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Abstract 
In recent years, Physics Informed Neural Networks (PINNs) have emerged as a powerful tool 

for solving complex partial differential equations (PDEs) governing physical phenomena. 

While numerous studies have explored the theoretical aspects of PINNs using benchmark 

problems, their application to real-world data and simulations remains limited. In this paper, 

we employ the PINNs method to simulate fluid flow over coastal dunes in the Netherlands, 

addressing a real-world problem. We aim to test the usability and performance of Physics 

Informed Loss by comparing it to similar models without this loss. Our results demonstrate 

that models incorporating Physics Informed Loss do not improve performance within the 

training data bounds but do show enhanced generalization to unseen data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The source code used in this project will be made available on Github. 

https://github.com/James-Quigley-ie/NS-PINN
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1 Introduction 
 

Understanding wind patterns around sandy beaches and their dunes is vital. It helps us predict 

how sand moves, which in turn affects the size and shape of the dunes. Sandy beaches are a 

major feature of our planet, covering 31% of ice-free coastlines Luijendijk et al. (2018). 

These beaches and dunes play a crucial role in coastal protection. They provide habitat for 

plants and animals, support tourism, and help purify water (Edward et al., 2011; Everard et 

al., 2010).  Much of the Netherlands lays below sea level and thus coastal dunes also play a 

key role in preventing storm water from flooding the land and separating seawater from fresh 

drinking water. Regular exposure to high-speed wind can quickly change the size and shape 

of sand dunes and eliminate their protective functions.  

The ability to predict the wind speed and direction can enable researchers to protect against 

erosion and deposition of sand and therefore protect the functions of the dunes (Van 

Koningsveld et al., 2007). Protective actions have been taken at multiple sites in the 

Netherlands to strategically help grow sand dunes and ensure their long-term existence. 

Foredune notching is one example where deep ridges are cut into the first row of dunes, 

known at the sea strip, allowing wind carrying sand to travel further inland and deposit it’s 

load on the dunes behind. This has been performed at Kennemerduinen, NL, between 2011 

and 2013. The foredune notching resulted in the main row of dunes behind the foredunes 

growing at a rate of 30-50m per year, becoming larger and firmer (Ruessink, 2021). 

According to PWN Waterleidingbedrijf Noord-Holland, the public organization responsible 

for the works, the larger-more inland dunes are responsible for keeping the water back. 

Similar work is planned for the dunes at Castricum, NL, during 2024 and 2025.  

The use of high-fidelity Computational Fluid Dynamics (CFD) simulations remains a reliable 

but time consuming and computationally expensive method for predicting the surface wind 

speed and direction over coastal dunes for a given atmospheric wind speed. The accuracy of 

traditional CFD is limited by the computational resources available. In the pursuit of making 

faster predictions, surrogate CFD models using Machine Learning (ML) have been 

developed. Such CFD-ML model have been shown to reduce computation time and to solve 

inverse problems (determining the underlying physical equations)(Raissi, Perdikaris, et al., 

2019; Raissi, Wang, et al., 2019), and to upscale the resolution of CFD simulations (Gao et 

al., 2021). 

Hybrid CFD-ML Surrogate models are a class of ML models which are trained on data from 

traditional CFD simulations with the hope that the ML models can learn the patterns and non-

linear interactions of CFD. While slow and costly to train, surrogate CFD-ML models aim to 

make predictions quick and efficiently. Many possible surrogate CFD-ML models exist. 

Convolutional Neural Networks (CNNs) being designed specifically for processing images 

are a natural network architecture for CFD since a 2D or 3D vector field can be presented as 

2 or 3 input channels (images), which can then be convolved and deconvolved within a 

CNN(Guo et al., 2016). Recurrent Neural Networks(RNNs) have also shown promising 

results in turbulence modelling(Zhang et al., 2023). 



4 
 

Physics Informed Neural Networks (PINNs) are another potential surrogate model for solving 

systems of differential equations. PINNs involve training a neural network to minimize the 

loss function defined by residual of the modelled equations. In their seminal paper, Raissi et 

al. (2017) showed that Neural Networks could be trained to learn differential equations and in 

their follow up paper Raissi, Perdikaris, et al. (2019) showed that PINNs could lean the 2D 

Navier-Stokes(NS) equations for an incompressible fluid flow around a cylinder. By 

encoding the continuity NS equation and the momentum NS equations into the loss function, 

they were able to train the NN to make predictions which satisfy the governing laws. 

However, training PINNs to model CFD simulations remains mostly in the realm of 

theoretical research. The use of Automatic Differentiation (AD) of the outputs of the NN to 

compute the partial derivatives of a PINN remains a barrier to the development of the field. 

