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Abstract 
The rapid increase in motor vehicle ownership has resulted in significant challenges for 
city planners. The establishment of Park and Ride (P&R) facilities on the outskirts of cities 
has proven to be a viable option for alleviating inner-city congestion. However, main road 
arteries are still congested during rush hour by commuters trying to access these P&R 
stations. This study aims to extend the benefits of P&R facilities beyond the outskirts of 
cities by investigating the possibility of encouraging commuters to travel to P&R stations 
closer to their point of origin. By formulating an optimisation problem and utilizing a Multi-
Nominal Logit (MNL) model alongside a Genetic Algorithm, P&R parking fees can be 
calibrated across the Netherlands with the goal of minimizing the total distance travelled 
by car. The findings suggest that adjustments to parking fees aWect the utility of P&R 
stations to the commuter. However, the impact is so small that no significant change can 
be created in the commuter’s P&R station choice, resulting in limited reduction of total 
driven distance. Future research should integrate dynamic demand models and explore 
additional factors to further promote earlier transfers onto the public transport network 
and mainly focus on incentivizing commuters who do not already utilize P&R stations as 
part of their journey.  
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1 Introduction 
In recent years, the surge in motor vehicle ownership has presented a multifaceted 
challenge for urban planning. Cities where never designed for this amount of traWic, 
resulting in daily congestions. However, expansion of existing road infrastructure is often 
hindered by various constraints such as urban density (Macioszek and Kurek, 2020). 
Moreover, counterintuitive as it may seem, expanding road capacity has been observed 
to exacerbate rather than alleviate congestion in numerous instances (Oucham & 
Gutiérrez Touriño, 2019). 

Cities have sought alternative strategies to alleviate urban congestion and mitigate the 
adverse eWects of increased vehicular activity.  One such strategy involves the 
establishment of Park and Ride (P&R) facilities on the outskirts of cities near well 
connected public transport hubs to encourage people onto the public transport system 
(Alghazali et al., 2020). The inception of P&R facilities is part of a broader eWort to 
enhance urban liveability by reducing harmful emissions and inner-city congestion. To 
encourage the use of public transport, cities began implementing measures to 
disincentivize inner-city car usage, such as imposing exorbitant parking fees (Ji et al., 
2007).  

It has become evident over the years that people are willing to park their car outside the 
city and transfer onto the public transport network for the final stretch of their journey. A 
combination of good parking infrastructure combined with raising inner-city parking 
charges has made the P&R facility a more viable option for some commuters (Zheng and 
Geroliminis, 2016). While this has resulted in a reduction of low-density vehicles traveling 
into the metropolitan area, most of these commuters still travel by car toward the 
outskirts of the city, often resulting in congestion on main road arteries during rush hour. 
This raising the question of how commuters can be incentivized to limit their car journey 
to the nearest station with P&R facilities.  

This research aims to extend the benefits of P&R facilities beyond the outskirts of cities 
by investigating the possibility of financially incentivizing commuters to travel less by car. 
By calibrating the P&R parking fee for all P&R facilities near train stations in the 
Netherlands, commuters can be incentivized to travel towards a P&R station closer to 
their origin. Spreading car trips over a wider road network and limiting the rush hour 
bottlenecks. Based on this aim, the primary research question emerges as follows: 

“What are the optimal prices for Park and Ride facilities in the Netherlands to minimize 
the total distance travelled by car?” 
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2 Background 
The significant increase in motor vehicle ownership in combination with population and 
job growth in metropolitan areas has presented a multifaceted challenge for urban 
planners for decades. Oucham and Gutiérrez Touriño (2019) describe three diWerent 
fields of measures intended to tackle car congestion. Policy is the first field of measures 
and can be subdivided into hard and soft policy. Stopher (2004) mentions that a suitable 
mix of hard and soft policies comparable to “carrots and sticks” can engender a shift in 
public transport. Where hard policy corresponds to the “stick” that is supposed to nudge 
the users since hard policies restraint access by users to a product or service by 
increasing related taxes or reducing subsidies. On the other hand, soft policies focus on 
the behaviour of users by encouraging them to adopt certain actions without intervening 
in the set of available choices which corresponds to the “carrot” idea where users are 
incited to do something (Glaeser, 2006). The second field of measures Oucham and 
Gutiérrez Touriño (2019) refer to is infrastructure. Measures in this field focus on 
increasing the capacity of the current road and/or transport network. However, the 
problem with increased capacity is often an increase in users who switch their travel 
behaviour as result of new capacity (Parkhurst, 1995). Leading to no real measurable 
improvements despite increased capacity. The third field of measures is technology and 
is often referred to as Smart Cities where information and communication technologies 
are used to make traditional networks and services more eWicient (Oucham and Gutiérrez 
Touriño, 2019).  

The inception of Park and Ride (P&R) facilities was intended to oWer new parking 
infrastructure outside cities where it is easier and cheaper to build, thus being an 
“Infrastructure” measure. In addition, incentivizing people to transfer from low density 
transportation (cars) to high density transportation (public transport) frees up valuable 
road capacity and therefor alleviates inner-city congestions. While the success of P&R 
facilities was confirmed in 1994 after studies were carried out in Oxford and York 
(Parkhurst, 1995), there has been an on-going academic debate about the real benefits 
of P&R (Clayton et al., 2014). Nowadays, P&R facilities are not only used as additional 
parking capacity, but they are essential in limiting the inner-city vehicular traWic. This has 
been achieved by raising inner-city parking fees in an exorbitant way, making P&R 
facilities more financially attractive (Zheng and Geroliminis, 2016).  

2.1 Pricing of P&R facilities 
While most of the P&R facilities where free of charge or priced at the marginal cost upon 
inception, resulting in very low parking fees. These were measures intended to provide a 
financial alternative compared to for example inner-city parking fees and encourage a 
step-change in motorists’ travel behaviour towards using public transport (Clayton et al., 
2014). However, dedicated P&R facilities are rarely commercially viable. Rather, they 
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generally receive public subsidy justified by the social function they fulfil. More recently, 
the economic aspect of P&R facilities has gained more attention, where researchers are 
pleading against the granted public subsidy (Pierce et al., 2015). The high costs 
associated with building and operating P&R facilities should not be paid from tax payer’s 
money. Instead, P&R facilities should at least be priced to reach a revenue goal, resulting 
in higher parking fees, but the operation of the P&R facility can be paid from the additional 
revenue. Another pricing strategy mentioned by Pierce et al. (2015), is to price the P&R 
facility at market rate, resulting in a parking fee similar to other parking facilities. This 
pricing strategy is generally used for commercial businesses, intending to make a profit 
while competing with other businesses to gain market share.  

