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Abstract

This thesis presents a novel approach to generating synthetic transaction networks. The
research focuses on developing a graph-based generative model capable of replicating charac-
teristics observed in real-world financial networks. The motivation of this model is to preserve
data privacy, and it generates networks that exhibit power-law degree distributions, no as-
sortativity or disassortativity, exponential weight distributions, and community structures
similar to those found in actual financial transaction data.

The methodology involves a clustering analysis of a real transaction dataset to identify
node-types, which are then integrated into the generative model. Parameters for node gen-
eration, edge densification, and a probability matrix governing type-based connections are
established to control the network’s structural properties. The model is validated against this
real network dataset from Rabobank, by comparing the metrics and structural properties.

Experimental results show that the model can produce stable synthetic networks over
200,000 iterations, with generated networks exhibiting comparable degree distributions, edge
densities, and community structures to the real dataset. However, limitations include the
use of a sampled and aggregated dataset for validation, which restricts the model’s ability
to capture the full complexity of real financial networks, and the model’s exponential weight
distribution diverging from the real dataset’s power-law weight distribution.

This research contributes a publicly available tool, which can be used as a starting point
for generating synthetic financial transaction networks, facilitating applications in machine
learning model training for detecting criminal financial activity. Future research directions
include improving weight distribution modeling, exploring algorithms for power-law distribu-
tions, and extending the model to include interbank networks and temporal dynamics.
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1 Introduction

AI is expected to grow exponentially in the upcoming years [32], and is applied in many fields such
as healthcare, social media and finance. It is known that AI models are data hungry [1]. They
require large sample datasets to be trained on, which ideally leads to improved decision-making.
There is no predetermined required sample size, but many researchers follow the Widrow-Hoff
learning rule [34] which states that for every parameter at least ten datapoints are needed [12].
More datapoints will result in more generalized predictions, and less overfitting. In most cases,
data is publicly available and can be downloaded online. However, in some domains, privacy con-
cerns arise, and data cannot be shared publicly. This is the case with financial data, which banks
are not allowed to share due to privacy laws. Still, it is crucial to investigate this transactional
data to generate a model that can detect patterns of criminal financial activity such as fraud,
terrorism financing or money laundering.

A solution to this problem could be to generate synthetic data, which is data that is generated
using some properties of the real data, such that privacy is not invaded. Synthetic data can be
widely used, e.g. to train models to detect previously mentioned criminal patterns, or to solve
the problem of data imbalance in transaction datasets, as only a small percentage is fraudulent
[49]. Also, investigating synthetic data generation might be interesting for other domains that are
dealing with private data.

Transaction data can be effectively modelled as a network [29] where the nodes represent fi-
nancial entities, and the edges indicate the occurrence of transactions between them. The weights
on these edges can represent the transaction volume, frequency, or some other transaction charac-
teristic. These edges can be directed to indicate the direction in which the money was transferred.
Transaction networks can be dynamic to match real-world transaction networks. These type of
networks can be effectively used for detecting criminal behavior [28], which is why generating
synthetic transaction networks is a promising research area.

Current approaches of generating synthetic data are based on graph generative models [51],
intelligent agents [55, 4], machine learning models [11, 42], or other techniques [22, 40, 21]. How-
ever, some of them do not take network structures into account [30], are not reproducible [51], or
only provide the datasets, and not the generators of the dataset [4]. Others are based on data
that is not publicly available or require domain knowledge [40, 21, 22], making validation a hard
task. Further, models that are based on real data can be susceptible to attackers, as they will try
to acquire the real data from the generated data [17].

Graph generative models are a promising research avenue for generating synthetic data, due
to their stability [4] and privacy preserving nature, as they do not require real data directly
during generation. Furthermore, using graph generative models for synthetic transaction data
might provide interesting insights into the evolution of transaction networks, if the results align
with real data. However, most graph generative models suffer from limitations: they typically
produce unweighted and undirected networks, are domain-agnostic, and do not account for nodes
with different behaviors or types. While some models use a notion of ‘fitness’ [9] to distinguish
between nodes, or divide the network evolution in two classes [8], no models offer clear, controllable
types during network evolution. Further, in financial data, scale-free properties are observed
for degree and weight distributions, they are neither assortative, nor disassortative, show bow-
tie structures and community structures [47]. No graph generative models are known that can
generate all of these properties, as most only generate scale-free degree distributions, and/or
community structures.

In this research, we provide a stable graph generative model that preserves privacy and can
generate weighted, directed networks with distinct node-types. The networks show negative to
slightly positive assortativity, scale-free degree distributions and a bow-tie structure similar to a
real transaction network. The generator is publicly available, and is validated on real (aggregated)
transaction data that is publicly available, making this research reproducible.

Background information will be provided on network metrics for weighted directed networks,
as well as an overview of research conducted in the fields of synthetic data and financial data. In
Section 4, the model is introduced. This section will also focus on analyzing the degree distribution,
mixing behavior, and weight distribution of the graphs generated by the model. In Section 5,
simulations will be conducted to investigate the effect of the different parameters on the metric
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values. Section 6 will describe a use case where our model is applied to real data. Finally, in
Sections 7 and 8, the model is concluded and discussed by giving future research directions and
limitations.

1.1 Problem statement

We aim to create a model of network generation and growth that can generate and evolve graphs
based on a predetermined set of large-scale properties. These properties include degree distribu-
tion, clustering coefficient, assortativity, and density. Our aim is to create a model that can be
calibrated to cover a broad range of the targeted values, within the limits of the broad network
characteristics that are most frequent in real-world networks. We aim to replicate features such
as power-law degree distributions and community structures.

One of the application domains we target is the financial domain. In financial networks, the
edge weights as well as the edge directions are critical. We therefore put particular emphasis on
reproducing the in-degree and out-degree distributions, the bow-tie structure of directed networks
and the edge-weight distribution. These characteristics are essential for understanding the flow of
transactions and identifying patterns within financial data.

Furthermore, an important aspect of financial networks is the consistent behavior of many
nodes over time, which exhibit clear patterns of connections. For example, an account of a
subscription app regularly receives numerous incoming transactions of low amounts. With this
intuition, we aim for our model to also be able to reproduce networks with multiple types of
nodes and with various node-type interaction patterns. This capability is crucial for capturing
the diversity of real-world financial networks and ensuring that the synthetic data generated is
realistic and useful for further analysis.

Summarizing, our research aims to develop a stable and flexible graph generative model that
can match a wide range of network properties seen in real-world scenarios. Graphs are generated
and evolved based on a predetermined set of large-scale properties. We focus on the financial
domain, intending to create synthetic networks that keep data private and mimic the structure
and behavior of real financial transaction networks. We do this by using multiple types of nodes
with various node-type interaction patterns, to ensure that the synthetic data is realistic.

1.2 Contributions

• This research provides a publicly available synthetic graph generator which can be used to
generate synthetic financial networks, given a set of input parameters.

• The model produces stable, weighted, directed networks, whose weights represent the counts
of transactions between two nodes, and other weights can be added to represent the volume
of transactions by adding an extra weight parameter.

• This model is validated on publicly available data, making the research reproducible.

• In the generated graphs we measured clustering coefficients ranging from 0.0098 to 0.42,
assortativity coefficients ranging from -0.64 to 0.086 and density ranging from 0.0002 to 0.023
by adjusting the parameters. However, these metrics are interdependent. More specific: in
almost all parameter combinations that result in an increased clustering, density increases
as well, but assortativity decreases.

• The model is capable of accurately replicating the bow-tie structure of a given network.

• The model produces stable graphs.

• The model might be used to generate other types of networks by using different parameter
settings.
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2 Network metrics in weighted directed networks

To generate synthetic networks it is necessary to understand the structure and characteristics
of these networks. In transaction networks, the nodes usually represent accounts of customers,
companies ATMs, or other financial entities. The edges indicate whether there exist transactions
between them. These networks are often weighted and directed, where the weights represent the
amount or volume of the transaction, and the direction corresponds to the direction in which
the money is transferred, as explained in Section 3. It is suitable to represent financial networks
as weighted, directed networks [29], which is why an overview of metrics is provided to analyze
networks which can also be used for weighted, directed networks. Some of the given metrics are
only suitable for unweighted networks, in the analysis we then only use the unweighted, undirected
version of the generated network.

We define a graph as a pair G = (V,E), where V is the set of vertices or nodes, and E the
set of edges. For node i, we define the degree of the node as ki and the set of neighbors as Vi.
The weight between nodes i and j is defined as wij . Lastly, aij represents the elements of the
adjacency matrix A, where, for unweighted networks, each element takes the value 1 if there is an
edge between i and j, and 0 otherwise. In weighted networks, these elements can have different
values to represent the weights. If the network is undirected, this matrix will be symmetric. If it
is directed, the matrix will be asymmetric. Most networks do not contain self-loops, meaning aii
will always be 0, resulting in a zero-diagonal matrix.

2.1 Strength of a node

For the strength of a node i we calculate the in-strength sin(i), out-strength sout(i) and add these
together to obtain the strength s(i). The in- and out-strength are calculated by calculating the
total incoming and outgoing weights of a node.

2.2 Clustering coefficient

The clustering coefficient is a measure of cohesion in a network. It measures ‘how tightly knit the
neighbors are’ [46]. There are several ways to measure the clustering coefficient. In unweighted
networks, the local clustering coefficient is defined as:

CC(i) =
1

ki · (ki − 1)

∑
j,h

aijaihajh

This clustering coefficient is calculated for every node, and then averaged to find the average
clustering coefficient.

Onnela et al. [39] also proposed a clustering coefficient measure. This measure was based on
a concept called subgraph intensity, which is defined as the geometric average of the subgraph
edge weights [45].

CC(i)O =
1

ki · (ki − 1)

∑
j,h

ŵijŵikŵjk

Here, the edge weights are normalized by the maximum weight in the network, ŵij = wij/maxa,b(wab).
This definition illustrates the proportion of triangle weights in relation to the maximum value
within the network.

More definitions of clustering coefficients exist; for a more detailed overview we refer to the
paper of Saramaki [45]. Our research will utilize the unweighted clustering coefficient proposed
by Onnela et al. [39] and the unweighted version, as these are the most commonly used metrics
for (un)weighted networks.

2.3 Assortativity

Assortativity is the tendency of a vertex to connect with another vertex based on their similarity
[44]. This similarity could be in vertex degree, weight or some other characteristic. The assorta-
tivity coefficient was originally proposed for undirected, unweighted networks [38], but can also be
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used for directed [36] and weighted [25] networks. In this research we limit ourselves to undirected
degree and weight assortativity, as these are the most commonly used metrics in literature.

Calculating the assortativity coefficient can be done by calculating the Pearson correlation
coefficient, or the Spearman correlation coefficient [16] of the degrees of two adjacent nodes. In
this research, the definition of Newman et al. [37] is used, which uses matrix eij , which is the
fraction of edges in a network that connect a vertex of type i to one of type j, to define assortativity.
In the definition, ax and by are the fractions of edges that start at a node with x and end at a
node with value y. This assortativity is then calculated by the Pearson correlation coefficient:

r =

∑
xy xy(exy − axby)

σaσb

This definition is used, because it is the one used in the NetworkX package we use.

2.4 Degree distribution

Each node has a degree. The degree distribution represents the probability distribution of these
degrees across the entire network. In weighted, directed networks, we can look at the degree dis-
tribution by looking at the in- and out-degree distribution. For unweighted, undirected networks,
Barabasi and Albert found that many networks follow a power-law degree distribution [7]. The
power-law can be defined as (P (k = x) ∼ k−γ), meaning the probability that a node has degree
k follows the given probability.

2.5 Community structure

A community is a group of nodes that are connected together. In various real-world networks
these structures emerge. Finding these communities is an active research topic, and many different
algorithms exist [33]. Communities can be hard to detect, because a formal definition is absent.
However, an attempt to define it was done by Condon and Karp [15]. In their definition, a network
contains communities if the probability that two nodes in a community are connected is higher
than the probability that two nodes in different communities are connected.

A measure to detect communities is modularity [14], which compares the difference between
the actual number of edges in a community and the expected number of edges in a community.
Modularity based algorithms try to maximize this modularity, to identify meaningful groupings
of nodes. Modularity is formally defined as:

Q =
∑
ci∈C

[
|Ein

ci |
|E|

−
(
2|Ein

ci |+ |Eout
ci |

2|E|

)2
]

Where C is the set containing all communities, ci is a community in this set, |Ein
ci | is the amount of

edges in the community, Eout
ci | the number of edges from the community to outside the community,

and |E| is the total number of edges in the network.
Two similar algorithms that use modularity for community detection are the Leiden algorithm

[52], and the Louvain algorithm [10]. The authors of the Leiden algorithm argue that the Louvain
algorithm may return arbitrarily poorly connected communities, and claim to have found a solution
to this problem. The Leiden algorithm is more complex than the Louvain algorithm, but produces
communities that are ensured to be connected, and is faster than the Louvain algorithm. Both
Leiden and Louvain are suitable for weighted, undirected networks. In this research, Louvain is
used.

