
LeanWasm: An Intrinsically-Typed Interpreter

for WebAssembly

MSc Thesis

Alex Ionescu

a.a.ionescu@uu.nl

Student number 0792918

July 10th, 2024

1st supervisor: Dr. Marco Vassena

2nd supervisor: Dr. Wouter Swierstra

Department of Computer Science

Faculty of Science

mailto:<email>

LeanWasm: An Intrinsically-Typed Interpreter for
WebAssembly

Alex Ionescu
Utrecht University
a.a.ionescu@uu.nl

Abstract

WebAssembly is a new low-level programming language and portable bytecode format designed with
the goal of increasing interoperability and security across the software ecosystem.

In order to ensure correctness and adherence to the official specification, some WebAssembly
implementations use formally verified interpreters as testing oracles. This thesis explores a novel
approach to defining verified interpreters, by using an intrinsically-typed representation of the

WebAssembly abstract syntax.

The main contributions of this thesis include an intrinsically-typed WebAssembly interpreter that
closely follows the official reference interpreter, and an optimized interpreter based on an improved
representation of control-flow. The interpreters are implemented in the Lean 4 theorem prover,

leveraging its support for dependent typing and functional-but-in-place programming.

Contents
1. Introduction ... 2
2. Background .. 3

2.1. WebAssembly ... 3
2.1.1. Type system ... 3
2.1.2. Semantics .. 5
2.1.3. Reference interpreter ... 8

2.2. Dependently-typed programming ... 8
2.2.1. Theorem proving ... 9
2.2.2. Lean 4 .. 9

2.3. Interpreters for programming languages .. 10
2.3.1. Untyped interpreters .. 10
2.3.2. Intrinsically-typed interpreters ... 12

3. An intrinsically-typed interpreter for WebAssembly .. 14
3.1. Syntax representation .. 14

3.1.1. Types and stacks ... 14
3.1.2. Instructions .. 15

3.2. Execution .. 21
3.2.1. Contexts and configurations .. 21
3.2.2. Relational interpreter ... 22
3.2.3. Runnable interpreter .. 29
3.2.4. Proving the runnable interpreter correct .. 31

3.3. Optimizing control-flow .. 32
3.3.1. Inefficiencies of labels .. 33
3.3.2. An improved representation of control-flow ... 33
3.3.3. The optimized interpreter ... 33
3.3.4. Proving correctness of the optimization ... 36

1

4. Related work .. 37
5. Limitations and future work .. 38
6. Conclusion ... 38
Bibliography ... 38

Appendix
A Organization of the source code ... 40

1. Introduction
WebAssembly (or Wasm for short) [1] is a new low-level programming language and portable
bytecode format designed with the goal of increasing interoperability and security across the software
ecosystem. While initially intended for the Web, its usage has since expanded into a wide range of
domains, including IoT, containerization, and even blockchains.

WebAssembly is primarily intended as a compilation target for higher-level programming languages
(such as C++, Rust, and Haskell), serving as a common binary format that can be executed on multiple
platforms. Its official specification [2] is published by the World Wide Web Consortium, together with
a reference interpreter, and there are a large number of independent third-party implementations,
ranging from Web browser engines such as V8 and SpiderMonkey to standalone execution engines
such as Wasmtime [3], Wasmer [4], and Wizard [5].

An important aspect when designing WebAssembly implementations is ensuring and verifying their
correctness. Concretely, this means verifying that the implementation (be it an interpreter, just-
in-time compiler or ahead-of-time compiler) follows the official WebAssembly specification. While
most implementations rely on Wasm’s official test suite [6] for this purpose, implementations that
want stronger guarantees make use of formal verification techniques to ensure adherence to the
specification. An example of this is Wasmtime [3], a widely-used WebAssembly engine that uses the
formally-verified WasmRef [7] interpreter as a fuzzing oracle.

However, an approach to verification that has not been attempted by prior WebAssembly
implementations is that of an intrinsically-typed interpreter [8], that is, an interpreter that uses the host
language’s dependent typing facilities to encode the type system of WebAssembly in its definition of
the abstract syntax. This approach makes it impossible to construct the syntax trees of ill-typed Wasm
programs, thus alleviating the need for separate type-safety proofs, and allows for the definition of an
interpreter that is correct-by-construction.

In this thesis, we implement two intrinsically-typed WebAssembly interpreters: One that closely
follows the official reference interpreter, and then an optimized version of it, based on an improved
representation of control-flow. We provide both relational and functional implementations for each
interpreter, and (partial) soundness proofs attesting their equivalence. We also discuss a soundness
proof for attesting the correctness of the control-flow optimizations.

The interpreters and proofs are implemented in the Lean 4 theorem prover [9], leveraging its support
for dependent typing and functional-but-in-place programming.

The full source code for the LeanWasm project is available on GitHub [10], and the organization of the
source code is described in Appendix A.

2

2. Background
2.1. WebAssembly
WebAssembly has some distinct properties that are not present in other similar binary formats and
low-level languages:
• Type-safety: WebAssembly is a stack-based language, and all instructions are assigned a type that

encodes their usage of the stack. Before execution, Wasm programs go through a validation phase
that rejects ill-typed programs.

• Memory-safety: Wasm programs cannot access arbitrary memory addresses, they can only access
buffers that are explicitly shared by their execution host (operating system, browser etc.). Moreover,
all memory operations in Wasm employ dynamic in-bounds checks, preventing corruption of the
host’s memory.

• Structured control-flow: WebAssembly does not include an arbitrary jump or goto instruction.
Instead, programs in WebAssembly are structured into functions with type-checked signatures, and
lexically-scoped block and loop instructions are used for local control-flow within each function.

This section describes the parts of the WebAssembly specification that are most relevant to this thesis,
based on the official specification [2] and on the work of Haas et al. [1].

2.1.1. Type system
The types that WebAssembly values and instructions are allowed to take are defined by its type system.
This section gives an overview of Wasm’s type system, highlighting the aspects that are most relevant
to this thesis.

Types
Value types describe the types of individual values that WebAssembly programs compute. Result types
describe the results of executing instructions and functions, and are represented as sequences of value
types. Function types classify the signatures of Wasm instructions and functions, consisting of a pair
of result types, representing the inputs and outputs of the function or instruction. The grammar for
value and function types is given in Figure 1 below.

𝑣𝑎𝑙𝑡𝑦𝑝𝑒 ⩴ 𝗂𝟥𝟤
| 𝗂𝟨𝟦
| 𝖿𝟥𝟤
| 𝖿𝟨𝟦

𝑟𝑒𝑠𝑢𝑙𝑡𝑡𝑦𝑝𝑒 ⩴ 𝑣𝑎𝑙𝑡𝑦𝑝𝑒∗

𝑓𝑢𝑛𝑐𝑡𝑦𝑝𝑒 ⩴ 𝑟𝑒𝑠𝑢𝑙𝑡𝑡𝑦𝑝𝑒 → 𝑟𝑒𝑠𝑢𝑙𝑡𝑡𝑦𝑝𝑒

Figure 1: Grammar of WebAssembly types.

Instructions
Instructions are typed with function types, which encode each instruction’s inputs (what types it
expects to find on the stack before executing) as well as its outputs (what types it leaves on the stack
after executing). Typing judgements for instructions include a context 𝐶 that stores type information
about various Wasm components such as local and global variables, labels, and functions. Figure 2
provides a simplified definition of contexts, and Figure 3 shows the typing rules for a few illustrative
Wasm instructions.

𝐶 ⩴ { 𝗅𝗈𝖼𝖺𝗅𝗌 𝑣𝑎𝑙𝑡𝑦𝑝𝑒∗, 𝗅𝖺𝖻𝖾𝗅𝗌 𝑟𝑒𝑠𝑢𝑙𝑡𝑡𝑦𝑝𝑒∗, 𝖿𝗎𝗇𝖼𝗌 𝑓𝑢𝑛𝑐𝑡𝑦𝑝𝑒∗, … }
Figure 2: Grammar for typing contexts.

3

T-add
𝐶 ⊢ 𝑡.𝗮𝗱𝗱 : 𝑡 𝑡 → 𝑡

T-const
𝐶 ⊢ 𝑡.𝗰𝗼𝗻𝘀𝘁 𝑐 : 𝜀 → 𝑡

T-drop
𝐶 ⊢ 𝗱𝗿𝗼𝗽 : 𝑡 → 𝜀

𝐶.𝗅𝗈𝖼𝖺𝗅𝗌(𝑖) = 𝑡 T-get
𝐶 ⊢ 𝗹𝗼𝗰𝗮𝗹.𝗴𝗲𝘁 𝑖 : 𝜀 → 𝑡

𝐶.𝗅𝗈𝖼𝖺𝗅𝗌(𝑖) = 𝑡 T-set
𝐶 ⊢ 𝗹𝗼𝗰𝗮𝗹.𝘀𝗲𝘁 𝑖 : 𝑡 → 𝜀

Figure 3: Typing rules for instructions (illustrative).

In the typing rules above, 𝑡 is a variable that stands in for a value type, and can be instantiated to form
instructions such as i32.add or f64.add.

Instruction sequences
The typing of instruction sequences is defined recursively, as shown in Figure 4.

T-empty
𝐶 ⊢ 𝜀 : 𝜀 → 𝜀

𝐶 ⊢ 𝑒1 : 𝑡∗1 → 𝑡∗2 𝐶 ⊢ 𝑒∗
2 : 𝑡∗2 → 𝑡∗3 T-seq

𝐶 ⊢ 𝑒1𝑒
∗
2 : 𝑡∗1 → 𝑡∗3

Figure 4: Typing rules for instruction sequences.

However, this rule is not sufficient to properly type instruction sequences. To see why, consider the
instruction sequence i32.add i32.add. It’s reasonable to think that its type should be 𝗂𝟥𝟤 𝗂𝟥𝟤 𝗂𝟥𝟤 →

𝗂𝟥𝟤: the first i32.add adds the first 2 values on the stack, summing them into a single value, and the
second i32.add sums the remaining 2 values into one. But the typing rule for instruction sequences
will reject this, as it expects the output of the first instruction to exactly match the input of the second,
which does not hold in this case.

To allow the construction of such instruction sequences, the WebAssembly type system includes a
weakening rule, which allows instructions to be given “larger” types, if both the input and output stack
are extended with the same type sequence 𝑡∗, as shown in Figure 5.

𝐶 ⊢ 𝑒∗ : 𝑡∗1 → 𝑡∗2 T-weaken
𝐶 ⊢ 𝑒∗ : 𝑡∗ 𝑡∗1 → 𝑡∗ 𝑡∗2

Figure 5: The weakening rule.

Control instructions
As previously discussed, one of WebAssembly’s distinguishing features is its support for structured
control-flow. Concretely, there are two structured control instructions, block and loop, which
encapsulate a nested sequence of instructions. Both of these instructions implicitly introduce a label in
the typing contexts of the nested instructions. Labels are used as targets for the branching instructions
br and br_if. The typing rules for control instructions are given below, in Figure 6.

4

𝑡𝑓 = 𝑡𝑛1 → 𝑡𝑚2 𝐶, 𝗅𝖺𝖻𝖾𝗅(𝑡𝑚2) ⊢ 𝑒∗ : 𝑡𝑓 T-block
𝐶 ⊢ 𝗯𝗹𝗼𝗰𝗸 𝑡𝑓 𝑒∗ 𝗲𝗻𝗱 : 𝑡𝑓

𝑡𝑓 = 𝑡𝑛1 → 𝑡𝑚2 𝐶, 𝗅𝖺𝖻𝖾𝗅(𝑡𝑛1) ⊢ 𝑒∗ : 𝑡𝑓 T-loop
𝐶 ⊢ 𝗹𝗼𝗼𝗽 𝑡𝑓 𝑒∗ 𝗲𝗻𝗱 : 𝑡𝑓

𝐶.𝗅𝖺𝖻𝖾𝗅𝗌(𝑖) = 𝑡∗ T-br
𝐶 ⊢ 𝗯𝗿 𝑖 : 𝑡∗1 𝑡

∗ → 𝑡∗2

𝐶.𝗅𝖺𝖻𝖾𝗅𝗌(𝑖) = 𝑡∗ T-br_if
𝐶 ⊢ 𝗯𝗿_𝗶𝗳 𝑖 : 𝑡∗ 𝗂𝟥𝟤 → 𝑡∗

Figure 6: Typing rules for control-flow instructions.

The labels introduced by the block and loop instructions have the following semantics:
• Branching to a block’s label jumps to the end of that block instruction.
• Branching to a loop’s label jumps back to the beginning of that loop instruction. This jump isn’t

performed automatically though: a loop with no br instructions jumping back to it will only execute
once.

The result type associated to each label represents the types that must be on the stack when a jump to
that label is performed. The label introduced by block is typed with the block’s output, since a jump to
that label will continue execution immediately following its end, so the stack must match its output.
Similarly, the label introduced by loop is typed with the loop’s input stack type.

The typing rule for br ensures both that the label 𝑖 is in scope, and that the values at the top of the stack
match the label’s type. An important detail is the additional type list 𝑡∗1, which is meant to capture
the tail (or base) of the stack. This typing rule encodes the fact that when a branch is performed, all
values on the stack beyond those that are included in the label’s type are implicitly discarded. Once a
branch is taken, none of the instructions following it are executed, so its output type is a completely
unconstrained variable 𝑡∗2.

The br_if instruction differs from br in that it branches conditionally, only if the topmost value on the
stack is non-zero. Because it’s possible that a br_if does nothing, its type is more restrictive than br’s:
It doesn’t arbitrarily discard values, and its output type exactly matches its input type.

Labels in Wasm are identified by de Bruijn indices [11], thus the label introduced by the innermost
block or loop has index 0, and labels introduced by successive outer blocks are identified by ascending
indices.

2.1.2. Semantics
The WebAssembly specification also includes a small-step operational semantics describing the
execution of Wasm programs. This section describes the structure of the Wasm abstract machine, and
shows the reduction rules for a few illustrative instructions.

Runtime structure

Store
The store represents the global state that WebAssembly programs operate on. It contains the instances
(runtime representations) of functions, global variables, memories, and other elements. The grammar
for stores is presented below, in Figure 7.