Despite the high costs associated to building and operating P&R facilities, only a few P&R 
facilities price to reach a revenue goal and the majority of facilities oWer free parking as 
pointed out by Bos (2004). Lam et al. (2001) concluded that monetary and time savings 
were the main factors attracting users of P&R facilities. The significance is further 
highlighted by Guo and Wilson (2004) which concluded that the cost of public transport 
and parking charges combined must be lower than the total cost of the trip solely 
travelled by car in order to change the chosen mode of transportation of people. Whilst 
P&R facilities have gained traction in the Netherlands, commuters only make use of them 
when they oWer clear benefits to the commuter. A combination of cheaper parking costs, 
plenty of parking capacity and good public transport connectivity can compete with 
direct car trips into metropolitan areas.  

2.2 Price optimisation  
The inception of P&R facilities has proven that a change in commuter’s travel behaviour 
can be created. However, a combination of hard and soft policies as discussed by 
Stopher (2004) is required to achieve this. Focussing on the parking charges of P&R 
facilities near train stations, the right price must be determined in order to limit the total 
travelled distance by car. To determine the right price for each P&R station, diWerent 
combinations must be tested, and the total driven distance must be measured for each 
combination. An optimisation algorithm aims to find the best solution from a set of 
feasible solutions, i.e., solutions that satisfy all the constraints of the optimisation 
problem (Ryan, 2003). The search space, goal, and constraints in which the optimisation 
algorithm must find the best solution are formulated in the optimisation problem. The 
decision variables reflect the system’s components for which the best value must be 
found. In an iterative approach, the decision variables are used in some objective 
function which calculates the desired output value also known as the fitness or objective 
value. By changing the decision variables, either a minimisation or maximisation in the 
objective function is sought after. The constraints are the functions that describe the 
relationships between the system’s variables and define the allowable values to be taken 
by the variables (Ryan, 2003). 
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Agent-based modelling 
There are diWerent methodologies to find an optimal solution. For example, Waraich et al. 
(2013) utilize an agent based approach to simulate the travel behaviour in Zurich, 
Switzerland, and how diWerent parking prices aWect the inhabitants. Each agent has a 
daily schedule such as for example going to work. Based on a utility function, the model 
tries to maximize the utility of each agent’s daily schedule in an iterative approach. A 10% 
sample of Zurich’s population is used, resulting in roughly 72,000 agents. Detailed 
information, totalling roughly 266,000 parking spaces divided over public and private, 
was used. Waraich et al. (2013) tested diWerent parking prices, which were altered in 
steps of 0.25 Swiss francs, to achieve an 85% occupancy of parking places. 

While an agent-based model can yield very accurate results when trying to assess how 
people respond to interventions, it is very computational expensive which limited the 
sample size and thus the quality of the results as it simulates the travel behaviour on 
micro-scale (Waraich et al., 2013). Scaling the agent-based model from an 8 kilometre 
radius to the entirety of the Netherlands dramatically increases the complexity and 
computation time to an unreasonable extent. Focussing on a macro-scale model which 
does not account for every single person in the study area is the only alternative. Utilizing 
a representative sample of the Dutch socio-demographics to mimic travel behaviour of 
population groups would alleviate the computational load.  

Genetic Algorithm (GA) 
Population based search algorithms utilize an initial population which is iteratively 
altered to create new, and more optimal solutions. The Genetic Algorithm (GA) is inspired 
by the principles of genetics and evolution, and mimics the reproduction behaviour 
observed in biological populations (Hassan et al., 2004). It employs the principal of 
“survival of the fittest” in its search process to select and generate solutions called 
individuals. Therefore, over a number of generations (iterations), desirable traits 
(characteristics) will evolve and remain the genome composition of the population. As 
pointed out by Hassan et al. (2004), the GA is well suited to, and has been extensively 
applied to, solve complex design optimization problems because it can handle both 
discrete and continuous variables, and non-linear objective and constraint functions as 
it does not utilize gradients for finding the optimal solution.  

The GA begins its search from a randomly generated population of solutions that evolve 
over successive generations. In doing so, it employs three functions to propagate its 
population from one generation to the other. The first function is the “selection” function 
that mimics the principal of “survival of the fittest”. The second function is the 
“crossover” and mimics the mating in biological populations. This combination ensures 
that characteristics of better performing solutions propagate into new generations, 
resulting in a better fitness score on average for these solutions. The third and last 



 8 

function is the “mutation” which invokes random changes in the solutions to promote 
diversity in the population. This allows for a wide search space and prevents the GA from 
becoming stuck in local optima (Williams & Crossley, 1998). 

Particle Swarm Optimization (PSO) 
Another commonly used population based evolutionary heuristic is the Particle Swarm 
Optimization (PSO). It also starts with a set of randomly generated solutions called the 
initial swarm and searches through the search space for an optimal solution in an 
interactive approach just like the GA. However, instead of combining the features of the 
best performing solutions, it generates solutions (particles) across the wide search space 
and move them around with the goal of finding the global optimum. This is performed by 
changing the position of each particle between generations based on a velocity update. 
The velocity depends on the fitness value of each individual particle and how far oW this 
is from the swarm wide best found fitness value (Williams & Crossley, 1998). The further 
away a particle is, the higher velocity it will receive in the direction of the best found 
fitness value. Over generations, this will result in a wide search space followed by the 
identification of an optimum.  

The PSO is very simple and easy to implement and has wide adaptability just like the GA. 
In addition, it can be run in parallel which can result in a fast convergence rate. However, 
it can become stuck in a local optima which limits the eWectiveness of the results. This is 
especially noticeable in search spaces with multiple local extremes. A reason for this 
behaviour is inherent to its search strategy. While it starts with a wide solution diversity 
due to the randomly allocated particles in the initial iteration, all particles start to move 
into the direction of the best achieved fitness value in the subsequent generations 
resulting in a quickly disappearing diversity (Wang et al., 2017). While this can lead to a 
fast convergence, it does not guarantee that it has found the global optima due to the bias 
introduced from the start with the swarm’s best fitness value. Contradictory, the GA 
increases its population’s diversity over generations, resulting in a longer convergence 
time, but most likely also in a better solution. 
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3 Methodology 
To determine the optimal parking price for P&R facilities that minimize the total distance 
driven by car, an optimisation model is developed. Figure 1 presents an overview of the 
process used to develop the P&R parking fee optimisation model. It begins with the 
creation of synthetic data which to represent the travel behaviour of diWerent population 
groups. This data, referred to as commuter trip data, is based on the 2021 national 
traveller survey. It is necessary to create synthetic data since real survey responses could 
not be used in a public publication due to privacy legislation. Subsequently, an initial 
solution is created based on the current parking charges for P&R stations. This initial 
solution is used in a GA to iteratively adjust the parking charges for each P&R facility. For 
each set of parking fees, the probability that a commuter will use a P&R station is 
calculated using a Multi-Nominal Logit (MNL) model proposed by Soza-Parra and Ton 
(2022). This probability is multiplied by the distance to a P&R station and summed for all 
P&R stations, resulting in the total distance driven while accounting for the probability of 
using another P&R station. After minimizing the objective function with the GA, the best 
parking charge for each P&R station in the Netherlands is determined. The proposed 
model can be used to recalibrate P&R parking charges to minimize the total distance 
driven by car based on a sample of population group’s travel behaviour. 

