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Abstract—Traditional data center analysis is based on high-
level, coarse-grained metrics. With modern workloads emerging
such as Machine Learning, conventional analysis does not prove
valid anymore. There is a need to create a better understanding
of modern data center operations, through novel data-driven
methods. Causal discovery is an active field of research, which
aims at deriving causal relationships from data. Little research
efforts have been done in developing such methods, due to
the sparsity of holistic low-level metric cloud data sets, and
the lack of scalable and effective causal discovery algorithms.
In this paper, we present Causal CloudScape (CCS), a novel
causal discovery framework, leveraging a recent and largely
unexplored low-level cloud metric data set with over 60 billion
measurements captured in 15-second intervals. We conduct a
series of experiments through expert-guided model validation and
conclude with answering formulated research questions during
unsupervised deployments. With CCS, we identified potential
root causes of performance anomalies and created a map to
visualize and inspect causal relationships in complex systems
such as cloud datacenters. These findings are expected to have
significant potential for optimizing performance and planning in
large-scale data centers.

I. INTRODUCTION

In recent years, the prominence of cloud computing in our
society has grown exponentially, bringing with it increased
demand for energy and resource consumption. It is estimated
that cloud data centers now account for around 1 percent of
the world’s energy consumption (Pesce, 2023), a figure that
underscores the critical importance of optimizing performance
in these large-scale facilities. Concurrently, with the intro-
duction of trends such as Machine Learning (ML), modern
cloud data centers are exhibiting large degrees of performance
variability, making the task of performance optimization more
complex and necessitating more sophisticated approaches to
performance understanding. Key to performance understand-
ing is the availability of large low-level metric data sets, next
to effective and scalable statistical methods to uncover and
map out causal relationships between cloud metrics.

However, there is a lack in both publicly available low-
level cloud metric data sets and sophisticated causal statistical
methods. Comprehensive data sets of low-level data center
metrics are scarce because commercial providers are often
reluctant to release such data sets due to concerns about com-
mercial secrecy, privacy legislation, and the lack of sufficient
incentives to compensate for the additional effort required.
Common public datasets such as CloudLab 1 used by Maricq
et al. (2018), are often collected over short periods with coarse
time-granularity and do not include low-level machine metrics.
Next to the lack of holistic low-level metric cloud data sets,
little research efforts have been done in developing data-driven
methods to understand complex relationships in cloud systems,
which is largely due to high computational requirements and
impractical runtimes of such algorithms. Figure 1 serves as an
example here, in which Versluis et al. (2023), found that Cloud
ML nodes, which rise in importance with the progression
of ML applications, display a higher power consumption

1CloudLab is a dataset with 6.8M high-level irregular performance mea-
surements such as execution times, collected on the CloudLab testbed. It was
published in 2020. For more information on how and why it was collected,
see https://zenodo.org/record/3686952/

variability compared to Generic nodes. While this novel and
rare data set is a first step towards bridging the gap of lacking
relevant datasets, only correlation methods such as Pearson
(Benesty et al., 2009), Kendalltau (Samara & Randles, 1988)
and Spearman (Croux& Dehon, 2010) were applied. These
methods help in uncovering linear and non-linear correlations
between a metric pair, but correlation does not imply causation
(Aslam, 2015). Thus, we cannot answer questions such as
what are the causes of ML nodes exhibiting higher power
consumption variability compared to Generic nodes. More
broadly, such models fail at explaining root causes in large-
scale systems with many complex relationships.

In our work, we aim to leverage a rare and rich low-level
cloud metric data set with more than 60 billion measurements
captured in 15-second time intervals, in order to develop the
novel and data-driven causal discovery method, Causal Cloud-
Scape, or short CCS. Causal discovery is a process defined as
identifying and deriving cause-and-effect relationships from
data. The causal discovery approach presents a promising
avenue for better understanding large and complex systems
such as cloud data centers. By utilizing causal discovery, we
can not only identify root causes such as power consumption
variability across heterogeneous nodes, but also detect anoma-
lies, inform AI models, and influence policy and planning,
with the end goal of optimizing performance in large-scale
cloud data centers. A major challenge of this approach are
computational complexities, which are commonly exponential
with the increase in number of features, in our case cloud
metrics.

In this paper, we make the following contributions:
1) We explore ways to leverage holistic causal discovery to

improve data center operations and propose the novel three-
step method Causal CloudScape which runs in close to linear
time-complexity.

2) We validate and evaluate Causal CloudScape in expert-
guided and unsupervised settings.

