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Abstract

Non-classical logics are an adaptation of classical (boolean) logic that support nuanced forms of
reasoning. This additional expressivity comes at a cost: non-classical logics tend to be more com-
plex. This additional complexity is especially evident in the decision problem for the logic, namely
when determining whether a given formula is provable in the logic. Automated theorem provers are
implementations of decision procedures that can solve this problem using proof systems.

This thesis presents a generalized decision procedure for non-classical intermediate logics through an
embedding into intuitionistic logic, enabled by the theory of cut-restriction that refines the standard
proof system. The resulting automated theorem prover, SuperJ, is capable of proving theorems of a
wide range of intermediate logics. The implementation is evaluated on a set of benchmark formulas
and compared to the current state-of-the-art theorem prover intuitRIL. The results show that SuperJ
is reasonably competitive with intuitRIL and could be further developed or used as a stepping stone
to obtain a universal prover for non-classical logics.



Chapter 1

Introduction

Automated theorem proving is a subfield of automated reasoning, concerned with the development of
algorithms for logical reasoning. It is important in computer science, with applications in software and
hardware verification, programming languages and artificial intelligence. Interest in this topic remains
strong ever since its inception, as evidenced by regularly held conferences, e.g. collectively as the
International Joint Conference on Automated Reasoning (IJCAR) [1]. The main task of automated
theorem provers is to show if some statement is a logical consequence of a particular logic represented
by a set of axioms and rules. Since this is called the decision problem of logics, automated theorem
provers are said to be decision procedure implementations. Often, the target logic for these proce-
dures is classical propositional or first-order logic, but possibly a non-classical logic. Ideally, when
a formula is found to be valid for the logic, the theorem prover produces a proof or constructs a
counterexample otherwise. These proof procedures are capable of solving incredibly large problems
in a short amount of time because of readily available computational resources. The community sur-
rounding the international conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX) [2] has developed fast and practical automated theorem provers for many
logics. Tableaux provers are particularly competitive because of their numerous heuristics and opti-
mizations, such as restricted backtracking and focusing. Internally, automated theorem provers use a
proof system, a formalization of the target logic. In general, instead of generating all possible proofs
from the axioms and rules until one leading to the desired formula is found, efficient theorem provers
usually start at the goal formula, searching backwards though all possible constructions of the proof.

From the perspective of logics as sets of formulas closed under modus ponens and uniform substi-
tution, intuitionistic logic is a proper subset of classical logic since it rejects the law of the excluded
middle (p ∨ ¬p). Logics that lie between intuitionistic and classical logic in terms of subset inclusion
are collectively called intermediate logics. These include Jankov, Gödel-Dummett, Kreisel-Putnam,
Scott logic and many more. While the development of automated theorem provers has traditionally
focused on classical logic, many practical applications often also require non-classical reasoning. For
example, dependently typed programming languages leverage the constructive nature of intuitionistic
logic through the Curry-Howard isomorphism. Furthermore, intermediate logics have their applica-
tions in the field of answer set programming [3]. From the study of proof theory, it is known that most
intermediate logics lack a suitable proof system for automated theorem proving. Ciabattoni et al. [4,
5, 6], proposed the novel idea of cut-restriction that allows usage of the standard sequent calculus as
proof system for proving theorems of intermediate logics.

Recently, Fiorentini and Ferrari [7] showed that cut-restriction forms a good basis for the implemen-
tation of an automated theorem prover, by introducing a decision procedure for some intermediate
logics which they named intuitRIL. The focus of their work has been on the optimization for certain
well-known intermediate logics, currently implemented logics include Gödel-Dummett Logics, Jankov
Logic and Kreisel-Putnam Logic. Their implementation is an extension of an existing automated
theorem prover for intuitionistic propositional logic that reduces the problem of deciding theorems
of intermediate logics to the satisfiability problem (SAT). The procedure constructs either a sequent
calculus derivation or a Kripke countermodel. The authors also note that the procedure could be
extended to support more intermediate logics in a modular fashion.
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While, intermediate logics have been studied extensively from a proof-theoretic perspective, proof
search procedures, and especially automated theorem prover implementations are rare. Fiorino [8,
9] presented duplication-free tableaux calculi for Gödel-Dummett logic, Jankov logic and two other
propositional intermediate logics. While Kuznets and Lellmann [10] give semantically inspired con-
structions of nested sequent calculi for propositional intermediate logics including Gödel-Dummett
logic, and a prototype proof search implementation was also presented.

Through literature review, it has become clear that there are currently no automated theorem provers
that support more than a few intermediate logics. The closest being intuitRIL, which can be extended
to support additional logics, raising the question whether it is possible to generalize the procedure
further. This brings us to the main research question of this thesis.

Is it possible to implement an all-purpose automated theorem prover for intermediate logics?

Fiorentini and Ferrari note that the usage of an incremental SAT-solver for intuitRIL, prevents them
from exploiting standard sequent and tableaux calculi optimizations. Therefore, the presented research
also investigates if a procedure based on conventional proof systems could still compete with intuitRIL
for the logics it supports. Hence, in addition to the main research question, the following sub-questions
are taken into consideration.

– Are there any performance-increasing optimizations or search space reducing heuristics possible
for proof search in intermediate logics?

– If it is possible to implement the procedure using standard proof systems, how would its per-
formance compare to the current state-of-the-art theorem prover for these logics?

To answer these questions, the automated theorem prover SuperJ has been developed and imple-
mented in the functional programming language Haskell. The prover supports many intermediate
logics via an embedding-preprocessing step followed by intuitionistic proof search. The foundation
underlying the prover is the theory of cut-restriction, which has been demonstrated to be applicable
to large classes of logics including commutative substructural and modal logics. By focussing on the
smaller but infinite class of intermediate logics, the prover can be seen as a first step towards a
universal automated theorem prover for non-classical logics.

After this introduction, the thesis is structured as follows. Chapter 2 provides the necessary proof
theoretical background, with a focus on sequent calculi and intermediate logics. Chapter 3 continues
with a discussion of the theory of cut-restriction and the usage of sequent calculi for proof search
procedures. Chapter 4 introduces the automated theorem prover SuperJ, presents implementation
details and performance evaluations comparing it to the state-of-the-art theorem prover intuitRIL.
Finally, Chapter 5 concludes with a discussion of the results and possible directions for future work.
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Related Work

Besides the theory of cut-restriction by Ciabattoni et al. [5], there are several other proposals for
that aim to generalize proof systems for non-classical logics. Though these alternatives are either less
general or unsuitable for the construction of the envisioned universal automated theorem prover that
supports intermediate logics, two approaches are discussed here as their ideas are closely related.

Lahav and Zohar [12] introduced a generalization of analytic sequent calculi that retains certain
results, such as decidability. Their parameterized notion of the subformula property allowed them
to reduce the decidability problem of these calculi to the satisfiability problem [13]. Thus, effec-
tively replacing proof searching by SAT solving instead. This is beneficial, since there exist many
industrial-grade SAT solvers that are considered very efficient despite their exponential worst-case
time complexity. While this presentation includes interesting complexity results, the proposed reduc-
tion is limited to pure calculi, whose rules do not enforce any limitations on the context formulas
while including all the usual structural rules. This restriction still allows to capture many interesting
logics including paraconsistent logics and primal logic, though unavoidably also excludes many other
logics, such as our desired intermediate logics.

Fuenmayor and Benzmüller [14] have presented semantical embeddings of non-classical logics into
classical higher order logic (HOL). Logics that have been shown to be compatible include condi-
tional logics [15] and every normal modal logic [16]. Classical higher order logic also benefits from
existing automated theorem provers. While there is a cut-free sequent calculus for HOL, its predicate
variables may be instantiated with terms that introduce arbitrary new formulas. This allows for cut-
simulation, which breaks the analyticity. Therefore, automated theorem provers based on this theory
require various other means to avoid cut-simulations [17]. Furthermore, some important metalogical
properties (such as the decidability of many intermediate and substructural logics) are obscured or
lost under the embeddings into HOL [18, 5].
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Chapter 2

Preliminaries

The proof systems that form the basis of many automated theorem provers originated from the
research area of structural proof theory, and arose as a means to formalize the logical steps in
mathematical arguments. Proof calculi present logics as formal systems consisting of a language,
axioms, and rules of inference. Well-known styles of proof calculi include Hilbert-style calculi, sequent
calculi, tableaux systems and the natural deduction system. In this chapter, common proof systems
for classical and intuitionistic logic are introduced in a similar fashion as the textbooks of Galatos
et al. [19] and Ono [20], starting with Hilbert-style calculi, followed by Gentzen’s sequent calculi for
classical and intuitionistic logic and concluding with a brief discussion on intermediate logics.