 
Figure 1. General process overview of the proposed model. 

The proposed model is described in three subsections. Chapter 3.1 formulates the 
optimization problem, followed by the introduction of a Multi-Nominal Logit (MNL) model 
in Chapter 3.2. The MNL model is used to model the P&R station selection procedure of 
commuters based on various factors including taste variations and interactions. Chapter 
3.3 combines the formulated optimization problem with the MNL model in a Genetic 
Algorithm, resulting in a model that can minimize the total distance driven by car to reach 
P&R stations by adjusting the parking fee at each station.  
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3.1 Formulisation of the optimisation problem 
To incentivize commuters to limit their car journey, other options must become more 
appealing. A variety of hard and soft policies can be used to incentivize public transport 
usage however, this research focusses on concept of financial incentive. People tend to 
choose the more aWordable option or the one with the greatest benefits. Leveraging this 
behaviour, the goal is to limit the travelled distance by car by recalibrating the parking 
charges of P&R stations within the Netherlands. This can be expressed as a minimization 
problem in Equation 1 subjected to constraint 2 which prevents the parking fees from 
becoming negative. Equation 1 utilizes a sample of 𝑁 trips where the distance between 
each commuter’s origin and every P&R station 𝑗 is multiplied by the probability that the 
commuter will travel to the P&R station. Here, the assumption is made that each 
commuter currently uses a P&R station as part of their journey and will continue to do so. 
As a result, a MNL model, as discussed in Chapter 3.2, is used to model the probability 
that a commuter will use a P&R station.  

This research aims to investigate the eWect of changing P&R station parking fees on 
commuter behaviour with the goal of minimizing the total travelled distance by car. 
Therefore, the parking fee at each P&R station is used as the decision variable. However, 
the P&R station parking cost is not included directly in the objective function in Equation 
1. Instead, the cost is included in the MNL model, aWecting the decision process when 
choosing a P&R station, which in turn aWects the probability 𝑃!"  in the objective function, 
and thus aWects the total driven distance.  

 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:	, , (𝐷!"

#

"$%
× 𝑃!")

&

!$%
 

(1) 

Where: 

𝑁 = the total number of trips 
𝑀 = the total number of P&R stations 
𝐷!"  = the distance from the origin of commuter 𝑖 to P&R station 𝑗 
𝑃!"  = the probability that commuter 𝑖 would make use of P&R station 𝑗 
 

With: 

 𝐶" >≡ 0 (2) 
Where: 

𝐶"  = the parking charge for P&R station 𝑗 
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3.2 Multi-Nominal Logit (MNL) model 
Before calculating the commuter’s travelled distance, it is important to determine to 
which P&R station the commuter will travel. Since the assumption has been made that 
all commuters will keep on using a P&R station as part of their journey, a discrete choice 
must be made by the commuter. Soza-Parra and Ton (2022) created a bi-level Multi-
Nominal Logit (MNL) model to identify factors influencing P&R station choice, focussing 
on those factors that can be influenced by the operator and municipality. This MNL model 
is based on survey data from the Dutch National Railway as more elaborately discussed 
in Chapter 4.   

The MNL model models the P&R station selection procedure of commuters based on a 
variety of factors including taste variations and interactions and is based on 41 attributes. 
The bi-level MNL model includes 11 primary attributes expressing the key influential 
factors such as the time to reach a P&R station. Each primary attribute includes at least 
one secondary attribute representing the taste variations and interactions of commuters. 
For example, transfer time is included as a primary attribute with a negative estimate 
(Table 1). Indicating that every minute of transfer time results in a lower utility for the 
commuter.  But, if the commuter is travelling for work purpose (the secondary attribute 
expressing taste variation), the utility becomes even lower for every minute of transfer 
time. 

Table 1. Example of bi-level MNL model attribute estimates and values. 

Primary attribute Secondary attribute Estimate Value 

Transfer time  -9.09E-03  10 (minutes) 
 Work purpose -7.14E-02 1 (binary) 

 

To calculate the utility of a P&R station to a commuter, the primary attribute estimate is 
multiplied by the primary attribute value. Subsequently, the secondary attribute estimate 
is multiplied by the secondary attribute value and multiplied by the primary attribute 
value. This process is performed for all primary attributes. Finally, everything is summed 
together to get the final utility value. This example is visualized by Equation 3 for the 
example in Table 1.  

 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 = (−9.09𝐸'() 	× 	10) + (−7.14𝐸'(* 	× 	1	 × 	10) (3) 
 

These calculations are performed for all primary and secondary attributes included in the 
bi-level MNL model of Soza-Parra and Ton (2022). Building upon the fitted bi-level MNL 
model and the associated attribute estimates, as included in Appendix A, saved time 
since the MNL model was already fitted for commuters in the Netherlands. The required 
calculations to determine the utility of each P&R station 𝑗 for each commuter 𝑖 can be 
mathematically expressed as Equation 4. 
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𝑈!" =, (𝛽+ × 𝑋!"+) +, (𝛽, × 𝑋!", × 𝑋!"+)

-

,$%

.

+$%
 

(4) 

Where: 

𝑈!"  is the utility of P&R station 𝑗 to commuter 𝑖 
𝑃 is the number of primary attributes 
𝑆 is the number of secondary attributes 
𝛽+ is the estimate corresponding to primary attribute 
𝛽, is the estimate corresponding to secondary attribute 
𝑋!"+ is the value of the primary attribute 
𝑋!", is the value of the secondary attribute  
 
The utility of a P&R station is not the same as the probability that a commuter will travel 
to that particular P&R station, as the utility can fall outside the probability range of zero 
to one.  In order to determine this probability, a SoftMax function (Equation 5) can be 
applied to the utility, normalizing it to a scale between zero and one. This is similar to the 
method used by Shen et al. (2017). However, this can only be performed for a set of 
distinct choices. Therefor, the assumption has been made that all commuters in the 
dataset will continue to use a P&R station as part of their journey.   