𝑠𝑡𝑜𝑟𝑒 ⩴ { 𝖿𝗎𝗇𝖼𝗌 𝑓𝑢𝑛𝑐𝑖𝑛𝑠𝑡∗, 𝗀𝗅𝗈𝖻𝖺𝗅𝗌 𝑔𝑙𝑜𝑏𝑎𝑙𝑖𝑛𝑠𝑡∗, 𝗆𝖾𝗆𝗌 𝑚𝑒𝑚𝑖𝑛𝑠𝑡∗, … }
Figure 7: Definition of the Wasm store.

5

Call frames
Call frames, or activation frames, store information about a particular function call, such as the values
of its local variables (including arguments), its return arity 𝑛, and a reference to the function’s defining
module instance. Their definition is provided in Figure 8 below.

𝑓𝑟𝑎𝑚𝑒 ⩴ 𝗳𝗿𝗮𝗺𝗲𝑛{𝑓𝑟𝑎𝑚𝑒𝑠𝑡𝑎𝑡𝑒}
𝑓𝑟𝑎𝑚𝑒𝑠𝑡𝑎𝑡𝑒 ⩴ { 𝗅𝗈𝖼𝖺𝗅𝗌 𝑣𝑎𝑙∗, 𝗆𝗈𝖽𝗎𝗅𝖾 𝑚𝑜𝑑𝑢𝑙𝑒𝑖𝑛𝑠𝑡 }

Figure 8: Definition of call frames.

Modules
A module is the unit of encapsulation and distribution for WebAssembly programs. A module instance
is the runtime representation of a module, and contains runtime representations of all entities that are
imported, exported, and defined by the module.

Memory
Each WebAssembly module has access to a linear memory, a contiguous buffer of memory that is
allocated and initialized by the host platform.

The specification simply defines a memory instance (the runtime representation of the memory) to be
a list of bytes, as shown in Figure 9 below.

𝑚𝑒𝑚𝑖𝑛𝑠𝑡 ⩴ 𝑏∗

Figure 9: Definition of linear memory instances.

All accesses to the linear memory are bounds-checked, and an out-of-bound access causes execution
to trap (enter an error state). The size of the memory can also be queried and resized by the Wasm
program during its execution.

Values
WebAssembly programs create and manipulate values of the value types defined in Figure 1. Values
are represented with an abstract syntax that mimics the notation of the const instruction, as shown
in Figure 10.

𝑣𝑎𝑙 ⩴ 𝗂𝟥𝟤.𝗰𝗼𝗻𝘀𝘁 𝑖32
| 𝗂𝟨𝟦.𝗰𝗼𝗻𝘀𝘁 𝑖64
| 𝖿𝟥𝟤.𝗰𝗼𝗻𝘀𝘁 𝑓32
| 𝖿𝟨𝟦.𝗰𝗼𝗻𝘀𝘁 𝑓64

Figure 10: Grammar of WebAssembly values.

Stacks
Even though the operand stack is an important component of WebAssembly execution, it is not
represented as an explicit structure in the Wasm abstract machine. Instead, the stack simply consists
of a sequence of values (const instructions) embedded in the instruction stream.

Execution
The execution of WebAssembly instructions is modeled as a small-step operational semantics. Every
reduction rule specifies one step of execution, and has the following general form:

𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ↪ 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛

A configuration is a syntactic description of an abstract machine state. It is typically a 3-tuple
(𝑆; 𝐹 ; 𝑖𝑛𝑠𝑡𝑟∗) consisting of the current store 𝑆, the call frame 𝐹 of the current function, and a sequence

6

of unexecuted instructions. The store 𝑆 and call frame 𝐹 are omitted from reduction rules that do not
access or modify them.

Basic instructions
Figure 11 shows the reduction rules for a few illustrative WebAssembly instructions.

𝑣𝑎𝑙 𝗱𝗿𝗼𝗽 ↪ 𝜀

(𝗂𝟥𝟤.𝗰𝗼𝗻𝘀𝘁 𝑐1)(𝗂𝟥𝟤.𝗰𝗼𝗻𝘀𝘁 𝑐2) 𝗂𝟥𝟤.𝗮𝗱𝗱 ↪ (𝗂𝟥𝟤.𝗰𝗼𝗻𝘀𝘁 (𝑐1 + 𝑐2))

𝐹 ; (𝗹𝗼𝗰𝗮𝗹.𝗴𝗲𝘁 𝑥) ↪ 𝐹; 𝑣𝑎𝑙 (𝗂𝖿 𝐹 .𝗅𝗈𝖼𝖺𝗅𝗌(𝑥) = 𝑣𝑎𝑙)

𝐹 ; 𝑣𝑎𝑙 (𝗹𝗼𝗰𝗮𝗹.𝘀𝗲𝘁 𝑥) ↪ 𝐹 ′; 𝜀 (𝗂𝖿 𝐹 ′ = 𝐹 𝗐𝗂𝗍𝗁 𝗅𝗈𝖼𝖺𝗅𝗌(𝑥) = 𝑣𝑎𝑙)

Figure 11: Reduction rules for simple Wasm instructions.

In the above reduction rules it can be seen that the Wasm stack is simply embedded in the instruction
stream as a sequence of const instructions. The drop instruction simply discards the value preceding
it, while i32.add sums up its 2 preceding i32 values, producing a single value. The local.get and
local.set instructions refer to the current function’s list of local variables, which is accessed through
the call frame 𝐹 .

Administrative instructions
Control instructions such as block and loop aren’t directly amenable to small-step evaluation. As such,
in order to express their reduction, the specification extends the syntax of instructions with a series
of administrative instructions. These additional instructions are only created as a program is being
executed, and cannot appear in Wasm source code.

The relevant administrative instruction for reducing blocks and loops is label, described by the
following reduction rules:

𝑣𝑎𝑙𝑚 𝗯𝗹𝗼𝗰𝗸 𝑏𝑡 𝑖𝑛𝑠𝑡𝑟∗ 𝗲𝗻𝗱 ↪ 𝗹𝗮𝗯𝗲𝗹𝑛{𝜀} 𝑣𝑎𝑙𝑚 𝑖𝑛𝑠𝑡𝑟∗ 𝗲𝗻𝗱 (𝗂𝖿 𝑏𝑡 = 𝑡𝑚1 → 𝑡𝑛2)

𝑣𝑎𝑙𝑚 𝗹𝗼𝗼𝗽 𝑏𝑡 𝑖𝑛𝑠𝑡𝑟∗ 𝗲𝗻𝗱 ↪ 𝗹𝗮𝗯𝗲𝗹𝑚{𝗹𝗼𝗼𝗽 𝑏𝑡 𝑖𝑛𝑠𝑡𝑟∗ 𝗲𝗻𝗱} 𝑣𝑎𝑙𝑚 𝑖𝑛𝑠𝑡𝑟∗ 𝗲𝗻𝗱 (𝗂𝖿 𝑏𝑡 = 𝑡𝑚1 → 𝑡𝑛2)

Figure 12: Reduction rules for blocks and loops.

Blocks and loops immediately reduce to labels. The instruction sequence surrounded by braces {}

represents the label’s continuation, and it is executed a branch targeting that label is taken. When
reducing a block, the continuation of the resulting label is empty, as branching to a block label simply
jumps past the block. On the other hand, in the case of loops, the continuation stores a copy of the
loop itself, so branching to a loop label will re-execute its body.

The values described as 𝑣𝑎𝑙𝑚 represent the input values of the block or loop, and are captured inside
the generated label instruction.

Label contexts
In order to describe the reduction of branches, the specification defines the following syntax of label
contexts:

𝐵0 ⩴ 𝑣𝑎𝑙∗ [_] 𝑖𝑛𝑠𝑡𝑟∗

𝐵𝑘+1 ⩴ 𝑣𝑎𝑙∗ 𝗹𝗮𝗯𝗲𝗹𝑛{𝑖𝑛𝑠𝑡𝑟∗} 𝗲𝗻𝗱 𝑖𝑛𝑠𝑡𝑟∗

Figure 13: The syntax of label contexts.

A label context 𝐵𝑘 represents a nesting of 𝑘 labels surrounding a hole [_] that marks the location where
the next step of computation is taking place.

7

This definition of label contexts allows for the very reduction of branches to be defined very easily:

𝗹𝗮𝗯𝗲𝗹𝑛{𝑖𝑛𝑠𝑡𝑟∗} 𝐵𝑙[𝑣𝑎𝑙𝑛(𝗯𝗿 𝑙)] 𝗲𝗻𝗱 ↪ 𝑣𝑎𝑙𝑛 𝑖𝑛𝑠𝑡𝑟∗

Figure 14: Reduction rule for br, making use of label contexts.

The reduction rule shown above uses label contexts to very concisely match a branch to the 𝑙-th label
(where 𝑙 is a de Bruijn index) with a context of 𝑙 nested labels, and reduces the entire set of nested
labels to just the continuation of the 𝑙-th label. The branch’s output values, 𝑣𝑎𝑙𝑛, are preserved by this
reduction rule, while all the other values inside the nested label context are discarded.

2.1.3. Reference interpreter
Alongside the Wasm specification, the W3C also publishes a reference interpreter [12] for WebAssembly,
written in OCaml [13].

The goal of the reference interpreter is to approximate an “executable specification” [1, section 7], thus
it is defined in a way that closely matches the semantics presented above. However, its modeling of
Wasm execution differs from the specification in two ways:
• The operand stack is stored as a separate data structure from the instruction stream.
• The reduction of branching instructions is implemented in terms of a new administrative instruction,

called breaking, rather than in terms of nested label contexts.

These differences arise from the fact that the semantics, as defined in the specification, is not
directly executable, due to the interleaving of values and instructions, and the arbitrary matching and
discarding of nested label contexts.

LeanWasm’s unoptimized interpreter closely follows the reference interpreter, and thus differs from
the specification in the same ways.

2.2. Dependently-typed programming
A large number of programming languages use static types to verify the (partial) correctness of
programs before they are compiled or executed. Most type systems can prevent simple errors like
adding a number to a string (e.g. the expression 2 + "a"), while high-level languages such as Haskell
employ advanced type systems that allow programmers to specify more fine-grained invariants in
their programs’ types.

Dependently-typed languages like Agda [14], Coq [15], and Lean [9] take this one step further, allowing
a the types within a program to depend on values. This allows programmers to specify fine-grained
invariants in their programs’ types, thus eliminating large classes of errors. A common example of
such an invariant is encoding the length of a vector in its type, and using this information to restrict
the domains of partial functions such as head and tail, as illustrated by the following Lean example:

inductive Vector (a : Type) : Nat -> Type where
 | nil : Vector a 0
 | cons : a -> Vector a n -> Vector a (n+1)

def head (v : Vector a (n+1)) : a :=
 match v with
 | cons h _ => h

def tail (v : Vector a (n+1)) : Vector a n :=
 match v with
 | cons _ t => t

8

2.2.1. Theorem proving
Using dependently-typed programming languages, we can define types that represent mathematical or
logical propositions such that values of those types correspond to proofs of the respective propositions.
For example, assuming a definition of natural numbers based on the Peano axioms (the Nat type), we
can define the type Lt m n for any natural numbers m and n (using the notational shorthand 0 for zero
and n+1 for succ n):

inductive Nat : Type where
 | zero : Nat
 | succ : Nat -> Nat

inductive Lt : Nat -> Nat -> Type where
 | lt_zero : Lt 0 (n+1)
 | lt_succ : Lt m n -> Lt (m+1) (n+1)

The type Lt m n encodes the proposition 𝑚 < 𝑛, and values of this type (proofs of the proposition)
can be constructed in one of two ways:
• lt_zero asserts that 0 is less than the successor of any natural number (n+1)
• lt_succ asserts that for any natural numbers m and n, given a proof that 𝑚 < 𝑛, we can conclude

that 𝑚 + 1 < 𝑛 + 1.

Using the above definition, we can provide, for example, a proof that 2 < 3, by constructing a value
of type Lt 2 3, such as lt_succ (lt_succ lt_zero). On the other hand, it is impossible to construct
values of the type Lt 4 3, which would correspond to a proof of the (invalid) proposition 4 < 3. In
other words, the type Lt 4 3 is uninhabited.

This association between logical propositions and types is called the Curry-Howard correspondence,
and it covers equivalences between logical introduction forms and type constructors, as summarized
in Table 1:

Logic Programming

Universal quantification (∀) Dependent function type (→)

Existential quantification (∃) Dependent sum type (Σ)

Implication (⇒) Function type (→)

Conjunction (∧) Product type (×)

Disjunction (∨) Sum type (⊎)

True formula (⊤) Unit type ((), ⊤)

False formula (⊥) Empty type (Void, ⊥)

Table 1: Correspondence between logical formulas and types.

Programming languages that support the definition of propositions and proofs are generally referred
to as proof assistants.

2.2.2. Lean 4
Since the aim of this thesis is to implement an intrinsically-typed interpreter, which requires a powerful
type system (as described further in Section 2.3.2), we have chosen Lean 4 as the implementation
language, due to its support for dependent types.

9

2.3. Interpreters for programming languages
Interpretation is a common technique for implementing programming languages. This section
describes the design space of interpreters, focusing on the distinction between untyped and well-typed
interpreters.

For this comparison, we will consider different interpreters for a simple expression-based language
consisting of numeric and boolean constants, addition, less-than comparison, and choice (if-then-else
expressions). The grammar of the language’s types and expressions is shown in Figure 15.

𝖳𝗒𝗉𝖾 𝑡 ⩴ 𝖭𝖺𝗍 natural numbers
| 𝖡𝗈𝗈𝗅 booleans

𝖤𝗑𝗉𝗋 𝑒 ⩴ 𝑛 numeric constant
| 𝑏 boolean constant
| 𝑒 + 𝑒 addition
| 𝑒 < 𝑒 comparison
| 𝗂𝖿 𝑒 𝗍𝗁𝖾𝗇 𝑒 𝖾𝗅𝗌𝖾 𝑒 choice

Figure 15: Grammar of the simple arithmetic language

2.3.1. Untyped interpreters
This section describes a simple, untyped interpreter for the language described above.

Abstract syntax tree
When designing interpreters, operating directly on the interpreted program’s source text, or concrete
syntax, is inefficient, as the concrete syntax includes information that is only relevant for parsing. As
such, it is common practice to convert the source text into a structure that’s easier to process, called
the abstract syntax tree (or AST for short).

