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Abstract

Recent developments in string theory, such as the AdS/CFT correspondence, have increased the
interest in higher dimensional curved spaces. The Randall-Sundrum model, a five-dimensional
spacetime with strongly warped extra dimension, is a promising model that offers potential
solutions to some of the major theoretical physics problems. However, some of the black holes
in this model appear to be unstable. We study the mode stability of Randall-Sundrum black
holes, focusing on linear perturbations of a specific complex frequency. The instability is a
generalization of the Gregory-Laflamme instability, which affects torus shaped black holes in
five-dimensional flat space. While previous studies have been numerical, this thesis analytically
proves the Gregory-Laflamme instability using spectral theory. We extend this instability
to warped spaces to determine the mass range for unstable black holes. We conclude that
black holes with a mass below that of the Earth are unstable in the Randall-Sundrum model,
suggesting that solar-mass black holes could still exist in this model.
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Chapter 1

Introduction

Almost a hundred years after Einstein published his theory of general relativity, gravitational
waves were finally detected by the LIGO and Virgo detectors in September 2015 [1]. The
existence of gravitational waves is one among the profound features of Einstein’s theory. Nev-
ertheless, this detection might also be foreshadowing the downfall of general relativity, because
gravitational waves opened the door for new tests of gravity. Dozens of modified gravity the-
ories are ready to compete with general relativity [2, 3]. Additionally, opportunities arise to
improve bounds of fundamental parameters and to test other theories.

An example of another theory which many physicists believe, but for which no observational
evidence has been found yet, is string theory. In string theory it is assumed that particles
are one-dimensional strings instead of the usual point-like objects [4]. One of the remarkable
aspects of string theory is that it predicts that the universe consists of ten dimensions rather
than the four dimensions that we experience in our daily life. If these extra dimensions would
exist, how would it be possible that we do not notice them?

There are several possible explanations for this. One possibility is that these extra dimensions
are too small to influence us. This process is called compactification [5]. In this process,
extra dimensions of finite volume are combined with the original four-dimensional space, for
example by taking the product space with a torus. Experiments done at CERN have put
restrictions on the possible size of these extra dimensions [6]. They have shown that these
extra dimensions cannot be larger than ∼ 1 mm. At first glance, this bound does not seem
so troubling. However, when considering higher dimensional theories it is important that the
effective 4-dimensional theory still agrees with our current theories, like the standard model of
particle physics and general relativity. It can be difficult to adhere both requirements

A way to avoid this problem, is to consider higher dimensional models where the standard
model is restricted to a 3-brane. The word brane originates from string theory, an n-brane is
a n+1-dimensional subspace of the higher dimensional space that includes the time-direction.
Since the standard model is restricted to a 3-brane, it is automatically included in the higher
dimensional model. An example of such a space is the Randall-Sundrum model [7, 8]. The
Randall-Sundrum model is a five-dimensional model that includes two 3-branes. The visible
brane, which is also called the TeV-brane, is where the standard model is located. The other
brane is called the hidden or Planck brane. A schematic picture of this scenario is shown in
figure 1.1. The space between the branes is strongly warped. This has the consequence that
gravity is much stronger on one of the branes compared to the other.

In summary, there are two types of physically feasible higher dimensional models. These
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CHAPTER 1. INTRODUCTION 7

Hidden Visible

Figure 1.1: A schematic picture of the Randall-Sundrum model. The grey
surfaces represent the hidden and visible brane. The two branes are parallel
to each other. The directions parallel to the branes represent the usual four
dimensions, the extra dimension is in the y-direction.

models either include very small extra dimensions or dimensions that are inaccessible for the
standard model particles. So how can we ever detect these extra dimensions? According to
Einstein’s theory, gravity is a consequence of the geometry of spacetime. Consequently, gravity
cannot be restricted to a brane and must be influenced by these extra dimensions. Therefore,
gravitational waves make it possible to find evidence for extra dimensions [9, 10]. If this is
successful, then this would be a hint towards the validity of extra dimensional theories.

A possible test can be done by using standard sirens [10]. A standard siren is a cosmolog-
ical event that emits both gravitational waves and electromagnetic waves. An example of a
standard siren is the coalescence of binary neutron stars. Through theory, the strength of
the electromagnetic wave that is emitted during the coalescence is known. With this we can
estimate the distance to the source by observing the electromagnetic wave [11]. Additionally,
the gravitational wave measurements also predicts a distance, and we can see whether the two
values agree. For example, if the electromagnetic wave is restricted to some 3-brane, then the
gravitational wave could ‘leak out’ into the extra dimensions, resulting in a weaker signal and
thus a different estimate for the distance to the source. So far we have only once detected
such multimessenger signal from coalescing binary neutron stars [12, 13], but with the next
generation of detectors we predict that such events will be detected more frequently. It is
predicted that the next generation of ground based detectors, such as the Einstein Telescope,
will observe around 7× 104 binary neutron stars in one year [14].

To enable these standard siren tests we will need models for the gravitational waves in extra
dimensions that can be cross-correlated with the data. Models have already been constructed
for flat compact extra dimensions [9]. For flat spaces, the conclusion is that a gravitational
wave signal from a binary in the five-dimensional theory has 20.8% less luminosity and a phase
difference of 26% compared to a four-dimensional binary with the same characteristics. These
numbers disagree with the current observations of gravitational waves, so these models are un-
realistic. Nevertheless, constructing more gravitational waveforms for other higher dimensional
models, might improve our understanding of these spaces and may lead to a waveform which
matches better with our observations. Furthermore, if waveforms only fit for certain values of
parameters, it can lead to new restrictions on higher dimensional models.

In this thesis we study the Randall-Sundrum model. This is a five-dimensional model where
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the extra dimension is warped and negatively curved. This means that the four-dimensional
metric also depends on the extra-dimension. Consequently, the size of the extra dimension
does not need to be small to retrieve four-dimensional gravity on the brane. Furthermore,
warped spaces are a generalization of flat spaces, so by studying them we are studying a wider
range of models.

Before studying gravitational wave signals in the Randall-Sundrum model, we need to make
sure that the generation of gravitational waves is possible in this model. So far, the vast
majority of detected gravitational wave sources are binary black holes with masses between
3− 100M⊙ [15, 16]. Therefore, we need to check if solar mass black holes exist in the Randall-
Sundrum model. It turns out that the Schwarzschild solution can be extended in the extra
dimension to form a black hole solution in the Randall-Sundrum model, such a solution is
called a black string [17]. However, for this solution to be physical, it needs to be stable under
small perturbations.

It is known that the Randall-Sundrum black string is modally unstable [17, 18]. If Randall-
Sundrum could be a model to describe our universe, we require the existence of stable solar
mass black holes in this model. A natural question to ask is then: Does this instability also
apply to solar mass black holes? To answer this question we study the stability of the Randall-
Sundrum black strings. This mode instability has so far mostly been studied numerically. In
this thesis we analytically study the instability and find unstable modes of the RS black string.

To prove this analytically we combine results from general relativity and spectral theory and
apply these to the black string in the Randall-Sundrum model. The necessary background is
explained in chapters 2 and 3. The stability is proven in chapter 4. In the following sections
we discuss the content and most important results from each chapter. The following theorem
describes our main result. It is more rigorously stated and proven in Section 4.3.

Theorem 1.0.1. In RS1 there exists a M0 > 0 such that the Randall-Sundrum black string of
mass M is modally unstable if M < M0.

1.1 Stability theory in general relativity

The goal of chapter 2 is to introduce the notion of stability in general relativity and gather
tools from spectral theory with which we can prove stability of spacetimes.

In Section 2.1 we define the most important concepts in general relativity. General relativity is
a theory on semi-Riemannian manifolds (M, g), where the dynamics of the metric are governed
by the Einstein equations. There exists an action of the group of diffeomorphisms on the set
of Einstein metrics. The Einstein equations are invariant under this action. This introduces
the important concept of gauge fixing. By gauge fixing the metric we choose a representation
of the metric by picking an element in the orbit of g.

In Section 2.2 we define different notions of stability. A metric is stable if small changes in the
metric do not have big consequences. To study the stability of a metric we can define a new
metric on a suitable initial surface, and use the Einstein equations to determine the evolution
of the other metric. It is not a given that a metric which is initially close to the original
metric, stays close at any time. A slight change in the metric might drastically change the
resulting metric. If a metric is almost unaffected by perturbations we call it stable. However,
if there exists a certain perturbation under which the metric diverges from its original state,
it is unstable.

We define different levels of stability. For stability we perturb the metric g with a 2-tensor h.
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There are three different levels of stability that we define.

• (Non-linear) stability: the evolution of the metric g+h is determined by the full Einstein
equation.

• Linear stability: the evolution is determined by the linearized Einstein equations.

• Mode stability: only considers the linear evolution of modes h of a particular complex
frequency ω ∈ C.

It is important to note that these are really different types of stability, and one type does not
imply the other. However, due to the increasing complexity it is common to first study mode
stability, then linear stability and finally full stability. Even though mode stability does not
imply linear stability, it can improve the understanding of the problem. The stability analyses
in Chapter 4 only focuses on mode stability of spacetimes. The most important result for mode
stability problems is that most problems are described by a master equation of the form

−d
2ψ

dx2
+ V (x)ψ = ω2ψ. (1.1)

Here V : R → R is some potential and ψ ∈ L2(R) is some function related to the perturbation.
This type of master equation is useful, because it turns the stability problem into an eigenvalue
problem. In particular, if there exist negative eigenvalues, then there exist unstable modes.

The eigenvalues can be studied with spectral theory, which is introduced in Section 2.3. For a
well behaved potential, the left hand side of Eq. 1.1 can viewed as a self-adjoint operator. For
a self-adjoint operator A we can define the spectrum σ(A), which intuitively describes the set
of eigenvalues of A. In this section we derive that, if V is non-negative, then σ(A) ⊂ [0,∞).
Additionally, we state a result that is crucial for the proof of Theorem 1.0.1.

Lemma 1.1.1. Let A : D(A) → H be self-adjoint. If there exists a f ∈ D(A) such that
⟨f,Af⟩ < 0, then there exists a E ∈ σ(A) with E < 0.

This is especially useful in proving the existence of unstable modes, because now there only
needs to exist one function in the domain such that the inner product becomes negative.
Finding such a function for an operator such as in Eq. 1.1, implies the existence of unstable
modes.

1.2 The Randall-Sundrum model

After defining stability theory in Chapter 2, we want to apply it to spacetimes. Chapter 3 is
dedicated to illustrating the motivation behind the Randall-Sundrum model, to derive different
examples of the model, and to prove important properties of the model.

In Section 3.1 we give some arguments why one should consider the Randall-Sundrum model.
The most important reason is that it offers a solution to the hierarchy problem. The hierarchy
problem is the lack of explanation for the huge difference between the electroweak and Planck
scale. It is explained in detail in Section 3.1.1. Another reason to consider the Randall-Sundrum
model are the recent developments in the AdS/CFT correspondence.

In Section 3.2 the model is defined and we derive an easy way to construct RS models. A RS1
model has a topology of R4 × [0, 1] and can be constructed from two parameters and a Ricci
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flat four-dimensional metric g(4). The parameters are the curvature scale κ and the distance
between the branes yc. A RS1 metric has the following form in standard coordinates

g = e−2κ|y|g(4)(x) + y2cdy
2, (1.2)

where x are the coordinates parallel to the brane and y is the extra dimensional direction. A
RS2 model has a topology of R4 × [0,∞) and only needs the curvature scale κ and a Ricci flat
four-dimensional metric.

The RS models have nice properties, some of which we derive in Section 3.3. First of all, due
to the exponent in Eq. 1.2, lengths seem smaller and energies seem lower on the visible brane
at y = 1. Therefore, RS1 models offer a solution to the hierarchy problem if κyc ∼ 35. For
this value, the global electroweak scale is of the order of the Planck scale, but the effective
electroweak scale is of the order that we observe. Additionally, we show that models with
these values can be constructed in a natural way. Finally, we see that the same exponential
causes gravity to be much stronger on one of the branes compared to the other. It turns out
that as a consequence, one experiences four-dimensional gravity even though the RS model is
five-dimensional.

With the construction in Eq. 1.2, a way to obtain black hole solutions is by substituting the
Schwarzschild metric for the four-dimensional metric g(4). The resulting space is called the RS
black string. A point of infinite curvature, also called a singularity, appears at y = ∞ in the
RS2 black string. Therefore, Hawking postulates that the black string pinches off away from
the brane, instead of reaching all the way to infinity [17]. The resulting black hole has a cigar
shape and is therefore called a black cigar. This hints to the existence of an instability. If there
exists an instability in RS2, then there might also exist unstable black holes in RS1.

In summary, the RS1 model can be constructed naturally and has the potential to solve the
hierarchy problem. Therefore, it could be a representation of our universe. However, it seems
that some black holes are unstable in this model. From Earth, we observe black holes that
have a mass of at least one solar mass [19]. Therefore, for RS1 to be a good representation of
our universe, we want solar mass black holes to be stable. Consequently, this requires a study
of the stability of the RS black string. This is the motivation behind the main Theorem 1.0.1.

1.3 Mode stability of black holes

In Chapter 4, Theorem 1.0.1 is proven. To prove this, we first study the mode stability of
the Schwarzschild metric and the five-dimensional flat black string in Sections 4.1 and 4.2,
respectively. The techniques and results from these studies can then be generalized to the
stability of the RS black string in Section 4.3.

The Schwarzschild solution in four-dimensions has proven to be modally stable. This has first
been done by Regge and Wheeler [20], and later more rigorously by Vishveshwara [21] and
Zerilli [22]. We follow these derivations in Section 4.1. The perturbations of the metric can be
decomposed into scalar, vector and tensor spherical harmonics of different parity and angular
momentum. The linearized Einstein equations decouple for components of different parity
and angular momentum, so these components can be studied separately. In this section, we
conclude that both types of parity have similar behaviour and only contain stable modes.

Section 4.2 focuses on the stability analyses of the flat black string. In five-dimensional flat
space with compact extra dimension, there are two types of black holes: hyperspherical black
holes and black strings. If the size of the extra dimension is large compared to the mass of
the black hole, the hyperspherical black hole state is entropically favourable over the black
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string state. Therefore, an instability of the black string is expected. This is known as the
Gregory-Laflamme instability [23] and was first studied numerically.

In this thesis we analytically analyse the instability. We derive a master equation of the form
as in Eq. 1.1. The potential of this master equation will be well-behaved such that the left
hand side of Eq. 1.1 can be viewed as a self-adjoint operator A : D(A) ⊂ L2(R) → L2(R). As
discussed in Section 1.1, in order to prove the existence of unstable modes, we need to prove
the existence of negative eigenvalues. To do this we make use of Lem. 1.1.1. For this lemma
we need to construct suitable test functions f , such that ⟨f,Af⟩ < 0. We use an intuitive
way to construct the test functions. Namely, we approximate the potential by the asymmetric
finite well potential. This is a step function that is a generalization of the finite well operator
that might be known from basic quantum mechanics books [24, Section 2.6]. This potential
has very similar behaviour as the potential we obtain. By constructing eigenfunctions of the
asymmetric finite well operator, we obtain a big set of test functions that can be used to find
negative eigenvalues. With this technique we are able to prove the existence of unstable modes
if the mass of the black string M is in the range M ∈

[
0.1L
4π , 0.85L4π

]
, where L is the size of the

extra dimension.

Now Theorem 1.0.1 can be proven by generalizing the unstable modes of the flat black string
to the warped RS black string. In Section 4.3 we finalize the proof by constructing modes of
the RS black string that reduce the master equation to the same master equation as the flat
black string. This can be done with the aid of Bessel functions. In RS1, due to boundary
conditions caused by the branes, we can derive for which black holes there exist unstable
modes. Consequently, the M0 in Theorem 1.0.1 depends on the two parameters κ and yc. In
particular, for the value κyc ∼ 35, the value which solves the hierarchy problem, it holds that
M0 ≪ M⊙, where M⊙ denotes one solar mass. In RS2, there exist unstable modes for any
mass black string.

Remark. A full analytical proof of the Gregory-Laflamme instability has been constructed
in 2021 by S. Collingbourne [25]. Although many of the ideas in his article are similar to
the ones used here, it is important to note that this analyses has been done completely inde-
pendently from [25]. Only when finalizing the thesis I discovered the article. There are also
some differences with Collingbourne’s proof. His proof is completely analytical, whereas our
approach uses some numerics to compute integrals. Additionally, we both make use of Lem.
1.1.1 to prove the existence of negative eigenvalues, but use different techniques to construct
the test functions. Collingbourne constructs these functions by hand [25, Prop. 4.5], whereas
in this thesis the eigenfunction of the asymmetric finite well form a set of test functions.
Consequently, successfully using the simplified model to find negative eigenvalues helps gaining
insights into the origin of the instability problem. Moreover, in this thesis the instability is
proven in the range M ∈

[
0.1L
4π , 0.85L4π

]
, whereas Collingbourne only proved the instability in the

range M ∈
[
0.3L
4π , 0.8L4π

]
.

Remark. Throughout this thesis we use the convention GN = c = 1 unless stated otherwise.



Chapter 2

Stability theory in general relativity

The aim of this thesis is to formulate, understand and analyse the stability problem of the
Randall-Sundrum black string. The required background and tools are introduced in this
chapter.

First of all, deriving the Randall-Sundrum model requires knowledge about the theory of
general relativity. The concepts of general relativity that are important to us are defined in
Section 2.1. General relativity describes the interaction between matter and the geometry or
curvature of spacetime. This can be described using Lorentzian manifolds, where a metric
tensor g solves the Einstein equations. Moreover, we show how symmetries of the system can
be used to simplify a problem.

Once we have defined general relativity we can formulate the stability problem in Section 2.2.
The idea behind stability theory is that a small change in initial conditions of the object has
no big consequences on the evolution. Even though the Einstein equations form a system of
non-linear coupled partial differential equations, it turns out that it is possible to set initial
conditions on a hypersurface such that the Einstein equations determine the evolution through
the entire manifold. Using this fact it is possible to define stability of a spacetime. We consider
three types of stability: (non-linear) stability, linear stability and mode stability. The mode
stability is the type that is studied in Chapter 4. The most important result of this section is
that many mode stability analyses lead to a master equation of Schrödinger form, as in Eq.
1.1.

The left hand side of Eq. 1.1 can be viewed as a differential operator. In Section 2.3 we
define spectral theory, which is the theory behind such operators. Results from spectral theory
simplify the mode stability analyses. In particular, the following theorem which is proven in
Section 2.3.3, makes the mode stability analyses in some cases almost trivial once we have the
master equation.

Theorem 2.0.1. If V is piecewise continuous, non-negative and bounded then the Schrödinger
operator in Eq. 1.1 has no negative eigenvalues.

Additionally, in Section 2.3.1 we derive Lem. 1.1.1, which is crucial when deriving the main
result in Chapter 4.

12
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2.1 General relativity

According to general relativity, matter interacts with the geometry of spacetime and causes
curvature. Consequently, the geometry of spacetime becomes dynamic. On the other hand,
matter is influenced by curvature as well. The dynamics of these interactions are governed
by the Einstein equations. Lorentzian manifolds are used to describe this interaction. In this
section, we define Lorentzian manifolds and curvature tensors to describe these interactions.

In particular, in Section 2.1.1 Lorentzian manifolds are introduced, which are central objects
in the theory. They consist of a manifold M and a metric tensor g. The metric describes the
curvature of the manifold. To see this we define several curvature tensors in Section 2.1.2.
With these curvature tensors we can define a functional called the Einstein Hilbert action
which represents the total curvature. In Section 2.1.3 we derive that the Einstein equations
are obtained by varying this functional. The Einstein equation describe the interaction between
matter and curvature. Finally, we look at how we can simplify general relativity problems by
using symmetries of the systems we consider in Sections 2.1.4 and 2.1.5.

2.1.1 Lorentzian manifolds

General relativity describes the interaction between curvature and matter within a spacetime
manifold. The central objects to describe the curvature are Lorentzian manifolds. In this
section we define these manifolds and look at ways to construct them.

The curvature of a manifold is described by a metric.

Definition 2.1.1. Let M be a manifold. A metric tensor is a non-degenerate, symmetric,
bilinear form g : TM ⊗ TM → R. g is positive-definite if g(X,X) > 0 for all non-zero
X ∈ TM .

A 2-tensor g is non-degenerate if for all X ∈ TpM there exists a Y ∈ TpM such that g(X,Y ) ̸=
0. For an orthogonal basis {E1, . . . , En} of TpM , it must hold that g(Ei, Ei) ̸= 0. This
can be used to assign a signature to a metric tensor g. Namely, if we define the quadratic
form q : TM → R by q(X) = g(X,X), then for every orthogonal basis of TpM , the map q
produces n real numbers. Each of these numbers can either be positive or negative. We define
the signature of the metric g as (p, q), where p is the amount of positive numbers and q the
amount of negative numbers. Note that because of non-degeneracy and continuity, if M is
connected, then the signature of g in a point p is consistent with the signature of g over the
entire manifold.

Another consequence of the non-degeneracy of the metric is that g defines an identification of
the tangent bundle TM with the cotangent bundle T ∗M . Namely, a vector X ∈ TpM can be
mapped to a covector in T ∗

pM by the map

X 7→ g(X,−). (2.1)

Due to the fact that g is non-degenerate, this map is in fact a bijection. In a coordinate chart,
if Xa is a vector field, we denote the covector associated to it by the map in Eq. 2.1 by
Xa = gabX

b.

Definition 2.1.2. A semi-Riemannian manifold (M, g) consists of a n-dimensional smooth
manifold M together with a metric tensor g. We say (M, g) is a:

• Riemannian manifold if g has signature (n, 0),
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• Lorentzian manifold if g has signature (n− 1, 1).

If g has signature (p, q) with q ̸= 0, then it is possible for vectors X ∈ TpM to have negative
length g(X,X) < 0. We call vectors of negative length timelike and vectors of positive length
spacelike. Due to continuity of the metric, if both positive and negative length vectors exist,
then there must also exist non-zero vectors of zero length. Vectors of zero length are called
null or lightlike.

The idea in general relativity is that nothing can move faster than light. Massive matter,
such as electrons and protons or human beings, can only follow timelike trajectories, whereas
massless particles move on lightlike trajectories. In our universe it seems like there is only one
time-direction. Therefore, it is common in general relativity to focus on Lorentzian spacetimes.
The prime example of a Lorentzian manifold is Minkowski space.

Example 2.1.3. Minkowski space is the Lorentzian manifold (Rn, η), for which in Euclidean
coordinates (t, x1, . . . , xn) the metric is given by

η = diag(−1, 1, . . . , 1).

Definition 2.1.4. Let M be a manifold. We denote by M the space of all Lorentzian metrics
on M .

If we have a semi-Riemannian manifold (N, g) and a map f :M → N , then f induces a metric
on M by using the pullback. This pullback metric is defined by

f∗g(v, u) = g(dfv, dfu), for v, u ∈ TM. (2.2)

This works especially well if f is a diffeomorphism, because then f∗g is also non-degenerate
and therefore a metric tensor. In particular, note that f∗g and g have the same signature.
With this observation, Eq. 2.2 defines an action of the group of diffeomorphisms, which we
denote by Diff(M), on the space of Lorentzian metrics M of M .

When (M, g′) is another semi-Riemannian manifold we can compare g′ and f∗g. This gives us
a notion for when two semi-Riemannian manifolds are equivalent.

Definition 2.1.5. Two semi-Riemannian manifolds (M, g′) and (N, g) a diffeomorphism f :
M → M ′ such that f∗g = g′ is called an isometry. If such an isometry exists then (M, g′)
and (N, g) are isometric.

Definition 2.1.6. Let (M, g) be a semi-Riemannian manifold. Then (M, g) is:

• Homogeneous if for every p, q ∈ M there exists an isometry f : M → M such that
f(p) = q.

• Isotropic at p ∈M if for any two tangent vectors v, w ∈ TpM such that |v| = |w|, there
exists an isometry f :M →M such that f∗(v) = w.

