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Abstract

Traditional graph drawing creates structures based on structural proxim-

ity. More recent works on Multivariate networks (MVNs), can visualize

networks based on both structural as well as attribute proximity. Yet, in the

case of such Multivariate network visualization techniques, prior knowl-

edge on how the attributes are visualized in the graph drawing is neces-

sary. Recent advances in the field of network embedding, dimensional-

ity reduction graph drawing and locality sensitive hashing have inspired

us to create a new multi-purpose graph drawing approach for multivari-

ate networks. In this work we purpose a new approach named Graph

Hashing for Drawing (GH4D) that makes graph drawings for multivari-

ate networks, based on both structural as well as attribute proximity, using

state of the art Graph hashing algorithm named #GNN, and dimensional-

ity reduction technique very sparse random projection. To the best of our

knowledge, this is the first work that uses graph hashing for graph draw-

ing. In addition, we are not aware of any works that leverages network

embedding, or dimensionality reduction graph drawing, to make graph

drawings in which both topology and node-attributes are represented. We

were able to build a working pipeline to generate graph drawings using

graph hashing, and our graph drawing evaluation produced promising

results in which node-attributes are better represented in the graph draw-

ing compared to existing methodologies. In addition we identified several

directions for future research.
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1. Introduction

A network or graph is a data-structure that consists of nodes which can be

seen as entities, and edges which indicate relationships between the entities.

A multivariate network, more commonly known as a knowledge graph, can

be seen as such a network data-structure where an extra layer of complex-

ity, data is linked to each node and each edge. A Social network, for ex-

ample, not only contains relations between actors, but also data present on

each actor. For example, demographic information such as Names, Gen-

der, Nationality. Multivariate networks are used extensively across many

domains. One of which are using Multivariate networks for Biological ap-

plications [1]. In the work [2] Multivariate networks are used to visual-

ize metabolome data in so called metabolic pathway map. Many existing

strategies to visualize Omics datasets exist [3], which refers to biological

structures such as genomes, proteomes, metabolomes. It states that visu-

alization of such systems is key as human judgment and intervention are

often needed. These networks are usually used to confirm existing knowl-

edge and deliver novel correlations of potential biotechnological impor-

tance. Multivariate networks play an important role in software engineer-

ing as well [1]. Entities such as files, classes, functions, are visualized using

multivariate networks to make sense of large and complex systems. Exam-

ples are UML diagrams [4], treemaps [5] and icicle plots [6]. Social network

analysis aims at understanding structural properties and the associated at-

tributes of the connected to the nodes and edges [REF]. Social media net-

works and friendship networks are studied to find such that user profiles

can be connected to other individuals or groups. Within that domain, com-

munity detection aims to identify groups in large complex, often multivari-

ate, network structures.

Multivariate network visualization aims to generate meaningful visual-

ization that can be used across the many domains, like the ones previously
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Introduction

mentioned. There have been many works on visualizing Multivariate net-

works networks, in particular node link layouts [1]. The main focus has

been on with creating new layouts, or layouts specifically designed for spe-

cific domain.

In traditional graph drawing there are many algorithms that deal with

creating graph layout based on structure, such as the family of force directed

and related algorithms. In addition, there are several aesthetic metrics that

tell us how good the graph drawing is. Yet, as for Multivariate visualization

approaches, they are either heavily topology driven or they are attribute

driven. Such that an approach that takes advantages of both, and thus does

graph drawing based on both topology as well as attributes, is lacking. In

addition, we are not aware of any metrics aimed at Multivariate networks

that tell us how good the visualization reflects node-and edge attribute in-

formation.

In addition specific knowledge to visualize the data is needed. In most

attribute driven approaches specific attributes must be selected to be used

to separate or group nodes in the visualization. So the question arises, what

methodology do you use if you want a good node-link visualization, in

which the graph drawing rep- resents both nodal-relations as well as the

node-attributes, but you do not know what part of the relations, or at-

tributes are important?

1.1 Contributions

In this work we try to bridge the gap between MVN topology driven layouts

and attribute driven layouts. While Nobres’ typology makes a clear distinc-

tion between using graph structure to encode typology and using graph

structure to encode attribute values, this work we consider an combina-

tion of the two. To the best of our knowledge there is no work that does

graph drawing based on both attribute and topology simultaneously. The

following research question naturally follows from our observations in this

section:

Literature review RQ: What methodologies can we (re)use to make graph
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1.1 Contributions

drawings for Multivariate Networks, in which the drawing represents both

node-attributes as well as node-topology? This question is answered in sec-

tion 2.

In this work we describe an approach to represent both topology as well

as attributes in graph drawings for Multivariate networks:

• In our literature review, we classified 27 state of the art network em-

bedding algorithms based on whether they encode topology, attributes

or both.

• Inspired by recent works on Multivariate network embedding, we

leverage performance wise efficient graph hashing algorithm, HashGNN,

to incorporate both node attributes and structure into node embed-

dings. We try to maximize structural proximity as well as attribute

proximity by incorporating node topology as well as node attributes

into the node’s high dimensional vector representation.

• Inspired by dimensionality reduction graph drawing, we make use of

dimensionality reduction to make low dimensional projections from

high dimensional node representations.

• And we evaluate the resulting graph drawing using state of the art

graph drawing metrics, using datasets used within graph drawing

community. However, from graph drawing pov, there are no metrics

to measure attribute proximity. We evaluate attribute proximity using

so called trustworthiness based on attribute vector encoding. We see

this as a pioneering step towards evaluating graph drawing from an

node-attribute point of view.

The following research questions naturally follow out of the above stated

points:

• RQ1: How can we use graph hashing algorithm HashGNN to make

Multivariate graph drawings which incorporate both node attribute

information as well as node topology information?

• RQ2: How can we evaluate attribute proximity in a graph drawing?

Our hypothesis is that we can reuse graph Hashing algorithm HashGNN
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Introduction

for multivariate graph drawing in which attributes are better encoded while

achieving similar visual quality metrics (delta 10 percent) compared to a

state of the art graph drawing algorithm. To test our hypothesis, we imple-

mented a pipeline based on previously mentioned literature. The pipeline

and implementation of our approach, Graph Hashing for Drawing (GH4D)

is discussed in section 4.

1.2 Applications and Human computer interaction

We see several domains of application, where opportunities lie for our pro-

posed approach. In Knowledge graph exploration (KGE) [7], for instance,

which is a machine assisted process in which the analyst tries to understand

certain aspects of the graph-data using exploratory strategies. Three goals

have been specified for knowledge graph exploration. Understanding struc-

ture wise aspects of the dataset at hand, identify whether the dataset satis-

fies current information need or research question, retrieving the portion of

the dataset in case of a vague or hard to define information need [8]. Three

main tasks are defined as to reach those goals: summarization and profiling,

exploratory search, and exploratory data analytics [8]. We see opportunities

for our approach to be applied in KGE to get a better idea of an unknown

dataset, especially in exploratory search tasks. Usually exploratory search

starts with tentative queries that might lead to identifying specific parts of

interest, our approach can aid the analyst by visualizing the tentative query

results.

In addition, identifying highly connected nodes (or hubs) play an im-

portant role in the structure of a network, and has been extensively studied

in network science [9] [10]. In human mobility network for example, hub

locations play a crucial role in spread of disease [11] and economic activity

[12]. In addition to topology information in such networks, other node-

attribute information is usually present. For example, an analyst might be

interested in identifying potential candidate (future) hubs, for example in

the case of spread of disease. And might want get an overview of nodes that

are attribute wise similar to the existing hub node. In that case, it might be
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1.2 Applications and Human computer interaction

beneficial to have drawing that incorporates both topological information,

to identify the hub, together with attribute information such that attribute-

wise similar nodes must be identified as well.

Data exploration in general, and KG exploration in particular is tightly

coupled with Human computer interaction. Since data exploration is a pro-

cess that cannot be disconnected from the specific user need [8]. User in-

volvement is crucial in development of graph visualization techniques, for

both the graph drawing itself, and the steps that the user goes trough to

analyze specific graph data. The quality of graph drawings, for instance,

is based on metrics that reflect Usability and readability. These metrics are

validated through empirical studies of human understanding of graphs. An

other important aspect within KGE are interactity and personality, where ac-

tive search [13] [14] for instance, is aimed towards personalization of search

results during a users exploratory search. Also, other works are able to learn

interestingness from the user input and interaction with the system [15] [8].

In those cases, our multivariate network drawing approach might serve the

users with a overview of network structure, which in turn aids to determine

the next steps in their exploratory approach.
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2. Background and Related work

This part gives an introduction to the domain of interest in this work, and

the opportunities that we identified within the given domain and relevant

definitions are stated and the scope of this work is further stressed. From

a literature point of view, we looked at two main domains, graph drawing,

which is further discussed in section 2.1. And the information visualiza-

tion domain, and more specifically, Multivariate network visualization which

is further discussed in section 2.2. In section 2.3 we explore the work done

in the field of Graph Representation learning (network embedding). We ob-

served that network embedding has been used before to make graph draw-

ings, this is further discussed in section 2.4. An emerging technique named

Locality sensitive hashing that has recently been used in a variety of method-

ologies is discussed in section 2.5. In section 2.6 we discuss an network

embedding technique based on graph hashing, that uses Locality sensitive

hashing to generate node embeddings based on both structural, as well as

attribute proximity. And we will explain the opportunities we identified to

make graph drawings on both structural and attribute proximity.

In this paper we consider a simple graph, where G = (V, E) is a mathe-

matical structure consisting of two sets, where V = V(G) and E = E(G). In

addition, each edge has a set of two vertices associated to it, such that yϵE

f (y) = {vi, vj}, where vi,jϵV.