2.1. Language of Logics

For our basic formal language of logic, we have the logical connectives ∧, ∨, → and ¬ for con-
junction, disjunction, implication, and negation respectively. Additionally, p, q, r, . . . are propositional
variables belonging to the fixed countable set Φ. Arbitrary well-formed formulas are represented by the
metavariables A,B,C,D,E, F . As usual, well-formed formulas are defined inductively, starting with
propositional variables and built up using the logical connectives according to the following grammar
in Backus-Naur form.

F := p ∈ Φ | F ∧ F | F ∨ F | F → F | ¬F

When writing formulas, (¬) binds more tightly than all other logical connectives. Otherwise, parenthe-
ses are used where required to avoid ambiguities. Any formula that appears in the inductive definition
of some formula F , including F itself, is called a subformula of F . The set of all subformulas of
F is denoted subf(F ) and the set of all propositional variables occurring in F is denoted var(F ).
We will constrain our attention to the propositional logics compatible with the language defined so
far. Though it can be extended to support other logics with e.g. quantifiers, modal operators, or
substructural logical connectives.

2.2. Hilbert-style Calculus for Classical Logic

There are several ways of formalizing classical logic (CL), one of the standard ones being the Hilbert-
style calculi. These systems typically consist of axiom schemes and only a few rules of inference,
which determine the provability of formulas in the system. I.e. a given formula is provable in the
system if it can be derived though rule applications, starting from the axiom schemes. Then, a proof
of the formula is a finite tree-like structure showing the derivation. These syntactic concepts are
conveniently symbolic and mechanical, as opposed to the semantical approaches to logic such as
(boolean) algebra or model theory.
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There are many alternative Hilbert-style calculi for classical logic, differing in their selection of axiom
schemes. A standard one is the system HK [19] presented in Figure 2.1. This particular system is
composed of axiom schemes and the single rule of modus ponens. Axiom schemes are families of
formulas with the same syntactic shape, whereas the rule of modus ponens allows for the deduction
of a formula B from the formulas A → B and A. Instances of the axiom schemes and the rule are
obtained by replacing the metavariables in the axiom schemes with arbitrary formulas.

A A→ B (mp)
B

(A1) A→ (B → A)

(A2) (A→ (B → C)) → ((A→ B) → (A→ C))

(A3) (A ∧B) → A

(A4) (A ∧B) → B

(A5) (A→ B) → ((A→ C) → (A→ (C ∧B)))

(A6) A→ (A ∨B)

(A7) B → (A ∨B)

(A8) (A→ C) → ((B → C) → ((A ∨B) → C))

(A9) (A→ B) → ((A→ ¬B) → ¬A)

(A10) A→ (¬A→ B)

(A11) ¬¬A→ A

Figure 2.1: Hilbert-style calculus HK for classical logic.

Proofs in the Hilbert-style calculus HK are constructed inductively. Every axiom scheme instance is
a proof of itself, and the modus ponens rule combines the two proofs of its premises to produce a
proof of its conclusion.

Example 1 The formula p→ p has the following proof in HK, where the uppermost formulas in the
proof are instances of axiom schemes (A1), (A1) and (A2) (from left to right), respectively.

p→ (q → p)

p→ ((q → p) → p) (p→ ((q → p) → p) → ((p→ (q → p)) → (p→ p)))

(p→ (q → p)) → (p→ p)
p→ p

From the example proof above, it should be clear that for any formula A, the formula A → A is
provable in HK, by replacing every occurrence of P in the proof with A. This demonstrates that
the logic formalized by the system is not only closed under modus ponens, but also under uniform
substitution of propositional variables for arbitrary formulas.

It may be convenient to introduce a nullary logical connective (logical constant) ⊤ for the true
proposition in our language. The Hilbert-style calculus HK can be adjusted accordingly by adding
the constant as an axiom (A12), shown below. It is also possible to introduce a logical constant ⊥
for the false proposition and redefining the negation ¬A as an abbreviation for A→ ⊥. In this case,
the axiom schemes (A9) and (A10) can be replaced by (A13). The axiom scheme (A11) of HK is
called the law of double negation. It can be replaced by the law of excluded middle (A14), under the
assumption of the other axiom schemes.
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(A12) ⊤ (A13) ⊥ → A (A14) A ∨ ¬A

Even though the Hilbert-style calculus HK is an elegant formalization of classical logic, it lacks a
normal form of proofs and a natural proof search algorithm. Specifically, this system is not well-suited
for backward proof search, where rules are applied in reverse to find a proof of a given formula.
Consider that the modus ponens rule requires the premise A to be known in order to apply it, even
though it cannot be easily derived from the conclusion B. Next, we will see another proof system
that can be adapted for proof searching.

2.3. Sequent Calculus for Classical Logic

In 1935, Gentzen [21] introduced another kind of proof system, the sequent calculi LK for classical
logic and LJ for intuitionistic logic. Their main advantage over Hilbert-style systems is the existence
of a normal form for proofs of every provable formula due to the famous cut-elimination theorem,
showing that any proof can be normalized to one without any application of the cut rule (generalization
of modus ponens). Importantly, it turns out that a decision procedure can be obtained from this
consequence. In order to achieve this, the basic expressions in systems by Gentzen are sequents
written using a meta-logical language, as opposed to formulas in Hilbert-style calculi and natural
deduction systems. These expressions have the following form, where each Ai (0 ≤ i ≤ n) and each
Bj (0 ≤ j ≤ m) are formulas.

A1, . . . , An︸ ︷︷ ︸
antecedent

⇒ B1, . . . , Bm︸ ︷︷ ︸
succedent

Here, commas and the sequent arrow ‘⇒’ are metalogical symbols that allow reasoning inside of
the formula (fixed depth deep inference). Thus, a sequent is a pair of finite sequences of formulas,
where the left sequence is called the antecedent and the right sequence the succedent. The intended
meaning of a sequent is that all the formulas in the antecedent imply any one of the formulas in the
succedent, i.e.

∧
Γ →

∨
∆ where

∧
Γ is the iterated conjunction (. . . (A1 ∧A2)∧ . . . An), and

∨
∆

the iterated disjunction (. . . (B1 ∨ B2) ∨ . . . Bm). When the antecedent is empty, the sequent has
the formula interpretation of

∨
∆. Conversely, when the succedent is empty, the sequent represents

¬
∧
Γ. This formula interpretation of a sequent is also known as its corresponding formula. If the

succedent contains at most one formula then the sequent is said to be single-succedent, otherwise it
is multi-succedent.

The sequent calculus LK for classical logic, presented in Figure 2.2, consists of the identity axiom
scheme and three kinds of inference rules: the cut rule, rules for logical connectives and structural
rules. For the rules of inference, the metavariables appearing in the rules are called active formulas
and the active formula of the cut rule is its cut formula. Greek uppercase letters are used to denote
the rule context, i.e. the formulas in the sequent that are not active. Furthermore, the sequents above
the line of a rule of inference are its upper sequents (the premises) and the sequent below the line is
its lower sequent (the conclusion). For each inference rule in LK, its lower sequent is provable if all
of its upper sequents are provable.
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Axiom: Cut rule:

A⇒ A Γ ⇒ ∆, A A,Σ ⇒ Π
(cut)

Γ,Σ ⇒ ∆,Π

Rules for logical connectives:

Ai,Γ ⇒ ∆
(L∧) i ∈ {1, 2}

A1 ∧A2,Γ ⇒ ∆

A,Γ ⇒ ∆ B,Γ ⇒ ∆
(L∨)

A ∨B,Γ ⇒ ∆

Γ ⇒ ∆, A B,Σ ⇒ Π
(L→)

A→ B,Γ,Σ ⇒ ∆,Π

Γ ⇒ ∆, A
(L¬)¬A,Γ ⇒ ∆

Γ ⇒ ∆, A Γ ⇒ ∆, B
(R∧)

Γ ⇒ ∆, A ∧B

Γ ⇒ ∆, Ai (R∨) i ∈ {1, 2}
Γ ⇒ ∆, A1 ∨A2

A,Γ ⇒ ∆, B
(R→)

Γ ⇒ ∆, A→ B

A,Γ ⇒ ∆
(R¬)

Γ ⇒ ∆,¬A

Structural rules:

Γ, A,B,Σ ⇒ ∆
(LE)

Γ, B,A,Σ ⇒ ∆

A,A,Γ ⇒ ∆
(LC)

A,Γ ⇒ ∆

Γ ⇒ ∆ (LW)
A,Γ ⇒ ∆

Γ ⇒ ∆, A,B,Π
(RE)

Γ ⇒ ∆, B,A,Π

Γ ⇒ ∆, A,A
(RC)

Γ ⇒ ∆, A

Γ ⇒ ∆ (RW)
Γ ⇒ ∆, A

Figure 2.2: Sequent calculus LK for classical logic.