2.6 Bow-tie structure

The bow-tie structure of a network decomposes it into seven groups of nodes, as defined by Yang
et al. [56]. These groups are as follows:

1. SCC: The core. Consists of nodes that are strongly connected.

2. IN: Nodes from which the core component S is reachable.
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3. OUT: Nodes that are reachable from the core component S.

4. TUBES: Nodes that are reachable from IN and can reach OUT, but are not part of S.

5. INTENDRILS: Nodes that are reachable from IN, but cannot be reached by S, and cannot
reach OUT

6. OUTTENDRILS: Nodes that can reach OUT, but cannot be reached by S or IN.

7. OTHER: The remaining nodes that do not fit into the above categories.

The bow-tie structure can be seen in Figure 1.

Figure 1: Image of bow-tie structure, taken from [56].

2.7 Summary

The previously described metrics can be used to understand weighted, directed networks, and to
compare two or more networks with each other. These metrics will be used to understand the
available networks, and to generate networks that are similar to real-world networks. Nevertheless,
it is important to note that some metrics are highly correlated, and there is no research on how
they hierarchically build upon each other [48].
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3 Background

In this section the characteristics that are found in financial networks will be discussed, and an
overview of the proposed solutions to generate synthetic networks is provided. According to Lim
et al. [29] the process of generating realistic synthetic graphs can be divided into three parts: i)
graph generative model selection, ii) synthetic graph generation, and iii) graph generative model
validation. Different graph generative models are discussed, but also generative AI models, and
finally agent-based modelling, as these are the three most popular processes used for generating
graphs.

3.1 Financial Network data

We found four works in the literature that investigate real-world financial network data and discuss
them in turn.

Saxena et al. [47] constructed a network from banking transactions of Rabobank users, which
they made publicly available. They sampled two directed, weighted networks where the edges
contain as weights the aggregated amount of transactions, and the total number of transactions.
The networks contain 1.6 million nodes and 3.8 million edges. Their data was collected from 2010
to 2020 and is, to the authors’ knowledge, the first of its kind that is publicly shared.

They give an extensive analysis of their networks, showing that it has clear similarities with
scale-free networks, but also some differences. The networks both showed a power-law degree,
strength and edge-weight distribution, similar to other real-world networks [35]. However, it was
shown that there was no correlation between in- vs. out-degree and in- vs. out-strength. The
clustering coefficient is analyzed for the unweighted and weighted versions of the graph and showed
that when the degree increases, the clustering coefficient decreases. This means that if one entity
makes transactions with multiple different entities, these entities are less likely to be connected to
each other. The network is neither assortative, nor disassortative, has a community (detected using
Leiden algorithm) and hierarchy structure, and has no correlation between weak-ties (connections
between communities) and edge-weights. Correlations were measured using Spearman correlation.
They mention finally that it is still an open question how transaction networks evolve.

Another financial network was analyzed by Kyriakopoulos et al. [24]. They analyzed a dataset
that contains all financial transactions between the accounts of practically all major financial
players within Austria over one year. Their dataset contains 423 accounts of financial players,
4.187.943 transactions of a total volume of 11.07 trillion Euro’s. The data was aggregated tem-
porally using three scales: yearly, monthly and daily. The distribution of the transaction volume
shows an exponential increase for small amounts (between 102 and 103), and most transactions
had a volume of 1000, 105 or 1 million.

The authors first assessed the network topology by looking at the unweighted, directed versions
and the unweighted, undirected versions of the network. The unweighted, directed networks were
obtained by changing all values in the adjacency matrices to 1 if they had a value greater than 0.
Next, these matrices were symmetrized to obtain the unweighted, undirected networks.

Power laws were observed in the degree distributions of the unweighted, undirected networks,
indicating the presence of hubs. A hub is a node with a neighbor count that substantially exceeds
the network’s average. This means most accounts only transfer money with a small group of other
nodes, and a small number of nodes transfers money with a large part of the network. The au-
thors found strong dependencies between network characteristics on aggregation time, especially
for the unweighted networks. Clustering coefficients, which show power law dependencies based
on degree, become less pronounced with longer time periods. The authors suggest that hierar-
chical structures which are noticeable on a daily basis, become invisible over monthly and yearly
periods. In contrast, the power law dependencies in the nearest neighbor degree as a function of
degree become more evident over longer periods. Further, they mention that degree correlations,
indicated by both the Pearson coefficient and nearest neighbor degree versus degree, suggest assor-
tative behavior where high-degree nodes are connected to other high-degree nodes. This is likely
influenced by the presence of links with small weights in unweighted networks.

Power-laws were also observed in the strength of the weighted networks, which are less depen-
dent on aggregation. A remarkable thing that the authors found was that the weighted clustering
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coefficients versus the unweighted ones had similar behavior, while the nearest neighbor degrees
differed strongly; the weighted case indicated disassortative behavior for large degrees.

Zhang et al. [57] studied a dataset from Kaggle containing credit card transactions from a
European bank over a two-day period in September 2013. They created a weighted support vector
machine to detect fraud, and used the Kaggle data for training. There are 284,807 transactions
in the dataset, of which 0,17 percent was fraudulent. Most transaction amounts were between 0
and 100 dollars, 79.76% for non-fraudulent and 73.60% for fraudulent transactions. No network
metrics were analyzed in this research, because the dataset does not provide node id’s, meaning
no network structure can be constructed. Still, it is useful to look at the transaction amounts and
time distributions in the data.

Kondor et al. [23] conducted an Empirical Analysis of the Bitcoin Transaction Network.
Bitcoin, and other cryptocurrency data is interesting to analyze, because transactions are publicly
available. The authors created a bitcoin dataset containing the complete list of transactions (on
May 7th, 2013) to construct a network containing transaction times and amounts. This data has
17.3 million transactions, 13.1 million addresses (appearing in at least one transaction), of which
1.6 million were active in the last month. Each node in the network represents a Bitcoin address
and an edge represents whether there has been at least one transaction between two nodes.

The evolution of the network was studied and two distinct phases of growth were observed.
First, the initial phase, where the network had large fluctuations and little activity, and second
the trading phase, where the network did not change significantly anymore and converged to the
typical value. The latter phase resembles a real currency more closely, and was characterized
by disassortative degree correlations, and powerlaw degree distributions. Also, the growth of the
network was driven by linear preferential attachment.

Summarizing, we know that financial networks contain power laws for the degree, strength
and edge-weight. Assortativity of financial networks differed in the literature. The paper from
Saxena et al. about the Rabobank network mentioned their network was neither assortative nor
disassortative, while the paper from Kyriakopoulos et al. with the data from Austria mentioned
the unweighted networks were assortative in contrast to the weighted. Finally, the paper from
Kondor et al. containing the bitcoin network showed disassortative behavior. The reason for this
might be that the used metric for assortativity differed per paper. The bitcoin and Austria paper
both used Pearson correlation to measure assortativity, but the Rabobank paper used Spearman
correlation. Finally, it is important to mention that these networks have major differences, as the
Rabobank network contains aggregated data over a 10-year period, the bitcoin network contains
all transactions separately and the Austria network had three different aggregations of their data,
daily, monthly and yearly. These aggregations might influence the assortativity, which can explain
these differences. Lastly, financial networks show community structures. The bitcoin dataset is
the only dataset that shows how the model evolves, because it is the only one that can share this
kind of data. The growth was driven by linear preferential attachment.

3.2 Graph Generative Models

In this section we discuss different graph generative models, especially for generating weighted
directed networks. We focus on those models whose properties make them suitable for the financial
domain. For an extensive survey on weighted network models we refer you to Saxena et al. [46].

The Barabasi-Albert (BA) model [2] is a model proposed by Barabasi and Albert which gen-
erates scale-free networks using preferential attachment. A preferential attachment process, also
called ‘rich get richer’, is a process where a quantity is distributed among individuals or objects
based on what they already have. In simpler terms, the more someone or something has, the
more it gets. In networks this means that new nodes have a higher probability to connect to
nodes that have a high degree than to nodes that have a low degree. The BA model generates
undirected, unweighted graphs, and power-law degree distributions with γ = 3. The BA model
can be an interesting base model for the financial domain, as we have seen that financial networks
have scale-free properties and might be driven by preferential attachment, such as in the Bitcoin
network. However, it does not take weights or directions into account.
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In 2004, Chakrabarti et al. proposed R-MAT [13], a recursive model for graph mining. They
created their model with three goals for the generated graph. The graph should:

1. match the degree distributions (power-law or no power-law)

2. exhibit a community structure

3. have a small diameter

Their model works with an N×N adjacency matrix A containing only zeroes, which is divided into
four quarters, a, b, c, d, which are all assigned a probability. All added together, this probability
is equal to 1. The idea of R-MAT is to choose one quarter of the adjacency matrix with the given
probabilities, subdivide this quarter again in quarters, and keep choosing until one element aij
is reached. A weight of 1 will be added to this cell, representing a directed, weighted edge from
node i to node j. This way, a directed, weighted graph is generated, and the values of a, b, c, d
can be tweaked to achieve the desired network characteristics. Additionally, this model can be
extended to generate unweighted and undirected networks by restricting the maximum value to
be 1 and symmetrizing the matrix, respectively. R-MAT can be promising for modelling trans-
action networks, as it can generate power-laws and community structures, which are properties
of transaction networks. R-MAT is also able to generate weighted directed, networks, which is
desirable, as discussed in Section 2.

Other models that can generate power-law distributions are the power-law minimal models,
which are simple models that are specifically designed to generate networks with power-law char-
acteristics. These models require minimal effort, making them interesting to investigate.

Antal et al. [5] proposed an evolving model that generalizes BA where the network starts with
some seed nodes and grows through a simple strength-driven rule: a new node connects to an
existing node with a probability proportional to the strength of that node. The weight of the edge
between the nodes is chosen from a given weight distribution, and remains fixed afterwards.

Bianconi [8] divided the evolution of networks in two classes based on the ratio of strength and
the rate of making new connections. In, for example, traffic networks, a new edge is added more
frequently between two nodes that are not yet connected than increasing the strength between
two already connected nodes. This type of network is referred to as class 1. These networks
have linear relationships between the strength and the degree of a node. Other networks, such as
co-authorship networks, do not have this probability; two existing collaborators tend to publish
more papers together than with new collaborators. These are referred to as class 2 networks, and
have nonlinear relationships between strength and degree. The network model contains two steps,
adding a new node and connecting it using preferential attachment, and choosing already existing
edges of which the weight is increased. The parameters of the model can be tweaked in order to
get class 1 or class 2 models. We expect that, for transaction networks, class 2 models will be
more suitable, as nodes that already have transactions with each other might be more likely to
have more transactions with each other than with other or new nodes.

In the power-law minimal models, edges are generated based on the strength of a node. In 2001,
Bianconi and Barabasi [9] introduced the notion of fitness for unweighted networks, where each
node possesses a fitness value (η), and nodes with higher fitness attract more links, so preferential
attachment does not depend anymore on degree only. This phenomenon is also referred to as
‘fitter gets richer’.

Zheng et al. [59] generated a stochastic weighted model based on this fitness model. Each node
receives a fitness parameter η, which is a random number between 0 and 1. With probability p the
edge weight is assigned using weighted scale-free (proportional to the strength of its endpoint),
and with probability (p − 1) we use the fitness parameter to assign the weight (proportional to
the fitness of its endpoint).

Two types of growth are often used in graph generative models: topological growth, and
self-growth i.e. densification [54]. Topological growth means a new node joins the network and
connects with existing nodes. Self-growth refers to existing nodes that make new connections, or
increase the weight between them.

Wang et al. [54] introduced such an incremental self-growing model for weighted networks. The
network starts with n nodes that are fully connected with edge weight w0. The network has two
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growth mechanisms: topological growth, following strength preferential attachment, and mutual
selection growth, following a given probability function. The total strength of nodes increases
uniformly with the network size. Further, the authors demonstrated that the model accurately
represents the disassortative nature found in real-world networks.

As mentioned in Section 3, financial networks have community structures. In community-
structured networks, two different types of edges exist: intra-community links, when the nodes of
the edge are in the same community , and inter-community links, when the nodes of the edge are
in a different community.