 
𝑃!" =

𝑒/!"
∑ 𝑒/!##
0$%

 
(5) 

Where: 

𝑈!"  is the utility of P&R station 𝑗 to commuter 𝑖 
𝑀 is the total number of P&R stations 
𝑈!0  is the utility of P&R station 𝑙 to commuter  

By determining the probability of each P&R station and multiplying it by the distance, a 
more accurate result can be calculated. Otherwise, a single P&R station must be 
selected as the commuter’s choice, but there is no garuantee that the commuter will 
actually use that P&R station. Therefore, an error measure should be determined for each 
commuter’s trip, complicating the aggreation of the total distance travelled by all trips. 
This is not necessary when making using probabilities, as the probability already 
accounts for the error in the decision. For this reason, a more accurate measure can be 
achieved by multiplying the distance with the probability for each individual P&R station 
and summing them together.   

3.3 Genetic Algorithm 
Based on the formulated objective function in Chapter 3.1 and the bi-level MNL model 
from Chapter 3.2, the total distance driven by car can be calculated for a set of P&R 
parking fees. Each P&R station represents a decision variable, since each price can be 
independently adjusted. Combining both with a Genetic Algorithm (GA), creates the 
proposed P&R parking fee optimisation model which can be used to find the optimal P&R 
prices that minimize the total distance travelled by car to reach P&R stations.  
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As discussed in Chapter 2.2, there are diWerent metaherustic optimisation algorithms, 
each with their own benefits and disadvantages. A GA was chosen for its flexibility and 
adaptability, which ensured easy itegration within a short project timespan. Additionally, 
minimizing the total distance driven by all commuters is highely non-linear due to many 
interacting factors such as varying parking fees and diWerent commuting behaviours. A 
GA is a particulary good for non-linear problems due to its ability to eWectively explore a 
large search space. Furthermore, the price optimisation is likely to contain multiple local 
optima, which could aWect the quality of the results when using other algorithms such as 
the PSO. A generic GA, as depicted in Figure 2, is used. It consists out of population 
selection, cross-over and mutation functions before the objective function calculations 
as mentioned by Hassan et al. (2004).  

 
Figure 2. Genetic Algorithm flowchart. 
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The P&R parking fee optimization model starts by the creation of synthetic data, followed 
by the creation of an initial solution. In the initial solution, the current parking fees are 
encoded into a genome. Each number in the genome corresponds to a particular P&R 
station and represents the parking fee. This initial solution is duplicated and mutated 
until there are 100 initial solutions, forming the population of the first generation. The 
number of solutions per generations is defined in the hyperparameter “num_solutions” 
which can be changed before executing the model.  

This initial solution is subsequently used in the GA to create new iterations, also known 
as generations. Each new generation starts by the previous generation, now called the 
parent population. From this population, the best performing solutions are taken based 
on a tournament selection. In this function, 𝑇 solutions are selected from the parent 
population and the 𝑁 best performing solutions, as defined by the “num_solutions” 
hyperparameter, are chosen as parent solution. The size of the tournament selection 
depends on the “tournament_size” hyperparameter. Subsequently, for each pair of 
parent solutions, there is an 80% probability, as defined in the “crossover_rate” 
hyperparameter, that a cross-over will occur. This probability has been determined to give 
the best results as discussed in chapter 5. When a cross-over occurs, a random cross-
over point is selected, and the genome with P&R parking prices is divided into two for both 
of the parent solutions. The P&R parking prices after the cross-over point are swapped 
between the two parent solutions to produce two new oWspring solutions. These new 
oWspring solutions are subsequently subjected to the mutation function which randomly 
mutates the genome of P&R prices based on a normal distribution between €-5 and €5 in 
50-cent step size. The lower and upper bound of this normal distribution, as well as the 
step size, can be changed in the respective hyperparameters. DiWerent values have been 
tested for these variables, as discussed in Chapter 5, and these values were found to be 
the best performing. There is a 3% probability that the P&R prices from the oWspring are 
randomly altered based on these variables. This probability is provided in the 
“mutation_rate” hyperparameter and was found to create enough genetic diversity while 
ensuring good results. The mutations ensure that the algorithm explores new regions of 
the search space and does not get stuck in local minimum.  

After the oWspring population is created, it is added to the parent population of the 
current generation. For the entire population, the objective value is calculated before the 
top 100 best performing solutions are selected as the current generation’s resulting 
population. These solutions will be used as the parent population in the next generation. 
Finally, a check for convergence is performed to test if the current generation performs 
better than the previous one. The entire process is repeated until there is no improvement 
for at least 50 generations as defined in the hyperparameter “patience”. Additionally, a 
maximum number of generations is provided in the “max_generations” hyperparameter 
to prevent excessively run execution times without convergence.  
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3.4 Calibrating the model 
Since the P&R parking fee optimisation model is based on a GA, it is important to calibrate 
the hyperparameters as these have a significant impact on the performance of the model 
as pointed out by Van Gelder (2002). DiWerent hyperparameter values, as listed in Table 
2, have been tested.  

Table 2. To be tested hyperparameter values in the grid search. 

Hyperparameter Test values 

population_size 20 / 100 
max_generations 100 / 250 
patience 50 / 100 
tournament_size 8 / 24 / 48 
crossover_rate 0.3 / 0.5 / 0.8 
mutation_rate 0.3 / 0.5 
step_size 0.15 / 0.5 
lower_bound -2 / -5 
upper_bound 2 / 5 

To test each possible combinations of hyperparameter values as listed in Table 2, a grid 
search can be used. This will result in 1.152 possible combinations. With an average 
execution time of 4 hours and 35 minutes, it would take extremely long to perform an 
extensive grid search therefore, only a couple of diWerent hyperparameter values have 
been tested to identify the eWect of each individual hyperparameter on the overall fitness. 

Two diWerent testing scenarios are created. The first utilizes a fixed “population_size” of 
20, while the second scenario utilizes a “population_size” of 100. These scenarios were 
created to test the eWect of “population_size” on the overall fitness of the P&R parking fee 
optimisation model. The first scenario utilises the following hyperparameter values as 
the baseline: 

population_size: 20 tournament_size: 8 step_size: 0.5 
max_generations: 100 crossover_rate: 0.8 lower_bound: -2 
patience: 50 mutation_rate: 0.3 upper_bound: 2 

While the second scenario utilises the following hyperparameter values: 

population_size: 100 tournament_size: 48 step_size: 0.5 
max_generations: 250 crossover_rate: 0.8 lower_bound: -5 
Patience: 50 mutation_rate: 0.3 upper_bound: 5 

It can be noted that the second scenario has an increased “tournament_size” and 
“max_generations” to support the increased population size. Based on these baseline 
scenario’s, diWerent hyperparameter values are tested in Chapter 5. For the best 
performing model, multiple runs will be executed to capture the run-to-run variance. 



