compared the results of the pipeline solution to the

fine-tuned REBEL model, which performs the RE task directly. For the evaluation metrics,

we used macro precision, recall, F1-score, and class-specific precision, recall, and F1-score.

The findings reveal that while LUKE demonstrates strong inherent performance in

1https://spacy.io/
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NER, the baseline spaCy model outperforms it when fine-tuned on our specific dataset

due to its better ability to learn from a relatively small dataset. For RE tasks, the LUKE

relation classifier excelled, but the sequential LUKE-based RE pipeline was less effective

than the end-to-end REBEL model, highlighting the challenges in integrating NER and re-

lation classification tasks in a pipeline approach. These results provide valuable insights

into the strengths and limitations of the LUKE model for information extraction, guiding

future efforts in model selection.
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2. Related Work and Background

This section summarizes previous work and different techniques relevant to this research.

Firstly, it provides an overview of named entity recognition (NER) and relation extraction

(RE) tasks, including their goals, applications, and techniques. Secondly, it focuses on a

transformer, which is a deep learning architecture that form the backbone of various ma-

chine learning models, including LUKE [3]. Finally, this section covers the LUKE model in

greater detail.

2.1 Named Entity Recognition and Relation Extraction

Information extraction is a task in natural language processing (NLP) that aims to trans-

form unstructured or semi-structured text data into structured information, making it eas-

ier to analyze and understand [7]. Two key sub-tasks of information extraction are NER

and RE. NER focuses on identifying and classifying named entities (NE) in the text into

predefined categories. Named entities refer to specific items mentioned in the text that

have unique attributes, such as persons, locations, and organizations in general contexts,

or genes and diseases in specialized domains [1].

Figure 2.1: Named Entity Recognition task. The input of the NER model is a sequence of n
tokens (encoded words or their parts) s = [w1, w2, . . . , wn], and the output is a list of tuples
(Is, Ie, t), where Is and Ie are the start and end indexes of the named entity, and t is the entity
type.

Figure 2.1 provides an example of how an NER system extracts entities and their types

from a given sentence. For example, if we consider the sentence "Bill Gates is a co-founder
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of Microsoft", the input is a sequence of tokens that correspond to encoded words or their

parts, while the output is the entities, for instance, "Bill Gates" of type Person.

(a) Relation Extraction task. The input of the RE
model is a sequence of n tokens (encoded words
or their parts) s = [w1, w2, . . . , wn]. The output of
the RE model is a list of tuples (E1, E2, r), where
E1 and E2 are the first and second entities that
participate in the relation, and r is the type of the
relation.

(b) Pipeline-based RE. The input of the RE model
is a sequence of n tokens (encoded words or their
parts) s = [w1, w2, . . . , wn]. It is passed to the
NER, which detects the entities. Then the relation
classifier predicts the relation type for each entity
pair and outputs a list of tuples (E1, E2, r).

Figure 2.2: Relation Extraction task. (Left) Seq2Seq-based RE approach. (Right) The pipeline-
based RE approach.

In contrast, the RE task is more complex as it involves not only the detection of enti-

ties but also the relationships between them. Figure 2.2a provides an example of how an

RE system extracts relations from a given sentence. The input of the RE model is a se-

quence of tokens (encoded words or their parts). As an output, the RE model returns a

⟨head_entity, tail_entity, relationship⟩ triplet, which consists of two entities and the re-

lation between them, such as the relation between "Bill Gates" and "Microsoft" of type

f ounded_by. Both NER and RE are foundational for numerous downstream applications,

including question answering, text summarization, and machine translation [1], [2].

Li et al. [1] categorize NER techniques into several groups, including rule-based, feature-

based supervised learning, and deep learning (DL). Rule-based approaches utilize hand-

crafted rules derived from domain-specific knowledge. For instance, a rule-based system

might employ a predefined synonym dictionary to identify NEs [8]. However, these sys-

tems require significant domain expertise to construct comprehensive rules and are difficult

to adapt to new domains. Additionally, they often yield high precision but low recall due

to incomplete dictionaries, resulting in many false negatives. The second group of NER

techniques is feature-based supervised learning, which can be framed as either multi-class

classification or sequence labeling tasks. It requires annotated datasets with additional

features for model training. These features might include word-level attributes like part-

of-speech tags or morphology, and algorithms such as Decision Trees and Support Vector

Machines are applied based on these features.

In contrast, deep learning techniques for NER have gained prominence in recent years.

These methods automatically learn hidden features and patterns from raw data, signifi-

cantly reducing the need for extensive manual feature crafting compared to rule-based and
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feature-based methods. According to Li et al. [1], the general architecture of a deep learn-

ing NER system consists of distributed representations of input, context encoder, and tag

decoder. Firstly, distributed representations of input are embeddings of words or charac-

ters of an input sequence. Usually, embeddings are pre-trained over a large corpus. The

embeddings aim to capture the syntactic and semantic properties of words. One of the pop-

ular algorithms for generating word embeddings is Word2Vec [9]. This model aims to learn

the representation of words in a vector space in such a way that similar words are located

closer together. Secondly, the context encoder is a neural network such as convolutional

neural networks (CNN), recurrent neural networks (RNN), or transformers. The context

encoder receives distributed representations as an input and creates context encoding by

capturing the contextualized information. While distributed representation of input aims

to learn word-level features, the context encoder learns sentence-level features. Finally,

the token decoder classifies each context representation of tokens into the corresponding

named entity category.

Similarly, Wang et al. [2] explore different methods for RE, which often parallel the

techniques used for NER. They classify RE methods into several groups that include hand-

built pattern methods and distant supervision methods as traditional approaches. They

also consider methods based on deep neural networks (DNN) separately. Hand-built pat-

tern RE methods involve matching preprocessed language fragments with patterns based

on words, semantics, or parts of speech, recognizing a relation only if the text matches the

pattern. As with NER, hand-built pattern RE methods also need extensive preliminary rule

crafting. Distant supervision methods address the challenge of creating large labeled train-

ing datasets by using knowledge bases like Freebase to infer relationships between entities

in text. This method assumes that if a sentence contains a pair of entities that also partici-

pate in the knowledge base relation, then this sentence is likely to express this relation as

well [10]. Nevertheless, distant supervision can result in wrong labeling due to violation of

this assumption.

