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Chapter 1

Introduction

Our current understanding of the Universe at the most fundamental level relies
on two distinct frameworks. General Relativity (GR), a classical theory, accurately
describes gravitational interactions on large, macroscopic scales. In contrast, the
other three known fundamental forces—electromagnetic, weak, and strong interac-
tions—are precisely described by a quantum field theory (QFT) known as the Stan-
dard Model of elementary particles.

GR is a well-established theory that has passed numerous experimental tests, par-
ticularly in scenarios where spacetime curvatures are small. However, the validity
of GR in the strong field regime, where direct experiments are lacking, remains un-
certain. Moreover, several reasons indicate that GR cannot be the final word in our
understanding of gravity. Firstly, because GR predicts its own breakdown, as evi-
denced by the presence of singularities in the interiors of black holes (BH) or at the
Big Bang. Secondly, because it has proven very difficult to make the gravitational in-
teraction compatible with the other three fundamental interactions. All this suggests
that a UV completion of GR, namely a quantum theory of gravity, is still lacking.

Remarkably, there is a candidate theory of quantum gravity that not only unifies
quantum mechanics with gravity in an elegant and unique framework but also sug-
gests that "gravity is inevitably forced upon us," as Edward Witten famously stated
[63]. This theory, known as string theory, proposes that the fundamental constituents
of the universe are not point-like particles but one-dimensional extended objects
called strings. The various quantum modes of vibration of these strings give rise
to the different particles observed in nature. Despite its theoretical elegance and
appeal, string theory has not yet been experimentally verified.

1.1 Quantum corrections in GR

Pure classical GR in n dimensions is described in terms of the Einstein-Hilbert action
which in natural units reads

SEH =
1

16πGn

∫
dnx
√
−gR + SGHY

with SGHY the standard Gibbons–Hawking–York boundary term that renders the
variational problem well defined. Gn is the Newton constant in n dimensions, g =
det (gµν) is the determinant of the spacetime metric, R is the Ricci scalar and we
have assumed absence of matter fields. By construction, the Einstein-Hilbert action
involves up to second order spacetime derivatives. In this sense, we can think of this
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as the dominant term when the gravitational field is weak. In principle, nothing pre-
vents us from modifying GR by adding higher derivatives terms in the action that
respect the symmetries of our theory, which in this case are diffeomorphisms. For
example, we could incorporate terms such as R2, RµνRµν or RµνρσRµνρσ. By dimen-
sional analysis, we expect the respective couplings of these terms to be suppressed
by some power of the Planck mass MP ≡ 1/

√
16πGn. Note that since these are

all the possible terms which involve up to 4th order in spacetime derivatives they
would become relevant in the strong field limit and negligible in the weak one. In
fact, these types of corrections to the classical action arise naturally in some compact-
ifications of string theories. This has precisely motivated several theories of modified
gravity such as Chern-Simons or Gauss-Bonnet theory. In that sense, we could think
of these additional terms as quantum corrections to the classical theory of gravity.

Continuing with this example, we could construct a general higher derivative grav-
ity action up to the 4th order in spacetime derivatives, whose action in four dimen-
sions would be:

S = SEH + SQC =
∫

d4x
√
−g
(

M2
PR + αR2 + βRµνRµν

)
where α and β are dimensionless constants in natural units, and QC stands for quan-
tum corrections. Note that we have not written the three possible scalar invariants
explicitly since they are not independent by virtue of the Gauss-Bonnet theorem. In
fact, this particular theory is renormalizable. Importantly, as we have previously re-
marked, we recover the standard Einstein-Hilbert term in the weak field limit, which
is the one experimentally tested so far, as the higher derivative terms are negligible
in that regime.

In this context, GR can be viewed as an effective theory of gravity, potentially re-
quiring modifications at some cutoff scale, believed to be, as we have explained,
around the Planck mass. This cutoff introduces the possibility of new physical phe-
nomena emerging beyond this scale. Nevertheless, nature appears to conceal this
regime from us, as horizons are expected to form whenever such scales become rele-
vant. This phenomenon is encapsulated by the Cosmic Censorship (CC) conjecture
in its weak form.

1.2 Cosmic censorhip

Penrose proposed the CC conjecture suggesting that singularities arising from grav-
itational collapse are always obscured within event horizons of black holes, thereby
preventing their direct observation from the external universe [52]. The conjecture
exists in two formulations: the weak cosmic censorship conjecture posits that all sin-
gularities are shielded within event horizons, while the strong cosmic censorship
conjecture states that, in most cases, timelike singularities do not occur, ensuring
that even an observer entering a black hole will never witness the singularity [60].
This conjecture plays a pivotal role by averting the theoretical possibility of naked
singularities, which would challenge fundamental principles of spacetime physics
and black hole thermodynamics.
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1.2.1 Cosmic censorship violation

We would like to answer the following question: is it possible to violate the CC con-
jecture? It turns out that the effort towards challenging or even violating the CC
conjecture has been a topic of significant and longstanding interest in the scientific
community. The main objective would require to dynamically generate spacetime
regions with arbitrarily large curvature invariants without having to rely on fine
tuned initial conditions. When such strong field spacetime regions emerge, the tra-
ditional Einstein-Hilbert action become inadequate as we have previously pointed
out and some new physics must emerge. The ultimate aim is to produce a naked
singularity from general enough initial conditions, indicating a breakdown of GR
and the necessity of a new theory.

Nevertheless, violating CC in four-dimensional spacetimes is notoriously challeng-
ing, but there have been examples of this in higher dimensions [3, 29]. These ex-
amples often involve systems with Gregory-Laflamme (GL) instabilities. These are
instabilities of certain black strings and black branes in dimensions higher than four.
In particular, Gregory and Laflamme established that certain branes and higher-
dimensional black string solutions in theories of gravity exhibit instabilities to small
perturbations for dimensions D ≥ 5 [36, 37]. Subsequent research into the endpoint
of this instability has identified a critical dimension below which the instability re-
sults in a transition to a black hole phase. Specifically, for dimensions 5 ≤ D ≤ 13,
there are GL instabilities whereas for dimensions above the critical threshold, the
instability leads to a non-uniform black ring phase [59].

The GL instabilities lead to the pinching off of the horizon in regions that are typi-
cally small, involving very low energies too as can be seen in Figure 1.1. This raises

FIGURE 1.1: Pinching off of the horizon in a GL instability. Image
taken from [50].

questions about the necessity of quantum gravity in understanding these processes,
as they are often well-described by the large-D approximation of classical gravity [5,
4].

An analogy with a water stream helps explain why quantum effects might not be
crucial in the horizon pinch-off. For thick streams, hydrodynamics provides a good
approximation, whereas for thin streams, surface tension effects lead to drop for-
mation, as can be seen in Figure 1.2. This mirrors the GL instability, where both the
extended horizon (stream) and isolated black holes (drops) are adequately described
by GR, revealing little about quantum gravity (molecular physics).
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FIGURE 1.2: A water stream pinching off.

1.3 Goal of this thesis

The goal of this thesis is to present a mechanism that generates large curvatures in
asymptotically anti-de Sitter (AdS) spacetimes in a boost invariant (BI) setup. In
particular, we will provide solutions to Einstein-dilaton gravity in five dimensions
where curvature corrections become dynamically significant over extended regions
of spacetime. We are particularly interested in showing solutions where curvature
invariants grow arbitrarily everywhere at the horizon, in contrast with GL instability.
Consequently, even though we will find that a naked singularity will only appear in
the infinite time limit in our system, curvature corrections to the action will become
relevant within a finite amount of time given that the cutoff of GR is finite.

On the other hand, gauge/gravity duality, also known as AdS/CFT correspondence
or holography, will prove to be a remarkable tool which will allow us to study the
behaviour of a non-conformal strongly coupled plasma in terms of our gravitational
solutions. This useful conjecture posits an equivalence between certain quantum
field theories and gravitational theories in higher-dimensional anti-de Sitter (AdS)
spaces. It suggests that a quantum field theory living on the boundary of an AdS
space is dual to a gravitational theory in the bulk of the AdS space [51]. This dual-
ity provides a powerful tool for studying strongly coupled quantum field theories,
where traditional perturbative methods may fail, by relating them to weakly cou-
pled gravitational theories in higher dimensions. This correspondence has profound
implications which are not yet fully understood, offering insights into topics ranging
from black hole thermodynamics to the behavior of quark-gluon plasmas [2].

In our case, gauge/gravity will allows us to interpret our findings through fluid
dynamics. In particular, the models we are going to consider are commonly used as
holographic duals of QCD [40, 41, 42, 49]. We will see that the field theory interpre-
tation of our gravitational system will be the following: the breakdown of classical
gravity in the bulk will correspond to finite N and finite coupling corrections in the
dual field theory. This reinforces the notion that a realistic and accurate holographic
model of QCD must include stringy and quantum corrections.
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1.4 Structure of this thesis

This thesis is structured as follows: Chapter 1 provides an introduction and ratio-
nale for the chosen topic. Chapter 2 explores gauge/gravity duality, which serves
as the primary theoretical framework. Chapter 3 delves into the specific model un-
der investigation, focusing on its thermodynamics and equilibrium transport prop-
erties. Chapter 4 introduces hydrodynamics and the boundary model, along with
various plasma evolution scenarios. Chapter 5 presents dynamic solutions within
our model, accompanied by results and their alignment with theoretical predictions.
Chapter 6 discusses these findings within the context of the cosmic censorship con-
jecture. Finally, Chapter 7 presents the conclusions drawn from this study and out-
lines avenues for future research.
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Chapter 2

The gauge/gravity duality

We are interested in computing properties of non conformal strongly coupled plas-
mas that are dual to our gravitational solutions. Nevertheless, computing observ-
ables in strongly coupled quantum field theories (QFTs) is notoriously difficult. In
such cases, the interaction strength, described by the coupling constant, prevents the
perturbative expansion of the generating functional since each successive term in the
expansion is larger than the previous one. This issue does not arise in quantum elec-
trodynamics (QED), where the coupling constant is small, allowing for successful
perturbative calculations. However, quantum chromodynamics (QCD), the theory
governing the interaction between quarks, is a prominent example of a strongly cou-
pled QFT. To study such strongly coupled systems, new tools are required, one of
which is the holographic principle or gauge/gravity duality.

In this chapter we provide a basic introduction to the gauge/gravity duality. We
aim to cover the essential concepts, including a brief overview of string theory and
the large N expansion of gauge theories, and we conclude with the famous conjec-
ture that, in a certain limit, both partition functions are equal.

2.1 Introduction

As we have anticipated, gauge/gravity duality is a relationship between two types
of physical theories, whose equivalence was first precisely conjectured by Juan Mal-
dacena in 1997 [51]. It suggests a profound connection between string theory for-
mulated in a higher-dimensional Anti-de Sitter (AdS) space and a conformal field
theory (CFT) defined on the boundary of this space.

However, the initial idea originates from Gerard ’t Hooft, who realized that non-
Abelian strongly coupled SU(N) gauge theories become extremely simplified when
the number of colors is sent to infinity, N → ∞ [1]. In the Feynman diagram rep-
resentation, only the planar diagrams—those that can be drawn on a plane with-
out crossings—are dominant in the large N limit. This insight laid the groundwork
for the later development of the gauge/gravity duality, which provides a powerful
toolkit for studying strongly coupled gauge theories using classical gravity.

2.2 All you need to know about string theory

String theory is a theoretical framework where point-like particles are replaced by
one-dimensional objects known as strings. These strings can vibrate at different fre-
quencies, with each vibrational mode corresponding to a different particle. In fact,
strings can be either open or closed, with different boundary conditions leading to
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different physical phenomena. Moreover, the theory is formulated in higher dimen-
sions, typically ten in the case of superstring theory, which includes six compactified
dimensions that are not observable at low energies.

There are five consistent superstring theories:

• Type I

• Type IIA

• Type IIB

• Heterotic SO(32)

• Heterotic E8 x E8

These theories are related by dualities. In particular, M-theory is a conjectured
eleven-dimensional theory that unifies all five superstring theories. A crucial devel-
opment in string theory was the discovery of D-branes, which are dynamical objects
on which open strings can end. D-branes play a significant role in the gauge/gravity
duality, as they provide a link between gauge theories and gravity [35, 53].

2.3 Anti-de Sitter spacetime

Anti-de Sitter (AdS) spacetime plays a fundamental role in the gauge/gravity dual-
ity. It is a maximally symmetric, negatively curved space that serves as the setting
for the gravitational side of the correspondence. It can be visualized as a hyper-
boloid embedded in a higher-dimensional flat space. For example, AdSd+1 can be
described by the surface:

−X2
0 − X2

d+1 +
d

∑
i=1

X2
i = −L2,

where L is the AdS radius, and the X’s are coordinates in a (d + 2)-dimensional flat
space with metric

ds2 = −dX2
0 − dX2

d+1 +
d

∑
i=1

dX2
i .