• Maximally symmetric if it is homogeneous and isotropic everywhere.

In this thesis we focus on a class of Lorentzian manifolds. In particular, we consider a class
where the spacetimes are constructed by taking the product of two semi-Riemannian manifolds.

Definition 2.1.7. A warped product M×fN of two semi-Riemannian manifolds (M, g) and
(N,h) with respect to a function f : N → R, is the manifold M ×N with metric h⊕ (f2 · g).
f2 is called the warping factor.
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2.1.2 The connection and curvature tensors

In the previous section we saw that a metric describes the curvature of the manifold. However,
to improve our grip on this we can define curvature tensors, which are tensors that depend on
the metric. In this section the necessary curvature tensors are defined.

In order to talk about the curvature of space we need to fix a connection ∇. For any vector
bundle π : E →M , let Γ(E) be the space of sections

Γ(E) := {s :M → E|π ◦ s(x) = x, ∀x ∈M}. (2.3)

The connection can be viewed as a map ∇ : Γ(E) → Γ(T ∗M ⊗ E). We say a connection is
compatible with the metric g if

∇Xg = 0, for all X ∈ Γ(TM), (2.4)

where Γ(TM) := {X : M → TM |X(p) ∈ TpM} denotes the set of all vector fields. Addi-
tionally, we want the connection to be torsion free. For a connection we can define the torsion
map T : Γ(TM)× Γ(TM) → Γ(TM) by

T (X,Y ) = ∇XY −∇YX − [X,Y ]. (2.5)

Here [X,Y ] denotes the Lie bracket, and it is defined by

[X,Y ](f) = X(Y (f))− Y (X(f)), for f ∈ C∞(M), X, Y ∈ Γ(TM).

A connection is torsion-free if T [X,Y ] = 0 for all X,Y ∈ Γ(TM). To find the connection we
want, the following lemma from [26, P. 99] is useful.

Lemma 2.1.8. For any Lorentzian manifold (M, g) there exists an unique connection ∇ on
M which is both compatible with the metric g and torsion-free.

This connection is called the Levi-Civita connection. In all cases we fix the connection to
be this unique connection.

Given a coordinate chart and corresponding frame {Ea} on a neighbourhood U ⊂ M , we can
define the Christoffel symbols Γ ∈ Γ(T ∗M⊗3) as

Γabc = g(Ea,∇Eb
Ec).

It is important to note that the Christoffel symbols can be viewed as a tensor only in a fixed
frame. Under a coordinate transformation, the Christoffel symbol does not transform as would
be expected from a tensor. For this reason we can also cannot compute the covariant derivative
of the Christoffel symbols. However, the difference between two Christoffel symbols is a tensor.

For the Levi-Civita connection the Christoffel symbols can be expressed in a nice way.

Lemma 2.1.9. Let (M, g) be a semi-Riemannian manifold, and let ∇ be the Levi-Civita con-
nection. Furthermore, let (U, ϕ) be a local chart with coordinates xi, i = 1, . . . , n. Finally, let
us denote

gij = g(
∂

∂xi
,
∂

∂xj
). (2.6)

Then
Γabc =

1

2
[∂cgab + ∂bgac − ∂agbc] . (2.7)
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Proof. For X,Y, Z ∈ Γ(TM) we have

∇X(g(Y,Z)) = ∇Xg(Y, Z) + g(∇XY, Z) + g(Y,∇XZ).

Due to the metric compatibility ∇Xg(Y,Z) = 0. Furthermore, with this connection we can
rewrite g(Y,∇XZ) = g(Y,∇ZX) + g(Y, [X,Z]), which we can use to get the following linear
combination

∇X(g(Y, Z)) +∇Y (g(Z,X))−∇Z(g(X,Y )) =2g(∇XY,Z) + g(X, [Y, Z])

− g(Y, [Z,X])− g(Z, [X,Y ]).

This can be rewritten to

g(Z,∇XY ) =
1

2
{∇X(g(Y,Z)) +∇Y (g(Z,X))−∇Z(g(X,Y )) (2.8)

− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ])}.

We can express the vector fields using the coordinate chart by

X(x) =

n∑
i=1

fi(x)
∂

∂xi
. (2.9)

Then the Lie-bracket of two vector fields X and Y expressed in the coordinate chart is given
by

[X,Y ] =

n∑
i,j=1

fi(x)
∂gj(x)

∂xi
∂

∂xj
− gi(x)

∂fj(x)

∂xi
∂

∂xj
(2.10)

In particular, in a coordinate basis the Lie brackets will vanish for vector fields of the form
∂
∂xi

, so we obtain the expression for the Christoffel symbols

Γabc = g(Ea,∇bEc) =
1

2
[∂bgca + ∂cgab − ∂agbc] .

Another consequence of a curved spacetime is that covariant derivatives generally do not com-
mute. To get a measure of how well they commute on vector fields we define the Riemann
tensor R ∈ Γ(T ∗M⊗3 ⊗ TM) as a (1, 3)-tensor

R(X,Y )Z = ∇X(∇Y Z)−∇Y (∇XZ)−∇[X,Y ]Z, X, Y, Z ∈ Γ(TM). (2.11)

Using the identification map in Eq. 2.1 the Riemann tensor can be transformed to a (0, 4)-
tensor, i.e. a section of T ∗M⊗4. Then it is defined by

R(X,Y, Z,W ) = g(R(X,Y )Z,W ), X, Y, Z,W ∈ Γ(TM). (2.12)

In a coordinate chart, there exists a useful expression for the Riemann tensor

Rabcd = g(Ea, R(Ec, Ed)Eb) (2.13)
= ∂cΓ

a
bd − ∂dΓ

a
bc + ΓaceΓ

e
bd − ΓadeΓ

e
bc.

The commutation relation of the covariant derivative on tensors is different than for vector
fields. However, it still depends on the Riemann tensor. This will be a useful relation later on.

Lemma 2.1.10. Let T ∈ Γ(T ∗M ⊗ T ∗M), and let ∇ be the Levi-Civita connection. Then in
any coordinate basis

(∇a,∇b −∇b∇a)Tcd = −RmcabTmd −RmdabTmc.
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Proof. Note that the Christoffel symbol is not a tensor, therefore ∇aΓ
b
cd does not make sense.

However, ∇aTbc is a tensor. Therefore, we should start with the outer covariant derivative and
work inwards.

[∇a,∇b]Tcd =∂a∇bTcd − Γkac∇bTkd − Γkad∇bTck − ∂b∇aTcd + Γkbc∇aTkd + Γkbd∇aTck

=−
(
∂aΓ

k
bc

)
Tkd +

(
∂bΓ

k
ac

)
Tkd −

(
∂aΓ

k
bd

)
Tck +

(
∂bΓ

k
ad

)
Tck

− ΓkalΓ
l
bcTkd + ΓkblΓ

l
acTkd − ΓkalΓ

l
bdTck + ΓkblΓ

l
adTck

=−RkcabTkd −RkdabTck.

Another tensor that describes the curvature of the manifold is the Ricci tensor Ricg ∈
Γ(T ∗M ⊗ T ∗M). For an orthonormal frame of the tangent bundle {E1, . . . , En} it is defined
by

Ricg(X,Y ) =

n∑
i=1

R(X,Ei, Ei, Y ), X, Y ∈ Γ(TM). (2.14)

In a coordinate basis we denote it by

Rab = Rcacb. (2.15)

The trace of the Ricci tensor gives the Ricci scalar or scalar curvature. This is an invariant
of the metric. It is denoted by

scalg =
n∑
i=1

Ric(Ei, Ei), (2.16)

or in a coordinate chart by
scalg = gabRab = Raa. (2.17)

The Ricci scalar describes the curvature of the manifold.

2.1.3 The Einstein-Hilbert action and Einstein equations

In the previous section, several curvature tensors were defined. In particular, we defined the
scalar curvature. In this section we define a functional of the metric called the total curvature.
It turns out that a physical metric is an extremal point of this functional. This gives us the
Einstein equations.

By integrating the Ricci scalar over the entire manifold we get the total curvature, which gives
a sense of how strongly curved the total space is. However, a volume form or n-form is
necessary for integration. A natural candidate would be the volume form dVg which in any
oriented coordinate basis is described by

dVg =
√

|det g| dx1 ∧ · · · ∧ dxn. (2.18)

Lemma 2.1.11. The volume form dVg given in Eq. 2.18 is well-defined.

Proof. In order to show that Eq. 2.18 is a definition for dVg, we need to show that the expression
is independent of the choice of coordinates, as long as they have the same orientation. Let
(ϕ,U) be any chart with coordinates x1, . . . , xn. Then we define the determinant of g in the
chart ϕ to be det g = det gab. Note that this definition is not coordinate independent. Namely,
if we have another chart (ϕ′, V ) with coordinates x′1, . . . x′n, then the metric transforms as

gab 7→ g′ab =
∂xc

∂x′a
∂xd

x′b
gcd. (2.19)
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let A = dϕ ◦ dϕ′−1 be the transition function of the coordinate transformation from x to x′.
Then A can be represented as a matrix Aba = ∂xb

∂x′a which is the Jacobian of the coordinate
transformation. Using the Jacobian, the metric transforms as g′ab = AcagcdA

d
b . Therefore,

det g′ab = (detA)2 det gab

Using this result, we can compare dVg in the different charts

dVg =
√

(−1)q det gdx1 ∧ · · · ∧ dxn

= detA
√
(−1)q det gdx′1 ∧ · · · ∧ dx′n

=
√

(−1)q det g′dx′1 ∧ · · · ∧ dx′n.

We conclude that the expression in Eq. 2.18 is independent of the choice of coordinates.

If M is orientable, then all dVg defined by coordinate basis of an oriented atlas will be identical,
making dVg the associated form of M . We are now ready to define the Einstein-Hilbert
functional or total curvature.

Definition 2.1.12. Let M be a manifold and let M denote the set of all Lorentzian metrics
on M . Then the Einstein-Hilbert functional or total curvature is defined by

S :M → R,

g 7→
∫
M

scalg dVg.

The total curvature gives an indication of how strongly curved the spacetime with metric g
is. If two manifold are diffeomorphic, we cannot distinguish one from the other. Therefore,
both manifolds describe the same physical situation and must have the same total curvature.
However, the metric can still change under the action of a diffeomorphism. To prevent this to
be a problem we would want the Einstein Hilbert action to be invariant under this action.

Theorem 2.1.13. The Einstein Hilbert action

SEH(g) =

∫
scalg dVg (2.20)

is invariant under the action of diffeomorphisms.

Proof. Let M,N be two manifolds and f : N −→M a diffeomorphism between them. We want
to show that ∫

M

scalg dVg =
∫
N

scalg′ dVg′ , (2.21)

where we used g′ = f∗g. This equality follows from the coordinate invariance of the volume
form dVg. Namely, suppose we have a chart on U ⊆ N and f(U) ⊆M with coordinates yi and
xi respectively. Then∫

f(U)

√
det g(x)scalg(x)dx1 . . . dxn =

∫
U

√
det g(f(y))scalg(f(y))A(y)dy1 . . . dyn

=

∫
U

√
det g′(y)scalg′(y)dy1 . . . dyn.

Now if {Ui} is a locally finite open cover of M , then there exist a partition of unit subordinate
to this open cover, which is a set of functions ηi : Ui → R such that

∑
i ηi = 1 everywhere.
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Then ∫
M

scalg dVg =
∑
i

ηi

∫
Ui

√
det g(x)scalg(x)dx1 . . . dxn

=
∑
i

ηi

∫
f−1(Ui)

√
det g′(y)scalg′(y)dy1 . . . dyn =

∫
N

scalg′ dVg′ .

This theorem indeed shows that for a diffeomorphism f :M → N and a metric tensor g on N ,
that (N, g) and (M,f∗g) describe the same physical situation.

If the system does not contain any matter fields, then this system is in vacuum. In this case
the full action of the system is given by the Einstein-Hilbert functional. If we include matter
fields then there exists a Lagrangian which is a function of the matter fields {ϕi}i∈I , the
covariant derivatives of these fields, and the metric. Then the matter action associated to
the Lagrangian is defined by

Smat(g) =

∫
M

LdVg. (2.22)

The equations of motion of the fields are obtained by requiring that the action is station-
ary under variations of the fields. Applying this to the fields would give the Euler-Lagrange
equations.

In general relativity, we are not only interested in the dynamics of the matter fields, but the
metric is dynamical as well. Therefore, we want to obtain equations of motion of the metric
g. The action in Eq. 2.22 also depends on the metric. Therefore, to obtain the equations of
motion of the metric, we also have to vary the matter action. The contribution of the matter
action is described by the energy-momentum tensor T ∈ Γ(T ∗M⊗2) which is defined by

T = − 2√
−det g

δSmat

δg
. (2.23)

The total action is given by combining the Einstein-Hilbert functional with the action from
the matter fields. Finally, to cover all possibilities a cosmological constant Λ ∈ R needs to
be included as well. Altogether, the action becomes

S =

∫
M

[
2Mn−2

p (scalg − 2Λ) + L
]
dVg, (2.24)

where n is the dimension of the spacetime and Mp denotes the n-dimensional Planck mass.

If we require this action to be stationary under variations of g we end up with the Einstein
equations [26].

Definition 2.1.14. The Einstein equations describing the dynamics of the metric tensor
gab are

Rab −
1

2
scalg · gab + Λ · gab =

1

2Mn−2
p

Tab. (2.25)

The Einstein vacuum equations are the special case when T = 0, i.e. when no matter is
present.

Consider the case T = 0. Then by taking the trace of the Einstein equations we get the relation

scalg =
2n

n− 2
Λ,
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where n is the dimension of our space. If we define µ = 2
n−2Λ, then we can rewrite the vacuum

Einstein equations from Eq. 2.25 to the form

Rab = µ gab. (2.26)

Therefore, in vacuum the Ricci tensor is proportional to the metric.

Definition 2.1.15. We call (M, g,Λ, L) an Einstein manifold with cosmological constant
Λ and Lagrangian L, if (M, g) is a Lorentzian manifold and g solves the Einstein equations in
Eq. 2.25. A Lorentzian manifold (M, g) is an Einstein manifold if there exists a µ ∈ R such
that

Ricg = µ · g. (2.27)

Example 2.1.16. The four-dimensional Schwarzschild metric of mass M , is given by the
Lorentzian manifold (R4, gs) such that in spherical coordinates (t, r, θ, φ) the metric takes the
form

gs = −
(
1− rs

r

)
dt2 +

1

1− rs
r

dr2 + r2dθ2 + r2 sin θ dφ2, (2.28)

where rs = 2M is called the Schwarzschild radius.

The Schwarzschild metric is derived using Brikhoff’s theorem [26, Section 5.2].

Lemma 2.1.17 (Birkhoff’s theorem). Any spherically symmetric solution to the vacuum Ein-
stein equations 2.27 with µ = 0, is static. Therefore, there exists a frame in which the metric
has the following form

g = −f(r)2dt2 + g(r)2dr2 + r2dΩ2
2. (2.29)

Using this result and plugging it into the Einstein equations, one can derive that f(r) = g(r)−1

and that it must be of the form as in Eq. 2.28. Therefore, the Schwarzschild metric is the
unique spherically symmetric solution to the vacuum Einstein equations with µ = 0. The
metric describes a spacetime around a static black hole.

Definition 2.1.18. A trapped surface is a co-dimension 2 surface S ⊂ M , such that the
two outward pointing light rays are converging.

A spacetime contains a black hole if there exists a compact trapped surface. In the case
of the Schwarzschild metric, note that at r = rs the factors in front of dt2 and dr2 change
sign. Therefore, inside the compact surface r = rs, r gets the role of time and all time- and
lightlike trajectories are forced to r = 0. This makes the surface r = rs a trapped surface,
since both outgoing light rays eventually reach the point r = 0. Therefore, the Schwarzschild
metric describes a black hole.

The Schwarzschild metric has spherical symmetry, but there exist spacetimes with even more
symmetries. Recall, the definition of maximally symmetric spaces in Def. 2.1.6. Weinberg
showed that an Einstein manifold (M, g) that is maximally symmetric is locally unique [27,
section 13.2].

Theorem 2.1.19. Let µ ∈ R, then any two maximally symmetric metrics that solve Eq. 2.27
and have the same signature are locally equivalent.

There are three different cases we can consider, µ < 0, µ = 0 or µ > 0. In the case that µ = 0,
then the Ricci tensor vanishes, and therefore also the Ricci scalar. We call such spaces Ricci
flat. Examples are Minkowski space which saw in Ex. 2.1.3, and the Schwarzschild metric
which we will define in Section 3.2.6. However, it is important to note that the Schwarzschild
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solution is not maximally symmetric. If µ > 0 then the space is positively curved. A maximally
symmetric example in this case is called de Sitter space. In this thesis we will focus on spaces
with negative cosmological constant, µ < 0. The maximally symmetric space in this case is
called Anti-de Sitter space, we define this space in Section 3.1.2.

2.1.4 Gauge fixing

In the previous section we derived the Einstein equations. Recall that the Einstein Hilbert
action is invariant under the action of diffeomorphisms from Theorem 2.1.13. This also applies
to the Einstein equations. Consequently, a diffeomorphism f : M → N and (N, g,Λ, L) an
Einstein manifold give rise to another Einstein manifold (M,f∗g,Λ, f∗L). This has as an
advantage that we can choose a representation that fits the problem that we want to solve
of the physical system that we want to describe. In this section we will show how we can
manipulate the metric to make a suitable choice, which we call gauge fixing.

Definition 2.1.20. Let (M, g,Λ, L) be an Einstein manifold. Gauge fixing is picking a
representative

g′ ∈ {ϕ∗g|ϕ :M →M is a diffeomorphism}. (2.30)

Large parts of this thesis is focused on showing the stability or instability of spacetimes. The
theory of stability will be discussed in Section 2.2, but it turns out that we want to study to
behaviour of linear perturbations of the metric. Such a linear perturbation can be seen as
a point (g, h) ∈ TM, the tangent space of all Lorentzian metrics on M . We can represent this
by a metric g ∈ M and a symmetric 2-tensor h ∈ Γ(Sym2(T ∗M)). For simplicity we will use
the suggestive notation g + h for the point (g, h).

Gauge fixing can also be used on this linear level. To do this, we have to approximate the
diffeomorphism on the linear level. This can be used to our advantage by choosing a gauge
that simplifies the problem. If we use diffeomorphisms that we control, then we can transform
the problem to a nice form.

Let X ∈ Γ(TM) be a vector field, then X generates diffeomorphisms from M to itself. These
diffeomorphisms are generated by the flow of X. The flow of X is a map ϕX : M × R −→ M .
In [28, P. 209] the flow is defined by the differential equation

d

dt
ϕX(x, t)|t=t0 = X(ϕX(x, t0)), (2.31)

ϕX(x, 0) = x.

Definition 2.1.21. Let f : M −→ M be a diffeomorphism and X ∈ Γ(TM). We say that f is
generated by X if f(x) = ϕX(x, 1), where ϕX is the flow of X.

Note that not for every X ∈ Γ(TM), the flow ϕX(x, 1) exists, because the flow could diverge
already for a time smaller than 1.

Definition 2.1.22. A gauge transformation is a diffeomorphism generated by a vector field
X ∈ Γ(TM).

Gauge transformations are in fact diffeomorphisms that slightly move our system. Therefore,
according to theorem 2.1.13 gauge transformations do not change the physics of the system. It
turns out that because of this property, gauge transformations can be a useful tool to simplify
a problem. This is because a diffeomorphism not only changes the coordinates, but it also
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transforms the metric. Once we have transformed the metric in a desired form we can fix
this gauge to filter ’unphysical’ degrees of freedom out of the problem. Not choosing the right
gauge might lead to divergencies that only arise due to a bad choice of gauge. These degrees
of freedom are called unphysical because we can get rid of them without changing the physics
of the problem.

For our purpose we are only interested in the linear order of the transformation of the metric.
Let g+ h be a perturbed metric, where g is a metric tensor of a manifold M and h a 2-tensor.
Then how does the metric transform under gauge transformations?

Lemma 2.1.23. Let (M, ĝ) be a Lorentzian manifold and let g = ĝ+ h be a perturbed metric,
where h is a symmetric 2-tensor. Under a gauge transformation generated by X ∈ Γ(TM), the
2-tensor h transforms as

h 7→ h′ = h− LX ĝ. (2.32)

Proof. Let X be a small vector field. Recalling how the metric transforms from Eq. 2.19 we
get

g′ab(x
′) = (δca − ∂aX

c)(δdb − ∂aX
d)(gcd(x

′)−Xγ∂γgcd(x
′))

≈ gab(x
′)− (∂aX

c)gcb(x
′)− (∂bX

c)gca(x
′)−Xc∂cgab(x

′)

= gab(x
′)− ∇̂aXb(x

′)− ∇̂bXa(x
′). (2.33)

It turns out that we can rewrite this in a coordinate invariant way using the Lie derivative
along a vector field X, denoted by LX . The Lie derivative LX : Γ(E) → Γ(E) can be defined
on the sections of any vector bundle E →M , and is defined by

LXT =
d

dt
|t=0ϕX(t)∗T, T ∈ Γ(E),

where ϕX(t) denotes the diffeomorphism induced by the flow of X at time t. The Lie derivative
of g along any vector field X is given by

(LX ĝ)ab = ∇̂aXb + ∇̂bXa, (2.34)

where ∇̂ denote the covariant derivatives with respect to the background metric ĝ. Note that
indeed LXg ∈ Γ(Sym2(T ∗M)). Combining Eq. 2.33 and 2.34 find that we can express the
transformation of the perturbed metric in a coordinate invariant form

g′ = g − LX ĝ. (2.35)

Writing g′ = ĝ + h′, we can subtract ĝ from both sides of Eq. 2.35 to see how h transforms.
This gives the desired expression in Eq. 2.32.

We conclude that gauge transformations are a way to linearly transform the metric. This is
used in Chapter 4 to simplify the analyses of the mode stability.

2.1.5 Stationary spacetimes

In Lem. 2.1.23 we derived that the metric linearly transforms with the Lie derivative LXg.
A natural thing to ask is what happens in the case that LXg = 0. In this case a vector field
conserves the metric g. We call this a Killing vector field and this indicates that this vector field
represents a symmetry of the Lorentzian manifold. In this section we derive that if a timelike
Killing vector field exists, then there exists a chart such that the metric is time-independent.
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Definition 2.1.24. Let (M, g) be a Lorentzian manifold. A Killing vector field of g is a
vector field K ∈ Γ(TM) that preserves the metric

LKg = 0. (2.36)

In a coordinate chart an equivalent definition is

∇(aKb) = 0. (2.37)

where the brackets denote the symmetric part of ∇aKb. So for any (0, 2)-tensor T the sym-
metric part is defined by

T(ab) =
1

2
(Tab + Tba) . (2.38)

Equation 2.37 is also called Killing’s equation. It turns out that not only the Lie derivative
vanishes, but we can actually find a metric that is independent of the Killing field.

Lemma 2.1.25. Let (M, g) be a spacetime manifold and K ∈ Γ(TM). K is a Killing vec-
tor field if and only if around any p ∈ M there exists a coordinate chart with coordinates
{x1, . . . , xn} such that K = ∂1 and the metric is independent of x1 in this chart.

For the proof of this lemma, we will use a general result for vector fields which is theorem 9.22
from Lee [28].

Theorem 2.1.26. Let V be a smooth vector field on a smooth manifold M , and let p ∈ M
be a point such that V (p) ̸= 0. Then there exist smooth coordinates {x1, . . . , xn} on some
neighbourhood of p in which V has coordinate representation ∂1.

Now we can prove lemma 2.1.25

Proof. Let K be a Killing vector field. According to theorem 2.1.26 we can find coordinates xa
around every point p ∈M where K(p) ̸= 0, such that K = ∂1. Pick such a coordinate system,
then K can also be written as Ka = (∂1)

a = δa1 . If K satisfies Killing’s equation 2.37, then in
this coordinate chart the equation becomes

∂aKb + ∂bKa = 2ΓcabKc.