To illustrate this, consider the following Lean 4 definition of the type of abstract syntax trees for the
language described in Figure 15:

inductive Expr where
 num : Nat -> Expr
 bool : Bool -> Expr
 add : Expr -> Expr -> Expr
 lt : Expr -> Expr -> Expr
 ifThenElse : Expr -> Expr -> Expr -> Expr

Using the above definition, the program 2 + 3 can be represented by the abstract syntax tree add (num
2) (num 3). ASTs such as the one above are easier and more efficient for interpreters to process and
traverse, as they only encode the abstract syntactic structure of programs, while ignoring irrelevant
information such as whitespace.

Evaluation function
The core of an interpreter is its evaluation function. This function is responsible for traversing the
abstract syntax tree of the program and executing the computations it represents.

The output of the evaluation function is a value, an element of the domain of abstract values that
expressions in the interpreted language reduce to. In the case of the simple arithmetic language
described so far, there are 2 different kinds of values to consider: natural numbers, and booleans. These
are encoded as the following tagged union, or inductive type, in Lean:

inductive Value where
 | vNat : Nat -> Value
 | vBool : Bool -> Value

10

Using this definition, we can define the evaluation function as a (partial) mapping from abstract syntax
trees to values:

def eval (e : Expr) : Option Value :=
 match e with
 | num n => some (vNum n)
 | bool b => some (vBool b)

 | add a b => do
 let a' <- eval a
 let b' <- eval b
 match a', b' with
 | vNum va, vNum vb => just (vNum (va + vb))
 | _, _ => none

 | lt a b => do
 let a' <- eval a
 let b' <- eval b
 match a', b' with
 | vNum va, vNum vb => just (vBool (va < vb))
 | _, _ => none

 | ifThenElse c t f => do
 let c' <- eval c
 match c' with
 | vBool true => eval t
 | vBool false => eval f
 | _ => none

The evaluation function eval takes an expression (a value of Expr type) as input, and produces a Value
as output. To account for the possibility of receiving an invalid program as input (such as the expression
add (num 2) (bool true) that tries to add a number to a boolean), the output must be wrapped in
the Option type.

The eval function performs a pattern-match on its input expression e, thus defining an evaluation
rule for each constructor of the Expr type. In the simple cases, num and bool, which denote constant
expressions, the evaluator simply produces a Value using the appropriate constructor.

The add case, however, is more involved. First, it needs to evaluate the left and right sub-expressions,
and short-circuit evaluation of the whole expression if any of the operands fail to evaluate. To make the
code more readable, we are exploiting the fact that the Option type is a Monad, and making use of Lean’s
do notation. Once both sub-expressions have been evaluated, eval pattern-matches on the resulting
values. If both are numbers (i.e. constructed with the vNum constructor), then evaluation succeeds with
a new value representing the sum of the numbers. However, if either of the values is not a number,
evaluation fails by returning none.

The case for if-expressions is similar to add: It first evaluates the condition expression, and if
its evaluation succeeds and produces a boolean value, it conditionally evaluates one of the sub-
expressions.

Downsides of the untyped representation
• Error-handling: As seen above, the definition of the evaluation function is complicated by the need

to perform error-handling. This is, in turn, required because the abstract syntax only encodes the
syntactic structure of expressions, but allows the construction of semantically invalid programs.

11

• Code maintenance: Most interpreters include a validation or type-checking phase before evaluation
in order to reject incorrect programs before they are executed. However, this doesn’t completely
eliminate the issue, as invalid programs may still end up being passed to eval, either due to bugs in
the type-checker, or due to the type-checker and AST definition going out of sync as the interpreter’s
codebase evolves.

• Value tagging: Another issue imposed by the lack of semantic information in the abstract syntax tree
is that of value tagging. Because the type of the expression to evaluate is not known ahead of time, the
evaluation function has to produce a generic Value as output, even though this doesn’t accurately
represent the expression’s domain: an add or num expression should never produce a vBool value.

2.3.2. Intrinsically-typed interpreters
In order to alleviate the issues described in the previous section, interpreters can be designed
in an intrinsically-typed way [16]. This consists of encoding semantic information about programs
(usually their types) as part of the abstract syntax tree, thus completely eliminating the possibility of
constructing invalid syntax trees.

Abstract syntax tree
In order to augment the interpreter’s abstract syntax tree with semantic information, we index the
type of expressions by their resulting types:

inductive Expr : Type -> Type where
 num : Nat -> Expr Nat
 bool : Bool -> Expr Bool
 add : Expr Nat -> Expr Nat -> Expr Nat
 lt : Expr Nat -> Expr Nat -> Expr Bool
 ifThenElse : Expr Bool -> Expr a -> Expr a -> Expr a

In this updated definition of the syntax tree, each constructor refines the index of its output type to
match the semantics of the language that is being described: num and add construct expressions that
reduce to natural numbers, while bool constructs expressions that reduce to boolean values. Thus, it
is impossible to construct the syntax tree for an expression such as 2 + true: it will lead to a Lean
compilation error.

Evaluation function
Using the type-indexed abstract syntax tree, the eval function can be rewritten to a much more concise
form:

def eval (e : Expr t) : t :=
 match e with
 | num n => n
 | bool b => b

 | add a b => eval a + eval b
 | lt a b => eval a < eval b

 | ifThenElse c t f =>
 match eval c with
 | true => eval t
 | false => eval f

This definition of the evaluation function is much simpler than the previous implementation. Firstly,
there’s no need to tag the resulting values: The extra information encoded in the AST guarantees that
a program of type Expr t evaluates to a value of type t. Secondly, the type indexes also eliminate

12

the need for Option-wrapping, and allow us to define eval in a direct functional style, rather than an
imperative monadic stye.

Restricting the type domain
In the previous definition, the Expr type is indexed by Type, the type of all Lean types. This gives us
maximal flexibility: We could define constructors that make use of the more complex types available
in Lean, such as lists, products, or even dependent types. However, often times the type domain of
the object language (the language that is being interpreted) is much more restricted than the entire
universe of Lean types, and so it is preferred to explicitly restrict the types that are available to
expressions. This is where Lean’s dependent type system shines, allowing us to express this by using
a technique known as “universes à la Tarski” [17], which consists of defining an inductive type that
contains only the types that are part of the object language:

inductive Ty : Type where
 tNat : Ty
 tBool : Ty

The Ty inductive type (named as such to avoid confusion with Lean’s Type) only allows the construction
of two types: natural numbers (through the tNat constructor), and booleans (through tBool). Using it,
we can refine our definition of Expr, replacing the occurrences of Type with Ty, and the concrete Lean
types Nat and Bool with the Ty constructors tNat and tBool:

inductive Expr : Ty -> Type where
 num : Nat -> Expr tNat
 bool : Bool -> Expr tBool
 add : Expr tNat -> Expr tNat -> Expr tNat
 lt : Expr tNat -> Expr tNat -> Expr tBool
 ifThenElse : Expr tBool -> Expr a -> Expr a -> Expr a

However, trying to apply the same transformation to the evaluation function results in a compilation
error:

def eval (e : Expr t) : t := -- Error: type expected, got (t : Ty)
 ...

The issue is that the function’s return type, t, is now no longer a Lean Type, but a piece of data, built
using one of Ty’s constructors.

To solve this, we need to introduce a translation function that maps the types from our restricted
domain into their corresponding Lean types:

def Ty.type (t : Ty) : Type :=
 match t with
 | tNat => Nat
 | tBool => Bool

The Ty.type notation defines the type function as part of the Ty namespace, which allows it to be used
with “field notation”, providing a convenient shorthand: The Lean expression tNat.type is equivalent
to Ty.type tNat. With this definition, it is now possible to give a type signature for eval that Lean
accepts:

def eval (e : Expr t) : t.type :=
 ...

Furthermore, we can use Lean’s support for type-class based coercions [18] to define an implicit
conversion from a value of type Ty to its Type equivalent, by creating an instance of the CoeSort class
for Ty:

13

instance : CoeSort Ty where
 coe := Ty.type

With this instance in scope, the original type of the eval function is accepted by Lean, allowing us to
restrict the types it accepts without modifying its signature:

def eval (e : Expr t) : t := -- t is implicitly coerced to t.type
 ...

The body of the function remains otherwise unchanged from its previous definition: We have only
restricted the types it can operate on.

3. An intrinsically-typed interpreter for WebAssembly
The main contribution of this thesis is the construction of an intrinsically-typed interpreter for
WebAssembly, using Lean 4 as the implementation language.

This section describes the design and implementation of the interpreter, including its representation
of Wasm’s syntax and type system, the translation of its reduction rules, as well as the optimizations
that the interpreter employs.

3.1. Syntax representation
This section details how the WebAssembly syntax is represented in the intrinsically-typed interpreter.

3.1.1. Types and stacks
The first step to defining an intrinsically-typed interpreter is to define the domain of WebAssembly
types. We do so by using the Lean pattern of “universes à la Tarski” (similarly to the arithmetic language
in Section 2.3.2.3):

inductive Ty where
 | i32
 | i64
 | f64

def Ty.type (ty : Ty) : Type :=
 match ty with
 | i32 => BitVec 32
 | i64 => BitVec 64
 | f64 => Float

instance : CoeSort Ty where
 coe := Ty.type

The Ty inductive above represents the available WebAssembly types, and the Ty.type function provides
a mapping from WebAssembly types to Lean types. The CoeSort instance declaration allows us to use
Ty values in contexts where Lean expects Types, using Ty.type for the implicit conversion.

The WebAssembly integer types are mapped to Lean’s native bit-vector types. This is because some
instructions have both signed and unsigned variants (e.g. division), and the BitVec type allows us to
interpret integer values as either signed or unsigned on a per-operation basis.

While they are part of the WebAssembly specification, single-precision floating-point numbers (f32)
are not supported in our interpreter, because Lean does not natively support them.

The types of WebAssembly stacks (or stack types for short) are simply represented as lists of value
types (List Ty), using Lean’s native list data structure. Lean’s dependent types allow us to easily use
data structures such as lists in types.

14

3.1.2. Instructions
To represent Wasm instructions in a type-safe way, it is necessary to encode a large part of the Wasm
type system into the instruction type’s indices, including the stack, local variables, labels, and other
elements.

In this section, we will describe the encoding of Wasm instructions in Lean, starting with a simple
definition that is sufficient to represent simple instructions, and extending it as we add support for
more features and instructions.

First and foremost, the most important information to encode are the types of an instruction’s input
and output stacks. To achieve this, we use an inductive type Instr that is indexed by 2 stack types:

inductive Instr : List Ty -> List Ty -> Type where
 | drop : Instr [a] []
 | i32_const : i32.type -> Instr [] [i32]
 | i32_add : Instr [i32, i32] [i32]
 | ... -- more instructions, described later

Each constructor (corresponding to one WebAssembly opcode) constrains the types of the stacks to
match the instruction’s inputs and outputs. The type of each instruction closely matches its type in the
official specification. For example, the i32_add constructor has type Instr [i32, i32] [i32], which
matches its equivalent instruction: 𝗂𝟥𝟤.𝖺𝖽𝖽 : 𝗂𝟥𝟤 𝗂𝟥𝟤 → 𝗂𝟥𝟤.

Similar to their definition in the specification, instruction sequences can be represented by a recursive
type (here called Instrs, plural for Instr):

inductive Instrs : List Ty -> List Ty -> Type where
 | empty : Instrs i i
 | seq : Instr i o -> Instrs o o' -> Instrs i o'

The empty constructor produces an empty instruction sequence, which leaves its stack unchanged. The
seq constructor appends a single instruction at the head of an existing sequence, composing their types
such that the output stack of the first instruction matches the input stack of the rest of the sequence.

However, our current encoding of instruction types is too restrictive. Trying to construct the abstract
syntax tree for the simple instruction sequence i32.add i32.add leads to a compilation error:

-- The #check directive instructs Lean to type-check the following expression.
#check seq i32_add (seq i32_add empty)

-- Error:
-- application type mismatch
-- seq i32_add
-- argument
-- i32_add
-- has type
-- Instr [i32, i32] [i32] : Type
-- but is expected to have type
-- Instr [i32] ?m

This error is caused by the same issue described in Section 2.1.1.3: the output of the first instruction
([i32]) must exactly match the input to the second ([i32, i32]).

The type system described in the official specification relies on the weakening rule (shown in Figure 5)
to type such instruction sequences:

15

T-add
𝐶 ⊢ 𝗂𝟥𝟤.𝖺𝖽𝖽 : 𝗂𝟥𝟤 𝗂𝟥𝟤 → 𝗂𝟥𝟤 T-weaken

𝐶 ⊢ 𝗂𝟥𝟤.𝖺𝖽𝖽 : 𝗂𝟥𝟤 𝗂𝟥𝟤 𝗂𝟥𝟤 → 𝗂𝟥𝟤 𝗂𝟥𝟤
T-add

𝐶 ⊢ 𝗂𝟥𝟤.𝖺𝖽𝖽 : 𝗂𝟥𝟤 𝗂𝟥𝟤 → 𝗂𝟥𝟤 T-seq
𝐶 ⊢ 𝗂𝟥𝟤.𝖺𝖽𝖽 𝗂𝟥𝟤.𝖺𝖽𝖽 : 𝗂𝟥𝟤 𝗂𝟥𝟤 𝗂𝟥𝟤 → 𝗂𝟥𝟤 𝗂𝟥𝟤

Figure 16: Typing derivation for the sequence i32.add i32.add.