This embedding makes the symmetries of AdS space manifest, showing it has the
isometry group SO(2, d). A convenient coordinate system for AdSd+1 spacetime is
the Poincaré coordinates, where the metric takes the form:

ds2 =
L2

z2

(
dz2 + ηµνdxµdxν

)
,

with ηµν being the Minkowski metric in d-dimensions, and z is the radial coordinate
with z = 0 corresponding to the boundary of AdS. The AdS spacetime has several
important properties:

• Boundary: The boundary at z = 0 is a key feature since it is where the confor-
mal field theory (CFT) lives.

• Conformal Boundary: The boundary of AdS is conformal to Minkowski space
(or more generally, to a conformally flat space), which is why the dual theory
on the boundary is a conformal field theory.



2.4. The large N expansion 9

• Curvature: AdS space has a constant negative curvature, characterized by the
AdS radius L.

2.4 The large N expansion

The large N expansion is a method used in quantum field theory and statistical me-
chanics to simplify the analysis of gauge theories by considering the limit where the
number of colors, N, becomes very large. This technique was pioneered by Ger-
ard ’t Hooft in the 1970s [1]. In the large N limit, the gauge coupling constant g is
rescaled such that λ = g2N, known as the ’t Hooft coupling, remains constant. This
parameter controls the perturbative expansion in the theory. In this limit, Feynman
diagrams simplify significantly. The dominant contributions come from planar dia-
grams, which can be drawn on a plane without crossings. Non-planar diagrams are
suppressed by factors of 1/N, simplifying the analysis of the theory. The large N
expansion plays a crucial role, as it provides a connection between the gauge theory
on the boundary and the gravity theory in the bulk [62].

2.5 Gauge/gravity duality conjecture

As we have already anticipated, gauge/gravity duality posits a correspondence be-
tween a gravitational theory in a d + 1 dimensional AdS space and a conformal field
theory on the d dimensional boundary of that space. The most studied example of
this duality is the correspondence between Type IIB string theory on AdS5 × S5 and
N = 4 supersymmetric Yang-Mills theory in four dimensions. In particular Malda-
cena’s conjecture can be written as:〈

e
∫

d4xϕ0(xµ)O(xµ)
〉

CFT
= Zstring

[
ϕ(xµ, z)

∣∣∣
z=0

= ϕ0(xµ)
]

(2.1)

where ϕ(xµ, z) represents a scalar field (dilaton) in Anti-de Sitter space (AdS), with
ϕ0(xµ) serving as its boundary condition. This boundary condition acts as a source
in the conformal field theory (CFT) for the scalar operator O(xµ) that is dual to the
dilaton. This conjecture implies that any calculation in the strongly coupled CFT can
be mapped to a weakly coupled gravity theory, and vice versa. This has been used
to gain insights into various physical phenomena, including quark-gluon plasma,
condensed matter systems, and black hole physics [61, 38, 2].

In conclusion, gauge/gravity duality represents a remarkable unification of concepts
from string theory and gauge theory and a very powerful theoretical tool which we
are going to use in this project to study strongly coupled systems using higher di-
mensional classical gravity solutions.
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Chapter 3

The holographic model

In this chapter, we explain and motivate the model we will be working with on
the gravity side, also referred to as the ’bulk’. Additionally, we present numerical
equilibrium solutions and show the thermodynamics and transport properties of the
dual plasma.

3.1 The setup

We examine the dynamics and provide solutions for a five-dimensional holographic
framework that couples gravity to a scalar field (the dilaton) possessing a non-trivial
potential. Following the same conventions as in [6], the action for this Einstein-
dilaton model is given by

S =
2
κ2

5

∫
d5x
√
−g
[

1
4

R − 1
2
(∇ϕ)2 − V(ϕ)

]
+ SGHY (3.1)

where SGHY is the standard Gibbons–Hawking–York boundary term that renders
the variational problem well defined. The resulting equations of motion are

Rµν −
1
2

Rgµν = 8πTµν (3.2)

□ϕ =
∂V
∂ϕ

, (3.3)

where the d’Alembertian operator in curved spacetime is□ϕ = 1√−g ∂µ (
√−g gµν∂νϕ)

and κ2
5 = 8πG5

c4 is the five-dimensional Einstein gravitational constant. The energy
momentum tensor is defined as

8πTµν = 2∂µϕ∂νϕ − gµν

[
1
2

gαβ∂αϕ∂βϕ + V(ϕ)

]
(3.4)

where the potential V(ϕ) encapsulates the characteristics of the dual gauge theory.

3.1.1 The potential

There are multiple options for choosing a potential. For specificity, we study a family
of potentials defined by a single parameter γ. Let us consider the case where our
potential can be expressed in terms of a simple superpotential:

W(ϕ) =
1 − 6γ2 − cosh(2γϕ)

4Lγ2 (3.5)
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where L is the AdS radius, such that

V(ϕ) = −4
3

W(ϕ)2 +
1
2

W ′(ϕ)2. (3.6)

If we explicitly write our potential as a function of ϕ we have that

V(ϕ) =
3γ2 sinh2(2γϕ)− 2

(
6γ2 + cosh(2γϕ)− 1

)2

24L2γ4 . (3.7)

Interestingly, this potential is symmetric in ϕ and γ and has the particular feature
that has a maximum at ϕ = 0 and has no minimum, it is unbounded for γ ∈ (0, γM =√

2
3 ). This can be seen in Figure 3.1. In fact, the behavior of the system at very

0.0 0.5 1.0 1.5 2.0 2.5
-50

-40

-30

-20

-10

0

10

ϕ

V
(ϕ

)

γ = 0.1

γ = 0.3

γc =
1
√6

γ = 0.7

γ = 0.9

FIGURE 3.1: Our potential V(ϕ) for different choices of γ.

low energies is dominated by the leading exponential term for large values of ϕ,
characterized by V(ϕ) ∝ −e4γϕ. Such runaway behavior is commonly observed
in various string theory compactifications, including truncations of 10-dimensional
supergravities (see, e.g., [30, 31, 25, 39]). Therefore, despite our initial choice of
Eq. (3.6) as an exploratory model, we anticipate that our approach will yield similar
outcomes in low-energy string theory scenarios in future studies. It is natural then
to study the behaviour of the potential in the limits where the scalar field is near the
maximum and when is rolling down the potential, which we can identify as the high
and low energy limit respectively.

3.1.2 UV physics

In the UV limit, where ϕ → 0, the potential has a maximum at ϕ = 0, as is clearly
seen if we take the following limit

lim
ϕ→0

V(ϕ) = − 3
L2 .

The fact that the maximum of the potential is at − 3
L2 is not arbitrary. At a techni-

cal level, the superpotential defined in Eq. (3.5) is selected to satisfy the following
criteria:

• The vacuum solution is asymptotically AdS5 in the UV characterised by a ra-
dius L, as V(0) = − 3

L2 .
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• The potential has a maximum at ϕ = 0 and its second derivative indicates that
the scalar field has a mass m2 = − 3

L2 at that point. Consequently, in the UV
regime, this field is dual to an operator O in the gauge theory, possessing a
dimension ∆UV = 3. Hence, ϕ = 0 corresponds to a UV fixed point deformed
by O.

• There are not logarithmic terms in the UV expansion.

• The potential does not have phase transitions for γ ∈ (0, γc), as discussed
further in the subsequent sections.

It is also interesting to notice that even though the potential is not well defined for
γ = 0, we can still compute the limit γ → 0:

lim
γ→0

V(ϕ) =
1
L2

(
− 3 − 3ϕ2

2
− ϕ4

3

)
. (3.8)

We can do the same an explore the potential near the maximum where ϕ = 0 and
check that we cannot approximate the potential as a exponential but as a polynomial.

V(ϕ) =
1
L2

(
− 3 − 3ϕ2

2
− ϕ4

3
−
(

2γ2

9
− 4γ4

15

)
ϕ6 +O[ϕ8]

)
. (3.9)

Note on the conformal dimension ∆ of an operator

The conformal (or scaling) dimension ∆ of an operator is a measure of how the op-
erator scales under conformal transformations, particularly under dilations (scaling
transformations). In particular, an operator O(x) in a CFT is characterized by its
behavior under a scaling transformation of the form:

x → λx

where λ is a positive scaling factor. The operator O(x) is said to have conformal
dimension ∆ if it transforms as:

O(x) → λ−∆O(λx).

The conformal dimension ∆ is an intrinsic property of the operator and plays a cru-
cial role in determining the scaling behavior of correlation functions in the theory.
For example, in d-dimensional Euclidean space, if O(x) is a primary operator, the
two-point correlation function of O typically takes the form:

⟨O(x)O(y)⟩ ∝
1

|x − y|2∆ .

Therefore, the conformal dimension ∆ dictates the power-law decay of the correla-
tion function at large distances.

Note on the negative squared mass of the scalar field

It may be confusing that the scalar field possess negative squared mass. However,
in AdSd+1 spacetimes one can identify the scalar field mass with the conformal di-
mension through:

m2L2 = ∆(∆ − d).
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As we can see in Figure 3.2, where we set d = 4, only the fields with ∆ ≥ 4 will
have m2 ≥ 0. On the other hand, the unitary bound imposes ∆ ≥ 1. However, even
though fields with scaling dimension ∆ ≤ 4 will have negative squared mass, they
are not always tachyons. The energy will be positive if and only if the Breitenlohner-
Freedman bound m2L2 ≥ −4 is satisfied [16]. This is because the curvature con-
tributes positively to the energy of the scalar fild that is propagating through AdS.

2 3 4 5
Δ

-4

-2

2

4

m2L2

FIGURE 3.2: Scalar field mass as a function of the conformal dimen-
sion in AdS5.

3.1.3 IR physics

In the IR limit, where ϕ → ∞, the scalar field is rolling down the potential. We
have already said that this potential has the particular feature that it is unbounded.

Actually, the potential does not have a minimum for γ < γM =
√

2
3 ≈ 0.816. On the

contrary, there will always be a minimum if γ > γM, as can be seen in Figure 3.1.
This is clearly seen if we take the limit:

lim
ϕ→+∞

V(ϕ) =

+∞ if γ >
√

2
3

−∞ if 0 < γ <
√

2
3

It is also important to note that at late times/low energies the potential approaches
an exponential:

V(ϕ) ≃
(
3γ2 − 2

)
e4γϕ

96L2γ4 , as ϕ → +∞ (3.10)

From here we can see that the potential resembles an exponential in this limit and
goes to ±∞ depending on the value of γ. In fact, our results are primarily based
on this runaway behavior. Importantly, we observe that stable black brane solutions
exist even as ϕ increases, across a broad range of γ values. Drawing on this insight
and the findings in [44], we anticipate that boost-invariant solutions will exhibit in-
creasing curvatures at the horizon. In the next sections, we will demonstrate this

explicitly by computing the full dynamical evolution. For values γ > γM =
√

2
3 ,

we expect the theory to become pathological, as it will not have a maximum. This
would correspond to a bad singularity according to [39].
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3.2 Static Solutions

In this section we aim to explain how the equations of motion are numerically solved.
We explain the procedure we follow in order to solve static black brane solutions in
equilibrium. We have used Mathematica as a programming language.

To investigate the thermal properties of our model, we look for static black brane
solutions of our action (3.1) using the same methodology as in [40, 6]. For these so-
lutions, the scalar field acts as a monotonic function of the holographic coordinate z,
allowing us to use it as a coordinate in solving the dynamic equations. The value of
the scalar field at the black brane horizon, ϕH, uniquely determines the black brane
solution. By applying the appropriate boundary conditions at various values of ϕH,
one can compute all the equilibrium spacetime geometries. Determining the ther-
modynamics then involves finding a series of black brane solutions parameterized
by ϕH, and calculating their Hawking temperatures T and entropy densities s.