A formula A is said to be provable in the sequent calculus when there is a proof of the sequent ⇒ A
in it. Like in the Hilbert-style calculus, a proof in the sequent calculus is a tree-like structure showing
the derivation, as in Example 2. The sequent at the root of the derivation is the end sequent to be
proved. Furthermore, a sequent is provable in sequent calculus LK if and only if its corresponding
formula is provable in the Hilbert-style calculus HK.

Similar to the Hilbert-style calculus HK, the sequent calculus LK can be extended with the logical
constants ⊤ and ⊥ by adding the axioms ⇒ ⊤ and ⊥ ⇒ respectively. When the negation is redefined
as an abbreviation for A → ⊥, the left (L¬) and right (R¬) negation rules can be deleted, as they
are now derivable from the other rules. Note that while this simplifies the system, it does result in
slightly longer proofs compared to the system with rules for negation. This is the preferred concise
presentation of sequent calculi in the book of Troelstra and Schwichtenberg [22].
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Example 2 Proof of axiom (A2) in sequent calculus LK, where (LE*) denotes multiple applications
of the left exchange rule (LE).

A⇒ A

A⇒ A
B ⇒ B C ⇒ C (L→)
B → C,B ⇒ C

(L→)
A→ (B → C), A,B ⇒ C

(LE*)
B,A,A→ (B → C) ⇒ C

(L→)
A→ B,A,A,A→ (B → C) ⇒ C

(LC)
A→ B,A,A→ (B → C) ⇒ C

(LE)
A,A→ B,A→ (B → C) ⇒ C

(R→)
A→ B,A→ (B → C) ⇒ A→ C

(R→)
A→ (B → C) ⇒ (A→ B) → (A→ C)

(R→)
⇒ (A→ (B → C)) → ((A→ B) → (A→ C))

2.4. Proof Search via Sequent Calculus

When using proof systems for proof searching, it is generally more convenient to start at the end
sequent and work backwards, attempting to find a proof-like tree obtained by applying rules in reverse
until all of its topmost sequents are axiom instances. More formally, for a sequent S, proof searching
is the process of constructing a proof by applying rules of inference in the converse direction, until all
the upper sequents are axiom scheme instances. If successful, the sequent S is considered provable
in the calculus. Only when exhaustive proof search has failed, it can be concluded that the sequent
is not provable.

At first glance, the presence of the cut rule in LK seems to imply that there has not been any progress
compared to their Hilbert-style counterparts with regard to the suitability for backward proof search,
as the cut rule is a generalization of modus ponens. However, due the celebrated cut-elimination
theorem of Gentzen [21], it is no longer necessary to take the cut rule into account when searching
for a proof in the sequent calculus. Since, through detailed case analysis, it was shown that any proof
in the sequent calculus can be transformed into a normal form without any application of the cut
rule. When cut-elimination holds for a given sequent calculus, it is said to be cut-free. Additionally,
the system gains the subformula property, often referred to as analyticity.

Definition 1 (Subformula property) A sequent calculus has the subformula property when every
provable sequent has a proof in it, where every formula appearing in the proof is a subformula of the
end sequent.

With the omission of the cut rule, we can modify the sequent calculus further to improve its suitability
for proof searching. The structural rules of the sequent calculus LK are useful for studying the
properties of logics, but also have the effect of exploding the proof search space. Consider the
exchange rules (LE, RE) that allow the formulas in the antecedent and succedent of the sequent to
be reordered. Exhaustive proof search requires all possible formula permutations to be considered.
Furthermore, by alternating applications of the contraction (LC, RC) and weakening (LW, RW) rules,
it is trivial to create an infinite proof search tree.
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Axiom:

A,Γ ⇒ ∆, A

Rules of inference:

A,B,Γ ⇒ ∆
(L∧)

A ∧B,Γ ⇒ ∆

A,Γ ⇒ ∆ B,Γ ⇒ ∆
(L∨)

A ∨B,Γ ⇒ ∆

Γ ⇒ ∆, A B,Γ ⇒ ∆
(L→)

A→ B,Γ ⇒ ∆

Γ ⇒ ∆, A
(L¬)¬A,Γ ⇒ ∆

Γ ⇒ ∆, A Γ ⇒ ∆, B
(R∧)

Γ ⇒ ∆, A ∧B

Γ ⇒ ∆, A,B
(R∨)

Γ ⇒ ∆, A ∨B

A,Γ ⇒ ∆, B
(R→)

Γ ⇒ ∆, A→ B

A,Γ ⇒ ∆
(R¬)

Γ ⇒ ∆,¬A

Figure 2.3: Sequent calculus LK* for classical logic.

The sequent calculus LK* for classical logic is a refined variant of LK that has neither explicit
structural rules nor the cut rule. This refined calculus enjoys several proof search advantages. First,
by making the antecedent and succedent unordered collections of formulas, the exchange rules (LE,
RE) can be omitted from the sequent calculus. This is achieved by changing the antecedent and
succedent of the sequents to be finite multisets instead of sequences. Multisets are functions mapping
each element from a set (its universe) to a natural number (its multiplicity). Next, consider that
the application of the weakening rules can be pushed upwards in the proof tree, towards its leafs.
Then, these rule applications can be eliminated by generalizing the identity axiom from A ⇒ A to
A,Γ ⇒ ∆, A. Finally, the contraction rules can be absorbed into the rules for logical connectives.
For example, the left conjunction rule (L∧) of LK can be viewed as a choice of formula Ai from
the conjunction A1 ∧ A2, requiring the use of left contraction when both are needed in the proof.
This is avoided in LK* by retaining both formulas in the antecedent, since the generalized identity
axiom ignores any unused formulas. In the book of Troelstra and Schwichtenberg [22], the multiset
based sequent calculus without structural rules is denoted G3cp for classical logic. As previously
noted, these systems also lack the rules for negation since they treat that logical connective as an
abbreviation. However, since this omission results in slightly longer proofs, LK* is preferred for proof
searching.

When the root-first proof search procedure fails to prove the upper sequent of an applicable rule of
inference, it is usually required to investigate all other possible rule applications to conclude that a
sequent is not provable. This is called backtracking and can be avoided in the case of invertible rules.
Rules are invertible if whenever the lower sequent of a rule is provable then so are the upper sequents.
For example, the left conjunction rule (L∧) discussed earlier was not invertible in system LK, since
while the possible lower sequent A ∧B ⇒ A is provable, the upper sequent B ⇒ A is not.

Definition 2 (Invertibility) A rule of a sequent calculus is invertible, when the lower sequent of the
rule is provable if and only if the upper sequents are provable.
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Because the failure to prove the upper sequent of an invertible rule does imply the unprovability of its
lower sequent, it is not necessary to consider any other rule applications in this case. Besides solving
the issues caused by the structural rules, proof searching in LK* avoids backtracking completely,
since all of its rules of inference are invertible. The proof search procedure for LK* is guaranteed to
terminate, since for each rule of the sequent calculus the total number of logical connectives in the
formulas of the upper sequents is strictly smaller than that of the lower sequent. A common proof
search strategy for LK* is to apply rules with one upper sequent before those with multiple upper
sequents, as this avoids having to apply the unary premise rule in multiple branches of the proof tree.

Example 3 Proof of axiom (A2) in sequent calculus LK*, obtained by successful proof search.

A⇒ C,A

A⇒ C,A

B,A⇒ B,C C,B,A⇒ C
(L→)

B → C,B,A⇒ C
(L→)

B,A,A→ (B → C) ⇒ C
(L→)

A,A→ B,A→ (B → C) ⇒ C
(R→)

A→ B,A→ (B → C) ⇒ A→ C
(R→)

A→ (B → C) ⇒ (A→ B) → (A→ C)
(R→)

⇒ (A→ (B → C)) → ((A→ B) → (A→ C))

2.5. Calculi for Intuitionistic Logic

Intuitionistic logic (IL) originated from the dispute between mathematicians in the early 20th century.
Brouwer insisted that mathematics should be limited only to constructive concepts and arguments.
His intuitionist point of view is known as the Brouwer-Heyting-Kolmogorov interpretation, and can
be roughly summarized for the propositional scenario as follows.

• A proof of A ∧B, consists of the proofs of A and B.
• A proof of A ∨B, consists of a proof of either A or B.
• A proof of A→ B, is an algorithm that transforms any proof of A into a proof of B.

From this perspective, a proof of the disjunction A ∨ B is obtained by giving a proof of either A or
B. This makes the law of the excluded middle p ∨ ¬p generally unacceptable in intuitionistic logic.
Since a proof of either p or ¬p is not always available. For example, the Riemann hypothesis is an
open problem for which there exists currently neither a proof of the statement nor of its negation.