Note that Ka = gabK
b = ga1. Using this and the definition for the Christoffel symbol we find

∂agb1 + ∂bga1 = g1cg
cd(∂agbd + ∂bgad − ∂dgab).

Since g1cgcd = δd1 , it follows that
∂1gab = 0.

We conclude that the metric is independent of x1.

Conversely, consider a metric gab independent of the coordinate xσ
∗
, and define K = ∂σ∗ .

Then by the same steps as in the first part of the proof we can see that K satisfies Killing’s
equation.

Definition 2.1.27. An Einstein manifold (M, g) is stationary if it admits a Killing vector
field K that is asymptotically timelike. This means that there exists a surface such that outside
of this surface the Killing vector field is timelike.
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Therefore, we can associate a time coordinate t to this Killing vector field in a stationary
Einstein manifold. Then there exist coordinate charts such that the metric is time independent
in these coordinates. In these coordinates the system is invariant under time translations.
Stationary manifolds are convenient to do calculations with because of this time symmetry. In
the next section we see that we require stationary manifolds to analyse mode stability.

To summarize, we have derived the Einstein equations and defined when a Lorentzian manifold
is an Einstein manifold. Unfortunately, not all Einstein manifolds are physically realistic. For
example, let (M, g) be a stationary Einstein manifold, then there exists a time-independent
frame. However, in nature a stationary state does not exist. Due to quantum effects even
the vacuum state is already very dynamic. Therefore, a stationary state can never be a true
description of a physical state, because there will always be some dynamics. Nevertheless,
as long as small perturbations on the manifold do not have a big impact on the evolution of
the system, the solution can be used to approximate a physical system. This is the study of
stability of a solution and we describe it in the next section.

2.2 Stability theory

Now that we understand Lorentzian manifolds and the Einstein equations, we can formulate
the stability problem. For a manifold M and a Lagrangian L there may be many metric tensors
that solve the Einstein equations. Sometimes there exist solutions that are particularly useful
because of a certain symmetry or another desirable property. To study the behaviour of such a
solution we also have to study the metric solutions ‘close’ to it. If there are nearby metrics that
diverge from it eventually, then the solution is unstable. It is unlikely that unstable solutions
describe physical systems, because if they occur, they probably only exist for short periods of
time. To study the behaviour of these metrics we have to perturb the background metric and
analyse the Einstein equations.

A stability problem can only be formulated if there exists a way to set initial conditions.
Luckily, in general relativity there exist Cauchy surfaces and initial conditions can be set on
these surfaces such that the evolution is determined by the Einstein equations. We derive this
in Section 2.2.1. The definition of stability is stated in Section 2.2.2. There are quite some
difficulties in proving stability of spacetimes. Therefore, we also consider two other types of
stability. Namely, linear stability in Section 2.2.3 and mode stability in Section 2.2.4.

2.2.1 The Cauchy problem

In this section we derive how we can set initial conditions to define stability. It turns out
that there exist Cauchy surfaces in Lorentzian manifolds that influence the entire manifold.
To get a feeling of what is meant by stability, consider the following example of an ordinary
differential equation.

Example 2.2.1. Consider the ordinary differential equation

dy

dt
= 1 + y, y(0) = 1. (2.39)

This equation has a constant solution given by y(t) = 1. However, to see if it is stable we have
to look at solutions that have slightly different initial conditions. Now take as initial conditions
y(0) = 1+ ϵ. With these initial conditions the solution is given by y(t) = 1+ ϵet. This solution
diverges from the original solution for large t. Therefore the solution of 2.39 is unstable.



CHAPTER 2. STABILITY THEORY IN GENERAL RELATIVITY 25

For ordinary differential equations, the definition for stability is quite intuitive. Namely, if
f : R → R is a solution to a differential equation with initial conditions f(0) = f0, then the
differential equation is stable at f , if for any other solution g : R → R with initial condition
g(0) = g0, it holds that if |f0 − g0| is small, then |f − g| is small.

We want to construct a similar definition for metric solutions to the Einstein equations. How-
ever, for such a definition we have to be able to set initial conditions and have a notion for
when two metrics are close to each other. Normally, we could use the boundary of our manifold
to set boundary condition, but in many cases the space does not have a boundary. Therefore,
in order to set some boundary conditions we need to find a hypersurface that influences the
entire space. In other words, every geodesic should pass through this surface.

Definition 2.2.2. Let (M, g) be a Lorentzian manifold. A map γ : (0, 1) → M is an inex-
tensible Cauchy curve in (M, g) if

1. γ is differentiable,

2. γ(t) is timelike for each t ∈ I,

3. γ(t) does not approach a limit as t approaches 0 or 1.

The collection of all inextensible timelike curves describes is the collection of all paths that a
particle could possibly take in the manifold M . If we can find a hypersurface such that each
curve crosses the hypersurface exactly once, then we could choose such a surface to set the
initial conditions, since every path would be influenced by these conditions.

Definition 2.2.3. A subset S ⊂ M is called a Cauchy surface if every inextensible differ-
entiable timelike curve in (M, g) has exactly one point of intersection with S. If (M, g) admits
a Cauchy surface, then we call (M, g) globally hyperbolic.

Using Cauchy surfaces, perturbations of the metric can be defined. Suppose (M, ĝ, L) is an
Einstein manifold with Cauchy surface S. Then we view ĝ has a background metric. If a
metric g is specified with inital data on S in the form of g|S and ∇Xg|S with X a vector field
not tangent to S, then the Einstein equations fully determine g on the rest of the manifold
uniquely up to diffeomorphisms. This may be surprising since the Einstein equations are a
set of very non-linear partial differential equations, but this is one of the beautiful aspects of
general relativity and the working of it is explained by Hawking and Ellis [29, chapter 7]. This
initial value problem is called the Cauchy problem.

Let (S, ĝ) be an Einstein manifold. Another Einstein manifold (M,α, g) is called a devel-
opment of (S, ĝ) if there exists an embedding α : S → M such that α∗g = ĝ. Another
development (M ′, α′, g′) of (S, ĝ) is an extension of M if there exists a diffeomorphism ϕ of
M into M ′, which leaves S pointwise fixed and such that ϕ∗g′ = g. With these definition
Hawking and Ellis [29, Section 7.6] prove the following theorem.

Theorem 2.2.4. Let (S, ĝ) be initial data such that ĝ satisfies the constraint equations [29,
Eq. 7.17 and 7.18], then there exists a unique (up to a diffeomorphism) development (M,α, g)
that is an extension of any other development.

For this maximal extension α(S) is a Cauchy surface of M . We do not prove this theorem.
However, we give some intuition why it is only necessary to specify the metric along the surface
S.

Let (M, g) be a maximal development of (S, g|S). Suppose ϕ : M → M is a diffeomorphism
that keeps S pointwise fixed. Then this gives an induced map ϕ∗ which takes g at p ∈ S to
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ϕ∗g. For n ∈ T ∗
pM which is orthogonal to S and normalized such that nagabnb = −1, we

can give any value to naϕ∗gab by choosing the right diffeomorphism ϕ [29]. Consequently, the
components nagab are insignificant. Similarly, we can give naXc∇cϕ

∗gab any value we want, so
not all components of Xc∇cgab|S are relevant as well.

This setup with initial data gives rise to an interesting question. Namely, if we choose the
initial data (S, ĝ) and (S, ĝ′) such that ĝ and ĝ′ are close, is the development (M, g) also
close to the development (M ′, g′)? If g does not change much under a slight change of initial
conditions, then we call (M, g) stable. There are some difficulties though. Due to the invariance
under diffeomorphisms and different coordinates, it can occur that a slightly deformed metric
diverges from g even when (M, g) is stable. This is merely a consequence of a bad choice of
gauge. However, such occurrences make the search for stability much more difficult.

2.2.2 Non-linear stability

With these Cauchy surfaces we can formulate stability of an Einstein manifold. This allows
us to set initial conditions and derive what happens if we slightly alter the inital conditions.
Similar to example 2.2.1 we want to call a spacetime unstable, if there exists a metric which
is close to the original metric on a Cauchy surface, but which diverges asymptotically. For
a physically realistic metric, small perturbations need to remain small. Therefore, we would
want any metric that is close to it initially, to stay close to it.

Definition 2.2.5. Let (M, g, L) a globally hyperbolic Einstein manifold and S ⊂M a Cauchy
surface. (M, g, L) is (non-linearly) stable if for any ϵ > 0 there exists a δ > 0 such that if
(M, g′, L) is an Einstein manifold and ||g′ − g||S < δ, then there exists a f ∈ Diff(M) such
that ||f∗g′ − g||M < ϵ.

Here ||.||S and ||.||M denote some norm on the jet bundle of 2-tensors over the Cauchy surface S
and manifold M , respectively. It is not possible to give an general expression for these norms,
since these depend on the situation and the tools that can be used to solve the problem. We
call (M, g) unstable if it is not stable.

Unfortunately, the study of stability is extremely complicated since it requires the full under-
standing of the six coupled non-linear differential equations coming from the Einstein equations.
This number is even bigger for higher dimensional spaces. Additionally, there is the problem
of gauge fixing. By choosing the wrong gauge it is possible that metrics that are actually close
to each other appear far apart. In simple spaces such as Minkowski space, the gauge choices
are easier to understand than in more complicated spaces. Stability has only been solved in a
few cases, for example for Minkowski space [30] and for slowly rotating Kerr black holes [31].

2.2.3 Linear stability

Due to the difficulties with stability, there exists a weaker notion of stability which does not
necessarily imply stability, but can highlight some of the aspects and can be useful for the
full proof. This weaker form of stability is linear stability and is described in this section. In
the case of linear stability, we linearize the Einstein equations around the background metric
and consider metrics that solve this linearized equation. This way we avoid having non-linear
partial differential equations that we have to solve and only have to solve linear equations.
In order to linearize the Einstein equations, we need to determine how the curvature tensors
transform under perturbations.
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Recall that the difference between two connections is a 1-form that takes values in the space
of two tensors. Therefore, we can represent the transformation of the connection or Christoffel
symbol under a linear perturbation g = ĝ + h as Γ = Γ̂ + δΓ, where δΓ ∈ Γ(TM ⊗ T ∗M⊗2).

Lemma 2.2.6. Let (M, ĝ) be a Lorentzian manifold. Under a perturbation g = ĝ + h, the
Christoffel symbols transform as Γcab = Γ̂cab + δΓcab with

δΓcab =
1

2
ĝcd
(
∇̂ahbd + ∇̂bhda − ∇̂dhab

)
, (2.40)

where ∇̂ denotes the covariant derivative with respect to the background metric ĝ.

Proof. If we only consider terms linear in h then

Γcab =
1

2
(ĝcd − hcd) [∂a(ĝbd + hbd) + ∂b(ĝda + hda)− ∂d(ĝab + hab)]

≈ Γ̂cab − ĝcdΓ̂iabhdi +
1

2
ĝcd (∂ahbd + ∂bhda − ∂dhab) , (2.41)

where Γ̂ denotes the Christoffel symbol associated to the background metric ĝ. Using the
symmetries of the Christoffel symbols can derive that

∇̂ahbc + ∇̂bhca − ∇̂chab = ∂ahbc + ∂bhca − ∂chab − 2Γ̂dabhcd. (2.42)

Applying Eq. 2.42 to Eq. 2.41 gives the desired result.

Recall that δΓ is tensorial. Therefore, the covariant derivative of δΓcab exists, even though
this was not possible for the Christoffel symbol Γ̂. We can apply this to determine how the
Riemann tensor varies.

Lemma 2.2.7. Let (M, ĝ) be a Lorentzian manifold. Under a perturbation g = ĝ + h, the
Riemann tensor transforms as

δRabcd = ∇̂cδΓ
a
bd − ∇̂dδΓ

a
bc. (2.43)

Proof. This follows from

δRabcd =∂cδΓ
a
bd − ∂dδΓ

a
bc + δΓacmΓ̂mbd + Γ̂acmδΓ

m
bd − δΓadmΓ̂mbc − Γ̂admδΓ

m
bc

=∇̂cδΓ
a
bd − ∇̂dδΓ

a
bc.

The variation of the Riemann tensor in Eq. 2.43 is simple and will be useful. However, to
determine how the Ricci tensor transforms we need the full expression in terms of h. Using
the expression for the variation of the Christoffel symbol in Eq. 2.40 and substituting this into
Eq. 2.43 we get

δRabcd =
1

2
ĝam

(
∇̂c∇̂bhdm + ∇̂c∇̂dhbm − ∇̂c∇̂mhbd − ∇̂d∇̂bhcm − ∇̂d∇̂chbm + ∇̂d∇̂mhbc

)
.

(2.44)
Unfortunately, the covariant derivative does not commute on (0, 2)-tensors. Instead, recall
Lem. 2.1.10 to rewrite Eq. 2.44 to

δRabcd =
1

2
ĝam

(
∇̂c∇̂bhdm − ∇̂c∇̂mhbd − ∇̂d∇̂bhcm + ∇̂d∇̂mhbc − R̂nbcdhmn − R̂nmcdhbn

)
.

(2.45)
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Lemma 2.2.8. Let (M, ĝ) be a Lorentzian manifold. Under a perturbation g = ĝ + h, the
Ricci tensor transforms as

δRab =
1

2

(
−□̂hab − ∇̂a∇̂bh+ ∇̂(a∇̂chb)c − 2R̂acbdh

cd + 2R̂c(ahb)c

)
. (2.46)

Here □̂ = ĝab∇̂a∇̂b denotes the wave operator.

Proof. Using that δRab = δRcacb and Eq. 2.45 we get

δRab =
1

2

(
∇̂c∇̂ahbc −□hab − ∇̂b∇̂ah+ ∇̂b∇̂chac − R̂acbdh

cd + R̂cbhac

)
(2.47)

We can rewrite this expression using the fact that the trace is a scalar valued quantity, so the
covariant derivative commutes

∇̂a∇̂bh = ∇̂b∇̂ah. (2.48)

Additionally, using again Lem. 2.1.10

∇̂c∇̂ahbc = ∇̂a∇̂chbc + [∇̂c, ∇̂a]hbc = ∇̂a∇̂chbc − R̂acbdh
cd + R̂cahbc. (2.49)

Combining Eq. 2.47, 2.48 and 2.49 leads to the expression in Eq. 2.46.

So for a perturbed metric g = ĝ + h the Ricci tensor takes the form

Rab = R̂ab + δRab = R̂ab −
1

2
∆Lhab.

We call ∆L : Γ(T ∗M ⊗T ∗M) → Γ(T ∗M ⊗T ∗M) the Lichnerowicz operator [18] and using
Lem. 2.2.8 it is given by

∆Lhab = □̂ hab + ∇̂a∇̂bh− 2∇̂(a∇̂chb)c + 2R̂abcdh
cd − 2R̂c(ahb)c. (2.50)

Definition 2.2.9. Let (M, ĝ) be an Einstein manifold. A perturbation g = ĝ + h solves the
linearized Einstein equations if and only if

∆Lh = 0. (2.51)

Definition 2.2.10. Let (M, ĝ) be an Einstein manifold and Σ ⊂ M a Cauchy surface. The
spacetime (M, ĝ) is linearly stable if any perturbed metric g = ĝ + h that is close to ĝ on
Σ and solves the linearized Einstein equations, has h decaying sufficiently fast in time with
respect to an appropriate frame of (M, g).

This definition is again vague. What does sufficiently fast decay mean for example? In non-
linear stability we need full control over the perturbed metric. Due to the non-linear terms
in the Einstein equation it necessary to not only bound the perturbation but also know the
decay of the curvature tensors and their derivatives. By contrast, in the linear theory, any sort
of control over the solutions is satisfactory. Additionally, the problem again depends on some
choices. In particular, a frame of the background space needs to be chosen and a gauge needs
to be fixed. According to [31] the strategy to prove linear stability is as follows:

• Find components of the metric that are invariant under gauge transformations as in
Eq. 2.32 for which the linearized Einstein equation 2.51 become simple, decoupled, wave
equations.

• Analyse the components and derive at least one of the properties:
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– There are no exponentially growing modes.

– The component is bounded for all times.

– The component decays in time.

• Find a vector field X such that after a gauge transformation all gauge dependent com-
ponents inherit the above property.

In many cases solving the linearized Einstein equation is still very difficult. As shown in [18,
P. 7], in vacuum we can simplify the problem by working in a smart gauge.

Definition 2.2.11. The transverse traceless gauge of a metric g + h is defined by

∇ah
a
b = 0, (2.52)

h = gabhab = 0. (2.53)

We derive how to get to the transverse traceless gauge for each case specifically. In this gauge,
Eq. 2.50 simplifies to

∆Lhab = □̂hab + 2R̂acbdh
cd − 2R̂c(ahb)c. (2.54)

In non-vacuum it is still possible to fix the gauge such that

∇̂ah
a
b −

1

2
∇̂bh = 0, (2.55)

just not each term separately [18]. This will still simplify the Lichnerowicz operator to the
form in Eq. 2.54. Even with this simplification the problem can be hard to solve. This is
because h depends on all coordinates.

2.2.4 Mode stability

The final simplification that we can make is to reduce the complexity of the coordinate depen-
dencies. Namely, we can only consider perturbations of a certain complex frequency ω. This
works especially well in the case of stationary spacetimes. The stability of modes is called mode
stability. In this section we define mode stability and show the existence of a useful master
equation for mode stability problems.

To get a mode decomposition of the perturbation we use the Laplace transform.

Definition 2.2.12. A mode decomposition of a 2-tensor h is given by the Laplace trans-
formation [32]

h(t, xi) =

∫
e−iωtχ(ω, xi)dω, (2.56)

where xi denote the spatial coordinates. We call e−iωtχ(ω, xi) a mode of h.

The Laplace transformation can be viewed as a Fourier transformation with complex frequency
ω. This splitting of the t variable is a decomposition into modes, where ω represents the
frequency of the mode, but a complex frequency rather than a real frequency. Consequently, if
the imaginary part is non-zero, a mode grows or decays over time. The mode grows if Imω > 0
and decays if Imω < 0. If the background space is stationary, then in the time-independent
frame, the Lichnerowicz operator is time-independent as well. Therefore, in this frame, we
get independent equations for each mode and it is possible to analyse the modes separately.
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Namely, if we insert the decomposition in Eq. 2.56 into the linearized Einstein equation 2.51
we get

∆Lhab =

∫
∆L

(
e−iωtχab(ω, x

i)
)
dω (2.57)

In particular, if ∆Le
−iωtχab(ω, x

i) = 0 for each ω, then hab solves the linearized Einstein
equations. This is a nice first step in studying the stability problem. If the background metric
admits other symmetries as well it is possible to separate other variable of χ. We will discuss
this in more detail when considering specific spacetimes.

Definition 2.2.13. Let (M, g) be an Einstein manifold. We say (M, g) has mode stability
if all mode solutions to

∆Le
−iωthab(ω, x

i) = 0, (2.58)

have Imω ≤ 0.

Unfortunately, mode stability does not imply linear stability and vice versa. This is caused by
the interactions between different modes that may cause or cancel instabilities. This can be seen
by looking at Eq. 2.57. Observe that ∆Lhab = 0 does not imply that ∆L

(
e−iωtχab(ω, x

i)
)
= 0

for all ω ∈ C. Therefore, even if all mode solutions have Imω ≤ 0, there can still be linear
perturbations h that contain growing modes. On the other hand, if there is a mode solution
with Imω > 0, then this can still be canceled in the integral of Eq. 2.56, such that the linear
perturbation h is still stable. Nevertheless, in most cases proving mode stability does support
the understanding of the linear stability problem.

In Eq. 2.58 every time derivative gets replaced by a factor (−iω). In many cases the resulting
equation can then be rewritten to a Schrödinger type equation

−d
2ψ

dx2
+ V (x)ψ = ω2ψ, (2.59)

where V is a potential. This changes the problem to an eigenvalue problem. If we view the
left hand side of Eq. 2.59 as a differential operator, then the (M, g) is modally stable if this
differential operator does not admit any negative eigenvalue. This is because if ω2 ≥ 0, then
ω ∈ R, thus Imω = 0. Conversely, if ω2 < 0, then ω is imaginary. Therefore, in this case there
is an unstable mode.

The next section is about spectral theory. Here we define a class of operators called self-adjoint
operators. For such operators we can define the spectrum, which intuitively describes the set
of eigenvalues of the operator. If the spectrum contains negative elements, then there exist
unstable modes, whereas if the spectrum contains only positive elements, then all modes are
stable. In the next section we state Theorem 2.3.16, which is useful for proving the existence
of negative elements in the spectrum.

Mode stability is the first step on the long route to proving non-linear stability. In this thesis
the focus is on studying the mode stability of different black hole spacetimes. We look at the
mode stability of the Schwarzschild solution in four dimensions in Section 4.1 and we uncover a
regime where unstable modes appear in the case of a black string in five dimensions in Section
4.2. We use this instability to find which black holes are stable in Randall-Sundrum in Section
4.3. However, first we define Randall-Sundrum and look at its properties in the next chapter.

2.3 Spectral theory

In the previous section we saw that in many cases a mode stability problem can be reduced
to a Schrödinger type equation. The frequencies of the modes correspond to eigenvalues of
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the Schrödinger operator, which means that we need to study the eigenvalues of this equation.
By identifying the left hand side of Eq. 2.59 with an operator, we can use spectral theory to
analyse the spectrum of this operator. In this section we define spectral theory, which is the
theory behind such operators. Furthermore, we derive some important results to analyse the
spectrum of differential operators. Most of the definitions come from the book by Simon and
Reed [33, Sections 8.1 - 8.3].

In Section 2.3.1 we define the useful class of differential operators called self-adjoint operators.
For a self-adjoint operator A we can define the spectrum, which is the set of λ ∈ C for
which A− λI is not bijective. In Section 2.3.2 we derive that for well-behaved potentials, the
Schrödinger operator as in Eq. 2.59 is self-adjoint. This allows us to use the results from this
section for the stability analyses in Chapter 4. Finally, we state the spectral theorem and prove
Theorem 2.0.1 in Section 2.3.3. In the end we derive the following theorem.

Theorem 2.3.1. Suppose the mode stability problem of a spacetime (M, g) can be rewritten
to a master equation of the form of Eq. 2.59. If V is

• Piecewise continuous,

• bounded,

• non-negative,

then (M, g) is modally stable.

2.3.1 Self-adjoint operators

In this section we make definitions that allow us to view the left hand side of Eq. 2.59 as a
differential operator. For this we need to define Hilbert spaces and linear maps or operators
on Hilbert spaces. Furthermore, we define a class of operators with useful properties called
self-adjoint operators. As an example we take the Laplacian, which is an important operator
for Section 2.3.2.

Most functional spaces are infinite dimensional linear spaces.

Definition 2.3.2. A Hilbert space H is a real or complex inner product space that is complete.

Example 2.3.3. An important example of a Hilbert space is L2(R) which consists of functions
f : R → R which are square integrable, i.e. for which

||f ||2L2 =

∫ ∞

−∞
f(x)2 dx <∞.

This norm is induced by the inner product on L2 given by

⟨f, g⟩L2 =

∫ ∞

−∞
f(x)g(x) dx f, g ∈ L2(R).

We can act on this Hilbert space with linear operators. Let H be a Hilbert space, then a map
A : D(T ) ⊂ H → H is a linear operator if

T (αf + βg) = αT (f) + βT (g), (2.60)

for all f, g ∈ H and α, β ∈ R. Here D(T ) is a linear subspace of H called the domain of T . We
say that T is densely defined if D(T ) is dense in H. We denote the set of linear operators
by L(H).
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Example 2.3.4. The smooth functions with compact support denoted by C∞
0 (R) form a dense

subset of L2(R).

Since not all functions f ∈ L2(R) are continuous, let alone differentiable, it is not trivial that
we can act with differential operators on L2(R). However, we can define a weak derivative.
The weak derivative of a function f ∈ L2(R) is a function g ∈ L2(R) such that∫ ∞

−∞
f h′ dx =

∫ ∞

−∞
g h dx, for all h ∈ C∞

0 (R). (2.61)

Similarly, the k-th weak derivative is defined by taking k derivatives of h.