AD relies on the ability to decompose a function into a series of operations (primitives) for 

which the derivatives are known and to which the chain rule can be applied (Merriënboer et 

al., 2018). Most modern ML frameworks including PyTorch, TensorFlow and JAX include 

the ability to perform AD. Nevertheless, the use of AD is computationally and memory 

intensive as large graphs employing the chain rule are generated to calculate the derivate of 

the NN outputs with respect to the inputs of the NN and its parameters. 

When designing a PINN to model the NS equations, a Deep Neural Network (DNN) 

architecture is often chosen as these provide sufficient network depth and complexity to 

model the interactions of the fluid. However, DNNs have a high number of parameters even 

for low-resolution, small-scale fluid simulations. Moving from simulating the NS equations 

from 2D to 3D domain dramatically increases the size of the network required as well as 

additional derivatives and an additional NS equation. There are notably few articles which 

apply PINNs to the problem of real-world 3D fluid flows. Studies which do attempt to solve 

the problem do so by modelling on extremely small scales (Arzani et al., 2021), use multi-

scaling techniques (Suo & Zhang, 2023) or employing Physics Informed Graph Neural 

Networks (Shao et al., 2023). The use of Graphs instead of regular lattices in PINNs are an 

obvious choice since this is standard practice in traditional CFD simulations. However, 

introducing an unstructured mesh introduces additional complexity to modelling and the 

results would require interpolation back to the regular lattice for comparison. Due to these 

drawbacks, a regular lattice structure will be used for the model proposed in this paper. 

In their paper on charactering the failure modes of PINNs, Krishnapriyan et al. (2021) 

suggest using curriculum regularization to improve performance. Curriculum regularization is 

achieved by gradually increasing the PIL parameters as the model trains until the PINN 

converges correctly.  Before starting curriculum regularization, they suggest creating a NN 

without physics informed loss while using all available training data to show that the model 

has sufficient capacity/expressivity . They then argue that the cause of PINN failure is 

because of optimization difficulties and curriculum regularization is the solution they present. 

Hybrid CFD-ML requires training an ML model on CFD data. Although it is possible to 

develop PINNs without any data (Stiasny et al., 2021; Sun et al., 2020), this is not usually 

performed due to extremely slow convergence. The creation of an effective surrogate model 

for determining wind flow over coastal dunes could enable land management agencies to 

replace time consuming CFD simulations with quick feed-forward neural networks. Such a 

model could be used to inform erosion and deposition models to predict how dunes will 
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develop over time and find the quickest or most cost-effective foredune notching solution if 

required.  

In this study, we attempt to create a deep neural network to model wind flow over coastal 

terrain. We aim to characterize the performance of Physics Informed Learning(PIL) in 

simulating wind velocity and investigate whether NNs can improve the computation 

efficiency compared to classical CFD simulations.  

Chapter 2.1 introduces the terrain available for simulation and presents a brief overview of 

the CFD performed, including the assumptions, limitations and boundary conditions. Chapter 

2.2 presents the conceptual model of our PINN and Chapter 2.3 introduces data scaling and 

the a Fourier Transformation Layer to improve model performance. Chapter 2.4 demonstrates 

how to optimize performance by tuning the model parameters. In Chapter 3 we present the 

model accuracy, training time, and test its generalizability based on unseen data.  In Chapter 4 

we discuss the results and conclude the research question.  

     



6 
 

2 Data and Methods 
2.1 CFD Simulation 
For this study  data, including velocity vector and pressure, is generated using OpenFOAM, 

an open-source package for CFD simulation ("OpenFOAM," 2024; Weller et al., 1998). The 

simulation assumes an incompressible fluid flow in isothermal equilibrium. A no slip wall 

boundary condition is imposed on dune ground. Specific hyperbolic velocity profile is used at 

inlet boundary. Zero pressure gradient is used on the outlet boundary  and symmetry 

condition are imposed on the side boundaries. For the top boundary, slip-wall boundary is 

assumed. The simulation was performed using a high-resolution graph (mesh) stretching a 

region of 700m x 300m and the results were interpolated to a regular X-Y grid with 1m 

spacing. Figure 1 illustrates the terrain used in the simulation. The air velocity and pressure 

were reported after two thousand simulation time iterations at a height (Z-direction) of 1 m 

above the surface. The simulation was repeated for wind inlet angles ranging from -70° to 

+50° at 10° intervals., with the 0° angle being defined as the direction the wind makes if it is 

pointing directly into the coast.

 

Figure 1: Simulated Terrain. All axis units are in meters, but the scale of the z-axis is exaggerated for illustrative 
purposes.  

It should be noted that the transient fluid flow was reported at one arbitrary snapshot in time. 