Conversely, Wang et al. [2] highlight the advantages of DNN-based methods in RE,

similar to their impact on NER. DNN-based methods can automatically learn hidden fea-

tures, reducing the reliance on domain knowledge and manual effort. DNN-based meth-

ods outperform traditional approaches as they do not rely on the pre-defined patterns or

datasets that limit the performance of the model and its ability to detect unseen relations.

Similar to NER, the general architecture of an RE system comprises three parts: text rep-

resentation, context encoding, and triplet prediction [11]. The part of the architecture that

significantly differs from the NER system is triplet prediction. Its main goal is to detect the

spans of the entities and predict the relation type for the pairs of identified entities.

Zhao et al. [11] distinguish two main categories of triplet prediction approaches for

RE: the pipeline-based and joint approaches. The pipeline-based RE performs the task in

two separate stages. First, it extracts entities from the input sequence and then performs

8



2.2 Transformer

relation classification by predicting the relation type for each possible pair. Figure 2.2b

illustrates an example of pipeline-based RE. Firstly, the NER model detects all entities in

the sequence and then the relation classifier predicts the relation type for all possible pairs.

The main disadvantage of this approach is that it can suffer from error propagation, when

errors from NER are passed to the relation classifier, worsening the performance of the

whole RE pipeline. On the contrary, joint RE approaches do not suffer from this problem as

they perform NER and relation classification at the same time. One of these approaches is

Seq2Seq-based RE, which receives a sequence of tokens as an input and directly generates

triples with entity pairs and relation types as shown in the Figure 2.2a.

2.2 Transformer

As previously mentioned, apart from traditional methods for NER and RE, deep learning

algorithms are widely used because of their significant performance across many applica-

tions. In this section, we consider them in greater detail, giving special attention to the

transformer architecture on which the LUKE model is based.

Figure 2.3: ’Unrolled’ Recurrent Neural Network. The figure illustrates how the RNN processes
a sequence of n tokens X = [x1, x2, . . . , xn]. The sequence is fed sequentially through the en-
coder network E, which receives xi as an input. As output, the encoder generates the hidden
state hi. Then, the encoder passes the hidden state back through the feedback loop along with
the next input xi+1. Once all the tokens are processed by the encoder E, the last hidden state is
passed to the decoder D. The decoder outputs tokens sequentially, also passing the hidden state
through the feedback loop.

Before transformers, Recurrent Neural Networks (RNNs) were the state-of-the-art for

modeling sequential data, used in tasks such as translation and language modeling [6], [12].

The main feature of RNNs is that this architecture contains a feedback loop that allows it

to transfer information from one step to another. Thus, the model tracks information from

previous steps and uses it for predictions. Figure 2.3 illustrates an example of how an RNN

model is used for a translation task. The model consists of two main components: the en-

coder, which creates a numerical representation of the input sequence, and the decoder,

which receives the encoded input and generates an output sequence [12]. For example,

9
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to translate the sentence "Hello, how are you?" into Dutch using an RNN, we pass each to-

ken (encoded word or its part) to the model one by one. Then, the encoder generates the

last hidden state vector and passes it to the decoder, which produces the Dutch translation

"Hallo, hoe gaat het?". The main weakness of that approach is that the last hidden state pro-

duced by the encoder creates a bottleneck, as it should represent the whole input sequence.

This might result in the loss of some information, especially if the input is long [12]. More-

over, because of the sequential nature of the network, parallel processing is not possible

[6].

Attention is a mechanism designed to improve the performance of RNNs by allowing

them to focus on different parts of the input sequence when generating each element of the

output [13]. In the traditional RNN approach, the encoder passes only the final hidden state

to the decoder, which can cause the model to lose important information from earlier in the

sequence. With attention, instead of relying solely on the final hidden state, the encoder

provides an extended representation of the input. This allows the model to pay attention

to various parts of the input for each word produced by the decoder.

Transformer, proposed in the paper "Attention is All You Need" by Vaswani et al. [6],

improves the network described before even further. Similar to RNN, a transformer is

based on an encoder-decoder structure. However, instead of recurrent units, it has feed-

forward networks and self-attention layers. Thus, the encoder is composed of a sequence

of identical layers that consist of a multi-head self-attention mechanism and a position-

wise fully connected feed-forward network. The self-attention mechanism in the encoder

allows it to focus on different parts of the input sequence when encoding a token, grasping

the dependencies regardless of the tokens’ positions. The output of the encoder is a set

of contextualized embeddings (vectors). The decoder also consists of a stack of identical

layers, but with a third additional component: multi-head attention over the output passed

from the encoder. The decoder generates an output sequence one token at a time [6]. The

main benefit of the transformer architecture is that it allows parallel processing of input, as

the initial sequence is fed all at once through the model. Moreover, the transformer archi-

tecture has greater performance compared to RNN when it comes to long input sequences,

as it can attend to different parts of the input sequence based on their relevance to each

other and to the current output being generated [12].

Initially, the transformer architecture was developed for sequence-to-sequence tasks

like translation. However, both the encoder and decoder can be used separately. Decoder-

only models, such as GPT (Generative Pre-trained Transformer) [14], are used for text-

generation tasks such as language modeling and consist of only a decoder that generates

the output tokens. Encoder-only models, such as BERT (Bidirectional Encoder Representa-

tions from Transformers) [15], convert an input text into a numerical representation which

can be used for named entity recognition [12]. Thus, further, we are going to focus on

encoder-only models that are applicable for the NER and RE tasks.

10
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2.3 BERT and RoBERTa

When it comes to deep learning solutions for NER and RE, one of the greatest challenges

is for a model to learn effective representations of entities. One way of doing this is to use

contextualized word representations (CWRs) based on encoder-only models like BERT [15]

and RoBERTa (Robustly optimized BERT approach) [16].