3.2.1 The metric ansatz

We want to construct and examine the properties of black brane solutions of an
asymptotically AdS5 spacetime described by our action (3.1). A convenient ansatz
in 5 dimensions written in Fefferman-Graham coordinates would be:

ds2 =
L2

z2

(
− f (z)dt2 + g(z)d⃗x2 + dz2) (3.11)

where z is the holographic radial coordinate, i.e. at the boundary z = 0 and grows
in the bulk. Moreover, we have imposed the metric to be static in time and isotropic
and homogeneous in the x⃗ = (x1, x2, x3) coordinates. Therefore, the metric functions
can only depend on z. The equations of motion can be simplified to a system of three
second-order equations for f , g, and ϕ, along with a first-order constraint:

g′′ =
9zg′ − 2g

(
2V(ϕ) + z2ϕ′2 + 6

)
3z2

ϕ′′ =
−2g2z3ϕ′3 + 3g (zg′ − 2g) ∂ϕV(ϕ) + zϕ′ (g2(4V(ϕ)− 6)− 3z2g′2 + 9gzg′

)
3gz2 (zg′ − 2g)

f ′′ = f ′
(

3
z
− g′

g

)
+

f ′2

2 f
+

f
(
−4g2 (2V(ϕ) + z2ϕ′2 + 6

)
+ z2g′2 − 4gz (zg′′ − 3g′)

)
2g2z2

f ′ =
f
(
4g2 (−2V(ϕ) + z2ϕ′2 − 6

)
− 3z2g′2 + 18gzg′

)
3gz (zg′ − 2g)

were the prime derivative is just the derivative along z, i.e. h′ ≡ dh
dz . We arranged

them such that the equations for g and ϕ are independent of f , we have omit the
dependence of the functions with z and we have set L = 1.

3.2.2 Near boundary expansion

We solve the equations of motion perturbatively near the boundary, located at z = 0.
We start by imposing the boundary metric to be conformally flat, as a boundary
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condition. This allows us to know how the metric functions scale near the boundary:

f (z) =
∞

∑
n=0

fnzn , g(z) =
∞

∑
n=0

gnzn and ϕ(z) =
∞

∑
n=0

ϕnzn+1

and fixes the first coefficients to be

f0 = 1 and g0 = 1.

We can continue by solving the equations of motion order by order. The asymptotic
expansions read:

f (z) = 1 − Λ2

3
z2 + f4z4 +O(z6)

g(z) = 1 − Λ2

3
z2 +

(
2

27

(
Λ4 − 9Λϕv

)
− f4

3

)
z4 +O(z6)

ϕ(z) = Λz + ϕvz3 +O(z5)

where we have defined the source as Λ ≡ ϕ0 and the vacuum expectation value as
ϕv ≡ ϕ2. The coefficients f4, ϕ0 and ϕ2 are not determined by the expansions.

3.2.3 Near horizon expansion

To find black brane solutions, we require the existence of an event horizon at z = zH.
The suitable regularity conditions are

f (z) = fH(z − zH)
2 + · · · , g(z) = gH + · · · , ϕ(z) = ϕH + · · ·

Solving near horizon order by order we get:

f (z) = fH (z − zH)
2 +

fH (z − zH)
3

zH
+O(z − zH)

4

g(z) = gH +
2gH (z − zH)

zH
+O(z − zH)

2 (3.12)

ϕ(z) = ϕH +
(z − zH)

2 sinh (2γϕH)
(
−12γ2 +

(
3γ2 − 2

)
cosh (2γϕH) + 2

)
24γ3z2

H
+

+O(z − zH)
3

3.2.4 Numerical integration

In order to numerically integrate the equations of motion we use the Mathematica’s
NDSolve routine and we take into account the following remarks:

• The equations of motion have a singular behavior at z = zH, making it un-
suitable to evaluate them at this point. Therefore, we use the expansions (3.12)
computed to a sufficiently high order and evaluate them slightly away from
the horizon at z = zH − ϵH. These results serve as the initial conditions for the
functions and their derivatives. We start by assigning values to gH, fH, and
ϕH. We begin with fH = L−2, gH = 1, and ϕH = 10−2. Given the small value
of ϕH, we expect to represent a high-temperature solution.

• Similarly, since the equations of motion are also singular at z = 0, we terminate
the integration at a small value z = ϵUV .
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FIGURE 3.3: Solving the equations of motion by imposing fH = L−2,
gH = 1, and ϕH = 10−2 for γ = 0.2.
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FIGURE 3.4: Solving the equations of motion by imposing that f0 and
g0 approach unity in the UV region for γ = 0.2.

This is shown in Figure 3.3. From the numerical solution, we can extract the values
f0, g0, and ϕs ≡ Λ from the asymptotic boundary solution. It is important to realize
that there is a scaling symmetry in our ansatz of the following form:

f (z) → f ′(z) = α f (z)
g(z) → g′(z) = βg(z)

z → z′ = λz.

Indeed, taking into account these isomorphisms of our ansatz, we adjust the values
of fH and gH such that f0 and g0 approach unity in the UV region. In the same man-
ner, we modify zH so that the source ϕs = Λ remains constant across all solutions.
This can be seen in Figure 3.4. With the near-boundary behavior now appropriately
managed, we calculate the value of ϕv. Finally, we repeat this procedure for vari-
ous values of ϕH ∈ (0,+∞), which we can think of different values for the energy.
For each resulting solution, we save the corresponding fH, gH, and ϕv. Finally, with
these parameters, we can extract the thermodynamic information as we explain in
the next section.
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3.3 Thermodynamics

In this section we want to compute the thermodynamic quantities of our system. In
particular, we will compute the pressure p, energy density ϵ, and free energy density
f from the boundary data. Moreover, since black branes can be regarded as thermal
systems we can extract its thermodynamic properties an relate them to the gauge
theory dual. Specifically, the entropy density s and temperature T of an equilibrium
state in the gauge theory side are related to the area density and surface gravity at
the horizon of the corresponding black brane. We provide more detail about this in
the next subsections where we set c = h̄ = kB = 1.

3.3.1 Holographic renormalization

In this section we are going to follow the same approach as in [28, 6]. The idea is that
the gravity and gauge theory partition function, as well as other observables, diverge
near the boundary. By properly adding counterterms in the action that absorb these
divergences, we are able to compute the pressure p, energy density ϵ, and free energy
density f from the boundary information and relate them by using the standard
thermodynamic relations

ϵ + p = Ts and p = − f . (3.13)

Noting the similarity between the small field behavior of the superpotential from
(3.5) and the GPPZ flow in [34], we can straightforwardly determine the expecta-
tion values of the stress tensor and the scalar operator. Firstly, we expand the met-
ric and the scalar field near the boundary in terms of the holographic coordinate
z, i.e. in the limit where z → 0. Following the approach in [10], we express the
5-dimensional metric for asymptotically AdS geometries in a general form using
Fefferman-Graham coordinates:

ds2 =
L2

z2 (dz2 + gµνdxµdxν)

and the asymptotic expansion for the metric and the scalar field read:

ds2 = z2
(

g(0)µν + g(2)µν z2 + g(4)µν z4 + . . .
)

, (3.14)

ϕ = Λz + ϕvz3 + . . . (3.15)

Therefore, using the results from [45], the expectation values of the field theory op-
erators can be expressed as follows:

⟨Tµν⟩ =
2L3

κ2
5

(
g(4)µν +

(
Λϕv −

Λ4

18
+

γ2Λ4

24

)
ηµν

)
, (3.16)

⟨O⟩ = −2L3

κ2
5

(
2ϕv +

γ2Λ3

6

)
. (3.17)

As anticipated, equations (3.16) and (3.17) lead to the Ward identity for the trace of
the stress tensor:

Tµ
µ = −Λ⟨O⟩, (3.18)
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and we adopt a renormalization scheme where ⟨Tν
µ⟩ = ⟨O⟩ = 0 in the vacuum.

Hence, we will omit the expectation value notation and work with rescaled quanti-
ties:

⟨ϵ, pi,V⟩ =
κ2

5
2L3

〈
−Tt

t , Txi
xi

,O
〉

. (3.19)

Now, we can write the thermodynamic quantities as a function of the boundary data:

ϵ =
1
72
(
3γ2 + 4

)
Λ4 − f4 − Λϕv

p =
1

216

((
4 − 9γ2)Λ4 − 72 f4 + 72Λϕv

)
f =

1
24

γ2Λ4 −
3
√

fH g3
H

z3
H

− 12Λϕv

 .

In order to solve for f4, we realize that due to the symmetries of our equations of
motion, there is a conserved charge Q along the holographic direction such that
∂zQ = 0 where:

Q ≡ L3

z3

√
g(z)
f (z)

(
g(z) f ′(z)− f (z)g′(z)

)
and evaluating the function at the boundary and at the horizon, allows us to com-
pute f4:

f4 =
1
18

(
Λ4 − 9Λϕv

)
−

3
√

fH g3
H

8z3
H

.

Finally, we obtain that:

ϵ =
1
24

γ2Λ4 +
9
√

fH g3
H

z3
H

− 12Λϕv


p =

1
24

−γ2Λ4 +
3
√

fH g3
H

z3
H

+ 12Λϕv


f =

1
24

γ2Λ4 −
3
√

fH g3
H

z3
H

− 12Λϕv

 .

3.3.2 Bekenstein-Hawking entropy

Bekenstein and Hawking [7] taught us that the entropy of a black brane can be com-
puted as

S =
AH

4GN

where AH represents the "area" of the horizon (which corresponds to a volume in our

context) and GN =
κ2

5
8π is the Newton constant in 5 dimensions. Given our ansatz for

the bulk metric (3.11) the induced metric on the black brane horizon can be derived
setting dt = dz = 0:

dℓ2 = gijxixj =
L2

z2 g(z)(dx2
1 + dx2

2 + dx2
3).
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The determinant of the induced metric tensor gij for the coordinates x1, x2 and x3 is
then:

det(gij) =
L6

z6 g(z)3

which allows us to compute the area element dA:

dA =
√

det(gij)dx1dx2dx3 =
L3

z3 g(z)3/2dx1dx2dx3.

To find the total area, we should integrate this area element over the ranges of x1, x2
and x3:

Area =
L3

z3 g(z)3/2
∫

dx1dx2dx3.

Unfortunately, these coordinates are unbounded and the area diverges. In other
words, we are not able to compute the total entropy because the total "area" of the
horizon is infinite. Instead, we can actually compute the entropy density since we
know the "area" density:

s =
aH

4GN
=

L3

4GN

g(zH)
3/2

z3
H

=
L3

4GN

g3/2
H

z3
H

where we have used that g(zH) = gH from the horizon expansion (3.12), s = dS
dx1dx2dx3

is the entropy density and aH = dA
dx1dx2dx3

is the "area" density of the horizon.

3.3.3 Hawking Temperature

There exist various methods for calculating the Hawking temperature of a black
brane. However, perhaps the most straightforward approach is to require smooth-
ness of the Euclidean spacetime. This condition implies periodicity in imaginary
time, which we can equate with the inverse temperature [18]. Let’s begin by rewrit-
ing our general static black brane metric ansatz:

ds2 =
L2

z2

(
− f (z)dt2 + g(z)d⃗x + dz2) (3.20)

where f (z) and is assumed to have a second-order zero at the horizon z = zH, while
g(z) remains non-zero there. Following the conventional approach [33], we perform
a Wick rotation t → −itE in order to get the Euclidean analytical continuation of the
metric

ds2
E =

L2

z2

(
f (z)dt2

E + g(z)d⃗x + dz2). (3.21)

Since we want to impose regularity at the horizon, we can expand our metric near
the horizon r ≃ rH:

ds2
E ≃ L2

z2
H

(1
2

f ′′(zH)(z − zH)
2dt2

E + g(zH)d⃗x + dz2). (3.22)
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Introducing radial and angular coordinates:

ρ = − L
zH

(z − zH), θ =

√
f ′′(zH)

2
tE (3.23)

allows us to write the metric as

ds2
E ≃ dρ2 + ρ2dθ2 + g(zH)d⃗x2. (3.24)

Notice that in these new coordinates the first two terms of the metric represent a
plane in polar coordinates. Therefore, in order to avoid a conical singularity at ρ = 0
we must demand θ to have a periodicity of 2π. Moreover, from statistical field theory
we know that Euclidean time is periodic with a periodicity of β = 1

T . By equating
both periods, we are left with an expression for the temperature of the black brane:

T =

√
2 f ′′(zH)

4π
=

√
fH

2π
(3.25)

where we have used that f ′′(zH) = 2 fH from the near horizon expansion (3.12). It
is important to note that the Euclidean metric is not describing the spacetime inside
the horizon z > zH since the origin of the polar coordinates is in the horizon itself.

3.4 Equation of state

The equation of state (EoS) of the dual theory can be computed from studying the
properties of static black brane solutions to our action (3.1). Hence, the static solu-
tions allows us to present the EoS in the form p/ϵ as a function of the energy density
ϵ for different values of γ, as shown in Figure 3.5. The fact that p is positive for
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FIGURE 3.5: Equation of state for different values of γ ∈ (0, γc] to-
gether with the low energy analytical prediction.

γ ∈ (0, γc = 1√
6
), indicates the absence of phase transitions in this range. On the

contrary, for γ > γc we see how the pressure becomes negative, indicating a phase
transition. Following the work of [46], we use the coefficient of the Euler density
appearing in the Weyl anomaly of the dual field theory a = L3/(2πG5) to translate
bulk to gauge theory quantities. Notice that at high energy we recover the equation
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of state of a CFT p
ϵ = 1

3 , that comes for the tracelessness of the energy momentum
tensor. This is what we expect since our system is a CFT in the UV limit.