Li and Chen [26] proposed a model which generates community-structured networks, based on
inner- and inter-community preferential attachment, and inner- and inter-community strengthen-
ing. The model starts with M seed communities, which have m0 fully connected nodes. These
communities are linked to each other through M(M − 1)/2 inter-community connections, with
each community being connected to (M−1) other communities. For growth there are two options.
First, with probability α, a new node is added, and connects to a community using preferential
attachment. With probability β, this node makes an inter-community link. All the added edges
will have weight 1. Second, with probability (1− α), only an inter-community link will be added.
With probability η, also an inter-community link will be added. These added edges will also have
weight 1, and will be added using preferential strengthening. The value of β and η can be small
when a small amount of inter-community links is desired.

All these graph generative models capture some characteristics that are observed in real trans-
action networks, such as disassortativity, community structure, and preferential attachment. This
makes them interesting to use for generating a transaction network. More generative graph models
exist, but these are left out because they cannot capture the characteristics of transaction net-
works. However, the previously mentioned models are all domain-agnostic, meaning adjustments
may need to be done to be able to model transaction networks.

3.3 Generative Adversarial Networks

Another way to generate synthetic networks is by using Generative Adversarial Networks (GANs),
or other machine learning (ML) techniques. A GAN is a model proposed by Goodfellow et al.
in 2014 [18] which can generate data similar to an input dataset. It uses two neural networks, a
generator and a discriminator, which are trained using adversarial training. The generator tries
to generate data that is similar to the input data. The discriminator tries to discriminate whether
the generated data is real or not. This process continues until the generated data cannot be
distinguished anymore from real data. In this section two of these models are covered, which
are able to generate unweighted, undirected networks, but can be extended to generate weighted,
directed networks. More of these models exist; for an overview of models we refer to the survey
of Guo and Zhao [20].

Bojchevski et al. [11] created NetGAN, which they claim to be ‘the first implicit generative
model for graphs able to mimic real-world networks’. This model learns characteristics of the
network by learning the distribution of random walks over the graph. The main goal is to generate
a realistic graph, which is a generalization of the input graph. The model is claimed to be an
implicit model and to be able to consistently capture all the important graph characteristics.
However, NetGAN is computationally expensive, which limits the maximum number of nodes
that can be generated; generating more than a few thousand nodes gets time-consuming [31].

The CELL model [42] is inspired by NetGAN, but computationally more efficient. The authors
found that the generalizability of the NetGAN model does not lie in the GAN architecture, making
it possible to remove this part of the model, and making it less complex. They generate a highly
simplified version, which is still able to obtain similar results as NetGAN, but much faster, and
easier to adapt.

In a thesis written by Erik Lundin [31], the CELL model and NetGAN model are evaluated.
Both of the models are created to only generate undirected and unweighted networks. In the thesis
the CELL model is chosen to be extended to be compatible with weighted and directed networks.

As Lundin mentions, GANs and other generative models that use machine learning techniques
can be useful for generating synthetic data, and evaluating the used model. In for example
image generation, these are very convenient, as humans can tell whether an image looks natural.
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However, in graphs this is not the case, making it a hard task to evaluate a model. If a model is
built to mimic the input graph, and tested whether it indeed mimics the input graph, one might
ask the question whether we are still generating a synthetic graph.

Further, synthetic data generated by GANs and ML models can be more susceptible to at-
tackers. Because this data is generated using real data, criminals may attempt to find the real
data back from the synthetic data. Fu et al. [17] describe two types of attackers in their re-
view of methods for generating privacy-preserving graph data with graph-based AI models: active
and passive attackers. These attackers have two main goals according to [6]: they want to know
whether edges exist between two target nodes, and they want to find the true identities of the
users. Active attackers embed structures in the graph before publication to identify victims, by
locating the embedded structures in the synthetic graph. These active attackers need access to the
original graph and their operations are usually computationally costly. Passive attackers on the
other hand use the assumption that entities in graphs belong to a unique, small identifiable graph.
They observe the published graph to identify victims, and only use minimal external information
about the nodes in the network. With this little information they are still able to identify victims,
according to [6]. Methods exist to preserve privacy in ML models [17], but when not using real
data at all, e.g. in graph-based models, this risk will be minimized.

3.4 Synthetic Data Generation in Finance

In finance, researchers have worked on generating synthetic financial networks. Most of this
research was done for AML purposes. As previously mentioned, these networks are often weighted
and directed, where the weights represent the amount or volume of the transaction, and the
direction corresponds to the direction in which the money is transferred. In this section an
overview of this research is given.

3.4.1 Agent-Based Synthetic Data

Generating synthetic data can be done by generating intelligent agents that represent financial
entities. These agents can generate transactions following a certain behavior pattern that matches
the real-world. In this section an overview of the most popular agent-based simulators for gener-
ating transaction data is given.

The payment simulator (Paysim) [30] is a simulator that generates mobile money transactions
based on an original dataset which contains logs of a mobile money service from an African coun-
try. The model contains different entities: clients, which can make transactions, and merchants,
which can accept payments from clients. Clients can make transactions with other clients or with
merchants. Different transaction types are taken into account. The simulator was able to generate
synthetic data that is similar to real data; however no network properties are considered in this
model.

AMLSim [55, 50] is a data simulator that simulates data for anti money laundering purposes.
This data is generated in two steps. First, the model generates a graph via NetworkX based on
a given degree distribution. Then, the model generates transactions via PaySim, based on the
given transaction distributions and dynamics which are observed in real data. Finally, money
laundering patterns are injected in the network, resulting in a labelled dataset that can be used
to train or test money laundering detection models.

Altman et al. [4] generated synthetic data based on AMLSim. They created a synthetic
financial transaction generator that builds a multi-agent virtual world. In this world, some agents
are criminals, which have illegitimate income to launder. When comparing AMLSim to AML-
World, AML-World shows to model a much richer set of characteristics. AML-world models for
example multiple currencies, where AMLSim does not. Also it models not only transfers, but also
payments, credits, etc. This all makes that the model is able to generate very realistic datasets,
containing perfectly labelled data.

However, as the authors of AML-World mention in the Future Work section, agent-based
models can be instable. Making minor parameter tweaks can result in significant changes in
the synthetic data. They mention that graph-based approaches can therefore be an interesting
research avenue.
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3.4.2 Graph-Based Synthetic Networks

Grishin et al. created a model that is able to generate large synthetic payment graphs [19].
Their graph contains transactions between three different client types: companies, clients and
ATMs. Their generator first creates the entities, based on a hardcoded distribution, which contains
averaged parameters. After that, the edges are created, which represents whether two nodes have
had a transaction between them. This was done by taking a probability distribution of the node
type connections; client-client, client-company, etc. These probabilities can be configured using
generator parameters. This method was chosen to speed up the generating process. Finally, the
transactions were added to the network, which were random.

The researchers injected three money laundering patterns in their graph, and made their
project publicly available. The size of the graph can be customized. However, no validation was
done to evaluate the quality of this generator.

Tian et al. [51] introduce a synthetic data generation method that utilizes transaction meta-
data, statistics, and domain expertise to produce extensive payment network data. They consider
the application of their synthetic payment generator in the context of real-time payment (RTP)
networks. The generator is claimed to be highly adaptable, offering configuration options, and
claimed to go beyond simulating regular transactions by incorporating diverse and realistic fraud-
ulent activities and money laundering patterns.

They generate three transaction graphs: a graph for legitimate transactions, a graph for fraud-
ulent transactions, and graph for money laundering transactions. These three are then combined
to obtain the final synthetic graph. The transaction graphs are generated by first creating a
weighted undirected base graph with fixed number of nodes and average node degree, and after
that the dynamic legitimate graph is generated by sampling randomly from the base-graph. Mul-
tiple legitimate Barabasi-Albert (BA) graphs are generated, but other graphs can be used as well
if the user desires. In this way, the desired clustering coefficient can be reached. Finally, fraud
and money laundering patterns are generated and injected in the legitimate network to obtain
the RTP network. Unfortunately, it is not known what transactional data is used, nor what the
weights in the base graph represent, making the research irreproducible.

Validation of the RTP network generator is challenging, as no real dataset can be used for
comparison. For this reason, the authors came up with two creative ways of validating their gen-
erator using node embeddings. They first visualized the node embeddings using the t-Distributed
Stochastic Neighbor Embedding (t-SNE) method [53] and showed that similar accounts are close
to each other in 2D space. Second, they built an unsupervised ML model (an auto-encoder) to de-
tect fraud and demonstrated that the performance of this model increases when node embeddings
are used as features for training.

3.4.3 Other Synthetic Transaction Datasets

In this section, we’ll provide an overview of alternative approaches to generating financial transac-
tion data. These techniques are not graph-based or agent-based, but are still noteworthy, although
they all need real data for generating synthetic data.

Panigrahi et al. [40] propose a novel approach for credit card fraud detection. Their system was
tested by generating synthetic data, using a synthetic data simulator. This simulator consists of
three components: a Markov modulated poisson process module (MMPPM) for the timestamps of
the transactions, a Genuine Gaussian distribution module (GGDM) for the transactions of genuine
customers, and a Fraud Gaussian distribution module (FGDM) for the fraudulent transactions.
Both Gaussian distribution modules have their own parameters for the mean µ and standard
deviation σ. The authors did not validate their generated data.

Ul Haq et al. [21] also wrote a paper about generating synthetic transaction datasets for
fraud detection, using a technique they refer to as innovative. This technique is claimed to allow
generating synthetic datasets of any size, replicating characteristics of actual fraud data and
therefore supporting fraud detection research. The technique generates characteristic measures
using Ripple Down Rules (RDR) ruleset (an approach to knowledge acquisition), classification, and
probability distribution. This approach leads to data with similar characteristics as the reference
data.
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This synthetic data was validated in terms of classification accuracy using C4.5, RDR, Näıve
Bayes and RandomForest classification techniques. Further, instance-based learning classification
techniques were used for classification accuracy, as these use similarity functions to classify the
instances to nearest neighbor instances. Empirical evaluation showed a high level of accuracy,
meaning the generated data was very similar to the reference data. The reference data was an
obfuscated dataset of 1775 banking transactions.

Jensen et al. [22] created a synthetic dataset to benchmark anti-money laundering (AML)
methods, synthAML. Real data from a Danish bank was used to generate this synthetic dataset.
The Danish bank data contains 16 million transactions, and 20.000 AML alerts, and consists of two
tables, one with alerts and one with transactions. The authors captured the dependencies between
these tables by using the SDV library [41], which employs conditional parameter aggregation. This
resulted in an extended alert table, which holds all conditional parameters. A Gaussian copula
process is then applied to the extended table, resulting in a probabilistic model which accounts for
covariance between the original alert features, and the conditional distribution parameters of the
associated transactions. This way, an observation can be simulated by sampling an observation
from the extended alert table, and use this to simulate the associated transactions. The authors
validated their synthetic data in two ways. First, they compared the distribution of the synthetic
data with the real data. Second, they used ML experiments to measure the performance of these
models on synthetic data. Then, the model was used on real data, to see how it performs in the
real world. As a baseline comparison, the authors trained and tested the model using only the
real data.

3.4.4 Summary

Multiple methods exist to generate synthetic data in finance. A promising method is agent-based
modelling. However, this method can be unstable, which is undesirable. Graph-based approaches
may solve this problem, making them an interesting research topic. Other approaches exist, but
these require real datasets, while in this research we aim to generate data without real data.
Therefore, we focus on graph-based approaches.
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4 Model

In this section, the model developed to generate a synthetic transaction dataset is described,
focusing on an intrabank network. The model is an evolutionary model for graphs. At every time
step, there can be densification (adding edges) or growth (adding a node and the corresponding
number of edges). The model works with node-types. This means each node is assigned a node-
type at birth, which comes with certain properties. For example, a matrix H determines which
node-types can connect to other node-types. With this matrix, the probability of generating an
edge from a given node-type to another can be calculated. Further, we have a matrix N with
specifies the number of incoming and outgoing edges of a node-type generated at birth. When a
node is created, and a node-type is chosen to connect to, the specific node with this node-type
will be chosen preferentially. At the end of each time-step, b weights are distributed uniformly
at random to existing edges. The model can be found on https://github.com/kariekanarie/

graph_model.

4.1 Model components

We developed a model that is capable of generating directed networks, here the parameters of the
model are described.

• p is the probability of generating a node. (1− p) is the probability of doing a densification
step.

• r is the number of node-types

• q ∈ (R+)r a vector of size r where entry qi is the probability of generating a node of type
i ∈ {0, .., r}. The entries of q satisfy the condition

∑
qi = 1.

• din and dout is the number of added incoming and outgoing edges during the densification
step.

• H ∈ (R+)r×r

With the non-negative arbitrary real elements Hij . Hij are suitably chosen constants that
establish the probability of generating edges between the given node-types. If we generate an
outgoing edge for a node of type i, we consider row i of the matrix to calculate the probability
to which type it will connect. For incoming edges we consider column i. Calculating for
example the probability of choosing node-type j given node-type k when generating an
outgoing edge k → j can be calculated by:

Hkj∑r
i=1 Hki

(1)

We assume that the sum of items in Hki is not equal to zero.