The Hilbert-style calculus HJ for intuitionistic logic is obtained from the system HK by removing
the axiom scheme of double negation (A11), or the axiom scheme of excluded middle (A14) if it
was used instead. Conveniently, the sequent calculus LJ for intuitionistic logic is obtained from the
system LK by restrain the sequents to be single-succedent. I.e. the sequents in LJ have the following
form, where each Ai (0 ≤ i ≤ n) is a formula and B is either a formula or empty.

A1, . . . , An︸ ︷︷ ︸
antecedent

⇒ B︸︷︷︸
succedent

10



Axiom: Cut rule:

A⇒ A Γ ⇒ A A,∆ ⇒ B
(cut)

Γ,∆ ⇒ B

Rules for logical connectives:

Ai,Γ ⇒ B
(L∧) i ∈ {1, 2}

A1 ∧A2,Γ ⇒ B

A,Γ ⇒ C B,Γ ⇒ C
(L∨)

A ∨B,Γ ⇒ C

Γ ⇒ A B,∆ ⇒ C
(L→)

A→ B,Γ,∆ ⇒ C

Γ ⇒ A (L¬)¬A,Γ ⇒

Γ ⇒ A Γ ⇒ B (R∧)
Γ ⇒ A ∧B

Γ ⇒ Ai (R∨) i ∈ {1, 2}
Γ ⇒ A1 ∨A2

A,Γ ⇒ B
(R→)

Γ ⇒ A→ B

A,Γ ⇒
(R¬)

Γ ⇒ ¬A

Structural rules:

Γ, A,B,∆ ⇒ C
(LE)

Γ, B,A,∆ ⇒ C

Γ ⇒ B (LW)
A,Γ ⇒ B

A,A,Γ ⇒ B
(LC)

A,Γ ⇒ B

Γ ⇒ (RW)
Γ ⇒ A

Figure 2.4: Sequent calculus LJ for intuitionistic logic.

Due to the restriction to being a single-succedent sequent calculus, the right exchange (RE) and
right contraction (RC) rules are no longer relevant, since these rules require at least two formulas in
the succedent. Presented in Figure 2.4, the sequent calculus LJ is cut-free through cut-elimination,
though it does not have an ideal invertible variant like LK* for proof searching. The right disjunction
rule (R∨) clearly hints towards this, since it is impossible to retain both A1 and A2 in the succedent
of its upper sequent. The investigation of a suitable variant of LJ for proof searching is postponed
to the next chapter.

Since the intuitionistic systems are defined as a restriction of their classical counterparts, it is easy
to see that the provable formulas of intuitionistic logic are a proper subset of those of classical logic.
Therefore, it is the case that every sequent provable in LJ is also provable in LK. This is not the
true for the converse direction, though by Glivenko [23] it is known that a formula A is provable in
classical logic if and only if ¬¬A is provable in intuitionistic logic.
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Example 4 The double negation of the law of excluded middle ¬¬(A ∨ ¬A) is provable in LJ, as
demonstrated by the following proof.

A⇒ A (R∨)
A⇒ A ∨ ¬A (L¬)

A,¬(A ∨ ¬A) ⇒
(R¬)

¬(A ∨ ¬A) ⇒ ¬A
(R∨)

¬(A ∨ ¬A) ⇒ A ∨ ¬A
(L¬)

¬(A ∨ ¬A),¬(A ∨ ¬A) ⇒
(LC)

¬(A ∨ ¬A) ⇒
(R¬)

⇒ ¬¬(A ∨ ¬A)

Thus, intuitionistic logic is powerful enough to check the provability of formulas in classical logic
by checking whether their double negation is provable in intuitionistic logic. Glivenko’s observation
can therefore be interpreted as the embedding of classical logic into intuitionistic logic, F 7→ ¬¬F .
Because of this relation between the two logics, one might view intuitionistic logic as a more general
logic than classical logic. Following this line of thought, classical logic can be seen as an extension
of intuitionistic logic by the law of excluded middle.

2.6. Superintuitionistic Logics

The perspective of classical logic being an extension of intuitionistic logic, provokes the question
of what other logics can be obtained by extending intuitionistic logic. In the following, a logic is a
set of formulas closed under modus ponens and uniform substitution of propositional variables for
arbitrary formulas. Allowing us to identify a given logic with the set of its provable formulas. For
a finite set of characterizing formulas A, the axiomatic extension of intuitionistic logic IL + A is
the smallest logic containing IL and all formulas in A. For example, classical logic is the axiomatic
extension of intuitionistic logic through addition of the law of excluded middle, i.e. CL = IL+A∨¬A.
Collectively, the axiomatic extensions over intuitionistic logic, including intuitionistic logic itself, are
called superintuitionistic logics. A logic is consistent if it is not the set of all formulas, i.e. it does
not contain a formula and its negation. Classical logic is the largest consistent axiomatic extension of
intuitionistic logic, and intermediate logics are precisely the consistent superintuitionistic logics. As
was already noticed by Godel [24], there are infinitely many intermediate logics. Prime examples of
intermediate logics include Jankov, Gödel-Dummett, Kreisel-Putnam and Scott logic. In case of the
first, it is obtained through addition of the weak law of excluded middle.

Jankov Logic: JN = IL + ¬A ∨ ¬¬A
Gödel-Dummett Logic: LC = IL + (A→ B) ∨ (B → A)

Kreisel-Putnam Logic: KP = IL + (¬A→ (B ∨ C)) → ((¬A→ B) ∨ (¬A→ C))

Scott Logic: SL = IL + ((¬¬A→ A) → (A ∨ ¬A)) → (¬¬A ∨ ¬A)

12



Sequent calculi for intermediate logics are obtained by the addition of axioms ⇒ A, where A ∈ A, to
the intuitionistic sequent calculus LJ. Unfortunately, cut-elimination does not hold for intermediate
logics in general. The lack of analyticity for the sequent calculi of intermediate logics is a major
obstacle for the development of a decision procedure for these logics. In the next chapter, this
problem is alleviated using cut-restricted sequent calculi, after which the development of a decision
procedure for intermediate logics is discussed.
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Chapter 3

Methodology

Conventional proof calculi such as the sequent calculus are not expressive enough to provide analyticity
for intermediate logics, as well as many other non-classical logics of interest. More precisely, we have
seen that the sequent calculi for intermediate logics that were obtained by the addition of axioms to
sequent calculus LJ do not preserve the cut-elimination property. Making them unsuitable for proof
searching. This led the structural proof theory community to obtain analyticity through extension of
the structural language of the sequent calculus. This resulted in numerous new proof formalisms such
as hypersequent calculi, display calculi and labelled sequent calculi. For example, Ciabattoni et al. [25]
presented a solution through cut-free hypersequent calculi for intermediate logics and related logics.
However, even though the hypersequent calculus is a natural generalization of the sequent calculus,
which reasons on multiple sequents instead of just one, these kinds of enriched proof formalisms are
more difficult to implement in automated theorem provers and each requires existing optimizations
to be either adapted or redeveloped. Furthermore, Ramanayake [18] notes that the literature of these
more exotic proof formalisms contains considerable duplication in terms of their argumentation.

This chapter begins with a discussion of the alternative approach by Ciabattoni et al. [4, 5, 6], who
restrict applications of the cut rule to obtain analytical sequent calculi for non-classical logics that
facilitate an embedding of intermediate logics into intuitionistic logic. This restriction allows the use of
sequent calculi for proof searching, enabling the reuse of plentiful research into sequent and tableaux
calculi based procedures. The second half of this chapter will discuss the proof search strategies
and important optimizations as found in the literature review of intuitionistic decision procedures by
Dyckhoff [26].

3.1. Cut-restricted Sequent Calculi

The new paradigm of cut-restriction aims to preserve some form of analyticity in sequent calculi where
cut-elimination is not possible. This novel idea has been demonstrated for large classes of logics,
including commutative substructural and some normal modal logics. Since the superintuitionistic
logics discussed earlier are contained in the more general hierarchy of substructural logics [19], we
can focus on the sharper results for intermediate logics presented in Ciabattoni et al. [5].

The idea of cut-restriction is to allow only axiom instances of the logic to be used as cut-formulas
in the applications of the cut rule. A set of axiom instances Θ is obtained by evaluating a bounding
function ψ that takes as arguments a set of axioms A and a formula F (usually, the formula that we
wish to prove). A cut-restricted sequent calculus is then a standard sequent calculus where every cut
rule application and axiom instance occurrence from {⇒ A | A ∈ A} is restricted to the following
context, with A ∈ Θ.

⇒ A

· · ·
A,Γ ⇒ B

(cut)
Γ ⇒ B

· · ·
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While the subformula property does not hold for these sequent calculi, they do satisfy a relaxed form
of analyticity. Specifically, every provable sequent in a cut-restricted sequent calculus has a proof in
it, where every formula appearing in the proof is a subformula of the end sequent or of some axiom
instance.