3.4.1 Low energy limit

In order to analytically compute the asymptotic equation of state (EoS) at low en-
ergies we are going to follow the same approach as [40]. There, the authors work
with the same Einstein-dilaton theory, but with an exponential potential, which in
our conventions reads:

VG(ϕ) = 4V0 exp
(
4γϕ

)
where the change of convention has been ϕ → 2ϕ and V → 4V. We can also identify
their potential parameter with our (γG = 2γ) in the limit where ϕ → ∞, since we
can identify the Gubser potential with our potential in the low energy limit (3.10). In
this subsection, we are going to work in this low energy limit ϕ → +∞. The black
brane static solutions describe the thermodynamics of the dual gauge theory via

log s = −ϕH

γ
+ constant in ϕH

log T =

(
2γ − 1

3γ

)
ϕH + constant in ϕH.

Since we know s and T

s(ϕH) = exp
(
− ϕH

γ
+ s0

)
T(ϕH) = exp

(
(2γ − 1

3γ
)ϕH + T0

)
where s0 and T0 are constants in ϕH, we can compute the equation of state using

p(ϕH) =
∫

sdT =

(
6γ2 − 1

)
e2γϕH− 4ϕH

3γ +s0+T0

6γ2 − 4

ϵ(ϕH) = sT − p =
3e2γϕH− 4ϕH

3γ +s0+T0

4 − 6γ2 .

We can now take the ratio of p and ϵ to get the equation of state

p
ϵ
=

1
3
− 2γ2 . (3.26)

Notice that in the high temperature limit, where γ → 0 we recover the usual 1/3
since the system approaches a CFT and the pressure starts to be negative at precisely
γc =

1√
6
, indicating a phase transition. Interestingly, we can compare the predicted

equation of state from (3.26) for different choices of γ with the numerical results and
check that they match at low energies. This is shown in Figure 3.5. We can also
plot the behaviour of the equation of state in the low energy limit (3.26) for different
values of γ. This can be seen in Figure 3.6.
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FIGURE 3.6: Predicted analytical behaviour of the equation of state at
low energies as a function of γ.

3.4.2 Equation of state for different γ’s

For completeness, we also illustrate the behavior of the energy density as a function
of temperature for three values of γ in distinct qualitative regimes in Figure 3.7.
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FIGURE 3.7: Energy density as a function of the temperature for γ =

0.1, 1/
√

6, 0.5.

Note that for 0 < γ < γc, the energy smoothly approaches zero as the temperature
decreases. In the limiting case γc = 1/

√
6 ≃ 0.408, the temperature asymptotically

reaches a constant value as the energy vanishes, consistent with the results of [43, 26,
8]. Above this value, there is an energy threshold below which homogeneous black
branes become unstable, leading to a phase transition. Finally, when γ > 2γM =√

2/3, the theory is expected to exhibit pathological behaviour, as discussed in [39].
To understand this better we plot the free energy density for the same values of γ
in Figure 3.8. There we see how the free energy density becomes positive, and thus
unstable for γ > γc = 1/

√
6, indicating the presence of a phase transition.
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3.5 Transport coefficients

The static solutions also enables us to compute transport coefficients. Specifically,
the shear and bulk viscosities are given by [54, 27]

η

s
=

1
4π

,
ζ

η
= 4

(
∂ log s
∂ϕH

)−2

, (3.27)

where ϕH is the value of the scalar ϕ at the horizon. The bulk over shear viscosity
ratio is shown in Figure 3.9.

3.5.1 Low energy limit

In order to compute the bulk to shear viscosity ratio and the speed of sound analyt-
ically in the low energy limit, we follow again the same approach as [40]. Using the
relation between static solutions and fluid properties provided in [6], we can explore
how the thermodynamics variables asymptotically behaves as a function of our γ:

lim
ϕ→+∞

ζ

η
= 4γ2

and check that perfectly matches the low energy behaviour of the numerical values
for the bulk to shear viscosity ratio. The results can be seen from Figure 3.9. In the
same way, we can also get the speed of sound cs:

c2
s =

d log T
d log s

=
1
3
− 2γ2

which in the limit where ϕ → +∞ indicates a phase transition at

γc =
1√
6
≈ 0.408

that coincides with the numerical critical value as it can be seen in Figure 3.7.
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Chapter 4

Hydrodynamics and quark-gluon
plasma

Until now, we have been discussing the "bulk" or gravity model. In this chapter, we
want to describe the boundary model, where the strongly coupled quantum field
theory lives. In particular, we aim to model the behavior of the quark-gluon plasma
(QGP) produced in heavy ion collisions. QGP is a unique phase of quantum chro-
modynamics (QCD) in which quarks and gluons, the fundamental constituents of
protons and neutrons, are no longer confined within individual nucleons but instead
exist in a free, deconfined state. This phase occurs at extremely high temperatures
and energy densities, similar to those that existed in the universe shortly after the
Big Bang. It turns out that the cooling of the QGP is well described by hydrodynam-
ics from very early times. Therefore, we will explain hydrodynamics and explore
different types of energy flows.

4.1 Dynamics of relativistic collisions

We are interested in studying relativistic head on collisions. Let us assume the col-
lision axis to be in the z direction. Since we want to simulate relativistic heavy ions
that travel very close to the speed of light, it is not convenient to work with standard
coordinates such as t and z since distances ∆t, ∆z are not invariant under Lorentz
transformations. In fact, in this relativistic set up it is more appropriate to work with
the so called Milne coordinates, i.e. proper time τ and spacetime rapidity y defined
as:

τ =
√

t2 − z2 (4.1)

y = arctanh
z
t
=

1
2

log
t + z
t − z

due to the fact that under a boost along the collision direction z, proper time remains
invariant whereas the rapidity y is additive, i.e. it will be shifted by a constant [47].
In Figure 4.1 we can schematically see the relativistic head-on collision in the (z, t)
plane. Where the hyperbolas are constant proper time slices and the red line repre-
sents constant rapidity. Therefore, in order to write our metric in the new coordinates
we can invert the relations in 4.1 to obtain t(τ, y) and z(τ, y):

t = τ cosh y (4.2)
z = τ sinh y.
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FIGURE 4.1: Relativistic heavy ion head-on collision in the (z, t) plane.
Image taken from [57]. The red lines represent constant rapidities y

whereas the hyperbolas are lines of constant proper time τ.

4.1.1 A model for quark-gluon plasma

The strongly coupled quantum field theory that we want to holographically study
lives in the boundary of an asymptotic AdS5 spacetime. Since we are interested in
modelling heavy ion collisions, we are going to impose for the boundary spacetime
to be flat, i.e. described by a Minkowski metric in four dimensions:

ds2
B = γµνdxµdxν = −dt2 + dz2 + dx2

1 + dx2
2.

As we have seen, it is natural to consider the proper time τ and the rapidity y for
head-on heavy ion collisions. Considering z to be the colliding direction and using
the change of coordinates (4.2), the boundary metric in these coordinates is given by
the so called Milne metric [58]:

ds2
B = −dτ2 + τ2dy2 + dx2

1 + dx2
2. (4.3)

From now on, we will follow the heavy ion collision model proposed by Bjorken
[12], where we assume the collision to be boost invariant in the central rapidity re-
gion along the colliding direction z. This means that physical quantities will be inde-
pendent of the rapidity y. We will also assume rotational symmetry in the transverse
plane (x1, x2) which implies that our physical observables will only depend on the
proper time τ. Finally, we work in the fluid rest frame where τ is the proper time of
the fluid so the four velocity is just uµ = ∂/∂τ.

In the following sections, we will delve deeper into the hydrodynamic description
of this system and present both analytical and numerical results, highlighting the
behavior of the system under various conditions.
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4.2 Hydrodynamics

In the context of gauge/gravity duality, the study of hydrodynamics provides cru-
cial insights into the behavior of strongly coupled quantum field theories. Hydro-
dynamics describes the macroscopic behavior of fluids and is characterized by con-
served quantities such as energy, momentum, and charge densities. In our setup,
we focus on the hydrodynamics of a strongly coupled quantum plasma which may
have similar properties as the quark-gluon plasma, a state of matter produced in
heavy-ion collisions.

The fundamental equations governing hydrodynamics are the conservation laws of
the energy-momentum tensor Tµν, given by ∇µTµν = 0. To first order in a gradient
expansion of the fluid four-velocity, the energy-momentum tensor can be expressed
as

Tµν = ϵuµuν + p∆µν − ησµν − ζ∆µν∇λuλ (4.4)

where ϵ is the energy density, p is the pressure, η is the shear viscosity, ζ is the bulk
viscosity, and uµ is the fluid velocity in some particular reference frame. The shear
tensor σµν is defined as

σµν = ∆µα∆νβ
(
∇αuβ +∇βuα

)
− 2

3
∆µν∇λuλ (4.5)

while the projector tensor ∆µν = γµν + uµuν projects onto the space transverse to the
fluid velocity. Here, γµν is the metric, which in our case will be flat and expressed
in boost-invariant coordinates. This choice is particularly useful for modeling the
cooling of the quark-gluon plasma produced in heavy-ion collisions [12] as we have
explained in the previous section.

Let us assume that the gauge theory matter behaves like a perfect fluid plus 1st
order hydro as described in (4.4). By explicitly writing the components of the energy
momentum tensor:

Tµν =


ϵ(τ) 0 0 0

0 −3ζ(τ)−4η(τ)+3τp(τ)
3τ3 0 0

0 0 2η(τ)−3ζ(τ)
3τ + p(τ) 0

0 0 0 2η(τ)−3ζ(τ)
3τ + p(τ)


we can identify the hydrodynamic predictions for both the longitudinal and trans-
verse pressures using:

Tµ
ν = diag

(
−ϵ, p∥, p⊥, p⊥

)
. (4.6)

Therefore, we have that:

p∥(τ) = p(τ)− 3ζ(τ) + 4η(τ)

3τ
(4.7)

p⊥(τ) = p(τ) +
2η(τ)− 3ζ(τ)

3τ
. (4.8)

The energy momentum tensor conservation provides us with a simple first order
differential equation for the energy density of the following form:

∇µTµν = 0 −→ ϵ′(τ) =
ζ(τ) + 4η(τ)

3 − τp(τ)− τϵ(τ)

τ2 (4.9)
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which can be written in terms of the longitudinal pressure as

τϵ′(τ) + ϵ(τ) + p∥(τ) = 0 . (4.10)

We are now going to study the solutions to this equation for different scenarios, i.e.
different flows for the energy density as a function of proper time.

4.3 Ideal Bjorken flow

Let us suppose that the gauge theory matter is conformal and behaves as a perfect
fluid. This is what we call an ideal Bjorken flow. Therefore, its energy momentum
tensor will be of the form:

Tµν = (ϵ + p)uµuν + pηµν

where ϵ is the energy density, p is the pressure and uµ is the fluid local four-velocity,
with u2 = −1. In our coordinates (τ, y, x1, x2), the fact that we consider a boost-
invariant set up implies that uµ = (1, 0, 0, 0) and the energy momentum tensor reads:

Tµν =


ϵ(τ) 0 0 0

0 τ2 p(τ) 0 0
0 0 p(τ) 0
0 0 0 p(τ)

 (4.11)

Since we are considering a conformal case, the energy momentum tensor should be
traceless. This relations gives us the equation of state

Tµ
µ = 0 → p(τ) =

ϵ(τ)

3
. (4.12)

Moreover, the conservation of the energy momentum tensor gives us an extra con-
dition.

∇µTµν = 0 → ϵ′(τ) = − p(τ) + ϵ(τ)

τ
(4.13)

Solving (4.13) for E(τ) using the EoS (4.12) allows us to compute analytically how
the energy density evolve with proper time if the matter theory behave like an ideal
fluid:

ϵ(τ) =
ϵ0

τ4/3 (4.14)

where ϵ0 = τ4/3
0 ϵ(τ0). Note that it is necessary to have an equation of state relating

energy and pressure in order to close the system of equations and get a solution.
From (4.14) we can extract how the thermodynamic quantities evolve with proper
time [32]:

ϵ, p ∼ τ−4/3

T ∼ ϵ1/4 ∼ τ−1/3

s ∼ T3 ∼ τ−1

sV ∼ sτ ∼ const.
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Let us generalize Bjorken flow by studying the non-conformal case for an ideal fluid
and with first order hydrodynamic corrections.

4.4 Ideal non-conformal Bjorken flow

In this section we study the non-conformal behaviour of the energy density as a
function of proper time, assuming that our gauge theory matter is described by an
ideal fluid. In order to analytically solve the energy momentum tensor conservation
equation we need an equation of state. The problem is that for non conformal theo-
ries with a non trivial potential for the scalar field like the one in our model, is very
hard to find analytical solutions.