3) We answer 5 research questions in the process of discov-
ering causal relationships in a low-level cloud metric dataset
and conclude with the hypothesis that high power consumption
variability in ML nodes is due to GPU-related metrics, which
are absent in Generic nodes.

We address the following research question (RQ1): How
can we develop a scalable method to discover new (causal)
relationships in high-dimensional cloud metric datasets?
Further, we answer the following sub-questions:

• Are the time-dependencies between any metric pairs?
(RQ1.1)

• Does the method produce stable results? (RQ1.2)
• What is the median runtime of CCS? (RQ1.3)
• Why are Generic nodes more stable in power consump-

tion than ML nodes? (RQ1.4)
• Can we discover novel causal relationships? (RQ1.5)
To give the aforementioned contributions more context, we

discuss related work and give a brief background on causal
discovery in Section II. In Section III, we describe the dataset
we have used, Section IV describes in detail our Causal
CloudScape method. In Section V we report our experiments
and tests in which we both validate our approach in an
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Fig. 1. Verlsuis et al. (2023) observed that ML/GPU nodes have higher power consumption variability than generic nodes.

expert-guided setting and discover novel causal relationships
between low-level cloud performance metrics. We conclude
with Section VI, in which we draw conclusions and discuss
the limitations of our method next to providing directions for
further work.

II. BACKGROUND / RELATED WORK

In this section, we present previous efforts on causal discov-
ery within cloud computing on related cloud metric datasets
and provide a brief outline of common causal discovery
methods and their applicability in cloud computing.

A. Previous Efforts

Causal discovery in cloud computing presents significant
challenges, evidenced by limited research efforts. The ”Causal-
ity Discovery as a Service” proposed by Wang et al. (2021)
offers scalability on AWS and Azure, but focuses more on
operational optimization than advancing core causal discovery
methodologies. In another approach by Wang et al. (2021),
Granger causality models are applied to detect dependencies
between cloud application microservices. However, its efficacy
is contingent on data properties, such as linearity and time-
invariance, which are often not present in real-world cloud
systems. Therefore, there is a pressing need for novel, robust,
and adaptable causal discovery methods tailored for cloud
computing, considering the limitations of existing research and
the complexity of cloud systems.

B. Causal Discovery in Cloud Computing

Causal discovery can generally be divided into constraint-
based or score-based methods. We will briefly explain both
separately and discuss their applicability for causal discovery
in cloud computing.

Constraint-based. Constraint-based causal discovery meth-
ods identify causal relationships by exploiting the conditional
independencies in data, using algorithms such as PC (Duy Le
et al., 2014), PCMCI+ (Runge, 2020), and FCI (Glymour et
al., 2019), which iteratively removes edges in a fully con-
nected graph based on statistical independence tests. Despite
their theoretical appeal and established efficacy within limited
dimensional settings, mentioned methods face considerable
challenges when applied to high-dimensional data, such as the
low-level cloud performance metrics that we focus on in this
work. Each of these methods is characterized by an underlying
complexity that increases exponentially with the number of
variables. For instance, while efficient on low dimensions,
within a subspace of just 20 variables, each of these algorithms
exhibited runtimes on the order of days (tested on AWS
EC2 t2.large instance with 8vCPU and 8GiB Memory), hence
unscalable when expanded to even higher dimensions. Another
limitation is decreased statistical power in high-dimensional
settings, which can lead to inaccurate causal graphs due to a
heightened risk of Type I and II errors.

Score-based. Score-based causal discovery methods esti-
mate the likelihood of a causal structure by comparing the
goodness-of-fit scores of different models, with the Bayesian
Information Criterion often used to determine the best model.
While promising approaches have been emerged recently,
such as DAG with NOTEARs (Zheng et al., 2018), DAGMA
(Bello et al., 2023), and CUTS+ (Zheng et al., 2023), their
applicability on cloud computing datasets has, to the best of
our knowledge, remained untested.

To summarize, constraint-based methods are due to the
high dimensionality problem infeasible, and the application
of score-based methods has remained largely untested. While
previous work of very recent score-based algorithms has
been tested across benchmarks such as climate models, it
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is uncertain that these will perform well on other problems
(Glymour et al., 2018). In this paper, we take the approach of
thoroughly testing various causal discovery methods in cloud
specific datasets.

III. DATASET

In this section, we present the system model of LISA,
the datacenter from which the data originates, and outline its
operations.