Example 2.3.5. The Sobolev spaces Hk(R) represent the square integrable functions that have
k weak derivatives. They are defined by

Hk(R) = {f ∈ L2(R)| f is k times weakly differentiable}.

The inner product is given by

⟨f, g⟩H2 =

k∑
i=0

⟨f (i), g(i)⟩L2 ,

where f (i) denotes the i-th weak derivative of f .

The following lemma on Sobolev spaces will later be useful [34][Chapter 8].

Lemma 2.3.6. Suppose f ∈ Hk(R) for k ∈ N then f is bounded and

lim
x→∞

f(x) = 0, lim
x→−∞

f(x) = 0. (2.62)

With Sobolev spaces it is possible to define differential operators.

Example 2.3.7. Consider the Hilbert space L2(R). An example of a densely defined operator
is the one-dimensional Laplacian, ∆ = − d2

dx2 with D(∆) = H2(R). Note that since the smooth
functions with compact support form a subset of H2(R), we see that indeed ∆ is densely defined.

For densely defined operators we can define the adjoint.

Definition 2.3.8. Let T ∈ L(H) be densely defined. Let D(T ∗) be the set of f ∈ H for which
there exists a g ∈ H with

⟨Th, f⟩ = ⟨h, g⟩ for every h ∈ D(T ). (2.63)

For each such f we define T ∗f = g. The operator T ∗ is called the adjoint of T .

Since T is densely defined there is a unique g that satisfies Eq. 2.63. Namely, suppose that
g, g′ ∈ H both satisfy Eq. 2.63 and g ̸= g′. Then there must be a h ∈ H such that ⟨h, g⟩ ≠
⟨h, g′⟩. However, since T is densely defined we have a sequence {hn} such that limn→∞ hn = h,
for which by definition we have ⟨hn, g⟩ = ⟨hn, g′⟩ for all n. This means that both sides have
the same limit, which contradicts our assumption that ⟨h, g⟩ ≠ ⟨h, g′⟩.

Definition 2.3.9. A densely defined operator T on a Hilbert space H is called symmetric
if T ⊂ T ∗, that is, if D(T ) ⊂ D(T ∗) and Tf = T ∗f for all f ∈ D(T ). Equivalently, T is
symmetric if and only if

⟨Tf, g⟩ = ⟨f, Tg⟩ for all f, g ∈ D(T ).
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Definition 2.3.10. T is called self-adjoint if T = T ∗, that is, if T is symmetric and D(T ) =
D(T ∗).

Theorem 2.3.11. The one-dimensional Laplacian ∆ = − d2

dx2 with D(∆) = H2(R) is self-
adjoint.

Proof. Consider the one-dimensional Laplacian ∆ = − d2

dx2 with D(∆) = H2(R). Using inte-
gration by parts, we have for all f, g ∈ H2(R)

⟨f,∆g⟩ = −
∫ ∞

−∞
fg′′dx

= −f(x)g′(x)|∞x=−∞ +

∫ ∞

−∞
f ′g′dx

= (f ′(x)g(x)− f(x)g′(x)) |∞x=−∞ −
∫ ∞

−∞
f ′′gdx

= ⟨∆f, g⟩.

In the last equality we used Lem. 2.3.6. It follows that ∆ is symmetric. Proving self-adjointness
now boils down to showing that D(∆) = D(∆∗). Let f ∈ D(∆∗) then there exists a g ∈ L2(R)
such that ∫ ∞

−∞
f(∆h)dx =

∫ ∞

−∞
ghdx, for all h ∈ D(∆). (2.64)

In particular, since C∞
0 (R) ⊂ D(∆) = H2(R) it follows that Eq. 2.64 holds for all h ∈ C∞

0 (R).
Therefore, g is the second weak derivative of f . Consequently, f ∈ H2(R) and we conclude
that D(∆) = D(∆∗) and thus that ∆ is self-adjoint.

Suppose that an operator T : D(T ) → H can be extended. In other words that there exists an
operator S : D(S) → H with D(T ) ⊂ D(S) and Tϕ = Sϕ for ϕ ∈ D(T ). Then the domain of
the adjoint would decrease D(S∗) ⊂ D(T ∗). So if T is symmetric and S a symmetric extension
we have

D(T ) ⊂ D(S) ⊂ D(S∗) ⊂ D(T ∗). (2.65)

Therefore, a self-adjoint operator does not have a symmetric extension.

Definition 2.3.12. Let T ∈ L(H). We say T is closed if its graph G = {(f, Tf) ∈ H×H|f ∈
H} is closed.

Lemma 2.3.13. Let T ∈ L(H) be densely defined. Then T ∗ is closed.

Proof. Let {fn} ⊂ D(T ∗) such that fn → f and T ∗fn → g. Then for every h ∈ D(T ) we have

(h, T ∗fn) = (Th, fn). (2.66)

Now taking the limit n → ∞ on both sides of Eq. 2.66 gives (h, g) = (Th, f). Since this is
true for every h ∈ D(T ), and D(T ) is dense in H, we can conclude that indeed f ∈ D(T ∗) and
T ∗f = g.

Combining the result of Lem. 2.3.13 and Theorem 2.3.11 it follows that ∆ with D(∆) = H2(R)
is closed. Since ∆ is self-adjoint and its adjoint is closed.

Definition 2.3.14. A symmetric operator T is called essentially self-adjoint if its closure
T is self-adjoint. If T is closed, a subset D ⊂ D(T ) is called a core of T if T |D = T .
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For closed operators we can analyse the spectrum of eigenvalues. Recall from linear algebra
that a linear map A had eigenvalue λ if there exist an eigenvector v with Av = λv, in other
words when ker(A−λI) ̸= {0}. For linear operators T ∈ L(H) the story is a bit different. Now
there is not necessarily an eigenvector corresponding to each eigenvalue. However, we can still
analyse for which λ ∈ C the map T − λI is a bijection.

Definition 2.3.15. Let T ∈ L(H) be closed. A complex number λ is in the resolvent set of
T if T −λI is a bijection from D(T ) to H with a bounded inverse. We denote the resolvent set
by ρ(T ). If λ ∈ ρ(T ), then R(λ) = (T − λI)−1 is called the resolvent of T at λ.
We say λ is in the spectrum σ(T ) if λ is not in the resolvent set.

In equations such as Eq. 1.1, the spectrum of the operator on the left hand side can tell a lot
about the stability of the system. In particular, to determine the infimum of the spectrum the
following theorem from [35, Theorem 2.19] is useful.

Theorem 2.3.16. Let A : D(A) ⊂ H → H be self-adjoint. Then

inf σ(A) = inf
f∈D(A), ||f ||=1

⟨f,Af⟩. (2.67)

This theorem is especially useful in proving the existence of unstable modes. In order to prove
that there exist a E ∈ σ(A) with E < 0, there only needs to exist a f ∈ D(A) such that
⟨f,Af⟩ = 0.

2.3.2 The Schrödinger operator

In the previous section we stated the definition of self-adjoint operators and derived some useful
properties of these operators. The operators that are of interest of us when proving mode
stability are operators of the form of Eq. 2.59. In this section we introduce the Schrödinger
operator and show in Cor. 2.3.20 that this operator is self-adjoint if the potential is bounded
and piecewise continuous.

Definition 2.3.17. Let V : R → R be a map such that V · f ∈ L2(R) for any f ∈ L2(R). We
call an operator A : H2(R) → L2(R) of the form

A = − d2

dx2
+ V (x), (2.68)

a Schrödinger operator with potential V .

We are mainly interested in self-adjoint Schrödinger operators. This can be proven using the
Kato-Rellich theorem.

Definition 2.3.18. Let H be a Hilbert space, A : D(A) ⊂ H → H a self-adjoint operator and
B : D(B) ⊂ H → H a symmetric operator with D(A) ⊂ D(B). We say that B is A-bounded if
there exist constants α, β ≥ 0 such that

||Bx|| ≤ α||Ax||+ β||x||

for all x ∈ D(A), and we say that α is an A-bound of B

Theorem 2.3.19 (Kato-Rellich). If B is A-bounded with A-bound smaller than 1, then A+B
is self-adjoint on D(A), and essentially self-adjoint on any core of A.



CHAPTER 2. STABILITY THEORY IN GENERAL RELATIVITY 35

Let ∆ = − d2

dx2 denote the one-dimensional Laplacian with D(∆) = H2(R). Let V : R → R
be a bounded and piecewise continuous potential with bound Vmax. Then V : L2(R) → L2(R)
can be viewed as an operator that maps u ∈ L2(R) to

(V u)(x) = V (x)u(x). (2.69)

With this construction V is a bounded operator, since

||V u|| ≤ Vmax||u||. (2.70)

Consequently, using Def. 2.3.18, V has 0 ∆-bound.

Corollary 2.3.20. Let V : R → R be bounded and piecewise continuous, and let A = ∆+ V
be the Schrödinger operator with potential V . Then A is self-adjoint on D(A) = H2(R), and
essentially self-adjoint on any core of ∆.

If the potential V is non-negative, then the Schrödinger operator has even additional nice
properties.

Definition 2.3.21. An operator T on a Hilbert space H is non-negative if

(f, Tf) ≥ 0 ∀f ∈ D(T ).

We denote this by T ≥ 0.

Now suppose V is non-negative and let 0 ̸= f ∈ C∞
0 (R). For the Schrödinger operator A with

potential V it holds that

(f,Af) =

∫ ∞

−∞
−f(x)d

2f(x)

dx2
+ V (x)f(x)2 dx

=

∫ ∞

−∞

(
df(x)

dx

)2

+ V (x)f(x)2 dx > 0.

Since C∞
0 (R) is a core of A, it holds that (f,Af) ≥ 0 for all f ∈ D(A).

Corollary 2.3.22. If V is non-negative then the Schödinger operator of Eq. 2.68 is non-
negative.

2.3.3 The spectral theorem

In the previous section we have defined the Schrödinger operator and saw that it is self-adjoint
for well-behave potentials. In this section we derive the spectral theorem. With this theorem we
can act with functions on self-adjoint operators to generate new operators. With the spectral
theorem we can prove the main result of this section.

Theorem 2.3.23. Let A be a self-adjoint non-negative operator on a Hilbert space H. Then
σ(A) ⊆ [0,∞).

For a self-adjoint operator A on a Hilbert space H, we can define a map from the bounded
Borel functions to the set of self-adjoint operators on H. The intuition behind this map is that
for a self-adjoint operator A we can find a set of eigenvalues {λn} and a corresponding set of
eigenfunctions {ψn}. If we now have a bounded Borel function h, we can define a new linear
operator h(A) on this set of eigenfunctions by h(A)ψn = h(λn)ψn. Since A is self-adjoint this
can be made into a well-defined operator on the Hilbert space.
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Theorem 2.3.24 (functional spectral theorem). Let A be a self-adjoint operator on H. Then
there is a unique map ϕ̂ from the bounded Borel functions on R into L(H) so that

1. ϕ̂ is an algebraic homomorphism, i.e. ϕ̂(f ◦ g) = ϕ̂(f) ◦ ϕ̂(g).

2. ϕ̂ is norm continuous, that is, ||ϕ̂(h)||L(H) ≤ ||h||∞.

3. Let hn(x) be a sequence of bounded Borel functions with hn(x) −−−−→
n→∞

x for each x and

|hn(x)| ≤ |x| for all x and n. Then, for any ψ ∈ D(A), limn→∞ ϕ̂(hn)ψ = Aψ.

4. If hn(x) → h(x) pointwise and if the sequence ||hn||∞ is bounded, then ϕ̂(hn) → ϕ̂(h)
strongly.

5. If Aψ = λψ, then ϕ̂(h)ψ = h(λ)ψ.

6. If h ≥ 0, then ϕ̂(h) ≥ 0.

It is also common to use the notation h(A) instead of ϕ̂(h). Note that the identity map
i : R → R indeed also maps i(A) = A. The spectrum of the new operator relates to the
spectrum of A.

Theorem 2.3.25. Let f be a bounded Borel function. Then we have the inclusion:

σ(f(A)) ⊂ f(σ(A)).

In particular, for a measurable set Ω ⊂ R we can consider the characteristic function

χΩ(x) :=

{
0 if x /∈ Ω

1 if x ∈ Ω
. (2.71)

We can then define operators PΩ = χΩ(A).

Definition 2.3.26. A family of projection operators {PΩ} indexed over measurable sets Ω ⊂ R
is called a projection-valued measure (p.v.m.) if it has the following properties:

1. Each PΩ is an orthogonal projection.

2. P∅ = 0, P(−∞,∞) = I.

3. If Ω =
⋃
nΩn, with Ωn ∩ Ωm = ∅ if n ̸= m, then PΩ = limN→∞

∑N
n=1 PΩn

.

4. PΩ1
PΩ2

= PΩ1∩Ω2
.

Lemma 2.3.27. The family of operators {PΩ} indexed over measurable sets Ω ⊂ R is a p.v.m.

Note that some operators PΩ may be zero. Namely, if Ω ∩ σ(A) = 0, then by Theorem 2.3.25
it follows that σ(PΩ) ⊂ {0}. Nevertheless, if {PΩ} is a p.v.m. then for any f ∈ H, ⟨f, Pλf⟩
defines a measure. Integration with this measure will generate an operator again. One can
show that for a Borel function h it holds that

⟨f, h(A)f⟩ =
∫ ∞

−∞
h(λ)d⟨f, Pλf⟩. (2.72)

This gives us a correspondence between p.m.v. and self-adjoint operators.
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Theorem 2.3.28. There is a one-to-one correspondence between self-adjoint operators A and
projection-valued measures {PΩ} on H, given by

A =

∫ ∞

−∞
λ dPλ

With this theorem we want to work towards our main result.

Proof of Theorem 2.3.23. Let PΩ be the p.m.v. associated to A. Assume that there exists a
λ ∈ σ(A) with λ < 0. Then there exist a < b < 0 and let f ∈ H such that P(a,b)f = f . Then

(Af, f) =

∫ ∞

−∞
λ d(Pλf, f)

=

∫ ∞

−∞
λ d(PλP(a,b)f, f). (2.73)

Note that because of property 4 of Def. 2.3.26, it holds that for every λ /∈ [a, b] there exists a
δ > 0 such that P(λ−δ,λ+δ)P(a,b) = 0. Therefore, Eq. 2.73 becomes

(Af, f) =

∫ b

a

λ d(Pλf, f). (2.74)

In this equation we have that because of property 6 of Theorem 2.3.24 (P(λ+ϵ,λ−ϵ)f, f) is
positive, whereas λ is negative in the range (a, b). This would mean that (Af, f) < 0 which
contradicts our assumption that A is positive. Therefore, such a non-zero f does not exist
which means that P(a,b) = 0 for all a < b < 0. If (a, b) ∩ σ(A) ̸= ∅ somewhere then P(a,b) ̸= 0,
so we conclude that σ(A) ⊆ [0,∞).

This theorem makes the mode stability analyses in some cases much simpler. Once we have
derived a master equation of Schrödinger form, we only need to check whether the potential
is:

• Piecewise continuous,

• bounded,

• non-negative.

If all these three apply then it follows from Cor. 2.3.20 that the Schrödinger operator is self-
adjoint. Furthermore, by combining Cor. 2.3.22 and Theorem 2.3.23 we conclude that the
master equation only has positive eigenvalues. This proves the mode stability of the problem.
In particular, we have now proven Theorem 2.3.1.



Chapter 3

The Randall-Sundrum model

In the previous chapter we defined everything we need to formulate the stability problem. We
want to apply this to analyse the stability of the Randall-Sundrum black string. This chapter
is dedicated to defining Randall-Sundrum models and in particular deriving the black string
solution. Furthermore, we derive some properties of Randall-Sundrum models to show why
this model can potentially answer open question in theoretical physics.

In Section 3.1 we give some motivation behind the model. The Randall-Sundrum model gives a
solution to the hierarchy problem, which is the problem that we do not have a natural explana-
tion for the huge difference between the electroweak scale and the Planck scale. Additionally,
we explain the idea behind the AdS/CFT correspondence. This conjecture says that every
Anti-de Sitter space is equivalent to a lower dimensional conformal field theory. This idea of
another theory existing on the boundary of a negatively curved space has a lot of similarities
with the Randall-Sundrum model.

After giving motivation behind the model, we define the model in Section 3.2. The Randall-
Sundrum model is a five-dimensional space where the extra dimension is warped. On the
boundaries there are two 3-branes. We consider two types of models RS1 and RS2. In RS1
the branes are separated by a finite constant distance. In RS2 one of the branes is pushed
to infinity such that effectively there is only one brane. The most important result of this
section is Theorem 3.2.14 which gives an easy way to construct Randall-Sundrum models. Any
Ricci flat metric g(4) on R4 and parameters κ, yc > 0 generate a Randall-Sundrum models. In
particular, we use this to construct black hole solutions using the Schwarzschild metric.

In Section 3.3 we derive properties of the Randall-Sundrum model. First of all, we show how
RS1 offers a solution to the hierarchy problem. In particular, we derive that we need κyc ∼ 35
to solve the hierarchy problem. Furthermore, we show that it indeed natural to assume that
the branes are separated by a constant distance. Additionally, the Randall-Sundrum model
reproduces four-dimensional gravity, even if the extra dimension is infinite. We end this chapter
with a discussion on why we expect the RS black string to be unstable. This is caused by a
singularity in the RS2 model.

38
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Figure 3.1: The ratio between the Schwarzschild radius (dashed line), the
Compton length (solid line) and the Planck length (dotted line) for different
mass ranges. Note that when the mass is equal to the Planck mass, all three
lengths coincide.

3.1 Motivation

In this section we give some motivation to define the Randall-Sundrum model. Later in Section
3.2 we derive that the Randall-Sundrum model is a negatively curved warped spacetime. In
Section 3.1.1 we state the hierarchy problem. Flat higher-dimensional spaces can potentially
solve this problem, but this fails in five-dimensions since this would require a huge fifth dimen-
sion. To solve this problem, one can consider warped extra dimensions. In Section 3.1.2 we
define Anti-de Sitter space. Later we show that Randall-Sundrum represents a slice of Anti-de
Sitter space. Moreover, recently there have been developments in the AdS/CFT correspon-
dence. This is discussed in Section 3.1.3. Similar to the AdS/CFT correspondence, there is a
theory defined on the boundary of the space in the Randall-Sundrum model.

3.1.1 The hierarchy problem

In this section we describe the hierarchy problem and how it can be solved by including extra
dimensions. The hierarchy problem is related to the huge difference between the electroweak
scale and the Planck scale. This can be explained by the presence of extra dimensions. However,
we show in this section that this fails in the case of one flat extra dimension, because the
gravitational potential would disagrees with our observations.

In the last several decades theoretical physicists have been searching for a theory that combines
GR and quantum theory. GR is an exact theory, meaning that if we would know the position
and momenta of all particles at a certain point in time, we could in principle compute their
positions and momenta at all other times. On the other hand, quantum theory is a theory of
probabilities. In this theory we can only compute the probability that the system evolves from
a certain configuration into another configuration.

These theories both work well in their own regimes, GR on very large cosmic scales and
quantum theory on the miniscule particle level. There are regimes however, where the two
theories meet, and contradict each other. To combine the two, requires a theory of quantum
gravity. Even though, it is not yet known how we could construct this theory, there are ideas
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how quantum gravity could be defined. One of the ideas is that there exists a spin-2 particle
called the graviton that mediates the gravity interactions. This is a hypothetical particle, but
if it would exist it would be almost impossible to detect [36]. It is similar to the photon, which
is the particle that mediates electromagnetic interactions. Due to the fact that the photon
is a massless particle, the electromagnetic interaction is relatively strong over long distances.
Gravity is another force that is relatively strong over long distances, so we expect the graviton
to be massless too.

It is possible to quantize gravity as an effective field theory, and this method works well on
normal energy scales [37]. In the effective field theory, higher order curvature terms are also
included in the action

S =

∫
d4x

√
−g
(
4Mn−2

p Λ + 2Mn−2
p R+ c1scal2g + c2Ricg ·Ricg + . . .

)
, (3.1)

where the dots represent terms with higher power of scalg, Ricg and R. The higher orders
become more relevant on smaller length scales and on higher energy scales. In an effective
field theory, we cut off this summation at a certain power of the curvature terms. Since these
higher order curvature terms become small on scales of huge lengths and small energies, this
approximation works very well in most regimes.

However, there are places in the universe where energy scales are too high and the effective
theory breaks down. For example, near the horizon of a small black hole, or at the big bang
which is the origin of the universe. At these places singularities form in GR, which is a point
in spacetime of infinite curvature. Therefore, all geodesics stop at this singularity and time
and space stop to exist. This is an impossible phenomena in quantum theory, because a
singularity has precise position and momentum, whereas in quantum theory the uncertainty
principle forbids this. Furthermore, in the effective theory higher order curvature terms become
relevant at these high energy levels. Therefore, the effective field theory fails to give a valid
description at these regimes.

We can ask ourselves at what length scale GR starts to fail and we really need to include a
full theory of quantum gravity. Both GR and quantum theory have their own characteristic
length scales. In GR each massive object has a Schwarzschild radius rs, which is given by

rs =
2GNM

c2
, (3.2)

where M is the mass of the object, GN is Newton’s gravitational constant and c the speed of
light. If an object is smaller than its Schwarzschild radius, then it forms a black hole.

On the other hand, in quantum theory each massive particle has a Compton wavelength

LC =
ℏ
Mc

, (3.3)

where again M is the mass of the particle and ℏ is the reduced Planck constant. At length
scales comparable to the Compton wavelength, the energies of quantum fluctuations become
comparable to the energy of the source. In other words, at these lengths we cannot neglect
quantum effects anymore.

These two length scales meet at the Planck length rs = Lp = LC . At this scale the mass is
equal to the Planck mass M2

p = ℏc
2GN

. This means that the Planck mass is a lower bound
for the mass of black holes as well as an upper bound for the mass of elementary particles.
Take for example a point source of M ≫ Mp, then a horizon would form at rs ≫ Lp, way
before quantum effects come into play. It would not make sense to call this an elementary
particle. Similarly, if we approach a point particle with M ≪ Mp, then we will encounter
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strong quantum effects way before we reach the horizon. Therefore, we cannot describe this
horizon and we cannot call it a black hole. These different scales can also be seen in Fig. 3.1.

We conclude that we have found a natural candidate for the upper bound of the mass of
elementary particles, Mp ≈ 1.22× 1019GeV. Now this gives rise to a question which describes
the hierarchy problem. In 2012, the Higgs boson was discovered [38], it is the heaviest
boson we know and it is responsible for giving mass to other particles through interactions.
For example, the W and Z bosons, the particles that are responsible for mediating the weak
interaction, get their mass through interactions with the Higgs boson. Due to their mass the
weak interaction is only strong on very small distances. The electromagnetic force is mediated
by the photon, which is a massless particle. Therefore, electromagnetic interactions are still
relatively strong at long distances. At the electroweak scale MEW ≈ 159.5GeV , the W and Z
bosons lose their mass, and the electromagnetic and weak force merge into one fundamental
force.

We would expect fundamental scales such as the Planck and electroweak scale to be of the
same order. However, note that the electroweak scale is an order of 1017 smaller than the
Planck mass. This feels unnatural. Additionally, the electroweak scale is related to the mass
of the Higgs boson. Due to the Weisskopf phenomenon, which is explained in more detail
in [39, Chapter 3], quantum fluctuations would influence the mass we would observe for the
Higgs boson. If µ is the mass of the Higgs boson, then quantum fluctuations should give an
uncertainty to the mass of δµ = fΛ, where f is some dimensionless coupling and Λ some
cutoff scale. The only natural candidate for this cutoff scale is Λ = Mp, which an order of
1017 bigger then the electroweak scale. Therefore, to fix µ + δµ to still be of the order of
the electroweak scale, a huge fine-tuning for the coupling constant f is required. The lack of
natural explanation for this observation is called the Hierarchy problem.