 16 

4 Data 
The data required to run the P&R parking fee optimisation model largly depends on the 
required attributes for the MNL model. This model is based on 41 attributes, divided over 
primary and secondary attributes with some occuring multiple times. This results in 24 
unique attributes which must be gatherd before the MNL model could be correctly 
implemented. These attributes can be divided into three categories: P&R descriptive 
data, journey data and commuter data. 

4.1 P&R descriptive data   
The first group of attributes is the P&R descriptive data which contains seven attributes 
that are explicit to each P&R station. These attributes are as follows: 

1. pnr_cost 5. pnr_wc 
2. pnr_capacity 6. pnr_coWee 
3. pnr_intercity_service 7. pnr_waiting_room 
4. service_interval   

These attributes describe the P&R station itself and the services oWered. For example, the 
attribute “pnr_intercity_service” is a binary variable indicating if intercity trains stop at 
this P&R station. The attributes “pnr_wc”, “pnr_coWee” and “pnr_waiting_room” are also 
binary attributes indicating if there is a public restroom, a small food and beverages shop 
and comfortable waiting areas respectivly. All attributes in this category are static and do 
not change during the execution of the model. Only if the number of P&R stations 
changes, new data must be added or old data removed. However, there is one exeption, 
the “pnr_cost” is the decision variable in the P&R parking fee optimization model, and 
gets altered in every iteration. Therefore, it is treated separately and is not included as a 
static attribute. 

4.2 Journey data 
The second group of attributes describe the journey of a commuter from the origin to the 
destination and contains the following five attributes:  

1. distance_to_pnr 4. number_of_transfers 
2. time_to_pnr 5. transfer_time 
3. train_travel_time   

These attributes depend on the origin and destination and therefore diWer for each 
commuter. The “distance_to_pnr” and “time_to_pnr” are related to the car journey and 
must be calculated from the point of origin to each P&R station. These attributes are 
calculated based on the fastest route in terms of time between the origin and the P&R 
station. OSRM’s contraction hierarchies are used to find the fastest route between two 
points. The servers contain pre-processed road graphs and the contractional hierachies 
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enables precomputed routes between major junctions. As a result, it is not necessary to 
consider each possible road from each junction, dramatically speeding up querying time 
(Open Source Routing Machine, n.d.).  

In addition, the OSRM query makes use of routing profiles representing routing behaviour 
for diWerent modes of transport (Rajput, 2023). The pre-written profile “car” has been 
used for this research, determining multiple aspects such as what ways are routable and 
which speeds to use for diWerent road types. Every road segment between two junctions 
gets a resistance assigned based on the road type, speed, and length of the road 
segment. The fastest route between two points is calculated based on the route which 
has the least total resistance for all road segments.  

The remaining three attributes describe the journey by train from the P&R station to the 
destination. First, a train station close to the destination point must be determined. The 
closest station is found based on the Euclidean distance. Subsequently, the travel 
information API from the National Dutch Railway (NS) is used to generate a travel advise 
between the P&R station and the destination station. This travel advise is based on the 
timetable of the National Dutch Railway and the possible transfer points. The travel 
advise is the fastest way to get from the P&R station to the destination station by train. 
Other modes of public transport such as busses are disregarded. The travel advise 
provides the total travel time by train, the number of transfers and the transfer time at 
each transfer station. The latter is summed together for all transfer points to get the total 
value for the “transfer_time” attribute.  

4.3 Commuter data 
As third group, the commuter data describes each individual based on some socio-
demographic attribute, this category contains the following twelve attributes: 

1. business purpose 7. age_35_to_49 
2. work_purpose 8. age_50_to_59 
3. leisure_purpose 9. age_60_to_69 
4. vfr_purpose (Visiting Friends and Relatives) 10. age_over_70 
5. weekly_traveler 11. origin_influence_area 
6. ns_business_card 12. origin_periphery 

All of these attributes are represented by a binary value where one indicates that the 
commuter is part of the particular attribute. For example, if the “business_purpose” of a 
commuter contains a one, this means that the commuter is travelling for their business. 
This also automatically means that the “work_purpose”, “leisure_purpose” and 
“vfr_purpose” are set to zero, since a commuter has only one travel purpose at the same 
time. The 11th and 12th attributes represent the area of origin of the commuter. Soza-Parra 
and Ton (2022) used three diWerent origin regions within the Netherlands based on the 
population density. These areas are the Randstad, Influence area and the Periphery area 
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ranked from most densely populated to least as depicted in Figure 3. If both the 
“origin_influence_area” and the “origin_periphery” are expressed by a zero, this means 
that the commuter originates from the Randstad.  

 
Figure 3. Population zones in the Netherlands based on population density (Dekkers, 2006). 

4.4 Data collection 
The 24 unique attributes as described in Chapters 4.1 to 4.3 are all required to replicate 
the bi-level MNL model as developed by Soza-Parra and Ton (2022). These attributes were 
found to be of significant importance in modelling the P&R station choice of commuters 
by Soza-Parra and Ton (2022). The research utilized survey data collected by the National 
Dutch Railway (NS) captured in a major data collection eWort in 2019 aimed to capture 
details and travel behaviour on the door-to-door journey of passengers. This resulted in 
50,000 responses, however only 6% of the total trips used a car to access the P&R at the 
train station, resulting in 2,000 responses detailing information about their trip (Soza-
Parra and Ton, 2022).   

Since the data was collected from panels and surveys distributed to represent the Dutch 
socio-demographis, the collected data froms a representative sample of travel behaviour 
among train passengers. By utilizing this sample in the proposed P&R parking fee 
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optimisation model as discussed in Chapter 3, a fair solution can be generated since it is 
based on a sample of data representing the Dutch train travel behaviour. However, due to 
privacy legislation it was impossible to use these survey responses in a public 
publication. For this reason, publicly available information from the 2021 national 
traveller survey (Uconsult, 2022) has been used to synthetically generate a similar 
dataset. While this synthetic dataset does not contain the same data, assumptions have 
been used to create a representative sample to proof the methodological concept that 
calibrating P&R station parking fees can incentivizing people to travel less distance by car.  

The synthetic data generation process consist out of eight steps, as depicted in Figure 4, 
whereby these steps are performed for each created trip. The total number of to be 
generated trips is represented by 𝑁 and a total of 100 trips have been used during testing 
as this already resulted in long execution times. 

 
Figure 4. Synthetic data generation process. 