A. Data Source and Infrastructure

The research data used in our study originates from the
LISA system model 2, a compute cluster that forms part of the
SURFsara 3 infrastructure. Managed by SURF, a collaborative
Information and Communications Technology (ICT) organiza-
tion for Dutch education and research, SURFsara operates as
a national tier-1 data and computing facility offering a range
of services. This extensive facility houses a heterogeneous
infrastructure spread across 20 racks, comprising 349 nodes.
These nodes vary in terms of processor types, clock speed,
memory, sockets, cache, cores, accelerators, and interconnect.
Racks are classified as generic (including only nodes with
CPUs) or machine learning (ML) nodes with both CPUs and
GPUs. The ML nodes are specially privileged and reserved
primarily for ML workload. Additionally, the data center con-
tains specific nodes for entry, administration, and compilation.
These nodes are used for tasks such as library compilation and
data processing and are not included in our analysis.

B. The LISA Dataset

The LISA dataset (SURF, 2021) stands out with its finest
temporal and spatial granularity, compared to other open-
sourced data center metric datasets. The data is captured
at an interval of 15 seconds over a time period of nearly
8 months. A total of 327 diverse metrics were collected,
providing up to 1.26 million samples per metric per node
and culminating in 66 billion individual, high- and low-level
metric measurements. Prometheus, complemented by libraries
from Intel and NVIDIA was used to capture CPU metrics
and GPU-related metrics respectively. These metrics include
server-level (e.g., power consumption), hardware-sensor (e.g.,
fan speeds, temperature), and OS-level metrics (e.g., system
load). Further, we grouped those metrics into six subgroups,
as described in Table 1 4

2LISA is a compute cluster from SURF and primarily used for research
at Dutch Universities. For more information, see: https://www.surf.nl/en/lisa-
compute-cluster-extra-processing-power-for-research

3SURFsara is a Dutch High Performance Computing and e-Science support
center that hosts large national infrastructure services and provides compute
clusters such as LISA

4We used ChatGPT to automate the grouping of 327 metrics. For
this, we extracted the subgroup of each metric, e.g. netstat from metric
node netstat lcmp InMsgs and used the following prompt: ”For the list of
following cloud datacenter low-level server-metrics, hardware-sensor and OS-
level metrics, group these into 6 distinct categories. Assign labels to each of
the 327 metrics. Following the list delimited by triple quotes: ”’metric list +
subgroup”’ ”. We experimented with the number of categories and sampled
each to validate and concluded 6 the ideal number.

Despite concerted efforts and numerous outreachs to rele-
vant parties, the job data was unfortunately not included in this
research due to constraints and compliance with General Data
Protection Regulation (GDPR) requirements, emphasizing the
criticality of data privacy and protection in research contexts.
However, incorporating this job data with over 800 users and
more than 1 million submitted jobs presents a potential for
enriching future research endeavors.

C. Data Cleanup

We followed the cleanup scripts from the dataset creators,
resulting in a dataset covering the operation of 15 racks
containing 315 nodes with nearly 64 billion measurements,
spanning over 7 months. Additionally, we took steps to further
clean and prepare the data. Firstly, to ensure data validity,
we omitted any metric containing only one distinct value.
The rationale behind this is that static data is unfit for the
ranking step required to compute the Spearman and Kendall
correlations (Croux, 2010), which we utilize in our analysis.
Next, we plotted in Figure 3 the first and last timestamp of
each metric, in order to easily identify any significant gaps in
the dataset, that could potentially skew the research results.
Versluis et al. (2023) reported, that for some metrics, the
dataset contains gaps where the monitoring system was down,
and for other metrics, data collection stopped halfway into
May 2020. Further, as we found that Generic nodes exhibit
more stable power consumption than ML/GPU nodes (Figure
1), we selected both Generic and ML nodes for our further
analysis (Generic nodes: r10n20, r10n25; ML nodes: r30n4,
r30n1). Selecting a second node by node type respectively
helped ensure robustness and repeatability of the analysis
methodology. When selecting these nodes, we also considered
maximizing the number of relevant metrics, e.g. performance
related metrics node load1 or surfsara power consumption.
Additionally, we observed an anomalous event on 2020-01-
03, when power usage dropped to zero and caused system-
wide changes across a wide range of metrics. While this event
could be a potential area for future research, it was excluded
from the analysis in this study to maintain data consistency.
Lastly, The remaining missing values (NaN) were eliminated,
ensuring that only complete and valid data were included in
the analysis.