It is assumed that the air reached an almost steady state condition by the end of the simulation 

and therefore the use of the steady state Navier-Stokes equations when training a PINN is 

reasonable. In addition, the angle between the normal surface vector n⃑  and the wind inlet 

direction 𝜑 is calculated as 𝜃 = cos⁡(⁡𝜑 − n⃑ ). Figure 2 illustrates the boundary conditions as 

well as the calculated normal surface angle, 𝜃. 
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Figure 2: Illustration of CFD boundary conditions and the calculated normal surface angle, 𝜃  

2.2 Physics Informed Loss 
Normally NN optimizers minimize a loss function that is an error metric between 

observations and predictions.  Back propagation using labelled data (supervised learning) is 

traditionally used by the optimizer when training a NN. For brevity the details of 

backpropagation are not covered in this paper but can be found in the literature (Hecht-

Nielsen, 1992).  PINNs add another term to the loss function corresponding to the physical 

laws, in our can the Navier Stokes equations. Using Automatic Differentiation(AD) to 

compute the partial derivatives with respect to the input coordinates it is possible to train a 

NN to simultaneously minimize residuals of the governing equations while also minimizing 

the loss due to data. The steady state, incompressible Navier Stokes equations in 3D under 

the influence of a gravity force g, with fluid viscosity 𝜈 and time dependent turbulent 

viscosity 𝜈𝑡 are given in Eq 2.1 - 2.4. The residuals of the NS equations are labelled as 𝑒1, 𝑒2, 

𝑒3, 𝑒4. Note 𝑢, 𝑣 and 𝑤 are the fluid velocities in the 𝑥, 𝑦 and 𝑧 directions, respectively. The 

modified pressure term 𝑝∗ is related to the real pressure 𝑝 by 𝑝∗ =
𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝜌
=

𝑃

𝜌
+ 𝑔𝑧, ⁡where 

𝜌 is the fluid density and 𝑔 is the acceleration due to gravity. 

Incompressibility 𝑒1 = 𝑢𝑥 + 𝑣𝑦 + 𝑤𝑧 2.1 

Momentum in x 𝑒2 = 𝑢 ∗ 𝑢𝑥 + ⁡𝑣 ∗ 𝑢𝑦 + 𝑤 ∗ 𝑢𝑧 + 𝑝𝑥
∗ − (𝜈

+ 𝜈𝑡)(𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧) 

2.2 

Momentum in y 𝑒3 = 𝑢 ∗ 𝑣𝑥 + ⁡𝑣 ∗ 𝑣𝑦 + 𝑤 ∗ 𝑣𝑧 + 𝑝𝑦
∗ − (𝜈

+ 𝜈𝑡)(𝑣𝑥𝑥 + 𝑣𝑦𝑦 + 𝑣𝑧𝑧) 

2.3 
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Momentum in z 𝑒4 = 𝑢 ∗ 𝑤𝑥 + ⁡𝑣 ∗ 𝑤𝑦 + 𝑤 ∗ 𝑤𝑧 + 𝑝𝑧
∗ − (𝜈

+ 𝜈𝑡)(𝑤𝑥𝑥 + 𝑤𝑦𝑦 + 𝑤𝑧𝑧) − 𝑔 

2.4 

 

We define the loss function as the summation of the absolute value of the residuals 𝑒𝑖, plus 

the sum of the absolute difference between the CFD data and the model prediction. The 

parameter 𝜆𝑝 controls how much weight is given to the loss of the pressure term, p* while the 

parameters 𝜆cand 𝜆mcontrol how much weight is given to the incompressibility and 

momentum transfer conditions. 

 Loss𝑑𝑎𝑡𝑎  = ∑ |𝒊𝑝𝑟𝑒𝑑 − 𝒊𝐶𝐹𝐷|𝑖=𝑢,𝑣,𝑤   2.5 

 Loss𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  = 𝜆𝑝 |𝑝∗
𝑝𝑟𝑒𝑑

− 𝑝∗
𝐶𝐹𝐷

|   

 Loss⁡𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦  = 𝜆𝑐|𝐞1|  2.6 

 Loss𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚  = 𝜆𝑚(|𝐞1| + |𝐞2| + |𝐞4|)⁡ 2.7 

 Loss𝑡𝑜𝑡𝑎𝑙 = ⁡Loss𝑑𝑎𝑡𝑎 + Loss𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + Loss⁡𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 + Loss𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚  2.8 

 

 

A diagram of the NN model and the optimizer is shown in Figure 3.  

 

 

Figure 3: Schematic of Neural Network and Optimizer used in this model. 

2.3 Data Processing 
When designing a NN to work with CFD data on real world scales, normalization of the data 

is important. In this study we will follow two approaches and create separate models for each. 

This first model will employ mean standardization and scaling as described by (Xu et al., 

2024). However, such approaches have been shown to over prioritize low frequency 
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functions and under prioritize high frequency patterns in the data (Wang et al., 2022). 