BERT "is a multi-layer bidirectional Transformer encoder" [15] that is based on the orig-

inal transformer architecture proposed by Vaswani et al. [6]. Its bidirectional nature is

characterized by the self-attention mechanism considering the content of the given word

from both sides. Another feature of BERT is that it uses a two-step training framework:

pre-training and fine-tuning. During the first stage, BERT is trained for two tasks using an

unlabeled dataset. As a result, the model learns foundational knowledge and understand-

ing of the language. Then the fine-tuning stage aims to tune the pre-trained BERT model to

the specific task (e.g., NER) using labeled data. This allows the general understanding of

the language captured during the pre-training stage to be utilized during downstream tasks

[15]. The two tasks used for BERT pre-training are masked language modeling (MLM) and

next sentence prediction (NSP). The idea of the MLM task is that some of the input tokens

are randomly masked, and the model is supposed to predict the masked tokens. This aims

to train a bidirectional representation as the model has access to the context from both sides

of the masked token. The second task is binary classification. Two sentences, A and B, are

passed to the model, and it should classify whether B is the next sentence after A. NSP

helps the model capture the relation between sentences [15].

RoBERTa [16] builds on BERT but modifies the pre-training process to improve per-

formance. It removes the NSP task, focusing solely on the MLM task. Moreover, it uses

dynamic masking instead of the static masking used by BERT. The idea of static masking

is that it is performed only once during the data preprocessing stage, while in dynamic

masking, masked tokens are changed every time a sequence is passed to the model [16].

Even though the bidirectional nature and pre-training of BERT and RoBERTa models al-

low them to produce great performance in entity-related tasks, their architecture still fails

to produce accurate representations of entities [3]. Firstly, they only output token-level

representations of entities. For example, if the entity consists of multiple tokens, the model

cannot produce such output. Because of that, the model needs to learn how to produce

span-level representations of entities during the fine-tuning stage, which features a much

smaller dataset than the pre-training stage. Secondly, for the transformer, it is difficult to

detect the relationships between entities that consist of multiple tokens because the self-

attention mechanism wasn’t trained to connect groups of interconnected tokens. Finally,

the MLM task is not suitable for entity representation learning, as predicting a masked

word inside the entity is easier than predicting the whole entity. For example, consider the

entity "Singapore Symphony [MASK]"; for the model, it would be easier to predict "Orches-

11
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tra" than the whole entity that consists of three words [3]. The LUKE [3] model, which we

focus on in the next section, aims to solve these problems.

2.4 LUKE

LUKE is a model based on RoBERTa [16]. Unlike the models described before, LUKE treats

both words and entities as independent tokens. This allows LUKE to achieve state-of-the-

art performance in entity-related tasks, as the model makes a distinction between words

and entities in the input tokens [3].

Figure 2.4: LUKE architecture. The model receives words and entities tokens as input. It con-
sists of token embedding, positional embedding, and entity type embedding. Then the trans-
former computes contextualized representations of each token. Finally, representations are used
for entity-related downstream tasks. Source: [3]

One of LUKE’s key innovations is an entity-aware self-attention mechanism. Unlike the

traditional self-attention proposed by Vaswani et al. [6], which treats all tokens uniformly,

LUKE’s self-attention differentiates between words and entities. LUKE has different atten-

tion scores for all possible pairs of token types: word-word, word-entity, entity-word, and

entity-entity. This allows LUKE to generate more contextually rich and accurate represen-

tations for both words and entities.

The input to LUKE is comprised of three types of embeddings: token embeddings,

positional embeddings, and entity type embeddings. Token embeddings are obtained from

a shared vocabulary of words and entities. Each word and entity is mapped to a unique

embedding vector. Positional embeddings capture the position of the token in a sequence,

helping the model understand the order of words and entities. Entity type embedding

indicates whether the token is an entity and corresponds to a specific entity type. These

embeddings are used only for entities and are learned during the training process.

For LUKE to effectively learn representations of both entities and words, it was trained

using two pre-training tasks. Similar to BERT and RoBERTa models, LUKE employs MLM,

where random words are masked, and the model is trained to predict masked tokens. Ad-

ditionally, an extension of MLM is used to learn entity representations. Certain entities are

also masked, and the model is trained to predict those masked entities. This allows the

12
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model to develop a deep understanding of entity contexts and relationships. Consider the

example illustrated in Figure 2.4: "Beyoncé lives in Los Angeles." The entities in this sentence

are "Beyoncé" (Person) and "Los Angeles" (Place). During the training, "lives", "Angeles"

words, and "Los Angeles" entity are masked. Then the input, as a sum of entity type em-

beddings, positional embeddings, and token embeddings, is passed to the model. Finally,

the model is trained to predict correct words and entities for the masked tokens.

13
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This section describes the data used for this study. We present the results of the data explo-

ration stage, and then proceed to the details of data preparation and labeling. This data is

further used for fine-tuning and evaluation of the models.

3.1 Description of the Data

The dataset contains information about 2,422,789 news articles issued during the years 2023

and 2024 by digital magazines such as MarTech Series, Yahoo, and GlobeNewswire. The at-

tributes of the dataset include:

• Tags: Keywords that characterize the main idea of the article.

• Abstract: A short paragraph that contains the beginning of the article.

• Header: The title of the article.

• URL: The link to the article’s webpage.

• Timestamp: The date and time of publication.

• Body: The main text of the article.

• Domain: The website of the digital magazine that published the article.

Figure 3.1: Analysis of abstract text. (Left) Distribution of the number of words in an abstract,
limited to 0 - 300 words for clarity. (Right) Most frequent words in the abstracts.