IV. CAUSAL CLOUDSCAPE METHOD (CCS)

Given the small amount of research effort in creating
scalable yet precise methods for causal discovery in low-level
performance metrics of cloud data centers, we developed the
novel method Causal CloudScape or short CCS. CCS is a
scalable three-step causal discovery framework, designed to
efficiently derive Directed Acyclic Graphs (DAGs) from high-
dimensional cloud metric datasets. The major design challenge
was runtime, thus we needed to create a rigorous pipeline to
deal with high-dimensional time-series, that possibly contain
various unknown characteristics, such as time-dependencies or
trends.
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Fig. 2. LISA Dataset Overview, zoomed in. Each pixel in the first zoom (1x) represents one metric in one node. 103,005x Zoom shows metric node load in
r10n25 over 8 months. 22,867,110x Zoom shows node load, averaged over 1min (back), 5min (blue), 15min (red), on a single day.

TABLE I
OVERVIEW METRICS GROUPED USING GPT4.

Metric Group Metric Count e.g.
Network 114 node netstat lcmp InMsgs
System Performance 76 node memory Mapped
Disk and File System 44 node disk reads completed
Process and Resource Management 42 node context switches
Misc 38 surfsara ambient temp
Time-related 13 node load1

TABLE II
GENERIC OUTLINE OF THE LISA DATASET.

Dataset Item Value
Public Data Start Date 2019-12-29

End Date 2020-08-07
Sampling frequency [s] 15
Max. samples per metric per node 1,258,646
Number of metrics 327
Number of measurements 66,541,895,243

Clean data Number of valid racks 15
Number of valid nodes 315
Number of valid measurements 63,978,689,791

A. System Architecture
Figure 4 shows the architecture of CCS, which consist of

three components. Algorithm 1 describes CCS in pseudocode,

and Table 3 explains hyperparameters. Following an overview
and detailed explanation by steps.
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Fig. 3. Plotting the first and last timestamp of each metric helped guide sample selection. Most metrics relevant to system performance were recorded between
2019-12-29 and 2020-03-24.

Fig. 4. System Architecture CCS. Metric Data as input and DAG as output.

1) Feature Engineering: A time-lagged cross-correlation
function (TLCCF) is used to search linear and non-
linear feature space of temporal differences between
cloud metrics.

2) Feature Selection: A Recursive Decision Tree Function
(RDTF) is used to select enhanced metric features
(i.e. differenced lags) according to the hyperparameter
threshold.

3) Causal Discovery: Directed Acyclic Graph Discovery
via M-matrices (DAGMA) is used to create DAGs.

1. Step - Feature Engineering: The first step in our ap-
proach involves using a time-lagged cross-correlation function
(TLCCF) to explore both linear and non-linear feature spaces
of temporal differences between cloud metrics. We used three
correlation methods - Pearson (Benesty et al., 2009), Spearman
(Myers, 2006), and Kendall’s tau (Samara & Randles, 1988)
- to capture the potential linear and non-linear correlations
among the metrics. The TLCCF is parameterized by nlags,
a hyperparameter that represents the number of time steps in
each direction that a metric pair is shifted. This allows us to
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TABLE III
CAUSAL CLOUDSCAPE HYPERPARAMETERS.

CCS Step Hyperparameter Definition
1. Feature Engineering n lags Number of time-steps.

p Significance value of correlation coefficient. Default to 0.05
2. Feature Selection threshold Numerical value x indicating head(x) of feature importance per function.
3. Causal Discovery MLP dims Dimension of Multi-layer perceptron.

λ Learning rate of gradient descent function.

Algorithm 1 CausalCloudScape (metric data)
STEP 1: TLCCF(n lags)
for lag from −n lags to +n lags do:

calculate pearson, kendalltau, spearmanr for all metric pairs
return max(r) if p ≥ 0.05

STEP 2: RDTF(threshold)
for metric in metric data do:

run LGBM(metric)
return feature importances filtered by threshold

STEP 3: DAGMA(MLP dims,λ)
run DAGMA
return DAG as gi

capture the dynamic dependencies between the metrics that
could change over different points in time. The correlations
calculated are then subjected to significance testing. Only those
with p-values less than or equal to the set threshold of 0.05 are
considered significant, thus ensuring the statistical robustness
of our analysis and filtering out any spurious correlations.
The function takes as input the cleaned metric dataset, and
returns after processing the significant maximum correlation
coefficient by metric pair.

2. Step - Feature Selection: Following TLCCF output,
we employ a Recursive Decision Tree Function (RDTF),
specifically utilizing the LightGBM framework (Ke, 2017), to
dissect the intricate relationships among the various metrics.
Decision trees are advantageous for this purpose because they
create binary splits based on feature values, which offer an
intuitive way to visually navigate and interpret complex data
relationships (Figure 5). By recursively implementing this
method, we are able to develop a hierarchy of decision nodes.
Each node in this hierarchy provides additional insight into the
dependencies and interactions among different metrics. This
methodology aids in pinpointing the most influential metrics
in a given context and also brings to light any unexpected
metric interactions. To enhance the process, we deployed
LightGBM with a specific hyperparameter, threshold. This
hyperparameter selection allows us to filter out and retain only
the most significant features for each metric, thereby reducing
the input feature space for the next step.