Therefore, the second model will instead employ a Fourier Feature Map (Tancik et al., 2020). 

Both NNs will be trained with and without Physics Informed Loss for a total of 4 models of 

comparison. 

2.3.1 Mean Standardization and Scaling 
The equation for the Neural Network(NN) trained in this paper is given in Eq 2.9.  

 𝑁𝑁(𝑋, 𝑌, 𝑍, 𝜑, 𝜃) ⁡= (𝑈, 𝑉,𝑊, 𝑝∗) 2.9 

 

The NN takes as input the 3 vectors of space coordinates (X, Y, Z) as well as the wind inlet 

velocity direction 𝜃 and the surface normal to simulation wind direction 𝜑. The NN returns 

the velocities (U, V, W) and the modified pressure term 𝑝∗. While there are many approaches 

to normalization including Min-Max scaling, Z-score normalization, and Decimal Scaling 

normalization, it has been found from early testing of this model that mean subtraction 

followed by parameterized scaling results in the quickest descent of the loss function. The 

transformation is given in Eq 2.11 and the restoring equation is given in equation Eq 2.12 

with 𝑥̅ and 𝑥′ being the mean and the transformed coordinates of field 𝑥. The parameter 𝑥̂ is 

the predicted value from the NN in the scale of the original coordinates. The scaling values, 

𝛼𝑥, are given in the Results section. The purpose of this custom scaling function is to 

parameterize the scale on which the NN operates as we have found from early testing that a 

deep NN with tanh activation functions performs well on a domain greater than Z-score 

normalization allows. 

 
𝑥′ =

𝑥 − 𝑥̅

𝛼𝑥
⁡⁡⁡⁡∀𝑥 ∈ [𝑋, 𝑌, 𝑍, 𝜑, 𝜃, 𝑈, 𝑉,𝑊, 𝑃∗] 

2.10 

   

 𝑥̂ = 𝑥′𝛼𝑥 + 𝑥̅⁡⁡⁡⁡∀𝑥 ∈ [𝑋, 𝑌, 𝑍, 𝜑, 𝜃, 𝑈, 𝑉,𝑊, 𝑃∗] 2.11 

In terms of scaled coordinates, the equation for the NN is given Eq. 2.12 

 𝑁𝑁(𝑋′, 𝑌′, 𝑍′, 𝜑′, 𝜃′) ⁡= (𝑈′, 𝑉′,𝑊′, 𝑃∗′⁡) 2.12 

 

Therefore, the data transformation process of the PINN and FCNN models in this paper  are 

presented in 2.13. 

 {𝑋, 𝑌, 𝑍, 𝜑, 𝜃⁡} →𝐸𝑞.⁡⁡2.10⁡ {𝑋′, 𝑌′, 𝑍′, 𝜑′, 𝜃′} →𝐸𝑞.⁡⁡2.12⁡ {𝑈′, 𝑉′,𝑊′, 𝑃∗′⁡} →𝐸𝑞.2.11⁡ {𝑈, 𝑉,𝑊, 𝑃∗⁡} 2.13 

 

It is also required to adjust the governing physical equations (residual Eqs. 2.2-2.5). Applying 

the general rule of calculus (Eq 2.14), we obtain the residual equations in terms of the 

transformed coordinates 𝑥′ (Eq 2.15 – Eq 2.18). 

 ∂𝑛(ay + b)

∂(cx + d)𝑛
=

𝑎 ∂𝑛𝑦

c𝑛 ∂x𝑛
 

2.14 
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Incompressibility 𝑒1 = 𝑢′𝑥′

𝛼𝑢

𝛼𝑥
+ 𝑣′𝑦′

𝛼𝑣

𝛼𝑦
+ 𝑤′𝑧′

𝛼𝑤

𝛼𝑧
 2.15 

   

Momentum in x 𝑒2 = 𝑢̂ ∗ 𝑢′𝑥′

𝛼𝑢

𝛼𝑥
+ 𝑣 ∗ 𝑢′𝑦′

𝛼𝑢

𝛼𝑦
+ 𝑤̂ ∗ 𝑢′𝑧′

𝛼𝑢

𝛼𝑧
+ 𝑝𝑥

∗
𝛼𝑝

𝛼𝑥

− 𝜈 (𝑢′𝑥′𝑥′

𝛼𝑢

𝛼𝑥
2
+ 𝑢′𝑦′𝑦′

𝛼𝑢

𝛼𝑦
2
+ 𝑢′𝑧′𝑧′

𝛼𝑢

𝛼𝑧
2
) 

2.16 

   