The synthetic data replaces the missing survey data from the National Dutch Railway (NS) 
and contains data about a trip from origin to destination and characteristics of the 
commuter. The synthetically generated data contains the attributes from the “Commuter 
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data” category as described in Chapter 4.3. It is created to mimic the survey responses 
utilized by Soza-Parra and Ton (2022) and is a representative sample of people who drive 
by car towards P&R station before transferring to the public transportation network. 
Hereby the assumption is made that all commuters keep on using a P&R station to reach 
their destination but will likely shift their P&R station of choice as the prices change. This 
way, the demand for P&R stations remains consistent even though the parking fees are 
changed. This assumption is made to highlight the eWect of calibrated parking fees on the 
total driven distance. In addition, it ensures that the utility of a P&R station to a commuter 
can be converted in a probability as discussed in Chapter 3.2. 

To start the synthetic data generation, the age of a commuter is synthetically generated 
based on the probability distribution described in Table 3 from the national traveller 
survey (Uconsult, 2022). However, it should be noted that the national traveller survey 
utilizes diWerent age categories. Therefore, the distribution has been adjusted to the 
desired age categories in Table 4. This adjustment is proportionally based on the number 
of years spanned by each age category. 

Table 3. Age distribution in the 2021 national traveler survey. 

Age category Proportion 

18 to 30 16.5% 
31 to 45 23.9% 
46 to 65 40.5% 
66 and older 19.1% 

 

Table 4. Age distribution adjusted to the required categories for the MNL model. 

Age category Proportion 

35 to 49 25.4% 
50 to 59 29.3% 
60 to 69 26.8% 
70 and older 18.5% 

Next, the region of origin must be determined for each commuter. As discussed in 
Chapter 4.3, Soza-Parra and Ton (2022) used three diWerent origin regions to fit the MNL 
model. However, the national traveller survey (Uconsult, 2022) makes use of a five-stage 
region classification which is also based on the population density. To create the 
mandatory origin regions, the population distribution from the national traveller survey 
(Uconsult, 2022) in Table 5 is used to derive the required proportions in Table 6. Where 
“Randstad” contains the entirety of the “Very urban” region as well as half of the “Urban” 
region. The other half is combined with the “Moderately urban” region within the 
“Influence area”. Finally, the “Periphery area” contains the remaining two population 
regions from the national traveller survey.  
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Table 5. Population distribution across regions in the 2021 national traveler survey. 

Population region Proportion 

Very urban 20% 
Urban 30% 
Moderately urban 25% 
Low urbanity 15% 
Not urban 10% 

 
Table 6. Population distribution across regions adjusted to the required categories for the MNL model. 

Population region Proportion 

Randstad area 35% 
Influence area 40% 
Periphery area 25% 

Based on the population region distribution in Table 6, a random point of origin is selected 
within each area. Subsequently, the destination point is determined based on the travel 
distance distribution from the national traveller survey (Uconsult, 2022) in Table 7.  

Table 7. Travel distance distribution in the 2021 national traveler survey. 

Travel distance Proportion 

Maximum of 7.5km 14.7% 
Between 7.5km and 15km 20.5% 
Between 15km and 30km 32.4% 
More than 30km 32.4% 

This generates origin and destination pairs for each commuter based on the general 
probabilities as publicised in the national traveller survey. However, to be a valid pair, 
both the origin as the destination points must be withing the borders of the Netherlands. 
For each commuter, their purpose of travel is determined based on the distribution 
provided by the national traveller survey (Uconsult, 2022) in Table 8. Subsequently, if 
someone is travelling for either “Business” or “Work”, the assumption has been made 
that they have a 50% change of owning a National Dutch Railways public transit business 
card (NS business card). In addition, if someone is travelling with a “Work” purpose, there 
is an 85% change that they are travelling weekly based on the national traveller survey 
(Uconsult, 2022). 

Table 8. Travel purpose distribution in the 2021 national traveler survey. 

Travel purpose Proportion 

Business 23.2% 
Work 54.8% 
Leisure 11% 
Visiting Friends and Relatives (VFR) 11% 
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5 Results and Discussion 
For each baseline scenario as described in Chapter 3.4, the P&R parking fee optimisation 
model is executed a couple of times. For each execution run, a single hyperparameter 
value was changed to test the eWects of this hyperparameter. While testing just a single 
changed hyperparameter value at the time does not take the interplay between diWerent 
hyperparameter values into account, it dramatically reduces the total number of tested 
combinations from 1.152 to 13. 

Based on these 13 tests, as included in Appendix B, it could be concluded that the 
changes in fitness value between each of the 13 tests are very small. DiWerences were 
only observed in the order of meters, while the fitness value is expressed in kilometres, 
resulting in no significant changes. Despite the very small scale, diWerent 
hyperparameter values result in diWerent fitness values. For example, increasing the 
maximum number of allowed generations before termination, as tested in combination 2 
in Appendix B, did not result in any improvements compared to the baseline scenario in 
combination 1. After decreasing the crossover rate from 80% to 30% in Combination 3, 
the fitness value became worse. The same can be concluded when the step size in which 
the P&R prices are adjusted was changed from €0.5 to €0.15 in combination 5. However, 
changing the lower and upper bounds of the normal distribution, which is used to alter 
the P&R prices, to €-5 and €5 respectively, resulted in the first observable improvement 
of the model in combination 6.  

When testing diWerent hyperparameter values for the “population_size” of 100 scenario, 
better results were achieved across the board. Indicating that an increased population 
size is preferable, potentially because it provides a wider population diversity and thus 
search space. Comparing the baseline scenario of combination 7 with combination 8 
which has an increased “patience” of 100, a slightly better fitness score is achieved. 
However, the increased processing time as a result does not justify the improved fitness 
score. A better fitness score could be achieved when the patience remained at 50 
generations and the tournament size was decreased from 48 to 24 as tested with 
combination 9. A decreased “crossover_rate” was also tested for the second scenario, 
however, this resulted in worse performance than the baseline just as with the first 
scenario. Indicating that the model requires a high mutation rate in order to find better 
solutions. The best performance was achieved in combination 13, by changing the lower 
and upper bounds to €-5 and €5 respectively. Indicating that greater changes in P&R 
parking prices could result in more changes in commuter’s travel behaviour.   

Based on the fact that the model performs better with a larger range between the lower 
and upper bounds, as well on the fact that increased patience does not significantly 
improves the results, the following hyperparameter values were used as the best 
performing model:  
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population_size: 100 tournament_size: 48 step_size: 0.5 
max_generations: 250 crossover_rate: 0.8 lower_bound: -5 
Patience: 50 mutation_rate: 0.3 upper_bound: 5 

A total of 5 runs have been performed were the initial couple of generations show 
generational improvements, followed by an ever increasing number of generations 
without improvement as can be observed in Figure 5. Indicating that some minor 
improvements can potentially be achieved at the expense of increasing computation 
times. This corresponds to the improvements observed when testing a larger value for 
the “patience” hyperparameter. Run 4 achieved the best fitness value at generation 4 
after which there was no further improvement for the following generations. For this 
reason, it can be concluded that the P&R parking fee optimisation model achieved 
convergence at generation 4. While run 4 performed the best, its performance also diWers 
the most from the other four runs. For this run, the average driven distance per commuter 
was reduced from 11.76533 kilometres in the initial solution to 11.76448 kilometres at 
convergence. This marginal reduction of 0.007% is neglectable on the grand scheme. 