3. Step - Causal Discovery: To create DAGs between
generated features, we deploy the novel causal discovery
method Directed Acyclic Graph via M-Matrices (DAGMA).
DAGMA, a novel causal discovery method (Bello et al., 2023),
introduces an acyclicity characterization based on the log-
determinant function, designed to identify directed acyclic
graphs (DAGs). Leveraging the nilpotency property of DAGs
and the concept of M-matrices, the proposed log-det function

outperforms existing characterizations by better detecting large
cycles, offering more manageable gradients, and running much
faster in practice. DAGMA uses the log-det function as a
regularizer, presenting an optimization scheme that results in
solutions guaranteed to be DAGs. The approach demonstrates
considerable speed-ups and smaller structural Hamming dis-
tances compared to state-of-the-art methods. An alternation
of the implementation of Bello et al. (2023) was followed.
Additionally, the DAGMA function was enhanced by hyperpa-
rameters MLPdims and lambda. The former determines the
shape of the Multilayer perceptron, we set its standard value
to [d, 10, 1], where d is the dimension of the input matrix,
aka the number of final features of the previously cleaned and
processed cloud metric features. The latter is the learning rate
with standard values set to 0.02.

B. CCS Evaluation Metric

To evaluate the performance of our CCS, we introduce the
metric Stability. This quantifies the consistency between two
directed graphs, g1, and g2, derived from the same data but
through different iterations. Essentially, the metric measures
the fraction of identical edges in both graphs. A higher value
indicates that the CCS method has managed to generate
more stable and consistent graph structures across different
iterations.

The metric is defined as follows:

Stability(g1, g2) =

∑
i,j [Ag1i,j == Ag2i,j ]∑

i,j [Ag1i,j ]
(1)

where Ag1 and Ag2 represent the adjacency matrices of
the graphs g1 and g2 respectively and (i, j) are the pairs of
vertices.

Beyond the ”Stability” metric designed for CCS evalua-
tion, we examined other popular metrics such as Structural
Hamming Distance (SHD), Structural Intervention Distance
(SID), and the number of links. However, each of these
presented limitations. SHD and SID (Cheng et al., 2022)
assume knowledge of the ground truth graph, which is not
available in our case of exploratory causal discovery in cloud
performance metrics. The ”number of links” metric (Marcot,
2012) measures the complexity of a model but does not reflect
the consistency of structures generated in different iterations.
While these metrics presented limitations for our specific
cloud performance metrics problem, they could potentially
be leveraged in further research addressing other problems or
datasets.
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C. Additional Methods Explored
In our quest for a viable causal discovery method suitable

for high-dimensional data, we developed and evaluated addi-
tional strategies that combined existing methods or leveraged
novel techniques. However, these did not produce stability
scores as high as those attained with our CCS approach.

1. Louvain-community clustering + PCMCI+: We hy-
pothesized that partitioning the metrics into clusters using the
Louvain method (Blondel et al., 2008) could create manage-
able subspaces for PCMCI+. While this approach alleviated
some of the computational burden, it could not fully over-
come the high-dimensionality challenge. Louvain community
clusters were often found to be up to the size of 50 metrics.
More importantly, the stability scores from this strategy were
less than satisfactory, especially when reducing cluster sizes,
indicating a lower level of confidence in the derived causal
relationships.

2. DAG with NO TEARS: Another explored strategy
was the implementation of the DAG with NO TEARs algo-
rithm (Zheng, 2018). This approach, unlike the constraint-
based methods, attempts to learn the structure of a DAG
directly, avoiding the expensive combinatorial search of the
graph space. We used the open-source repository CausalNex
0.12.1 by QuantumBlack (2023). However, the input data
was required to be discretized. While valid results were
yielded, applying discretization techniques was time-intensive
and only yielded results when systematically discretized with
expert-informed discretization techniques such as equal-width
binning based on information gain, or Machine-Learning based
discretization techniques. However, we contend that the re-
liance on such expert-guided discretization significantly di-
minishes the method’s generalizability. Both time-consuming
and inefficient, this approach lacks scalability, a critical de-
ficiency in swiftly changing domains like cloud performance
monitoring.