Naturally, it is preferable for proof searching that the bounding function is as restrictive as possible,
in the sense that the set of instances is small. Since the smallest set of possible cut-formulas imposes
the largest restriction on the proof search space. Below are four examples of bounding functions,
listed in order of decreasing restrictiveness, where A1, . . . , An is a non-repeating conjunction if all
formulas Ai are pairwise distinct. Since these functions were originally presented for substructural
logics, they were adapted to the context of intermediate logics by replacing the substructural fusion
operator by conjunction.

1. The variable-bounding function ψv(A, F ) contains all instances of formulas in A whose variables
have been substituted by variables occurring in F .

2. The formula-bounding function ψf (A, F ) contains all instances of formulas in A whose variables
have been substituted by subformulas occurring in F .

3. The set-bounding function ψs(A, F ) contains all instances of formulas in A whose variables
have been substituted by non-repeating conjunctions of subformulas occurring in F .

4. The multiset-bounding function ψm(A, F ) contains all instances of formulas in A whose vari-
ables have been substituted by conjunctions of subformulas occurring in F .

The first three bounding functions result in a finite set of axiom instances, while the fourth results
in an infinite set, as it allows repeating conjunctions of subformulas of F . The upper bound of the
restriction on cut formulas, capturing all intermediate logics, would be the infinite set of all axiom
instances. In general, assuming that the targeted intermediate logic has a cut-free hypersequent
calculus as in Ciabattoni et al. [25], the multiset-bounding is sufficient for a sound and complete
cut-restricted sequent calculus. Fortunately, the usage of the resulting infinite set of axiom instances
can be avoided. Due to the presence of all the usual structural rules in sequent calculi for intermediate
logics, the required set of axiom instances collapses into that of the set-bounding function.

The best bounding function to use for an intermediate logic is non-trivial and depends on the axioms
that were chosen to obtain the axiomatic extension. Under certain conditions, it is possible to use
the formula-bounding function, or even the variable-bounding function, to obtain an even smaller set
of axiom instances. In the following definition, let [A/B] denote the uniform substitution of A for all
occurrences of B.

Definition 3 (Ω-propagation property) Formula A has the Ω-propagation property for a set of binary
connectives Ω if for propositional variables p, q and r, and every ◦ ∈ Ω, the following holds:

A[q/p], A[r/p] ⇒ A[q ◦ r/p] is provable in LJ.

For an intermediate logic IL + A which allows the usage of the multiset-bounding function, the
formula-bounding function can be used if all formulas in A have the {∧}-propagation property.
Furthermore, for an arbitrary intermediate logic IL +A, the variable-bounding function can be used
if all formulas in A have the {∧,∨,→}-propagation property. Though it should be noted that there
are other circumstances in which the variable-bounding function can be used.
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Of the four intermediate logics presented in Section 2.6., both Jankov logic JN and Gödel-Dummett
logic LC allow the use of the preferred variable-bounding function. In the case of Jankov logic,
this can be validated by observing that the weak law of excluded middle, ¬A ∨ ¬¬A, satisfies the
{∧,∨,→}-propagation property. The situation for Gödel-Dummett logic is more complicated. Using
the standard characterizing linearity axiom (A→ B)∨ (B → A), the cut-restricted sequent calculus
fails to prove ¬p ∨ ¬¬p using the variable-bounding function, a known theorem of Gödel-Dummett
logic. Instead, the best bounding function to use in this case is the formula-bounding function,
as the linearity axiom has the {∧}-propagation property. However, Ciabattoni et al. [5] note that
the variable-bounding function can be used when the set of characteristic formulas is changed to
{(A → B) ∨ ((A → B) → A),¬A ∨ ¬¬A}, even though (A → B) ∨ ((A → B) → A) does not
satisfy the {∨,→}-propagation property. In summary, we have the following sets of axiom instances
for Jankov logic and Gödel-Dummett logic, respectively.

ΩJN = {¬A ∨ ¬¬A | A ∈ var(F )}
ΩLC = {(A→ B) ∨ ((A→ B) → A) | A,B ∈ var(F )}

∪ {¬A ∨ ¬¬A | A ∈ var(F )}

Example 5 Consider Jankov logic JN, and its set of characteristic axioms {¬A ∨ ¬¬A}. Since all
formulas in this set satisfy the {∧,∨,→}-propagation property, we may use the variable-bounding
function. When attempting to prove the formula p→ q in the cut-restricted sequent calculus for JN,
the cut-formulas in the proof are restricted to the resulting set of ψv({¬A ∨ ¬¬A}, p → q). Which
in this case would be {¬p ∨ ¬¬p,¬q ∨ ¬¬q}.

3.2. Logical Embeddings of Intermediate Logics

By definition of cut-restricted sequent calculi, every provable formula F has a proof in which the
axiom instances and cut-formulas are restricted to the context as seen below on the left, with P a
subproof. This axiom instance can be eliminated from the proof by replacing it with the proof on the
right. In this new proof derivation, the sequent A,Γ ⇒ B is weakened to contain the conjunction
of all possible cut formulas ∧Θ. By propagating this conjunction downwards in the proof tree, we
obtain a proof of ∧Θ ⇒ F with one less axiom instance and cut rule application.

⇒ (A ∈ Θ)
P

A,Γ ⇒ B
(cut)

Γ ⇒ B
· · ·

⇒ F

7→

P
A,Γ ⇒ B

(L∧)*∧Θ,Γ ⇒ B

· · ·
∧Θ ⇒ F

By repeating this procedure for every application of the cut rule, and combining the collected Θ
conjunctions into one using the left contraction rule, we obtain a proof of ∧Θ ⇒ F . Conversely,
this also implies that every provable sequent in the cut-restricted sequent calculus has a proof in
which all the cut-formulas are distinct, since the contraction rule can be used upwards to duplicate
the cut-formulas. Without any axiom instance {⇒ A | A ∈ A} and cut rule application in the proof
of ∧Θ ⇒ F , the sequent has the same proof in the sequent calculus for intuitionistic logic LJ.
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Taking one more step downwards in the proof using the right implication rule, we obtain a proof of
⇒ ∧Θ → F in LJ. This argument results in the following embedding of intermediate logics IL +A
into intuitionistic logic IL, using a suitable bounding function ψ as described earlier.

F 7→ ∧ψ(A, F ) → F

Similar to the possible embedding of classical logic into intuitionistic logic, this embedding allows the
use of any intuitionistic proof search procedure for proof searching in intermediate logics. By checking
if ∧Θ → F is provable in LJ instead of checking if F is provable in a sequent calculus for IL + A.
While not as mature as techniques for classical logic, intuitionistic proof search is reasonably well
understood and allows for many optimizations. The next part of this chapter will focus on intuitionistic
proof search strategies for proving the formulas of the shape ∧Θ → F using the sequent calculus.

3.3. Refined Calculi for Intuitionistic Logic

So far, we have discussed the cut-restricted sequent calculi for intermediate logics and the embedding
of these logics into intuitionistic logic. Therefore, it is possible to either use the cut-restricted sequent
calculi directly, or to use the logical embeddings to perform the proof search in intuitionistic logic in-
stead. Either way, since the calculi for intermediate logics are defined as extensions of sequent calculus
LJ for intuitionistic logic, there is enough reason to discuss refined sequent calculi for intuitionistic
logic and their modifications to facilitate efficient proof searching.

While Gentzen [21] used the sequent calculus LJ to prove the decidability of intuitionistic logic, the
calculus is not well-suited for backwards proof search. Especially since the left implication rule (L→),
with its lower sequent A → B,Γ,∆ ⇒ C, requires exploration of all possible context splits of the
antecedent into the sequences Γ and ∆. Similarly to the modifications of sequent calculus LK*, this
issue is resolved through absorption of the structural rules into the rule for logical connectives of the
sequent calculus and the usage of formula multisets instead of sequences. Specifically, for the left
implication rule, the context of the lower sequent is duplicated into the upper sequents instead of
being split. According to the naming by Troelstra and Schwichtenberg [22], this resulting sequent
calculus presented in Figure 3.1 is known as G3ip and omits the negation from the language in favour
of ⊥ as by their convention.

Whereas sequent calculi LJ and G3ip are both single-succedent calculi, Maehara [27] introduced the
multi-succedent variant m-G3ip. Thus allowing multiple formulas in the succedent of the sequents.
Being a multi-succedent makes this calculus roughly correspond to intuitionistic tableaux calculi [26],
which are essentially a notational inversion of sequent calculi. Importantly, Egly and Schmitt [28]
showed that proofs in this multi-succedent system can be much smaller than those in their single-
succedent variants.