 
Figure 5. Generational fitness over multiple runs of the P&R parking fee optimisation model based on the best 

performing hyperparameter values. 

The marginal reduction achieved by the P&R parking fee optimisation model indicate that 
almost all commuters are not changing their P&R station of choice, despite increases in 
price. This can be explained by the fact that the most commuters seem to already travel 
towards the nearest P&R station as their point of transfer onto the public transport 
network. Only resulting in reduced driven kilometres when there are multiple P&R 
stations at almost the same distance from the point of origin. Something what happens 
most often in the suburbs of larger cities. 
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In addition, the marginal improvement might hint at the relative low importance of 
parking price in the P&R station choice of the commuter. Since the MNL model accounts 
for a variety of diWerent factors in the P&R station selection procedure of commuters, a 
combination of diWerent factors might result in a larger reduction of driven kilometres. 
This is further substantiated by the fact that the optimal solution changes the current 
parking fees by as much as 15 euro’s. Indicating that the price must be significantly 
increased for some P&R stations to incentivise commuters to choose a diWerent P&R 
station. Figure 6 provides an overview for how often each P&R price occurs in the current 
situation. Comparing this to the distribution provided in Figure 7 for the newly determined 
P&R parking prices indicates a change in pricing. It occurs more often that P&R stations 
are priced above €3 and sometimes even as high as €15. While this poses no problem in 
the P&R parking fee optimisation model, it is unreasonable to assume that commuters 
would continue to use a P&R station if the parking price is increased to 15 euro, while 
other modes of transport are most likely cheaper at this point. For this reason, it is 
important to disregard the assumption of fixed demand in further studies and incorporate 
dynamic demand modelling. This way, a complete picture can be created for the total 
cost of a trip depending on several factors and how this cost aWects the mode of transport 
choice.  

 
Figure 6. Distribution of current P&R prices. 
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Figure 7. Distribution of newly calculated P&R prices. 

Visualising the diWerence between the current and new parking fees for each P&R station 
in Figure 8 provides an overview of where the more expensive P&R locations are located. 

 
Figure 8. DiSerence between the new and old P&R parking fee. 
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Upon visual inspection, there is no clear trend visible. While some P&R stations nearby 
major cities have become more expensive, as indicated by a yellow to orange colour, 
there are also plenty of P&R stations nearby major cities which have become cheaper. 
Most of the P&R stations located further away from cities have generally become cheaper 
with most of the exceptions being situated on the right-hand side of the Netherlands. This 
result falls partially in line with the expectations, since monetary and time savings were 
the main factors attracting users to P&R stations as concluded by Lam et al. (2001). By 
increasing the P&R prices near major cities and decreasing the prices into the more rural 
areas, commuters can be nudged to P&R stations located farther away from their 
destination points, as these have become more viable. This behaviour corresponds to the 
conclusion drawn by Guo and Wilson (2004) which concluded that people generally 
gravitate towards the cheaper alternative. Creating a cheaper but still fast and 
comfortable alternatives closer to commuter’s origins will result in reduced kilometres 
driven by car.  

However, this trend does not appear to hold true for every P&R station near large cities. 
Some P&R stations near cities such as Leeuwarden appear to have received a reduction 
in parking price.  This might be explained by the fact that reducing the total travelled 
distance by car does not directly translate into forcing car users away from cities. Most 
cities are surrounded by suburbs and villages, resulting in increased population centres 
around major cities. While it might be beneficial to increase parking fees and force people 
away from larger cities, the inhabitants also require appropriate parking facilities. 
Transferring these commuters onto the public transport network via P&R stations around 
the major cities might be the best solution to reduce the total number of driven 
kilometres. Combining this with the earlier drawn conclusion that commuters generally 
already choose the closest P&R station to their point of origin, might explain why most of 
the price increases are seen by cities with multiple P&R stations close by. As only 
commuters with multiple alternatives at almost the same distance from their point of 
origin are likely to change their P&R station of choice after changing the parking price.  

While the results suggest that commuters can be incentivized to travel less distance by 
car by changing P&R parking fees, it also demonstrates the complexity associated to 
changing people’s behaviour. Despite a marginal reduction in driven kilometres invoked 
by implementing a hard policy such as price increases, other factors are most likely 
required to create a significant diWerence in total driven kilometres. Reduced train fairs, 
increased inner-city parking prices and intercity services at more remote stations are 
examples of factors which should potentially be considered in order to eWectively change 
commuting behaviour. Further research into the interplay between diWerent factors and 
their eWect on the total driven distance is required before implementation and only a 
suitable mix of measures, ranging from policies to infrastructure, can lead to success as 
pointed out by Stopher (2004).   
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6 Conclusion  

Overall, it can be concluded that the total driven distance to reach P&R stations are not 
significantly aWected by changing P&R parking fees. While the utility of each P&R station 
to the commuter is changed when the P&R parking prices are altered, it often does not 
result in any actual changes in P&R station choice, as most commuters are already 
travelling to the nearest P&R station. While some reductions are achieved by the 
proposed model, the reductions are neglectable with only 0.007%. While this research 
proves the fact that the total driven distance to reach P&R stations can be reduced by 
making use of the concept of financial incentive, it does not create significant changes 
purely based on diWerent P&R parking prices. 