14
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We conducted an exploratory data analysis (EDA) on the first 50,000 articles from the

dataset. This subset was selected due to computational limitations, as analyzing the entire

dataset would have been resource-intensive. Initial preprocessing steps include removing

stop words, digits, punctuation, and extra spaces, and converting text to lowercase. These

steps help normalize the text data, making it more suitable for analysis. Data exploration

revealed that more than half (33,088 out of 50,000) of the records have a null body variable.

Additionally, some articles were published by multiple magazines with identical content.

The number of duplicates with the same abstract in the considered sample is 12,458. For

instance, the article titled "Roblox Taps PubMatic to Offer Programmatic Immersive Video Ads

on Its Platform" was published on 2024-04-10 by both YahooFinance [17] and MarketScreener

[18].

Given the prevalence of null values in the body variable, constraints on model input

length, and limited computational resources, we decided to focus on the abstract and title.

This decision was based on preliminary analysis, which showed that abstracts and titles

alone contain sufficient information about entities of our interest. Figure 3.1 illustrates an

overview of the abstracts: the majority of articles have around 50 words in the abstract,

though some outliers have up to 3,500 words. Furthermore, the most frequent words are

company, president, and partnership, indicating that the majority of the news is about politics

or the corporate world.

Figure 3.2: Topic modeling results. (Left) Inter-topic distance map. (Right) Top salient terms for
the most significant topic.

To gain further insights, we performed topic modeling using Latent Dirichlet Allocation

(LDA), a method that assumes each document is a collection of a small number of topics,

and each word in the document can be attributed to one of these topics [19]. Figure 3.2

shows the results of modeling eight clusters of articles. Each bubble on the left side of the

15



Data

figure represents a cluster. The larger the bubble, the more articles in the corpus are related

to this cluster. Additionally, the distance between bubbles indicates the similarity between

clusters. For example, clusters one and four are similar, while clusters one and seven are

completely different. On the right side, the histogram presents the most relevant words for

all articles (in blue) and for the biggest cluster, number one (in red).

As a result of topic modeling, we observe the following topics in the corpus:

• Business: Clusters one, three, and four, with words like company, acquisition, business,

partnership, and post.

• Sport: Clusters six, with words like team, season, game, and coach.

• Legal: Clusters seven and eight, with words like act, party, court, and correctional.

• Politics: Clusters two and five, with words like Trump, president, Israel, and Biden.

3.2 Preparation and Labeling of the Data

To fine-tune and evaluate NER and RE models, we manually labeled 335 articles using

the Label Studio1 platform. We labeled all entities and relations in the title and abstract

variables using the following types:

• Entity ORG: Company or organization.

• Entity PER: Person.

• Relation acquired_by: When one organization acquires (part of) another organization.

For example, in the sentence "Apple, Inc. Acquires 50% of NeXT." the relation between

entities "NeXT" and "Apple, Inc." is of type acquired_by.

• Relation partners_with: When two organizations partner. For example, in the sen-

tence "Balenciaga and Crocs Renew Partnership Launching New Collection" the relation

between entities "Balenciaga" and "Crocs" is of type partners_with.

• Relation works_at: When a person is affiliated with a company. For example, in the

sentence "Bob Smith appointed ScotRail Managing Director." the relation between enti-

ties "Bob Smith" and "ScotRail" is of type works_at

To maintain consistency in the labeling process, we developed a set of guidelines based

on best practices in the field [20]. Firstly, a word or phrase can be considered an entity

if it has a specific reference, meaning it refers to a single entity in the world and remains

constant over time. For example, "Bob the tennis player" is not an entity, as its reference can

change depending on the context and time, whereas "Bob Smith" is an entity, as its reference

is constant. Secondly, the genitive marker is not considered part of an entity; for instance, in

1https://labelstud.io/
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Figure 3.3: Results of data labeling. (Left) Number of relation types. (Right) Number of entity
types.

"Bob’s office" only "Bob" would be considered an entity. Thirdly, we label relations that are

only within the boundaries of one sentence and do not spread across multiple sentences.

For example, if two partnering companies are mentioned in separate sentences, we do not

label this relation. We decided to do it this way because later, while preparing data for

fine-tuning, we separate articles into sentences for greater efficiency. Finally, some of the

NER models are incapable of identifying overlapping entities; therefore, we decided to

label only entities that have non-overlapping spans.

We manually labeled 335 news articles and the result is shown in Figure 3.3. A total of

325 relations (excluding the NIL class) and 1,226 entities of various types were labeled. This

dataset is split into train and test sets with a 67% and 33% ratio, respectively (see Appendix

A.1). These datasets are used for model fine-tuning and evaluation. Also, after labeling,

we added one more type of relation, NIL, No Information Label. We randomly created 100

pairs of entities that do not belong to any relation class and assigned them to the NIL class.

This label will help LUKE entity pair classifier model to learn to detect entity pairs that

do not have a relation. The details of the input data for each model, as well as the entire

methodology, are discussed in the next section.

3.3 Ethical Considerations

All data used in this study was obtained from publicly available sources. No personal

information beyond what is publicly available in the news articles was used or exposed

during this study.
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4. Method

This section is comprised of three parts. First, we focus on the models that we use for

NER and RE. Then we proceed to the description of the pipelines for different models, and

evaluation metrics. In each section we cover both our procedures for NER and RE.

4.1 Models

4.1.1 NER Models

To address RQ1 and RQ2, we examine and compare the performance of four NER models

based on our test set. We utilize two LUKE-based models: luke-large-finetuned-con_-

ll-2003 and a custom fine-tuned luke-base model on our dataset. We compare the per-

formance of these models to two baselines: the standard spaCy1 en_core_web_lg model

and a fine-tuned version of the same model on our dataset.

The luke-large-finetuned-conll-2003 model is a LUKE variant that has been specif-

ically fine-tuned on the CoNLL-2003 dataset [21], a benchmark dataset for NER. This model

is based on luke-large, which has 484 million parameters. As mentioned earlier, the LUKE

model utilizes a transformer architecture and distinguishes between entities and words as

independent tokens. We expect LUKE to outperform the baseline spaCy model due to this

distinction.