While being an improvement over LJ, the left implication rule (L→) of G3ip remains problematic.
Its left upper sequent is not measurably smaller than its lower sequent, which causes non-termination
of the proof search procedure unless equipped with some form of loop detection. Dyckhoff [29, 30]
and Hudelmaier [31] rediscovered a method that replaces the left implication rule by four new rules
obtained through case analysis of the left subformula of the implication in the lower sequent.
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Axioms:

A,Γ ⇒ A ⊥,Γ ⇒ A

Rules of inference:

A,B,Γ ⇒ C
(L∧)

A ∧B,Γ ⇒ C

A,Γ ⇒ C B,Γ ⇒ C
(L∨)

A ∨B,Γ ⇒ C

A→ B,Γ ⇒ A B,Γ ⇒ C
(L→)

A→ B,Γ ⇒ C

Γ ⇒ A Γ ⇒ B (R∧)
Γ ⇒ A ∧B

Γ ⇒ Ai (R∨) i ∈ {1, 2}
Γ ⇒ A1 ∨A2

A,Γ ⇒ B
(R→)

Γ ⇒ A→ B

Figure 3.1: Sequent calculus G3ip for intuitionistic logic.

Dyckhoff named the calculus with these new rules LJT, though it has since commonly been referred to
as G4ip. Using an appropriate measure on sequents, this calculus is guaranteed to terminate, avoiding
the need for difficult to implement loop detection. The contribution of Hudelmaier [31] included the
assurance of a linear rather than exponential depth proofs using fresh propositional variables in the
rules (L∨→) and (L→→) to avoid the duplication of formulas in the upper sequents.

p,A,Γ ⇒ B
(L→Φ)

p, p→ A,Γ ⇒ B
A→ (B → C),Γ ⇒ D

(L→∧)
(A ∧B) → C,Γ ⇒ D

A→ p,B → p, p→ C,Γ ⇒ D
(L→∨) fresh variable p

(A ∨B) → C,Γ ⇒ D

A, p→ C,B → p,Γ ⇒ p C,Γ ⇒ D
(L→→) fresh variable p

(A→ B) → C,Γ ⇒ D

Figure 3.2: Left implication rules of sequent calculus G4ip.

Similar to the multi-succedent calculus of Maehara, Dyckhoff [29] introduced the multi-succedent
sequent calculus LJT*, also known as m-G4ip. The connections between multi-succedent sequent
calculi and tableaux calculi let Avellone et al. [32, 33, 34] continue the development as a tableaux
calculus, their methods justified by Kripke semantics. They were able to reintroduce explicit rules
for logical negation, which can be seen as special instances of the left implication rules of G4ip.
This tableaux calculus, adapted back to sequent calculus notation and named LJ* for simplicity, is
presented in Figure 3.3. The non-invertible rules of this calculus are (L¬∧), (L¬→), (L¬¬), (R¬),
(L→→), (L→¬) and (R→). As described in Section 2.4., the failure to prove a sequent using a rule
that is not invertible requires the consideration of other possible rule applications. Proof searching
through a calculus with non-invertible rules therefore requires a sound backtracking mechanism. This
makes the procedure more complicated in practice, but still manageable. For example, backtracking
can be avoided for the rules (L→→) and (L→¬) when their right upper sequent is not provable due
to these rules being invertible with respect to their second premise.
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Axioms:

A,Γ ⇒ ∆, A Γ ⇒ ∆,⊤ ⊥,Γ ⇒ ∆

Rules of inference:

A,B,Γ ⇒ ∆
(L∧)

A ∧B,Γ ⇒ ∆

Γ ⇒ ∆, A Γ ⇒ ∆, B
(R∧)

Γ ⇒ ∆, A ∧B
A,Γ ⇒ B,Γ ⇒

(L¬∧)
¬(A ∧B),Γ ⇒ ∆

Γ ⇒ ∆, A,B
(R∨)

Γ ⇒ ∆, A ∨B
A,Γ ⇒ ∆ B,Γ ⇒ ∆

(L∨)
A ∨B,Γ ⇒ ∆

¬A,¬B,Γ ⇒ ∆
(L¬∨)

¬(A ∨B),Γ ⇒ ∆

A,Γ ⇒
(R¬)

Γ ⇒ ∆,¬A
A,Γ ⇒

(L¬¬)¬¬A,Γ ⇒ ∆

A,¬B,Γ ⇒
(L¬→)

¬(A→ B),Γ ⇒ ∆

A,Γ ⇒ B
(R→)

Γ ⇒ ∆, A→ B

A,B,Γ ⇒ ∆
(L→A)

A,A→ B,Γ ⇒ ∆

A,Γ ⇒ B,Γ ⇒ ∆
(L→¬)¬A→ B,Γ ⇒ ∆

A→ (B → C),Γ ⇒ ∆
(L→∧)

(A ∧B) → C,Γ ⇒ ∆

A→ p,B → p, p→ C,Γ ⇒ ∆
(L→∨) fresh variable p

(A ∨B) → C,Γ ⇒ ∆

A, p→ C,B → p,Γ ⇒ p C,Γ ⇒ ∆
(L→→) fresh variable p

(A→ B) → C,Γ ⇒ ∆

Figure 3.3: Sequent calculus LJ* for intuitionistic logic.

The proof search strategy for LK* preferred the applications of invertible unary premise rules over
those with multiple premises to find smaller proofs. A natural extension of this strategy would be to
consider non-invertible rules after those which are invertible, leaving the non-invertible binary premise
rules for last.

Avellone et al. [32] noted that if non-invertible rules (L¬→), (L¬¬) and (L¬∧) are scheduled after
all the other rules, they may be treated as invertible rules without loss of completeness. This strategy
results in the following classification of rules in according to their behaviour with respect to branching
and backtracking, ordered by priority in the proof search procedure. Here, the right non-invertible
rules precede the left non-invertible rules, since backtracking was proven not to be unnecessary in the
case of the succedent being a singleton formula.

C1 = {(L∧), (R∨), (L→A), (L→∧), (L→∨), (L¬∨)}
C2 = {(R∧), (L∨)}
C3 = {(R→), (R¬)}

C4 = {(L→→), (L→¬)}
C5 = {(L¬→), (L¬¬)}
C6 = {(L¬∧)}
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3.4. Proof Search Optimizations

During proof searching in LJ*, the upper sequents of its rules occasionally have an empty succedent.
Whenever this is the case, or the succedent only contains formula occurrences of ⊥, the proof search
procedure can revert to the more efficient classical proof search using the sequent calculus LK*. This
is possible because of the following theorem found in the book of Ono [20], where the mentioned
sequent calculi may be replaced by their equivalent variants LK* and LJ* respectively.

Theorem 1 For all multisets of formulas Γ and ∆, the sequent Γ ⇒ ∆ is provable in LK if and only
if the sequent ¬∆,Γ ⇒ is provable in LJ.

The classical provability is also be useful during the exploration of non-invertible rules in LJ*. Since
the provable formulas of classical logic are a superset of those of intuitionistic logic, the failure to
prove a sequent in LK* implies the unprovability of the sequent in LJ*.

Further significant optimization of intuitionistic proof search follows from the addition of boolean
simplification and replacement rules [32, 33, 34]. The boolean simplification rules of Figure 3.4 can
be applied to the formulas of the sequent to reduce them as much as possible before every recursive
step of the proof search. These are particularly useful when the formulas have many ⊤ and ⊥
occurrences.

(A ∧ ⊥) 7→ ⊥ (A ∨ ⊥) 7→ A (A→ ⊥) 7→ ¬A
(⊥ ∧A) 7→ ⊥ (⊥ ∨A) 7→ A (⊥ → A) 7→ ⊤ (¬⊥) 7→ ⊤
(A ∧ ⊤) 7→ A (A ∨ ⊤) 7→ ⊤ (A→ ⊤) 7→ ⊤ (¬⊤) 7→ ⊥
(⊤ ∧A) 7→ A (⊤ ∨A) 7→ ⊤ (⊤ → A) 7→ A

Figure 3.4: Boolean simplification rules

Boolean simplification rules may be triggered more often by relying on the replacement rules pre-
sented below, where [A/B] denotes the uniform substitution of A for all occurrences of B. When a
propositional variable p appears in the antecedent of a sequent (L rep), all occurrences of p in the
sequent may be replaced by ⊤. If the propositional variable instead appears negated ¬p in the an-
tecedent (L¬ rep), all occurrences of p may be replaced by ⊥. Classical proof search benefits from an
even stronger replacement rule, when a propositional variable p appears in the succedent of a sequent
(R rep), all occurrences of p may be replaced by ⊥. For classical logic, the (R rep) rule supersedes
the (L¬ rep) rule, as the latter is a special case of the former, but is unsound for intuitionistic logic.