3. CUTS+: CUTS+ (Cheng et al., 2023) is a novel algorithm
that improves causal discovery in high-dimensional, irregular
time-series data by employing a Coarse-to-Fine-Discovery
approach to break down complex time-series into manageable
groups and a Message-Passing Graph Neural Network for
enhanced predictions. Given its specificity for irregular time
series, which our dataset lacks, and the minimal temporally
relevant features within our dataset, its application was deemed
unsuitable. Yet, its potential utility in future research, par-
ticularly in datasets with irregular time series or substantial
temporal dependencies, remains noteworthy.

D. Software Reproducibility
In order to ensure reproducibility, we load the raw data from

the SURF Machine Metric data set, which can be accessed as
open-access data at https://doi.org/10.5281/zenodo.4459519.
Furthermore, all of our analysis and plotting code is openly
available on our GitHub repository at https://github.com/EC-
labs/ADS-tobias.

V. EXPERIMENTIAL RESULTS

As part of developing CCS, we conducted a series of
iterative tests on an expert-guided sub-selection of the dataset

related to disk-swapping events, where causal relationships
were known. Further, we deployed the method in an unsu-
pervised holistic metric selection over an extended period of
time and answered RQ1.1-RQ1.5.

A. Setup

Table 4 provides an overview of the experimental setups.
The expert-guided tests were run locally due to the small
sample size. The unsupervised causal discovery tests were
computationally more expensive, thus were deployed using
AWS EC2 services.

B. Expert-Guided Disk Swapping

We focus on our expert-guided validation of disk-swapping
events. Disk swaps occur when free memory is low, which
leads to page swaps and context switches. We selected three
distinct disk swap events and created sub-datasets of node
r10n25 of sampling sizes n1 = 248, n2 = 70, and n3 = 70,
including both first a metric set we assume to have strong
causal relationships and second a metric set we assume to have
an absence of causal interplay, to account for type I and type
II errors. First, the metric set with strong causal relationships.

• node memory MemFree: The amount of free memory
available.

• node memory pswpin: data transferred from disk to
memory per second in kilobytes.

• node context switches: number of the system’s context
switches.

• node load1: average system load over the last minute.
Second, the metric set with weak causal relationships.

• node forks: number of forks.
• node netstat TCPHPacks: number of Transmission Con-

trol Protocol packets sent or received. Following the CCS
framework.

Step 1 - Feature Engineering: Next to time-lagged fea-
tures, we generated additional differenced and smoothed fea-
tures, such as node load1 diff or node load1 smoothed. We
chose differencing as a feature to mitigate non-stationary
properties of the metric time series, meaning to stabilize the
mean of a time series by removing changes in the level, elimi-
nating trend and seasonality, and therefore helping to make the
series stationary. The latter smoothing feature was generated
subsequently, as we observed frequent high fluctuations in
differenced data, thus smoothing helped to mitigate noise.

Step 2 - Feature Selection: We applied RDTF on
the resulting set of features including original, normalized
metrics and generated features of the previous step. With
threshold = 3, we yielded the most important features of
differenced and smoothed metrics with a smoothing fac-
tor of 2, meaning averaging the data over 30 seconds,
for the metrics node context switches, node memory pswpin,
node forks, and node netstat TCPHPacks. All these were
aggregated data, thus non-stationary. The remaining set of
metrics were used in their original form, as stationary.

Step 3 - Causal Discovery: Using the entire sample size
of the three disk-swapping events, including datapoints before
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TABLE IV
EXPERIMENTAL SETUP.

Experiment Input Data Shape Remote [Y/N] AWS EC2 Instance type
B. Expert-Guided (248, 6) N -

(70, 6) N -
(70, 6) N -

C. Unsupervised (10000, 103) Y c5.xlarge (4vCPU, 8GiB Memory)
(10000, 117) Y c5.2xlarge (8vCPU, 16GiB Memory)
(10000, 117) Y t2.large (2vCPU, 8GiB Memory)

Fig. 5. Left figure visualizes the CCS feature selection through Step 2: RDTF plot shows feature importances for metric node memory pswpin. Right figure
shows a normalized subselection of metrics. Metrics marked with * are differenced and smoothed.

and after, we used DAGMA to generate DAGs. We noticed
that for small sample sizes, undirected DAGs produced better
results than directed DAGs. Thus we transformed the output
into an undirected adjacency matrix. Figure 6 reports the
results of all three tests.