Fortunately our potential at late times behaves as an exponential (3.10) and there
exist analytical black brane solutions with these kind of potentials in the literature.
In particular, in order to study the late time behaviour of our non-conformal plasma
as a function of proper time, we are going to follow the same approach as in [44].
In this paper the authors studied the thermalization of N = 4 SYM plasmas holo-
graphically and found analytical black brane solutions to the same action as us (3.1)
but with an exponential potential for the scalar field of the form:

V(ϕ) = 2V0
(
3γ2 − 2

)
e4γϕ. (4.15)

where the change of conventions between their action and ours is ϕ →
√

3/2 ϕ and
V → −4V. Importantly, this theory can be mapped to ours at low energies ϕ → +∞,
since the scalar field is rolling down a potential which is effectively exponential as
we have shown in (3.9).

Notice that in their original expression for the potential they work with a param-
eter called X, which is related to our γ. Indeed, we can compare their potential with
our potential at late times and match the exponents in order to get a map between

both theories X = −
√

3
2 γ. This parameter represents a conformality factor, i.e. it

measures how one deviates from the conformal case. In fact, if one send γ → 0 in
their theory, one recovers the conformal case.

Nevertheless, in our case this is not exactly the same since sending γ → 0 does
not imply a recovering of conformality as it can be seen from (3.8). This is because
we impose AdS in the boundary while they do not, since they only care about the
IR. In fact, it is clear from their potential that they do not have an stable vacuum and
thus the theory is not well defined in the UV, requiring a UV completion.

Remarkably, they found an analytical black brane solution in a boost invariant setup
in the same fashion as in [48] but generalizing to the non-conformal case.

4.4.1 Black brane solution

In our conventions, the general analytical solution for (3.1) with the scalar field po-
tential (4.15) found in [44] at leading order in 1/τ and in the IR limit is

ds2 ≃ v
2

6γ2−1

{
τ−4γ2

1 − vξ
dv2 + τ− 2

3

[
−(1 − vξ)dτ2 + τ2dy2 + dx2

⊥

]}
(4.16)
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and the solution for the scalar field reads

eϕ = τ
√

3
2 γv

3
√

3
2 γ

1−6γ2

where we defined the scaling variable v as

v =
z

τ
1
3−2γ2

and z is the holographic coordinate. Moreover, we work in the gauge where:

ξ =
3

1 − 6γ2 + 1. (4.17)

In fact, the metric (6.2) is nothing but a black hole solution with moving horizon.
This is clearer when we express the metric as a function of z using (6.1) at leading
order in 1/τ:

ds2 ≃ z
2

6γ2−1

{
dz2

1 − τ2γ2− 4
3 zξ

−
(

1 − τ2γ2− 4
3 zξ
)

dτ2 + τ2dy2 + dx2
⊥

}
(4.18)

and the scalar field reads:

eϕ = z
3
√

3
2 γ

1−6γ2 .

4.4.2 Late time thermodynamics

From the black brane solution (6.4) we can compute the thermodynamics in the same
manner as in [44], where they have assumed that the gauge theory matter is de-
scribed by an ideal fluid, at late times as a function of γ and τ:

T(τ) =
(
2 − 3γ2)

2π
τ2γ2− 1

3 ∼ τ2γ2− 1
3

s(τ) =
1

4G5
τ−1 ∼ τ−1

ϵ(τ) =
3

16πG5
τ2γ2− 4

3 ∼ τ2γ2− 4
3 (4.19)

F(τ) =
(
6γ2 − 1

)
16πG5

τ2γ2− 4
3 ∼ τ2γ2− 4

3

p(τ) =
(
1 − 6γ2)
16πG5

τ2γ2− 4
3 ∼ τ2γ2− 4

3 .

Note that the entropy density is for the volume element τdydx1dx2. Looking at (4.19),
it is clear from the free energy and the pressure that there is a phase transition at
γc = 1√

6
. Indeed, when γ > γc = 1√

6
the free energy becomes positive and the

pressure becomes negative, indicating the instability of the solution. Moreover, the

temperature becomes negative at γM =
√

2
3 since the potential (4.15) changes its

sign, preventing the rolling of the scalar filed.

Importantly, we have found that the non conformal behaviour for the energy density
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FIGURE 4.2: Non conformal exponent of the energy density flow de-
scribed by an ideal fluid as a function of γ.

of the quantum fluid in the ideal case is described by the exponent:

ϵ(τ) ∼ τ2γ2− 4
3 . (4.20)

Notice that in the case where γ = 0 we recover the usual Bjorken flow, i.e. ϵ(τ) ∼
τ−4/3. In fact, as we can see from (4.20), the larger γ is the slower the energy evolves
as we can see in Figure (4.2). We have worked in the same units as the authors
and written the pre-factors taking into account that they depend on the whole back-
ground which is different from ours in the UV thus some correction is needed, but
we can expect the exponent of τ to be correct. As a nice check, we see that we
recover the same equation of state as in (4.12) once we divide the pressure by the
energy density:

p(τ)
ϵ(τ)

=
1
3
− 2γ2.

4.5 Viscous corrections to non-conformal Bjorken flow

Let us assume that the gauge theory matter behaves like a perfect fluid plus 1st order
hydro. Following the same approach as in [40], which we already started in section
3.4.1, we compute the thermodynamics as a function of ϕH:

T(ϕH) = T0e2(γ− 1
6γ )ϕH

s(ϕH) = s0e−
ϕH
γ

p(ϕH) =

(
6γ2 − 1

)
s0T0

6γ2 − 4
e2γϕH−

4ϕH
3γ

ϵ(ϕH) =
3s0T0

4 − 6γ2 e2γϕH−
4ϕH
3γ

where T0 and s0 are constants in ϕH fixed by our theory. As a preliminary step, we
assume the very late-time behavior from (3.26) and write every term in (4.9) as a
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function of the energy density using:

ζ(τ) = 4γ2η(τ)

p(τ) =
(

1
3
− 2γ2

)
ϵ(τ)

η(τ) =
s(τ)
4π

s(τ) = 3
3

6γ2−4 s0

((
4 − 6γ2) ϵ(τ)

s0T0

)
3

4−6γ2

resulting in a rather complicated first order ordinary differential equation for the
energy of the form:

Aγϵ′(τ) + Bγ
ϵ(τ)

τ
+ Cγ

ϵ(τ)
3

4−6γ2

τ2 = 0 (4.21)

where the coefficients are:

Aγ = −3

Bγ = 2
(
3γ2 − 2

)
Cγ =

2
3

4−6γ2 3
3

6γ2−4
(
2 − 3γ2) 3

4−6γ2
(
3γ2 + 1

)
Σ0

π

and we have defined Σ0 = T0 (s0T0)
− 3

4−6γ2 for notation simplicity. Notice that we

can identify Cγ
ϵ(τ)

3
4−6γ2

τ2 as the viscous term, since it carries all the information from
hydro. It is important to realize that it is suppressed by a factor of τ−2. One way of
seeing this is the following. If we send this term to 0, and we solve the differential
equation (4.21), we recover:

ϵ(τ) = ϵ0τ2γ2− 4
3

which is precisely the non-conformal ideal case (4.20) discussed in the previous sec-
tion. Therefore, it is clear that the viscous term is the one carrying information about
the hydrodynamics.

Let’s first analyse the solution of (4.21) for the extreme cases where γ = 0 and
γc =

1√
6

in order to gain some intuition:

ϵ(τ)|γ=0 =
( c1

τ1/3 − c2

τ

)4

ϵ(τ)|γ= 1√
6
=

ϵ0e−
Σ0

2πτ

τ

where c1 is a constant of integration and we have defined c2 = Σ0
2
√

233/4π
. Again, we

can identify c2
τ as the hydro correction or viscous term which at late times is clearly

negligible compared with the ideal one c1
τ1/3 .
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FIGURE 4.3: Energy density assuming ideal fluid (dashed) vs 1st or-
der hydro (solid). We set s0 = T0 = 1.

4.5.1 Full solution

Remarkably, we can solve the equation (4.21) exactly. The full solution for the en-
ergy density with 1st hydro corrections is:

ϵ(τ) =
(

c3τ2γ2− 1
3 − c4

τ

) 3
1−6γ2 +1

(4.22)

where c3 is an integration constant and:

c4 =
3

3
6γ2−4

(
4 − 6γ2) 3

4−6γ2
(
6γ2 − 1

)
Σ0

4π (3γ2 − 2)

Again, we can see how the viscosity is described by the coefficient c4, which is
suppressed by τ−1 in the late time limit whereas c3 is suppressed by a factor 2γ2 − 1

3
which for our range of γ’s is (− 1

3 , 0). Let’s analyze the full hydro solution (4.22)
with some plots. In order to visualize the solution and since it depends on s0 and T0,
whose values are not obvious, we are going to set them to 1 for plotting purposes.
Note that this is a qualitative analysis, even though the real behaviour is equivalent,
just shifted in time. The results can bee seen in Figures 4.3 and 4.4. It seems that the
larger γ is, the quicker it is described by an ideal fluid.

Late time expansion

Let’s try now study analytically the full hydro solution (4.22) by expanding some
terms. Firstly, we rewrite the solution as:

ϵ(τ) =
(
− a

τ
+ c3τb

)
c



36 Chapter 4. Hydrodynamics and quark-gluon plasma

1 2 3 4 5

0.5

0.6

0.7

0.8

0.9

1.0

τ

ϵ
hy
dr
o

ϵ
id
ea
l

γ = 0

γ = 0.1

γ = 0.2

γ = 0.3

γ = 0.4

FIGURE 4.4: Energy density assuming ideal fluid (dashed) over en-
ergy density assuming 1st order hydro (solid). We set s0 = T0 = 1.

where c3 is the same integration constant as before and now the new coefficients are:

a =
3

3
6γ2−4

(
4 − 6γ2) 3

4−6γ2
(
6γ2 − 1

)
Σ0

4π (3γ2 − 2)

b = 2γ2 − 1
3

c =
3

1 − 6γ2 + 1

Since 0 < a < S0
2
√

2·33/4π(S0T0)3/4 , − 1
3 < b < 0, and c > 4 for our range of γ’s, we can

expand this in a Taylor series for τ → ∞. The dominant term at late times is the ideal

one, c3τ−(1/3)+2γ2
. We can rewrite

(
− a

τ + τbc3
)c as

(
τbc3

)c
(

1 − a
τb+1c3

)c
and expand

the second term up to second order since we assume that a
τb+1c3

≪ 1 at late times.
Therefore, we find that in the late time limit the energy behaves as:

ϵ(τ) =
Dγ

τ
4
3−2γ2

− Eγ

τ2 − Fγ

τ2γ2+ 8
3

(4.23)

where the coefficients are:

Dγ = c3
3

1−6γ2 +1

Eγ =
27

1
6γ2−4

(
4 − 6γ2) 3

4−6γ2 Σ0c3
3

1−6γ2

2π

Fγ =
3

3
3γ2−2

+1 (
4 − 6γ2) 3

2−3γ2 Σ2
0c1

3
1−6γ2 −1

16π2 (3γ2 − 2)

Hence, we have found the generalization of the late time Bjorken flow for non
conformal plasmas with 1st order hydro. It is clear from (4.23) that the viscous cor-
rections are described by the coefficients Eγ and Fγ. Since the coefficients are regular
in our range of γ’s, we can claim that, at late times, the viscous correction remain
small, suggesting that the system does not fall out of equilibrium.
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However, this argument is not definitive, as (4.22) neglects corrections to p/ϵ =
−2γ2 + 1/3 at low energies. We will later suggest a more robust argument that
could support the claim that our system remains in equilibrium, based on quasi-
normal modes of the static black brane solutions.

Before that, let us present the full numerical dynamic evolution of the system and
reveal the unbounded growth of curvatures in the bulk, which is the main goal of
this thesis.
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Chapter 5

Full microscopic evolution

In this chapter, we aim to compute dynamic boost-invariant solutions to the action
described in (3.1), with a boundary conformal to a four-dimensional flat metric. This
approach allows us to investigate the out-of-equilibrium behaviour of a strongly-
coupled fluid in the central rapidity region produced in a heavy ion collision. For
the numerical implementation, we follow the same approach as in [57, 6].