• N ∈ (N)r×2

The new node matrix, with non-negative integer elements Nij . Each node type is assigned
a specific number of incoming and outgoing edges that it will generate at birth. The first
column represents the number of incoming edges, while the second column represents the
number of outgoing edges.

• b is the number of times a weight of 1 is added to an existing edge in each time-step.

4.2 Model execution

We start with a seed graph, containing 5 nodes which are fully connected in both directions. At
each iteration, the following steps are performed:

• With probability p a new node joins the network. This node is assigned a type c according to
q, and receives Nc0 incoming and Nc1 outgoing edges. For each edge, the type of the source
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or target node is determined by calculating the probabilities using H. For an incoming edge
from nodes of type j, this probability is found by calculating for k ∈ [0, · · · , r]

Hkj∑r
i=1 Hij

(2)

We assume that the sum of items in Hij is not equal to zero, and choose type k using these
probabilities. For an outgoing edge we can calculate the probabilities using equation 1 for
j ∈ [0, · · · , r]. A node of the chosen type is then selected to connect with according to degree
preferential attachment.

• With probability 1 − p, din random nodes are uniformly chosen that get an incoming edge
among these for which Ni0 > 0 and dout random nodes are chosen that will get an outgoing
edge among these for which Ni1 > 0. The chosen node will connect to a node-type by using
the probabilities which can be calculated by Equation 1 (for outgoing) and Equation 2 (for
incoming). When this node-type is chosen, the endpoint of the edge will be chosen using
degree preferential attachment. If an edge already exists between the selected nodes, no new
edge is added.

• Finally, b edges are chosen uniformly at random (with possible repetitions), and the weight
of each edge will be increased by 1.

4.3 Degree distribution

We now analyze the resulting degree distribution of the networks generated by the described
model. Since our model produces directed networks, we distinguish between in-degree and out-
degree distributions. The degree distribution is investigated by analyzing the expected rate at
which node i of type c that is already in the network acquires new edges. Acquiring edges can
happen in two cases:

1. During a network growth step, where a node i′ is added to the network whose edges might
connect to node i.

2. During a densification step, where edges are added to the network and node i may be chosen
randomly or preferentially.

We differentiate between these two cases.

4.3.1 Network growth

Since all nodes are given incoming and outgoing degrees at birth as specified by N , our analysis
focuses on the in-degree and out-degree that existing nodes receive when new nodes are added to
the network.

Let us consider timestep t, when a node with type c′ is born. Since it forms Nc′0 incoming and
Nc′1 outgoing edges, all the other nodes in the network have a probability of receiving out-degree
and in-degree respectively.

Given c′ as the type of the new node, the probability of this node connecting to a node of a
type c can be written based on Equations 1 and 2. The probability of the new node connecting
to a particular node i of type c is then based on the degree of node i:

Πc
in,i =

kcin,i(t)∑
j k

c
in,j(t)

, Πc
out,i =

kcout,i(t)∑
j k

c
out,j(t)

(3)

Furthermore, the matrix N defines how many incoming and outgoing edges the new node forms,
given its type c′. Putting these together, we obtain the probability of a node i of type c to receive
an in-coming edge upon the birth of a node of type c′:

Bc
in,i =

(
r∑

c′=1

Nc′0 · qc′ ·
Hc′c∑r
l=1 Hc′l

)
Πc

in,i (4)
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Similarly, node i’s probability of receiving a point of out-degree is:

Bc
out,i =

(
r∑

c′=1

Nc′1 · qc′ ·
Hcc′∑r
l=1 Hlc′

)
Πc

out,i (5)

4.3.2 Densification

During densification, din nodes are chosen uniformly at random that receive an incoming edge,
and dout that will get an outgoing edge. The endpoints of these edges are chosen preferentially.
For a node i of type c, getting an incoming edge can happen in two different ways: during in-
densification and during out-densification. For in-densification, the probability of node i being
chosen depends on the number of nodes in the network that can receive an incoming edge at
timestep t: ∑

c′:Nc′0 ̸=0

nc′(t) (6)

where nc′(t) refers to the number of nodes of type c′ at timestep t. Then the probability of picking
node i is:

1∑
c′:Nc′0 ̸=0 nc′(t)

(7)

For out-densification, the probability that a node of type c is chosen to be the endpoint of an
outgoing edge depends on H and the number of nodes that can get an outgoing edge. This can
be calculated by:

∑
c′:Nc′1 ̸=0

(
nc′(t)∑

c′′:Nc′′1 ̸=0 nc′′(t)
· Hc′c∑r

l=1 Hc′l

)
(8)

Which is the sum over all types c′ that can generate an outgoing edge during densification, for
each c′ the probability of being picked during densification, multiplied with the probability of
generating an edge from a node of type c′ to a node of type c.

The probability that a node of type c gets an outgoing edge can be calculated similarly. The
probability of generating an outgoing edge for node i of type c during out-densification is:

1∑
c′:Nc′1 ̸=0 nc′(t)

(9)

The probability that a node of type c gets an outgoing edge during in-densification is:

∑
c′:Nc′0 ̸=0

(
nc′(t)∑

c′′:Nc′′0 ̸=0 nc′′(t)
· Hcc′∑r

l=1 Hlc′

)
(10)

The expected rate at which a node i acquires incoming edges during densification can then be
obtained by:

Dc
in,i = din · 1∑

c′:Nc′0 ̸=0 nc′(t)
+ dout ·

∑
c′:Nc′1 ̸=0

(
nc′∑

c′′:Nc′′1 ̸=0 nc′′
· Hc′c∑r

l=1 Hc′l

)
Π(kcin,i) (11)

The expected rate at which a node i acquires outgoing edges during densification can be obtained
similarly, by:

Dc
out,i = dout ·

1∑
c′:Nc′1 ̸=0 nc′(t)

+ din ·
∑

c′:Nc′0 ̸=0

(
nc′∑

c′′:Nc′′0 ̸=0 nc′′
· Hcc′∑r

l=1 Hlc′

)
Π(kcout,i) (12)
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By combining Equations 4 and 11 the expected rate of acquiring incoming edges can be found,
and similarly for outgoing edges by combining 5 and 12. The expected rate at which node i of
type c acquires incoming edges can be calculated by:

dkcin,i
dt

= p · Bc
in,i + (1− p) · Dc

in,i (13)

And the expected rate of acquiring outgoing edges can be calculated by:

dkcout,i
dt

= p · Bc
out,i + (1− p) · Dc

out,i (14)

The number of edges grows proportionally with the number of iterations. We therefore hy-
pothesize the degree distributions for in- and out-degree to be power-laws, as its expected rate of
acquiring edges is similar to adding internal links of BA [3], which can be power-law distributed,
or exponentially, depending on the parameters.

4.4 Weight distribution

In our model, the weights are added randomly each iteration. At each iteration, in expectation

m = p

(
r∑

i=1

qiNi0 + qiNi1

)
+ (1− p)(din + dout)

edges are added. At each time step, b weights are added to the existing edges, with equal proba-
bility. Suppose at time t = 1 we add m edges and b weights. These edges will all get a weight of
b
m in expectation. Then, at time t = 2, again b weights are distributed among the existing edges,

meaning the m new edges will get weight b
2m and the edges that were generated at time t = 1

will have b
m + b

2m weight in expectation. When continuing this process, at time i, m edges are

generated that will get weight b
im . The expected weight of these m edges at time t will be

w
(t)
i =

b

im
+

b

(i+ 1)m
+ . . .+

b

tm

=
b

m

(
1

i
+

1

i+ 1
+ . . .+

1

t

)
This can be simplified using the approximation that

∑r
k=1

1
k = ln(n) + γ, which results in:

w
(t)
i =

b

m

(
ln

(
t

i

))
Edges that have an expected number of received weight less than w at time t then satisfy:

w
(t)
i =

b

m

(
ln

(
t

i

))
< w

These edges are born at time i ≥ t, such that:

i > te−
wm
b

The fraction of edges that have an expected weight less than w at time t, or the cumulative weight
distribution, is:

F (w) =
t− te−

wm
b

t

=1− e−
wm
b

We know that F (x) = 1− e−λx is the cumulative distribution of a distribution λe−λx, meaning

pw =
m

b
e−

wm
b
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which is an exponential degree distribution. We thus hypothesize that the weights in our model
follow an exponential distribution. Note that in this proof we assumed that m is a constant, while
in reality it is not; m depends on probabilities such as p and q, meaning we cannot be sure whether
the weights will follow an exponential distribution. Also, we assume that the added weights are
as per the expectation (this is a mean-field approximation).

4.5 Relation to BA

Our model generalizes the BA model [2] using some specific parameter setting. Only one type
of node is needed, meaning r = 1. We do not consider directions, meaning we only need a value
for the number of edges generated at birth: N00 = m. p = 1, to ensure no densification occurs.
Finally, b = 0 to generate an unweighted network. This parameter setting will yield BA graphs.
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5 Simulations

5.1 Model Parameters

This section analyzes, through simulations, how the parameters influence the properties of the
resulting network. Using a fixed parameter setting, each parameter is analyzed individually to
observe its effect. Although a complete parameter search would be more informative, this strategy
was not chosen due to time constraints and to maintain clarity. Each parameter is analyzed over a
specified range, and a graph is generated 15 times with 10,000 iterations. The mean and standard
deviation are calculated for the analysis. The base settings that were used can be seen in Table
1. For simplicity, three node types were utilized: ’collectors’, which have only incoming edges;
’distributors’, which have only outgoing edges; and ’hybrid’ nodes, which have both incoming and
outgoing edges.

Parameter Value

r 3
p 0.5
t 10000
din 2
dout 2

H

0 10 1000
0 0 0
0 500 2500


q (0.4, 0.3, 0.3)

N

 0 1
1 0
1 1


b 100

Table 1: Parameter Values Used in the Model

Creating a network with these parameters yields the metric values presented in Table 2. The
clustering coefficient is low. Both degree and strength assortativity are also low, with slightly
negative values. Overall, our metrics exhibit low standard deviations, indicating model stability.
However, this stability does not extend to the power-law distribution of the in-degree, which
shows a high standard deviation and a coefficient of variation (CV) of 64%. This suggests that
the in-degree power-law of the model is unstable under the current parameter settings. A possible
explanation will be provided in Section 5.2.

Metric Value

Clustering Coefficient (CC) 0.0383 ± 0.0035
Assortativity (s) -0.0209 ± 0.0083
Assortativity (d) -0.1494 ± 0.0071
In-degree Power Law Exponent 2.7298 ± 1.7383
Out-degree Power Law Exponent 2.4676 ± 0.0289
Density 0.0010 ± 3.39E-05
Nodes 4995 ± 42.3
Edges 25559 ± 173.8

Table 2: Metrics for base parameters

5.1.1 Parameter p

For the parameter p, the values [0.1, 0.3, 0.5, 0.7, 0.9] were investigated.
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Hypothesis 1.1 Increasing p will result in lower clustering coefficient and density.

The results of increasing the value of p can be found in Table 3. We increased p
from 0.1 to 0.9 and see that that the clustering coefficient indeed decreases from 0.33
(p = 0.1) to 0.0098 (p = 0.9), as well as the density, which decreases from 0.023 to
0.0002 for p = 0.1 and p = 0.9 respectively. Our hypothesis is thus supported by the
results.

It is expected that as the value of p increases, the network will grow larger because
more nodes will be generated. Consequently, this would result in a lower clustering
coefficient and density, because there will be less densification steps.

Hypothesis 1.2 A higher value of p will yield higher degree assortativity.

The results can be found in Table 3. We observe that increasing the value of p indeed
yields higher degree assortativity, supporting our hypothesis.

As mentioned, a high value of p will yield a lower number of densification steps.
The strongly connected nodes will be less strongly connected with fewer densifica-
tion steps, resulting in higher degree assortativity. While the assortativity remains
negative, it is less negative than when performing many densification steps.