To allow our abstract syntax tree definition to represent non-trivial instruction sequences, we need to
add support for weakening. One possibility would be to add a weaken constructor to the Instr type,
mirroring the weakening rule in the type system. However, this gives rise to another issue, in that
constructing a valid AST would necessitate the introduction of weakens in non-obvious locations. The
solution employed in LeanWasm is to embed weakening in the types of the instruction constructors,
by making them polymorphic in the base of the stack:

inductive Instr : List Ty -> List Ty -> Type where
 | drop : Instr (a :: i) i
 | i32_const : i32.type -> Instr i (i32 :: i)
 | i32_add : Instr (i32 :: i32 :: i) (i32 :: i)
 | ... -- more instructions, described later

In this definition, the type of each constructor is (implicitly) parameterized over an input stack 𝑖. The
type of i32_add specifies that its input stack should contain 2 integers (i32) followed by 𝑖, and its
output is just one integer followed by 𝑖.

The expression seq i32_add (seq i32_add empty) is now accepted by Lean, as the compiler can infer
the appropriate instantiations for 𝑖 for each occurrence of i32_add.

Local variables
Next, let’s consider extending Instr data type with support for local variables and their associated
instructions (namely local.get, local.set, and local.tee).

In WebAssembly, the local variables of each function are declared up-front at the start of the function’s
body, and they are identified with numeric indices rather than alphanumeric identifiers. To track their
types in our encoding, we add a new type parameter to Instr, of type List Ty (each element of the
list corresponding to one local variable):

-- \/ new \/
inductive Instr : List Ty -> List Ty -> List Ty -> Type where
 -- Existing instructions become polymorphic in the new parameter
 | drop : Instr locs (a :: i) i
 | ...

The instructions that make use of local variables refer to them by their index. In order to prevent the
construction of an instruction that refers to an invalid local variable (either an inexistent variable, or
one of the wrong type), the indices are encoded using well-typed list indices:

inductive Ix {t : Type} (a : t) : List t -> Type where
 | hit : Ix a (a :: as)
 | miss : Ix a as -> Ix a (b :: as)

The inductive type Ix represents an index into a list, together with the type of the element at that index.
The hit constructor creates an index that points to the head of the list, while the miss constructor
inductively constructs an index for a larger list, if given an index into its tail.

Using well-typed list indices, we can define new constructors corresponding to the local.* family
of instructions:

16

inductive Instr : List Ty -> List Ty -> List Ty -> Type where
 | ...
 | local_get : Ix t locs -> Instr locs i (t :: i)
 | local_set : Ix t locs -> Instr locs (t :: i) i
 | local_tee : Ix t locs -> Instr locs (t :: i) (t :: i)

local_get reads the value of a local variable and pushes it onto the stack. local_set pops a value off
the stack and writes it to the variable. local_tee also writes the value on top of the stack to a variable,
but doesn’t pop it. These instructions are also defined to be stack-polymorphic, to allow them to be
easily composed with seq.

While the Ix type enables us to safely encode variable indices, its constructors are unwieldy to use.
For example, a local.get instruction targeting the third variable needs to be written as local_get
(miss (miss hit)).

Thankfully, Lean supports fine-grained overloading of numeric literals through the OfNat typeclass.
Using it, we can define an implicit coercion from natural numbers to well-typed indices, which allows
us to write the above as local_get 2 instead:

instance : OfNat (Ix a (a :: as)) 0 where
 ofNat := hit

instance [o : OfNat (Ix a as) n] : OfNat (Ix a (b :: as)) (n+1) where
 ofNat := miss o.ofNat

The base instance for OfNat 0 maps the literal 0 to the constructor hit, while the recursively-defined
instance for OfNat (n+1) defines mappings from the rest of the naturals into miss constructors. The
square brackets denote an instance constraint.

Control-flow
To extend the Instr type with control instructions such as block, loop, and br, we need to track the
list of in-scope labels and their types. This looks similar to the representation of local variables, but
requires a list of stack types (as each label is represented by a stack type):

-- \/ new \/
inductive Instr : List Ty -> List (List Ty) -> List Ty -> List Ty -> Type where
 | ...

The block and loop instructions make use of this additional parameter to introduce new labels:

inductive Instr : List Ty -> List (List Ty) -> List Ty -> List Ty -> Type where
 | ...
 | block : Instrs locs (o :: lbls) i o -> Instr locs lbls i o
 | loop : Instrs locs (i :: lbls) i o -> Instr locs lbls i o

The block instruction wraps a sequence of instructions, and introduces a new label typed with its
output stack into the context of the wrapped instructions. Similarly, loop introduces a label typed with
its input stack.

The above definitions closely match the typing rules for block and loop. However, much like the naive
translation of i32_add, they don’t take weakening into account. A more accurate encoding witnesses
the fact that there may be more values on the stack than the block’s type specifies:

inductive Instr : List Ty -> List (List Ty) -> List Ty -> List Ty -> Type where
 | ...
 | block : Instrs locs (o :: lbls) i o -> Instr locs lbls (i ++ b) (o ++ b)
 | loop : Instrs locs (i :: lbls) i o -> Instr locs lbls (i ++ b) (o ++ b)

17

Because the stack types 𝑖 and 𝑜 are themselves lists, weakening is represented by using Lean’s built-
in list concatenation operator (++).

Branching
The br and br_if instructions reuse the Ix type to refer to label indices in a type-safe manner:

inductive Instr : List Ty -> List (List Ty) -> List Ty -> List Ty -> Type where
 | ...
 | br : Ix i lbls -> Instr locs lbls (i ++ b) o
 | br_if : Ix i lbls -> Instr locs lbls (i32 :: i ++ b) (i ++ b)

Because the output type of br is unconstrained (as executing a branch discards the instructions
following it), it does not need to refer to the polymorphic stack base 𝑏.

Administrative instructions
Since LeanWasm mirrors the reference interpreter’s handling of control-flow, it needs to support the
same administrative instructions. Their types are given below:

inductive Instr : List Ty -> List (List Ty) -> List Ty -> List Ty -> Type where
 | ...
 | label :
 (∀ b', Instr locs lbls (i ++ b') (o ++ b')) ->
 Stack i' -> Instrs locs (i :: lbls) i' o ->
 Instr locs lbls b (o ++ b)
 | breaking : Ix i' lbls -> Stack (i' ++ b) -> Instr locs lbls i o

These administrative instructions are more general than their source-level counterparts, which is
reflected in their more complex types. Notably, the type of a label’s continuation needs to be stack-
base-polymorphic (∀ is Lean’s notation for a dependent function type), because it’s not known ahead
of time in what context the continuation will be executed.

The breaking instruction has a similar type to br, with the addition of also capturing the current stack
when it’s created. This instruction is described in more detail in Section 3.2.2.

Instruction kinds
Administrative instructions only arise during execution, they are not part of WebAssembly’s surface
syntax. Currently, the Instr type does not make this distinction, allowing for the creation of programs
containing administrative instructions. To prevent this without duplicating the entire type, we extend
it with yet another type parameter, representing the instruction’s kind:

inductive InstrKind where
 | src
 | spec

inductive Instr : InstrKind -> ... -> Type where
 | drop : Instr knd locs lbls i o
 | ...
 | label : ... -> Instr spec locs lbls b (o ++ b)

The InstrKind type distinguishes between source instructions (src) and administrative instructions
(spec).

Source-level instructions are polymorphic in their kind: They can be instantiated as either src or spec
depending on the context. Administrative instructions, on the other hand, have their kind fixed as
spec. With this distinction, we can represent source programs as Instr src locs lbls i o, and
programs that are mid-evaluation as Instr spec locs lbls i o.

18

Arithmetic instructions
So far, the only arithmetic instruction we considered was i32_add. This was a simplification, as the
WebAssembly specification defines arithmetic instructions in a generic way:

T-binop
𝐶 ⊢ 𝑡.𝑏𝑖𝑛𝑜𝑝 : 𝑡 𝑡 → 𝑡

T-relop
𝐶 ⊢ 𝑡.𝑟𝑒𝑙𝑜𝑝 : 𝑡 𝑡 → 𝗂𝟥𝟤

Figure 17: Typing rules for arithmetic and comparison instructions.

𝑏𝑖𝑛𝑜𝑝 ⩴ 𝗮𝗱𝗱
| 𝘀𝘂𝗯
| 𝗺𝘂𝗹
| …

𝑟𝑒𝑙𝑜𝑝 ⩴ 𝗲𝗾
| 𝗻𝗲
| 𝗹𝘁
| 𝗴𝘁
| …

Figure 18: Syntax of arithmetic operators.

The above figures show the (slightly simplified) syntax of arithmetic and comparison operators, and
the typing rules of the generic arithmetic and comparison instructions. Binary operators take as inputs
two values of type 𝑡 and produce another value of type 𝑡, while relational operators take two inputs
of type 𝑡 and produce an i32 that encodes a boolean value as either 0 or 1.

In LeanWasm, the definitions for binop and relop are split between integer operators and floating-
point operators:

inductive Signedness where
 | s
 | u

inductive IBinOp where
 | add
 | mul
 | div : Signedness -> IBinOp
 | and
 | xor
 | ...

inductive IRelOp where
 | eq
 | ne
 | lt : Signedness -> IRelOp
 | gt : Signedness -> IRelOp
 | ...

inductive FBinOp where
 | f_add
 | f_mul
 | ...

inductive FRelOp where
 | f_eq

19

 | f_ne
 | ...

In the case of integers, operators such as division and comparison are parametric over the Signedness
of the operation: they can interpret their inputs as either signed or unsigned. Integers also support
bitwise operators, while floats do not.

In order to avoid duplication when representing the integer-specific operations, we generalize the i32
and i64 constructors of the Ty type:

inductive Ty where
 | i : Size -> Ty
 | f64 : Ty

inductive Size where
 | _32
 | _64

instance : OfNat Size 32 where
 ofNat := _32

instance : OfNat Size 64 where
 ofNat := _64

instance : Coe Size Nat where
 toNat := ... -- inverse of OfNat conversion

@[match_pattern]
abbrev Ty.i32 : Ty := Ty.i 32

@[match_pattern]
abbrev Ty.i64 : Ty := Ty.i 64

The new definition of Ty has only one constructor for integer types, which is parameterized over a
Size, a simple inductive type with cases for 32-bit and 64-bit integers. To make working with Sizes
easier, we also define implicit coercions between Sizes and their corresponding Nat literals. The pattern
synonyms Ty.i32 and Ty.i64 allow the previous definitions to keep using the old names for the types.

Using the new Ty.i constructor, we can define the arithmetic instructions generically:

inductive Instr knd locs lbls i o where
 | ...
 | i_binop : IBinOp -> Instr knd locs lbls (Ty.i s :: Ty.i s :: i) (Ty.i s :: i)
 | i_relop : IBinOp -> Instr knd locs lbls (Ty.i s :: Ty.i s :: i) (i32 :: i)

 | f_binop : FBinOp -> Instr knd locs lbls (f64 :: f64 :: i) (f64 :: i)
 | f_relop : FRelOp -> Instr knd locs lbls (f64 :: f64 :: i) (i32 :: i)

Memory
Since Wasm’s linear memory is untyped, memory-related instructions are simple to encode without
extending the intrinsically-typed machinery:

inductive Instr knd locs lbls i o where
 | ...
 | memory_size : Instr knd locs lbls i (i32 :: i)
 | memory_grow : Instr knd locs lbls (i32 :: i) (i32 :: i)

20

 | i_load : Instr knd locs lbls (i32 :: i) (Ty.i s :: i)
 | i_store : Instr knd locs lbls (Ty.i s :: i32 :: i) i

memory_size queries the current size of the memory buffer, and memory_grow allows programs to
extend it, returning the new size as output. The address space of the memory is limited to 32 bits, to
increase portability.

i_load and i_store allow programs to read from, and respectively write to the memory buffer at a
specified address. While they are defined for all value types in the Wasm specification, in LeanWasm
they can only be used with integral types (due to Lean’s limited floating-point support).

Trapping
The ability to access memory at arbitrary addresses brings along the possibility of trapping if an address
is out of bounds. To represent trapping states, LeanWasm, like the reference interpreter, includes a
new administrative instruction:

inductive Instr knd locs lbls i o where
 | ...
 | trapping : Instr spec locs lbls i o

The new instruction’s kind is fixed to spec, like the previous administrative instructions. Its input and
output type are completely unconstrained, because it can appear in any context, and once a trapping
instruction is encountered, the entire instruction sequence reduces to a single trapping.

3.2. Execution
This section describes an interpreter for the well-typed syntax tree introduced in the previous section,
modeled after the official reference interpreter [12].

3.2.1. Contexts and configurations
The previously-described Instr type has gained a large number of type parameters as it was extended
to support more and more Wasm features. The Context type neatly packs them into a record (called a
structure in Lean):

structure Context where
 locs : List Ty
 lbls : List (List Ty)
 i : List Ty
 o : List Ty

Using this context type, we can define the type of configurations, which encapsulate the state of the
Wasm abstract machine.

abbrev Stack ts := HList Ty.type ts

inductive SpecConfig (c : Context) where
 mem : Memory
 ls : Stack c.locs
 vs : Stack c.i
 es : Instrs spec c.locs c.lbls c.i c.o

A configuration has 4 components:
• 𝑚𝑒𝑚: The linear memory buffer.
• 𝑙𝑠: The list of values of the local variables.
• 𝑣𝑠: The value stack that instructions operate on.
• 𝑒𝑠: The instruction sequence to execute.

21

The stack and the list of local variables are stored as heterogenous lists parameterized by the types
present in the context. This ensures that the values of the stack and locals always match their expected
types. Because the instruction stream 𝑒𝑠 is parameterized in the same types, this guarantees that
configurations are well-typed: it’s impossible to construct a configuration where the values on the
stack don’t match the types expected by the instructions.

Notably, the configuration’s instruction stream is of kind spec, because configurations represent
the state of Wasm programs mid-execution, so they can include administrative instructions. When
constructing an initial configuration, a sequence of source instructions (of kind src) can be trivially
converted to the spec kind. This coercion is provided by a helper function Instrs.toSpec.

Memory representation
One aspect in which LeanWasm differs from the reference interpreter is its representation of the linear
memory. The reference interpreter stores the memory as an immutable linked lists of bytes. This is
inefficient because accessing elements in a linked list has linear time complexity, so reading data at a
memory address takes time proportional to the size of the memory. Furthermore, due to immutability,
when writing data to memory a new linked list needs to be created, reallocating all the bytes preceding
the written-to address, which is also a linear time operation.