(Γ ⇒ ∆)[⊤/p]
(L rep)

p,Γ ⇒ ∆

(Γ ⇒ ∆)[⊥/p]
(L¬ rep)¬p,Γ ⇒ ∆

(Γ ⇒ ∆)[⊥/p]
(R rep)

Γ ⇒ ∆, p

Both the boolean simplification and replacement rules are invertible and particularly useful for the
proof search in intermediate logics. Since even though the embedding of these logics into intuitionistic
logic may increase the size of the goal formula dramatically, the number of propositional variables
remains the same. Meaning that only a few applications of the replacement rules already greatly
reduces the size of the sequent to be proven.
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Chapter 4

Results

4.1. Proof Search Implementation

A popular programming language used for the implementation of automated theorem provers for
intuitionistic logic is Prolog [35, 36, 29, 37, 33]. The declarative programming language allows for a
straightforward encoding of the axioms and inference rules of proof systems. Internally, the Prolog
engine attempts to find a resolution refutation of the negation of the input query. Typically, the
proof search is guided by a depth-first search strategy, exploring rule applications based on their order
of appearance in the source code. As in the tutorial of Otten [38], every attempted rule application
analyses the formulas in the sequent to find a suitable active formula. Dyckhoff [26] notes the following
about such implementations.

Implementations of the mentioned calculi spend a great deal of time looking along
lists to find a formula of a certain form. A better approach is to take the next formula and
either analyse it or put it aside in a suitable place for later use. For example, succedent
conjunctions can be put aside until all non-branching rules have been dealt with. This
can be regarded as a naive form of focusing.

This inspired the Haskell implementation of the automated theorem prover SuperJ, which utilizes
such a native form of focusing. It is available at edu.nl/6tdqn and went through many iterations,
consisting of 190 commits resulting in 647 lines of code. The functional programming language
Haskell is known for its strong type system and benefits from some existing automated theorem
prover benchmarking infrastructure from projects by Claessen and Rosén [39] and Fiorentini [40].
SuperJ is capable of proving formulas in classical, intuitionistic and a wide range of intermediate
logics through sequent calculi LK*, LJ* and the logical embeddings presented in Chapter 3. It uses
all the proof search optimizations mentioned in Section 3.4..

Formulas are represented using the data type in Haskell shown below, simplified for brevity. During
the initial input parsing stage, propositional variables are assigned increasing integer values, hence the
Var Int constructor. Using integers as variable names increases the performance compared to using
strings, allows for efficient substitution operations and the creation of fresh propositional variables,
the last of which is required by the (L→∨) and (L→→) rules of the sequent calculus LJ*.

data F = Top | Bot | Var Int | F :& F | F :| F | F :> F | Neg F

The sequent calculi are implemented using two components each, a schedule that determines the
priority of formulas and a recursive function that applies the rules to the sequent based on the formula
with the highest priority. Besides the (L→A) rule, all the rules of LJ* (including the replacement
rules) only have one active formula. The (L→A) rule is the only rule that has two active formulas,
but can be applied before the other left implication rules with a higher priority. This allows us to
use the classification of rules shown in Section 3.3. to directly determine the priority of formulas.
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For example, the following Haskell code snippet shows the priority of formulas in the antecedent
(L denotes formulas left of the sequent arrow, i.e. the antecedent) for the sequent calculus LJ*.

L -> \case
Bot -> C0; Top -> C0
(Var _) -> C1; (Neg (Var _)) -> C1; (Neg (_ :| _)) -> C1
(_ :& _) -> C1; ((_ :& _) :> _) -> C1; ((_ :| _) :> _) -> C1
(_ :| _) -> C2; (Neg _ :> _) -> C4; ((_ :> _) :> _) -> C4
(Neg (Neg _)) -> C5; (Neg (_ :> _)) -> C5; (Neg (_ :& _)) -> C6
_ -> CX

The priority of formulas in inversely related to the number of its classification, with C0 being the
highest priority and C6 the lowest. CX is a special classification for formulas that are not the active
formula of any rule. The priority of formulas is used by the view function to select the next active
formula in the recursive prove function. Part of the implementation of the prove function is shown
below, containing the (L⊥), (L rep), (L∧), (L∨) and (L→→) rules of LJ*.

prove r = case view r of
Just (L, f, s) -> case f of

-- Category 0
Bot -> True
-- Category 1
Var p -> prove (subst p Top s)
a :& b -> prove (add L a $ add L b s)
-- Category 2
a :| b -> all prove [add L a s, add L b s]
-- Category 4
(a :> b) :> c

| not (prove (add L c s)) -> False
| (p, t) <- fresh s
, prove (add L a $ add L (b :> p) $ add L (p :> c) $ setR p t)
-> True

-- Backtrack
_ -> prove (lock L f s)

The non-invertible (L→→) in implemented using Haskell pattern guards, which allows for backtrack-
ing. When that happens, the formula is locked by giving it the CX classification. The formula may be
unlocked by a replacement rule triggered substitution or application of another non-invertible rule.
Franzén [35] showed the correctness of this locking approach in the context of a single-succedent
calculus. The complete module of the intuitionistic proof search procedure is available in Appendix A.

The logical embedding of intermediate logic into intuitionistic logic is implemented in a separate
module. The user provided characterizing formulas of the intermediate logic are checked for Ω-
propagation properties from Section 3.1., from which the corresponding bounding function is derived.
Using the bounding function, the embedding is applied to the input formula, which is then passed
to the intuitionistic proof search procedure. Additionally, SuperJ contains predefined embeddings for
Jankov and Gödel-Dummett logic using the sets ΩJN and ΩLC of Section 3.1. respectively.
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Limitations

Perhaps ideally, SuperJ would have been verified through implementation in a proof assistant, e.g.
Coq or Agda, this was beyond of the scope of this project. Instead, the soundness of the automated
theorem prover has been tested with respect to intuitionistic logic, integrated as a test suite with
GitHub Actions workflows.

By profiling the Haskell implementation of SuperJ while running the test suite, it became clear that
the majority of the time was spent on applying substitutions triggered by the replacement rules. This
can be optimized by using a graph-based representation for formulas, as is done in the automated
theorem prover PITP [34]. This is especially beneficial when the sequent contains many identical
subformulas, as is the case when solving the logical embeddings of intermediate logics.

A fully featured automated theorem prover is not only be able to decide if a formula belongs to the
logic, but also present a proof derivation if it does, or a counter model otherwise. SuperJ does not yet
provide this functionality, as this was not the focus of the presented research. While sequent calculus
proofs could be fairly easily constructed during the proof search, countermodel extraction is slightly
more involved. The papers of Dyckhoff and Negri [41, 42] provide some insight into countermodel
construction for non-classical logics.

4.2. Experimental Evaluation

The benchmarking of automated theorem provers for non-classical logics is a difficult problem and
an active area of research [43, 44]. Currently, curated dataset of formulas for testing automated
theorem provers for intermediate logic are not yet available. As the language of intermediate logics
are the same as classical and intuitionistic logic, we can use existing benchmark formulas of these
logics. Since intermediate logics are an extension of intuitionistic logic, it was decided to use the
propositional part of the ILTP problem library for intuitionistic logic [45] to evaluate the SuperJ
prover. In addition, benchmark results for the high performance SAT-based theorem prover intuitRIL
are used for comparison. This intermediate propositional logic prover, due to Fiorentini and Ferrari [7],
is the only automated theorem prover known that supports the same selection of tested intermediate
logics. Their methods have similar theoretical foundations, but are justified semantically using Kripke
models.

Version 1.1.2 of the ILTP problem library contains 274 propositional formulas with status and difficulty
rating information. The problems are formatted according to TPTP syntax and categorized in three
domains, Logic Calculi (LCL), Syntactic (SYN) and Intuitionistic Syntactic (SYJ). LCL contains 2
problems that were judged by Siklóssy et al. [46] to be among the hardest of the theorems found in
Principia Mathematica [47] while the 20 problems of SYN mainly consist of those due to Pelletier [48].
With 252 problems, The SYJ is the largest domain. It can be divided into 12 families of difficult
problems collected such as the pigeonhole principle, labelled SYJ201 to SYJ212. For each of these
families, there are 20 instances of increasing complexity. Finally, the 12 remaining problems in the
SYJ domain come from the test formula set of JProver [49].
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The automated theorem provers were evaluated on all 274 propositional problems of the ILTP library.
The test were conducted on a 3.6 GHz AMD Ryzen 5 3600 system with 32 GB of RAM running
Ubuntu 23.10 with kernel version 5.15. Running time was restricted to 60 seconds per individual
problem. Table 4.1 shows the benchmark results comparing SuperJ and intuitRIL, with the best
results marked in bold. The solved column indicates the number of problems solved within the time
limit, and the time column indicates the total time in seconds for those problems.