The strongest relationship is intuitively between
node context switches and node memory pswpin, as
data is transferred from memory to disk, triggering context
switches, and establishing a consistent causal relationship.
Similarly, the consistent relationships among all three tests
of node pairs (node memory pswpin, node memory pswpin),
and (node context switches, node memory MemFree) were
anticipated. As disk swapping (pswpin) increases, it usually
means that the system is freeing up memory (MemFree), so
there is a direct statistical relation. Context switches often
occur when the system is low on free memory, leading to a
consistent relationship with metric node memory MemFree.
Finally, the relationship between (node memory MemFree,
node load1) is also consistent between all tests. The rationale
here is that the average system load can increase when
memory is low (MemFree). It’s the system’s reaction to
cope with the high demand for memory resources, hence the
relationship.

C. Unsupervised Causal Discovery

In a second series of tests, we deployed the CCS method
in an unsupervised holistic metric selection over an extended

period of time and responded to RQ1.1-RQ1.5.
RQ1.1: Cross-correlation coefficients rarely increase be-

tween two lagged metrics.
RQ1.2: CCS yielded 95.5% Stability across 5 tests in ML

node r30n4 and 96.1% Stability across 3 tests in generic node
r10n25.

RQ1.3: CCS has a median runtime of 19.04 hours running
2 tests simultaneously on c5.2xlarge with 8vCPU and 16GiB
RAM.

RQ1.4: Power consumption in ML nodes have GPU-related
metrics as causal factor, which is absent in Generic nodes.

RQ1.5: There is a causal relationship from surf-
sara power usage to 0:GeForce GTX 1080 Ti.3.

To discover new causal relationships and test the model in
an unsupervised way, we deployed CCS on two datasets from
Generic node r10n25 and ML node r30n4. Again, following
the CCS framework. Causal relations are written using the
following notations: Causal Factor→Effect.

Step 1 – TLCCF: To obtain a holistic view of temporal
patterns across metric pairs, we plotted the results of applying
TLCCF in Figure 7. We found that despite a high number
of significant correlation pairs according to p-values between
shifted time series, the difference was never higher than 0.03
and mostly smaller than 0.005, compared to the baseline
correlation coefficient at lag 0. We observe and conclude
that there are no major temporal influential factors in the
LISA data set (RQ1.1). This observation makes sense because
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Fig. 6. Undirected DAG as adjacency metric across three distinct disk swapping events. From left to right, the sample input size is n1 = 248, n2 = 70, and
n3 = 70 data points. Due to the small sample size of the input data, an undirected adjacency matrix was chosen to display the results.

the time granularity of recorded metrics is 15 seconds, and
computational processes often happen sub-sequentially in time
spans of milliseconds.

Step 2 – RDTF: We yielded 103 relevant features for
Generic node r10n25 and 117 features for ML node r30n4.

Step 3 – DAGMA: We conducted 5 tests on the ML node
and 3 tests on the Generic node. For efficiency and robustness,
we used random sampling with a relatively large sample size of
n = 10, 000, which we found a good sample size considering
the runtime and quality of results in terms of stability. On
ML node tests, we recorded 95.5% stability across 5 tests,
and 96.1% across 3 tests in Generic node tests (RQ1.2). We
tested several AWS EC2 instance types for runtime and cost
optimization and recorded the following runtimes as in Table
5. The fastest runtimes were recorded on c5.2xlarge (8vCPU,
16GiB Memory), with median of 19:04:54 hours (RQ1.3),
running 2 tests parallel to optimize costs. The tests had a
steady CPU utilization of 397% and 396% respectively.

Next, we plotted the resulting DAGs (Figure 9-13). We
found many obviously logical causal relationships, such as
node load1 → node load5, node load1 → node load15 and
node load5 → node load15. node load5 andnode load15
are derived metrics from node load1, as these present
the average system load of the past 5 and 15 minutes,
respectively. Also, we found other logical performance related
causal relationships, such as node disk read time ms diff
→ node disk reads completed diff and
node disk write time ms diff → node disk writes

completed diff. These metrics represent the differenced
disk read/write times in milliseconds and the number of
completed reads/writes, which is logical, the faster the
read/write times, the higher the completed reads/writes. The
differenced metrics were chosen by the RDTF function (CCS
step 2), as these are aggregated and non-stationary processes.
Besides obvious relationships, we also found novel, consistent
relationships. First, we observed across ML-tests how GPU-

related metrics such as 1:GeForce GTX 1080 Ti.3 are causing
surfsara power usage. As ML nodes uniquely make usage of
GPU for optimized computation, these relationships were only
present in the ML tests, and absent in Generic tests (RQ1.4).
This interesting observation leads to the hypothesis that high
power consumption variability in ML nodes (Versluis et al.,
2023) is caused by GPU devices. To test this hypothesis
further, it would be interesting to compare these findings with
other nodes and datasets. Interestingly, the causal relationship
surfsara power usage → 0:GeForce GTX 1080 Ti.3 was
observed across all tests. While this direction of the causal
relationship seemed as a false positive initially, we found
that on several occasions, the cooling system is a limiting
factor for the performance of ML nodes, only handling up
to 5.5 kW per rack, as observed by Versluis et al. (2023)
after inquiring the datacenter operators. Thus, these directed
relationships could be indicating thermal throttling (RQ1.5).