During the parameter analysis, the means and standard deviations of the graph metrics were
calculated. An unexpected observation is the exceptionally large standard deviation in the power-
law exponent for the in-degree distribution at low values of p. Interestingly, this is not the case
for out-degree power-law. The values are shown in Table 4. An explanation of this outcome can
be found in Section 5.2.

p CC Density Assort. (s) Assort. (d) Nodes Edges

0.1 0.3333 ± 0.0188 0.0231 ± 0.0013 -0.0594 ± 0.0302 -0.3378 ± 0.0206 1011.7 ± 40.6 28830.3 ± 173.2
0.3 0.0977 ± 0.0061 0.0032 ± 0.0001 -0.0416 ± 0.0150 -0.2198 ± 0.0164 3027.6 ± 57.9 25558.5 ± 129.9
0.5 0.0401 ± 0.0034 0.0010 ± 0.00002 -0.0377 ± 0.0100 -0.1768 ± 0.0099 4993.3 ± 40.6 20752.7 ± 119.4
0.7 0.0197 ± 0.0020 0.0004 ± 0.000008 -0.0573 ± 0.0061 -0.1530 ± 0.0123 7007.7 ± 37.0 18234.1 ± 113.3
0.9 0.0098 ± 0.0010 0.0002 ± 0.000002 -0.0647 ± 0.0101 -0.1028 ± 0.0064 8999.1 ± 37.0 15640.5 ± 107.6

Table 3: Clustering coefficient, density, strength assortativity, and degree assortativity statistics
for different values of p

p Power-law Exp in Power-law Exp out Nodes Edges

0.1 11.21 ± 8.43 2.20 ± 0.081 1011.7 ± 40.6 28830.3 ± 173.2
0.3 4.02 ± 3.85 2.27 ± 0.032 3027.6 ± 57.9 25558.5 ± 129.9
0.5 3.40 ± 2.64 2.44 ± 0.030 4993.3 ± 40.6 20752.7 ± 119.4
0.7 2.80 ± 0.54 2.72 ± 0.063 7007.7 ± 37.0 18234.1 ± 113.3
0.9 2.88 ± 0.24 2.76 ± 0.183 8999.1 ± 37.0 15640.5 ± 107.6

Table 4: Power-law exponent statistics for in-degree and out-degree for different values of p

5.1.2 Parameter din and dout

The values for din and dout were chosen from the range [1, 3, 5] for both parameters.

Hypothesis 2.1 High values for d will increase the network density and clustering coefficient.

For this simulation, values of 1, 3 or 5 were used for din and dout, all combinations
were investigated. The results of this analysis can be seen in Table 5, showing that
when high values are used, such as 3 and 5, clustering coefficient and density are
higher than when using lower values. Thus, the results support our hypothesis.

An explanation for this result is that generating more edges during densification is
expected to yield higher network density and clustering coefficient.
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Hypothesis 2.2 The cumulative degree distribution is influenced by din and dout values. Generating
more outgoing edges than incoming edges leads to a higher maximum in-degree, and
vice versa.

Figures 2 and 3 illustrate the cumulative degree distributions for different d values.
Here, different combinations of din and dout are plotted to investigate the effect on
the cumulative degree distribution. We observe an effect of these different parameter
settings on the cumulative degree distribution, supporting our hypothesis. If din = 1
and dout = 5, we observe a higher maximum in-degree, and if din = 5 and dout = 1,
we observe a higher maximum out-degree.

During densification, if more outgoing than incoming edges are generated, the in-
degree will reach higher maximum values than the out-degree. This phenomenon
arises due to preferential attachment: the more outgoing edges generated, the stronger
the nodes with incoming edges will be, which results in a higher maximum in-degree.
When the values are equal (see Figure 2), the out-degree has a slightly higher max-
imum value than the in-degree. This is likely caused by the lower proportion of
collector (30%) and hybrid (30%) nodes, compared to distributor nodes (40%). Dur-
ing densification, if an edge already exists between two nodes, no new edge is added.
Since there are more opportunities to generate an edge during out-densification, it is
less likely that no edge is added compared to in-densification, which may result in a
lower maximum in-degree.

din dout CC Assort (s) Density Assort (d) Nodes Edges

1 1 0.0278 ± 0.0032 -0.0554 ± 0.0141 0.00065 ± 1.36E-05 -0.1642 ± 0.0143 5007.5 ± 46.1 16209.9 ± 51.3
1 3 0.0305 ± 0.0019 0.0144 ± 0.0094 0.0010 ± 3.06E-05 -0.1468 ± 0.0086 5024.3 ± 52.7 25426.4 ± 171.7
1 5 0.0361 ± 0.0021 0.0592 ± 0.0075 0.0014 ± 4.05E-05 -0.0986 ± 0.0117 5019.1 ± 46.6 33818.7 ± 289.8
3 1 0.0527 ± 0.0035 -0.0569 ± 0.0090 0.0010 ± 2.04E-05 -0.1647 ± 0.0066 5003.1 ± 53.3 24933.1 ± 164.2
3 3 0.0502 ± 0.0035 -0.0346 ± 0.0113 0.0014 ± 3.21E-05 -0.1889 ± 0.0100 4996.7 ± 41.4 34243.3 ± 195.7
3 5 0.0516 ± 0.0030 -0.0060 ± 0.0122 0.0017 ± 3.20E-05 -0.1827 ± 0.0081 5003.6 ± 38.0 42491.2 ± 375.7
5 1 0.0707 ± 0.0043 -0.0525 ± 0.0076 0.0013 ± 3.38E-05 -0.1506 ± 0.0099 4986.7 ± 49.8 31854.3 ± 328.4
5 3 0.0613 ± 0.0040 -0.0419 ± 0.0090 0.0016 ± 5.11E-05 -0.1876 ± 0.0095 5016.5 ± 45.7 41545.3 ± 234.3
5 5 0.0626 ± 0.0027 -0.0287 ± 0.0105 0.0020 ± 5.98E-05 -0.2011 ± 0.0113 5009.4 ± 64.7 50167.4 ± 334.8

Table 5: Statistics for various combinations of d values

Figure 2: Cumulative degree distribution where din, dout = 1
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(a) Cumulative degree distribution where din =
1 and dout = 5

(b) Cumulative degree distribution where din =
5 and dout = 1

Figure 3: Cumulative degree distributions for different Dpi and Dpo values.

For degree assortativity, we observe that when more edges are generated during densification,
assortativity decreases (Table 5). As explained in the previous paragraph, performing more den-
sification steps yields lower assortativity because the highly connected nodes become even more
connected, thereby lowering assortativity.

5.1.3 Parameter q

For the parameter q, the following ratios were investigated:

(0.2, 0.2, 0.6), (0.2, 0.6, 0.2), (0.2, 0.4, 0.4),

(0.4, 0.3, 0.3), (0.6, 0.2, 0.2), (0.8, 0.1, 0.1).

Hypothesis 3.1 The ratios used for node-types will yield similar node-type ratios in the generated
graph.

Observations of the node types for different parameter settings confirm this expecta-
tion, indicating that the parameter works as intended. We find for each run a total
of approximately p · t = 0.5 · 10000 = 5000 nodes, and each type occurs according to
the probabilities that were specified in q.

Hypothesis 3.2 The bow-tie structure aligns with the ratios of the parameter. The ratio of hybrid
nodes will be similar to the ratio of nodes in the SCC, the ratio of distributor nodes
with the ratio of nodes in IN and collector nodes with the ratio of OUT.

The resulting bow-tie ratios when analyzing this parameter can be seen in Table 6.
These results support our hypothesis, as the ratios of distributor, collector and hyrid
nodes align with the ratios of IN, OUT and SCC components respectively. However,
they do not completely align, because of the definition of bow-tie, and the matrix H.
A hybrid node can also be a TUBE, and if a distributor only connects to collector
nodes, it can be an OUTTENDRIL, or an INTENDRIL. Further, hybrid nodes can
also be part of the IN or OUT component.

We assume that the bow-tie structure aligns with the ratios of the parameter. Here,
SCC would be similar to a group of hybrid nodes. If we would only generate hybrid
nodes and no other types, we can prove by induction that this yields an SCC.
Base case: In our model, the base-graph G is a fully connected directed network,
which is an SCC.
Induction hypothesis: Assume after k iterations, Gk is a strongly connected compo-
nent.
Induction step: We need to prove that after k + 1 iterations the graph Gk+1 also is
an SCC. Let v be the node that is added to Gk. Let u be the node that gets an
incoming edge from v, e.g. v → u and let w be the node that gives an outgoing edge
to v, e.g. w → v. Then, for each node x ∈ Gk, we know it can be reached by v,
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because v can reach u, which can reach x. For each node y ∈ Gk we know that y
can reach v, because y can reach w, which can reach u. Since every node in Gk+1 is
reachable from every other node in Gk+1, we conclude that Gk+1 is an SCC.

Further, IN refers to distributor nodes and OUT to collector nodes, as nodes in the
IN component have edges to the SCC, and nodes in OUT component receive edges
from the SCC.

Hypothesis 3.3 Generating more distributor or collector nodes yields higher clustering and lower
degree assortativity.

The results of the assortativity and clustering coefficient during the parameter anal-
ysis can be found in Table 7. We observe that when the ratio of hybrid nodes is lower
than the ratio of either distributors, collectors or both, we observe higher clustering
and lower degree assortativity compared to the case where the ratio of hybrids is
higher than the other types. Our results therefore support this hypothesis.

When generating more distributor or collector nodes, these nodes are likely to connect
to hybrid nodes at birth. This happens because low-degree nodes (distributors and
collectors) connect to high-degree nodes (hybrids), increasing the degree of the hybrid
nodes. If more distributors and collectors are generated, these nodes are more likely
to be picked during densification. Densification randomly selects nodes and connects
them preferentially. For example, when more distributor nodes exist, these are more
likely to be chosen during out-densification. This node will then likely connect to a
hybrid node, due to H. As these distributor nodes gain more edges to hybrid nodes,
the clustering coefficient will increase, because more triangles will be closed.

d c h SCC IN OUT TUBES INTEN OUTTEN OTH

0.2 0.2 0.6 0.53 0.24 0.22 0.0055 0.0022 0.0012 0
0.2 0.6 0.2 0.18 0.22 0.60 0.0014 0.0032 0.00020 0
0.2 0.4 0.4 0.35 0.24 0.40 0.0048 0.0038 0.0012 0
0.4 0.3 0.3 0.27 0.42 0.30 0.0024 0.0012 0.0012 0
0.6 0.2 0.2 0.17 0.62 0.21 0.0028 0.0018 0.0012 0
0.8 0.1 0.1 0.087 0.81 0.10 0.00080 0.00020 0.0032 0

Table 6: Bow-tie components for different values of q, d refers to distributor nodes, c to collectors
and h to hybrids.

d c h CC Assort (s) Assort (d) Density Nodes Edges

0.2 0.2 0.6 0.0150 ± 0.0012 0.1002 ± 0.0154 0.0314 ± 0.0061 0.0011 ± 0.0000 5020.1 ± 49.9 27332.7 ± 122.8
0.2 0.6 0.2 0.0916 ± 0.0074 -0.1169 ± 0.0106 -0.2920 ± 0.0127 0.0010 ± 0.0000 4977.7 ± 59.4 24642.3 ± 217.7
0.2 0.4 0.4 0.0305 ± 0.0032 0.0312 ± 0.0089 -0.0949 ± 0.0122 0.0011 ± 0.0000 5004.8 ± 53.0 26156.8 ± 117.2
0.4 0.3 0.3 0.0396 ± 0.0036 -0.0407 ± 0.0109 -0.1791 ± 0.0111 0.0010 ± 0.0000 4995.3 ± 58.9 25559.6 ± 183.9
0.6 0.2 0.2 0.0653 ± 0.0045 -0.1144 ± 0.0144 -0.2614 ± 0.0162 0.0010 ± 0.0000 5004.0 ± 49.0 24567.8 ± 166.7
0.8 0.1 0.1 0.1442 ± 0.0100 -0.1798 ± 0.0151 -0.3341 ± 0.0280 0.0009 ± 0.0000 5001.1 ± 60.4 22675.7 ± 257.6

Table 7: Metric values for different values of q
d refers to distributor nodes, c to collectors and h to hybrids.

5.1.4 Parameter H

The values of H were also examined. Initially, we explored the impact of generating a single node
type. To construct a network, this type had to be a hybrid; otherwise, the edges wouldn’t connect.
Thus, we also modified the parameter q accordingly, ensuring that only hybrid nodes could be
generated. Next, we investigate the effect of generating two types: hybrids and distributors, and
hybrids and collectors. Once again, adjusting q to generate these type of networks. In both cases,
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the probability of generating each type was set to 0.5. Finally we also generate networks which
contain all three types. The different ratios that were used were: 0 1 1

0 0 0
0 1 1

 ,

 0 0 1
0 0 0
0 1 2

 ,

 0 2 1
0 0 0
0 1 1


The results can be seen in Table 8, and 9 here, h represents hybrid nodes, d distributors and c
collectors.

Hypothesis 4.1 Generating only hybrid nodes yields one big strongly connected component (SCC),
and thus only one bow-tie component (SCC).

The bow-tie ratios found were: (SCC: 1.0, IN: 0, OUT: 0, TUBES: 0, INTENDRILS:
0, OUTTENDRILS: 0, OTH: 0), supporting the hypothesis.