Definition 3.1.1. The Hierarchy problem is the problem that we have no natural explana-
tion for the fact that the electroweak scale is so much lower than the Planck scale.

A possible solution to this problem could be that the Planck scale we just derived is not the real
Planck scale and the true Planck scale is much lower. For example, if our universe consisted
out of more than four dimensions, we would observe an effective four-dimensional Planck mass,
whereas the global Planck mass could be much lower. We use the following lemma to illustrate
this.

Lemma 3.1.2. Consider an 4 + n-dimensional spacetime manifold (M × N, g), where M is
a four-dimensional manifold, and N a closed n-dimensional manifold. Furthermore, suppose
that the metric is a product metric g = g0 ⊕ h, where g0 is a metric on M and h a Ricci
flat metric on N . Then relation between the 4 + n-dimensional Planck mass Mp(4+n) and the
effective four-dimensional Planck mass Mp is given by

M2
p = VolnMp

2+n
(4+n),

where Voln is the volume of (N,h).

Proof. The 4+n-dimensional Ricci scalar R is equal to the effective 4-dimensional Ricci scalar
R0. The 4 + n-dimensional action is given by

S =

∫
M

∫
N

√
−det g2Mp

2+n
(4+n) (scalg − 2Λ) dnyd4x

=

∫
M

∫
N

√
−det(g0) det(h)2Mp

2+n
(4+n)

(
scalg0(x)− 2Λ

)
dnyd4x

=

∫
M

2VolnMp
2+n
(4+n)

(
scalg0(x)− 2Λ

)
d4x.
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Comparing this to the form of the four-dimensional action 2.24 we derive

M2
p = VolnMp

2+n
(4+n).

Using this result, we note that it is possible that the 4 + n-dimensional Planck mass is of the
order of the Higgs mass, whereas in four dimensions we still observe the Planck mass. Now
consider the case where we have n extra dimensions that are all compactified on a circle of
radius L. Then N = Tn, where Tn is the n-dimensional torus. The volume of N is given by
Voln = (2πL)n. With this volume the 4+n-dimensional Planck mass would be of the order of
the Higgs mass, if [40]

L ≈ 10
30
n −17cm.

In the case with one extra dimension, n = 1, this would imply that L ≈ 1013 cm, which is
length similar to the size of our solar system. These are scales that we would be able to observe
using experiments, because the extra dimensions influence the gravitational potential.

Lemma 3.1.3. The 4 + n-dimensional gravitational potential is given by

V (r) = −G4+n
M

rn+1
, (3.4)

where M is the mass of the source, r the radial distance to the source and G4+n the 4 + n-
dimensional gravitational constant

Proof. We want the 4 + n-dimensional gravitational potential of a point particle of mass m
located at the origin to solve the Poisson equation

∆4+nV = 4πG4+nMδ3+n(xi), (3.5)

where xi denote only the spatial components of x. If we assume the potential to be time-
independent and spherically symmetric then

∆4+nV = (
∂2

∂r2
+
N − 1

r

∂

∂r
)V.

We can simply check by substitution that

V = −G4+n
m

rn+1

is a solution to Eq. 3.5.

We conclude that in a higher dimensional universe, the gravitational potential would depend
on a different power of r. Since the observations by Kepler and Newton it is already known
that the gravitational potential is proportional to 1/r [41], so at first glance it seems like we
can discard the idea of extra dimensions being present. Nevertheless, the story changes in
the case of compact extra dimensions. Then the potential behaves as if there are an infinite
amount of particles, all separated by the length of the extra dimension. For example, in the
case of one extra dimension with radius L the potential would become

V (x, y) = −G5m

∞∑
k=−∞

1

|xi|2 + (y − 2πLk)2
, x ∈ R4, y ∈ R. (3.6)

Assuming that the observer lives on the same y coordinate as the source, we can set y = 0.
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Lemma 3.1.4. In the region where |xi| ≫ L, the potential in Eq. 3.6 behaves as

V (x, y = 0) = −G5m

2rL

(
1 + 2e−

r
L +O(e−2 r

L )
)
, (3.7)

where r = |xi|. In the region where |xi| ≪ R, the potential 3.6 behaves as

V (x, y = 0) = −G5m

πr2
+O(

r

L
). (3.8)

Proof. After setting y = 0, it is shown in [9, P. 6] that the sum in Eq. 3.6 over k reduces to

V (x, y = 0) = −G5m

2rL
coth

( r

2L

)
. (3.9)

For a ∈ R we can rewrite coth a as

coth a =
1 + e−2a

1− e−2a
.

Therefore, in the limit a→ ∞, we can approximate

coth a = 1 + 2e−2a +O(e−4a).

Returning to Eq. 3.9, we conclude that in the limit r ≫ L

V (x, y = 0) = −G5m

2rL

(
1 + 2e−

r
L +O(e−2 r

L )
)
.

In the limit a→ 0 it holds that
coth a =

1

a
+O(a−2).

Consequently, in the region r ≪ L the potential 3.9 behaves as

V (x, y = 0) = −G5m

πr2
+O(

r

L
).

If our universe would be five-dimensional with the radius of the extra dimension equal to
L = 1013 cm, then for any distance r on Earth we would have that r ≪ L. Therefore, using
Lem. 3.1.4 the gravitational potential would behave as Eq. 3.8. This is in disagreement with
our observations.

Instead, we would expect the extra dimension to be relatively small compared to ordinary
distances on Earth. Therefore, expect the potential to be of the form as in Eq. 3.7. Using
experiments in the LHC we can put a bound on the size of the extra dimensions. So far
tabletop experiments have restricted the size for one extra dimension to L < 160µm [42]. In
order to retrieve the ordinary gravitational potential from the five-dimensional one in Eq. 3.7,
we would need the five-dimensional Newton’s constant to be equal to

G5 = 2LG4. (3.10)

To conclude, we derived that the hierarchy problem can be solved by including extra compact
dimensions. In the flat five-dimensional case the extra dimension would need to be of the
order 1013 cm to offer a solution. However, the gravitational potential would disagree with our
observations for such a large extra dimension. What about a five-dimensional space where the
extra dimension is warped? This is what is Randall and Sundrum considered. As we will see
later in this chapter, it is possible to solve the hierarchy problem with a small extra dimension
if this extra dimension is curved.
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3.1.2 Anti-de Sitter space

In the last section we concluded that we are interested in a curved five-dimensional space.
Recall, that the vacuum Einstein equations 2.27 requires the Ricci tensor to be proportional
to the metric by a factor that depends the cosmological constant Λ. We will later derive that
Randall-Sundrum requires the space to be negatively curved, so Λ < 0. When Λ < 0 there
exists a maximally symmetric Lorentzian solution to the Einstein vacuum equations. This
solution is called Anti-de Sitter space. In this section we will define Anti-de Sitter space.

Definition 3.1.5. Consider the semi-Riemannian manifold (Rn+2, g), where in Euclidean
coordinates g is of the form

ds2 = −dx02 + dx1
2 + · · ·+ dxn

2 − dxn+1
2.

n+ 1-dimensional Anti-de Sitter space, or AdSn+1, is defined by embedding the hyperboloid
in Rn+2 defined by the equation

−x02 − xn+1
2 + x1

2 + · · ·+ xn
2 = −µ2.

We can use the Poincaré patch to describe the half space of Anti-de Sitter space. This
coordinate system is defined by

x0 =
z

2

(
1 +

µ2 + y⃗2 − t2

z2

)
,

xa =
µ

z
ya, for 1 ≤ a ≤ n− 1,

xn =
z

2

(
1− µ2 − y⃗2 + t2

z2

)
,

xn+1 =
µ

z
t.

Where y ∈ Rn−1, t ∈ R and z > 0. In these coordinates the induced metric on AdSn+1 is given
by

ds2 =
µ2

z2
(
−dt2 + δabdy

adyb + dz2
)

(3.11)

Definition 3.1.6. Let M be a semi-Riemannian manifold and g and h two metrics on M .
We say g and h are conformally equivalent if there exists a smooth real valued function f
on M , such that g = f2 · h, in that case f is called the conformal factor.
Let (M, g) and (N,h) be two semi-Riemannian manifolds. A diffeomorphism ϕ : M → N is
called a conformal map if ϕ∗g is conformally equivalent to h.

Using this definition we see that in this Poincaré patch the half space of Anti-de Sitter is
conformally equivalent to the half space of Minkowski. Consequently, on a z slice, it is possible
to conformally embed n-dimensional Minkowski space in AdSn+1.

In the next subsection we define the AdS/CFT correspondence, which says that a so called
conformal field theory can be defined on the conformal boundary of AdS. To be able to see this
boundary, we have to compactify AdS. This conformal compactification AdS space using
the Penrose procedure [43]. This can be achieved using another coordinate patch defined by

x0 = µ sin

(
t

µ

)
cosh

(
r

µ

)
,

xa = µΩa sinh

(
r

µ

)
,

xn+1 = µ cos

(
t

a

)
cosh(r),
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where Ω ∈ Sn−1 ⊂ Rn, t ∈ [0, 2πµ) and r ≥ 0. In these coordinates the induced metric is

ds2 = µ2

[
− cosh2(

r

µ
)dt2 + dr2 + sinh2(

r

µ
)dΩ2

n−1

]
, (3.12)

where dΩn−1 is the standard metric on Sn−1. Note that the r coordinate is not compactified
yet. To compactify r as well we redefine tan

(
ρ
µ

)
= sinh

(
r
µ

)
, where now ρ ∈ [0, πµ2 ). With this

new coordinate Eq. 3.12 transforms to

ds2 =
µ2

cos2( ρµ )

[
−dt2 + dρ2 + sin2(

ρ

µ
)dΩ2

n−1

]
. (3.13)

Looking at this metric we note that there exists a null geodesic starting at the origin, which
can reach spatial infinity, i.e. ρ = πµ

2 , and return within a finite amount of time. This is
depicted in Fig. 3.2. A consequence of this is that energy cannot escape to spatial infinity.
Instead there seems to be a boundary at ρ = πµ

2 . Furthermore, any point in the diagram in
Fig. 3.2 corresponds to a n− 1 sphere in the full AdSn+1 model. Therefore, in the case n = 2,
every point corresponds to circle S1, so the AdS3 space is compactified inside the interior of a
cylinder D2 × [0, 2πµ) of radius πµ

2 .

Also for higher n the Penrose diagram in Fig. 3.2 represents a higher dimensional cylinder. To
study the boundary, note that in these coordinates AdSn+1 is conformally equivalent to a flat
solid cylinder. The interior of the cylinder corresponds to the Anti-de Sitter space, while the
boundary of the cylinder is called the conformal boundary.

Definition 3.1.7. Let (M, g) be a semi-Riemannian manifold and let N be a manifold with
boundary and h a metric tensor on N . Then (∂N, h|∂N ) is a conformal boundary of (M, g)
if there exists a conformal map f :M → N̊ .

The boundary at ρ = πµ
2 in Fig. 3.2 is the conformal boundary of AdSn+1. According to

the AdS/CFT correspondence we can define a conformal field theory on this boundary that is
equivalent to the AdS space. We explain this in the next section.

3.1.3 AdS/CFT correspondence

Recent research in physics focuses a lot on studying conformal field theories on conformal
boundaries, especially on the conformal boundary of AdS.

Definition 3.1.8. A conformal field theory is a quantum field theory that is invariant
under conformal transformations.

In 1999, it was discovered that there exists a duality between n+ 1-dimensional AdS theories
and n-dimensional CFTs [44]. An AdS theory is an Einstein manifold that asymptotically looks
like Anti-de Sitter space, and therefore has the same conformal boundary. However, it can be
the case that internally it looks completely different from AdS. Two theories are equivalent
or dual to each other if there exists a map between the quantities and configurations of the
theories that is conserved over time [45]. This means that both theories are different ways
to describe the same phenomena and dynamics. This discovery then lead to the AdS/CFT
correspondence.

Conjecture 3.1.9. Every n-dimensional CFT is dual to some n+ 1-dimensional AdS theory
of gravity.
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Figure 3.2: The Penrose diagram of Anti-de Sitter space with a light signal
send from the origin as 45◦ lines. Here ρ is the compactified radial coordinate,
and t the time coordinate which was already compact. As can be seen from the
light trajectory, it is possible to reach spatial infinity and return to the origin in
a finite amount of time. Every point inside the diagram corresponds to a n − 1
sphere in the full model.

AdS CFTt

Figure 3.3: An intuitive picture of the AdS/CFT correspondence for n = 2.
The AdS3 theory is compactified in the interior of the cylinder and the CFT2 is
described on the boundary of the cylinder.
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Consider the compactified AdS metric for n = 2 inside the cylinder. Then the 2-dimensional
CFT lives on the boundary of the cylinder. This is illustrated in Fig. 3.3. Intuitively, in
this correspondence the AdS theory is project on the conformal boundary, defining the CFT.
Conversely, it is possible to reconstruct the AdS theory from all the information in the CFT
on the boundary.

The AdS side of the correspondence will be represented by an asymptotically Anti-de Sitter
space. An asymptotically AdS space represents an AdS space at spatial infinity and will
therefore have a similar conformal boundary. However, matter and other structures may be
present in the interior. The CFT lives on the conformal boundary and can be seen as a
hologram of the AdS space [46].

An example of an asymptotically AdS space is the AdS black hole. The AdS/CFT correspon-
dence could solve the information paradox for a AdS black hole. The black hole information
paradox is explained in detail in [47, Sec. 2], but here follows a short explanation. Matter
can fall into a black hole, and once matter disappears behind the horizon it can never return.
Therefore, information is lost from the system. Nevertheless, in 1975 Hawking proved that
black holes are not black after all, but instead slowly evaporate by emitting Hawking radiation
[48]. Due to quantum effects, there is a constant creation and annihilation of virtual particle
anti-particle pairs around the black hole. Sometimes, the anti-particle will fall into the black
hole and the other virtual particle will not. Consequently, the particle that escapes becomes a
real particle which is still entangled to the anti-particle. Additionally, the anti-particle makes
the black hole lose mass, and it seems to an observer that the other particle came out of the
black hole as radiation. Now information returns outside of the black hole, because of the
entanglement between the particles. If this process continues, the black hole eventually com-
pletely evaporate. When the black hole disappears, the remaining particles can no longer be
entangled with a particle inside the black hole. However, the information that was initially lost
in the black hole was stored in this entanglement. After the black hole completely evaporated,
what is left is radiation that contains no information about the initial state at all.

The system changes from a pure state into a mixed state. This contradicts with the principle
of unitarity, which holds for both classical and quantum systems. This principle says that
the state of a system at one point in time should determine its state at any other time. In
general relativity the state on a Cauchy surface indeed should determine the state at any other
time. In quantum mechanics the state of a system is described by the wave function. The
wave function evolves by acting with a unitary operator on it. Therefore, using this operator,
the wavefunction can be determined at any point in time.

There are attempts to solve this entanglement problem. However, this does not solve the
information paradox due to the black hole no hair conjecture.

Conjecture 3.1.10. A black hole has no hair, it is completely determined by its mass, angular
momentum and charge.

Therefore, all attempts still end up with the remaining radiation only containing information
about the mass, angular momentum and charge of the black hole. When we consider a system
where a black hole is formed through gravitational collapse of matter and then fully evaporates.
It is impossible to reconstruct the initial state purely from the remaining radiation, because
many initial states can evolve in a black hole with the same mass, angular momentum and
charge. It seems as if information is lost!

The AdS/CFT correspondence solves the paradox, because even though the information para-
dox exists on the AdS side, we have unitarity on the CFT side of the duality. Therefore, to
solve the paradox, we can map a final state on the AdS side to the CFT, then determine how
this state evolved using the unitary operator. After applying the operator, the state can be
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mapped back to the AdS side, to observe the initial state before the formation of the black
hole.

The upshot is that, according to the above conjecture, there is some abstract boundary in AdS
space that connects a lower dimensional CFT to the AdS theory. Since our universe appears
four-dimensional, this result could be used to describe quantum processes using AdS5, if we
embed our universe on the conformal boundary. However, what if we embed our universe
in a less abstract way? Namely as a 4-dimensional subspace of AdS5. Such embeddings are
called 3-branes. As we will derive in the next section, but can already be seen in Eq. 3.11,
it is possible to conformally embed Minkowski space into AdS with constant conformal factor.
Therefore, the effective metric on the brane can even be the Minkowski metric. So if we embed
a 4-dimensional world into AdS5, do we still obtain 4-dimensional GR? And can we use any
result from the AdS/CFT correspondence or can we learn anything from this new construction?
These questions give some motivation to consider the Randall-Sundrum model.

3.2 The Randall-Sundrum model

In the previous section we looked at the hierarchy problem, which might be solved by consid-
ering warped spaces. Additionally, the AdS/CFT correspondence gave us the idea to consider
theories living on the boundary of other spaces. In the Randall-Sundrum model this happens in
the form of 3-branes. In this section we define the Randall-Sundrum model and derive metric
solutions to the Einstein equations.

In Section 3.2.1 we state the assumptions behind the model and derive how the branes lead
to extra terms in the action. In Section 3.2.2 we derive how the topology of Randall-Sundrum
models can be viewed as an orbifold, which is useful in some of the later derivations. The
curvature tensors are derived in Section 3.2.3. With this the Einstein equations are solved
for the RS1 and RS2 models in Sections 3.2.4 and 3.2.5, respectively. In these subsections we
derive the most important result of this section that gives an easy way to construct RS models.
With this we construct a black hole solution called the black string in Section 3.2.6.

3.2.1 A warped structure and brane tension

In this subsection we make some assumptions on the structure of the Randall-Sundrum space
and metric. There is an infinite amount of five-dimensional manifolds one can come up with
and for each of those manifolds there are infinitely many four-dimensional manifolds that can
be embedded in them. Nevertheless, based on observations and what we want to achieve we
can make some logical assumptions that simplify the problem and allow us to derive some
physical implications for the Randall-Sundrum scenario.

First of all, the four-dimensional subspace should represent our universe. Of course, we cannot
be sure that our universe is infinite, it could for example still be a very large sphere. However,
let us assume for now that it is infinite, because from our perspective it does seem that way.
Then we want the four-dimensional manifold to be M4 = R4. Another assumption that we
make is that this brane is at the boundary of the five-dimensional space. Additionally, we want
the five-dimensional space to have a simple topology such that we consider the two possibilities
M5

RS1 = R4 × [0, 1] and M5
RS2 = R4 × [0,∞). We call these models RS1 and RS2, respectively.

A simple sketch of the different models can be seen in Fig. 3.4. We first focus on RS1, and
from there derive the RS2 model.
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Hidden Visible Visible

RS1 RS2

Figure 3.4: The branes and bulk space of the RS1 and RS2 model. Notice that
in RS2 the visible brane is located at y = 0.

In RS1, we assume that there is another brane at the other boundary of M5
RS1. If we choose

Euclidean coordinates (x0, x1, x2, x3, y) then we fix the brane on which the standard model is
located at y = 1, this brane is called the visible brane. The hidden brane is embedded at the
other boundary at y = 0.

Secondly, we assume the geometry to be warped, so from Def. 2.1.7 the metric should be of
the form

g = (f2 · ĝ)⊕ h, (3.14)

where h is a metric on [0, 1], ĝ a metric on R4 and f : [0, 1] → R. In this way every slice of
M5 looks the same apart from some scaling by the function f . Recall the following elementary
lemma.

Lemma 3.2.1. Let h = dy2 be the Euclidean metric on [0, 1]. Then for any Riemannian
manifold ([0, 1], g) there exists a positive constant y2c ∈ R such that ([0, 1], g) is isometric to
([0, 1], y2c · h).

Proof. Let ([0, 1], g) be a Riemannian manifold. Then in Euclidean coordinates we can repre-
sent g = g(x)2dx2, where g(x) > 0 for any x ∈ [0, 1]. Define f : [0, 1] → [0, 1] by

f(x) =

∫ x
0
g(y)dy

yc
, (3.15)

where yc =
∫ 1

0
g(y)dy. In this way, f is a diffeomorphism, because f(x) is a smooth strictly

increasing function and f(0) = 0 and f(1) = 1. Furthermore,

f∗g = g(x)2
(
df

dx

)−2

dy2 = y2c dy
2. (3.16)

Corollary 3.2.2. A general warped metric on M5
RS1 is of the form

g = e−2σ · ĝ ⊕ y2c · h, (3.17)

where σ : R → R, ĝ a metric tensor on R4, yc ∈ R, and h the Euclidean metric on [0, 1].

Proof. We can apply Lem. 3.2.1 to the warped metric in Eq. 3.14. Additionally, it turns out
that it is useful for our calculations to define σ(y) = − log f(y), such that a general warped
metric is of the form as in Eq. 3.17.
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Thirdly, we assume that the branes have a brane tension which we will denote by λhid, λvis ∈
R for the hidden and visible brane, respectively. The brane tension describes the energy per
unit volume of the brane. This energy influences the gravitational interactions and therefore
has to be included in the action. In some theories the brane tension is considered to be variable,
however we will assume that they are constant. Consequently, RS1 is a non-vacuum state and
the Lagrangian is given by

LRS1 = −λhidδ(y) +−λvisδ(y − 1), (3.18)

where δ denotes the Dirac delta function. Due to the delta functions we only integrate the
brane tension terms in the action over their corresponding brane. For this reason it is useful
to define the effective metrics

ghid(x) = g(x, y = 0), gvis(x) = g(x, y = 1), (3.19)

With this Lagrangian the Randall-Sundrum action can be written as [7]

SRS1 = Sgrav + Shid + Svis (3.20)

Sgrav =

∫
2M3

p (scalg − 2Λ) dVolg

Shid = −
∫
λhid dVolghid

Svis = −
∫
λvis dVolgvis .

Recall the definition of the energy-momentum tensor in Eq. 2.23. The energy-momentum
tensor is obtained by varying the action in Eq. 3.20 with respect to the metric g. The
following lemma is useful for the derivation.

Lemma 3.2.3. The variation of the effective metrics with respect to the full metric is given
by

δ
√

−det gvis(x′)

δgMN (x, y)
= −1

2

√
−det gvis(x)gvisab δ

a
Mδ

b
Nδ

4(x− x′)δ(y − 1).

Here M,N = 0, 1, 2, 3, 5 where 5 corresponds to the extra dimensional coordinate y, and
a, b = 0, 1, 2, 3. Furthermore, δaM are Kronecker delta functions and δ4(x−x′) and δ(y− 1) are
the four- and one-dimensional Dirac delta function, respectively. Recall that a prime feature
of a functional derivative is that

δϕa...bc...d(x)

δϕk...lm...n(y)
= δak . . . δ

b
l δ
m
c . . . δnd δ(x− y). (3.21)

Proof. We can rewrite

δ
√

−det gvis(x′)

δgMN (x, y)
=

δgabvis(x)

δgMN (x, y)

δ
√
− det gvis(x′)

δgabvis(x)
. (3.22)

Recalling the definition of gvis from Eq. 3.19, and using the facts that

δgAB

δgMN
= δAMδ

B
N ,

δ
√

−det g(x′)

δgMN (x)
= −1

2

√
−det g(x)gMNδ

n(x− x′),

we can rewrite the right hand side of Eq. 3.22 to

δ
√
−det gvis(x′)

δgMN (x, y)
= −1

2

√
−det gvis(x)gvis

ab δ
a
Mδ

b
Nδ

4(x− x′)δ(y − 1).
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Figure 3.5: A scheme of the orbifolding procedure of the unit interval to the
unit sphere. On the sphere the points at the circles or crosses are identified with
each other.

We can apply Lem. 3.2.3 to both Shid and Svis to find the energy-momentum tensor.

Corollary 3.2.4. In RS1 the energy-momentum tensor is given by

TMN = −λhid

√
−det ghid√
−det g

ghidab δ
a
Mδ

b
Nδ(y)− λvis

√
−det gvis√
−det g

gvisab δ
a
Mδ

b
Nδ(y − 1). (3.23)

Definition 3.2.5. Let ĝ be a metric tensor on R4, σ : R → R and yc, λvis, λhid,Λ ∈ R. The
tuple (ĝ, σ, yc, λvis, λhid,Λ) is RS1 if (R4, g,Λ, LRS1) with g as in Eq. 3.17 and LRS1 as in Eq.
3.18 is an Einstein manifold.