Momentum in y 𝑒3 = 𝑢̂ ∗ 𝑣′𝑥′

𝛼𝑣

𝛼𝑥
+ 𝑣 ∗ 𝑣′𝑦′

𝛼𝑣

𝛼𝑦
+ 𝑤̂ ∗ 𝑣′𝑧′

𝛼𝑣

𝛼𝑧
+ 𝑝𝑦′

∗′
𝛼𝑝

𝛼𝑦

− 𝜈 (𝑣′𝑥′𝑥′

𝛼𝑣

𝛼𝑥
2
+ 𝑣′𝑦′𝑦′

𝛼𝑣

𝛼𝑦
2
+ 𝑣′𝑧′𝑧′

𝛼𝑣

𝛼𝑧
2
) 

2.17 

   

Momentum in z 𝑒4 = 𝑢̂ ∗ 𝑤′𝑥′

𝛼𝑤

𝛼𝑥
+⁡𝑣 ∗ 𝑤′𝑦′

𝛼𝑤

𝛼𝑦
+ 𝑤̂ ∗ 𝑤′𝑧′

𝛼𝑤

𝛼𝑧
+ 𝑝𝑧′

∗′
𝛼𝑝

𝛼𝑧

− 𝜈 (𝑤′𝑥′𝑥′

𝛼𝑤

𝛼𝑥
2

+ 𝑤′𝑦′𝑦′

𝛼𝑤

𝛼𝑦
2

+ 𝑤′𝑧′𝑧′
𝛼𝑤

𝛼𝑧
2
) − 𝑔 

2.18 

 

where the model estimates 𝑢̂, 𝑣 and 𝑤̂ are obtained from restoring the model predictions to 

their original scales using Eq 2.12. It should be noted that training with PIL need not be on 

the same coordinates as the data. Indeed, if data is scarce or not available under certain 

regimes it is still possible to train using physics in these regions. 

2.3.2 Fourier Feature Mapping 
In the second model type, we insert a Fourier Feature mapping layer as the first layer of our 

FCNN and PINN models, hereafter referred to as FF-FCNN and FF-PINN.  This choice is 

motivated by the theoretical and practical benefits of such a mapping in enhancing the 

network's ability to learn the complex NS equations, particularly regions with high-frequency 

components. Note, the use of the term frequency in this paper refers to the rate of change  of 

the NN output with respect to the input coordinates. The Fourier feature mapping γ(x) 

transform the input data 𝐗 into ‘Fourier space’ using sinusoidal functions. In our case, we 

map the X, Y and Z coordinates as well as the input angles 𝜑, 𝜃 to the frequency domain by 

multiplying each data point by a set of 30 random normally distributed frequencies with 

variances σ2
𝑖. Importantly, scaling the σ2

𝑖 parameters are crucial for controlling the 

convergence of the NN. If the σ2
𝑖 are too large we will not capture small details in the data. If 

σ2
𝑖 are too small, we risk underfitting the data by not giving the model the finer details 

between coordinates. We take the sine and cosine of each coordinate times frequency and 

pass this layer to the NN as described in Eq. 2.19 - 2.22. 
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 𝐗 = [X, Y, Z, 𝜑, 𝜃⁡] 2.19 

 

 𝐁𝑖 ∈ ℝ1×30, B𝑖 ∼ N(0, σ2
𝑖) 2.20 

 

 𝐁 = [𝐁1, 𝐁2, 𝐁3, 𝐁4, 𝐁5]
𝑇 2.21 

 

 𝛄(𝐗) = [sin(𝐁𝐗) , cos(𝐁𝐗)] 2.22 

 

The Fourier feature mapping becomes the first layer of the NN. The equation of the FF-PINN 

and FF-FFCN is given in Eq 2.23. 

 𝑁𝑁(X, Y, Z, 𝜑, 𝜃) = ⁡ (𝑈, 𝑉,𝑊, 𝑝∗) 2.23 

 

Unlike the FCNN and PINN, we chose to incorporate the Fourier Feature layer and the data 

scaling layer within the bounds of the FF-FCNN and FF-PINN models. This last layer simply 

scales the output data (U, V, W, P*) as per Eq. 2.11. This allows the use of Automatic 

Differentiation (AD) with respect to the untransformed input vectors (X, Y & Z).Therefore 

the we use the untransformed residual Eqns 2.1-2.4 for the physics informed loss function of 

this model. 

 

2.4 Parameter Tunning 
The PINN and FF-PINN models contain a considerable number of parameters. Tuning the  

𝜆𝑐, 𝜆𝑚 and 𝜆𝑝⁡parameters is performed by varying each parameter over a range of values and 

observing the values which resulted in the lowest validation loss achieved over 2,000 epochs 

of training. This is performed to find an optimal fixed value for each parameter.  