5.1 Dynamic solutions

5.1.1 Characteristic formulation of General Relativity

Solving Einstein’s equations numerically can pose significant challenges. For in-
stance, the full simulation of a binary black hole merger only became attainable in
2005 [55]. However, within the realm of gauge/gravity duality, a more tractable
computational strategy emerges. This method, known as the ’characteristic’ formu-
lation, finds its origins in the pioneering work of Bondi [13, 14] and Sachs [56] during
the 1960s, as they delved into the behavior of gravitational waves in flat space. Sub-
sequently, Chesler and Yaffe [21, 22] conveniently adapted and applied this formu-
lation to the AdS spacetime. The primary simplification involves transforming the
coupled partial differential equations into a nested set of linear ordinary differential
equations (ODEs). To accomplish this, three crucial steps must be taken:

• Partially fix diffeomorphism invariance through the utilization of generalized
ingoing Eddington-Finkelstein coordinates. In this way, trajectories character-
ized by varying the radial coordinate r (while keeping the other coordinates
constant) are, in fact, null geodesics.

• The spatial part of the metric’s determinant must be a single function.

• One should employ derivatives along outgoing null rays instead of expressing
Einstein’s equations directly in terms of time derivatives.

5.1.2 The bulk metric ansatz

We are interested in full dynamical solutions to 3.1 that are asymptotically AdS5. A
convenient metric ansatz written in Fefferman-Graham coordinates is:

ds2 =
L2

z2

(
− f (z, τ)dt2 + g(z, τ)d⃗x2 + dz2).
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Nevertheless, it is more convenient for the numerical implementation, as we have
explained in the previous subsection, to write our ansatz for the 5d metric in gener-
alized infalling Eddington Finkelstein coordinates as in [20]:

ds2 = −Adτ2 + S2(e−2Bdy2 + eBdx2
1 + eBdx2

2) + 2drdτ (5.1)

where we allow anisotropy between the longitudinal direction x∥ and the transverse
plane x⃗⊥ = (x1, x2). The metric functions depend only on proper time τ and the
bulk radial holographic coordinate r, i.e. A = A(r, τ), B = B(r, τ) and S = S(r, τ),
since we are considering a boost invariant case and we assume rotational symmetry
in the transversal plane. The heavy ions will collide along z, and x⊥ represents
the two orthogonal directions x⊥ = x1, x2. It should be noted that τ serves as a
null temporal coordinate (typically denoted as v in EF coordinates), meaning that
surfaces of constant τ are not spacelike but null.

5.1.3 Gauge Freedom

It is important to recognize that the metric ansatz (5.1), as we have constructed it,
remains invariant under the following set of transformations:

r → r̃ = r + ξ(τ)

S → S̃ = S
B → B̃ = B (5.2)

A → Ã = A + 2∂τξ(τ)

5.1.4 Nested structure

Using the so called Bondi-Sachs formulation [21], the equations of motion (3.2) are
decoupled in a nested structure, allowing us to solve them without taking any ap-
proximation. In order to so, we define the dotted derivative as a time derivative
along a null geodesic and the prime derivative as the radial derivative along the
holographic direction r:

ḣ ≡ ∂τh +
1
2

A∂rh

h′ ≡ ∂rh

and write the equations of motion for our metric ansatz (5.1) in terms of them as

S′′ = −1
6

S
(

3
(

B′)2
+ 4

(
ϕ′)2

)
SṠ′ = −2

3
(
S2V(ϕ) + 3ṠS′)

2SḂ′ = −3
(
ṠB′ + ḂS′) (5.3)

2Sϕ̇′ = SV ′(ϕ)− 3
(
ϕ̇S′ + Ṡϕ′)

S2A′′ = S2
(
−3ḂB′ +

4V(ϕ)

3
− 4ϕ̇ϕ′

)
+ 12ṠS′

S̈ =
1
6
(
3ṠA′ − S

(
3Ḃ2 + 4ϕ̇2)) .



5.1. Dynamic solutions 41

Remarkably and as we have anticipated, the complicated PDE’s have drastically
simplified into a nested set of linear ODE’s. In general, solving second-order differ-
ential equations requires boundary conditions. To address this, we impose specific
values for the metric functions and their first derivatives at the boundary, ensuring
that the boundary metric is conformally flat. This approach allows us to accurately
determine the behavior of the solution near the boundary.

5.1.5 Near boundary expansion

In order to impose boundary condition for the EFE and make connection with the
dual theory, we are interested in solving the equations of motion near the bound-
ary. Notice that we want our bulk theory to be asymptotically AdS5 so let us study
how the metric should behave in that region. The AdS5 spacetime metric in five
dimensions can be written in Poincaré as:

ds2
AdS5

=

(
r
L

)2 (
−dt2 + dx2 + dy2 + dz2)+ L2 dr2

r2 (5.4)

Therefore, the metric in the boundary where r → ∞ and dr = 0 reads:

ds2
∂AdS5

=

(
r
L

)2 (
−dt2 + dx2 + dy2 + dz2) . (5.5)

Notice that is conformaly flat with a conformal factor of r2/L2. The ansatz for the
bulk metric of our theory (5.1) near the boundary reads:

ds2
B = −Adτ2 + S2(e−2Bdy2 + eBdx2

1 + eBdx2
2). (5.6)

Comparing the metric (5.6) with the boundary metric of AdS5 (5.5) and setting L = 1,
it is clear that the metric functions should scale near the boundary with r as

A ∼ r2 S ∼ r B ∼ 1

and for the scalar field, the equations of motion near the boundary impose that it
should scale as

ϕ ∼ ϕ0

rd−∆ +
ϕ2

r∆ =
ϕ0

r
+

ϕ2

r3

where r is the radial holographic coordinate and for our theory ∆ = 3 and d =
4. Therefore we can be expand the metric functions and the scalar field near the
boundary as:

A(r, τ) =
∞

∑
n=0

an(τ)r2−n (5.7)

S(r, τ) =
∞

∑
n=0

sn(τ)r1−n (5.8)

B(r, τ) =
∞

∑
n=0

bn(τ)r−n (5.9)

ϕ(r, τ) =
∞

∑
n=0

ϕn(τ)r−n−1 (5.10)
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where the time dependence is now only in the coefficients. In order to solve for the
coefficients, we impose the ansatz metric near the boundary to be conformally equal
to the flat metric in Milner coordinates (4.3). This fixes the following coefficients:

a0 = 1 , s0(t) = 3
√

τ and b0(t) = −2
3

log(τ)

Then, we expand the fields near the boundary and solve the equations of motion
order by order plugging in the potential from our model (3.1) and the result is

A(r, τ) = r2 + 2ξ(τ)r +
(
− 2

3
Λ2 + ξ(τ)2 − 2ξ ′(τ)

)
+

a4(τ)

r2 +O
(

1
r3

)
(5.11)

S(r, τ) = 3
√

τr +
1 + 3τξ(τ)

3τ2/3 +
−1 − 3Λ2τ2

9τ5/3r
+O

(
1
r2

)
(5.12)

B(r, τ) = −2 log(τ)
3

− 2
3τr

+
1 + 2τξ(τ)

3τ2r2 +O
(

1
r3

)
(5.13)

ϕ(r, τ) =
Λ
r
− Λ

ξ(τ)

r2 +
ϕ2(τ)

r3 +O
(

1
r4

)
. (5.14)

Here, we display only the leading order terms and the initial appearance of the co-
efficients that are not determined by the asymptotic expansion of the equations, i.e.
a1(τ), a4(τ), b4(τ), ϕ0 and ϕ2(τ).The constant ϕ0 represents the source of the op-
erator dual to ϕ, establishing the energy scale ϕ0 ≡ Λ for the explicit breaking of
conformal symmetry in the UV. In fact, we use this scale to set the units for various
quantities that we display later in this thesis.

Additionally, ξ(τ) represents a residual gauge freedom that we use to fix the lo-
cation of the apparent horizon. Indeed, a1(τ) = 2ξ(τ) encodes the residual gauge
freedom in the metric r → r + ξ(τ). We can explicitly see this by performing the
gauge transformation in the metric (5.1) and realizing that A(r, τ) has to transform
as:

A → A + 2∂τξ

in order to be invariant as we previously mentioned. This fixes a1(τ) = 2ξ(τ) in the
near boundary expansion and we use this residual gauge freedom to fix the position
of the apparent horizon. In solving order by order, we discover that a4(τ) is not
determined but its time derivative is. Hence, we take it as a constraint which has to
be obeyed at every time step:

∂τa4 =
4

81τ5

(
−27a4τ4 − 54b4τ4 + j1τ2 (2j1

(
27ξτ3ξ ′ + (3ξτ + 2)2)

+4j31τ2 − 9τ2 (3τϕ′
2 + 2ϕ2

))
+ 9(2ξτ + 1)(2ξτ(ξτ + 1) + 1)

)
. (5.15)

Lastly, a4(τ), b4(τ), and ϕ2(τ) are associated with the evolution of the energy, pres-
sure, and vacuum expectation value of the operator in our system. In fact, hologra-
phy enables us to access the expectation value of the microscopic energy-momentum
tensor [45, 11], as we will in the next section.

5.1.6 Gauge Fixing

We would like to keep our horizon fixed in the bulk radial coordinate r since our
numerical grid is finite and the horizon could easily exit it, which would not be
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desirable. Therefore, we want to constraint the remaining gauge freedom (5.2). An
effective way to do it involves treating ξ(τ) as an additional evolving parameter
and determining its evolution equation by imposing the apparent horizon to remain
fixed at a constant radial position r = rh. Hence, we aim to enforce the conditions

Θ
∣∣
r=rh

= 0, ∂τΘ
∣∣
r=rh

= 0 (5.16)

consistently throughout the evolution, where Θ represents the expansion of outgo-
ing null geodesics for our metric (5.1). At surfaces with constant r, Θ is expressed
as

Θ = −3S2Ṡ. (5.17)

To impose the conditions (5.16) numerically, a straightforward approach is given by(
∂τ Ṡ + κṠ

) ∣∣
r=rh

= 0, (5.18)

where κ is a positive parameter typically set to 1. This approach offers the advan-
tage of driving the Ṡ = 0 surface back to r = rh whenever numerical inaccuracies
accumulate, proving highly effective in practical applications. Expanding (5.18) and
using the constraint equation yields an equation for ∂τξ to be evaluated at r = rh.
Solving for this equation at every time step allows us to numerically control the time
evolution of ξ(τ).

5.1.7 Field redefinitions

To solve the system of differential equations, it is advantageous to use z = 1
r as the

radial holographic coordinate. The idea is to redefine the evolved fields to eliminate
the divergent terms at the boundary where z = 0. For that purpose, we implicitly
define the finite fields at the boundary as:

A(z, τ) ≡ z2 A f (z, τ)− 2Λ2

3
− 2ξ ′(τ) + ξ(τ)2 +

2ξ(τ)

z
+

1
z2

S(z, τ) ≡ z2S f (z, τ) +
18τ2ξ(τ) + τ2

(
18
z − 6Λ2z

)
+ 6τ − 2z

18τ5/3

B(z, τ) ≡ z4B f (z, τ)−
18τ3 log(τ) + 2τ2z

(
2Λ2z2 + 9

)
+ 18τz2ξ(τ)(τzξ(τ)− τ + z)− 9τz2 + 6z3

27τ3

ϕ(z, τ) ≡ z3ϕ f (z, τ)− 1
2

Λz(2zξ(τ)− 2)

Ṡ(z, τ) ≡ z2Ṡ f (z, τ) +
81τ3 − 3Λ2τ2z2(9τ + 4z) + 27τ2zξ(τ)(3τzξ(τ) + 6τ + 2z) + 54τ2z − 27τz2 + 20z3

162τ8/3z2

Ḃ(z, τ) ≡ z3Ḃ f (z, τ)− τ2 + τz2ξ(τ)− τz + z2

3τ3

ϕ̇(z, τ) ≡ z2ϕ̇ f (z, τ)− Λ
2

.

5.1.8 Evolution Algorithm

We now have everything we need to solve the equations of motion in nested form.
We employ the following iterative procedure. Note that the same strategy holds
even without the presence of a scalar field. At each given time step τn, we solve the
radial ordinary differential equations (ODEs) at every null time slice as follows:
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• We start at a given time τn with the first radial ODE for S(r, τn) by providing an
initial radial profile for B(r, τn) and ϕ(r, τn) and the value of a4(τn) and ξ(τn).
Once these quantities are known, we solve for S(r, τn).

• Next, we move to the second radial ODE and solve for Ṡ(r, τn), given that
S(r, τn) is already known.

• We proceed to solve the remaining equations successively in the same manner.
Note that the last equation is redundant and serves as a constraint. We can
numerically track this constraint to assess the accuracy of our solution and
estimate the numerical error.

• With all the metric functions determined, we compute ∂τξ(τn) using (5.18).
Then, we calculate ∂τB(r, τn) and ∂τϕ(r, τn) from the definitions of the dotted
derivatives of the obtained Ḃ(r, τn) and ϕ̇(r, τn). Finally, we obtain ∂τa4(τn)
using (5.15).

• We then advance ξ(τn), B(r, τn), ϕ(r, τn) and a4(τn) to the next time step τn+1
using a time integrator method such as Adams–Bashforth, Runge-Kutta, Euler
method or similar.