When generating only hybrid nodes, all nodes will get an in- and out-degree, meaning
we generate one big SCC, and thus only one bow-tie component (SCC), as proven in
Hypothesis 3.2 .

Hypothesis 4.2 Generating only hybrid nodes yields higher clustering coefficient, density and degree
assortativity compared to generating more types.

Table 8 presents the results. We observe that the clustering- and degree assortativity
coefficient indeed decrease when generating multiple types of nodes. However, the
decrease in density is only marginal.

When we generate only one type of node, receiving one incoming and one outgo-
ing edge, is generated, we expect higher network density and clustering coefficients
compared to scenarios where multiple types of nodes are generated. Additionally,
degree assortativity tends to be higher when there is only one node type as similar
nodes are more likely to connect. However, assortativity is not extremely high due
to preferential attachment.

Hypothesis 4.3 When generating three types of nodes, with a high probability of connecting to
highly interconnected hybrid nodes, degree assortativity will be low, and clustering
coefficient high.

The results of the three different matrices used to investigate the effect of different
ratios of connections between types can be seen in Table 9. In the first matrix, these
ratios are all equal, meaning there is no preference generating edges between types.
In the second matrix, the probability of connecting to a hybrid node is higher than
to other types. In the third matrix, the probability is higher that distributor nodes
connect with collector nodes and vice versa. We observe that the second matrix has
the highest clustering coefficient, and the lowest assortativity, compared to the other
cases. Thus, our hypothesis is supported by the results.

As explained in the previous paragraph, this occurs because when collectors and
distributors are likely to connect to hybrid nodes, the existing dense connections
among hybrid nodes are reinforced. Then, the assortativity will be low and clustering
will be high.

Hypothesis 4.4 The bow-tie corresponding to the third matrix contains many INTENDRILS and
OUTTENDRILS.

The found ratios of the bow-tie structure is: (SCC: 0.21, IN: 0.32, OUT: 0.24,
TUBES: 0.020, INTENDRILS: 0.093, OUTTENDRILS: 0.12, OTH: 0). We observe
a higher ratio of INTENDRILS and OUTTENDRILS compared to other bow-tie
structures measured in this research. In the analysis of parameter q, the highest
ratios of INTENDRILS and OUTTENDRILS found were both 0.0032.

In the third matrix, distributor nodes have high probability of connecting to collector
nodes, and collector nodes have high probability of connecting to distributor nodes.
This results in a significant presence of INTENDRILS, attributed to collector nodes,
and OUTTENDRILS, attributed to distributor nodes.
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Types CC Assort (s) Assort (d) Density Nodes Edges

only h 0.1213 ± 0.0037 0.1448 ± 0.0077 0.0858 ± 0.0047 0.0012 ± 2.54E-05 5034.7 ± 62.1 29567.1 ± 113.9
d and h 0.0135 ± 0.0011 0.1106 ± 0.0113 0.0472 ± 0.0186 0.0011 ± 3.29E-05 5007.7 ± 56.9 26857.0 ± 122.4
c and h 0.0242 ± 0.0024 0.0902 ± 0.0065 0.0160 ± 0.0077 0.0011 ± 2.82E-05 5011.1 ± 30.3 26752.0 ± 85.6
d, c and h 0.0118 ± 0.0014 0.0851 ± 0.0172 0.0174 ± 0.0119 0.0010 ± 2.74E-05 4990.9 ± 45.8 25755.0 ± 135.3

Table 8: Metric values for different values of H, h refers to hybrid nodes, d to distributors and c
to collectors.

H CC Assort (s) Assort (d) Nodes Edges 0 1 1

0 0 0

0 1 1

 0.0118 ± 0.0014 0.0851 ± 0.0172 0.0174 ± 0.0119 4990.9 ± 45.8 25755.0 ± 135.3

 0 0 1

0 0 0

0 1 2

 0.0325 ± 0.0024 -0.0344 ± 0.0106 -0.1676 ± 0.0123 5028.3 ± 46.6 25396.0 ± 168.8

 0 2 1

0 0 0

0 1 1

 0.0098 ± 0.0011 0.0502 ± 0.0205 -0.0157 ± 0.0098 4998.8 ± 55.2 25683.4 ± 146.9

Table 9: Metric values for different values of H

5.1.5 Parameter N

For the parameter that defines the number of edges a new node with given type gets, the following
values were investigated:

Case 1: Case 2: Case 3: Case 4: Case 5: 0 1
1 0
1 1

  0 2
2 0
1 1

  0 5
1 0
1 1

  0 1
5 0
1 1

  0 1
1 0
5 5


Hypothesis 5.1 Clustering increases when distributor and/or collector nodes generate more edges at

birth than hybrid nodes.

In cases 2, 3 and 4, the distributor and/or collector node generate more edges at
birth than hybrids. In Table 10 the results are presented. We observe that the
clustering coefficients are higher in case 2, 3 and 4 compared to 1 and 5, supporting
our hypothesis.

When distributor or collector nodes generate more edges at birth, the clustering
coefficient will increase. These node-types are likely to connect to hybrid nodes,
which are highly inter-connected. When these nodes generate more than 1 edge at
birth, and connect to hybrid nodes, the probability is relatively high that these hybrid
nodes are connected to each other, increasing the probability of closing a triangle.
On average, more triangles will be closed, resulting in higher clustering.

Hypothesis 5.2 Degree assortativity decreases when distributor and/or collector nodes generate more
edges at birth than the other node types.

Again, cases 2, 3 and 4 test this hypothesis. In Table 10 we observe that assortativity
indeed is lower than in case 5, supporting our hypothesis, but not significantly when
compared to case 1. Our hypothesis is therefore only partially supported.

When distributor or collector nodes generate more edges at birth, they tend to con-
nect preferentially to high-degree hybrid nodes. This preferential attachment in-
creases the degree of hybrid nodes even further, thereby lowering the assortativity of
the network.
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Case CC Density Assort. (s) Assort. (d) Nodes Edges

1 0.0413 ± 0.0037 0.0010 ± 2.85E-05 -0.0421 ± 0.0142 -0.185930 ± 0.016961 5000.3 ± 55.4 25494.9 ± 127.7
2 0.0588 ± 0.0042 0.0011 ± 2.59E-05 -0.0789 ± 0.0102 -0.204053 ± 0.010924 5011.9 ± 55.7 26963.5 ± 147.1
3 0.0806 ± 0.0077 0.0011 ± 2.42E-05 -0.1087 ± 0.0145 -0.198579 ± 0.017363 5012.1 ± 49.8 27920.9 ± 171.7
4 0.0567 ± 0.0041 0.0011 ± 2.59E-05 -0.0706 ± 0.0106 -0.197355 ± 0.009546 5000.4 ± 52.0 27593.3 ± 119.7
5 0.0280 ± 0.0020 0.0012 ± 2.00E-05 0.0342 ± 0.0099 -0.079377 ± 0.009885 5027.5 ± 47.9 29568.9 ± 104.8

Table 10: Metrics for different values of N with standard deviations

Figure 4: Edge weight distribution for b = 1000

5.1.6 Parameter b

For b, values were investigated in the range [10, 100, 1000, 10000].

Hypothesis 6.1 b does not significantly affect the network metrics, except for strength values and the
weight distribution.

This can be explained by weights being added at the end of an iteration. They do
not influence preferential attachment, as it is based on degree and not strength. The
results support this hypothesis. Figure 4 illustrates the distribution of weights for
b = 1000.

5.1.7 Combined parameters

Certain parameters yield interesting results when they are combined. For instance, experimenting
with different values for H alongside q can produce interesting results. As observed in the previous
paragraphs, the clustering coefficients of the graphs that were generated typically lie around 0.05.

Hypothesis 7.1 Generating a small proportion of hybrid nodes while allowing hybrid nodes to have
high connectivity results in a high clustering coefficient and low assortativity.

For H the following value was taken: 0 0 1
0 0 0
0 1 1000


For q = (0.495, 0.495, 0.01), the results demonstrate a high clustering coefficient of
0.22 (std 0.02). Additionally, we observed a negative degree assortativity, -0,64 (std
0.05), which is the most negative value obtained so far (see Table 11). Thus, the
results support our hypothesis. This indicates that generating nodes that are not
hybrid and connecting them to hybrid nodes, which themselves are highly intercon-
nected, leads to high clustering and low assortativity. The observed bow-tie ratio of
this configuration is: (SCC: 0.091, IN: 0.44, OUT: 0.46, TUBES: 0, INTENDRILS:
0, OUTTENDRILS: 0, OTH: 0).
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Hypothesis 7.2 If we generate more nodes that are either distributors or collectors, the clustering
coefficient will be higher than in Hypothesis 7.1 .

The same parameter setting was applied for H, but q was varied to investigate the
effect on generating a higher proportion of distributor or collector nodes. We use:
(0.9, 0.05, 0.05), and (0.05, 0.9, 0.05). The results for clustering and assortativity can
be found in Table 11. As expected, the clustering coefficient values increased with
these parameter settings, influenced by the densification process described previously.
Interestingly, we also observed an increase in degree assortativity for these configu-
rations. This unexpected result can be attributed to the more balanced distribution
of nodes among types. There will be a lower difference in densification when distrib-
utors or collectors contain the same amount of nodes as the hybrid group. There will
be no favour in densification for this type of node, resulting in more interconnected
hybrid nodes compared to the first parameter setting.

d c h CC Assort (s) Assort (d) Nodes Edges

0.495 0.495 0.01 0.2225 ± 0.0207 -0.5999 ± 0.0612 -0.6449 ± 0.0552 5018.5 ± 59.9 12916.2 ± 1499.0
0.9 0.05 0.05 0.3767 ± 0.0273 -0.2381 ± 0.0189 -0.3566 ± 0.0282 5008.1 ± 31.8 18640.1 ± 443.6
0.05 0.9 0.05 0.4246 ± 0.0235 -0.2617 ± 0.0148 -0.4797 ± 0.0202 5005.4 ± 46.2 20091.7 ± 273.5

Table 11: Metrics for different q values combined with H with standard deviations. d refers to
distributor nodes, c to collectors and h to hybrids.

5.2 Stability

In this section, the stability of the model will be analyzed through examination of the standard
deviations of metrics across various parameter ranges. Additionally, the impact on metrics will
be assessed as networks grown bigger.

For the parameter p, we observe low CV values when the value of p is higher than 0.5. Con-
versely, for values of 0.5 and lower, we note high CV values for strength assortativity and power-law
exponents of the in-degree. This variability can be attributed to the generation of smaller networks,
where weights can be distributed in various ways, leading to differences in strength assortativity.
Additionally, we observe that smaller graphs exhibit high power-law exponents for in-degree with
significant standard deviations. This unexpected finding may be attributed to our densification
mechanism. In our base settings, the probability of generating a distributor node is higher than
that of generating a collector or hybrid node. During densification, edges are only added between
nodes if no edge already exists. When there are few nodes capable of receiving incoming edges
and existing nodes are already well-connected due to preferential attachment, it is possible that
no edges are added during densification because the chosen nodes are already connected. This
could explain the observed high power-law exponents and their variability.

We observe high standard deviations for strength assortativity across all parameters, likely
attributable to the random distribution of weights.

For H we observe a high standard deviation in degree assortativity when generating three
types using the matrix  0 1 1

0 0 0
0 1 1


This matrix implies no preference in generating an edge between two node types; instead, the
type of endpoint for the edge is chosen uniformly at random. The node chosen from this type
follows preferential attachment principles. However, using this matrix results in higher variability
in assortativity compared to matrices where certain node types are favored over others.

Further, we generated larger networks with 100,000 and 200,000 iterations to investigate the
effect on the network metrics when growing bigger networks. We used the same base settings as
in the previous section, and measured the same metrics. The results can be found in Table 12.
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Metric 10k iter 100k iter 200k iter

Median in-degree 1 1 1
StdDev in-degree 1, 1 · 101 1.2 · 101 1.2 · 101
Max in-degree 1, 2 · 102 2.1 · 102 2.1 · 102
Min in-degree 0 0 0
Median out-degree 2 2 2
StdDev out-degree 1.4 · 101 1.7 · 101 1.8 · 101
Max out-degree 2.1 · 102 5.4 · 102 6.1 · 102
Min out-degree 0 0 0
CC 2.3 · 10−2 6.8 · 10−3 3.8 · 10−3

Degree Assortativity −1.5 · 10−1 −1.1 · 10−1 −9.5 · 10−2

Edge Density 1.0 · 10−3 1.1 · 10−4 5.3 · 10−5

Power-law in-degr 2,7298 2.43 6.42
Power-law out-degr 2,4676 2.44 2.43
Nodes 4995 50012 99872
Edges 25559 262906 528034

Table 12: Summary of network metrics.