Further optimization can be achieved using curriculum regularization as described by 

Krishnapriyan et al. (2021). Curriculum regularization is achieved by gradually increasing the 

PIL parameters as the model trains until the PINN converges correctly. 
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3 Results 

3.1 Model Parameters 
The optimal values of λc, λm, λp are given in Table 1 (see Figure 11 - Figure 13 in Appendix 

7.2 for their optimization curves). These values are application specific, and it is not 

reasonable to assume they would optimize PIL in other contexts. It also was found that the 

total viscosity, 𝜈 in the PINN did not help reduce the loss in the validation set, thus this 

parameter was set to 0 (see Figure 14 and the accompanying text in Appendix 7.2). 

The scaling factors 𝛼𝑖, presented in Table 3: FCNN & PINN Scale Factors resulted in the 

quickest descent of the loss function. It is noteworthy that the three spatial dimensions, (x, y, 

z), all had a range of approximately greater than -6 and less than +6 after optimal scaling, 

while the velocity components all had ranges strictly between +1 and -1. 

Mass 
Conservation loss 
Weight(Continuity)  

𝜆𝑐 35 

Momentum Loss 
Weight  

𝜆𝑚 .3 

Pressure Loss 
Weight 

𝜆𝑝 0.32 

Table 1:  Physics Informed Weights 

Loss Function MSE 
Optimizer LBFGS 
LBGFS Learning Rate 1.0 
LBGFS History Size 100 
LBGFS Line Search Fn "strong_wolfe" 
Neural Net Size 60 
Neural Net Depth 10 

Table 2: Model design parameters 

 

 

𝑥 Scale Factor 𝛼𝑢 32 
𝑦 Scale Factor 𝛼𝑦  16 
𝑧 Scale Factor 𝛼𝑧 1 
𝜃 Scale Factor 𝛼𝜃  1 
𝜑 Scale Factor 𝛼𝜑 1 
𝑢 Scale Factor 𝛼𝑢 32 
𝑣 Scale Factor 𝛼𝑣  50 
𝑤 Scale Factor 𝛼𝑤 30 
𝑃∗ Scale Factor 𝛼𝑃∗ 200 
Table 3: FCNN & PINN Scale Factors Table 4: FF-FCNN & FF-PINN parameters 

x Frequency Variance σ2
𝑥 0.0016 

y Frequency Variance σ2
𝑦 0.0016 

z Frequency Variance σ2
𝑧 0.0048 

𝜃 Frequency Variance [deg-1] σ2
𝜃  0.0027 

𝜑 Frequency Variance[rad-1] σ2
𝜑 0.026 

𝑢 Scale Factor 𝛼𝑢 32 
𝑣 Scale Factor 𝛼𝑣  50 
𝑤 Scale Factor 𝛼𝑤 30 
𝑃∗ Scale Factor 𝛼𝑃∗ 200 

 

To test the efficacy of Curriculum Regularization, Figure 4 compares two models, one with 

constant Physics Loss weight and another with a gradually increasing weight. The PINN with 

Curriculum Regularization sees a large spike at epoch 1000 due to the sudden increase in 𝜆𝑐 

from 0 to 10. It is clear the PINN with the gradually increasing weight learns faster and 

achieves a lower overall loss over the first 5k epochs. Therefore, this strategy is employed for 

all models hereafter. 
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Figure 4: Validation Loss of PINNs with and without Curriculum Regularization. The angles between -40° and +40° 
were used for training and all available angles (-70° to +50°) were used for validation while the models were training. 
Both Models were stopped at Epoch 5000. Curriculum Regularization was performed by increasing 𝜆𝑐  by 10 every 
1,000 Epochs starting from 0 and ending with 𝜆𝑐 = 50 and the PINN without Curriculum Regularization had a constant 
𝜆𝑐 = 50.  

 

Figure 5 provides the relationship between the grid resolution of the model and the model 

performance on extrapolated angles. The purpose of this graph is to illustrate the relationship 

between data availability and model performance in a fixed number of epochs.  The data is 

sampled randomly, and the proportion of data sampled is equivalent to having a grid made 

from square cells with a side length equal to the grid resolution. The lowest grid resolution 

(5m) contains 36x as many points as the highest grid resolution (30m). Over this range the 

performance of the PINN and FCNN appears to drop by ~10%. Each simulation was 

terminated after 5k epochs; this was enough time for the FCNN validation loss to plateau, but 

the PINN was still training. Thus, the PINN might achieve better performance if more epochs 

were available for training. 