• Finally, we return to the first step and repeat the process at time τn+1.

5.1.9 Discretization and spectral methods

The equations of motion (5.3) are integrated over the holographic coordinate z at
every time step. To discretize the equations in this direction, we use a set of points
called a partition. In our case, this partition, denoted as z, consists of N + 1 Chebyshev-
Gauss-Lobatto (CGL) points:

zi = cos
(

πi
N

)
(i = 0, 1, . . . , N).

These points are placed in the range z ∈ [0, 1]. Note that the range limits corre-
spond to the boundary (z = 0) and the black hole apparent horizon, typically set at
(z = 1). Since it is at these points where we read the physics of our system, it is de-
sirable to have a higher density of grid points there, and the CGL points fulfill this
requirement. The primary operation in the z direction involves computing partial
derivatives as given in equations (5.3). To compute these derivatives, we employ
pseudo-spectral 1 methods [15]. This approach involves expressing the solution of
the differential equations as a series of specific basis functions, which in our case
are Chebyshev polynomials Tn, essentially cosine functions in disguise. The coeffi-
cients of these basis functions are then determined to approximate the solution of
the differential equation as accurately as possible. To compute derivatives, we use
the Chebyshev differentiation matrix DN , which is defined element-wise for N ≥ 1

1While both spectral and pseudo-spectral methods aim to approximate solutions with high accu-
racy, spectral methods do so by expanding the solution in terms of global basis functions and projecting
the equations onto these functions, whereas pseudo-spectral methods enforce the differential equation
at discrete collocation points and approximate derivatives using differentiation matrices.
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points by:

(DN)00 =
2N2 + 1

6
, (DN)NN = −2N2 + 1

6
,

(DN)jj = −
xj

2(1 − x2
j )

, j = 1, . . . , N − 1,

(DN)ij =
ci(−1)i+j

cj(xi − xj)
, i ̸= j, i, j = 0, . . . , N,

where

ci =

{
2 if i = 0, N
1 otherwise.

Higher-order differentiation matrices can be easily obtained by multiplying the dif-
ferentiation matrix DN by itself: D(m)

N = Dm
N .

5.2 Thermodynamics

We want to compute the thermodynamics quantities and the expectation values
from dynamical variables in terms of the bulk metric ansatz (5.1) and its bound-
ary information. We are going to follow the prescription explained in section 3.3.
Throughout this section we use c = h̄ = kB = 1.

5.2.1 Bekenstein-Hawking entropy

Given our ansatz for the bulk metric (5.1) the induced metric on the black brane
horizon can be derived setting dτ = dr = 0:

dℓ2 = gijxixj = Σ2
(

e−2B dy2 + eB dx⃗2
⊥

)
.

The determinant of the induced metric tensor gij for these coordinates (y, x1
⊥, x2

⊥) is
then:

det(gij) = Σ6

which allows us to compute the area element dA:

dA =
√

det(gij) dy dx1
⊥ dx2

⊥ = Σ3 dy dx1
⊥ dx2

⊥.

To find the total area, we should integrate this area element over the ranges of y, x1
⊥,

and x2
⊥:

Area =
∫

Σ3 dy dx1
⊥ dx2

⊥.

Unfortunately, these coordinates are unbounded and the area diverges. In other
words, we are not able to compute the total entropy because the total "area" of the
horizon is infinite. Instead, we can actually compute the entropy density since we
know the "area" density:

s =
aH

4GN
=

Σ3(zH)

4GN
=

2
κ2

5
π Σ3(zH)
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where s = dS
dydx1

⊥dx2
⊥

is the entropy density and aH = dA
dydx1

⊥dx2
⊥

is the "area" density of
the horizon.

5.2.2 Hawking Temperature

Computing the temperature of a black hole using the method of imposing regularity
in Euclidean space is more subtle in our metric ansatz since we have a non-diagonal
term in dτdr that comes from expressing our bulk metric ansatz (5.1) in Edding-
ton Finkelstein coordinates. In order to remove the cross term that would become
complex after the Wick rotation, we undo the Eddington Finkelstein change of coor-
dinates:

τ = t + r∗

dr∗

dr
=

1
A

Thus, in the original (t, r) coordinates the metric ansatz becomes:

ds2 = −A dt2 +
1
A

dr2 + Σ2
(

e−2B dy2 + eB dx⃗2
⊥

)
(5.19)

where A(r, t) is assumed to have a first-order zero at the horizon r = rH, while
Σ(r, t) remains non-zero there. For notational simplicity we are going to ignore the
time dependence throughout this subsection. Following the conventional approach
[33], we perform a Wick rotation t → −itE in order to get the Euclidean analytical
continuation of the metric

ds2
E = A dt2

E +
1
A

dr2 + Σ2
(

e−2B dy2 + eB dx⃗2
⊥

)
. (5.20)

Since we want to impose regularity at the horizon, we can expand our metric near
the horizon r ≃ rH:

ds2
E = A′(rH)(r − rH) dt2

E +
1

A′(rH)(r − rH)
dr2 + Σ2

(
e−2B dy2 + eB dx⃗2

⊥

)
. (5.21)

Introducing radial and angular coordinates:

ρ = 2

√
r − rH

A′(rH)
, θ =

tE

2
A′(rH) (5.22)

allows us to write the metric as

ds2
E ≃ dρ2 + ρ2dθ2 + g(rH)dx⃗2. (5.23)

Notice that in these new coordinates the first two terms of the metric represent a
plane in polar coordinates. Therefore, in order to avoid a conical singularity at ρ = 0
we must demand θ to have a periodicity of 2π. Moreover, from statistical field theory
we know that Euclidean time is periodic with a periodicity of β = 1

T . By equating
both periods, we are left with an expression for the temperature of the black brane:

T =
A′(rH)

4π

z=1/r−−−→ −z2
H A′(zH)

4π
(5.24)
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It is important to note that the Euclidean metric is not describing the spacetime in-
side the horizon r < rH since the origin of the polar coordinates is in the horizon
itself. In fact, Hawking original formula for the temperature is written in terms of κ,
which is the surface gravity at the horizon:

T =
κ

2π

from which we can identify the surface gravity at the horizon for our metric ansatz:

κ =
A′(rH)

2
z=1/r−−−→ −z2

H A′(zH)

2

5.2.3 Holographic renormalization

In order to compute the energy momentum tensor of the dual field theory is more
convenient to express our metric in Fefferman-Graham coordinates

ds2 =
L2

z2 (dz2 + gµνdxµdxν)

Therefore we can apply the result from [45]. Then, we expand the metric and the
scalar field in terms of the holographic coordinate z, in the limit where z → 0. The
asymptotic expansion for the metric in EF coordinates and the scalar field read:

ds2 = z2
(

g(0)µν (t) + g(2)µν (t)z2 + g(4)µν (t)z4 + . . .
)

, (5.25)

ϕ = Λz + ϕv(t)z3 + . . . (5.26)

where t ≡ tFG. Therefore, the expectation values of the field theory operators can be
expressed as follows:

⟨Tµν⟩ =
2L3

κ2
5

(
g(4)µν (t) +

(
Λϕv(t)−

Λ4

18
− γ2Λ4

6

)
ηµν(t)

)
, (5.27)

⟨O⟩ = −2L3

κ2
5

(
2ϕv(t) +

2γ2Λ3

3

)
(5.28)

where g(0)µν (tFG) = ηµν(tFG). As anticipated, equations (5.27) and (5.28) lead to the
Ward identity for the trace of the stress tensor:

Tµ
µ = −Λ⟨O⟩, (5.29)

and we adopt a renormalization scheme where ⟨Tν
µ⟩ = ⟨O⟩ = 0 in the vacuum.

Therefore, we will omit the expectation value notation and work with rescaled quan-
tities: 〈

Tµ
ν

〉
=

2L3

κ2
5

diag
(
−ϵ, p∥, p⊥, p⊥

)
. (5.30)

Thus, we can write the thermodynamic quantities as a function of the boundary data
in EF coordinates. Therefore, we can express the gauge theory values in terms of our
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evolution variables (b4, a4, ϕv) as follows:

ϵ(τ) = −3
4

a4(τ) +
1
36
(
6γ2 + 7

)
Λ4 + Λ2ξ(τ)2 − Λϕv(τ),

p∥(τ) =
1

108τ4

{
τ
[
−τ3

(
27a4(τ) + 216b4(τ) +

(
18γ2 + 5

)
Λ4 − 36Λϕv(τ)

)
−36ξ(τ)2τ

(
Λ2τ2 − 6

)
+ 48ξ(τ)

(
2Λ2τ2 + 3

)
+ 32Λ2τ + 144ξ(τ)3τ2]+ 36

}
,

p⊥(τ) = − 1
108τ4

{
τ
[
τ3
(

27a4(τ)− 108b4(τ) +
(
18γ2 + 5

)
Λ4 − 36Λϕv(τ)

)
+36ξ(τ)2τ

(
Λ2τ2 + 3

)
+ 24ξ(τ)

(
2Λ2τ2 + 3

)
+ 16Λ2τ + 72ξ(τ)3τ2]+ 18

}
.

where p⊥ and p∥ are the transverse and longitudinal pressures. As we have pointed
out, our system models the microscopic evolution of a strongly-coupled fluid akin
to the quark-gluon plasma produced in heavy-ion collisions. After the formation of
the quark-gluon plasma, the system undergoes expansion and cooling. The evolu-
tion of the energy density as a function of proper time can be see in Figure 5.1. As we
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FIGURE 5.1: Energy density as a function of proper time.

may have expected, ϵ(τ) decreases monotonically because the expansion dilutes the
fluid, showing no significant dependence on γ. A natural question arises: does the
hydrodynamic description adequately capture this process? To address this ques-
tion, we display the ratio of pressures over the energy density and compare it to the
hydrodynamic result from (4.7) for the particular case of γ = 4/10.

In particular, using the equation of state p(ϵ) and the energy dependence of the vis-
cosities ζ(ϵ) and η(ϵ) derived from the static black brane solutions, we can evaluate
p∥(ϵ(τ)) and p⊥(ϵ(τ)). Comparing these to p∥(τ) and p⊥(τ), as shown in Figure 5.2,
demonstrates a remarkable agreement, indicating that the system is well described
by hydrodynamics shortly after the initial time.

In fact, the discrepancy between them rapidly diminishes to a relative value of ap-
proximately 10−5, indicating the magnitude of higher-order terms in the gradient
expansion of the hydrodynamic approximation as it can be seen in Figure 5.3. Once
we verify that the hydrodynamic approximation accurately describes the evolution,
we can ignore the bulk evolution and extend our results to later times (lower ener-
gies) by solving the hydrodynamic equation (4.9).
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FIGURE 5.2: Comparison between the transverse and longitudinal
pressures as obtained from the full microscopic evolution (solid lines)
and their hydrodynamic approximation (dashed black), as a function

of proper time.
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FIGURE 5.3: Difference between the full microscopic pressures and
the hydrodynamic approximation, as a function of proper time.

By proceeding in this manner, our results hinge on the expectation that our system
will not fall out of equilibrium again. Crucially, any perturbation in the fluid must
relax faster than the fluid expands. While this is a natural expectation, it is not uni-
versally true. For instance, a fluid in an expanding de Sitter universe might fall out
of equilibrium since the expansion rate is fixed by the cosmological constant, as dis-
cussed in Ref. [19]. In contrast, in our case, the expansion rate decays as ϵ′/ϵ ≃ τ−1.

The primary focus of this thesis is to investigate the growth of curvature invariants
in the bulk. In the following chapter, we will explore this in detail and argue that
our findings result from the hydrodynamization of the system, suggesting that our
conclusions are broadly applicable.

Nevertheless, in the following section we evaluate the performance of our numerical
code by showing several numerical checks. This is crucial, since all our results rely
on this code.
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5.3 Code performance

In this section we are going to assess the performance of the numerical code that we
have used to solve the dynamic equations of motion by computing several numerical
checks.

5.3.1 Apparent Horizon

The apparent horizon (AH) is a surface in spacetime that separates light rays moving
towards a black hole from those moving away from it. It is defined as the boundary
where the expansion of outgoing null geodesics becomes zero, indicated by Ṡ = 0 as
we have shown in (5.17). The AH typically surrounds a trapped surface, which is a
(compact, orientable, space-like) surface with both inward and outward-pointing
light-like normal vectors converging. The AH is the outermost trapped surface,
known as the marginally outer trapped surface. Unlike the event horizon (EH),
which is a global concept, the AH is a local concept and can be identified at a specific
moment in time. It can change shape and position depending on the distribution of
matter and energy nearby. In order to check the position of the AH, we want to plot
several light rays and check that the AH behaves as it should. The light-like rays can
be found by solving the geodesic equation for our metric ansatz [18]:

dr
dt

=
A(r, t)

2
z=1/r−−−→ dz

dt
= −z2 A(z, t)

2
.