We also fine-tune the luke-base model for the NER task on our dataset. luke-base

has 253 million parameters. We select luke-base over luke-large, which has 484 million

parameters, because of better computational efficiency and shorter training time, which is

particularly important when working with limited hardware capabilities. Moreover, while

luke-large might offer better performance in some cases, luke-base often provides suffi-

ciently good performance for NER task, making it a balanced choice between performance

and efficiency. Fine-tuning of luke-base involves adjusting the parameters of the pre-

trained LUKE model to our task-specific data. We anticipate that this will improve the

model’s ability to recognize and classify entities that are specific to our dataset. However,

the performance of this model might be relatively low due to the small size of the training

dataset. Further details on fine-tuning parameters and input/output formats are covered

in subsequent sections.

The spaCy en_core_web_lg is a fine-tuned English-language pipeline that comprises

1https://spacy.io/
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multiple components, including Tok2Vec and NER. The Tok2Vec component of the pipeline

generates a representation of an input sequence by mapping tokens into vector representa-

tions. The NER component of the pipeline utilizes a convolutional neural network (CNN)

architecture. To further enhance the spaCy model’s performance, we fine-tuned the en_-

core_web_lg model on our annotated dataset.

The selection of these models was driven by several factors. First, all four models are rel-

atively straightforward to implement using the spaCy library for en_core_web_lg models

and the Hugging Face Transformers2 library for LUKE-based models. Both libraries pro-

vide detailed documentation that facilitated the implementation process. Secondly, both

en_core_web_lg and luke-large-finetuned-conll-2003 were chosen for their capability

to recognize Person (PER) and Organization (ORG) entities.

4.1.2 RE Models

To answer RQ3, we compare the performance of two RE models: a LUKE pipeline-based

RE model and a Seq2Seq REBEL (Relation Extraction By End-to-end Language generation)

[4] model. Our goal is to evaluate and compare their effectiveness in identifying and clas-

sifying relationships between entities within our dataset.

The LUKE model is inherently not designed for direct RE tasks, because of that we

implement LUKE in a two-stage pipeline to create an RE solution. Initially, we perform

NER using one of the LUKE-based models from the previous section. Subsequently, we

classify the relationships between the identified entities. To achieve this, we fine-tune the

luke-base entity pair classifier specifically based on our training dataset. This fine-tuning

involves adjusting LUKE’s parameters to optimize its performance for our specific relation

types, which include partners_with, acquired_by, works_at, and NIL.

From the REBEL family [4], we employ the rebel-large model and fine-tune it on our

dataset. It has 406 million parameters and is an encoder-decoder model developed specif-

ically for relation extraction. REBEL was pre-trained on a large dataset and achieves state

of art results on variety of benchmark datasets for RE, including CoNLL04 [22]. REBEL

processes text to generate text sequences that describe relationships between entities. By

fine-tuning REBEL, we tailor the model to classify relations into the required classes specific

to our dataset.

The selection of these models was driven by our goal to evaluate the effectiveness of

LUKE for relation extraction tasks and compare its pipeline-based approach with a di-

rect Seq2Seq solution using REBEL. LUKE’s pipeline approach leverages its entity recogni-

tion capabilities to sequentially infer relationships between entities, while REBEL’s direct

Seq2Seq architecture aims to capture relational semantics directly from textual input, offer-

2https://huggingface.co/docs/transformers/index
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ing complementary perspectives on the task of relation extraction.

4.2 Pipelines

As was described in the previous section, we manually labeled entities and relations in 335

news articles with labels ORG, PER for entities and works_at, acquired_by, partners_with for

relations. Subsequently, we split the articles into sentences to ensure that the input length

does not exceed the maximum limit for the models. Finally, we divided this dataset into

train and test sets with a ratio of 67% for fine-tuning and 33% for evaluation purposes.

4.2.1 Pipeline for NER

Figure 4.1: LUKE pipeline for NER. The Tokenizer receives text and a list of n entity spans
as inputs. It produces: input_ids, entity_ids, entity_position_ids, entity_start_positions,
entity_end_positions, attention_mask, and entity_attention_mask. These variables are then
passed to the LUKE model, which returns the logits, a list of classification scores of size n.

LUKE-based models perform NER by classifying all possible entity spans into three

classes: ORG, PER, and NIL (indicating the span does not belong to any predefined class).

An entity span is a tuple that contains start and end character indices of an entity in an

input sentence. Thus, as an input for the LUKE-based model, we pass not only the text,

but also a list of all possible entity spans in the sentence. We create this list by splitting

the input sentence into words and constructing all possible spans that are not longer than 6

words. We limit the number of words in the candidate entity in order to reduce the number

of values that the model needs to classify and, thus, reduce the number of computations.

Figure 4.1 illustrates the whole NER pipeline for LUKE-based models. We use a tokenizer

for the luke-base model, which receives text and entity_spans as input. The tokenizer

breaks down the text into subwords, and encodes them into a format that the model can

process. As an output, the tokenizer produces a dictionary with the following items:

• input_ids: List of token IDs that represent the input after tokenization. Each ID cor-

responds to the subword in the input sequence as per the tokenizer’s vocabulary.

• entity_ids: List of IDs that represent entities in the input text. The size of entity_ids

matches the size of the input entity_spans list.

• entity_position_ids: List of lists, where each inner list contains the indices of positions
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of input entities in input_ids list.

• entity_start_positions: List of indices of tokens in the input_ids list that indicate the

start of the entities.

• entity_end_positions: List of indices of tokens in the input_ids list that indicate the

end of the entities.

• attetnion_mask: List of binary values (0 or 1) that indicate which tokens should be

attended by models. This helps models to ignore padding tokens.

• entity_attention_mask: Similar to attention_mask, but specifically for entities.