In the next subsection we use the energy-momentum tensor to solve the Einstein equations.
By doing this we shall derive that there is a dependence between the brane tensions and the
cosmological constant.

3.2.2 Randall-Sundrum as an orbifold

The usual topology of a five-dimensional space with compact extra dimension is R4×S1. This
was also the topology induced on the five-dimensional flat space in Section 3.1.1. This topology
is not possible for the Randall-Sundrum model, because the branes are at the boundary of the
extra dimension and S1 has no boundary. In the literature it is common to still think of
Randall-Sundrum as having this topology. For this we use the covering space of Randall-
Sundrum and quotient out equivalent points using an action. This structure simplifies some of
the calculations. This procedure turns the manifold into an orbifold.

Definition 3.2.6. An n-dimensional orbifold is a Hausdorff topological space X, called the
underlying space, with a covering by a collection of open sets Ui, closed under finite inter-
section. For each Ui, there is:

• an open subset Vi of Rn, invariant under a faithful linear action of a finite group Γi,

• a continuous map ϕi of Vi onto Ui invariant under Γi, called an orbifold chart, which
defines a homeomorphism between Vi/Γi and Ui.

The interval [0, 1] can be given an orbifold structure. Let 0 ≤ i < j ≤ 1, we can cover the
closed unit interval with open intervals of the form Ui,j = (i, j), U0

j = [0, i) and U1
i (1 − i, 1].

For the open intervals Ui,j we define the opens Vi,j = Ui,j ⊂ R and ϕi,j : Vi,j → Ui,j the
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identity map and Γi,j the trivial group. For open sets U0
j we define V 0

j = (−j, j) ⊂ R, with
ϕ0j : V

0
j → U0

j

ϕ0j (x) =

{
x if x ≥ 0,

−x if x < 0.
(3.24)

Additionally, Γ0
j = {1,−1} with the action on x ∈ V 0

j defined by −1 · x = −x. Similarly, for
opens U1

i we define V 1
i = (1− i, 1 + i) with ϕ1i : V 1

i → U1
i defined by

ϕ1i (x) =

{
x if x ≤ 1,

2− x if x > 1.
(3.25)

Furthermore, we define the group Γ1
i = {1,−1} with the action on x ∈ V 1

i defined by −1 · x =
2− x.

Lemma 3.2.7. The unit interval [0, 1] with the above defined structure is an orbifold.

Proof. The covering of [0, 1] by the sets Ui,j , U0
j and U1

i is clearly closed under finite inter-
sections. Furthermore, to each open set U we have associated an open set V ⊂ R which is
invariant under an action of a finite group Γ. Lastly, the map ϕ defines a homeomorphism
between V/Γ and U .

This construction also gives an orbifold structure on R4×[0, 1], since R4 has a canonical orbifold
structure as a manifold, we can apply the above construction to the interval. In Fig. 3.5 it
can be seen how the interval is turned into an orbifold. In the next subsection we will use this
orbifold structure. A consequence of this is that we can lift the map σ : [0, 1] → R to a map
σ̃ : (−1, 2) → R which has the following orbifold symmetries

σ̃(−y) = σ̃(y), σ̃(1− y) = σ̃(1 + y). (3.26)

3.2.3 Curvature tensors

In the previous sections we defined the RS1 model (g0, σ, yc, λvis, λhid,Λ). To Check whether
such a tuple indeed is RS1, we need to study the Einstein equations. For this we need to
compute the Ricci tensor and scalar for a warped metric as in Eq. 3.17. This is done in this
section.

First we compute the Christoffel symbols.

Lemma 3.2.8. Let (g0, σ, yc, λvis, λhid,Λ) be RS1. Then the non-trivial Christoffel symbols
are given by

Γcab = Γ0c
ab,

Γ5
ab =

σ′

y2c
e−2σg0ab,

Γca5 = −σ′ δca.

Disregarding those that can be constructed using symmetries from these Christoffel symbols.

Here a, b, c = 0, 1, 2, 3, and 5 denotes the extra dimensional component. Γ0 denotes the
Christoffel symbol induced by the metric g0, and σ′ = ∂σ

∂y .
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Proof. The Christoffel symbols can be computed from Eq. 2.7. Using that gc5 = 0 we indeed
see that Γcab = Γ0c

ab. For the second identity we have

Γ5
ab = −1

2
g55∂5gab =

σ′

y2c
e−2σg0ab.

Similarly, for the last identity

Γca5 =
1

2
gcb∂5gab

= −σ′gcdgab = −σ′ δca.

Using the Christoffel symbols we can compute the Riemann tensor.

Lemma 3.2.9. Let (g0, σ, yc, λvis, λhid,Λ) be RS1. Then the non-trivial components of the
Riemann tensor are

Rabcd = R0a
bcd −

σ′2

y2c
e−2σ

(
δac g

0
bd − δadg

0
bc

)
,

R5
a5b =

1

y2c
e−2σg0ab

(
σ′′ − σ′2) ,

Ra5b5 = δab
(
σ′′ − σ′2) .

Here we disregarded the components that can be constructed from the above using symmetries.

In this lemma R0a
bcd denotes the Riemann tensor of the semi-Riemannian manifold (R4, g0).

Proof. Using the definition of the Riemann tensor 2.13 and Lem. 3.2.8, we can derive

Rabcd = ∂cΓ
a
bd − ∂dΓ

a
bc + ΓacMΓMbd − ΓadMΓMbc

= R0a
bcd + Γac5Γ

5
bd − Γad5Γ

5
bc

= R0a
bcd −

σ′2

y2c
e−2σ

(
δac g

0
bd − δadg

0
bc

)
.

For the second equality we have

R5
a5b = ∂5Γ

5
ab − Γ5

bcΓ
c
a5

=
1

y2c
e−2σg0ab

(
σ′′ − 2σ′2)+ σ′2

y2c
e−2σg0ab

=
1

y2c
e−2σg0ab

(
σ′′ − σ′2) .

Finally, for the third equality

Ra5b5 = −∂5Γab5 − Γa5cΓ
c
5b

= σ′′δab − σ′2δac δ
c
b

= δab
(
σ′′ − σ′2) .

Next we compute the Ricci tensor.
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Lemma 3.2.10. Let (g0, σ, yc, λvis, λhid,Λ) be RS1. Then the non-trivial components of the
Ricci tensor are given by

Rab = R0
ab +

1

y2c
e−2σg0ab (σ

′′ − 4σ′) ,

R55 = 4σ′′ − 4σ′2.

Here R0
ab denotes the Ricci tensor of the semi-Riemannian manifold (R4, g0).

Proof. Using the definition of the Ricci tensor in Eq. 2.15 we find

Rab = Rcacb +R5
a5b

Applying Lem. 3.2.9 this becomes

Rab = R0
ab − 3

σ′2

y2c
e−2σg0ab +

1

y2c
e−2σg0ab

(
σ′′ − σ′2)

= R0
ab +

1

y2c
e−2σg0ab (σ

′′ − 4σ′) .

Where we used that δcc = 4. Likewise, for the (55) component

R55 = Rc5c5 = 4σ′′ − 4σ′2.

Finally, we can compute the Ricci scalar.

Lemma 3.2.11. Let (g0, σ, yc, λvis, λhid,Λ) be RS1. Then the Ricci scalar is

R = e2σR0 +
1

y2c

(
8σ′′ − 20σ′2) .

Here R0 denotes the Ricci scalar of the semi-Riemannian manifold (R4, g0).

Proof. Using Lem. 3.2.10 and the definition of the Ricci scalar in 2.17 it directly follows that

R = e2σR0 +
4

y2c

(
σ′′ − 4σ′2)+ 4

y2c

(
σ′′ − σ′2)

= e2σR0 +
1

y2c

(
8σ′′ − 20σ′2) .

Now that we have the expressions for all the curvature tensors, we can solve the Einstein
equations in the next section.

3.2.4 Solving the Einstein field equations

In this subsection we solve the Einstein equations for a metric that satisfies the assumptions
that derived in Section 3.2.1. To summarize, we are considering the warped spacetime M5 =
R4 × [0, 1] with a metric tensor of the form as in Eq. 3.17 and energy-momentum tensor as in
Eq. 3.23. It turns out that if we solve the Einstein equations for a Ricci flat metric g0, many
of the quantities in Def. 3.2.5 are related.
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Theorem 3.2.12. Let (g0, σ, yc, λvis, λhid,Λ) be RS1. If g0 is Ricci flat then:

1. Λ < 0,

2. 24M3
p

√
−Λ
6 = λhid = −λvis,

3. σ(y) = yc|y|
√

−Λ
6 .

Using the lemmas from Section 3.2.3 can compute the Einstein equation for a RS1 model. The
RS1 Einstein equations are given by

Rab −
1

2
Rgab + Λgab = − 1

4M3
p

(
λhid

√
−det ghid
√
−det g

ghid
ab δ

a
Mδ

b
Nδ(y) (3.27)

+ λvis

√
−det gvis
√
−det g

gvis
ab δ

a
Mδ

b
Nδ(y − 1)

)
.

The non-trivial components of this equation are the (55)-component and any other (ab)-
component where a, b = 0, 1, 2, 3. From the (55)-component we get the equation

−1

2
y2cR

0 + 6σ′2 + y2cΛ = 0. (3.28)

From the (ab)-components we get the equations

e2σR0
ab +

[
−R

0

2
+

(
6σ′2 − 3σ′′)

y2c
+ Λ

]
g0ab = − g0ab

4ycM3
p

(λhid δ(y) + λvis δ(y − 1)) . (3.29)

Now suppose that g0 is Ricci flat. Then R0 = 0 = R0
ab, for every a, b = 0, 1, 2, 3. Therefore,

we can rewrite Eq. 3.28 and 3.29 to

σ′2 = −y2c
Λ

6
(3.30)

σ′′ =
yc

12M3
p

(λhid δ(y) + λvis δ(y − 1)) (3.31)

Here we used Eq. 3.28 to get rid of some terms in Eq. 3.29. The solution to Eq. 3.30 that
respects the orbifold symmetries 3.26 at y = 0 and y = 1 is

σ(y) =


−ycy

√
−Λ
6 if y < 0,

ycy
√

−Λ
6 if 0 ≤ y ≤ 1,

yc(2− y)
√

−Λ
6 if y > 1.

(3.32)

For simplicity we will denote this by σ = yc|y|
√

−Λ
6 . Note that this requires a negative

cosmological constant. Consequently, the five-dimensional space will have similar properties
as AdS space.

If we take the second derivative of 3.32 then due to the orbifold symmetry

σ′′(y) = 2yc

√
−Λ

6
(δ(y)− δ(y − 1)) (3.33)

Comparing Eq. 3.33 to Eq. 3.31 we can relate Λ to the brane tensions λhid/vis

24M3
p

√
−Λ

6
= λhid = −λvis. (3.34)
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Consequently, the hidden brane has positive brane tension and the visible brane has negative
brane tension. We can use the relation in Eq. 3.34 to replace the three constants in the model
with one constant. For this we define the curvature scale κ as

Λ = −6κ2, λhid = −λvis = 24M3
pκ. (3.35)

Going back to Lem. 3.2.11, we can see why κ is called the curvature scale. Namely, away from
the branes, for a Ricci flat g0 we have R = −20κ

2

y2c
. Therefore, for higher κ the space is more

strongly curved. The warping factor scales with κ as well, since from Eq. 3.32 we can rewrite
σ to

σ(y) = yc|y|κ. (3.36)

Therefore, the metric becomes
g = e−2yc|y|κg0 ⊕ y2ch (3.37)

Definition 3.2.13. The tuple (g0, yc, κ) is flat RS1, if g0 is a Ricci flat metric tensor on R4

and yc, κ ∈ R.

Theorem 3.2.14. If (g0, yc, κ) is flat RS1, then (g0, yc|y|κ, yc, 24M3
pκ,−24M3

pκ,−6κ2) is RS1.

With this result, it is possible to construct many RS1 spaces. Namely, any Ricci flat metric
and constants yc, κ ∈ R will generate a RS1 space. In Chapter 2 we already saw two examples
of Ricci flat spaces.

Example 3.2.15. Let η be the Minkowski metric on R4. Then (η, yc, κ) is for any yc, κ ∈ R.
We call these spaces standard RS1.

In the original Randall-Sundrum paper, the focus is on standard RS1 spaces. The advantage
of these spaces is that they admit Poincaré symmetry on the branes and are therefore easy
to work with. The other Ricci flat space we considered was the Schwarzschild black hole. In
Section 3.2.6 we focus on this RS black hole solution.

Lemma 3.2.16. Consider standard RS1 (η, yc, κ). Then this manifold can be embedded into
AdS5.

Proof. In the standard coordinates on R4 × [0, 1], the metric g in this RS1 model becomes

ds2 = e−2κyc|y|ηabdx
adxb + y2cdy

2. (3.38)

Recall the AdS metric in the Poincaré patch in Eq. 3.11. For the Poincaré coordinate patch we
denote the coordinates by (x′, z) where x′ ∈ R4 and z > 0. We can define a map f : (R4, g) →
AdS5 which on these coordinate charts is defined by

f(x, y) = (x,
1

κ
eκyc|y|).

Let’s denote z = 1
κe
κyc|y|, then in the image of f it holds that 1

κ ≤ z ≤ eκyc

κ . Furthermore, the
induced metric is given by

f∗g =
1

κ2z2
(
ηabdx

adxb + dz2
)
. (3.39)

This corresponds to the AdS5 metric in the Poincare patch 3.11. We conclude that standard
RS1 can be embeded in AdS5.

For this reason RS is also called a slice of AdS5.
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3.2.5 The infinite Randall-Sundrum model

So far we focused on RS1 models, consisting of two four-dimensional branes at the boundary of
a finite fifth dimension. RS2 consists of only one brane, the visible brane, in a semi-infinite five-
dimensional space. Luckily, the construction of RS2 works very similarly to the construction
of RS1. To transform RS1 into RS2, we first map the interval f : [0, 1] → [0, yc]. The idea is to
follow the same steps and in the end take the limit yc → ∞. With this limit one of the branes
disappears to infinity. Since it would not be desirable to make the visible brane disappear,
the location of the two branes needs to be swapped. The RS2 action is of similar form as the
action in Eq. 3.20, where now the gravitational action is given by

Sgrav =

∫
d4x

∫ yc

0

dz
√

−det g{−Λ + 2M3
pR} (3.40)

Where z = ycy is the new coordinate. Additionally, the branes are swapped, so the definitions
of the reduced metric are modified to gvis(x) = g(x, z = 0) and ghid(x) = g(x, z = yc).

Definition 3.2.17. Let g0 be a metric tensor on R4, σ : R → R and λvis, λhid,Λ ∈ R. The
tuple (g0, σ, λvis, λhid,Λ) is RS2 if (R4, g, SRS2) with g as in Eq. 3.17 and SRS2 as in Eq. 3.40
is an Einstein manifold.

Following the same steps as in the previous sections, there exist many solutions when g0 is
Ricci flat.

Definition 3.2.18. The tuple (g0, κ) is flat RS2, if g0 is a Ricci flat metric tensor on R4

and κ ∈ R.

Just like for RS1, the cosmological constants and brane tensions are related. The difference is
however, that in RS2 the visible brane has positive brane tension. Let (g0, yc, κ) be flat RS2,
then the RS2 metric g has the following form

g = e−2κ|z|g0 ⊕ dz2. (3.41)

The standard RS2 space (η, κ) can also be embedded in AdS5, where now the z coordinate
in the Poincaré patch is valued between 1

κ ≤ z <∞. The visible brane is located at z = 1
κ .

3.2.6 Black strings

Now that we found a simple way to construct RS spaces, it makes sense to look for Randall-
Sundrum black hole solutions. In four-dimensions the simplest black hole is described by the
Schwarzschild solution gs from Ex. 2.1.16. The Schwarzschild metric is Ricci flat which makes
it a natural candidate for RS. With Cor. 3.2.14 it follows that (gs, yc, κ) is flat RS1. We call
this solution the RS1 black string. We call it a string instead of a hole, because it only forms
a black hole on the 3-brane. This black hole is stretched out along the direction of the extra
dimension. The result resembles the shape of a cylinder or string, as can be seen in Fig. 3.6.
The RS metric for the black string in spherical coordinates is given by

g = e−2κyc|y|
[
−
(
1− rs

r

)
dt2 +

1

1− rs
r

dr2 + r2dθ2 + r2 sin θ dφ2

]
+ y2cdy

2. (3.42)

These results also apply to RS2. However, we will now derive that there is some unwanted
behaviour for the RS2 black string.
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Figure 3.6: A schematic picture of the RS1 black string solution.

Lemma 3.2.19. The effective four-dimensional black hole mass at a constant y-slice is

M∗ =Me−κycy.

Proof. Let us fix a y ∈ [0, 1]. Then using Eq. 3.42, we can rescale the t and r coordinate to

r = eκyc|y|r̂,

t = eκyc|y|t̂.

Applying this rescaling to Eq. 3.42 leads to a metric that resembles the Schwarzschild metric

g = −(1− 2M

r̂
e−κyc|y|)dt̂2 +

1

1− 2M
r̂ e

−κyc|y|
dr̂2 + r̂2dθ2 + r̂2 sin2 θdφ2 + dy2. (3.43)

Reading off the mass from Eq. 3.43 gives M∗ =Me−κyc|y|.

A consequence of this result is that the mass of the black hole on the visible brane seems
smaller as yc increases. Consequently, in RS2, the black hole appears massless near the AdS
horizon. This is a weird phenomenon. In Section 3.3.4 we derive that the metric also becomes
singular at the AdS horizon.

Finally, it is important to note that a spherical black hole solution is hard to construct in RS.
To illustrate this consider the most natural candidate, a five-dimensional Schwarzschild-AdS
black hole, whose metric in spherical coordinates is given by

ds2 = −U(r)dt2 + U(r)−1dr2 + r2
(
dχ2 + sin2 χdΩ2

)
, (3.44)

where dΩ2 is the standard metric on S2 and

U(r) = 1− 2M

r
+ r2κ2.

If we consider the RS2 case, with only one brane with positive tension present, then we should
be able to write the position of the brane by χ = χ(r). However, there only exist spherical
solutions in the non-vacuum case [17]. We are only interested in vacuum solutions since these
describe the system in its final state after gravitational collapse on the brane.
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3.3 Properties of the Randall-Sundrum model

Now that we defined the Randall-Sundrum model, we can look at the most important properties
of Randall-Sundrum. As explained in Section 3.1.1, this model was originally introduced as a
new way of solving the hierarchy problem. We derive how the hierarchy problem is solved in
Section 3.3.1. Then we show that not much fine-tuning is necessary to construct a model that
solves the hierarchy problem in Section 3.3.2. Additionally, if we believe that Randall-Sundrum
models could represent our universe, it is required that four-dimensional gravity is retrieved
on the brane. In other words that the gravitational potential is proportional to r−1. This is
proven in Section 3.3.3. Finally, it turns out that there is a singularity at z = ∞ in the RS2
black string in Section 3.3.4. This is a big hint for the existence of an instability in the RS
black string.

3.3.1 Solution to the hierarchy problem

The original motivation behind the Randall-Sundrum model is that it offers an original solution
to the hierarchy problem [7]. In Section 3.1.1 we saw that the hierarchy problem can be solved
by adding compact flat extra dimensions. Due to the extra dimensions, it is possible that the
Planck scale is of the same order as the electroweak scale, but the effective four-dimensional
Planck scale is much higher.

The solution of Randall and Sundrum works the other way around. The idea is that in the
five-dimensional space, the electroweak scale and Planck scale are of the same order. In this
model the effective four-dimensional Planck scale is still of the same order as the Planck scale.
Due to the warping, the effective electro-weak scale greatly decreases on the visible brane.
Namely, in this section we shall prove that the observed electroweak scale is an order e−κyc
lower than the five-dimensional electroweak scale.

Lemma 3.3.1. In flat RS the relation between the five-dimensional Planck scale Mp5 and the
effective four-dimensional Planck scale Mp is given by

M2
p =

Mp
3
5

2κ

(
1− e−2κyc

)
. (3.45)

Proof. Consider the gravitational part of the RS action

Sg =

∫
d4x

∫ 1

0

dy
√
−det g 2Mp

3
5 (R− 2Λ) . (3.46)

Next we use that in flat RS the metric is warped g = e−κyc|y|g0 ⊕ y2c · h for some metric tensor
g0 on R4. Therefore,

det g = e−8κyc|y|y2c det g
0,

R = e2κyc|y|R0 − 20κ2.

For now we focus on the curvature term only, since from there we can read off the Planck mass.
The action in terms of the four-dimensional metric is now

Sg =

∫
d4x

∫ 1

0

dy
√
−det g0 2Mp

3
5e

−2κyc|y|ycR
0.

Note that g0 is independent of the y-coordinate. By evaluating the y-integral, the effective
four-dimensional action is obtained,

Sg =

∫
d4x
√
−det g0

Mp
3
5

κ

(
1− e−2κyc

)
R0. (3.47)
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Comparing Eq. 3.47 to the standard Einstein-Hilbert action 2.24 with vanishing cosmological
constant, we derive the desired relation 3.45.

From this result we derive that if both Mp5 and κ are of the Planck scale and κyc is relatively
big, then M2

p is of the Planck scale. Another interesting consequence is that in the flat limit,
i.e. when κ→ 0, we retrieve the relation for a flat extra dimension

M2
p = ycMp

3
5 = V1Mp

3
5

Lastly, we note that in the RS2 model this construction also works, but the exponential term
vanishes.

Even though the Planck scale is not altered by the warping, it greatly influences fields that are
restricted to the brane. To illustrate this we will take a look at the Higgs field, which is the
field related to the Higgs Boson. The action of the Higgs field has the following form

S =

∫ (
gabvis∂aH

†∂bH − λ(H2 − v20)
2
)
dVolgvis , (3.48)

where λ ∈ R is a coupling constant and H† denotes the complex conjugate of the field H. The
second term in the integral, the term without derivatives, represents a potential. The vacuum
expectation value of the Higgs field is the minimum of this potential, and it is the value the
Higgs field takes in the absence of particles. For the action in Eq. 3.48 the vacuum expectation
value is v0.

The electroweak scale is related to the vacuum expectation value v0 of the Higgs field H, which
is also the mass of the Higgs boson. Unlike other known scalar fields, the Higgs field has a
non-zero expectation value in vacuum. Since the Higgs field is part of the standard model, it
is restricted to the visible brane. So v0 represents the vacuum expectation value in the RS
model, but as we will derive in the following lemma, it is possible that the effective vacuum
expectation value observed on the visible brane is much lower.

Lemma 3.3.2. Let v0 be the vacuum expectation value of the Higgs field H in the flat RS1
model (ĝ, yc, κ). Then an observer on the visible brane will observe an effective vacuum expec-
tation value of the Higgs field of v0e−κyc .

Proof. Let ĝ be the four-dimensional metric. Then we can use the definition of gvis from Eq.
3.19 to express gvis in terms of the four-dimensional metric ĝ. The action in Eq. 3.48 then
becomes

S =

∫
d4x
√

−det g0e−2κyc
(
g0
ab
∂aH

†∂bH − λe−2κyc
(
H2 − v20

)2)
.

Next we can rescale the field by H = eκych, then the action for this new field is

S =

∫
d4x
√
−det g0

(
g0
ab
∂ah

†∂bh− λ
(
h2 − v20e

−2κyc
)2)

. (3.49)

Note that Eq. 3.49 closely resembles the four-dimensional action for the Higgs field as we
know it. However, now the vacuum expectation value v̂0 in four dimensions relates to the five
dimensional expectation value by

v̂0 = v0e
−κyc .