In Figure 5.4, we show the evolution of the AH position in the (z, τ) plane. This
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FIGURE 5.4: Time evolution of the apparent and event horizons in
the (z, τ) plane. Light rays are also shown to illustrate whether they

escape or fall into the horizon. The boundary is located at z = 0.

simulation was conducted in a boost-invariant setup without fixing the gauge ξ(τ),
allowing the AH to move freely. The AH separates regions where light rays escape
the horizon from those that fall into the black hole. As observed, the EH and AH
coincide at equilibrium but generally differ out of equilibrium. Additionally, the
slope of the light rays near the boundary is approximately −1/2, consistent with the
geodesic equation evaluated near the boundary where A(z, τ) ≃ 1/z2 + O(1/z).
Precisely because of the effect of the AH moving away from our grid, we fix the
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gauge ξ(t) as explained in section 5.1.6. Fixing the AH is crucial for two main rea-
sons. First, we do not want the AH to exit the grid, as several quantities are mea-
sured at the horizon. Second, by setting the AH at the limit of our grid, z = 1,
we avoid simulating the interior of the black hole. This is important because the
interior leads to numerical instabilities due to the proximity to singularities and is
not relevant to our study, as the physics inside are causally disconnected from the
exterior.

5.3.2 Convergence

The objective of this convergence check is to validate the numerical convergence of
our simulations by varying the number of grid points Nz and consequently the time
step dτ, since they are related by dτ = 1

6N2
z
. We analyze observables including the

constraint, energy density, and longitudinal and transverse pressures over time, en-
suring they converge to consistent values as grid resolution increases. Grid points
are taken at different positions in the holographic coordinate z: Nz = 30, 40, 50, 60.

The specific initial conditions chosen for this check are zH = 999
1000 , γ = 1

10 , ϕ2 = 8
10 ,

b4 = 1, j1 = 1, a4 = −100, and τi =
2
10 .

In Figure 5.5, we show the results for the energy density, and the longitudinal and
transverse pressures. Figure 5.6 presents the results for the constraint in a logarith-
mic plot, demonstrating the convergence of our system. This comparison validates
that our results are robust across different grid resolutions.

We plot these observables against time, highlighting how they stabilize with increas-
ing Nz, maintaining consistency with finer grid resolutions. The clear presentation
and interpretation of these results underscore the reliability and accuracy of our nu-
merical simulations.

In conclusion, the convergence analysis confirms that our simulation setup effec-
tively captures the expected physical behavior as resolution improves, crucially im-
pacting the reliability of our findings. As a final comment, we observe in Figure
5.6 that the constraint tends to grow. This typically poses a problem at late times,
which we systematically address by increasing the number of grid points whenever
the constraint becomes too high, ensuring the trustworthiness of the results.

5.3.3 Curvatures

In this numerical check, we aim to verify that the scalar curvatures we compute re-
main the same when changing the gauge, i.e., when altering the AH position. Since
we evaluate the Ricci scalar, the squared Ricci scalar, and the Kretschmann scalar
at the horizon rH for every time step, we perform a gauge transformation on the
holographic coordinate of the form r → r′ = r + ξ, which shifts the horizon to
rH → r′H = rH + ξ.

If the code functions correctly, this gauge transformation should yield the same
values for the curvature invariants evaluated at the new horizon. Since these are
curvature invariants, they should not depend on the position of the horizon, which
is merely a gauge choice. To test this, we have evaluated the curvatures for dif-
ferent gauges, i.e., for different choices of the event horizon radial position zH ∈
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time for different numbers of grid points (N = 30, 40, 50, 60).
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FIGURE 5.6: Logarithmic plot of the constraint as a function of time
for different numbers of grid points (N = 30, 40, 50, 60).

[0.5, 0.6, 0.7, 0.8, 0.9, 0.999]. The results are shown in Figure 5.7. In Figure 5.8, we
show how the relative error between the curvatures evaluated at different gauge
choices decreases as we increase the number of grid points. We simulated using
N = 30, 40, 50, 60 grid points and verified that the results converge as the number of
points increases.

This gauge and convergence analysis confirms that our simulation accurately cap-
tures the expected physical behavior, demonstrating the reliability of our numerical
methods.

5.3.4 Energy-Momentum Tensor Conservation

The conservation of the energy-momentum tensor provides us with a differential
equation for the energy (4.9) that should hold at every time step. We rewrite it here
for convenience:

∇µTµν = 0 → ϵ′(τ) +
ϵ(τ) + p∥(τ)

τ
= 0.

In Figure 5.9, we show the equation for the energy-momentum tensor conservation
as a function of the number of grid points N, normalized by the energy density at
every time step. We conclude that the energy-momentum conservation converges to
zero as we increase the resolution of our grid, as expected.
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Chapter 6

Cosmic Censorship

In this chapter, we aim to dynamically explore cosmic censorship by studying the
value of curvature invariants at the black brane horizon. In fact, we expect the cur-
vature invariants to grow at the horizon due to the existence of the unbounded ex-
ponential potential of our scalar field. We can directly see this from the Einstein field
equations (EFE):

Rµν −
1
2

Rgµν = 8πTµν

where we set G = 1. After multiplying both sides by the inverse metric gµν and
using the property that gµνgµν = d where d is the spacetime dimension, the Ricci
scalar is proportional to the trace of the energy momentum tensor:

R = −16
3

πTµ
µ .

On the other hand, we recall that the energy momentum tensor reads

Tµν =
1

8π

(
2∂µϕ∂νϕ − gµν

[
gαβ∂αϕ∂βϕ + 2V(ϕ)

] )
,

and taking the trace provides us with

Tµ
µ = − 1

8π

(
3gαβ∂αϕ∂βϕ + 10V(ϕ)

)
so the Ricci scalar will be:

R = 2gαβ∂αϕ∂βϕ +
20
3

V(ϕ). (6.1)

It is clear from (6.1) that at late times, the Ricci scalar will grow since the scalar
potential will be rolling down the unbounded potential while cooling down. In this
sense, it is expected that the Ricci scalar evaluated at the horizon will tend to −∞ as
ϕ → ∞:

lim
ϕH→∞

RH ∝ V(ϕH) → −∞

which is exactly what happens in the numerical results that we will show later in
the chapter. In particular, in the next section we will study the curvature invariants
through the late time analytical solution of our model found by [44].
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6.1 Analytical late time behaviour of curvature invariants

In order to study the late time behaviour of our non-conformal plasma as a function
of proper time, we are going to follow the same approach as in [44], where the au-
thors studied the thermalization of N = 4 SYM plasmas holographically and found
analytical black brane solutions to (3.1) with an exponential potential for the scalar
fiels, as we have explained in previous sections.

The general analytical solution to (3.1) found in [44] at leading order in 1/τ and
in the IR limit expressed in our conventions is

ds2 ≃ v
2

6γ2−1

{
τ−4γ2

1 − vξ
dv2 + τ− 2

3

[
−(1 − vξ)dτ2 + τ2dy2 + dx2

⊥

]}
(6.2)

and the solution for the scalar field reads

eϕ = τ
√

3
2 γv

3
√

3
2 γ

1−6γ2

where we defined the scaling variable v as

v =
z

τ
1
3−2γ2

and z is the holographic coordinate. Moreover, we work in the gauge where:

ξ =
3

1 − 6γ2 + 1. (6.3)

In fact, the metric (6.2) is nothing but a black hole solution with moving horizon.
This is clearer when we express the metric as a function of z using (6.1) at leading
order in 1/τ:

ds2 ≃ z
2

6γ2−1

{
dz2

1 − τ2γ2− 4
3 zξ

−
(

1 − τ2γ2− 4
3 zξ
)

dτ2 + τ2dy2 + dx2
⊥

}
(6.4)

and the scalar field reads:

eϕ = z
3
√

3
2 γ

1−6γ2 .

From (6.4) we are able to compute the late time curvatures at the horizon as a func-
tion of our parameter γ. In particular, we calculate the Ricci scalar, the squared Ricci
tensor and the squared Riemman tensor (i.e. Kretchmann) at leading order in 1/τ
evaluated at the horizon:

R ≃
10
(
3γ2 − 2

)
τ4γ2

(1 − 6γ2)2 ∼ τ4γ2

R2 = RµνRµν ≃
20
(
2 − 3γ2)2

τ8γ2

(1 − 6γ2)4 ∼ τ8γ2
(6.5)

K = RµνρσRµνρσ ≃
28
(
2 − 3γ2)2

τ8γ2

(1 − 6γ2)4 ∼ τ8γ2
.
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Interestingly, we see from (6.5) that the curvatures at the horizon grow with proper
time for several choices of γ at late times, indicating the presence of a curvature
singularity at the horizon in the limit where τ → ∞. Moreover, the curvatures are
singular at γc = 1/

√
6 and whereas the Kretchmann and squared Ricci tensor keep

the same sign, the Ricci scalar changes it sign at precisely γM =
√

2/3 which is the γ
where the potential starts to have a minimum. Unfortunately, the prefactors in front
of the curvatures need some correction since they depend on the whole background
and our background is different than the one used in [44] in the UV. Nevertheless,
we expect the exponents of τ to be correct since in the IR we have the same effective
exponential potential as in their action and we expect the black brane solution (6.2)
to be a solution of our theory in the late time regime as well.
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6.2 Numerical results

In Figure 6.1 we show the numerical results for the simulated curvature invariants
evaluated at the horizon. As we can see, the curvature invariants grow with proper
time. This observed growth has a straightforward explanation. As the system cools
down, the scalar value at the horizon rises, continuing to move down its unbounded
potential.
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FIGURE 6.1: Ricci scalar, squared Ricci tensor and Kretchmann at the
horizon as a function of proper time τ for different choice of γ’s.

As we explained in the previous sections, according to Einstein’s equations, the Ricci
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scalar at the horizon is proportional to the potential value there, RH ∝ V(ϕH), sug-
gesting that it will keep increasing. Moreover, as predicted in (6.5) where we took
the late time solution found by [44], the curvatures grow arbitrarily at late times
when the deep IR regime is reached. In fact, we expect the curvature invariants at
the horizon to evolve as

RH ∝ τ4γ2
, RµνRµν|H ∼ KH ∝ τ8γ2

. (6.6)

Here, K = RµνρσRµνρσ is the Kretschmann scalar, with the subscript "H" indicating
evaluation at the horizon. In the late time limit, we have checked that we recover
the predicted behaviors for the curvature invariants evaluated at the horizon.

6.2.1 General vs fined tuned conditions

Lastly, we should consider the generality of our findings. We have shown that a
broad range of γ values yield similar physics. Remarkably, our results do not de-
pend on finely tuned initial conditions. This can be seen in Figure 6.2, where even
varying the boundary conditions still leads to an evolution well described by first-
order hydrodynamics, resulting in the growth of curvatures. In particular, we have
chosen different initial conditions while fixing the total energy density for γ = 0.4.
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FIGURE 6.2: Initial evolution of the longitudinal and transverse pres-
sures with different initial conditions. We fixed the initial energy and

trace of the energy-momentum tensor to be the same.

One might argue that our results may not hold beyond the boost-invariant case. For
instance, an unstable quasi-normal mode with finite momentum could challenge
our conclusions. We are currently investigating this. However, this is unlikely since
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similar models (characterized by exponential growth at low energies) show such
instability only at finite chemical potential [24, 23, 9].
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Chapter 7

Conclusions and future directions

7.1 Conclusions

Finally, let us discuss what he have done in this Master’s thesis:

• We have presented a mechanism which generates arbitrarily high curvatures
in boost invariant setups and in asymptotically AdS spacetimes.

• This finding demonstrates that the late-time curvature growth identified in [44]
can indeed be realized in UV-complete scenarios without requiring fine-tuned
initial conditions.

• Our results highlight a situation where curvature corrections to classical grav-
ity become significant.

• Holography provides a method to investigate these corrections. If such cor-
rections had been incorporated into our action (3.1), the late-time viscosities
would differ from those we derived by finite N and finite coupling corrections,
as shown in [17].

7.2 Future directions

Our work raises several unresolved questions and opens up numerous potential
research directions. Here we mention some of them.

• To provide a more robust argument regarding the stability of black branes, we
should study the quasi-normal modes. This involves introducing a metric per-
turbation and checking if all the quasi-normal modes have negative imaginary
frequencies, ensuring the solution’s stability.

• Investigate the behaviour for γ > γc to explore the potential phase transitions
and GL type instability. For that purpose, we should probably relax some as-
sumptions and symmetries of our ansatz in order for the different phases to be
able to exist.

• It would be interesting to extend the work by finding similar solutions in other
string theory compactifications.
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