We observe that the strengths of nodes are similar, especially the medians. For the clustering
coefficient of 10k and 100k iterations, we see that it becomes approximately 10 times smaller,
as well as the edge density. The degree assortativity increases slightly. The power-laws for out-
degree are similar, but for in-degree we find a surprising high value when generating a network
with 200,000 iterations. This may be caused by the value of p, as we explained in the beginning
of this section. Low values of p can yield unstable power-law degrees for in-degree.

For 100,000 iterations and 200,000 iterations we generated only one graph, because it takes
significantly longer to generate these large networks. Generating a graph with the base settings
with 10.000 iterations takes approximately 20 seconds, while 100,000 and 200,000 iterations take
45 minutes and 8 hours respectively. We therefore do not know the standard deviations of the
metrics, and thus cannot make conclusions about the stability of the measured metrics, other
than the assumption that they might be similar to the smaller networks with the same parameter
settings.

5.3 Weights

The weights we generate in these graphs follow an exponential distribution, as shown in Section
4.

The Rabobank weights both follow a power-law distribution with exponent α = 1.39 and error
σ = 0.00034. However, generating a power-law weight distribution takes significantly more time
than generating an exponential distribution. To generate a power-law, weights must be added
preferentially to the existing edges, meaning if many weights must be added, the time complexity
increases for large graphs, because probabilities must be recalculated every iteration. For this
reason, we chose to generate the weights randomly, resulting in an exponential distribution.

5.4 Conclusion

The model contains a wide range of parameters. An extensive parameter search might have been
the most informative strategy for analyzing the behavior of our model, but due to time constraints
we chose to take a fixed parameter setting and analyze almost all parameters separately. It
was found that the assortativity coefficients were low, and sometimes slightly negative, meaning
this model can generate networks that are neither assortative, nor disassortative, and slightly
disassortative networks.

We found that less densification steps result in higher assortativity, and vice versa. Further,
we found that generating a higher proportion distributor or collector nodes yield higher clustering
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coefficients, and lower assortativity, because these nodes will be picked more often during densi-
fication. The highest clustering coefficient found was 0.42, but in most cases the CC had a value
around 0.05. Our model is capable of generating bow-tie structures with different distributions of
components. The bow-tie structure can be edited by the parameters H and q.
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6 Use case: Rabobank

In this section, our model generates a synthetic transaction network that will be compared against
a real network. We utilized the Rabobank dataset, which, to our knowledge, is the only publicly
available non-synthetic dataset. This dataset contains 1.6 million nodes and 3.8 million edges.

We conducted clustering analyses on various network characteristics, such as clustering coef-
ficient, in/out degree, in/out strength, and average neighbor in/out degree, to identify different
types of entities (e.g., customers, companies) in the data. The clustering method used was K-
Means, as other clustering algorithms were computationally too complex. Clear clusters emerged
only when clustering on in- vs. out-degree or in- vs. out-strength. It was found that a large
group (approximately 900,000 nodes) had an in-degree of zero, while a smaller, yet still significant
group (around 300,000 nodes) had an out-degree of zero. The remaining nodes had both in- and
out-degrees greater than zero. This pattern arises because the dataset only includes transactions
within Rabobank and not with other banks, and because it is a sample of real data. While these
clusters do not refer to specific entities, they will be used as node categories for the model.

Moving forward, we categorize nodes the same way as in Section 5.

6.1 Rabobank Dataset

In this section, metrics from the Rabobank network will be analyzed to identify suitable parameter
settings for generating similar networks using our model. A parameter search was conducted to
determine the settings that produce a graph most resembling the Rabobank dataset. The model
was fitted on density, degree assortativity, clustering coefficient and degree power-law exponents.
The results of this parameter search can be found in Table 17 presented in the Appendix. For the
Rabobank network, the metrics can be seen in Table 13.

Metric Rabobank Unweighted

Median In Strength 0 0
StdDev In Strength 4.1 · 103 3.3 · 101
Max In Strength 5.0 · 106 2.0 · 104
Min In Strength 0 0
Median Out Strength 1 1
StdDev Out Strength 2.9 · 103 2.0 · 101
Max Out Strength 3.1 · 106 1.3 · 104
Min Out Strength 0 0
CC - 1.7 · 10−2

Assortativity −5.1 · 10−3 -0.024397
Edge Density - 1.0 · 10−6

Power-law in-degr - 3.3
Power-law out-degr - 4.3
Nodes 1622173 -
Edges 3821514 -

Table 13: Rabobank metrics.

Observe that the median out-degree and strength are both 1, while the median in-degree and
strength are both 0. In other words, the median node transacts with one account only once.
Because of this phenomenon, the value of N01 was chosen to be 1. Similarly, for N10, we also
selected a value of 1, as indicated by the degree distribution shown in Figure 8, which reveals
a significant number of nodes with an out-degree of 0 and an in-degree of 1. For N20 and N21,
values of 5 and 1 were investigated.

Additionally, note that the power-law exponent for in-degree is smaller than the exponent for
out-degree. This indicates that the in-degree values are more distributed, meaning the power-law
function has a longer tail. p was investigated for values higher than 0.5 to obtain a stable power-
law. Further, the network is neither assortative, nor disassortative, and that the assortativity
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coefficient is slightly negative. The clustering coefficient is low, as is the density. Because of this
low density, p was investigated for the range of [0.7, 0.8, 0.9]. din and dout were investigated for
the range of [1, 2, 5, 10].

When investigating different types that occur in the Rabobank data, we observe the following
matrix with the number of edges between different types: 0 8624 1224003

0 0 0
0 457620 2435032


This matrix was used as H, so similar ratios would be generated in the networks. Further, when
looking at the occurrence of types, we find the following ratios: distributors: 0.58, collectors: 0.20,
hybrids: 0.22. These ratios are used for q.

When investigating these parameters and the metric values of density, assortativity, clustering
coefficient and power-law exponents, it was found that the values of parameters resulted in the
best fit were the values shown in Table 14.

Parameter Value

r 3
p 0.9
t 100000, 200000
din 2
dout 2

H

0 8624 1224003
0 0 0
0 457620 2435032


q (0.58, 0.20, 0.22)

N

 0 1
1 0
5 5


b 30

Table 14: Parameter values used for generating a synthetic Rabobank network

6.2 Analysis

In this section, the parameter settings that resulted in the best fit were used to grow two larger
graphs, one of size 100,000 and one of size 200,000. These will be compared to the Rabobank
network.
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Metric Rabobank Unw. 100k Unw. 200k Unw.

Median In Strength 0 0 0 0 0 0
StdDev In Strength 4.1 · 103 3.3 · 101 1.69 · 102 6.29 · 100 1.73 · 102 6.35 · 100
Max In Strength 5.0 · 106 2.0 · 104 9.38 · 103 2.62 · 102 1.35 · 104 3.45 · 102
Min In Strength 0 0 0 0 0 0
Median Out Strength 1 1 9 1 9 1
StdDev Out Strength 2.9 · 103 2.0 · 101 8.41 · 101 3.65 · 100 8.56 · 101 3.73 · 100
Max Out Strength 3.1 · 106 1.3 · 104 1.90 · 103 1.20 · 102 2.23 · 103 1.68 · 102
Min Out Strength 0 0 0 0 0 0
CC − 1.7 · 10−2 − 5.0 · 10−3 − 5.8 · 10−3

Assortativity −5.1 · 10−3 −2.4 · 10−2 −5.5 · 10−2 2.1 · 10−2 1.8 · 10−2 −5.0 · 10−2

Edge Density − 1.0 · 10−6 − 2.5 · 10−5 − 1.3 · 10−5

Power-law in-degr − 3.30 − 3.76 − 3.98
Power-law out-degr − 4.31 − 4.07 − 4.25
Nodes 1.62 · 106 − 9.01 · 104 − 1.80 · 105 −
Edges 3.82 · 106 − 2.03 · 105 − 4.05 · 105 −

Table 15: Combined metrics for Rabobank and different iterations

The metrics of our generated networks can be found in table 15. We observe that the median
in- and out-degree for the unweighted variants of the model match the ones found in the Rabobank
network. The median in-degree is 0 and out-degree is 1. Further, we observe that the maximum
in- and out-degree of the Rabobank network are 20,000 and 13,000. In contrast, for our generated
graphs, these values were considerably smaller, ranging between 120 and 345. Moreover, the
maximum in-strength and out-strength in our generated graphs are also notably lower compared
to those in the Rabobank network. This difference may partly stem from the smaller size of our
generated networks compared to the Rabobank network. Furthermore, it is important to note
that the weights in our network follow an exponential distribution, while the Rabobank network
weights follow a power-law distribution.

The in- and out-degree distributions of Rabobank follow a power-law with exponent 3.3 and
4.3 respectively. The power-law for out-degree of our 100,000 iterations network was close to the
one observed in Rabobank, and with a value of 3.76 slightly higher. The out-degree was 4.07
which is slightly lower. For 200,000 iterations we find a very similar power-law for out-degree,
α = 4.25, but the value for in-degree was further off, and too high: α = 3.98.

The clustering coefficients in our generated networks are low when comparing to Rabobank.
Our networks both showed a clustering coefficient of around 0.005, where the one in Rabobank is
0.017.

The assortativity in Rabobank is close to zero, but slightly negative. The value for unweighted
assortativity was -0.024, and weighted assortativity was -0.0051. In our generated networks we
find for unweighted networks a value of 0.021 (100k) and -0.050 (200k), and for weighted -0.055
(100k), and 0.018 (200k). Comparing the weighted assortativity might not be informative, as
the weights in our network are distributed randomly. The unweighted assortativity for 200,000
iterations was close to the assortativity observed in the Rabobank network.

Finally, the edge density of Rabobank was 0.000001. In our networks, this was equal to
0.000025 (100k) and 0.000013 (200k). The density in our generated graphs is higher than the
density observed in Rabobank. However, the Rabobank graph is larger, which means that when
our generated graphs would grow larger with the same parameter settings, the value for density
might be more similar to the Rabobank value.

When investigating the different node-types that occur in the Rabobank data, we find the
following matrix:  0 8624 1224003

0 0 0
0 457620 2435032



34



Our generated networks showed the following matrices of edges between types:0 960 93684
0 0 0
0 40752 67721

 ,

0 2895 280448
0 0 0
0 122816 202187


When calculating the ratios for generating an outgoing edge, we find for Rabobank the following
matrix:  0 0.007 0.993

0 0 0
0 0.16 0.84


For our generated networks we find the following for 100k and 200k respectively:0 0.01 0.99

0 0 0
0 0.38 0.62

 ,

0 0.01 0.99
0 0 0
0 0.38 0.62


We observe that for distributor nodes the ratios are similar, but for hybrid nodes the ratios differ.
When calculating the ratios for generating an incoming edge, we find for Rabobank the following
matrix:  0 0.18 0.33

0 0 0
0 0.82 0.67


For our generated networks we find the following for 100k and 200k respectively:0 0.02 0.58

0 0 0
0 0.98 0.42

 ,

0 0.02 0.58
0 0 0
0 0.98 0.42


The ratios for incoming edges in our generated networks are different than the ones found in
the Rabobank, especially for hybrid nodes. This is likely due to the densification step, where
nodes from node-types are picked uniformly at random to generate edges. When picking nodes
randomly, node-types that occur more often are in this case more likely to be picked. This way,
the distributor nodes will be chosen more often during out-densification.

The bow-tie of Rabobank has the following structure: (SCC: 361816, IN: 928280, OUT: 322426,
TUBES: 20, INTENDRILS: 1973, OUTTENDRILS: 7382, OTHER: 276). When turning these
into ratios we find the following: (S: 0.22, IN: 0.57, OUT: 0.20, TUBES: 0.000012, INTENDRILS:
0.0012, OUTTENDRILS: 0.011, OTHER: 0.00017). Our generated network show the following
bow-tie structures for 100k and 200k respectively: (SCC: 0.22, IN: 0.57, OUT: 0.20, TUBES:0,
INTENDRILS: 0.0020, OUTTENDRILS: 0.0024, OTH: 0), and (SCC: 0.22, IN: 0.58, OUT: 0.20,
TUBES: 0, INTENDRILS:0.0018, OUTTENDRILS: 0.0027, OTH: 0). This means the bow-tie
structures of the networks are very similar to the Rabobank network. This is caused by parameters
q and H.

The cumulative in- and out-degree distribution of the Rabobank network can be seen in Figure
5, and for our generated graphs in Figure 6 and 7.

Figure 5: Cumulative in- and out-degree distribution of Rabobank
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Figure 6: t = 100k iterations Figure 7: t = 200k iterations

We observe that the degree distributions have a long tail, indicating a power-law. However,
for the Rabobank network we see that it has a slightly different curve compared to the networks
generated with our model.