A multivariate network, in short (MVN), or knowledge graph, G = (V, E, A)

consists of an underlying graph G, plus a set of n attributes A = {A1, ..., An}
for the nodes and edges. For each node vϵV, there is a column in the set of

attributes associated with it, Av = {av1, ..., avn}. Similar for each edge eϵE,

there is Ae = {ae1, . . . .aen}.

This work is aimed towards MVN’s that have somewhat a form simi-

lar to a traditional graph structure. From the layout taxonomy perspective
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given in work of Nobre [1], the MVN’s considered in this work fall under

the Node link layout category.

These type of networks have shown great value across several domains.

From a layout perspective, the multivariate networks in this work have

some sort of on-node/on-edge encoding (figure 2.1). In this work, we solely

use colors to indicate differences between nodes and edges. There are sev-

eral other ways to encode attribute values on nodes/edges. This is usually

done using different colors, shapes for each attribute set, or by nodes/edge

sizes. For more information we refer to the work of Nobre [1].

(a) (b)

Figure 2.1: Example of on-node and on-edge encoding. (a) Multiple attributes
(metabolite concentrations) are encoded directly on the nodes/edges using
color and text (b) Fictional example of underlying data directly encoded on
nodes (red) and edges (green).

In addition, we consider node and edge attributes that are of of discrete

type. Discrete attributes are attributes that have values that are of a finite

set such as binary. For example the attribute Gender, which can have value

Male,Female, which in turn can be converted into 0,1 such that a layout

algorithm can make use of it.

A graph drawing (or graph layout) is a spatial encoding of graph elements

V and E, such that xϵV f (x) = Pos(x). Such that each element x in set of

Vertices V has a corresponding position calculated by function Pos.

We define structural proximity and attribute proximity as defined in [16].

Structural Proximity denotes the proximity of nodes that is evidenced by
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Background and Related work

links. For nodes vi and vj, if there exists a link eij between them, it indi-

cates the direct proximity; on the other hand, if vj is within the context of ui,

it indicates the indirect proximity. So, if you make a drawing based on struc-

tural proximity, closely connected nodes should be drawn closer. Attribute

Proximity denotes the proximity of nodes that is evidenced by attributes.

The (attribute) intersection of Ai and Aj indicates the attribute proximity of

vi and vj.

This work we are interested in making graph drawings for multivariate

networks, that reflect both structural as well as attribute proximity. When

we consider the domain of graph drawing, drawings are solely based on

structural proximity, since that is the only information available. This is fur-

ther explained in section "Graph drawing". The field of Multivariate visu-

alization considers both structural proximity as well as attribute proximity,

yet there are still opportunities. This is further explained in section "Multi-

variate network visualization"

2.1 Graph Drawing

Readability and usability of a given graph drawing of graph G is affected

by quantitative measurements called aesthetic criteria (or Aesthetic Heuris-

tics) [17]. Graph drawing algorithms generally deal with the ways of drawing

graphs according to the set of predefined aesthetic criteria [18] and based

on heuristics these algorithms try to meet each criterion.

One of the earlier works on these aesthetic critereia are stated in the work

of Purchase [5], and for each a quality metric is defined. Metrics in this con-

text are objective measurements which measure the extent to which a graph

drawing conforms to a specific aesthetic. In this case, these metrics are con-

tinuous measurements (ranging between 0, 1). The seven criteria given are

Symmetry, edge crossings, angular resolution, edge length. Considering the

seven aesthetic criteria, is it stated that it is assumed within the graph draw-

ing community that the aesthetics improve readability.

In Bennett et al. [19] a conceptual model is provided, that gives an
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2.1 Graph Drawing

overview of the concepts that surround such graph aesthetic criteria (figure

2.2). The model is based on Norman’s levels of processing. In short, Aes-

thetic Heuristics are defined based on Perceptual Principles, and are eval-

uated using empirical studies to understand how they affect Readability

and/or Usability. Our work is mostly based inside the Aesthetic Heuristics

domain. In addition, Aesthetic Heuristics are divided into four main cate-

gories: those for Node placement, Edge placement, Overall layout, and Domain-

specific heuristics.

Figure 2.2: Bennett et als’ [19] conceptual model of Aesthetic Heuristics based
on Norman’s levels of processing.

So, to create a good graph drawing, a selection is made of what aesthetic

heuristics mostly reflect how well the graph is drawn, and the most appro-

priate algorithm is that which can maximize these heuristics. In addition,

the issues of drawing good graph can be looked at from two point of views,

syntactic and semantic. Semantic issues are domain specific, meaning they

are influenced by the task that is to be performed on the data. While syntac-

tic issues are not focused on tasks but on the structural aspects of a graph.

In survey Gibson et al. [20] a categorization is made of two-dimensional

graph drawing algorithms. It states that most of the graph drawing tech-

niques are from the family of force-directed and related graph drawing al-

gorithms. This family of algorithms is based on the force directed paradigm,

which applies principles of attraction and repulsion between graph ele-

ments to iterate towards an optimal graph layout. They are further cat-

egorized into three categories: force-directed, those based on dimension-
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reduction and computational improvements such as multi-level techniques.

Cheong et al’s [21] survey provides a taxonomy of previously mentioned

force directed algorithms for graph drawing. First it divides them into clas-

sical and hybrid approaches. The classical are further divided into: accu-

mulated force models, energy function minimization models, and combi-

natorial optimization models. The hybrid models main focus is improving

performance wise aspects of force directed algorithms. In this work we fo-

cus on the aesthetics of multivariate graph drawing methods, and we do

not prioritize performance. For more details on these models, we refer to

the survey. Furthermore, it is stated for each force directed algorithm what

aesthetic criteria it considers.

Yet as for the domain of graph drawing, the metrics and drawing algo-

rithms make graph drawings solely based on structural proximity, nodes

that are closely connected are drawn together. To find proper techniques

that draw on both structural as well as attribute proximity, we had to go to

the information visualization world. There are works on so called "Multi-

variate network visualization", which is discussed on the next part.

2.2 Multivariate Network visualization

The work of Nobre is a state of the art report on Multivariate network vi-

sualization techniques. As for the type of networks that we are interested

in, Multivariate networks that have a node link layout, the typology makes

a clear distinction between so called attribute driven layouts and topology

driven layouts. As the name suggests attribute driven layouts are layouts

where node positioning is determined solely based on node attribute value.

As for topology driven layouts, the node positioning is solely based on struc-

tural proximity.

Attribute driven layouts are further divided into attribute-driven faceting

and attribute-driven positioning. Attribute-driven positioning, places nodes

exactly based by node attribute value. Works where nodes are placed based

on geographical coordinates [22] [23] use this type of encoding. In attribute
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2.2 Multivariate Network visualization

driven faceting, the nodes are placed in regions corresponding to a categori-

cal attribute, but the exact node position within that region is determined in

another way. Work [24] defines Semantic Substrates in which a categorical

attribute is selected which is used to layout nodes based on category, and

the analyst can further specify to show links within or between categories.

Gibson et al’s survey offers Multivariate network graph drawing meth-

ods. Gibson et al. categorizes Multivariate graph drawing methods into three

groups: constraint based graph layouts, clustering based graph layouts,

mapping attributes to 2D space. First, the so called constraint-based graph lay-

outs try to incorporate node attributes into graph drawings using methods

similar to previously mentioned. Most of them use some type of force di-

rected algorithm, together with some Aesthetic Heuristics to draw the graph

layout. In addition they use constraint-based techniques to impose specific

predefined set of constraints on a selection of the nodes. These constraints

can be user defined based on specific knowledge, or might be derived from

the attributes that the MVN encodes. The work [25] uses Stress Majorization

as a constraint.

Secondly there are the clustering-based graph layouts, where MVN graph

drawings are determined based on the clustering of nodes. These methods

mostly use a clustering-algorithm, which determines how to cluster based

on node attributes, and some sort of space filling algorithms, which deter-

mines how to make use of the 2D space efficiently. For these clustering

methods, it is said that users completely neglect edge crossing (which is an

Aesthetic Heuristic) in favor of clustering the graph [26]. That why there is

usually less emphasis on the so called edge crossings aesthetic in this cate-

gory of MVN drawing algorithms. An example is shown in figure 2.3

Lastly there is the mapping attributes to 2D space group, which directly

maps nodes into a 2D space using node attributes. These methods use some

type of mapping, for example direct mapping or dimension reduction, to

calculate coordinates for each node in the graph. There are also hybrid ap-

proaches that combine the above. EdgeMaps by Dork et al. [28] and Gibson

and Faith’s [27] both use a combination of force directed combined with
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Figure 2.3: Clustering based layout created to visualize small world networks
from the work of [27], that uses color on-node encoding.

mapping attributes to 2D space.

While each of these Multivariate graph drawing methods can be of great

value for specific use cases, you need to have knowledge of the data in or-

der to visualize the data. Specific attributes must be selected to separate

or group nodes. So the question arises, what methodology do you use if

you want a good node-link visualization, in which the graph drawing rep-

resents both nodal-relations as well as the node-attributes, but you do not

know what part of the relations, or attributes are important?

This question is answered in the following section.

2.3 Graph Representation Learning

When we consider literature in the field of creating data-structure that rep-

resents both topology and attribute, there is a bit of a shift of domains from

Graph Drawing towards Machine Learning. So called Graph representation

learning or Network Embedding aims to map each node to a vector where the

distance characteristics among nodes is preserved. Such that for a given

(multivariate) graph G = (V, E, A) we can define a function that maps each
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2.3 Graph Representation Learning

Vertex vi to an embedding xi:

f : vi → xiϵRd

Where each xi = {x1, x2, ..., xd} is a vector of length d. To derive such a

vector, graphs are usually represented by an adjacency matrix or a derived

vector space representation [29]. In the case of a multivariate graph, the

vector is derived from both node topology, as well as attributes.