Further research could be performed into diWerent factors influencing the commuter’s 
choice in P&R stations and how these factors can result in a reduction in total distance 
travelled by car. In addition, a combination of factors would most likely result in better 
results. Other areas for further research are the incorporation of dynamic demand 
modelling instead of assuming that all commuters in the dataset will keep on using the 
P&R stations as part of their journey while it is much more likely that commuters will 
switch to other modes of transport at diWerent thresholds based on the benefits they 
provide. Focussing on the cost of a trip for diWerent modes of transport and how financial 
incentive aWects these choices could provide valuable insights and potentially reduce 
the total distance travelled by car to reduce congestion on main road arteries leading into 
the city.  
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Appendix A 
Primary variable Secondary variable Estimate Std.err. t-ratio 
Time to P&R  -4.23E-03  2.40E-04  -17.62  
 Business purpose  3.66E-04  2.10E-04  1.74  
 Origin influence area -1.11E-03  1.87E-04  -5.93  
 Origin periphery -1.13E-03  1.81E-04  -6.24  
 Age between 35 and 49  -6.94E-04  2.74E-04  -2.54  
 Age between 50 and 59  -6.80E-04  2.39E-04  -2.85  
 Age between 60 and 69  -1.37E-03  2.35E-04  -5.84  
 Age over 70  -1.66E-03  2.36E-04  -7.03  
 NS business card  -5.86E-04  1.82E-04  -3.23  
 Travelling weekly  -4.18E-04  1.94E-04  -2.15  
 Distance to P&R  1.91E-02  8.58E-04  22.24  
P&R cost  3.58E-04  1.74E-04  2.06  
 Origin influence area  -1.55E-03  3.35E-04  -4.63  
 Origin periphery  -1.24E-03  4.37E-04  -2.84  
P&R capacity  2.79E-03  2.45E-04  11.40  
 Origin influence area  -2.02E-03  3.59E-04  -5.64  
 Travelling weekly 6.99E-04  3.87E-04  1.80  
P&R intercity service  -1.53E-01  1.27E-01  -1.21  
 Business purpose  5.30E-01  2.04E-01  2.60  
 Origin influence area  1.24E+00  1.80E-01  6.90  
 Origin periphery  1.52E+00  1.96E-01  7.74  
P&R wc  1.35E-01  9.19E-02  1.47  
 Origin periphery 3.64E-01  1.87E-01  1.95  
P&R coBee  1.70E-01  1.07E-01  1.59  
 Visiting friends and family 

purpose  
4.41E-01  1.61E-01  2.74  

 Origin periphery  -3.56E-01  2.10E-01  -1.69  
P&R waiting room  2.97E-01  7.19E-02  4.13  
 Visiting friends and family 

purpose  
2.49E-01  1.54E-01  1.62  

Train travel time  -7.84E-02  6.14E-03  -12.75  
 Work purpose  -1.19E-02  5.32E-03  -2.24  
 Business purpose  -1.94E-02  7.56E-03  -2.57  
 Distance to P&R  3.93E-01  3.28E-02  11.99  
Transfer time  -9.09E-03  1.09E-02  -0.84  
 Work purpose -7.14E-02  1.81E-02  -3.94  
Number of transfers  -2.08E-01  1.14E-01  -1.82  
 Leisure purpose -9.88E-01  3.78E-01  -2.62  
Service interval  1.84E-02  9.59E-03  1.92  
 Origin influence area  2.84E-02  1.11E-02  2.55  
 Origin periphery  7.97E-02  1.08E-02  7.37  
 Travelling weekly 1.61E-02  1.12E-02  1.43  
 Distance to P&R  -3.25E-01  6.69E-02  -4.86  
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Appendix B 
Combination:  

1 
 Fitness value: 

11.76474047 
 Convergence generation: 

50 
 

Hyperparameter values:    
population_size 20 tournament_size 8 step_size 0.5 
max_generations 100 crossover_rate 0.8 lower_bound -2 
patience 50 mutation_rate 0.3 upper_bound 2 

 

Combination:  
2 

 Fitness value: 
11.76467867 

 Convergence generation: 
50 

 

Hyperparameter values:    
population_size 20 tournament_size 8 step_size 0.5 
max_generations 400 crossover_rate 0.8 lower_bound -2 
patience 50 mutation_rate 0.3 upper_bound 2 

 

Combination:  
3 

 Fitness value: 
11.76482326 

 Convergence generation: 
50 

 

Hyperparameter values:    
population_size 20 tournament_size 8 step_size 0.5 
max_generations 100 crossover_rate 0.3 lower_bound -2 
patience 50 mutation_rate 0.3 upper_bound 2 

 

Combination:  
4 

 Fitness value: 
11.76475294 

 Convergence generation: 
50 

 

Hyperparameter values:    
population_size 20 tournament_size 8 step_size 0.5 
max_generations 100 crossover_rate 0.8 lower_bound -2 
patience 50 mutation_rate 0.6 upper_bound 2 

 

Combination:  
5 

 Fitness value: 
11.76480758 

 Convergence generation: 
50 

 

Hyperparameter values:    
population_size 20 tournament_size 8 step_size 0.15 
max_generations 100 crossover_rate 0.8 lower_bound -2 
patience 50 mutation_rate 0.3 upper_bound 2 

 

Combination:  
6 

 Fitness value: 
11.76469196 

 Convergence generation: 
50 

 

Hyperparameter values:    
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population_size 20 tournament_size 8 step_size 0.5 
max_generations 100 crossover_rate 0.8 lower_bound -5 
patience 50 mutation_rate 0.3 upper_bound 5 

 

Combination:  
7 

 Fitness value: 
11.76463952 

 Convergence generation: 
50 

 

Hyperparameter values:    
population_size 100 tournament_size 48 step_size 0.5 
max_generations 250 crossover_rate 0.8 lower_bound -2 
patience 50 mutation_rate 0.3 upper_bound 2 

 

Combination:  
8 

 Fitness value: 
11.76463395 

 Convergence generation: 
100 

 

Hyperparameter values:    
population_size 100 tournament_size 48 step_size 0.5 
max_generations 250 crossover_rate 0.8 lower_bound -2 
patience 100 mutation_rate 0.3 upper_bound 2 

 

Combination:  
9 

 Fitness value: 
11.76462811 

 Convergence generation: 
50 

 

Hyperparameter values:    
population_size 100 tournament_size 24 step_size 0.5 
max_generations 250 crossover_rate 0.8 lower_bound -2 
patience 50 mutation_rate 0.3 upper_bound 2 

 

Combination:  
10 

 Fitness value: 
11.76477786 

 Convergence generation: 
50 

 

Hyperparameter values:    
population_size 100 tournament_size 48 step_size 0.5 
max_generations 250 crossover_rate 0.5 lower_bound -2 
patience 50 mutation_rate 0.3 upper_bound 2 

 

Combination:  
11 

 Fitness value: 
11.7646858 

 Convergence generation: 
50 

 

Hyperparameter values:    
population_size 100 tournament_size 48 step_size 0.5 
max_generations 250 crossover_rate 0.8 lower_bound -2 
patience 50 mutation_rate 0.5 upper_bound 2 
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Combination:  
12 

 Fitness value: 
11.76462328 

 Convergence generation: 
50 

 

Hyperparameter values:    
population_size 100 tournament_size 48 step_size 0.15 
max_generations 250 crossover_rate 0.8 lower_bound -2 
patience 50 mutation_rate 0.3 upper_bound 2 

 

Combination:  
13 

 Fitness value: 
11.76435613 

 Convergence generation: 
100 

 

Hyperparameter values:    
population_size 100 tournament_size 48 step_size 0.5 
max_generations 250 crossover_rate 0.8 lower_bound -5 
patience 100 mutation_rate 0.3 upper_bound 5 

 