The reference interpreter represents the linear memory in this way due to its goal of keeping a very
close correspondence to the official specification.

In LeanWasm, the memory is represented as a ByteArray, Lean’s native type for packed byte arrays:

abbrev Memory := ByteArray

The ByteArray type exposes an immutable interface, similar to a linked list, where modifying a value in
the array returns a new array as output. However, Lean’s novel reference-counting garbage-collector
[19] enables functional-but-in-place programming: If the reference to the ByteArray is unique, the
underlying array is mutated in-place, rather than allocating and returning a new array.

Because the memory buffer is used linearly in LeanWasm, this allows to write the interpreter in a purely
functional way, while generating efficient code that mutates the memory in-place without reallocating
it.

3.2.2. Relational interpreter
In order to keep a close correspondence with the with the official semantics, LeanWasm includes a
relational definition of the interpreter. This means that the small-step reduction relation is expressed
as an inductive datatype parameterized in its input and output configurations.

The following sections describe this relational interpreter, showing how it encodes the reduction rules
for the instructions that make up the Instr type.

inductive SpecStep :
 (c : Context) -> (c' : Context) -> SpecConfig c -> SpecConfig c' -> Type
where
 | sstep_drop :
 SpecStep ⟨locs, lbls, _ :: i, o⟩ ⟨locs, lbls, i, o⟩
 ⟨mem, ls, cons a vs, seq drop es⟩ ⟨mem, ls, vs, es⟩

 | sstep_const :
 SpecStep ⟨locs, lbls, i, o⟩ ⟨locs, lbls, t :: i, o⟩
 ⟨mem, ls, vs, seq (const a) es⟩ ⟨mem, ls, cons a vs, es⟩
 | ...

22

The above definition contains the signature of the SpecStep type , and an encoding of the reduction rule
for the drop instruction. Because the values on the stack change as evaluation progresses, the type of
the configuration also changes at each step. This is reflected by the fact that SpecStep is parameterized
not only in the input and output configurations, but also in their context types.

The constructor for each reduction rule refines the type indices of SpecStep to reflect changes it
performs on the configuration, as well as its context. As an example, the drop rule presented above
defines its input stack type to be _ :: i, which will only match non-empty stacks, and defines its
output as i, the tail of the input stack. Similarly, it removes the first value from the stack (cons is one
of the constructors for heterogenous lists), and removes the instruction from the configuration once
it’s been executed.

Similarly, the rule for const pushes the instruction’s immediate argument 𝑎 onto the stack, so its
output stack contains one more type than its input. Even though we didn’t explicitly introduce the
type variable 𝑡, it is constrained by the type indices of Instr to match the type introduced by the const
instruction. Writing the wrong type for the context would result in a compilation error.

It might look surprising that the rules above apply their modifications the input stack type of the output
context, rather than the output stack type. This is because the type of a configuration’s current stack
is described by the input stack type, so when defining the output configuration with an updated stack,
it’s necessary to update its input stack type. The output stack type of a configuration describes the
shape of the stack at the end of evaluation, once the configuration reaches a final state.

Arithmetic instructions
Below are the reduction rules for arithmetic instructions (using the shorter Lean notation .i for Ty.i)

inductive SpecStep :
 (c : Context) -> (c' : Context) -> SpecConfig c -> SpecConfig c' -> Type
where
 | ...
 | sstep_i_binop :
 SpecStep ⟨locs, lbls, .i s :: .i s :: i, o⟩ ⟨locs, lbls, .i s :: i, o⟩
 ⟨mem, ls, cons b (cons a vs), seq (i_binop op) es⟩
 ⟨mem, ls, cons (op.eval a b) vs, es⟩
 | sstep_i_relop :
 SpecStep ⟨locs, lbls, .i s :: .i s :: i, o⟩ ⟨locs, lbls, i32 :: i, o⟩
 ⟨mem, ls, cons b (cons a vs), seq (i_relop op) es⟩
 ⟨mem, ls, cons (op.eval a b) vs, es⟩

 | sstep_f_binop :
 SpecStep ⟨locs, lbls, f64 :: f64 :: i, o⟩ ⟨locs, lbls, f64 :: i, o⟩
 ⟨mem, ls, cons b (cons a vs), seq (f_binop op) es⟩
 ⟨mem, ls, cons (op.eval a b) vs, es⟩
 | sstep_f_relop :
 SpecStep ⟨locs, lbls, f64 :: f64 :: i, o⟩ ⟨locs, lbls, i32 :: i, o⟩
 ⟨mem, ls, cons b (cons a vs), seq (f_relop op) es⟩
 ⟨mem, ls, cons (op.eval a b) vs, es⟩

Both the integer and floating-point versions of the arithmetic and comparison operators work in a
similar way: they pop 2 values of the appropriate types from the stack, and push a single result
back onto the stack. The actual computation is performed by helper functions defined on the binary
operator’s type, such as IBinOp.eval and IRelOp.eval, which map Wasm’s arithmetic operations
to Lean’s native operations on bit-vectors and floating-points, taking into account signedness if the
operator specifies it. Below is an excerpt from the implementation of IBinOp.eval:

23

def IBinOp.eval (op : IBinOp) (a b : Ty.i s) : Ty.i s :=
 match op with
 | add => a + b
 | sub => a - b
 | mul => a * b

 -- Pattern-matching on signedness and mapping to the appropriate operation
 | div s => a.sdiv b
 | div u => a.udiv b

 | and => a &&& b
 | or => a ||| b

 | ...

Local variables
The instructions that manipulate local variables are reduced in a similar manner:

inductive SpecStep :
 (c : Context) -> (c' : Context) -> SpecConfig c -> SpecConfig c' -> Type
where
 | ...
 | sstep_local_get :
 SpecStep ⟨locs, lbls, i, o⟩ ⟨locs, lbls, _ :: i, o⟩
 ⟨mem, ls, vs, seq (local_get ix) es⟩ ⟨mem, ls, cons (ls.get ix) vs, es⟩
 | sstep_local_set :
 SpecStep ⟨locs, lbls, _ :: i, o⟩ ⟨locs, lbls, i, o⟩
 ⟨mem, ls, cons a vs, seq (local_set ix) es⟩ ⟨mem, ls.set ix a, vs, es⟩
 | sstep_local_tee :
 SpecStep
 ⟨locs, lbls, t :: i, o⟩ ⟨locs, lbls, t :: i, o⟩
 ⟨mem, ls, cons a vs, seq (local_tee ix) es⟩ ⟨mem, ls.set ix a, cons a vs, es⟩

Unlike the instructions seen so far, the local_* family of instructions refer to the list of local variables
𝑙𝑠. The helper functions HList.get and HList.set are used to read and update elements in this list at
the indices indicated by the well-typed Ix values.

Control instructions
The control instructions block and loop are immediately reduced to the more general label
administrative instruction, as described previously:

inductive SpecStep :
 (c : Context) -> (c' : Context) -> SpecConfig c -> SpecConfig c' -> Type
where
 | ...
 | sstep_block :
 SpecStep
 ⟨locs, lbls, i' ++ i, o⟩ ⟨locs, lbls, i, o⟩
 ⟨mem, ls, vs' ++ vs, seq (block es') es⟩
 ⟨mem, ls, vs, seq (label (λ _ => nop) vs' es') es⟩

 | sstep_loop :
 SpecStep
 ⟨locs, lbls, i' ++ i, o⟩ ⟨locs, lbls, i, o⟩
 ⟨mem, ls, vs' ++ vs, seq (loop es') es⟩
 ⟨mem, ls, vs, seq (label (λ _ => loop es') vs' es') es⟩

24

The λ-abstractions wrapping the label continuations generalize over the base of the stack. The
surrounding types provide the Lean compiler with enough context to infer this stack base, so the
function argument can simply be ignored, by use of the wildcard (_) pattern.

Branching
The reduction of branch instructions follows the implementation of the reference interpreter. A br
instruction is immediately reduced to the administrative instruction breaking, which also captures
the current stack of values. For br_if, there are 2 reduction rules: One that rewrites the br_if to an
unconditional br with the same target, if the topmost value on the stack is non-zero, and another that
completely eliminates the br_if, if the topmost stack value is 0.

inductive SpecStep :
 (c : Context) -> (c' : Context) -> SpecConfig c -> SpecConfig c' -> Type
where
 | ...
 | sstep_br :
 SpecStep
 ⟨locs, lbls, i' ++ i, o⟩ ⟨locs, lbls, i' ++ i, o⟩
 ⟨mem, ls, vs, seq (br ix) es⟩ ⟨mem, ls, vs, seq (breaking ix vs) es⟩

 | sstep_br_if_false :
 SpecStep
 ⟨locs, lbls, i32 :: i ++ i', o⟩ ⟨locs, lbls, i ++ i', o⟩
 ⟨mem, ls, List.cons_append _ _ _ ▸ cons 0 vs, seq (br_if ix) es⟩
 ⟨mem, ls, vs, es⟩

 | sstep_br_if_true :
 SpecStep
 ⟨locs, lbls, i32 :: i ++ i', o⟩ ⟨locs, lbls, i ++ i', o⟩
 ⟨mem, ls, List.cons_append _ _ _ ▸ cons n vs, seq (br_if ix) es⟩
 ⟨mem, ls, vs, seq (br ix) es⟩

The (▸) operator used in the constructors for br_if is Lean’s built-in type substitution. For any two
types α and β, (▸) takes a proof that α = β on its left-hand side, and uses it to substitute occurrences of
α with β in the type of its right-hand side expression. In this case, we are applying it with a proof that
cons associates with list concatenation, to witness the fact that (i32 :: i) ++ i' is equal to i32 ::
(i ++ i').

Administrative instructions
The constructor encoding the reduction rule for labels is different from the rest, in that it depends on
another SpecStep value:

inductive SpecStep :
 (c : Context) -> (c' : Context) -> SpecConfig c -> SpecConfig c' -> Type
where
 | ...
 | sstep_label_inner :
 SpecStep
 ⟨locs, _ :: lbls, i', o'⟩ ⟨locs, _ :: lbls, i'', o'⟩
 ⟨mem, ls, vs', es'⟩ ⟨mem', ls', vs'', es''⟩ ->
 SpecStep
 ⟨locs, lbls, i, o⟩ ⟨locs, lbls, i, o⟩
 ⟨mem, ls, vs, seq (label k vs' es') es⟩
 ⟨mem', ls', vs, seq (label k vs'' es'') es⟩

25

The above rule states that given a SpecStep encoding the reduction of the label’s body, we can construct
a larger SpecStep encoding the reduction of the label itself.

Labels are eliminated either when their body has been reduced to an empty instruction sequence, or
when a breaking instruction is encountered:

inductive SpecStep :
 (c : Context) -> (c' : Context) -> SpecConfig c -> SpecConfig c' -> Type
where
 | ...
 | sstep_label_done :
 SpecStep
 ⟨locs, lbls, i, o⟩ ⟨locs, lbls, i' ++ i, o⟩
 ⟨mem, ls, vs, seq (label k vs' done) es⟩
 ⟨mem, ls, vs' ++ vs, es⟩

 | sstep_label_breaking_hit :
 SpecStep
 ⟨locs, lbls, i, o⟩ ⟨locs, lbls, i' ++ i, o⟩
 ⟨mem, ls, vs, seq (label k vs' (seq (breaking hit vs'') es')) es⟩
 ⟨mem, ls, vs''.take _ ++ vs, seq (k _) es⟩

 | sstep_label_breaking_miss :
 SpecStep
 ⟨locs, lbls, i, o⟩ ⟨locs, lbls, i, o⟩
 ⟨mem, ls, vs, seq (label k vs' (seq (breaking (miss ix) vs'') es')) es⟩
 ⟨mem, ls, vs, seq (breaking ix vs'') es⟩

When the first instruction in the body of a label is a breaking targeting that label,
sstep_label_breaking_hit reduces the entire label to its continuation instruction 𝑘. Because the
continuation is stack-base-polymorphic, it has to be instantiated with the type of the current stack.
Lean is able to infer this type by itself, so we instruct it do so by passing an underscore as the function
parameter.

The reduction rule sstep_label_breaking_miss handles the remaining case, when a breaking
instruction targeting an outer label is encountered. Here, the label is replaced with a single breaking
instruction, but with a decremented label index (the outermost miss constructor is eliminated).

Trapping
During execution, a Wasm program might trap if it tries to access memory with an out-of-bounds
address. Trapping is represented as an additional administrative instruction, with the following
reduction rule:

inductive SpecStep :
 (c : Context) -> (c' : Context) -> SpecConfig c -> SpecConfig c' -> Type
where
 | ...
 | sstep_trapping :
 SpecStep ⟨locs, lbls, i, o⟩ ⟨locs, lbls, i, o⟩
 ⟨mem, ls, vs, seq trapping es⟩ ⟨mem, ls, vs, seq trapping done⟩

If the first instruction in the configuration’s instruction list is trapping, then the rule above reduces
the entire instruction list to a single trapping instruction.