While there are similarities between Multivariate network embedding

and Multivariate network drawing the goals are different, in network em-

bedding the focus on creating predictive models such as neural networks,

or node classification. To the best of our knowledge, network embedding

has never been used to make drawings based on both topology as well as

attributes

We have considered several surveys on graph representation learning,

Chen [30], Ju [31] and Cui [32] to get an overview of existing network em-

bedding methods that might be suitable for MVN embedding.

The survey of Chen [30] gives an overview of several of such Network

embedding methods, and it mentions several works that embed Multivari-

ate network. They refer to MVN as "Graphs with auxiliary information"

[33], meaning "those that have labels, attributes, node features". It is said that

nodes with different attribute information (such as labels) should be embed-

ded further away in the embedding space than those with the same attribute

information.

The survey of Chen makes a distinction between Classical network em-

bedding methods and Emerging network embedding methods. As for the

classical network embedding methods are mostly directed towards embedding

simple graph, without node attributes. Examples are DeepWalk [34] and

Node2Vec [35], which derive vectors from nodes based on random walks to

reserve nodal proximity’s and preserve neighborhood.

Neural network based methods

A trend can be seen in the emerging network embedding methods to incorporate

both topology as well as attributes. In particular the Neural network based
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methods. The Graph Neural Network (GNN) framework [36] is a collection

of such neural network based methods, that use message passing scheme

paired with neural networks to learn node embeddings. There are several

algorithms based on the GNN framework that can learn embeddings based

on both topology as well as attribute information. SEAL [37], and P-GNN

[38] are examples of such algorithms, SEAL extracts subgraphs based kn K-

hops to do efficient link prediction. P-GNN is similar, it uses layers to map

node positions with relation to all other nodes in the network, which is more

effective performance wise. An other particularly interesting algorithm is

the Weisfeiler-Lehman Kernel Neural Network (WLKNN) [39] which will

be discussed in more detail in section "Locality sensitive hashing". Graph

Convolutional Network (GCN) [40], uses convolution operator to iteratively

aggregate nodes neighbor embeddings. And GraphSage [41], which uses

aggregate function to classify nodes.

The survey of Cui [32] mentions more neural network based methods

that can learn both topology as well as attributes (figure 2.4), in the paper so

called "Network Embedding with Side Information". In [42] a so called Tri-

party deep network representation model is presented, TriDNR, which uses

a coupled neural network architecture to embed topology and attributes. It

learns a low-dimensional vector for each nodes such that similar nodes are

close in the representation space. The work of [43] similarly learns embed-

dings based on topology and attributes. It proposes a deep architecture by

separately learning label embeddings using Doc2Vec and topology embed-

ding using DeepWalk, and linearly combines them together. In [44] an em-

bedding is learned that preserves first and second order proximity’s while

also incorporating node attributes.

Graph Hashing

One other emerging field besides neural network based methods we iden-

tified that was not mentioned by any of the surveys mentioned is Graph

Hashing. Hashing techniques have been used to approximate similarities

between high dimensional data. Learning to hash functions such as Spec-

tral hashing [45] and semantic hashing [46] learn data specific functions.

While Randomized hashing functions such as MinHash represent data as hash
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2.3 Graph Representation Learning

Figure 2.4: This image from the work of Liao [32], shows how their proposed
network embedding algorithm encodes both structural as well as attribute
proximity

codes and uses randomized hash functions for classification. Besides cap-

turing similarities, algorithms have been developed that can create node

embeddings on both topology as well as attribute information. Binarized

Attributed Network Embedding (BANE) [47] and w-Bit Quantization for

Attributed Network Representation Learning (LQANR) [48] are examples

of such algorithms that use such learning to hashing to acquire node em-

beddings. To learn the embeddings, they make use of hash codes based on

both topology as well as node attributes. However, they are usually expen-

sive in either time or space because they contain massive matrix factoriza-

tion operations. NetHash [49] on the other hand uses randomized hash-

ing to acquire embeddings, which is more efficient time and space perfor-

mance wise. We made an overview of algorithms we considered, classified

by whether the network embedding algorithm embeds topology, attributes

or both. In figure 2.5 a total of 27 network embedding algorithms are catego-

rized. They are further categorized based on the three domains mentioned,

classical methods, neural network based methods, and graph hashing.

Current network embedding methods’ focus lies on creating predictive

models such as neural networks, or node classification, while we think that

they might serve a purpose for graph drawing as well. However, because

of the multi-dimensionality of the embeddings generated by these methods,

it is not possible to map the data directly into 2d space for graph drawing

purposes.
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Background and Related work

Figure 2.5: 27 network embedding algorithms are categorized based on
whether they learn embeddings based on topology, attributes or both. They
are further categorized into 3 groups: Graph Hashing, Neural Network based,
and Classical methods.

Nonetheless, from a graph drawing pov Graph embedding might serve

as an intermediate step towards generating a graph drawing based on learned

embeddings that incorporate both attributes as well as topology. A tech-

nique called dimensionality reduction exists that maps high dimensional vec-

tors into low (2d) dimensional representation that can be drawn. This idea,

using network embeddings for graph drawing, is not new. Little work has

been done on using network embedding for graph drawing. Yet, to the best

our our knowledge, we are not aware of any works that use such embed-

dings to incorporate node attributes. In the next section we will discuss

these works in more detail.

2.4 Network embedding for graph drawing

Network embedding has been used for graph drawing purposes. We did

find some works where network embedding has been used, we did not find

any works that encode both node topology and attributes into the embed-

ding. While we have seen in the previous section that there are several

algorithms that can generate such vector based node embeddings for Mul-

tivariate data.

Dimensionality reduction graph drawing

Before we mention works that use network embedding for graph drawing,

we want to bring to the attention that the embeddings are usually multi-
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2.4 Network embedding for graph drawing

dimensional vectors that cannot be directly mapped into 2d space. The

domain of dimensionality reduction graph drawing deals with reducing the

dimensionality of such high-dimensional representations. Dimensionality

reduction based methods, such as Principal component analysis (PCA) [50],

turn a high dimensional representation of a graph into a low dimension

while trying to maintain distances. t-SNE [51] measures similarities in high

and low dimensions concurrently, and several functions are used to calcu-

late low dimension representation of the high dimension data-structure.

Dimensionality reduction graph drawing take advantage of these tech-

niques which provide increasingly more accurate, flexible, scalable. Tsnet

[52] is such a DR graph drawing method developed based on a modifica-

tion t-SNE method. It represents a graph with a shortest path adjacency

matrix, which is used to compute the pair-wise distance between node pairs

and node similarity with conditional probability. DRGRaph [53] is an other

work that uses a sparse graph adjacency matrix to simplify the computa-

tion of distance matrix between the node pairs which reduces the computa-

tional complexity. Other works on Dimensionality reduction graph draw-

ings are the works of Plant [54], which is more focused on performance,

and is aimed towards machines equipped Multi-core CPU to improve graph

drawing performance.

An other work that uses such dimensionality reduction for graph draw-

ining is the work of Elzen [55]. Which describes an simple, yet effective, ap-

proach that leverages dimensionality reduction graph drawing for dynamic

network visualization. It makes use of vectorization of complete networks

and dimensionality reduction in order to visualize all dynamic network in-

stances into 2d space. Such that snapshots where networks are similar are

positioned closer to each other and clusters of points indicate stable or re-

curring network states. Then it uses a juxtaposed view where in one screen

each of such network instance is represented as a point in a 2d visualiza-

tion (node-link graph), and in the other screen the corresponding network

is show the selected node in the first screen.

Network embedding graph drawing
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Network embedding for graph drawing can be seen as adding an other

layer of complexity to DR graph drawing. Instead of using the adjacency

matrix representation to represent a graph, node embeddings are used. Deep

Neural Network for DrawiNg Networks (DNN)2 [56] for example, uses

Graph Convolution Networks to learn the embeddings, and leverages di-

mensionality reduction t-SNE and dimensionality reduction graph drawing

tsNET to make graph drawings. It states that DNN2 performs well com-

pared to these algorithms despite some Deep Learning related limitations.

The results highly suggest that Deep Learning is a promising approach for

the future of graph drawing. An other work is GraphTSNE [57] which

learns a shallow Neural Network made of Graph Convolutions to predict

a graph layout. In Bohm [58] an graph embedding algorithms for graph

drawing GEMPE is purposed, which focuses more on parallelization.

But as previously mentioned, none of the previous works has leveraged

the potential to encodes attributes into the embedding for graph drawing.

While we have seen that there are several algorithms that can learn such

embeddings. In addition, we have seen that neural networks based network

embedding techniques have been used for traditional graph drawing, we

are not aware of any works that use graph hashing for graph drawing, while

they might be more suitable from a performance wise perspective.

In the next section we want to deeper dive into graph hashing, and

look at Locality sensitive hashing. It has been used in several graph related

tasks such as k-nearest neighbor search. Interestingly for our use case, it has

been used for node embedding, and we will point out which graph hashing

methodology we will use in this work.

2.5 Locality sensitive hashing

Locality Sensitive Hashing (LSH) is a widespread randomized method that

tackles the efficiency challenge for similarity search in high dimensional

spaces [59] [60]. Hash values of similar nodes collide with high probability.