Note that the ratio between the mass of the Higgs particle and the effective mass of the Higgs
particle on the brane is the same as the ratio between the mass of the black string and the
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black hole on the brane. So it seems that we can generalize the result of Lem. 3.3.2 to any
mass parameter m0 [7]. If we assume v0 to be of the Planck scale and we want our observed
vacuum expectation value of the Higgs field to be around 1 TeV, then we need eκyc to be of
the order 1016. Therefore, in this model the hierarchy problem is translated to a new type of
hierarchy, now between the curvature scale κ and the size of the extra dimension yc. To solve
the hierarchy problem we demand κyc ≈ 35, which is a much smaller hierarchy.

3.3.2 Fixing the distance between the branes

In the previous subsection we derived how the length of the extra dimension yc has to be tuned
to solve the hierarchy problem. The RS1 model gives a much more natural explanation for the
huge ratio between the electroweak scale and the Planck mass than we are able to do with the
four-dimensional standard model. However, we still have to show whether the RS1 model is
natural as well. In particular, one of the assumptions we made in the construction of the model
in Sec. 3.2.1 is that the metric is warped. Consequently, we ended up with a space where the
extra dimension has a constant length yc. However, is this a natural assumption to make? If a
lot of fine-tuning is required to construct a model that solves the hierarchy problem, it is not
really a solution because it just moves the problem to another fine-tuning problem. Therefore,
in this section we show that not much fine-tuning is required to construct a standard RS model
with κyc ∼ 35.

Without the assumption of the branes being separated by a constant distance, yc should be
replaced by a scalar field T (x). This field would only depend on x because using Lem. 3.2.1,
the y-dependence can be integrated out. Therefore, an even more general metric would have
the form

g = e−2σ ĝ + T (x) · h. (3.50)

This can be interpreted as that the distance between the branes is not constant. Therefore,
instead of the branes forming flat sheets as in Fig. 1.1, they would be more wrinkled, such
that at some points they are closer to each other than at other points.

This field T (x) would then fluctuate around a vacuum expectation value. This vacuum expec-
tation value can be denoted by yc. These fluctuations correspond to a field called the radion.
For the assumptions to be valid, we need a mechanism to fix T (x) to take the value of its vac-
uum expectation value. Goldberger and Wise succeeded in this using a potential associated to
a bulk scalar field with interaction terms that are localized on the 3-branes [49]. In particular,
without much fine tuning the minimum of the potential can be arranged such that κyc ∼ 35.
In this section we follow their derivation.

Consider a bulk scalar field Φ with the bulk action

S =
1

2

∫
d4x

∫ 1

0

dy
√
−det g

(
gMN∂MΦ∂NΦ−m2Φ2

)
,

where gMN with M,N = 0, 1, 2, 3, 5 is standard RS. There are also interaction terms on the
hidden and visible branes given by

Shid = −
∫
d4xλhid

√
−det ghid

(
Φ2 − v2hid

)2
,

Svis = −
∫
d4xλvis

√
−det gvis

(
Φ2 − v2vis

)2
.

These terms on the branes cause Φ to have a y-dependent vacuum expectation value Φ(y).
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This value is determined by the equation of motion for Φ

0 =− 1

y2c
∂y
(
e−4σ∂yΦ

)
+m2e−4σΦ+ 4e−4σλhidΦ(Φ

2 − vhid)
δ(y)

yc

+ 4e−4σλvisΦ(Φ− v2vis)
δ(y − 1)

yc
, (3.51)

where σ(y) = κyc|y|.

Lemma 3.3.3. The above action and equations of motion for the field Φ yield an effective
potential with minimum κyc. With minimal fine tuning the value of this potential can be set to
κyc ∼ 35.

Proof. First of all, Eq. 3.51 has a solution away from the branes given by

Φ(y) = e2σ
(
Aeνσ +Be−νσ

)
, (3.52)

with ν =
√

4 + m2

κ2 . The coefficients A and B are determined by the boundary conditions
at the branes. By integrating the equation of motion over a infinitesimal region around the
branes. This gives the conditions

0 =κ [(2 + ν)A+ (2− ν)B]− 2λhidΦ(0)
[
Φ(0)2 − v2hid

]
,

0 =κe2κyc
[
(2 + ν)eνκycA+ (2− ν)e−νκycB

]
+ 2λvisΦ(1)

[
Φ(1)2 − v2vis

]
.

Rather than solving these equations, we focus on the limit when λhid and λvis are very large.
In this limit the equations are solved when Φ(0) = vhid and Φ(1) = vvis. Which is a realistic
limit recalling that both these constants are of the order of the Planck scale. Additionally, we
will assume κyc to be relatively large, such that using Eq. 3.52 the coefficients are given by

A =vvise
−(2+ν)κyc − vhide

−2νκyc ,

B =vhid
(
1 + e−2νκyc

)
− vvise

−(2+ν)κyc ,

where we neglected higher powers of e−κyc . Finally, assuming m/κ≪ 1 it holds that ν ≈ 2+ ϵ,
with ϵ = m2/4κ2. Plugging Eq. 3.52 with these coefficients into the scalar field action and
integrating over y yields the effective four-dimensional potential for yc

V (yc) =κϵv
2
hid + 4κe−4κyc

(
vvis − vhide

−ϵκyc
)2 (

1 +
ϵ

4

)
− κϵvhide

−(4+ϵ)κyc
(
2vvis − vhide

−ϵκyc
)
, (3.53)

where terms proportional to ϵ2 are neglected, but ϵκyc is not treated as small. Ignoring the
terms proportional to ϵ the minimum of this potential is at

κyc = 4
κ2

m2
log

(
vhid

vvis

)
. (3.54)

With the requirements that log(vhid/vvis) is of order unity and m2/κ2 of order 1/10 we end up
with κyc ∼ 40.

Even though this shows that RS is physically possible, there are still quite some assumptions
made in the proof. For example, it is assumed that the brane tensions are λvis/hid are large,
which is a fact that followed from the derivation of RS. Something that fails in standard RS is to
retrieve a small positive effective cosmological constant on the brane, which is what we observe
in our universe [50]. Hawking and Hertog have tried to construct a RS space which better
represents our universe [51]. Once we alter some of the assumptions, the above lemma does
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not hold anymore, and the scalar field T is generally not stabilized anymore. The excitations
of this field then lead to the productions of radions, which serve as dark matter candidate [52].

To conclude, in this subsection we have seen that standard RS realistically offers a solution to
the hierarchy problem. In another regime RS spaces could also offer a solution to other big
open questions in theoretical physics, such as dark energy and dark matter.

3.3.3 Localizing the graviton

In Section 3.3.1 we showed how RS solves the hierarchy problem. We described the hierarchy
problem as the open question why the Planck scale is so much bigger compared to the elec-
troweak scale. For this reason the Randall-Sundrum model is a candidate model to describe
our universe. If it is a true candidate, then four-dimensional gravity must be retrieved on the
brane. In this section we will derive that due to the warping factor, the graviton is ‘bound’ to
the brane with positive tension. Therefore, the gravitational potential is proportional to r−1

even for very large or even infinite extra dimensions.

Recall from Sec. 3.2.4 that in RS1, the hidden brane has positive tension and the visible
brane has negative tension. Therefore, the absence of the graviton at the visible brane will be
explanation for the fact that gravity seems so weak. On the other hand, in RS2 the visible
brane has positive tension and the extra dimension is infinite. Therefore, from Lem. 3.1.3 we
might expect that the gravitational potential is proportional to r−2. However, The fact that
the graviton is bound to the visible brane will ensure that four-dimensional gravity is recovered
even though there is a infinite extra dimension in the model.

We make use of Kaluza-Klein theory to describe the graviton. Before defining the concepts of
Kaluza-Klein theory, it is important to note that even though it looks similar to perturbation
theory and we use some of the same techniques as we use later on in proving stability of
spacetimes, it is not related to the stability proofs that will be done in the next chapter.
Kaluza-Klein theory is a method to describe the dynamics of particles such as the graviton,
photon and radion in five-dimensional spacetimes. It also works by perturbing a background
metric ĝ by a 2-tensor h,

g = g0 + h. (3.55)
However, now this perturbation h describes several fields. Namely the four-dimensional re-
striction hab where a, b = 0, 1, 2, 3 represents the gravitational field of the spin-2 graviton.
Similarly, the ha5 component represents the electromagnetic field and the h55 component, as
we saw in the previous subsection, a scalar field related to the radion. The equations of motion
of these fields are obtained by the linearized Einstein equations. It is then possible to separate
the fields into modes of different masses. The zero-modes or massless modes of the gravitation,
electromagnetic and scalar field correspond with the graviton, photon and radion, respectively.
We apply Kaluza-Klein theory to the RS1 and RS2 model, to find the wavefunction of the
graviton.

Theorem 3.3.4. In standard RS the wavefunction of the graviton peaks at the negative tension
brane.

Let g be the metric of standard RS with curvature scale κ and distance between the branes yc.
To obtain the linearized Einstein equations we first make use of a coordinate transformation
to express our metric in a useful way. We introduce a coordinate z such that

eκyc|y|ycdy = dz,

e−2κ|y| =
1

(1 + κ|z|)2
.
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For this new coordinate it holds that 0 ≤ z ≤ 1
κ (e

κyc − 1) = zc. Then the metric in standard
coordinates from Eq. 3.38 transforms to

ds2 =
1

(1 + κ|z|)2
ηMNdx

MdxN = e−2A(z)ηMNdx
MdxN , (3.56)

where we defined
A(z) = log(1 + κ|z|). (3.57)

For later purposes we note that

A′(z) =
sgn(z)κ
1 + κ|z|

, (3.58)

A′′(z) =
2κ

1 + κ|z|
(δ(z)− δ(z − zc))−

κ2

(1 + κ|z|)2
. (3.59)

Using this new coordinate we can rescale h such that the perturbed metric takes the form

g = e−2A(z)(η + h). (3.60)

To obtain the linearized Einstein equations we can apply the following result form [53].

Lemma 3.3.5. Let g and g̃ be two conformally equivalent metric tensors on a n-dimensional
manifold such that g = e−2Ag̃. Then the Einstein tensors of g and g̃ are related by

GMN (g) = G̃(g̃) + (n− 2)
[
∇̃MA∇̃NA+ ∇̃M ∇̃NA− g̃MN

(
∇̃R∇̃RA− ∇̃RA∇̃RA

)]
, (3.61)

where ∇̃ denotes the covariant derivative with respect to g̃.

Furthermore, we simplify the problem by a convenient choice of gauge

Definition 3.3.6. Let (M, g+h) be a RS space with an effective four-dimensional background
metric ĝ. The RS gauge is given by

h5M =0,

∇ahab =0,

ĝabhab =0,

where M = 0, 1, 2, 3, 5 and a, b = 0, 1, 2, 3.

Since h is a symmetric metric tensor, it originally had 15 degrees of freedom. In this gauge
we reduce it to 5 degrees of freedom. This also corresponds to what we would expect from a
five-dimensional spin-2 particle such as the graviton [54]. Furthermore, note that this gauge
corresponds to setting the photon and scalar field to zero such that we are only left with the
tensor component associated to the graviton.

If we apply Lem. 3.3.5 to the metric in Eq. 3.60, we find that the Einstein tensor associ-
ated to g is given by

GMN (g) = G̃MN + 3
[
∂MA∂NA+ ∂M∂NA− Γ̃RMN∂RA

− g̃MN

(
∂R∂

RA+ Γ̃RRS∂
SA− ∂RA∂

RA
) ]
, (3.62)

where Γ̃ are the Christoffel symbols associated to g̃ = η + h. For now we focus on the Gab
components of the Einstein equation, where a, b = 0, 1, 2, 3. Since A only depends on the z-
coordinate the relevant Christoffel symbols are Γ̃5

ab and Γ̃RR5. In the RS gauge and using Lem.
2.2.6, the linearized form of these Christoffel symbols are given by

Γ̃5
ab = −1

2
∂zhab, Γ̃RR5 = 0. (3.63)
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Furthermore, in this gauge the Einstein tensor associated to g̃ becomes

G̃ab = −1

2
∂R∂

Rhab. (3.64)

Combining Eq. 3.63 and 3.64 with the expression for the Einstein tensor in Eq. 3.62 we get
that the Einstein tensor equals

Gab(g) = −1

2
∂R∂

Rhab +
3

2
∂zhabA

′ − 3(ηab + hab)
(
A′′ −A′2) . (3.65)

Recall the RS energy-momentum tensor in Eq. 3.23. We want to express this tensor in terms
of the function A(z). Using Eq. 3.35 the energy-momentum tensor can be written as

Tab = −12M3
(
A′′ +A′2) (ηab + hab). (3.66)

Finally, using Eq. 3.35 again, the cosmological constant term can be written as

Λgab = −6A′2(ηab + hab). (3.67)

Now we can plug Eq. 3.65, 3.66 and 3.67 into the Einstein equation 2.25 to find the equation
of motion

∂R∂
Rhab − 3∂zhabA

′ = 0. (3.68)

We would like to get rid of the term with a single derivative. For this we use the following
lemma from [55, Lemma 6.4].

Lemma 3.3.7. The substitution

u = v exp

(
−1/2

∫ x

0

pdx

)
(3.69)

transforms
u′′ + p(x)u′ + q(x)u = 0 (3.70)

into

v′′ +

(
q − 1

2
p′ − p2

4

)
v = 0. (3.71)

According to Lem. 3.3.7 this can be achieved by the rescaling

h→ e
3
2Ah. (3.72)

This transforms Eq. 3.68 to

∂R∂
Rhab +

(
3

2
A′′ − 9

4
A′2
)
hab = 0. (3.73)

In flat five-dimensional space with compact extra dimension of length L, the linearized Einstein
equations would reduce to

∂R∂
Rĥab = 0. (3.74)

Due to the translational symmetry in the flat case, it is possible to decompose h into a Fourier
series

ĥab(x, z) =
∑
n∈Z

ĥnab(x)e
i nL z. (3.75)

Plugging Eq. 3.75 into Eq. 3.74, we get a Klein-Gordon equation for the modes(
∂c∂

c −m2
n

)
ĥnab(x) = 0, (3.76)
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Figure 3.7: The potential in Eq. 3.79 plotted for the values yc = 1, κ = 1. The
low energy modes will be trapped inside the steep well at z = 0.

where mn = n
L are the masses. This is a decomposition in Kaluza-Klein modes. In the RS

case we want to do something similar. However, now there is no translational symmetry in the
z direction. Instead, we decompose the tensor h into Kaluza-Klein modes

hab(x, z) =

∞∑
n=0

hnab(x)ψn(z), (3.77)

where the hnab still solve the Klein-Gordon equation: ∂c∂chnab = m2
nh

n
ab, for some mass spectrum

{mn}. However, now ψn(z) represent wavefunctions of the graviton modes with mass mn that
solve the equation

ψ′′
n +

(
m2
n +

3

2
A′′ − 9

4
A′2
)
ψn = 0. (3.78)

The zero-mode, corresponding to the graviton, is the n = 0 mode for which m0 = 0. Therefore,
we want to solve Eq. 3.78 for n = 0.

Note that Eq. 3.78 is a Schrödinger type equation with energy levels given by m2
n and a

potential

V (z) =
9

4
A′2 − 3

2
A′′

=
15

4

κ2

(1 + κ|z|)2
+

3κ

1 + κ|z|
(δ(z − zc)− δ(z)) . (3.79)

This potential has the shape of a volcano as can be seen in Fig. 3.7. The mode functions
ψn represent wavefunctions of the graviton and describes the probability distribution of its
location for different energy levels or masses. Due to the deep well at z = 0 we expect the low
mass modes to be trapped inside this well. Recall that we expect that the graviton is massless.
Therefore, the zero-mode will be the most interesting for us.

Lemma 3.3.8. The zero-mode graviton wavefunction is given by

ψ0(z) =
1

(1 + κ|z|) 3
2

. (3.80)

Proof. Before we solve Eq. 3.78, we have to determine the boundary conditions at the branes.
This can be determined by integrating Eq. 3.78 in a small region around the visible and hidden
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Figure 3.8: The wavefunction for the massless graviton mode in Eq. 3.80 for
yc = 1 and κ = 1.

brane. For the brane located at z = 0 we find

0 =

∫ 0+

0−
ψ′′
n +

(
m2
n +

3

2
A′′ − 9

4
A′2
)
ψn

=ψ′
n(0

+)− ψ′
n(0

−) + 3κψn(0). (3.81)

According to the orbifold symmetry ψ is an even function. Therefore, ψ′(z) = −ψ′(−z).
Consequently, the boundary condition becomes

ψ′
n(0) = −3

2
κψn(0). (3.82)

Similarly, we can derive the boundary condition for the brane at z = zc

ψ′(zc) = − 3κ

2(1 + κzc)
ψn(zc). (3.83)

Now we can check whether Eq. 3.80 solves Eq. 3.78 and adheres to the boundary conditions
in Eq. 3.82 and 3.83.

As can be seen in Fig. 3.8 the wavefunction of the zero-mode graviton peaks at the hidden
brane located at z = 0. Therefore, matter at the visible brane only experiences the tail of the
graviton wavefunction. This explains the weakness of gravity on the visible brane.

It is shown in [53, P. 20], the gravitational potential can be computed from the graviton modes.
We can analyse this potential to see if RS gravity agrees with our observations.

Lemma 3.3.9. The gravitational potential V (r) in terms of graviton modes is given by

V (r) = −
∞∑
n=0

a2n
4π

e−mnr

r
, (3.84)

where

an =
e

3
2Aψn(z)

2
√
M3

. (3.85)



CHAPTER 3. THE RANDALL-SUNDRUM MODEL 68

Note that the zero-mode term dominates the potential in Eq. 3.84. If we plug in Eq. 3.80 the
leading term of the potential is given by

V0(r) =− 1

16πM3

1

r

=− GN
r
.

We conclude that this reproduces four-dimensional gravity. Note that this applies to both RS1
and RS2. Therefore, even though RS2 has infinite fifth dimension, as a consequence of the fact
that the graviton is located close to the brane at z = 0, we still experience four-dimensional
gravity on the brane.

3.3.4 Singularity of the black string

In the previous sections we have shown that the Randall-Sundrum model solves the Hierarchy
problem with minimal fine-tuning and that four-dimensional gravity is retrieved on the brane.
The final thing we require for RS to be a good model for our universe is the existence of solar
mass black holes. In Section 3.2.6 we already constructed black hole solutions in the form of
RS black strings. We noted that in RS2 the black string seems to become massless at z = ∞.
In this section we derive that there is a singularity at z = ∞.

In 1999, another undesirable property was discovered by Chamblin, Hawking and Reall. They
discovered that the black string is singular at the horizon [17, P. 4].

Lemma 3.3.10. The square of the Riemann tensor of the black string is

RMNKLR
MNKL = 40κ4 +

48M2e4κycy

r6
(3.86)

The square of the Riemann tensor is singular both at the centre of the black string r = 0, and
in RS2 at the AdS horizon z = ycy → ∞. A singularity is a point of infinite curvature. Any
geodesic that reaches a singularity, stops at the singularity and can never leave it. The theory
breaks down at a singularity. Note that the square of the Riemann tensor becomes infinite
both at r = 0 and z = ∞, therefore there are singularities at these points.

The singularity of Eq. 3.86 at r = 0 is hidden behind the horizon of the black string. This
type of singularity also occurs at regular black holes. Since it is unclear whether black hole
solutions give a valid description of the interior of black holes, we do not worry about such a
singularity too much. The singularity at z = ∞ is a so called naked singularity, not hidden
behind any horizon and can be reached by anything. Since our theory breaks down at such
a singularity, we want to avoid them in our theories. Therefore, this observation hints to an
instability of the black string. This instability was first postulated by Chamblin, Hawking and
Reall. To avoid the formation of the singularity they proposed that the black string would
pinch off near the AdS horizon, forming a black cigar. A sketch of the black cigar can be
seen in Fig. 3.9.

So far there is no exact solution for the black cigar, let alone for the transition from a black
string to a black cigar. At first, there was even some debate about whether static solutions
for black holes could exist. Due to effects of the AdS/CFT correspondence, it was argued
that black holes would quickly evaporate [56]. Therefore, time-independent solutions could not
exist. In 2011 however, the first numerical solutions were constructed for black holes in RS2
with a wide range of masses [57]. It turns out that large black holes behave as AdS5/CFT4
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Figure 3.9: A schematic picture of the black cigar solution in the RS2 model.

solutions, whereas small black holes behave as if they are in flat extra dimensional space. Later
in 2021, even numerical solutions for rotating black holes in RS2 were constructed [58].

We conclude that the RS2 black string seems unstable. In the state of the RS2 black string the
forming of the singularity needs to be avoided. Therefore, when reaching this state it quickly
pinches off close to the AdS horizon. In this process it transforms to a different state. Using
the definition of stability in Def. 2.2.5, this describes an instability. If the RS2 black string is
unstable, it would make sense if there are cases where the RS1 black string is unstable as well.
We want solar mass black holes to exist in RS1, but they cannot exist for long periods of time
if they turn out to be unstable. In the next chapter we therefore analyse the mode stability of
the RS black string. Furthermore, we derive the masses for which black strings are stable in
RS.



Chapter 4

Mode stability of black strings

In the previous chapter we defined the Randall-Sundrum model. This model offers a solution to
the hierarchy problem. However, black holes seem to be unstable in this model. This chapter
aims to analyse the mode stability of the RS black string. In this chapter, we apply results
and techniques that were derived and explained in Chapter 2.

First of all, the mode stability of the Schwarzschild metric is analysed in Section 4.1. Due
to the spherical symmetry of the Schwarzschild metric, the metric perturbations can be de-
composed into modes of different angular momentum and parity. These different components
are expressed in terms of Regge-Wheeler harmonics. These harmonics are also useful for de-
composing the black string perturbations. We derive that the Schwarzschild metric has mode
stability by using Theorem 2.3.1.

In five-dimensional flat space, there are two types of black holes: hyperspherical black holes and
black strings. If the extra dimension is compact and the size L is large, then the hyperspherical
black hole is entropically favourable over the black string. Therefore, we expect the black string
to be unstable. In Section 4.2, we analytically prove the mode instability of the black string
in five-dimensional flat space. After the deriving the master equation of Schrödinger form, we
approximate the potential by an asymmetric finite well potential. This potential defines the
asymmetric finite well operator. By computing the eigenfunctions with negative eigenvalues of
this operator we obtain a set of test functions. We apply Theorem 2.3.16 and use this set of
test functions to estimate the lowest eigenvalue of the master equation. In this way, we prove
that the black string of mass M is unstable in the range M ∈

[
0.1L
4π , 0.85L4π

]
.

In Section 4.3, we generalize the flat black string instability to warped spaces. First, we derive
the master equation for the RS black string. Then we construct perturbations such that this
master equation reduces to the same master equation as for the flat black string. Consequently,
the results from Section 4.2 apply to these perturbations as well. We derive that there exists
an upper bound M0, such that RS1 black strings of mass M are modally unstable if M < M0.

4.1 Mode stability of the Schwarzschild metric

In this section we prove the mode stability of the 4-dimensional Schwarzschild metric. We
primarily follow the paper by Regge & Wheeler [20] where this has first been claimed. However,
to finalize the proof we will also use a papers by Vishveshwara [21] and Zerilli [22], who proved

70
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the mode stability more rigorously.

Recall the Schwarzschild metric from Eq. 2.28. Let us consider a perturbation of the Schwarzschild
metric g = gs+h. The spherical symmetry of the Schwarzschild metric allows us to decompose
the perturbation tensor h into components of different angular momentum and parity. This
decomposition will allow us to analyse the stability of each component separately instead of
having to analyse the stability for general h. In Section 4.1.1 we derive this decomposition into
so called Regge-Wheeler harmonics. In Section 4.1.2 we apply this decomposition to the per-
turbations of the Schwarzschild metric and simplify the problem using gauge transformations.
Then we analyse the odd and even parity modes in Section 4.1.3.

4.1.1 Scalar, vector and tensor spherical harmonics

The Schwarzschild metric is spherically symmetric. For such spaces we want to use the symme-
try to decompose scalars, vectors and tensors in to components of different angular dependence.
In this section we derive a useful complete set of functions that does this.