The output of the tokenizer is passed to the model that outputs the logits, unnormalized

scores, for each input entity span. Logits represent a score for each class, which indicates

how strongly the model predicts that the input entity span belongs to each class. For exam-

ple, in Figure 4.1, the model predicts that the first, second, and fourth entity spans belong

to the first class, while the third entity span belongs to the third class. In this example, we

have the following relation between classes and indices in the prediction lists: {0:"NIL",

1:"PER", 2:"ORG"}. Thus, in the considered example, the model correctly predicted that

the third entity, "Geopulse Exploration, Inc.", is an organization, while the rest of the entities

cannot be identified as an organization or person.

In addition to the implementation of the luke-large-finetuned-con_ll-2003 model

as was described above, we also fine-tuned the luke-base model using our dataset. We

performed fine-tuning with 4 epochs, meaning we go over the training set four times. To

train the model, we iterate over our train set in batches of size 4, padding each batch to

the longest sequence in the batch. We used those settings for the fine-tuning, as they were

recommended in one of the tutorials by the LUKE developers. Each iteration involves the

model making the prediction, computing the loss by comparing the model’s prediction to

the true labels, and performing backpropagation, an algorithm that computes the network

parameters updates. As a result of the fine-tuning process, we receive the LUKE model

with updated weights that are optimized for our data. Finally, we implement this fine-

tuned model as was described in the previous paragraphs.

The procedure for spaCy models slightly resembles the procedure for LUKE models.

We use the already fine-tuned model en_core_web_lg for prediction. Also, we perform our

own fine-tuning of en_core_web_lg by configuring a custom training setup using spaCy’s

configuration system.
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4.2.2 Pipeline for RE

Figure 4.2: LUKE pipeline for RE. First, the NER model detects all the entities of types ORG
and PER in the input sentence. Then, we create all possible permutations of the detected enti-
ties. Finally, the relation classification (RC) model makes a prediction for each possible pair.

Figure 4.2 explains the RE pipeline based on LUKE models in greater detail. First, we

implement an NER LUKE model that we fine-tuned on our data. After it classifies all the

entity spans, we create all possible permutations of size two out of entity spans of type ORG

or PER. Then, we iterate over the list of permutations and use the RE model to classify the

relation between the entities in each pair:

1. The tokenizer for luke-base receives text and a pair of entity spans as input and out-

puts input_ids, entity_ids, entity_position_ids, attention_mask, entity_attention_mask.

2. The encoded input is passed to the LUKE model, fine-tuned on our data, which clas-

sifies the pair into one of the classes: works_at, acquired_by, partners_with, and NIL.

To implement the second part of the pipeline, relation classification, we fine-tune the

luke-base model with the same settings and procedure as for NER.

Unlike the solution based on LUKE models, the implementation of the REBEL model

involves fewer steps, as it performs both NER and relation classification. The REBEL to-

kenizer receives text as input and outputs input_ids and attention_mask. Then, the model

generates a sequence in the following format:

"<triplet> head1 <subj> tail1 <obj> relation1 <triplet> head2 <subj> tail2

<obj> relation2 ...",

where head and tail are entities that participate in the relation, and relation is the rela-

tion type. Thus, as a result, we receive triplets extracted by the model in one output. In

order for REBEL to detect the required relations, we fine-tune rebel-large with the same

settings and procedure as for the LUKE model.

4.3 Evaluation

To estimate the performance of the NER and RE models, we compare the models’ pre-

dictions with our annotations using the "exact-match" evaluation strategy. This strategy
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Entity Ground truth Prediction For ’ORG’ class For ’PER’ class

CS Disco, Inc. ORG ORG TP
Board of Directors NIL NIL
Eric Friedrichsen PER PER TP
Presindent NIL ORG FP
Chief NIL PER FP
Macy ORG PER FN FP
proxy fight NIL NIL
Arkhouse ORG NIL FN
Ernst Rustenhoven PER ORG FP FN
CEO NIL NIL
ILGM ORG ORG TP

Table 4.1: Example of NER evaluation. The Entity column contains entities that are classified
by the model. The Ground truth column contains the true labels for each entity. The Prediction
column contains the predictions made by the model. The For ’ORG’ class column contains in-
dicators showing whether the prediction is TP, FP, or FN for the ORG class. The For ’PER’ class
column contains indicators showing whether the prediction is TP, FP, or FN for the PER class.

assumes that a named entity or relation is correctly recognized if the model correctly iden-

tifies both the entity spans and type [1]. We calculate precision, recall, and F1-score based

on the number of true positives (TP), false positives (FP), and false negatives (FN) with

respect to class i.

Pi =
TPi

TPi + FPi
(4.1) Ri =

TPi
TPi + FNi

(4.2) F1i =
2 × Pi × Ri

Pi + Ri
(4.3)

• Precision (4.1) is the proportion of correctly classified items (TP) among all items as-

signed by the model to class i.

• Recall (4.2) is the proportion of correctly classified items (TP) among all items that

belong to class i.

• F1-score (4.3) is the harmonic mean of precision and recall.

To obtain the final performance metrics for the model, we compute macro precision,

recall, and F1-score by averaging each metric for all the classes except NIL class:

PM =
∑C

i=1 Pi

C
(4.4) RM =

∑C
i=1 Ri

C
(4.5) F1M =

∑C
i=1 F1i

C
(4.6)

where C is total number of classes except NIL class.

Table 4.1 provides an example of how the performance of the NER model is estimated.

According to this example, the recall for the ORG class is 0.5, as we have two cases where

the ORG entity was recognized correctly and two cases where the ORG entity wasn’t recog-

nized by the model. The precision for the ORG class is also 0.5, as we have two cases where

the ORG label was assigned incorrectly. Similarly, the precision for the PER class is 0.333.

Finally, to compute macro-precision, we take the average of the precision values for each
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class and get 0.417. The evaluation for the RE follows the same logic, except that we have

entity pairs instead of entities in the left column, and the classes are works_at, acquired_by,

and partners_with.
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5. Results

This section presents the results of the NER and RE models tested in this study. To evaluate

the models, we use the test set to compare the predictions made by the models with the

true labels. Then we calculate macro precision (4.4), recall (4.5), F1-score (4.6) metrics, and

class-specific precision (4.1), recall (4.2), and F1 (4.3) scores.