It maps a vector in high dimensional space into representation in low di-

mensional space, such that probability that two vectors collide equals their
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similarity under the given measure. Thus, similar to neural network based

embedding, yet it is able to do this in sub-linear time. Kraus NearBuck-

etLSH [60] for example uses Locality sensitive hashing and is based on Gio-

nis et als’ work [61] which partitions data vectors into buckets. Yet, Kraus

his version does efficient similarity search to the near buckets. They intro-

duce a cached version that is more efficient performance wise. Simply put,

nodes are converted into vectors, vectors are hashed using LSH into buck-

ets, and buckets are used to retrieve results from queries, and do similarity

search between buckets. Other similar works [62], [63], [64] we found in

the survey of Jafari [65] on Locality sensitive hashing that use Vector space

models to represent the nodes, and then use hashing to index all nodes.

Libraries such as FAISS [66] by Facebook and SCANN [23] by Google

both exploit LSH for k-Nearest neighbor (similarity) search. SCANN and

FAISS are mostly focused on a new quantization approach. Several tech-

niques have been proposed in the literature based on hashing, graph search,

or quantization to solve the approximate maximum inner product search

problem efficiently, and the quantization based techniques have shown strong

performance. Simply put, SCANN does maximum inner product search

(MIPS), by reducing the number of items that are scored to identify the top

result and improving the rate at which items are scored. User queries and

documents are embedded into a dense vector space of the same dimension-

ality and MIPS is used to find the most relevant documents given a user

query. LSH is used as a fast method of space partitioning. SCANN sup-

ports various vector representations: Bag of words, embeddings, feature

vectors. SCANN indexes them using LSH, which groups similar vectors

into the same bucket with high probability. It uses a so called LSH index,

which is a fast way to identify promising buckets for nearest neighbours.

In the refinement stage it uses optimal transport to refine results. Which is

a mathematical framework for measuring the distance between probability

distributions. Which allows to measure distance between query vector and

bucket more efficiently.

FAISS on the other hand uses Product Quantization lookup tables based

on IVFADC. At its core, the IVFADC requires computing the distance from a
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vector to a set of product quantization reproduction values. This means, do

a search based on "words per vector". So a vector is decomposed into words,

and when a query vector is given, its checks what words it consists of and

can then lookup similar vectors (that are made up of the same words).

2.6 HashGNN

The recent advances in LSH, such as works as FAISS and SCANN that lever-

aged hashing techniques for efficient K-NN search, inspired us to look into

LSH based Graph hashing techniques. Graph hashing algorithm HashGNN

(#GNN) [67] stood out in particular. HashGNN is a node embedding algo-

rithm that resembles Graph Neural Networks (GNN) but does not require

training. HashGNN is based on Weisfeiler-Lehman Kernel Neural Network

(WLKNN) [39], but in HashGNN the neural networks are replaced by ran-

dom hash functions, in favor of the min-hash locality sensitive hashing.

Thus, it can be said that HashGNN combines ideas of GNNs and fast ran-

domized algorithms.

The Weisfeiler-Lehman Kernel Neural Network (WLKNN) is a message pass-

ing neural network. It is based around the principle that nodes pass their

own embedding to all their neighbors, so in the end the embedding not only

contains information on the node itself, but also information from neighbor-

ing nodes. This is done for several iterations such that, e.g., the second iter-

ation messages are passed again to each nodes neighbors, which will cover

nodes at 2 hops distance. And after k iterations we have information from

nodes that are k hops away. Normal WLKNN uses 3 neural networks to

learn network structure. HashGNN, which combines WLKNN with Min-

hash (which is a type of LSH), uses 3 hashing schemes instead of neural

networks to learn network structure. Minhash [68] approximates the Jac-

card similarity of two sets without comparing them directly. Instead, it uses

random hash functions that use hyperplane rounding to classify nodes. For

Minshash it is shown that the signature numbers of the random hash func-

tions collide with with the probability of each occurred similarity of the in-

put sets.
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Technical explanation of HashGNN:

Given an Multivariate network G = (V, E, A), the number of iterations T,

the size of node representation K, and three arrays of randomized hash func-

tions, suppose we are at the t-th iteration and the k-th hashing process. The

following is from the paper to get an embedding for node v with binary

vector representation xv:

x(t,k)v,1 ← argmin
(
π
(t,k)
3 (x(t−1)

v )
)

(2.1)

Line 4: [67]: Randomized Hash Function 3 π
(t,k)
3 is used to generate hashed

vector xv,1, using Minhash which randomly selects K features (1’s) from ini-

tial vector xv.

x(t,k)v,neighbors ←
⋃

uϵN(v)

{
x(t,k)u,1

}
(2.2)

Line 7: Hashed vectors from all neighbors are combined into xv,neighbors,

from each hashed neighbor representation xu,1 where u is in the set of neigh-

bors of node v N(v).

xt
v[k]← argmin

(
π
(t,k)
1 (x(t−1)

v )
⋃

π
(t,k)
2 (x(t,k)v,neighbors)

)
(2.3)

Line 8: Apply Randomized Hash Function 2 π
(t,k)
2 , to get hashed neighbor

vector (right part of the union
⋃

). Hash xv with Randomized Hash Function

1 π
(t,k)
1 , and combine both hashed vectors, to get final vector xt

v[k]. Vector

xt
v[k] is used as input for next iteration.

HashGNN has shown to be just as accurate as neural network based

methods, yet much more efficient performance wise [67].

In this work we describe an approach to represent both topology as well

as attributes in graph drawings for Multivariate networks. We implemented

a pipeline based on previously mentioned literature. The pipeline and im-
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plementation of our approach, Graph Hashing for Drawing (GH4D) is dis-

cussed in chapter 4.
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3. Graph Hashing for Drawing (GH4D)

We followed similar steps in our approach as the work of Elzen [55]. Our ap-

proach is also similar to the pipeline of other approaches of dimensionality

reduction graph drawing [52]. We start with a high dimensional represen-

tation, which is altered by graph hashing, and in the end the dimensionality

is reduced to 2 dimensions, and the resulting projection is visualized. Our

approach consists of 4 steps: Vectorization, Embedding, dimensionality reduc-

tion, visualization, which are visualized in figure 3.1. The following section

discussed each step in detail.

Figure 3.1: Graph Hashing for Drawing pipeline visualized: (1) Raw graph
data is converted into a node-vector matrix (2) Which is embedding using
HashGNN, (3) then the dimensionality is reduced to two dimensions (4) such
that is can be visualized as a graph drawing.
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3.1 Implementation

Implementation is made in Python 3 and uses standard library packages

such as NetworkX [69], NumPy [70], and SciKit [71], SciPy[72]. In addition,

the Graph Data Science (GDS) library published by Neo4j to use HashGNN.

3.1.1 Vectorization

Given an Multivariate network G = (V, E, A), in the vectorization step,

we define for each node in V a binary vector xv, such that it can be used

by the embedding algorithm in the next step. We assume that the data

is valid and does not contain nonzero values. Each vector xv consists of

two parts, a topology encoding and a attribute encoding. To get the topology

encoding, the graph is represented by |V|x|V| adjacency matrix Mt. Such

that, in the adjacency matrix, each row vector of length 1x|V| represents the

topology encoding of a node. In addition, in the case of unweighted and

unattributed edges, the above described topology encoding is enriched by

edge-attributes. For integer values present in the adjacency matrix (edge

weights), the values present in the adjacency matrix are binarized using

boolean thresholding strategy.

To get the node-attribute encoding, for each node the attributes are first

binarized and then concatenated. For the vectorization of node-attributes,

we follow the same procedure used in these works [16] [42]. Categorical

variables are converted to a set of binary features via one-hot encoding 3.2.

For example, the gender attribute such as Male, Female, a node with has at-

tribute values "female" is concerted into v = {0, 1}where the second binary

feature of value 1 denotes “female". Such that we end up with a |V|xF ma-

trix Ma which contains node-attribute vectors, where F denotes the length

of the binary attribute encoding.

Following the same procedure as in [16] [42], the matrix Mt (topology)

and Ma (attribute) are concatenated 3.3. Such that we end up with matrix

M |V|x(|V|xF)), where row u of length 1x(|V|+ F) represents node vu as a

binary vector encoding containing both attribute as well as topology infor-
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Figure 3.2: One-hot encoding process visualized: Given a node that is of gen-
der "Male", has occupation "Banking", and is from Team "3" (top table), the
node-attribute data is converted in a binary node-attribute vector (bottom).

mation.

Figure 3.3: Concatentation of matrix Mt (topology) and Ma (attribute), to get
Matrix M.

3.1.2 Embedding

Given an Multivariate network G = (V, E, A), and a matrix M contains bi-

nary node vector encodings, the embedding is calculated using HashGNN.

HashGNN is executed in Python using the Graph Data Science library pub-

lished by Neo4j. To run HashGNN, first, an in memory graph of G is con-

structed in the Neo4j database, of which, for each node, its binary vector

from M is attached to the in memory graph. Using the Graph Data Sci-

ence python module, a Cypher query can be run in script which takes the in

memory graph as an argument, runs the HashGNN algorithm, and returns

the embedding matrix Me. How individual node vectors are influenced by

their neighbors is visualized in figure 3.4. The embedding matrix is of the
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same dimension as the input matrix M, and contains the embedding for

each node as node vector encodings.

(a) (b)

Figure 3.4: HashGNN embedding procedure. (a) Pre-embedding: node 10’s
vector representation, and its neighbors node 14 and 35, from matrix M (b)
Post-embedding: we can see the neighbour-influence of 14 and 35 in cyan and
purple. These embeddings make up embedding-matrix Me

Parameters

There are four parameters that each influence the produced embedding by

HashGNN. First, the randomSeed parameter influences the hash functions

are used inside the algorithm. This affects which features are sampled each

iteration. The parameter neighborInfluence determines how prone the al-

gorithm is to select neighbors’ attributes over features from the same node.