VI. DISCUSSION AND CONCLUSIONS

We outlined the importance of developing novel methods
to create a better understanding of complex systems such as
cloud data centers, through causal discovery. We provided
an overview of the scarce, current development in this field
and proposed Causal CloudScape (CCS), a novel method
to discover causal relationships in high-dimensional cloud
metric datasets. We applied CCS on the high-dimensional and
novel low-level cloud metric dataset from the LISA system.
We validated CCS through deployment and evaluation in an
expert-guided setting with known causal structures and applied
the framework in two unsupervised holistic settings, both
on Generic and ML nodes. Through answering five different
research questions on the efficacy of CCS, we showed the
framework’s potential in analyzing root causes, identifying
performance anomalies, and understanding causal relation-
ships in low-level metrics of cloud data centers. By param-
eterizing CCS, we provide a scalable and efficient framework,
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Fig. 7. Results of TLCFF averaged of nodes r10n25, r10n20, r30n4 and r30n1, validated across 50 day periods. Each datapoint shows the correlation coefficient
at lag 0, plotted against the highest difference in lagged correlation between two metric pairs.

Fig. 8. Stability metric by subsequent testing. Each iteration within a given node contains distinct data points, sampled from a 50-day time period, with
sample size n = 10000
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TABLE V
CCS EXECUTION TIMES. RUNTIME LOGS IN FORMAT [MIN, MEDIAN, MAX] HH:MM:SS

Node test Input Data Shape AWS EC2 instance type Runtime logs
r10n25 (3) (10000, 103) c5.xlarge (4vCPU, 8GiB Memory) [52:57:00, 52:58:55, 52:59:36]
r30n4 (2)(2) (10000, 117) c5.2xlarge (8vCPU, 16GiB Memory) [18:05:47, 19:04:54, 19:13:15]
r30n4 (1) (10000, 117) t2.large (2vCPU, 8GiB Memory) [58:30:56]

which can potentially be generalized beyond cloud domain-
specific use cases.

A. Limitations

While the Causal CloudScape (CCS) method offers a novel
approach to the causal discovery of high-dimensional low-
level cloud performance metrics, there are three limitations
that should be considered. First and foremost are implicit
assumptions and model-specific limitations of the causal dis-
covery process (CCS step 3). As part of the causal discovery
process, we have to make implicit assumptions about our
data. We assume that the causal structure is acyclic, meaning
that there are no loops or circles in causal structures. Also,
we assume data sufficiency, meaning that we have included
all causal factors at play in our model. In practice, this
assumption is mostly never fully fulfilled, as reality is messy.
However, it is important to make this assumption explicit when
interpreting results., especially since job data is expected to
reveal new causal influences. On model limitations, DAGMA
is a very recent and not widely studied method for deriving
DAGs. While the developers conducted extensive testing and
benchmarking across diverse datasets, it is not as widely
adopted yet as traditional methods, such as PC or GES. Thus
keeping this in mind, we envision more extensive testing and
development of novel models. The second limitation is that
we used only limited feature selection techniques. While we
were able to create a process (CCS steps 1 2) to effectively
create and derive the most important input features, we also
noticed how some metrics contain patterns that were not fully
exploited yet, such as seasonality. Versluis et al. (2023) found
a diurnal distribution of job arrivals, office / non-office hours.
The third limitation is the one of DAG evaluation. Due to the
nature of the problem, we cannot use metrics such as SHD or
SID (Section IV, B.), as the ground truth of the causal structure
is widely unknown. Thus, we have used the stability metric,
which effectively shows the congruence amongst DAGs. As
this metric only shows such stability, we envision that further
efforts also include metrics such as a number of links and
other metrics, depending on the nature of the research.

B. Future Work

We envision that further research applies CCS more thor-
oughly to the LISA dataset, which is still largely unexploited,
such as by including job data in the analysis. Further, it would
be interesting to compare CCS results with other holistic
and rich datasets and also focus on holdout data such as
performance anomalies or changepoints (Zhao et al., 2021).
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