5.1 Overview of the NER results

Model Macro-P Macro-R Macro-F1 P (PER) P (ORG) R (PER) R (ORG) F1 (PER) F1 (ORG)

LUKE-conll-2003 0.732 0.854 0.788 0.809 0.655 0.905 0.804 0.854 0.722

LUKE-fine-tuned 0.719 0.573 0.635 0.780 0.659 0.548 0.598 0.643 0.627

spaCy 0.603 0.612 0.607 0.686 0.519 0.702 0.521 0.694 0.520

spaCy-fine-tuned 0.823 0.824 0.823 0.882 0.763 0.893 0.756 0.888 0.759

Table 5.1: Performance metrics for NER models.

Table 5.1 displays the performance metrics for the four NER models evaluated in this

study:

• LUKE-conll-2003: LUKE model fine-tuned on the CoNLL-2003 dataset [21].

• LUKE-fine-tuned: LUKE model fine-tuned on the training dataset that we prepared.

• spaCy: spaCy en_core_web_lg model.

• spaCy-fine-tuned: spaCy en_core_web_lg model fine-tuned on the training dataset

that we prepared.

The spaCy-fine-tuned model achieved the highest macro-F1 score (0.823), demonstrat-

ing superior overall performance in recognizing both PER and ORG entities. This is fol-

lowed by the LUKE-conll-2003 model with a macro-F1 score of 0.788. The LUKE-fine-tu_-

ned model performed moderately with a macro-F1 score of 0.635, while the spaCy model

has the lowest performance with a macro-F1 score of 0.607.

Comparing LUKE-based models with the spaCy solutions, we can observe that LUKE-_-

conll-2003 performed significantly better than spaCy. However, models fine-tuned on the

news dataset have the reverse relation; the spaCy-fine-tuned model is noticeably more

effective than LUKE-fine-tuned in identifying both ORG and PER classes. Moreover, if

we compare LUKE-conll-2003 and spaCy-fine-tuned, we observe that the spaCy model

outperforms LUKE according to F1-scores, while the LUKE model has higher recall and

lower precision metrics. This means that it detected a greater share of the true entities but

made more mistakes than spaCy.
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In terms of individual class performance, the spaCy-fine-tuned model exhibits high

precision and recall for both PER and ORG classes. Meanwhile, the LUKE-conll-2003

model shows strong precision for PER (0.809) but relatively lower precision for ORG (0.655).

This indicates that the model is better at classifying the PER class and has more false pos-

itives for the ORG class in its predictions. In general, this behavior is not unique to the

LUKE-conll-2003 model, and we observe that the majority of models are better at recog-

nizing persons than organizations.

It is important to note that the dataset used for NER had a class imbalance, with 994

instances of ORG and only 232 instances of PER. This imbalance could have impacted the

models’ ability to accurately identify entities, particularly for the underrepresented class.

The higher number of ORG entities might have contributed to the models’ lower precision

for this class, as they had more opportunities to make false positive predictions.

5.2 Overview of the RE results

Model Macro-P Macro-R Macro-F1 P (W) P (P) P (A) R (W) R (P) R (A) F1 (W) F1 (P) F1 (A)

LUKE-RC-fine-tuned 0.952 0.984 0.966 1.000 0.973 0.882 0.978 0.973 1.000 0.989 0.973 0.938

LUKE-RE-fine-tuned 0.589 0.383 0.453 0.917 0.556 0.294 0.458 0.357 0.333 0.611 0.435 0.313

REBEL-fine-tuned 0.828 0.695 0.752 0.903 0.794 0.786 0.622 0.730 0.733 0.737 0.761 0.759

Table 5.2: Performance metrics for RE and relations classification models.

Table 5.2 displays the performance metrics for the one relation classification model and

the two RE models:

• LUKE-RC-fine-tuned: LUKE model for relation classification fine-tuned on the train-

ing dataset we prepared.

• LUKE-RE-fine-tuned: LUKE pipeline for relation extraction, with both NER and re-

lation classifier models fine-tuned on the training dataset we prepared.

• REBEL-fine-tuned: REBEL model for relation extraction fine-tuned on the training

dataset.

It is important to note that comparing the performance of LUKE-RC-fine-tuned with

the other models may not be entirely fair due to the differences in the tasks they perform.

The LUKE-RC-fine-tuned is specifically designed for relation classification, which involves

identifying the type of relationship between two entities given that they are already identi-

fied. In contrast, the LUKE-RE-fine-tuned and REBEL-fine-tuned models perform relation

extraction, a more complex task that requires both identifying the entities and determining

the relationship between them.

We observe that the LUKE-RC-fine-tuned model achieves great performance across all

metrics. It scored a macro-F1 of 0.966, with macro-precision and macro-recall values of

0.952 and 0.984, respectively. Notably, it achieved perfect precision (1.000) in the works_at
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(W) class and perfect recall (1.000) in the acquired_by (A) class. These perfect scores indicate

that the model made no false positive errors in identifying the works_at relationships and

no false negative errors in identifying the acquired_by relationships. This probably signals

that the test set is too small and there might be not enough examples for the model to make

mistakes.

The LUKE-RE-fine-tuned model achieves a macro-F1 score of 0.453. It performs best in

the works_at (W) class, attaining an F1-score of 0.611, albeit with a lower recall of 0.458. Per-

formance for partners_with (P) and acquired_by (A) classes is notably lower, with macro-F1

scores of 0.435 and 0.313, respectively. In contrast, the REBEL-fine-tuned model demon-

strated better overall performance with a macro-F1 score of 0.752. It excelled in the works_at

(W) class with an F1-score of 0.737. In partners_with (P) and acquired_by (A) relations, it

also performed well, achieving F1-scores of 0.761 and 0.759, respectively.
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6. Conclusion and Discussion

In this section, we conclude the study by answering the research questions. Then, we cover

the limitations of the study and suggest future work that can build on this study.