The value of neighborInfluence is 1.0 by default, in which on average a at-

tribute will be selected from the neighbors 50% of the time. And increasing

the value leads to neighbors being selected more often. The parameter it-

erations sets the iterations of HashGNN, which is the maximum number of

hops between a node and other nodes that affect its embedding. The em-

beddingDensity parameter denotes the size of the node representation as

discussed in the previous section, where it was named k in the equation.

3.1.3 Dimensionality Reduction

Given the high dimensional embedding matrix Me, we reduce the dimen-

sionality to 2 dimensions using very sparse random projection (VSRP), us-

ing the implementation FastRP. Fast Random Projection, or FastRP for short,

is a node embedding algorithm in the family of random projection algo-

rithms. [73]. FastRP uses very sparse random projection, which reduces the

28



3.1 Implementation

dimensionality while preserving pairwise distances between the nodes us-

ing with strong theoretical guarantees [74]. Very parse random projection

[75] is an improvement of Gaussian projection. In Gaussian projection the

high dimensional matrix M is reduced by constructing a random projection

matrix R of given lower dimension d. Then, both matrices M and R are

multiplied: N = MR. If the entries of R are Independent and identically

distributed with zero mean, N is said to preserve the pairwise distances.

Very parse random projection speeds the process of finding R, by replac-

ing the entries with probabilities. This gives a computational performance

benefit over other methods such as Skip-gram. In the end, using VSRP on

embedding matrix Me, we end up matrix Mp of size |V|x2, which contains

for each node in V a 2 dimensional vector 3.5. One thing we noticed is,

the low dimensional embedding of VSRP has a grid like structure, in which

similar nodes are given the exact same embedding. This is similar to the re-

sult of other Locality sensitive hashing methods, such as NearBucket-LSH,

in which similar vectors are placed into similar buckets.

(a) (b)

Figure 3.5: Dimensionality reduction procedure, embedding of fictional node
10 in orange. (a) The embedding matrix Me is visualized, which contains vec-
tor embeddings produced by HashGNN, with the (b) After very sparse di-
mensionality reduction is applied, we end up with matrix Mp, that contains
the two dimensional mapping of matrix Me

3.1.4 Visualization

Given an Multivariate network G = (V, E, A), and matrix Mp, we make

graph drawing of G using the 2 dimensional node representations in Mp as

2 dimensional coordinates in the 2D space. The graph drawing is made us-

ing Networkx, we first construct a Networkx in memory graph of G, and for

29



Graph Hashing for Drawing (GH4D)

the drawing, Mp is fed to Networkx as positional arguments for the nodes in

G. For the drawing, we use on-node and on-edge color encoding, such that

one is able to distinguish nodes and edges with similar attributes visually,

and the drawings can be evaluated visually As mentioned before, in VSRP

similar nodes are given the exact same embedding. From a graph draw-

ing point of view however, this creates node overlap, and such nodes are

not visible in a 2d representation. To make the visualization more informa-

tive, nodes that belong to the same point in the grid are randomly scattered

around the grid-point.

3.2 Evaluation

In this work, we do a quantitative individual evaluation supplemented by a vi-

sual comparison in order to validate the performance and applicability of our

Multivariate network layout approach. Works that use a similar approach

to their evaluation are [76] [77] [78]. We follow the procedure that is usually

done in the graph drawing community, we evaluate our approach using

datasets frequently used by the graph drawing community, using certain

quantitative metrics against a benchmark graph drawing algorithm.

In this evaluation, we want to show how well our approach is able to

map both structural as well as attribute proximity. We do this by increas-

ing the complexity of the network step by step. Starting with a network

that does not contain any node or edge attributes (Karate club dataset).

After which, we evaluate our approach on a weighted network (les mis-

erables dataset). Then we evaluate on a network that has categorical node

attributes, but is unweighted (Football dataset). And finally, we evaluate

our approach on a dataset that has both edge weights, as well as categor-

ical node attributes (Hollywood Film Music dataset). In addition to the

quantitative evaluation, we do a visual evaluation on the Multivariate net-

work, and examine how node-attributes influence the drawing produced by

GH4D.
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3.2.1 Datasets

• Zackary Karate club dataset [79] consists of 34 nodes and 78 edges.

The data was collected over two years by Wayne Zachary in the 1970s.

The nodes in the data represents members of a karate club at an Amer-

ican university, and the edges represent their social interactions. The

graph has no node or edge attributes and is un-directed.

• Les Misérables dataset [80] contains an weighted which consists 77

nodes and 254 edges. The nodes in the dataset represent characters

in Victor Hugo’s novel ’Les Misérables’, and the edges represent that

these two characters appeared in the same chapter of the the book.

The data contains weighted edges, in which the weights indicate how

often such a co-appearance occurred.

• Football dataset [81] contains an attributed network which consists of

115 nodes and 616 edges. The network represents the schedule of Di-

vision I games for the 2000 season. Nodes represent college football

teams, and edges represent played games between the teams. All 115

teams were divided into conferences, which can be seen as communi-

ties, since games played happened more frequently with teams inside

the same conference. The data contains labeled nodes, which indicates

to which conference the team belongs.

• Hollywood Film Music dataset [82] contains an attributed network

which consists of 102 nodes and 193 edges. The network represents

collaboration of 40 composers of film scores and 62 producers, who

produced at least 5 movies in Hollywood. The nodes represents these

composers/producers, and the edges exists between composers and

producers and represent that the composer produced a film score for

the producer. Edges are weighted, the weight indicates the number of

movies the composer created scores for the respective producer. There

are two node attributes, one indicates whether the node is a composer

or a producer, the other whether the composer belongs to the top com-

posers, which have earned 1.5% or more of the total income of Holly-

wood movie score composers.
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Name |V| |E| type

Karate 34 78 binary
Les Misérables 77 254 weighted edges

Football 115 616 categorical nodes
Hollywood Film Music 102 193 weighted edges, categorical nodes

Table 3.1: 4 datasets, from graph drawing community

3.2.2 Algorithms

We compare our approach against two algorithms Fruchterman Reingold

algorithm and Random node placement algorithm:

• Fruchterman Reingold: [83] (also known as Spring) is a graph draw-

ing algorithm from the family of force-directed and related graph draw-

ing algorithms. This family of algorithms is based on the force di-

rected paradigm, which applies principles of attraction and repulsion

between graph elements to iterate towards an optimal graph layout.

• Random algorithm: we compare our approach to a random algo-

rithm, in which no node placement strategy is used, and nodes are

placed randomly inside the 2D space.

We selected the FR algorithm because it is well known and established

within the graph drawing community. And because of that, we were able to

find an working implementation within the Networkx Python library, that

we could use. And, as previously mentioned, there is currently no algorithm

similar to our algorithm, in which both topology as well as attributes are

considered in the graph drawing process.

Because of the performance wise efficiency our Graph Hashing algo-

rithm, we also considered using performance wise improved versions of the

Fruchterman Reingold algorithm. The multilevel Fruchterman Reinold (FR) al-

gorithm [84] and the parallel FR algorithm based on openCL [85] for instance,

improve the performance of force-directed algorithms and reduce execu-

tion time, enabling the algorithms to visualise large and complex networks

in an efficient manner. However, we did not find an implementation that we
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could use, and it was not feasible to make such an implementation within

the scope of this work.

3.2.3 Metrics

We selected edge-crossings, Angular Resolution, Edge length to measure

Aesthetic wise aspects of the graph drawing. We use the same definition as

in [86] [87].

• Edge Crossings: the Edge Crossings aesthetic metrics counts the num-

ber of pairwise edge crossings, where an edge crossing is defined as a

point where two edges intersect. The Angular resolution metric

• Angular Resolution: The Angular Resolution aesthetic metrics calcu-

lates the angular deviation of each edge and the ideal angle (based on

node degree), and then the mean is taken over all nodes.

• Edge Length: The Edge length aesthetic metric calculates the mean

edge length of all edges (which is said to be the ideal edge length),

and then the mean deviation of all edges from this ideal is calculated.

• Neighbourhood preservation: This metric measures how well struc-

ture is retained as in, nodes that are close in terms of graph-theoretic

distance should be near each other in the layout. The Neighbourhood

Preservation uses the Jaccard-similarity index to find both the theo-

retic neighbors of a node in the graph, and the nearest neighbors in

the graph drawing, and calculates what fragment of neighbors in the

drawing are graph-theoretic neighbours.

The metrics we use are all normalised, their values lie between 0 and 1,

where 1 represents the best preferable outcome, and 0 the least, the same

way as defined in [87]. For example, in the case of edge crossings, the

amount of edge crossings is divided by the maximum amount of edge cross-

ings, and the outcome is deducted from 1. Such that, with a lower amount

of edge crossings, the metrics is closer to 1.

As for metrics that measure how well structure is retained in the graph

drawing, we use the metric neighborhood preservation, as defined in [86]
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[87]. While neighbourhood preservation works well to indicate how well

structural proximity is maintained in the graph, it does not tell us anything

of attribute proximity. We did not find any metrics within in the graph

drawing community that measure how well the node-attribute similarity

is retained in the graph drawing. In other words, nodes with similar at-

tributes are closer in the embedding space. We did consider works on at-

tribute driven layouting, but did not find such a metric.