Trapping instructions are “bubbled up” through labels, in a similar fashion to breaking instructions:

26

inductive SpecStep :
 (c : Context) -> (c' : Context) -> SpecConfig c -> SpecConfig c' -> Type
where
 | ...
 | sstep_label_trapping :
 SpecStep
 ⟨locs, lbls, i, o⟩ ⟨locs, lbls, i, o⟩
 ⟨mem, ls, vs, seq (label k vs' (seq trapping es')) es⟩ ⟨mem, ls, vs, seq trapping es⟩

Memory
The reduction rule for the memory_size instruction is straight-forward, pushing the size of the memory
onto the stack:

inductive SpecStep :
 (c : Context) -> (c' : Context) -> SpecConfig c -> SpecConfig c' -> Type
where
 | ...
 | sstep_memory_size :
 SpecStep
 ⟨locs, lbls, i, o⟩ ⟨locs, lbls, i32 :: i, o⟩
 ⟨mem, ls, vs, seq memory_size es⟩ ⟨mem, ls, cons mem.size vs, es⟩

The reduction rules for the other memory-related instructions are more complex, as they have
to account for the possibility of trapping. For example, let’s consider the reduction rules for the
memory_grow instruction, which can trap if its argument (the number of additional bytes to allocate)
is negative:

inductive SpecStep :
 (c : Context) -> (c' : Context) -> SpecConfig c -> SpecConfig c' -> Type
where
 | ...
 | sstep_memory_grow_trap :
 mem.grow a = none ->
 SpecStep
 ⟨locs, lbls, i32 :: i, o⟩ ⟨locs, lbls, i, o⟩
 ⟨mem, ls, cons a vs, seq memory_grow es⟩
 ⟨mem, ls, vs, seq trapping es⟩

 | sstep_memory_grow_ok :
 mem.grow a = some mem' ->
 SpecStep
 ⟨locs, lbls, i32 :: i, o⟩ ⟨locs, lbls, i32 :: i, o⟩
 ⟨mem, ls, cons a vs, seq memory_grow es⟩
 ⟨mem', ls, cons mem'.size vs, es⟩

There are 2 rules for the memory_grow instruction, one that specifies the trapping case, and one that
specifies the valid execution case. The logic that checks if the argument is valid is encapsulated in
the helper function Memory.grow, which returns an Option type: none if the argument was invalid, or
a some containing the enlarged memory buffer otherwise. The constructor for each rule requires as
parameter an equality proof relating the output of mem.grow to the appropriate Option constructor.
In the trapping case, the memory_grow instruction is replaced with a trapping instruction. In the case
where the grow operation succeeds, the configuration’s memory is updated and the new memory’s
size is pushed onto the stack.

27

The reduction rules for the i_load and i_store instructions (shown below) are similar: For each
instruction, there is a constructor for the trapping case and one for the non-trapping case, each
depending on an equality proof.

inductive SpecStep :
 (c : Context) -> (c' : Context) -> SpecConfig c -> SpecConfig c' -> Type
where
 | ...
 | sstep_i_load_trap :
 mem.loadILittleEndian addr = none ->
 SpecStep
 ⟨locs, lbls, i32 :: i, o⟩ ⟨locs, lbls, i, o⟩
 ⟨mem, ls, cons addr vs, seq i_load es⟩
 ⟨mem, ls, vs, seq trapping es⟩

 | sstep_i_load_ok :
 mem.loadILittleEndian addr = some a ->
 SpecStep
 ⟨locs, lbls, i32 :: i, o⟩ ⟨locs, lbls, .i s :: i, o⟩
 ⟨mem, ls, cons addr vs, seq i_load es⟩
 ⟨mem, ls, cons a vs, es⟩

 | sstep_i_store_trap :
 mem.storeILittleEndian addr a = none ->
 SpecStep
 ⟨locs, lbls, .i s :: i32 :: i, o⟩ ⟨locs, lbls, i, o⟩
 ⟨mem, ls, cons a (cons addr vs), seq i_store es⟩
 ⟨mem, ls, vs, seq trapping es⟩

 | sstep_i_store_ok :
 mem.storeILittleEndian addr a = some mem' ->
 SpecStep
 ⟨locs, lbls, .i s :: i32 :: i, o⟩ ⟨locs, lbls, i, o⟩
 ⟨mem, ls, cons a (cons addr vs), seq i_store es⟩
 ⟨mem', ls, vs, es⟩

The helper functions Memory.loadILittleEndian and Memory.storeILittleEndian check that all
addresses are in bounds and read, respectively update the corresponding bytes in the memory.

Execution traces
So far we have shown the reduction rules for the small-step reduction relation SpecStep. To represent
a sequence of reductions corresponding to an execution trace, we define the SpecSteps type, which
just describes the reflexive, transitive closure of the SpecStep relation:

inductive SpecSteps :
 (c : Context) -> (c' : Context) -> SpecConfig c -> SpecConfig c' -> Type
where
 | ssteps_refl :
 SpecSteps ⟨locs, lbls, i, o⟩ ⟨locs, lbls, i, o⟩
 ⟨mem, ls, vs, es⟩ ⟨mem, ls, vs, es⟩

 | ssteps_trans :
 SpecStep ⟨locs, lbls, i, o⟩ ⟨locs, lbls, i', o'⟩
 ⟨mem, ls, vs, es⟩ ⟨mem', ls', vs', es'⟩ ->

 SpecSteps ⟨locs, lbls, i', o'⟩ ⟨locs, lbls, i'', o''⟩
 ⟨mem', ls', vs', es'⟩ ⟨mem'', ls'', vs'', es''⟩ ->

28

 SpecSteps ⟨locs, lbls, i, o⟩ ⟨locs, lbls, i'', o''⟩
 ⟨mem, ls, vs, es⟩ ⟨mem'', ls'', vs'', es''⟩

The ssteps_refl constructor builds an empty execution trace, while the inductive ssteps_trans
constructor prepends a single reduction step to an existing execution trace.

Final states
A Wasm configuration can reach a final state, a state in which trying to apply a further reduction
results in the same configuration. There are 2 cases in which a configuration is considered final: either
its instruction list is empty (execution has finished), or the head of the list is a trapping administrative
instruction (execution resulted in a trap):

def SpecConfig.isFinal (cfg : SpecConfig ctx) : Bool :=
 match cfg.es with
 | done => true
 | seq trapping _ => true
 | _ => false

def SpecConfig.isTrap (cfg : SpecConfig ctx) : Bool :=
 match cfg.es with
 | seq trapping _ => true
 | _ => false

3.2.3. Runnable interpreter
While the relational definition of the interpreter helps to clearly express the reduction rules, it is
not directly runnable. The SpecStep and SpecSteps types just form a data structure representing an
execution trace of a Wasm program.

In order to provide a runnable interpreter, LeanWasm also defines a functional version of the small-
step reduction rule, implemented as the function eval in the namespace of the type SpecConfig:

def SpecConfig.eval (cfg : SpecConfig c) : Σ c', SpecConfig c' :=
 ...

The above function applies one reduction rule, mapping an input configuration to an output
configuration. As with the relational interpreter, the type of the output configuration may differ from
the input configuration, so the function uses a dependent sum type (introduced by the Σ symbol) to
return the output context type alongside the output configuration.

The implementation of eval unpacks the configuration structure and passes its components to a helper
eval_unpacked, which applies the reduction rules. Then, it packs the helper’s results back into a
configuration, together with the type of the resulting context:

def SpecConfig.eval (cfg : SpecConfig c) : Σ c', SpecConfig c' :=
 match cfg with
 | ⟨mem, ls, vs, es⟩ =>
 match SpecConfig.eval_unpacked mem ls vs es with
 | ⟨i', mem', ls', vs', es'⟩ => ⟨⟨c.locs, c.lbls, i', c.o⟩, ⟨mem', ls', vs', es'⟩⟩

We chose to implement SpecConfig.eval using the unpacked helper due to the difficulty of working
with tuples and structures in Lean. In many situations, the compiler doesn’t normalize field accesses
on structure literals in types, so it fails to unify types of the form P ⟨x, y⟩.x ⟨x, y⟩.y with P x y.

SpecConfig.eval_unpacked proceeds by pattern-matching on the instruction sequence to determine
which reduction rule to apply. The logic implemented by this function is extremely similar to that

29

encoded in the relational SpecStep type. The listing below includes an excerpt of its implementation,
covering a few illustrative reduction rules:

def SpecConfig.eval_unpacked
 (mem : Memory) (ls : Stack locs) (vs : Stack i) (es : Instrs spec locs lbls i o)
 : Σ i', Memory × Stack locs × Stack i' × Instrs spec locs lbls i' o
:=
 match es with
 | done => ⟨_, mem, ls, vs, done⟩ -- Corresponds to sstep_done
 | seq e es =>
 match e, vs with
 | drop, cons _ vs => ⟨_, mem, ls, vs, es⟩ -- Corresponds to sstep_drop
 | ...
 | i_binop op, cons b (cons a vs) =>
 ⟨_, mem, ls, cons (op.eval a b) vs, es⟩ -- Corresponds to sstep_i_binop
 | ...
 | memory_grow, cons a vs =>
 match mem.grow a with
 | none => ⟨_, mem, ls, vs, seq trapping es⟩ -- sstep_memory_grow_trap
 | some mem' => ⟨_, mem', ls, cons mem'.size vs, es⟩ -- sstep_memory_grow_ok
 | ...
 | label k vs' es', vs =>
 let ⟨_, mem', ls', vs'', es''⟩ := SpecConfig.eval_unpacked mem ls vs' es'
 ⟨_, mem', ls', vs, seq (label k vs'' es'') es⟩ -- sstep_label_inner
 | ...
 | trapping, vs => ⟨_, mem, ls, vs, seq trapping done⟩ -- sstep_trapping

The existential variable 𝑖′ in the function’s output witnesses the fact that the shape of the stack may
differ between the input and output configurations.

Execution traces
For applying multiple steps of evaluation on an initial configuration, similar to the SpecSteps type,
the functional interpreter includes a SpecConfig.evals function (defined similarly in terms of an
unpacked helper):

def SpecConfig.evals (cfg : Config c) (fuel : Nat) : Σ c', Config c' :=
 match cfg with
 | ⟨mem, ls, vs, es⟩ =>
 match SpecConfig.evals_unpacked mem ls vs es fuel with
 | ⟨i', mem', ls', vs', es'⟩ => ⟨⟨c.locs, c.lbls, i', c.o⟩, ⟨mem', ls', vs', es'⟩⟩

def SpecConfig.evals_unpacked
 (mem : Memory) (ls : Stack locs) (vs : Stack i) (es : Instrs spec locs lbls i o)
 (fuel : Nat)
 : Σ i', Memory × Stack locs × Stack i' × Instrs spec locs lbls i' o
:=
 match fuel with
 | 0 => ⟨_, mem, ls, vs, es⟩
 | fuel + 1 =>
 if es.isFinal then
 ⟨_, mem, ls, vs, es⟩
 else
 let ⟨_, mem', ls', vs', es'⟩ := SpecConfig.eval_unpacked mem ls vs es
 SpecConfig.evals_unpacked mem' ls' vs' es' fuel

An interesting detail of this function is its usage of a 𝑓𝑢𝑒𝑙 parameter. This is necessary because
WebAssembly is a Turing-complete language, and execution of a Wasm program might enter an infinite

30

loop. To avoid this, SpecConfig.evals short-circuits evaluation after 𝑓𝑢𝑒𝑙 steps (or if the configuration
reaches a final state).

3.2.4. Proving the runnable interpreter correct
While the pattern-matching logic in SpecConfig.evals_unpacked is very similar to the reduction rules
described by SpecStep, it’s possible that a bug could appear during their implementation that would
cause them to go out of sync.

To determine that the functional evaluator encodes the same reduction rules as the relational one, we
need a soundness proof showing that any execution trace of the functional interpreter can be mapped
to an equivalent execution trace of the relational interpreter.

Small-step soundness proof
It’s easier to split the proof into two parts: First prove that the small-step reduction relation is
implemented equivalently by both interpreters, and then use this fact to construct a proof relating
entire execution traces.

Concretely, the soundness proof for the small-step reduction is a function that for any two
configurations 𝑐𝑓𝑔 and 𝑐𝑓𝑔', given a proof that SpecConfig.eval reduces 𝑐𝑓𝑔 to 𝑐𝑓𝑔', produces a value
of type SpecStep representing the same reduction rule:

def SpecConfig.eval_sound :
 (cfg : SpecConfig ctx) -> (cfg' : SpecConfig ctx') ->
 (h : cfg.eval = ⟨ctx', cfg'⟩) ->
 : SpecStep ctx ctx' cfg cfg'
:=
 ...

The implementation of the function above would proceed in a very similar manner to the
implementation of eval itself, leading to a lot of code duplication. However, this duplication can
be avoided by using a technique known as proof-carrying code: We can update the definition of
the functional interpreter to return a pair of the output configuration and the equivalent SpecStep
structure. The updated type signature of eval is as follows:

def SpecConfig.eval_proofCarrying :
 (cfg : SpecConfig ctx) ->
 Σ ctx', (cfg' : SpecConfig ctx') × SpecStep ctx ctx' cfg cfg'

The function now outputs a triple consisting of the output context type, output configuration, and
equivalent SpecStep structure. The difference between using the Σ or (×) symbol to denote the
dependent pair is purely notational, Lean interprets both as the same type.

The signature of the unpacked helper function is updated similarly:

def SpecConfig.eval_unpacked_proofCarrying
 (mem : Memory) (ls : Stack locs) (vs : Stack i) (es : Instrs spec locs lbls i o)
 : Σ i',
 (mem' : Memory) × (ls' : Stack locs) × (vs' : Stack i')
 × (es' : Instrs spec locs lbls i' o)
 × SpecStep ⟨locs, lbls, i, o⟩ ⟨locs, lbls, i', o⟩
 ⟨mem, ls, vs, es⟩ ⟨mem', ls', vs', es'⟩

The more complex type signature complicates the implementation of the function, as it is now required
to show that the types of all configuration components (and other intermediate expressions) match the
types required by the SpecStep type’s constructors. This necessitates the use of inaccessible patterns

31

[20]: pattern-matches on expressions that are not essential to the computation, but are required to
specialize the types.

Unfortunately, we have not managed to implement this proof-carrying version of the function in its
entirety. While most of the reduction rules are implemented and type-correct, there are 3 reduction
rules which we failed to type properly, namely the reduction rules for block, loop, and, surprisingly,
nop: the instruction that leaves the configuration completely unchanged. We have axiomatized the 3
missing cases using Lean’s built-in sorry tactic, thus our soundness proof for the small-step relation
is partial.