6.1 Answering the Research Questions

In this study, we attempt to answer the following research questions:

• RQ1: How effective is the LUKE model for NER compared to the baseline spaCy

solution?

• RQ2: How effective is fine-tuning the LUKE model for NER?

• RQ3: How effective is fine-tuning the LUKE model for RE compared to the REBEL

model?

To answer these questions, we implemented different models for NER and RE tasks and

analyzed their performance on a manually labeled dataset comprised of news articles. For

RQ1, the results indicate that the LUKE model fine-tuned on the CoNLL-2003 dataset [21]

is relatively effective for our NER task and performs better than the baseline spaCy model.

This suggests that LUKE’s transformer-based architecture, which distinguishes entities and

words, might contribute to its higher performance. However, when comparing the LUKE-

based models to the fine-tuned spaCy model on our specific dataset, spaCy outperforms

them according to almost all metrics. This indicates that while LUKE is inherently strong,

spaCy adapts better to fine-tuning on this specific dataset. The reason for these observa-

tions might be due to the fact that there are not enough observations in our training dataset

to properly fine-tune the transformer, while at the same time, it is a sufficient amount of

data for training the CNN, on which the spaCy solution is based.

Considering RQ2, we probably cannot provide an unambiguous answer. The LUKE

model fine-tuned based on our training dataset performed worse when comparing it to the

LUKE model fine-tuned on the CoNLL-2003 [21]. There are several reasons for that. Firstly,

this suggests that the dataset used for fine-tuning might not have been large enough for

LUKE to learn, pointing to a limitation in the fine-tuning process. Secondly, the LUKE

model fine-tuned on the CoNLL-2003 dataset benefits from the significantly larger training

dataset with diverse examples. Finally, this model is based on luke-large, which has 484

million parameters, whereas our LUKE model is based on luke-base, with 253 million

parameters. The larger model size of luke-large likely allows it to capture more complex

patterns and nuances in the data, contributing to its superior performance.
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6.2 Limitations

For RQ3, the LUKE relation classifier demonstrated exceptional performance and its

performance is significantly higher than that of the LUKE pipeline for RE, which performed

relatively low. The stark difference suggests that the overall performance of the pipeline

solution is affected by the NER model, which fails to detect entities in the first step, and

those errors are propagated further to the relation classification stage. For that reason,

the performance of the LUKE RE pipeline is less robust compared to the REBEL model.

REBEL’s end-to-end approach appears to handle the complexity of RE task more efficiently

than the sequential LUKE-based pipeline.

6.2 Limitations

Within this study, there are several limitations that impacted the outcomes of this study.

Firstly, the results of the LUKE fine-tuning indicate that the size and diversity of the train-

ing dataset were insufficient for optimal fine-tuning. The limited dataset posed a signifi-

cant challenge as transformer-based models typically require vast amounts of data to learn

patterns. The insufficiency in the dataset’s volume resulted in the model’s inability to gen-

eralize and perform well on unseen data. A larger, more diverse dataset could potentially

enhance the final performance of the model.

Secondly, the disparity in model architectures and training data volume also impacted

performance comparisons. The LUKE model fine-tuned on the CoNLL-2003 dataset used

the luke-large variant, which possesses significantly more parameters than the luke-base

variant used in our fine-tuning process. This discrepancy likely contributed to the perfor-

mance gap observed between the models. The luke-large model, benefiting from a big-

ger architecture and training dataset, was able to achieve better performance metrics, thus

highlighting the limitations imposed by the smaller luke-base variant and our dataset.

Moreover, the sequential nature of the LUKE RE pipeline introduced significant limita-

tions due to error propagation. In this pipeline approach, the performance of the relation

classification step is heavily dependent on the success of the initial NER step. If the NER

model fails to accurately detect entities, these errors are propagated to the relation classifi-

cation stage, compounding the overall error rate. In our study, this was the case, and the

NER model used in the pipeline failed to show great performance. The performance of the

entire pipeline could potentially be improved by replacing the NER model with another

model that has higher performance.

6.3 Future Work

To build on the findings of this study, future research might concentrate on several key

areas. Firstly, expanding the size and diversity of the training dataset is essential. A more

extensive and varied dataset could significantly improve the fine-tuning process and over-
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all model performance, particularly for transformer-based models like LUKE that require

large amounts of data.

Parameter tuning is another possible area for future research. In this study, we did not

test different model parameters when fine-tuning them. The decision was influenced by the

scope and focus of the current research, which prioritized the comparison of LUKE model

performance for NER and RE tasks with other solutions. However, systematically explor-

ing different hyperparameters, such as learning rates, batch sizes, and dropout rates, could

yield significant performance gains. Automated hyperparameter optimization techniques

like grid search can be used to obtain optimal settings for the LUKE and other models.

Additionally, future research could explore the integration of external knowledge bases

to enhance model performance. Leveraging structured knowledge sources could provide

models with additional context and improve their ability to recognize and classify entities

and relationships accurately.

6.4 Ethical Considerations

Throughout the course of this study, several ethical principles have been central to our

approach. We endeavored to maintain transparency at every stage, from data preparation

through to model fine-tuning and evaluation, by comprehensively documenting all the

processes. Additionally, we focused on bias mitigation by examining the dataset to ensure

adequate representation of less commonly occurring entities and relations. This approach

aimed to prevent the underrepresentation of certain entities and relations, which could

otherwise lead to biased model outputs and evaluations. Finally, accountability has been

upheld by carefully recording all decisions and methodologies, aiming for reproducibility

in our findings.
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7. Code Availability

The code used in this study is available at https://github.com/NataliaKurd/NK_ADS_

thesis. Please be aware that the GitHub repository is managed and updated by the author,

and it may feature more recent versions or improvements of the code used in this study.
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A. Appendix

A.1 Test, Train split

Figure A.1: Test, Train split NER. Distribution of entity types among test and train sets.

Figure A.2: Test, Train split RE. Distribution of relation types among test and train sets.
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