The closest metric we found was a metric used in information visualiza-

tion as a quality metric for projections named trustworthiness [88]. Trustwor-

thiness measures to what extent the local structure is retained when project-

ing data of high dimension into low dimension. Square distance matrices

are used for both the high dimensional as well as the low dimensional rep-

resentation, and given k neighbors, and similar to the neighborhood preser-

vation metrics, it measures to what extent neighbors in high dimension are

neighbors in low dimension.

Driven by the fact that there no graph drawing metrics that measure

how well node-attribute similarity is retained in the graph drawing, and

inspired by the trustworthiness in projections, we reused trustworthiness to

measure node-attribute similarity separately in a graph drawing. We define

two metrics as the following:

• Topology-Trustworthiness: we define topology-trustworthiness as a mea-

sure that can be used in dimensionality reduction graph drawing, that

tells us to what extent local structure is retained in the graph draw-

ing, given the high dimensional structural representation of the graph.

The trustworthiness measure is calculated over the binary (high di-

mensional) adjacency matrix, and the graph drawing (2 dimensional

representation).

• Attribute-Trustworthiness: We define attribute-trustworthiness as a mea-

sure that can be used in dimensionality reduction graph drawing, that

tells us to what extent local structure is retained in the graph draw-

ing, given the high dimensional attribute representation of the graph.

The trustworthiness measure is calculated over the binary (high di-
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mensional) node-attribute matrix (as defined in section 4.1.1), and the

graph drawing (2 dimensional representation).

3.2.4 Experiment setup

Quantitative evaluation:

For each given dataset (Karate,LesMiserables,Football,Hollywood), each al-

gorithm (GH4D,Spring,Random) will generate a graph drawing 10 times.

Then each of the 10 produced graph drawings is evaluated based on 6 met-

rics (EdgeCrossing, EdgeLength, AngularResolution, NeighborhoodPreser-

vation, topologyTrustorthiness, AttributeTrustworthiness). Below the step-

wise experimental setup given the above parameter settings for the GH4D

approach.

Algorithm 1 Pseudocode of GH4D evaluation pipeline

Datsets={Karate,LesMiserables,Football,Hollywood}
Algorithms={GH4D,Spring,Random}
EvaluationMetrics={EdgeCrossing,EdgeLength,AngularResolution,
NeighborhoodPreservation,topologyTrustorthiness,
AttributeTrustworthiness}

for each: d ∈ Datasets
for each: a ∈ Algorithms
for each: i = 0, i < 10, i ++

drawing = createGraphDrawing(d,a)
result = evaluateGraphDrawing(drawing,EvaluationMetrics)
results.concat(result)

The results are afterwards visualized such that our approach (GH4D)

can be compared to the benchmark strategies (Spring,Random). For GH4D,

each iteration, the RandomSeed fed to the algorithm is different. We use

fixed values for the other three parameters. For neighbourinfluence, we

used the default value 1.0. For iterations we used 2 iterations, since it is

said that often a value of 2 to 4 is sufficient. For embeddingdensity we

use 50% the embedding dimension. It is said that this parameter should

be roughly 25%-50% of the embedding dimension. We experimented with

different values for neighborinfluence, embeddingdensity, and iterations.

We did not see a positive effect on the visual quality metric results when

tuning the parameter values. We did see an increase in execution time for
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higher values of embeddingdensity and neighbourinfluence. We also see

a negative influence on edge length when increasing both iterations and

embeddingdensity.

Multivariate network visual evaluation:

In addition to the quantitative evaluation, we will evaluate the Multivariate

network based on how node-attributes influence the drawing. We will do

this for the Multivariate dataset "Hollywood Film Music". We will generate

three drawings: one that is purely based on an topological embedding, one

that is purely based on a node-attribute embedding, and one that is drawn

on both.
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4. Results

4.1 Quantitative and visual evaluation

4.1.1 Karate Dataset

Figure 4.1: Karate Barplots with error-bars of each algorithms performance on
Six visual quality metrics: a clear difference can be seen between the means of
the best (spring), the second best (GH4D), and the worst (random)
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(a) (b) (c)

Figure 4.2: Karate graph drawings produced by each algorithm (a) Struc-
ture/communities is visible in the drawing (b) Clear structural proximity
preservation is present (c) No clear structure or community is present

Algorithm EC EL AR NP TT FT

GH4D 0.869 0.537 0.227 0.125 0.675 NA
Spring 0.967 0.721 0.242 0.273 0.717 NA

Random 0.756 0.605 0.214 0.068 0.526 NA

Table 4.1: Mean VQM and Information distribution metric results for each
algorithm: Spring has the best results in bold, followed by GH4D and lastly
Random

Algorithm Execution time

GH4D 29,11 ms
Spring 5,78 ms

Random 0,08 ms

Table 4.2: Average execution time for each algorithm: The best performing
algorithm is spring, which has for each metric the highest value in bold

When we consider the results of the karate dataset from a VQM (visual

quality metric) perspective, (edge-crossings: EC, edge-length: EL, angular-

resolution: AR) in table 4.1, spring has the best results for each VQM. Also

from the Information distribution perspective (neighborhood preservation:

NP, topology-trustworthiness: TT) spring has the best performance. This is

also visible in the graph drawing in figure 4.2 (b), when we compare it to
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4.1 Quantitative and visual evaluation

the other two (a) and (c). We can clearly see less edge crossings, the angles

between edges seems also more balanced compared to the other drawings

and we don’t see many long edges, which reflects that closely connected

nodes are also not far away in the graph drawing.

When we look at the results of GH4D from a VQM pov, it can be said

that the results are in-between spring (best) and random (worst). The same

can be said about the graph drawing in figure 4.2. From the same VQM

pov, it looks better then the random drawing in figure 4.2 (c) but worse

then spring. While there are visibly more edge crossings and edges-lengths

more variable, there is still clearly a better structure visible compared to

random. From a information distribution pov, while GH4D performs worse

then Spring, the difference between both is reasonable (0.042 difference be-

tween TT means). Looking at both graph drawings of Spring and GH4D, we

can see why these results are close. We can see that they recognize some-

what similar communities.

This is better visualized in figures 4.3 4.4, 4.5, where we highlighted the

similar communities. For example, sub-graph of nodes (4,5,6,10,16) (at the

top in both drawings) are closely connected, and all connected to node 0,

which roughly placed in the center. This is not the case in random (sanity

check). In addition, (3,7,12,17,21) and (14,15,18,20,22,23,29) are also close in

both drawings.

In addition, from a performance perspective, random is the fastest, spring

is second and GH4D is roughly 6 times slower then spring.
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Results

Figure 4.3: GH4D drawing, similar closely connected communities are high-
lighted in red blue and green: community (4,5,6,10,16) can be found in both
GH4D and spring, and (3,7,12,17,21) and (14,15,18,20,22,23,29) are very similar
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4.1 Quantitative and visual evaluation

Figure 4.4: Spring drawing, similar closely connected communities are high-
lighted in red blue and green: community (4,5,6,10,16) can be found in both
GH4D and spring, and (3,7,12,17,21) and (14,15,18,20,22,23,29) are very similar
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Figure 4.5: Random, similar closely connected communities are highlighted in
red blue and green: We do not find the same communities in this drawing as is
the case with Spring and GH4D
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4.1 Quantitative and visual evaluation

4.1.2 Les Miserables Dataset

Figure 4.6: Les Miserables Barplots with error-bars of each algorithms per-
formance on Six visual quality metrics: a difference can be seen between the
means of the best (spring), the second best (GH4D), and the worst (random)

(a) (b) (c)

Figure 4.7: Les Miserables Bar-plots of each algorithm (a) GH4D: some struc-
tural proximity preservation presernt (b) Spring: Clear structural proximity
preservation (c) No proximity preservation
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Algorithm EC EL AR NP TT FT

GH4D 0.849 0.547 0.102 0.078 0.602 NA
Spring 0.966 0.532 0.200 0.308 0.806 NA

Random 0.755 0.611 0.122 0.045 0.511 NA

Table 4.3: Les Miserables mean VQM and Information distribution metric
results for each algorithm: Spring has the best results in bold, followed by
GH4D and Random are closer with the edge to GH4D

Algorithm Execution time

GH4D 39,43 ms
Spring 13,84 ms

Random 0,10 ms

Table 4.4: Average execution time for each algorithm: The best performing
algorithm is spring, which has for each metric the highest value in bold

When we consider the results of the Les Miserables dataset from a VQM

perspective, in figure 4.6 and table 4.3, spring has the best results for each

VQM (except EL), and for each information distribution metric (NP,TT).

This is also reflected in the graph drawing produced by spring in figure 4.7

(b). We see few edge crossings, and edge-lengths and edge-angles are well

distributed. We see clear communities that are closely connected. In the

case of GH4D’s VQM, the edge-crossings score better than random (differ-

ence 0.094), while EL and AR are closer (in the favor of random). However,

when we look at the graph drawings of GH4D and random, it is more clear

that GH4D produces the better drawing. In GH4D we see better structure,

closely connected nodes (communities), while this is not present in random.

From information distribution metrics pov, GH4D worse than Spring (TT

of 0.602 vs 0.806) while better than random (random TT is 0.511), and NP

GH4D, Spring and random (0.308,0.078,0.045) respectively. This is also re-

flected by the graph drawings 4.7. When we compare GH4D and Spring,

we see that GH4D can detect some of the communities that spring detects.

In figures 4.8 4.9, 4.10 we highlighted some of these similar communities.

For example, the community of (Napoleon, Oldman, Count, Champtercier,
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4.1 Quantitative and visual evaluation

Cravatte, countlessdelo, geborand) can be found in both drawings (in red).