 

Figure 5 Comparison of Training Data resolution to Validation Loss (MAE) of training for PINN and FCNN models. The 
wind inlet angles, -40°, -30°, -20° , -10°, 0°, 10°, 30°, 40°  were used for training and every angle (-70°… +50°) was used 
for validation. The lowest validation loss achieved after 5k Epochs is reported. For a given Grid Resolution, GR, the 
proportion of sampled data points was 1/GR2.  
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3.2 Model Evaluation 
A grid resolution of 10m corresponding to 1% of available training data was selected for the 

final FCNN, PINN, FF-FCNN and FF-PINN. The choice of this resolution is founded in 

practical constraints; Figure 5, shows a minor decrease of  approximately 4% in accuracy 

from 5m resolution to a 10m resolution for both training set despite the former being four 

times larger, and almost four times slower to train. For the final comparison all models were 

trained until the validation loss could not be reduced any further. The angles -40°, -30°, -20° , 

-10°, 0°, 10°, 30°, 40°  were used for training. The angles -70°, -60°, -50°, +20°, +50° were 

reserved for testing. The choice of the test/train split was to test the model’s ability to 

interpolate between trained angles and extrapolate in both training directions with deep 

extrapolation of the negative test angles.  

In addition to the 4 models described in this paper, we present the performance of a 

convolutional neural network (CNN) model designed by Thijs Modderman for a similar 

research question.  The model employs feature pyramid network(FPN) architecture utilizing 

the efficientnetb7 backbone and was implemented for pixelwise regression. The model was 

trained using two input channels that reflect the dune topography and the same cosine wind 

inlet difference 𝜃 used in our models.  

 

Figure 6:  Final Comparison of performance. Reported are the validation accuracy of each model across training and 
testing angles. Every model was allowed to train until convergence. The Physics Informed models employed 
Curriculum Regularization upto the parameter weights defined in Table 1. All other parameters are taken as constants 
from in Table 1-Error! Reference source not found. Table 4. 

Training the PINN and FF-PINN models for six thousand epochs took ~23 minutes on 

Google Colab’s T4 TPU using 8GB of TPU RAM(Google Collaboratory, 2024). The FCNN 

and FP-FCNN models took 5 minutes on the same device using 0.5GB of TPU RAM. The 

sum of Mean Absolute Errors in X, Y & Z each for each model was divided by three thus the 

reported values are an average MAE for the U, V & W components. 

Figure 6 illustrates the performance of each model across angles that were used for testing 

and training. The most performant model in the training angles is the Fourier Feature layer 

fully connected neural network (FF-FCNN). The model has a large number of parameters in 

the first training layer (150), and this could be a possible source of over fitting as this model 

is the worst in the deep extrapolation (-70°)  test case. Comparatively the same model with 

PIL (FF-PINN) does not learn the training angles as well but outperforms the FF-FCNN in 

the extrapolated angles suggesting PIL maybe eliminating some degree of overfitting.  
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Figure 6 also illustrates the similarity between the FCNN and PINN models in the training 

angles suggesting that the Physics Informed Loss does not contribute a lot when data is 

plentiful. We do observe the PINN with the lowest MAE of all models in the -70° case and 

the +50° degree case suggesting that PIL helps a model to extrapolate beyond the training 

regime. A full comparison of the PINN’s performance against the -70° CFD simulated data is 

provided in Figure 7 and Figure 8. For comparison the same result of the FF-FCNN is 

available in Appendix 7.3 and the PINN is also tested on the training angle of 0° in Figure 9 

and Figure 10. 

 

Figure 7: PINN model extrapolation test case for -70° angle.  The model was trained with 1% of the data from the 
angles -40°, -30°, -20°, -10°, 0°, 10°, 30°, 40°. An additional 5% of the available coordinates from all angles were 
supplied to the model for physics only training (without data).  

  

Figure 8: Wind Speed Difference and Wind Angle Difference test case for -70° angle for the same PINN model as 
Figure 7.  Wind Angle Difference is the angle between the predicted wind velocity by the CFD and the predicted 
velocity by the PINN. 

The small circular features in the Magnitude Difference graphs of Figure 8 and Figure 10 show us 
that the PINN trained in this paper does not capture the vortices in the training data and does 
not predict them in the extrapolation test case. Furthermore, the prediction in wind angle 
direction in Figure 8 shows the failure of the PINN model to extrapolate to this direction. 
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Figure 9: Training Angle 0° Prediction for the same PINN model as in Figure 7. 

 

Figure 10: Wind Speed Difference and Wind Angle Difference test case for -70° angle for the same PINN model as 
Figure 7. 

 

Figure 9 and Figure 10 demonstrate the ability of the PINN to learn training angles and 
reproduce results that are plausible even when trained on just 1% of the available data. 