Soundness proof for execution traces
Assuming the soundness proof for small-step relation is correct, a soundness proof for execution traces
can be implemented using the same technique of proof-carrying code:

def SpecConfig.evals_proofCarrying (cfg : SpecConfig ctx) (fuel : Nat)
 : Σ ctx', (cfg' : SpecConfig ctx') × SpecSteps ctx ctx' cfg cfg'
:=
 match cfg with
 | ⟨mem, ls, vs, es⟩ =>
 match SpecConfig.evals_unpacked_proofCarrying mem ls vs es fuel with
 | ⟨i', mem', ls', vs', es', ssteps⟩ =>
 ⟨⟨ctx.locs, ctx.lbls, i', ctx.o⟩, ⟨mem', ls', vs', es'⟩, ssteps⟩

The unpacked version follows similarly, constructing a SpecSteps value from the output of the first
evaluation steps and the result of the recursive call:

def SpecConfig.evals_unpacked_proofCarrying
 (mem : Memory) (ls : Stack locs) (vs : Stack i)
 (es : Instrs spec locs lbls i o) (fuel : Nat)
 : Σ i',
 (mem' : Memory) × (ls' : Stack locs) × (vs' : Stack i')
 × (es' : Instrs spec locs lbls i' o)
 × SpecSteps ⟨locs, lbls, i, o⟩ ⟨locs, lbls, i', o⟩
 ⟨mem, ls, vs, es⟩ ⟨mem', ls', vs', es'⟩
:=
 match fuel with
 | 0 => ⟨_, mem, ls, vs, es, ssteps_refl⟩
 | fuel + 1 =>
 if es.isFinal then
 ⟨_, mem, ls, vs, es, ssteps_refl⟩
 else
 let ⟨_, mem', ls', vs', es', sstep⟩ :=
 SpecConfig.eval_unpacked_proofCarrying mem ls vs es

 let ⟨_, mem'', ls'', vs'', es'', ssteps⟩ :=
 SpecConfig.evals_unpacked_proofCarrying mem' ls' vs' es' fuel

 ⟨_, mem'', ls'', vs'', es'', ssteps_trans sstep ssteps⟩

3.3. Optimizing control-flow
This section describes the inefficiencies of LeanWasm’s (and the official interpreter’s) representation
of control-flow, and presents an improved approach to modeling control-flow, implemented as part of
a new interpreter.

32

3.3.1. Inefficiencies of labels
The implementation of Wasm control-flow as nested label instructions, which is used by both
LeanWasm and the reference interpreter, exhibits a particular inefficiency: Each step of reduction has
to recursively traverse the nested labels to find the next reducible instruction. This leads to poor
performance, especially for Wasm programs with deeply-nested labels, such as those resulting from
compilation of higher-level languages with support for irreducible control-flow (such as goto) [21].

3.3.2. An improved representation of control-flow
The primary issue with the current implementation of labels is that the redex (the next reducible
instruction) is deeply nested within a stack of labels, and the interpreter has to recurse through these
labels at each step.

The optimization is based on a simple idea: turn this stack of labels inside-out, such that the innermost
block of instructions is now readily accessible at the top of the stack. This technique, also known as a
zipper [22], is prevalent in the context of functional programming.

3.3.3. The optimized interpreter
To realize this optimization, we implement a second intrinsically-typed Wasm interpreter that closely
follows the previously-described Spec interpreter, differing only in their handling of control-flow.

Similar to the Spec interpreter, the optimized interpreter (nicknamed Fast) is comprised of the
following components:
• A type for configurations: FastConfig (reusing the existing Context type).
• A relational definition of its reduction rules: FastStep and FastSteps.
• A functional, runnable definition of its reduction rules: FastConfig.eval, FastConfig.evals, with

proof-carrying variants.
• A new instruction kind: fast.

These components are very similar to their Spec equivalents, as the reduction rules for most
instructions (including arithmetic, locals, and memory) are identical between both interpreters. In the
following sections, we will focus on the differences introduced in the Fast interpreter, and describe its
optimized representation of control-flow.

Administrative instructions
Because of its different encoding of control-flow, the Fast interpreter does not require any
administrative instructions. However, to make it easier to adapt the existing definitions, it includes a
new instruction kind fast, and one new instruction of this kind, called trap, which serves the same
purpose (and shares the same type and reduction rules) as the trapping administrative instruction. Its
definition is provided below.

inductive InstrKind where
 | src
 | spec
 | fast -- new

inductive Instr knd locs lbls i o where
 | ...
 | trapping : Instr spec locs lbls i o

 | trap : Instr fast locs lbls i o

Configurations
The Fast interpreter’s configuration type includes one additional field, representing a reified label
stack:

33

inductive FastConfig (c : Context) where
 mem : Memory
 ls : Stack c.locs
 lstk : LabelStack c.locs c.lbls c.o
 vs : Stack c.i
 es : Instrs fast c.locs c.lbls c.i c.o

The role of the instructions 𝑒𝑠 is also different: in the FastConfig, this field represents the innermost
currently-executing instruction sequence, rather than the top-level list of instructions that make up
the program.

Label stacks
The reified LabelStack stores the context surrounding the currently-executing instructions, in an
inside-out fashion: The top of the label stack represents the immediate outer label context, and the
bottom of the stack corresponds to the program’s top-most label.

The definition of the LabelStack type is provided below:

inductive LabelStack (locs : List Ty) : List (List Ty) -> List Ty -> Type where
 | empty : LabelStack locs [] o
 | push :
 (∀ b', Instr fast locs lbls (i ++ b') (o ++ b')) ->
 Stack b -> Instrs fast locs lbls (o ++ b) o' ->
 LabelStack locs lbls o' ->
 LabelStack locs (i :: lbls) o

The empty constructor is the initial state of the label stack. When a block or loop is encountered during
evaluation, the push constructor adds a new frame to the LabelStack.

The push constructor mirrors the definition of the label administrative instruction, which is
reproduced below:

inductive Instr : InstrKind -> List Ty -> List (List Ty) -> List Ty -> List Ty -> Type
where
 | ...
 | label :
 (∀ b', Instr spec locs lbls (i ++ b') (o ++ b')) ->
 Stack i' -> Instrs spec locs (i :: lbls) i' o ->
 Instr spec locs lbls b (o ++ b)

To see this relation more clearly, let’s first recap what each field of the label instruction represents:
• The continuation, an instruction sequence that gets executed when the label is branched to. The

continuation is stack-base-polymorphic, as witnessed by the universal quantifier ∀.
• The inner stack, storing the values that the inner instruction sequence operates on. When a label is

created, the stack is split according to its type, and the inner stack is stored inside the label, while
the outer stack is stored in the 𝑣𝑠 field of the configuration.

• The inner instruction sequence, representing the body of the label. When a label is created, the inner
instruction sequence is initialized with the body of the block (or loop). The rest of the program’s
instruction stream (the outer instructions) is sequenced after the label instruction, and stored in the
𝑒𝑠 field of the configuration.

The fields of the push constructor mirror those of labels:
• The continuation, with the same meaning and type as the label’s continuation.
• The outer stack. When a push frame is created, the stack is split according to the type of the newly-

created label, and the outer stack is stored inside in the push frame. The inner stack is stored in the
𝑣𝑠 field of the configuration.

34

• The outer instruction sequence. When a push frame is created, the inner instruction sequence (the
block or loop’s body) is stored in the 𝑒𝑠 field of the configuration, and the outer instruction stream
is stored inside the push frame.

To summarize the difference between push frames and labels, when a label is created, it encapsulates
the inner state of its label, while the configuration stores the outer state of the program. On the other
hand, when a push frame is created, the inner state of the label is stored in the configuration, while the
outer state is encapsulated inside the push frame.

This is where the efficiency of push frames comes from: The state of the innermost label, which includes
the currently-executing instructions, is readily-available in the configuration, while the state of the
outer labels is stored away inside the LabelStack.

Execution
The only reduction rules that differ between the Spec and the Fast interpreter are those related to
control-flow. Instead of reducing blocks and loops to labels, the Fast interpreter converts them into
push frames:

inductive FastStep :
 (c : Context) -> (c' : Context) -> FastConfig c -> FastConfig c' -> Type
where
 | ...
 | fstep_block :
 FastStep
 ⟨locs, lbls, i' ++ i, o⟩ ⟨locs, o :: lbls, i', o⟩
 ⟨mem, ls, lstk, vs' ++ vs, seq (block es') es⟩
 ⟨mem, ls, push (λ _ => nop) vs es lstk, vs', es'⟩

 | fstep_loop :
 FastStep
 ⟨locs, lbls, i' ++ i, o⟩ ⟨locs, i' :: lbls, i', o⟩
 ⟨mem, ls, lstk, vs' ++ vs, seq (loop es') es⟩
 ⟨mem, ls, push (λ _ => loop es') vs es lstk, vs', es'⟩

When a br instruction is encountered, it can immediately start “bubbling up” the label stack, without
being converted to a breaking administrative instruction:

inductive FastStep :
 (c : Context) -> (c' : Context) -> FastConfig c -> FastConfig c' -> Type
where
 | ...
 | fstep_br_hit :
 FastStep
 ⟨locs, l :: lbls, l ++ i, o⟩ ⟨locs, lbls, l ++ i', o⟩
 ⟨mem, ls, push k vs' es' lstk, vs, seq (br hit) es⟩
 ⟨mem, ls, lstk, vs.take _ ++ vs', seq (k _) es'⟩

 | fstep_br_miss :
 FastStep
 ⟨locs, l :: lbls, l ++ i, o⟩ ⟨locs, lbls, l ++ i, o⟩
 ⟨mem, ls, push k vs' es' lstk, vs, seq (br (miss ix)) es⟩
 ⟨mem, ls, lstk, vs, seq (br ix) es'⟩

The fstep_br_hit rule replaces a branch targeting the current label with its continuation, which is
popped from the LabelStack. The inner stack (readily available in the configuration) is appended to
the outer stack, which was also stored in the just-popped frame.

35

The fstep_br_miss rule simply pops a frame from the LabelStack and decrements the index of the
br. Because the inner stack (which ultimately needs to be sent to the target of the branch) is stored in
the configuration, there’s no need for a separate breaking instruction to capture it.

When the instruction stream 𝑒𝑠 becomes empty, that means the innermost label has executed to
completion. If the LabelStack is empty, then the configuration has reached a final state. If the
LabelStack isn’t empty, then the next frame is popped and its outer instruction sequence is moved
into the configuration, and its outer stack is appended to the current inner stack:

inductive FastStep :
 (ctx : Context) -> (ctx' : Context) -> FastConfig ctx -> FastConfig ctx' -> Type
where
 | fstep_done_empty :
 FastStep
 ⟨locs, [], i, i⟩ ⟨locs, [], i, i⟩
 ⟨mem, ls, empty, vs, done⟩ ⟨mem, ls, empty, vs, done⟩

 | fstep_done_push :
 FastStep
 ⟨locs, l :: lbls, i, i⟩ ⟨locs, lbls, i ++ i', o⟩
 ⟨mem, ls, push k vs' es lstk, vs, done⟩
 ⟨mem, ls, lstk, vs ++ vs', es⟩

The runnable implementations of these reduction rules are implemented similarly in the
FastConfig.eval function and its proof-carrying variant FastConfig.eval_proofCarrying.

3.3.4. Proving correctness of the optimization
Proving that the LabelStack optimization is correct involves another soundness proof, showing
that for any execution trace produced by the Fast interpreter, an equivalent execution trace can be
produced by the Spec interpreter.

The signature of this proof is most easily expressed using the relational versions of the interpreters:

def optimization_sound :
 (cfg : FastConfig ctx) -> (cfg' : FastConfig ctx') ->
 FastSteps ctx ctx' cfg cfg' ->
 SpecSteps ctx ctx' cfg cfg'

However, the above signature is not quite correct. The types of the configurations differ between the
Spec and Fast interpreters, so a suitable configuration translation function is required to properly
relate them. Furthermore, because of the different nesting of labels and push frames, the contexts of
equivalent configurations also differ, so a context translation function is also required.

Context and configuration translation
Below is the definition for context translation. Similar to the other functions operating on
configurations, it makes use of an unpacked helper:

def FastConfig.toSpecContext_unpacked
 (lstk : LabelStack locs lbls o) (vs : Stack i) (es : Instrs spec locs lbls i o)
 : Context
:=
 match lstk with
 | empty => ⟨locs, lbls, i, o⟩
 | push k vs' es' lstk =>
 FastConfig.toSpecContext_unpacked
 lstk vs' (seq (label (λ b => (k b).toSpec) vs es.toSpec) es'.toSpec)

36

def FastConfig.toSpecContext (cfg : FastConfig ctx) -> Context :=
 match cfg with
 | ⟨_, _, lstk, vs, es⟩ =>
 FastConfig.toSpecContext_unpacked lstk vs es.toSpec

Given a FastConfig, the function toSpecContext computes the context type of an equivalent
SpecConfig. To achieve this, it recurs over the LabelStack, converting it into a series of nested labels.
Finally, when the LabelStack is empty, which means all push frames have been transformed into
labels, it simply returns the type of the current instruction stream.

The configuration translation function uses the same recursion pattern, but returning the translated
configuration itself rather than just its type:

def FastConfig.toSpec_unpacked
 (mem : Memory) (ls : Stack locs) (lstk : LabelStack locs lbls o)
 (vs : Stack i) (es : Instrs spec locs lbls i o)
 : SpecConfig (FastConfig.toSpecContext_unpacked lstk vs es)
:=
 match lbls, lstk with
 | _, empty => ⟨mem, ls, vs, es⟩
 | _ :: _, push k vs' es' lstk =>
 FastConfig.toSpec_unpacked
 mem ls lstk vs' (seq (label (λ b => (k b).toSpec) vs es.toSpec) es'.toSpec)

def FastConfig.toSpec (cfg : FastConfig ctx) : SpecConfig cfg.toSpecContext :=
 match cfg with
 | ⟨mem, ls, lstk, vs, es⟩ => FastConfig.toSpec_unpacked mem ls lstk vs es.toSpec

Using these translation functions, we can now give a type-correct signature for the soundness proof:

def optimization_sound :
 (cfg : FastConfig ctx) -> (cfg' : FastConfig ctx') ->
 FastSteps ctx ctx' cfg cfg' ->
 SpecSteps cfg.toSpecContext cfg'.toSpecContext cfg.toSpec cfg'.toSpec

Similar to the previous soundness proofs, the optimization proof can be divided into a proof relating
the small-step semantics, and a secondary proof that extends to execution traces. However, unlike
the proofs showing equivalence between the relational and functional interpreters, the small-step
proof needs to relate a single step of evaluation in the Fast interpreter to multiple steps in the Spec
interpreter. This is because some instructions, notably br, reduce directly in the Fast interpreter, while
the Spec interpreter first converts them into administrative instructions.