And there are communities that are very similar (Brujon, Montparnasse,

Claquesous, Geulemer, Babet) and (Courefac, Combeferre, Grantaire, Enjol-

ras, Feuilly, Bahorel, Bossuet). Yet, as a sanity check, the same communities

in random are not present.

In addition, since the edges are weighted, GH4D should draw nodes

with similar weighted edges closer. If we look at the drawing, is is not very

clear, but we can somewhat see that higher weighted edges are clustered

more on the top right corner of the drawing. This is also present in spring,

but not in random.

In addition, from a performance perspective, random is the fastest, spring

is second and GH4D is roughly 3 times slower then spring.
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Figure 4.8: GH4D drawing, similar closely connected communities are
highlighted in red blue and green: For example the community in red of
(Napoleon, Oldman, Count, Champtercier, Cravatte, countlessdelo, geborand)
is also present in Spring
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4.1 Quantitative and visual evaluation

Figure 4.9: Spring drawing, similar closely connected communities are
highlighted in red blue and green: For example the community in red of
(Napoleon, Oldman, Count, Champtercier, Cravatte, countlessdelo, geborand)
is also present in GH4D
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Results

Figure 4.10: Random, similar closely connected communities are highlighted
in red blue and green: We do not find the same communities in this drawing
as is the case with Spring and GH4D
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4.1 Quantitative and visual evaluation

4.1.3 Football Dataset

Figure 4.11: Football Bar-plots with error-bars of each algorithms performance
on Six visual quality metrics: Except for edge crossing, the VQM metrics are
much closer. From an information distribution pov best to worst are more
clear (Spring, GH4D and Random)

(a) (b) (c)

Figure 4.12: Football graph drawings of each algorithm (a) GH4D: there is
separation of groups present, yet not very clear (b) very clear separation of
groups (c) No clear separation of groups
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Algorithm EC EL AR NP TT FT

GH4D 0.866 0.563 0.048 0.089 0.574 0.558
Spring 0.968 0.587 0.088 0.286 0.826 0.739

Random 0.766 0.609 0.208 0.019 0.515 0.505

Table 4.5: Football Mean VQM and Information distribution metric results
for each algorithm: The VQM results are much more distributed, while in the
information distribution results spring is the best followed by GH4D and the
worst is random

Algorithm Execution time

GH4D 65,70 ms
Spring 26,13 ms

Random 0,22 ms

Table 4.6: Average execution time for each algorithm: The best performing
algorithm is spring, which has for each metric the highest value in bold

When we consider the results of the Football dataset from a VQM per-

spective, in figure 4.11 and table 4.5, the results are a bit more divided. We

can see that spring minimizes edge-crossings very well, and GH4D is sec-

ond best, while random is worst. While for the other two, EL and AR, both

spring and GH4D are worse than random. However, this is not reflected

by the drawing. We can see the best structure in Spring, in which several

highly connected sub-graphs are visualized, which is less visible, but some-

what there in GH4D, while from the visualization pov random is the worst

drawing. From information distribution metrics pov, GH4D is worse than

Spring (TT of 0.826 vs 0.574) while better than random (random TT is 0.515).

The same holds for the FT of all three (0.739 vs 0.558 vs 0.505). And NP of

GH4D, Spring and random (0.308,0.078,0.045) respectively. This is also re-

flected by the graph drawings 4.12. Since this dataset has categorical node

attributes, we visualized each nodes attribute in figure 4.12 with a differ-

ent color. In spring, the communities are best identified, nodes of the same

colors are for the most part placed in the same group. While in GH4D’s

drawing this is less visible, they are still somewhat of a division color wise,
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4.1 Quantitative and visual evaluation

yet they are more scattered then spring. While in random, we can say that

this is not the case.

We expected that GH4D would do better from a node-attribute encod-

ing perspective. Because, while spring determines the communities solely

on connections, GH4D gets the attribute information (attribute matrix) fed

as an input. Thats why we wanted to take a closer look closer into GH4D’s

performance in relation to the football dataset. We reran GH4D again, but

this time we fed the algorithm a vector representation that is solely based

attribute information, instead of both topology and attribute. However, the

results were similar to the one where both topology and attribute informa-

tion is fed to the algorithm.

In addition, from a performance perspective, random is the fastest, spring

is second and GH4D is roughly less than 3 times slower then spring.
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4.1.4 Hollywood Film Music Dataset

Figure 4.13: Hollywood Film music Bar-plots with error-bars of each algo-
rithms performance on Six visual quality metrics: Spring is the best on each
VQM. From information distribution perspective, they are much closer metric
wise

(a) (b) (c)

Figure 4.14: Hollywood Film Music graph drawing produced by each algo-
rithm (a) GH4D: Clear clustering can be seen of each group (color) (b) Spring:
Groups are not separated well, yet VQM wise its a better drawing (c) Random:
No structure VQM and group separation wise
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4.1 Quantitative and visual evaluation

Algorithm EC EL AR NP TT FT

GH4D 0.781 0.604 0.179 0.018 0.514 0.554
Spring 0.960 0.718 0.374 0.091 0.516 0.516

Random 0.766 0.609 0.208 0.019 0.515 0.505

Table 4.7: Mean VQM and Information distribution metric results for each
algorithm: VQM ise Spring has the best results. Information distribution wise
results are closer.

Algorithm Execution time

GH4D 55,98 ms
Spring 19,65 ms

Random 0,09 ms

Table 4.8: Average execution time for each algorithm: The best performing
algorithm is spring, which has for each metric the highest value in bold

When we consider the results of the Hollywood Film Music dataset from

a VQM perspective, in figure 4.13 and table 4.7, spring has the best results

for each Visual quality metric (VQM). This is also visible in the graph draw-

ing in figure 4.14 (b), when we compare it to the other two (a) and (c). We

can clearly see less edge crossings, and it is also visible that edges length and

angles are more balanced. VQM wise, GH4D and random are much closer.

However, the drawing of GH4D has a slight edge over random, since we

can see more structure in the drawing.

From information distribution metrics pov, for NP spring has an edge

over GH4D, while TT spring and and GH4D are very close (0.514 vs 0.516).

As for TT, when we look at the visuals in figure 4.14, spring is the better

drawing topology wise (which is in fact represented in NP) but not so much

in TT. Interestingly, FT wise GH4D is better than Spring (0.554 vs 0.516).

This is well reflected in the drawing. We can see clear separation between

the Composers (blue) and Producers (red) and top 1.5% producers (yellow)

in figure 4.12 (a) compared to (b). As for edge weights, they are not very

well clustered in any of the drawings.
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Since we have seen that for Multivariate network Hollywood Film Mu-

sic, we get from an attribute perspective, a better representation compared

to the other algorithms. We want to take a deeper look into how incorporat-

ing node-attribute in the vector representation influences the graph drawing

for GH4D.

In addition, from a performance perspective, random is the fastest, spring

is second and GH4D is roughly less than 3 times slower then spring.

4.1.5 Visual analysis of node-attribute impact in Hollywood

film music dataset

(a) (b) (c)

Figure 4.15: Graph drawings produced by GH4D: (a) Purely based on node-
attribute information (b) Purely based on topology information (c) Based on
both attribute as well as topology

(a) (b) (c)

Figure 4.16: Bar-plots produced by GH4D (a) (a) Purely based on node-
attribute information (b) Purely based on topology information (c) Based on
both attribute as well as topology

In this part, we generate three drawings using GH4D for the Hollywood

Film Music dataset: one that is purely based on an topological embedding,
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4.1 Quantitative and visual evaluation

one that is purely based on a node-attribute embedding, and one that is

drawn on both. We ran the GH4D algorithm on the Hollywood Film Music

dataset, and created the three visualizations shown in figure 4.15. Metrics

wise, in this part we focus on the information distribution metrics TT and

FT, which are shown in figure 4.16.

As shown in the visualization where the node vectors only contain node-

attribute in formation, in figure 4.15 (a), we can conclude that, for the given

dataset GH4D can make a clear distinction between each group (composer,

producer, top-producer). It further distinguishes the composers into two

groups, where it seems that the higher weights are more clustered into the

right. This is further confirmed by the FT metric, which shows that the

drawing outperforms the other drawing by a large margin. In the drawing

that encodes both topology as well as attributes shown in figure 4.15 (c) we

can still see a clear distinction between the groups, which is also reflected by

the corresponding FT metric result. While the drawing that encodes solely

topology, shown in figure 4.15 (b), performs the worst FT metric wise. TT

metric wise, all drawings are pretty close, while the drawing that encodes

both topology and attributes has a slight edge.
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5. Discussion

From the Visual quality metric (VQM) results of the Karate dataset we learn

that they do not fall within our 10 percent margin. We hypothesised delta

of 10 percent between the state of the art algorithm (Fruchterman Reingold)

and GH4D, but in reality the margin is 15 % for the VQMs on average. How-

ever, from the visual evaluation of the drawings produced by GH4D, we

learned that they are representative to encode structural proximity. This is

also reflected by the Topology Trustworthiness (TT) metric (0.675 vs 0.717),

but not by the Neighborhood preservation (NP) metric (0.125 vs 0.273). As

for the VQM results of the Les Miserables dataset, they are slightly out of the

10 percent margin. We get a difference of 11,77 % on average between the

VQM results of spring and GH4D. Just as with the karate dataset, we did

see that the drawings encode several aspects of nodes structural proxim-

ity, just as the Fruchterman Reingold algorithm does. Yet, the information

distribution metrics difference is larger compared to the Karate dataset.