SuperJ (IL) intuitRIL (IL) SuperJ (JN) intuitRIL (JN) SuperJ (LC) intuitRIL (LC)
Domain Total Solved Time Solved Time Solved Time Solved Time Solved Time Solved Time
LCL 2 2 0.023 2 0.024 2 0.023 2 0.024 2 0.023 2 0.024
SYJ1 12 12 0.138 12 0.145 12 0.138 12 0.144 8 0.092 12 0.144
SYJ201 20 20 6.533 20 2.765 14 53.583 20 2.754 1 0.022 20 2.754
SYJ202 20 9 28.834 10 14.282 4 15.417 10 14.322 1 0.012 10 14.352
SYJ203 20 20 0.232 20 0.242 20 5.162 20 0.243 3 1.724 20 0.244
SYJ204 20 20 0.234 20 0.241 20 15.192 20 0.244 3 0.326 20 0.242
SYJ205 20 20 0.232 20 0.242 12 70.909 20 0.248 0 — 20 0.242
SYJ206 20 11 25.887 20 0.240 11 29.026 20 0.239 4 3.946 20 0.243
SYJ207 20 20 0.674 20 0.613 20 0.231 20 0.612 20 0.496 20 1.054
SYJ208 20 20 0.856 20 2.296 20 0.771 20 2.306 10 1.446 17 165.925
SYJ209 20 8 6.862 20 0.243 9 56.864 20 0.240 4 23.207 20 0.264
SYJ210 20 20 0.230 20 0.241 20 16.641 20 0.240 4 4.636 20 0.313
SYJ211 20 20 97.895 20 0.241 12 45.389 20 0.241 1 3.132 20 97.985
SYJ212 20 20 0.720 20 0.242 12 48.558 20 0.241 5 19.868 20 0.302
SYN 20 20 11.423 20 0.240 19 0.217 20 0.239 19 0.218 20 0.252

Table 4.1: ILTP performance results comparing SuperJ and intuitRIL

intuitRIL outperforms (or matches) SuperJ in intuitionistic logic, particularly so for domains SYJ206
and SYJ209. Except for SYJ208, SuperJ is only ever faster with a minimal constant factor, this might
be due to there being a slightly smaller preprocessing overhead compared to intuitRIL that uses a
clausification procedure. For Jankov logic, intuitRIL solved the same number of problems within almost
the same amount of time as for intuitionistic logic. There is no real slowdown by the addition of the
axiom instantiations for this prover. The SuperJ prover is more sensitive to the addition of the axiom
instantiations; e.g., it finds a proof earlier for problems in SYJ209 but is slower in SYJ201-SYJ205,
SYJ211, and SYJ212. Finally, for Gödel-Dummett logic, intuitRIL again managed to solve most of the
problems within the time limit. However, compared to itself for other logics, it is slower for domains
SYJ208 and SYJ211. The performance of SuperJ on the same logic is below that of intuitRIL, except
for domains LCL and SYJ207. Perhaps this is not so surprising, considering the axiom instances of
Gödel-Dummett logic contain (nested) implications, triggering many non-invertible rule applications
in the proof search.
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Chapter 5

Conclusion

This work presented the theoretical foundations and implementation of the automated theorem prover
SuperJ, showing the feasibility of an all-purpose theorem prover for intermediate logics. The new
implementation was evaluated and compared to the current state-of-the-art theorem prover intuitRIL.
The benchmark results show that, despite its general nature, SuperJ performs well but is not quite as
efficient for Gödel-Dummett logic. It is expected that the performance gap between the two automated
theorem provers could be closed by using SAT-based techniques, as intuitRIL does. It would be
interesting to see if the integration of a modern SAT solver such as CaDiCaL [50] outperforms the
current SAT-based implementation that uses the older MiniSat solver.

Future Work

The embedding approach used by SuperJ is convenient since it allows for the reuse of existing
proof search algorithms for intuitionistic logic. However, the information of which formulas are axiom
instances is lost through the embedding during proof search. Therefore, it might be beneficial to
adapt the notion of sequents. For example, in the sequent Θ;Γ ⇒ ∆, the set Θ could be used to
store the set of axiom instances available for the proof search. The goal is then be to prove the
sequent Θ;⇒ F for some goal formula F , in which the cut rule can simply select a formula from Θ
to move into the antecedent Γ.

Θ;A,Γ ⇒ ∆
(cut)

A,Θ;Γ ⇒ ∆

The proof search procedure would still be guaranteed to terminate, as the set of available axiom
instances is finite and decreases with each application of the cut rule. Crucially, this approach allows
for the implementation of strategies such as axiom selection techniques. For example, the Q∞
technique [51] prioritizes axiom instances that have at least one propositional variable in common
with the sequent to be proved. In our specific context, we can use an even stronger condition. For an
axiom instance A to be considered as a cut formula in the cut rule above, it must be the case that
A ∈ ψ(A,

∧
Γ ⇒

∨
∆), i.e. it must be derivable from the corresponding formula of the sequent at

the current node in the proof tree. While re-evaluation of the bounding function ψ would be costly,
this condition also implies that all the propositional variables of A must occur in the sequent Γ ⇒ ∆,
which is much easier to check. This may be quite effective when combined with the replacement rules
of Section 3.4., which essentially remove propositional variables from the sequent.

The methodology of cut restriction extends to the larger class of substructural logics. An obstacle
to generalize the current implementation to these logics is that the set of axiom instances becomes
infinite due to the requirement of the multiset-bounding function. Perhaps there exist some conditions
during proof search that can be used to restrict this set of axiom instances to be finite.
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Appendix A

Implementation

The Haskell module below shows the Haskell implementation of the intuitionistic proof search proce-
dure. The complete source code of the automated theorem prover SuperJ is available at edu.nl/6tdqn.

1 {-# LANGUAGE FlexibleInstances , LambdaCase # -}
2 module Prover.Intuition (prove) where
3

4 import Data.Formula
5 import Data.Sequent
6 import qualified Prover.Classic as Cl
7

8 class Provable a where
9 prove :: a -> Bool

10

11 -- | Check formula provability
12 instance Provable Formula where
13 prove = prove . fromFormula (\case
14 L -> \case
15 Bot -> C0; Top -> C0
16 (Var _) -> C1; (Neg (Var _)) -> C1; (Neg (_ :| _)) -> C1
17 (_ :& _) -> C1; ((_ :& _) :> _) -> C1; ((_ :| _) :> _) -> C1
18 (_ :| _) -> C2; (Neg _ :> _) -> C4; ((_ :> _) :> _) -> C4
19 (Neg (Neg _)) -> C5; (Neg (_ :> _)) -> C5; (Neg (_ :& _)) -> C6
20 _ -> CX
21 R -> \case
22 Top -> C0; Bot -> C0
23 (_ :| _) -> C1; (_ :& _) -> C2
24 (Neg _) -> C3; (_ :> _) -> C3
25 _ -> CX;
26 )
27

28 -- | Check sequent provability
29 instance Provable Sequent where
30 prove r | nullR r = Cl.prove (toFormula r)
31 prove r = case view r of
32 Just (L, f, s) -> case f of
33 -- Category 0
34 Bot -> True
35 Top -> prove s
36 a | member R a s -> True
37 -- Category 1
38 Var p -> prove (subst p Top s)
39 Neg (Var p) -> prove (subst p Bot s)
40 a :& b -> prove (add L a $ add L b s)
41 Neg (a :| b) -> prove (add L (Neg a) $ add L (Neg b) s)
42 (a :& b) :> c -> prove (add L (a :> b :> c) s)
43 (a :| b) :> c -> case fresh s of
44 (p, t) -> prove (add L (a :> p) $ add L (b :> p) $ add L (p :> c) t)
45 -- Category 2
46 a :| b -> all prove [add L a s, add L b s]
47 a :> b
48 | member L a s -> prove (add L b s)
49 | not (Cl.prove (toFormula r)) -> False
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50 -- Category 4
51 Neg a :> b
52 | not (prove (add L b s)) -> False
53 | prove (add L a $ delR s) -> True
54 (a :> b) :> c
55 | not (prove (add L c s)) -> False
56 | (p, t) <- fresh s
57 , prove (add L a $ add L (b :> p) $ add L (p :> c) $ setR p t) -> True
58 -- Category 5
59 Neg (Neg a) -> prove (add L a $ delR s)
60 Neg (a :> b) -> prove (add L a $ add L (Neg b) $ delR s)
61 -- Category 6
62 Neg (a :& b) -> all (\c -> prove (add L (Neg c) $ delR s)) [a, b]
63 -- Backtrack
64 _ -> prove (lock L f s)
65 Just (R, f, s) -> case f of
66 -- Category 0
67 Top -> True
68 Bot -> prove s
69 a | member L a s -> True
70 -- Category 1
71 a :| b -> prove (add R a $ add R b s)
72 -- Category 2
73 a :& b -> all prove [add R a s, add R b s]
74 -- Category 3
75 Neg a | prove (add L a $ delR s) -> True
76 a :> b | prove (add L a $ setR b s) -> True
77 -- Backtrack
78 _ -> not (nullR s) && prove (lock R f s)
79 Nothing -> False
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