For degree correlation a heatmap of Rabobank can be seen in Figure 8, heatmaps of our
generated graphs can be seen in Figure 9 and 10. The Spearman correlation between in- and out-
degree of Rabobank was -0.15. For our generated graphs they were 0.0590 for 100k, and 0.0513
for 200k. In all graphs the correlation is low, but for the Rabobank network the correlation was
slightly negative, while in our generated graphs the correlations were slightly positive.

Figure 8: Heatmap of in- vs out-degree of Rabobank

Figure 9: 100k iterations graph Figure 10: 200k iterations graph

Observe that the ranges in the Rabobank network are bigger, meaning the maximum in- and
out-degrees are higher. This is due to the size of the graphs. We see a similar pattern where low
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degrees occur more often than high degrees, but in the Rabobank network we observe a wider
range of different in- and out-degrees.

The weight distribution of Rabobank can be seen in Figure 11. The weight distribution for
our generated networks can be seen in Figure 12 and 13.

Figure 11: Weight distribution of counts in Rabobank data

Figure 12: Weight distribution in 100k
graph

Figure 13: Weight distribution of 200k iter-
ations graph

When fitting a power-law to the Rabobank weight distribution, we find an α of 1.39, and a
statistic error σ of 0.00034. Our generated weight distribution likely follows an exponential distri-
bution, as mentioned in Section 4. In the figures we see that the weight distribution of Rabobank
decreases more gradually than the weight distribution of our generated graphs, indicating that
Rabobank follows a power-law, and the generated weights follow an exponential.

The outcome of doing Leiden community detection on Rabobank and our generated graphs
can be found in Table 16. The implementation for Leiden community detection is provided by
[43].

Metric Rabobank 100k 200k

Number of communities 165 16 24
Size of the smallest community 4 3645 4657
Size of the largest community 112341 7289 11294
Mean size of the communities 9831.35 5630.50 7501.25
StdDev of community sizes 19493.57 880.11 1668.36
Modularity 0.65 0.66 0.69
Nodes 1.62 · 106 9.01 · 104 1.80 · 105
Edges 3.82 · 106 2.03 · 105 4.05 · 105

Table 16: Community detection results using the Leiden algorithm on Rabobank data and our
synthetic data.
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We observe that the community structures of the generated networks have a similar modularity
as the Rabobank network. However, the community structure of our generated networks do not
align with the Rabobank network. The Rabobank network contains more communities, and also
many small-sized communities. Our generated networks do not contain small-sized communities.
Further investigation is needed to make a good comparison between these community structures.

Figure 14: Nr of communities vs. community size Rabobank graph

Figure 15: 100k iterations Figure 16: 200k iterations

The number of communities versus the community size for the Rabobank network is shown in
Figure 14, and for our generated networks in Figures 15 and 16. We see that the Rabobank network
contains some small sized communities, but that there are also a lot of larger sized communities, of
which the largest contains 112341 nodes. In our generated networks, the number of communities
is lower, and all sizes occur only once.

6.3 Summary

In this section a summary of the comparison between the Rabobank network and our generated
networks is provided.

In the Rabobank network, the median in-degree was 0 and the median out-degree was 1, re-
flecting a network where most nodes have low connectivity. Our generated networks were similar.
However, the Rabobank network had significantly higher maximum in-degrees and out-degrees
compared to our generated networks. Despite this, both networks exhibited power-law distribu-
tions for degree. The Rabobank network had a higher clustering coefficient than our generated
networks. This indicates a higher tendency for nodes to be interconnected compared to our gener-
ated networks. Assortativity was close to zero in Rabobank but slightly negative for unweighted
and for weighted networks. In contrast, our generated networks showed varying assortativity val-
ues which were close to 0, but sometimes slightly positive, and sometimes slightly negative. The
Rabobank network showed a lower edge density than our generated networks, potentially due
to their smaller size. When examining the distribution of edges between different node types,
we found that while distributor node ratios were similar between Rabobank and our networks,
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ratios for hybrid nodes and collector nodes differed, likely due to our densification process. The
bow-tie structure analysis revealed strong similarities between Rabobank and our generated net-
works in terms of SCC, IN, and OUT components, influenced by parameters q and H in our
model. Degree correlation, visualized in heatmaps, showed a slight negative correlation between
in- and out-degree in Rabobank, but slight positive correlations in our generated networks. Weight
distribution analysis indicated that Rabobank’s weights follow a power-law, while our generated
networks likely follow an exponential distribution, reflecting differences in edge weight distribution
patterns. Community detection using the Leiden algorithm highlighted differences in community
structures between Rabobank and our generated networks, with varying community sizes but
similar modularity scores.

Summarizing, while our generated networks captured some aspects of the Rabobank network
metrics, significant differences remain, particularly in extreme degree values, clustering coefficients,
and community structures. These differences stem from variations in network size, edge weight
distribution, and network generation parameters.

39



7 Discussion

7.1 Results

We provided a model that can mimic the bow-tie structure of a given graph. The degree dis-
tribution follows a power-law, and the weight distribution is exponential. The graphs exhibit a
community structure, and are neither assortative nor disassortative. The model produces stable
graphs when the value of p is not lower than 0.5. The model is able to generate power-law expo-
nents for in- and out-degree, and edge density values similar to those of a real financial network.

7.2 Limitations

This research has several limitations, which are discussed in this section.
Firstly, it is important to note that the dataset on which the model is based is a sample of real

data. The Rabobank dataset does not include all transactions between all users of Rabobank over
the given time period. It is unclear how this sample was taken, whether it was a random sample
or not. Furthermore, the dataset was aggregated, which means that some information might have
been lost.

Another limitation is that the weights generated in the model follow an exponential distri-
bution, whereas a power-law distribution was observed in the Rabobank data. Generating a
power-law weight distribution would require adding weights using preferential attachment, but
this becomes computationally complex when dealing with large graphs and large weights. When
weights are added preferentially, the probability of choosing a node must be calculated every
iteration, resulting in higher time-complexity. Therefore, we chose to add the weights randomly.

Additionally, the model has a limitation in that the matrix H does not specify the complete
distribution of edge weights. During densification, a random node is selected from the already
present nodes in the network. If one node type is overrepresented, there is a higher probability that
this node type will be selected during densification, resulting in more edges generated by this node
type, whereas in H the ratio might be different. A potential solution could be to first randomly
select the node type and then randomly select a node from this type during densification, thereby
maintaining the ratio specified in H.

Validating a synthetic graph is challenging. The hierarchical building of metrics and a clear
method to compare two graphs are not well-established. A graph kernel might offer a solution, but
due to time constraints, this was not explored. Comparing the network metrics does not quantify
how good the results actually are. We cannot tell whether our model out-performs state-of-the-art
models, because there no baseline was used to compare with.

Furthermore, the parameter search for the use case was limited due to time constraints. With
more time, a more extensive parameter search could potentially yield better results for our use
case.

Finally, the model only generates intrabank networks based on one dataset from Rabobank.
There is no information available about networks of other banks or about how these intrabank
networks are connected to other intrabank networks

7.3 Future work

Firstly, modelling timestamps using a Poisson process could introduce temporal dynamics to the
generated networks. These timestamps could be valuable for detecting criminal patterns in the
data. Thus, the ability to generate realistic timestamps could be highly beneficial. However,
validating these networks would be challenging due to the absence of realistic datasets containing
timestamps.

Secondly, investigating and developing efficient algorithms for generating power-law weight
distributions would make the model more realistic. Real weights observed in financial graphs
often follow a power-law distribution. By accurately replicating this distribution in synthetic
graphs, the model may better capture the complex dynamics and structural properties of real-
world financial networks. Additionally, it would be interesting to investigate methods for increasing
the clustering coefficient and improving the community structure. In our generated networks the
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clustering coefficient was too low, and the community structures did not align. Methods exist to
generate a community structure, e.g. by generating local world properties [27], [58].

Finally, it would be interesting to investigate more on validating our model. In our research, an
unfitted directed BA model was used which is not a state-of-the-art baseline. It would have been
more informative to compare the generated networks to an agent-based model such as AMLWorld,
or to a more complex graph generative model. Validation of the model may also be improved by
using data from multiple banks or financial institutions to fit our model on. This can ensure
its applicability across different financial networks. Further, investigating the properties of the
bow-tie components of our generated graphs and comparing them to the bow-tie components of
real data might also yield interesting insights about the properties of our generated networks
and whether they are similar to real networks. Finally, an interesting research topic would be
to develop robust methods to compare synthetic graphs with real networks, possibly utilizing
graph kernels or other advanced techniques. It would be also interesting to explore how intrabank
networks connect to each other. This way, one would be able to generate inter-bank networks,
which may be useful for detecting criminal patterns.
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8 Conclusion

In this thesis, we have presented a novel approach to generating weighted, directed, synthetic
transaction networks, focusing on a single bank’s intrabank network, using a graph-based gener-
ative model. Our model is designed to replicate characteristics observed in real-world financial
networks, such as power-law degree distributions, weights, and community structures. The goal
was to create a publicly available, reproducible tool that can generate synthetic financial transac-
tion networks while preserving data privacy. This way, insight could be given into the evolution
of these transaction networks.

We developed a graph generative model that incorporates node types identified through clus-
tering analysis of a real transaction dataset. The model integrates parameters for node generation,
edge densification, and a probability matrix to control the type-based connections within the net-
work. It produces networks with desired structural properties and has been validated against a
large intrabank network dataset from Rabobank.

Through extensive experimentation and analysis, we found that our model can generate syn-
thetic networks that resemble some features of real financial transaction networks. The degree
distribution follows a power-law, the networks are weighted and directed, have similar bow-tie
structures, similar assortativity values, and exhibit a community structure. Our model demon-
strated stable performance over 100,000 iterations or more, with generated networks showing com-
parable metrics to the real dataset in terms of degree distribution, edge density, and community
detection.

Several limitations were identified. The use of a sampled and aggregated dataset limits the
model’s ability to capture the full complexity of real financial networks. Furthermore, the ex-
ponential distribution of weights in the model diverges from the observed power-law distribution
in the real dataset. Future research could focus on improving the weight distribution modeling,
exploring efficient algorithms for power-law distributions, and enhancing the model’s validation
methodologies.

In conclusion, this research provides a valuable contribution to the field of synthetic data gen-
eration for financial networks. The developed model offers a starting point for generating synthetic
transaction networks that can be used for various applications, including training machine learn-
ing models for detecting criminal financial patterns. By making the model publicly available, we
aim to facilitate further research and collaboration in this area.
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[2] Réka Albert and Albert-László Barabási. “Statistical mechanics of complex networks”. In:
Reviews of modern physics 74.1 (2002), p. 47.
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9 Appendix

din dout N p CC Assort. Power-law in Power-law out Density

2 5

 0 1
1 0
1 5

 0.7 0.048 ± 0.005 -0.121 ± 0.007 2.631 ± 0.545 3.311 ± 0.049 0.000621432 ± 1.34E-5

2 5

 0 1
1 0
5 1

 0.7 0.020 ± 0.002 -0.171 ± 0.012 4.617 ± 0.736 2.796 ± 0.036 0.000638583 ± 1.31E-5

5 10

 0 1
1 0
1 5

 0.7 0.049 ± 0.004 -0.174 ± 0.010 2.477 ± 0.734 2.858 ± 0.091 0.000924358 ± 9.27E-5

5 10

 0 1
1 0
5 1

 0.7 0.031 ± 0.003 -0.200 ± 0.010 3.472 ± 2.186 2.557 ± 0.085 0.000870968 ± 1.07E-4

2 5

 0 1
1 0
1 5

 0.8 0.044 ± 0.006 -0.112 ± 0.010 2.354 ± 0.229 3.375 ± 0.096 0.000395355 ± 8.39E-6

2 5

 0 1
1 0
5 1

 0.8 0.015 ± 0.002 -0.165 ± 0.012 5.166 ± 1.556 2.861 ± 0.107 0.000411186 ± 7.15E-6

5 10

 0 1
1 0
1 5

 0.8 0.041 ± 0.003 -0.140 ± 0.011 2.392 ± 0.383 3.014 ± 0.096 0.000567444 ± 4.18E-5

5 10

 0 1
1 0
5 1

 0.8 0.021 ± 0.002 -0.183 ± 0.010 5.269 ± 1.795 2.674 ± 0.028 0.000545256 ± 5.37E-5

2 2

 0 1
1 0
5 5

 0.9 0.014 ± 0.001 -0.090 ± 0.010 3.505 ± 0.461 4.309 ± 0.961 0.000249084 ± 3.01E-6

2 2

 0 1
1 0
5 5

 0.8 0.013 ± 0.002 -0.092 ± 0.012 3.124 ± 0.577 3.023 ± 0.263 0.000351121 ± 5.06E10
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Table 17: Data table for parameter tuning for use-case
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