The results of both datasets show us that GH4D can learn structural

proximity, given the adjacency matrix as a vector representation. Perfor-

mance of GH4D worse for both VQM and information distribution metrics

than FR based on our selected metrics, but that is expected, since spring is

optimized to visualize network structure, while GH4D does not consider

optimal positions of nodes such that VQM are maximized. Using random

as a sanity check, we have seen that it can create drawings that contains as-

pects of conserved structural proximity, where closely connected nodes are

drawn closer in the drawing.

Next we considered network datasets that contain both topological in-

formation as well as node-attribute information, in the Football and Holly-

wood Film Music dataset.

The results of the Football dataset, which solely contains categorical nodes,
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we learned that GH4D can somewhat learn multivariate network structure.

While the VQM metric results were a bit more divided in this dataset, the

difference between spring and GH4D is 10 percent. This might be connected

to the fact that Football is a ground truth network, in which encodes 11

groups that are heavily connected with each other. When we focus on the

information distribution metrics (NP, TT, FT) spring performs best followed

by GH4D. This is further shown by the graph drawings produced by both.

We expected better results when feeding attribute information only, yet we

got similar results. The Hollywood Film Music produced much better re-

sults from a Feature Trustworthiness perspective when only attributes were

encoded into the vector. The results of Football dataset might be linked to

the way the vectorization happens for the categorical node in Football.

The Hollywood Film Music dataset showed us that, while performing

worse on VQM scale compared to spring (delta 23,8 %), it did in fact encode

attributes better. Yet, must be stated that the VQM results of GH4D were

more similar to the random algorithm. We came to the same conclusion

by analysing the drawing produced by the algorithms. Except that we did

see a better structure in the GH4D drawings compared to the random. In

addition, the Hollywood Film Music dataset produced promising results,

where higher attribute presence in the input matrix gives graph drawings

in which attribute information is better represented. On the one extreme, a

pure node-attribute representation matrix gives us a drawing where nodes

are separated based on attribute value, and edge weights. This is also re-

flected by the Feature trustworthiness metric, which was highest. While on

the other extreme, a pure topological drawing gives us a drawing where the

feature trustworthiness is lowest. A combination of the two takes the mid-

dle ground, scoring in between. The results from the Hollywood dataset

are at one hand in line with our hypothesis, where we stated that we want

to create graphs where node-attributes are better represented compared to

current state of the art methods. Yet this was not done within the delta 10

percent loss of VQM performance.

In addition, from a performance perspective, we seen a trend in that, the

larger the dataset, the closer the execution time of spring and GH4D were.
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Discussion

5.1 Future work

We have identified several directions for future work. First of all, this work

identified that there are opportunities for graph drawing algorithms aimed

at Multivariate networks. At each of the four steps of our approach lie op-

portunities for future work.

The quality of the results of our approach depends on the vectorization

step, in which graph data is represented as vectors. In Hollywood, we were

able to get better classification based on node-attributes. Yet in Football, the

classification based on node attributes was less accurate. In our approach

the adjacency matrix was used together with one-hot encoding of the node-

attributes to represent the graph data. An other method to use for vector-

ization is using random walk methods such as Deepwalk and Node2vec

instead of the adjacency matrix. The benefit would be that they use less

memory to represent nodes. This in turn is beneficial for the next steps, for

example the embedding.

In this work we identified 27 network embedding methodologies that

use node-attributes. As we have stated before, we are not aware of any

works that uses network embedding for graph drawing in which attributes

are incorporated. We focused on one particular class, graph hashing HashGNN.

Yet, opportunities might lie in the other algorithms and classes. For exam-

ple, the other graph hashing based methods such as Binarized Attributed

Network Embedding (BANE) and w-Bit Quantization for Attributed Net-

work Representation Learning (LQANR) or Locality sensitive graph hash-

ing embedding implementations such as NearBucket-lsh. Or the neural net-

work based methods such as Tri-party deep network representation model

(Tri-DNR) and SEAL.

We used very sparse random projection (VSRP) to reduce the dimen-

sionality of the produced embedding. There are several other dimension-

ality reduction techniques. For example, t-SNE and Principal component

analysis (PCA). Or the dimensionality reduction based methods that are

aimed at graph drawing, such as Tsnet and DRgraph. Since these meth-
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5.1 Future work

ods are aimed at graph drawing, they might pose as good alternatives to

draw graphs based on network embedding. A downside of using VSRP,

from a graph drawing perspective, is that is results in an low dimensional

representation in which multiple nodes can have the same value. The next

step in this approach, would be to create a fully recursive implementation,

in which buckets (sub-graphs) are recursively drawn using our approach.

An other direction for future work is to experiment with implementa-

tions that combine our approach with force directed graph drawing algo-

rithms. We used network embedding for Multivariate graph drawing, that

does not maximize Visual quality metrics, while force directed graph draw-

ing algorithms do. What we have in mind for such a hybrid strategy, is that

GH4D initially generates a drawing. As we have seen before, GH4D draw-

ing contains groups of nodes with the same coordinates. The Force directed

layout algorithm is in turn executed on those groups (bucket). This might

be seen as a divide and conquer strategy, which takes advantage of GH4D

to incorporate node-attributes into the drawing, and a Force directed max-

imizes the Visual quality metrics by drawing the sub-graphs. This might

results in a graph drawing, that is a trade-off between performance in max-

imizing Visual quality metrics, while incorporating node attributes.

There are currently no metrics that measure attribute proximity in a

Multivariate network drawing. Such metrics would, similar to the neigh-

bourhood preservation metric, measure how well attribute-proximity is pre-

served, by comparing the neighbours in the raw graph data and the neigh-

bours in the graph drawing. In this work we attempted something similar,

yet we compared the high dimensional matrix representation, instead of

sets of nodes, with the low dimensional coordinates.

An other direction of future research might be a live Multivariate graph

drawing visualization tool with a slider, in which the user can experiment

with attribute influence. Since, our approach is relatively fast from a visual-

ization point of view (65 ms in football with roughly 100 nodes 600 edges),

this might be feasible from a performance perspective, the user does not

have to wait long for the result to be visible. Since, as we have noticed in the

59



Discussion

Hollywood Film Music dataset, that a higher node-attribute presence in the

vector encoding, resulted in higher results for the Feature-Trustworthiness

metric. In the visualization tool the user has live influence on how much

attribute information is injected into the graph drawing, from this we might

learn how much attribute influence is preferred. Lastly, performance on big-

ger dataset has to be investigated. The largest dataset was only 115 nodes.

This approach might be beneficial for large graphs from a execution time

perspective.

5.2 Limitations

The comparison of GH4D to Spring from a execution time perspective has

limitations. The implementation of HashGNN is based on the graph data-

sciene library and an internal implementation, in which the python library

is used to execute HashGNN. Such that, in order to execute hashGNN, an

API call is made to (in our case) a local database using a cypher query, which

in turn returns the embedding. We compared our approach to Spring im-

plementation from Networkx, which is implemented in a python module.

To make a fair comparison from a execution time perspective, HashGNN

must also be implemented in a python module. Unfortunately, there is no

such implementation (yet) of HashGNN.

Because of time, we were limited our evaluation to 4 datasets. We would

have like to test our implementation on more datasets, especially larger

ones. Especially from a execution time perspective, executing GH4D on

very large datasets might gives us insight into how is compares to Spring.

Unfortunately, we had no automated way to import data. All data used in

this work has been imported manually. For example, the Hollywood Film

Music was in a Pajek format, which had to be manually transformed to a

spreadsheet, which in turn could be imported into python.
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6. Conclusion

This work is motivated by the fact that there are currently no multivariate

graph drawing algorithms that generate graph drawings based on both at-

tributes as well as structural proximity. We identified opportunities within

network embedding, and summed up 27 state of the art network embed-

ding methodologies and classified them based on whether they encode topol-

ogy, attributes or both. We described an approach called Graph Hashing

for Drawing (GH4D) which, inspired by dimensionality reduction graph

drawing and network embedding for graph drawing methodologies, which

takes advantages of a multivariate network embedding (graph hashing)

technique called HashGNN to generate graph drawings in which both topol-

ogy as well as attributes are represented. In addition, driven by the fact

that there are no metrics that measure attribute proximity in a graph draw-

ing, we reused trustworthiness metric to measure attribute preservation be-

tween the high dimensional graph representation matrix and the low di-

mensional node coordinates. We evaluated the approach using four datasets

used within the graph drawing community, against a state of the art force-

directed algorithm. We demonstrated that GH4D can learn both topological

structures for small and middle sized datasets. In addition we did see, in

some of the drawings that similar edges are encoded closer together. In ad-

dition, in the multivariate datasets while it was not very clear in the football

dataset, in the Hollywood dataset is more clear that the attribute encoding

does influence GH4D to make graph drawings based on both topology and

attributes, where attributes are better represented compared to the Fruchter-

man Reingold algorithm. In addition, several directions for future work

have been identified.
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Appendices
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A. A

A.1 GH4D graph drawing images

Figure A.1: GH4D drawing of the Zackary Karate Dataset, we can see clear
structural proximity preservation, closely connected communities can be
found similar to spring (for example 4,5,6,10,16).
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Figure A.2: GH4D drawing of the Les Miserables Dataset, we can see
clear structural proximity preservation, closely connected communities
can be found similar to spring (for example (Napoleon, Oldman, Count,
Champtercier, Cravatte, countlessdelo, geborand))
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A.1 GH4D graph drawing images

Figure A.3: GH4D drawing of the Football Dataset, there is visible clustering
where similar nodes are drawn closer (color)
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Figure A.4: GH4D drawing of the Hollywood Film Music Dataset, we can see
attribute proximity preservation, as a clear separation is visible between the
composers and producers (red and blue), as well as the top 1.5% grossing pro-
ducers (yellow)
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