Unfortunately, despite multiple different attempts, due to the complexity of the types involved, we
were unable to provide an implementation of the proof.

4. Related work
The official WebAssembly specification includes a reference interpreter [12] implemented in OCaml.
This interpreter keeps a close correspondence to Wasm’s semantics, differing only in its representation
of the stack and of label contexts. However, its implementation of control-flow leads to severe
performance issues, especially when executing programs compiled from languages that support
irreducible control flow [21].

Watt et al. have implemented WasmCert [23], a pair of two mechanizations of the WebAssembly
semantics, in the Coq and Isabelle [24] theorem provers. The mechanization includes an extrinsic
mechanization of the Wasm type system. They also provide executable verified interpreters extracted

37

from the mechanizations. Like the reference interpreter, these mechanizations exhibit the same
efficiency issues.

WasmRef-Isabelle [7] is a verified WebAssembly interpreter written in Isabelle and proven correct with
respect to the WasmCert-Isabelle mechanization. WasmRef also uses an optimized representation of
control-flow, and is performant enough to be used as part of the fuzzing infrastructure of Wasmtime
[25], a widely-used WebAssembly implementation. However, due to Isabelle’s lack of dependent types,
WasmRef-Isabelle’s encoding of the WebAssembly syntax is extrinsically-typed, which limits the
authors to proving partial correctness of the interpreter [7, section 4.3.2].

Titzer has implemented Wizard [5], an in-place WebAssembly interpreter with a strong focus on
performance. While this implementation addresses the performance issues of the reference interpreter
and employs a number of innovative optimizations, it would be difficult to formally verify, as it is not
implemented in a proof assistant language.

5. Limitations and future work
The current implementation of LeanWasm only supports a subset of the WebAssembly language. Some
features were omitted due to the difficulty of encoding them in Lean (such as SIMD instructions and
single-precision floating point numbers), while other features were omitted due to time constraints
(function calls, modules, module instantiation) and could be implemented in future work.

There is currently a great amount of code duplication between the naive Spec interpreter and the
optimized Fast interpreter, as most of the reduction rules are identical between them. The techniques
introduced by van der Rest et al. for defining intrinsically-typed interpreters à la carte [16] could be
used to separate the interpreters into composable language fragments, with one fragment defining the
common operations, and distinct fragments defining each interpreter’s handling of control-flow.

Another interesting avenue to explore is measuring the performance impact of the intrinsic typing
machinery by performing benchmarks against an untyped version of the LeanWasm interpreter. While
the intrinsically-typed syntax adds some overhead in the form of runtime-retained type indices, it also
eliminates the need for value tagging and for validity checks during execution.

In the same vein, more optimizations could be explored, such as using more efficient heterogenous
data structures [26] instead of HLists for value stacks and local variables.

Lastly, it would be valuable to explore intrinsically-typed encodings for extensions to the WebAssembly
type system, such as SecWasm [27] (for information-flow control) or CT-wasm [28] (for constant-time
cryptography).

6. Conclusion
In this thesis, we have described an intrinsically-typed encoding of the WebAssembly abstract
syntax, and implemented two interpreters for this syntax. The first interpreter closely follows the
official reference interpreter, which causes it to handle control-flow in an inefficient way. The second
interpreter uses an optimized representation of control-flow to alleviate this issue.

Each interpreter is defined in both relational and functional styles, with soundness proofs attesting the
equivalence between the different versions. We have also discussed a soundness proof verifying the
correctness of the control-flow optimizations, and provided functions for translating typing contexts
and runtime configurations between the two interpreters.

Bibliography

38

[1] A. Haas et al., “Bringing the web up to speed with WebAssembly,” SIGPLAN Not., vol. 52, no. 6,
pp. 185–200, Jun. 2017, doi: 10.1145/3140587.3062363.

[2] “WebAssembly Specification.” [Online]. Available: https://webassembly.github.io/spec/core/

[3] “Wasmtime.” [Online]. Available: https://wasmtime.dev/

[4] “Wasmer: The Universal WebAssembly Runtime.” [Online]. Available: https://wasmer.io/

[5] B. L. Titzer, “A fast in-place interpreter for WebAssembly,” Proc. ACM Program. Lang., vol. 6, no.
OOPSLA2, Oct. 2022, doi: 10.1145/3563311.

[6] WebAssembly Community Group, “WebAssembly Test Suite.” [Online]. Available: https://github.
com/WebAssembly/testsuite

[7] C. Watt, M. Trela, P. Lammich, and F. Märkl, “WasmRef-Isabelle: A Verified Monadic Interpreter
and Industrial Fuzzing Oracle for WebAssembly,” Proc. ACM Program. Lang., vol. 7, no. PLDI, Jun.
2023, doi: 10.1145/3591224.

[8] C. Bach Poulsen, A. Rouvoet, A. Tolmach, R. Krebbers, and E. Visser, “Intrinsically-typed
definitional interpreters for imperative languages,” Proc. ACM Program. Lang., vol. 2, no. POPL,
Dec. 2017, doi: 10.1145/3158104.

[9] “The Lean Programming Language and Theorem Prover.” [Online]. Available: https://lean-lang.
org/

[10] “aionescu/lean-wasm: An intrinsically-typed interpreter for WebAssembly.” [Online]. Available:
https://github.com/aionescu/lean-wasm/

[11] N. de Bruijn, “Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem,” Indagationes Mathematicae
(Proceedings), vol. 75, no. 5, pp. 381–392, 1972, doi: https://doi.org/10.1016/1385-7258(72)90034-0.

[12] WebAssembly Community Group, “WebAssembly Reference Interpreter.” [Online]. Available:
https://github.com/WebAssembly/spec/tree/main/interpreter

[13] “The OCaml Programming Language.” [Online]. Available: https://ocaml.org/

[14] “The Agda Wiki.” [Online]. Available: https://wiki.portal.chalmers.se/agda/pmwiki.php

[15] “The Coq Proof Assistant.” [Online]. Available: https://coq.inria.fr/

[16] C. van der Rest, C. B. Poulsen, A. Rouvoet, E. Visser, and P. Mosses, “Intrinsically-typed
definitional interpreters à la carte,” Proc. ACM Program. Lang., vol. 6, no. OOPSLA2, Oct. 2022,
doi: 10.1145/3563355.

[17] David Thrane Christiansen, “The Universe Design Pattern - Functional Programming in
Lean.” [Online]. Available: https://lean-lang.org/functional_programming_in_lean/dependent-
types/universe-pattern.html

[18] “Coercions using Type Classes - Theorem Proving in Lean 4.” [Online]. Available: https://lean-
lang.org/theorem_proving_in_lean4/type_classes.html#coercions-using-type-classes

[19] S. Ullrich and L. de Moura, “Counting immutable beans: reference counting optimized for purely
functional programming,” in Proceedings of the 31st Symposium on Implementation and Application
of Functional Languages, in IFL '19. Singapore, Singapore: Association for Computing Machinery,
2021. doi: 10.1145/3412932.3412935.

[20] “Inaccessible Patterns - Theorem Proving in Lean 4.” [Online]. Available: https://lean-lang.org/
theorem_proving_in_lean4/induction_and_recursion.html#inaccessible-patterns

39

https://doi.org/10.1145/3140587.3062363
https://webassembly.github.io/spec/core/
https://wasmtime.dev/
https://wasmer.io/
https://doi.org/10.1145/3563311
https://github.com/WebAssembly/testsuite
https://github.com/WebAssembly/testsuite
https://doi.org/10.1145/3591224
https://doi.org/10.1145/3158104
https://lean-lang.org/
https://lean-lang.org/
https://github.com/aionescu/lean-wasm/
https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
https://github.com/WebAssembly/spec/tree/main/interpreter
https://ocaml.org/
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://coq.inria.fr/
https://doi.org/10.1145/3563355
https://lean-lang.org/functional_programming_in_lean/dependent-types/universe-pattern.html
https://lean-lang.org/functional_programming_in_lean/dependent-types/universe-pattern.html
https://lean-lang.org/theorem_proving_in_lean4/type_classes.html#coercions-using-type-classes
https://lean-lang.org/theorem_proving_in_lean4/type_classes.html#coercions-using-type-classes
https://doi.org/10.1145/3412932.3412935
https://lean-lang.org/theorem_proving_in_lean4/induction_and_recursion.html#inaccessible-patterns
https://lean-lang.org/theorem_proving_in_lean4/induction_and_recursion.html#inaccessible-patterns

[21] Yuri Iozzelli, “Solving the structured control flow problem once and for all.” [Online].
Available: https://medium.com/leaningtech/solving-the-structured-control-flow-problem-once-
and-for-all-5123117b1ee2

[22] G. HUET, “The Zipper,” Journal of Functional Programming, vol. 7, no. 5, pp. 549–554, 1997, doi:
10.1017/S0956796897002864.

[23] C. Watt, X. Rao, J. Pichon-Pharabod, M. Bodin, and P. Gardner, “Two Mechanisations of
WebAssembly 1.0,” in Formal Methods, M. Huisman, C. Păsăreanu, and N. Zhan, Eds., Cham:
Springer International Publishing, 2021, pp. 61–79.

[24] “Isabelle.” [Online]. Available: https://isabelle.in.tum.de/

[25] Bytecode Alliance, “A fast and secure runtime for WebAssembly.” [Online]. Available: https://
github.com/bytecodealliance/wasmtime

[26] W. Swierstra, “Heterogeneous binary random-access lists,” Journal of Functional Programming,
vol. 30, p. , 2020, doi: 10.1017/S0956796820000064.

[27] I. Bastys, M. Algehed, A. Sjösten, and A. Sabelfeld, “SecWasm: Information Flow Control
for WebAssembly,” in Static Analysis: 29th International Symposium, SAS 2022, Auckland, New
Zealand, December 5–7, 2022, Proceedings, Auckland, New Zealand: Springer-Verlag, 2022, pp.
74–103. doi: 10.1007/978-3-031-22308-2_5.

[28] C. Watt, J. Renner, N. Popescu, S. Cauligi, and D. Stefan, “CT-wasm: type-driven secure
cryptography for the web ecosystem,” Proc. ACM Program. Lang., vol. 3, no. POPL, Jan. 2019, doi:
10.1145/3290390.

A Organization of the source code
The full source code for LeanWasm is available on GitHub [10]. The module hierarchy of the source
code is organized in the following manner:
• LeanWasm.HList: Contains the definition of heterogenous lists (HList) and well-typed list indices

(Ix), as well as related operations.
• LeanWasm.Syntax.Ty: Contains the definitions of WebAssembly value types (Ty) and stack types,

and associated coercions and pattern synonyms.
• LeanWasm.Syntax.Instr: Contains the definitions of intrinsically-typed WebAssembly instructions

(Instr), instruction sequences (Instrs), and arithmetic operators (IBinOp, IRelOp etc.).
• LeanWasm.Eval.Common: Defines typing contexts (Context) and helper functions used in the

execution of Wasm programs, such as memory operations.
• LeanWasm.Eval.Spec: Defines the unoptimized Spec evaluator, including its configurations

(SpecConfig), relational semantics (SpecStep, SpecSteps), and executable evaluation
functions (SpecConfig.eval, SpecConfig.evals) along with proof-carrying variants
(SpecConfig.eval_proofCarrying, SpecConfig.evals_proofCarrying).

• LeanWasm.Eval.Fast: Defines the unoptimized Fast evaluator, including its configurations
(FastConfig), relational semantics (FastStep, FastSteps), and executable evaluation
functions (FastConfig.eval, FastConfig.evals) along with proof-carrying variants
(FastConfig.eval_proofCarrying, FastConfig.evals_proofCarrying).

• LeanWasm.Examples: Contains a few example Wasm programs (expressed in the intrinsically-typed
abstract syntax tree) that were used to test the interpreters.

• Main: Defines a small harness that runs the example programs.

40

https://medium.com/leaningtech/solving-the-structured-control-flow-problem-once-and-for-all-5123117b1ee2
https://medium.com/leaningtech/solving-the-structured-control-flow-problem-once-and-for-all-5123117b1ee2
https://doi.org/10.1017/S0956796897002864
https://isabelle.in.tum.de/
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://doi.org/10.1017/S0956796820000064
https://doi.org/10.1007/978-3-031-22308-2_5
https://doi.org/10.1145/3290390

	Introduction
	Background
	WebAssembly
	Type system
	Types
	Instructions
	Instruction sequences
	Control instructions

	Semantics
	Runtime structure
	Store
	Call frames
	Modules
	Memory
	Values
	Stacks

	Execution
	Basic instructions
	Administrative instructions
	Label contexts

	Reference interpreter

	Dependently-typed programming
	Theorem proving
	Lean 4

	Interpreters for programming languages
	Untyped interpreters
	Abstract syntax tree
	Evaluation function
	Downsides of the untyped representation

	Intrinsically-typed interpreters
	Abstract syntax tree
	Evaluation function
	Restricting the type domain

	An intrinsically-typed interpreter for WebAssembly
	Syntax representation
	Types and stacks
	Instructions
	Local variables
	Control-flow
	Branching

	Administrative instructions
	Instruction kinds

	Arithmetic instructions
	Memory
	Trapping

	Execution
	Contexts and configurations
	Memory representation

	Relational interpreter
	Arithmetic instructions
	Local variables
	Control instructions
	Branching
	Administrative instructions
	Trapping
	Memory
	Execution traces
	Final states

	Runnable interpreter
	Execution traces

	Proving the runnable interpreter correct
	Small-step soundness proof
	Soundness proof for execution traces

	Optimizing control-flow
	Inefficiencies of labels
	An improved representation of control-flow
	The optimized interpreter
	Administrative instructions
	Configurations
	Label stacks
	Execution

	Proving correctness of the optimization
	Context and configuration translation

	Related work
	Limitations and future work
	Conclusion
	Bibliography
	Organization of the source code