4 Conclusions and Discussion 

In this paper, we designed a neural network to predict wind velocity across a beach and sandy 

terrain, employing Physics Informed Learning (PIL) to enhance model performance. Our 

results indicate that PIL marginally improves the neural network's ability to extrapolate 

beyond the training regime, as evidenced by comparing the PINN to FCNN and comparing 

the models incorporating a Fourier Feature layer. We failed to see an improvement of the 

PINN over the FCNN in the interpolation case. Notably, the mean velocity error across all 

spatial dimensions was generally no more than 5 m/s in the 70° test case.  
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Neural networks have demonstrated the capability to accurately predict wind velocity across 

sand dunes using relatively sparse, random data. The prediction at a 1m resolution on a 700m 

x 400m grid takes approximately 0.002 seconds once the model is trained, comparable for 

both physics-informed and non-physics-informed neural networks. Thus, we have illustrated 

a positive trade-off between computational cost and accuracy for PINNs and FCNNs 

compared to classical CFD simulations. 

However, if CFD results are unavailable or NN training time is a limiting factor, the benefits 

of using PIL are less clear. Another conclusion of this research is that Physics Informed 

Learning can enhance the extrapolation accuracy of surrogate CFD models for real-world 

problems, though the improvement is marginal and requires significant tuning. This presents 

a barrier to widespread deployment. Additionally, while our extrapolation test case was 

performed on the same terrain as the training case, real-world applications necessitate a 

model capable of performing well on new, unseen terrains. 

The Convolutional Neural Network (CNN) architecture showed worse performance in 

reproducing velocity fields from trained angles but demonstrated comparable performance in 

the deep extrapolation test case (-70°). The lack of degradation in performance for the 

extrapolated test case is promising, suggesting potential research avenues were combining 

PIL with convolutional architectures could enhance surrogate modelling. 

Some errors in the final models are expected due to the dynamic nature of Computational 

Fluid Dynamics (CFD) simulations and the fact that the training data consisted of only a 

single snapshot in time. Therefore, predicting the velocity of turbulent flow will inherently 

produce some inaccuracies. 

Interestingly, while the Fourier Feature layer models were the best learners in the training 

data, they were the worst performers on the deep extrapolation test case. It is promising that 

FF layer models are expressive enough to reproduce the training data and it is probable that in 

the current network design overfitting is likely occurring. Physics Informed Fourier Neural 

Operator (PINO) models, which begin with a Fourier Feature layer, have shown strong 

adaptability in multi-scale dynamic systems and it would be interesting to test their ability on 

the simulation of wind over sand dunes.  
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7 Appendix 
7.1 Optimization Curves 
In this Appendix Chapter we determine the optimal values of the λ loss weights by repeating 

simulations for a finite number of epochs over a range of the scaling values. A quadratic 

curve is fitted to each graph as an optimal value of λ should result is a curve with a local 

minimum.  

 

Figure 11: Epoch 1500 validation loss of 20° Wind Inlet Angle for PINN trained on -40°, -30°, -20° , -10°, 0°, 10°, 30°, 40° 
angles. Data points were sampled from a 10mx10m grid.  The parameters λm =0.3 and λp= 0.3 were held constant.  

 

Figure 12: Epoch 1500 validation loss of 20° Wind Inlet Angle for PINN trained on -40°, -30°, -20° , -10°, 0°, 10°, 30°, 40° 
angles. Data points were sampled from a 10mx10m grid. The parameters λc =35  and λp=0.3 were held constant. 
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Figure 13: Epoch 1500 validation loss of 20° Wind Inlet Angle for PINN trained on -40°, -30°, -20° , -10°, 0°, 10°, 30°, 40° 
angles. Data points were sampled from a 10mx10m grid. The parameters λm =0.3 and λc=30 was held constant. 

7.2 Investigation into fluid viscosity 
 

Fluid Viscosity is one potential source of error in this model which warrants investigation. 

The CFD simulations model the turbulent viscosity, 𝜈𝑡 as a scaler field value. Our model does 

not predict the viscosity nu throughout the field therefore we must pick an average value of 

the total viscosity which is the sum of the turbulent viscosity and the kinematic viscosity. The 

average value of 𝜈 at the end of the simulation is 0.11 kg·m-1·s-1. Varying the total viscosity 𝜈 

from 0 to 0.11 yields no clear indication of improved performance, thus we select 𝜈 = 0 for 

all further models.

 

Figure 14: Investigation into varying the total viscosity of the fluid. Note: An error in the code was discovered after 
production of this figure resulting in the validation loss in the y-component not being added to the mean validation 
loss. This error caused the total validation loss to be artificallly lower but should not affect the conclusion. 
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7.3 Fourier Feature layer PINN Model Training Performance 
The PINN model with a Fourier Feature layer is the best learner of the training data while the 

Fourier Feature layer models perform poorly on extrapolation. It is therefore interesting to 

observe the learning set performance. This model was exposed to just 1% of the training data 

yield’s remarkable ability to reproduce the entire data set. 

 

Figure 15: Final FF-PINN Model Prediction of 0°(trained) wind Inlet Angle 