Definition 4.1.1. The spherical harmonics are scalar functions Y : S2 → R, which are
eigenfunctions of the Laplacian

∆S2Y = λY. (4.1)

We derive the scalar spherical harmonics, and we shall see that they have useful properties.

Let us start with the Laplace equation in spherical coordinates

△f =
1

r2
∂

∂r
(r2

∂f

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂f

∂θ
) +

1

r2 sin2 θ

∂2f

∂φ2
= 0, (4.2)

For f ∈ C∞(R3). Now we make the ansatz that we can split variables, so f(r, θ, φ) =
R(r)Y (θ, φ). Then we can rewrite Eq. 4.2 to

1

R

∂

∂r
(r2

∂R

∂r
) = − 1

Y sin θ

∂

∂θ
(sin θ

∂Y

∂θ
)− 1

Y sin2 θ

∂2Y

∂φ2
.

Note that the differential operator on the right hand side is the S2 Laplacian. The left hand
side is completely independent of θ and φ, and the right hand side is independent of r. So
we must have that both sides are equal to some constant λ ∈ R. Now we can again make a
separation of variables by making the ansatz Y = Θ(θ)Φ(φ). Then we can rewrite the equation
to

λ sin2 θ +
sin θ

Θ

∂

∂θ
(sin θ

∂Θ

∂θ
) = − 1

Φ

∂2Φ

∂φ2
. (4.3)

Note that again the left hand side only depends on θ, whereas the right hand side only depends
on φ. Therefore, both sides must be equal to some constant m2. On first sight, m could be
imaginary. However, consider the resulting differential equation

∂2Φ

∂φ2
= −m2Φ.

Then it follows that Φ is a linear combination of e±imφ. If we demand that Φ is periodic and
its period can be evenly divided by 2π, then m must be an integer.

Now going back to Eq. 4.3 we can rewrite it to the form

d

dθ
(sin θ

dΘ

dθ
) + λ sin θΘ =

m2

sin θ
Θ
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Next, we define P (cos θ) = Θ(θ) and x = cos θ. By this change of variables the above equation
is equivalent to

d

dx

(
(1− x2)

dP

dx

)
+

(
λ− m2

1− x2

)
P (x) = 0. (4.4)

With complicated analysis [59], of which we will not go into detail here, one can show that
solutions of this equation are regular on the sphere if and only if

λ = l(l + 1), with l = |m|, |m|+ 1, |m|+ 2, . . . .

In that case Eq. 4.4 is solved by the associated Legendre Polynomials Plm(x).

Definition 4.1.2 (Legendre Polynomials). The associated Legendre polynomials P lm(x) are
solutions to the differential equation

d

dx

(
(1− x2)

dPlm
dx

)
+

(
l(l + 1)− m2

1− x2

)
Plm(x) = 0.

They can be expressed in the form

P lm(x) =
(−1)m

2ll!
(1− x2)m/2

dl+m

dxl+m
(x2 − 1)l.

We can now define the spherical harmonics.

Lemma 4.1.3. The spherical harmonics Ylm : S2 → R are defined for every non-negative
integer l and integer m = −l,−l + 1, . . . , l. They are given by

Ylm(θ, φ) = NlmPlm(cos θ)eimφ,

with Nlm a normalization constant

Nlm =

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

.

The spherical harmonics have the following properties

1. The spherical harmonics are eigenfunctions of the angular momentum operator

r2△Ylm(θ, φ) = −l(l + 1)Ylm(θ, φ), r > 0.

2. The spherical harmonics are orthonormal on the sphere∫
YlmY

m′∗
l′ dΩ = δl,l′δm,m′

3. The spherical harmonics form a complete set in L2(S2)

∞∑
l=0

l∑
m=−l

Ylm(θ, φ)Y m∗
l (θ′, φ′) =

1

sin θ
δ(θ − θ′)δ(φ− φ′).

We say that Y lm has an angular momentum l, with projection on the z-axis m. This has to
do with the eigenvalues of the spherical harmonics when acted on by the corresponding oper-
ator. Using the completeness property of the spherical harmonics, any well-behaved function
f(r, θ, φ) can be decomposed into spherical harmonics.
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Lemma 4.1.4. Let f ∈ Ck(R3) for k ≥ 0. Then we can decompose f into spherical harmonics

f(r, θ, φ) =

∞∑
l=0

l∑
m=−l

flm(r)Ylm(θ, φ), with

flm(r) =

∫
f(r, θ, φ)Y ∗

lm(θ, φ)dΩ.

Furthermore, for the coefficients it holds that flm ∈ Ck(R).

Proof. For f ∈ Ck(R3), in spherical coordinates we have that for constant radius r0 ≥ 0 the
function f(r0, θ, φ) is square integrable on S2. Therefore, the flm are well defined. Furthermore,
note that indeed

f(r, θ, φ) =

∞∑
l=0

l∑
m=−l

∫
f(r, θ′, φ′)Y m∗

l (θ′, φ′)Ylm(θ, φ)dΩ′

=

∫
f(r, θ′, φ′)

∞∑
l=0

l∑
m=−l

Ylm(θ, φ)Y m∗
l (θ′, φ′)dΩ′

=

∫
f(r, θ′, φ′)

sin θ
δ(θ − θ′)δ(φ− φ′)dΩ′ = f(r, θ, φ).

We prove the regularity of flm by induction. First, we prove that flm is continuous if f is
continuous. Let r ≥ 0 and ϵ > 0. Since f is continuous at r and S2 is compact, there exists a
δ > 0 such that for any |r′ − r| < δ it holds that

|f(r′, θ, φ)− f(r, θ, φ)| < ϵ∫
|Ylm|dΩ

(4.5)

Consequently, it also holds that

|flm(r′)− flm(r)| =|
∫
(f(r′, θ, φ)− f(r, θ, φ))Ylm(θ, φ)dΩ|

≤
∫

|f(r; , θ, φ)− f(r, θ, φ)||Ylm(θ, φ)|dΩ < ϵ.

By induction it follows that if f is k-times differentiable, then so is flm. Since a derivative
of flm can be moved inside of the integral and only effects f , then using the fact that ∂kf

∂rk
is

continuous it follows that ∂kflm
∂rk

is continuous using the same procedure as above.

We conclude that any scalar function can be written as a sum of spherical harmonics. A
natural next step would be to try to express all vector and even tensor functions in terms of
spherical harmonics. For this we will need to define vector and tensor spherical harmonics.
These were first introduced by Regge and Wheeler in 1957 [20]. Later others, including Zerilli
in 1970 [22], developed different definitions of vector and tensor spherical harmonics, each
useful for a different application. Finally, in 1980 Kip Thorne [60] wrote a paper comparing
all different definitions and showing how they relate to each other. In this section we focus on
the definitions by Regge & Wheeler. Even though, these definitions might seem a bit out of
the blue they are most useful to us in proving the stability of the Schwarzschild metric.

Regge & Wheeler structure the vector and tensor spherical harmonics in terms of parity. A
parity transformation is a transformation where the coordinates are reflected in the origin,
(x, y, z) 7→ (−x,−y,−z). On the 2-sphere we define the parity map p : S2 → S2 that maps
a point on the two sphere to the point on the opposite side

(θ, φ) 7→ p(θ, φ) = (π − θ, φ+ π).
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Note that under this parity transformation, the spherical harmonics transform as

p∗Ylm(θ, φ) = Ylm(π − θ, φ+ π)

= Nlm Plm(cos(π − θ)) eim(φ+π)

= (−1)mNlm Plm(− cos θ) eimφ.

Now looking at the expression from definition 4.1.2, we see that Plm(−x) = (−1)l+mPlm(x),
so the spherical harmonics transform under the parity transformation as

p∗Ylm(θ, φ) = (−1)l+2mNlmPlm(cos θ)eimφ = (−1)lYlm(θ, φ).

It turns out that we can distinguish different vector and tensor spherical harmonics based on
how they transform under the parity transformation.

Definition 4.1.5. Let Alm(θ, φ) be a scalar, vector, or tensor defined on the 2-sphere which is
an eigenfunction of the S2 Laplacian with eigenvalue −l(l+ 1). We say Alm has even parity
if Alm transforms under the parity transformation as

p∗Alm(θ, φ) = (−1)lAlm(θ, φ).

Alm has odd parity if it transforms under the parity transformation as

p∗Alm(θ, φ) = (−1)l+1Alm(θ, φ).

Now we can define the Regge-Wheeler harmonics, which is a set of scalar, vector and
tensor spherical harmonics. From Lem. 4.1.3 it follows that the scalar spherical harmonics are
just given by the regular spherical harmonics. Furthermore, we just derived that these have
even parity. The vector spherical harmonics are sections on T ∗S2. For each non-negative
integer l and m = −l,−l + 1, . . . , l there exist two types of opposite parity which in spherical
coordinates are given by:

(Ψlm)a =
∂

∂xa
Ylm(θ, φ), even parity, (4.6)

(ϕlm)a = ϵba
∂

∂xb
Ylm(θ, φ), odd parity. (4.7)

Here a, b = 2, 3, where x2 = θ and x3 = φ. The tensor ϵνµ is defined by ϵ22 = ϵ33 = 0, ϵ32 = − 1
sin θ

and ϵ23 = sin θ. For the tensor spherical harmonics we also need to introduce the 2-tensor γab
on the sphere, where in spherical coordinates γ22 = 1, γ23 = γ32 = 0 and γ33 = sin2 θ. The
tensor spherical harmonics are sections of Sym2(T ∗S2), for non-negative integers l and
m = −l,−l + 1, . . . , l they are given by

(αlm)ab = ∇a∇bYlm(θ, φ), even parity, (4.8)
(βlm)ab = γabYlm(θ, φ), even parity, (4.9)

(ξlm)ab =
1

2
[ϵca(Ψlm)cb + ϵcb(Ψlm)ca] , odd parity. (4.10)

Here again a, b = 2, 3. Thorne proved that any scalar, vector or tensor can be expressed in
terms of Regge-Wheeler harmonics [60, P. 12].

Theorem 4.1.6. Any scalar, vector, or symmetric 2-tensor on S2 can be decomposed in terms
of Regge-Wheeler harmonics. In particular, let X ∈ Γ(TS2), then there exist ulm, vlm ∈ R
such that

X =

∞∑
l=0

l∑
m=−l

ulmΨlm + vlmϕlm. (4.11)

Similarly, for any T ∈ Γ(Sym2(TS2)) there exist Ulm, Vlm,Wlm ∈ R such that

T =

∞∑
l=0

l∑
m=−l

Ulmαlm + Vlmβlm +Wlmξlm. (4.12)
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In the next sections we use these harmonics to decompose the perturbations.

4.1.2 Mode decomposition of perturbations to the Schwarzschild met-
ric

With the Regge-Wheeler harmonics, we can decompose perturbations of the Schwarzschild
metric and analyse the mode stability. The Schwarzschild metric describes the spacetime
around black holes. We want to derive whether this metric is a stable spacetime configuration.
We are quite sure that black holes exist and that they are stable. Therefore, if we believe the
Schwarzschild metric is a good description, small perturbations of the metric should not have
big consequences. Therefore, there should not be any exponentially growing modes.

Let g = gs+h be a perturbation of the Schwarzschild metric gs, where h ∈ Γ(Sym2(TR4)). Due
to the spherically symmetric background, the components of h of different angular momentum
split in the linearized Einstein equations. It turns out that in order to prove stability, it is
enough to separately prove stability for perturbations with different angular momentum l,
projection to the z-axis m, and parity, with l = 0, 1, 2, . . . and m = −l,−l + 1, . . . , l.

Proposition 4.1.7. A general perturbation h ∈ Γ(Sym2(TR4)) which has angular momentum
l, whose projection on the z-axis is m, and with odd parity is given by

hab =



0 0 −h0(t, r) 1
sin θ

∂
∂φ h0(t, r) sin θ

∂
∂θ

0 0 −h1(t, r) 1
sin θ

∂
∂φ h1(t, r) sin θ

∂
∂θ

∗ ∗ h2(t, r)
(

1
sin θ

∂2

∂θ∂φ − cos θ
sin2 θ

∂
∂φ

)
1
2h2(t, r)

(
1

sin θ
∂2

∂φ2 + cos θ ∂∂θ

− sin θ ∂
2

∂θ2

)
∗ ∗ ∗ −h2(t, r)

(
sin θ ∂2

∂θ∂φ − cos θ ∂
∂φ

)

Ylm. (4.13)

Here the ∗ indicates components that are determined by the symmetry of the tensor. The
perturbations of even parity will take the following form

hab =


H0(t, r) H1(t, r) f0(t, r)

∂
∂θ f0(t, r)

∂
∂φ

H1(t, r) H2(t, r) f1(t, r)
∂
∂θ f1(t, r)

∂
∂φ

∗ ∗
(
K(t, r) +G(t, r) ∂

2

∂θ2

)
G(t, r)

(
∂2

∂θ∂φ − cos θ
sin θ

∂
∂φ

)
∗ ∗ ∗ G(t, r)

(
∂2

∂φ2 + sin θ

cos θ ∂∂θ
)
+K(t, r) sin2 θ

Ylm. (4.14)

We refer to Eq. 4.13 as the odd type of perturbation and to Eq. 4.14 as the even type of
perturbations.

Proof. In spherical coordinates we can decompose the tangent space as follows

TR4 = TR⊕ TR≥0 ⊕ TS2. (4.15)

Therefore, the vector bundle Sym2(TR4) will consist of blocks of the following form

Sym2(TR4) =Sym2(TR) ⊕ (TR⊗ TR≥0) ⊕
(
TR⊗ TS2

)
(4.16)

⊕ Sym2(TR≥0)⊕
(
TR≥0 ⊗ TS2

)
⊕ Sym2(TS2). (4.17)

There is an identification between TR and R. Therefore, we can use scalar functions on
R4 to represent sections on Sym2(TR), TR, Sym2(TR≥0) and TR≥0. Using Theorem 4.1.6
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these scalars can be decomposed into spherical harmonics. Additionally, we can apply the
same theorem to the sections on TS2 and Sym2(TS2) to decompose these into Regge-Wheeler
vector and tensor spherical harmonics, respectively.

Using the definitions from Section 4.1.1, we can now construct a general perturbation with an-
gular momentum l, projection to the z-axis m and odd or even parity. In spherical coordinates
this construction will precisely give the tensors in Eq. 4.13 and 4.14.

Recall from Sec. 2.2 that for a stationary background space we can focus on proving mode
stability. The Schwarzschild metric is independent of the time-coordinate t, so it is sensible to
do a mode decomposition here. With Eq. 2.56 we split the perturbation in modes of different
frequencies ω. As a consequence of the time translation symmetry it is possible to analyse the
stability of the modes separately. For a mode of h the time dependence will be given by a
factor exp(−iωt). So altogether, we can separately solve the linearized Einstein equations for
the different modes of the perturbation, each mode with a specific frequency ω, l and m value,
and parity. A general perturbation will then be a superposition of these modes with coefficients
that fit the boundary conditions and initial values. However, recall from section 2.2 that having
only stable modes does not imply linear stability. Namely, it is possible that this superposition
is just a formal series and that it does not converge to a solution. Moreover, the integral in
Eq. 2.56 does not necessarily have to consist purely out of modes that solve the linearized
Einstein equations. It is possible that there are modes such that ∆Le

−iωtχ(ω, xi) ̸= 0, but
in the integral it gets cancelled by another non-zero mode. Nevertheless, we focus on mode
stability for now.

Proposition 4.1.8. The Einstein equations will be independent of the projection to the z-axis
m.

Proof. Since the background is spherically symmetric, we can always apply a rotation such
that the projection to the new z-axis is equal to any desired value.

Therefore, we can specialize to m = 0, which will take away all φ dependency and is for that
reason the most sensible choice.

Before computing the Einstein equations, we note that the perturbations can still be simplified
by gauge transformations. For a small vector field X ∈ Γ(TR4) the metric transforms as in
Eq. 2.32. Keeping gs fixed, the perturbation transforms as

h′ab = hab +∇s
aXb +∇s

bXa, (4.18)

where ∇s denotes the covariant derivative with respect to the Schwarzschild metric. Since
we do not want to disturb the angular momentum or parity of our perturbation, we only
want to transform the perturbations using vector fields of the same angular momentum and
corresponding parity. Using the splitting of TR4 in Eq. 4.15, we can split

Γ(TR4) = Γ(TR)⊗ Γ(TR≥0)⊗ Γ(TS2). (4.19)

Therefore, the vector fields are decomposed in Regge-Wheeler harmonics by using scalar spher-
ical harmonics for X0 and X1 and vector spherical harmonics for (X2, X3).

Lemma 4.1.9. After a suitable gauge transformation, a general odd parity perturbation of
angular momentum l and frequency ω takes the from

hab =


0 0 0 h0(r)
0 0 0 h1(r)
0 0 0 0

h0(r) h1(r) 0 0

× e−iωt sin θ
∂

∂θ
Pl(cos θ), (4.20)
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where Pl is a Legendre polynomial. An even parity perturbation is of the form

hab =


H0(t, r) H1(t, r) 0 0
H1(t, r) H2(t, r) 0 0

0 0 K(t, r) 0
0 0 0 K(t, r) sin2 θ

× e−iωtPl(cos θ). (4.21)

Proof. Let us first focus on odd type perturberbations. Odd parity Xa will then have the form

X0 = 0, X1 = 0, Xa = Λ(t, r)ϵba
∂

∂xb
Ylm (a, b = 2, 3).

If we then compute covariant derivatives of this covector, we find that

∇2X2 = Λ(t, r)

(
cos θ

sin2 θ

∂

∂φ
− 1

sin θ

∂2

∂θ∂φ

)
Ylm,

∇2X3 = Λ(t, r) sin θ
∂2

∂θ2
Ylm,

∇3X2 = Λ(t, r)

(
− 1

sin θ

∂2

∂φ2
− cos θ

∂

∂θ

)
Ylm,

∇3X3 = Λ(t, r)

(
sin θ

∂2

∂θ∂φ
− cos θ

∂

∂φ

)
Ylm.

Consequently, by setting Λ(t, r) = − 1
2h2(t, r) we can precisely cancel the contribution of the

tensor spherical harmonic. Note that other covariant derivatives such as ∇1X3, will also
not vanish. However, we can solve this by redefining h1, such that after the redefinition the
component of the perturbation did not change. With this gauge transformation in mind and by
setting m = 0, a general perturbation of odd parity, with angular momentum l and frequency
ω takes the form of Eq. 4.20.

Similarly, the even parity perturbations can also be simplified. Using the scalar spherical
harmonics and the even vector spherical harmonics from Eq. 4.6, a gauge transformation of
even parity, and of (l,m) type is of the following form

X0 =M0(t, r)Ylm,

X1 =M1(t, r)Ylm,

X2 =M(t, r)
∂

∂θ
Ylm,

X3 =M(t, r)
∂

∂φ
Ylm.

Note that we have three degrees of freedom, M0, M1 and M , which we want to use to cancel
the factors of G, f0 and f1 in Eq. 4.14. By examining the covariant derivatives of the covector
field Xa, the following equations need to be satisfied in order to cancel the desired terms

∂M

∂t
+M0 = −f0,

∂M

∂r
− 2M

r
+M1 = −f1,

M =
−1

2
G.

This simply leads to the following solution

M =
−1

2
G, M0 =

1

2

∂G

∂t
− f0, M1 =

1

2

∂G

∂r
− G

r
− f1. (4.22)
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Here again, this gauge transformation also shifts the other terms. Nevertheless, no new terms
are introduced, such that we can just redefine of the functions H0, H1, H2 and K. Finally,
just as in the odd case we set m = 0. With this the even perturbations can be written in the
form of Eq. 4.21.

Now that we have each mode in this simple form, we can compute the linear Einstein equations
for each mode separately. This is done in the next section.

4.1.3 Mode stability of the Schwarzschild metric

In this section we solve the linearized Einstein equations 2.51 for odd and even parity per-
turbations of the Schwarzschild metric. We prove that all modes are stable for both types of
parity. We combine this to prove that the Schwarzschild black hole has mode stability.

Theorem 4.1.10. The Schwarzschild metric (R4, gs) has mode stability.

To prove this theorem we first have to analyse the linearized Einstein equations of the Schwarzschild
metric. We start with analysing the equations for odd parity modes.

Lemma 4.1.11. The linearized Einstein equations of the Schwarzschild metric for odd parity
modes can be rewritten into a odd parity master equation of the following form

− d2Q

dr∗2
+ VoddQ = ω2Q, (4.23)

where
Vodd(r) =

(
1− rs

r

)( l(l + 1)

r2
− 3rs

r3

)
. (4.24)

Proof. First we compute the Linearized Einstein equations for odd parity modes of the form
as in Eq. 4.20. Most components of the linearized Einstein equations will vanish, but there
will remain three non-trivial equations(
1− rs

r

)−1

iωh0 +
d

dr

(
1− rs

r

)
h1 = 0 (δR23 = 0), (4.25)(

1− rs
r

)−1

iω

[
dh0
dr

+ iωh1 −
2h0
r

]
+ (l + 2)(l − 1)

h1
r2

= 0 (δR13 = 0), (4.26)

d

dr

(
iωh1 +

dh0
dr

)
+ 2iω

h1
r

+
(
1− rs

r

)−1
(
2rs
r3

− l(l + 1)

r2

)
h0 = 0 (δR03 = 0). (4.27)

The third equation can be derived directly from the other two, so we will focus on the first
two. We define the tortoise coordinate using the differential relation

dr

dr∗
=
(
1− rs

r

)
. (4.28)

This leads to the following relation

r∗ = r + rs log

(
r

rs
− 1

)
, −∞ < r∗ <∞. (4.29)

Furthermore, we define a new quantity

Q(r) =
(
1− rs

r

) h1(r)
r

.

If we eliminate h0 out of the equations, then we end up with a second-order Schrödinger-like
equation for Q, which is the master equation in Eq. 4.23.
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Let us take a step back and look at what Eq. 4.23 can tell us about the mode stability of
the Schwarzschild metric. Recall from section 2.2 that a metric has mode stability if there
are no exponentially growing modes. If we now look back to the master equation for the
odd parity perturbation in Eq. 4.20, we see that an imaginary ω would lead to exponential
growth of the perturbation, whereas modes with real ω are oscillatory and will for that reason
not grow in size over time. Therefore, what we need to prove is that the spectrum of the
operator on the left hand side of Eq. 4.23 consists of positive numbers. Then any mode has
real frequency ω. Consequently, we prove that the Schwarzschild metric has mode stability
under odd perturbations.

In 1957, Regge & Wheeler proved this by constructing solutions to Eq. 4.23 at the ranges
r → ∞ and r → rs and then argued that these solutions cannot be matched together for
imaginary ω [20]. Later, in 1970, Vishveshwara not only redid this proof, but also gave a
mathematically more rigorous alternative proof [21, Section 5A]. Vishveshware used spectral
theory to analyse the spectrum of the frequencies. We already did most of the work in Section
2.3. The mode stability is proven by applying Theorem 2.3.1.

Lemma 4.1.12. All odd parity modes of the Schwarzschild black hole (R4, gs) have a real
frequency.

Proof. Now that we have a master equation of Schrödinger form we can use results from
section 2.3 to find the frequencies of the modes. The first step is to translate the problem to
an eigenvalue problem. We define the operator

A = − d2

dr∗
+ Vodd.

According to Theorem 2.3.1, we have mode stability if Vodd is piecewise continuous, bounded
and non-negative in the range rs < r < ∞. Looking at Eq. 4.24, Vodd is indeed bounded and
continuous in this range. To observe the non-negativity note that 1 − rs

r > 0 in this range.
Furthermore, if l ≥ 2 then

l(l + 1)

r2
− 3rs

r3
>
l(l + 1)

r2
− 3

r2
> 0. (4.30)

This proves the stability for l ≥ 2.

For the case l = 0, note that P0(x) = 1 such that the odd parity perturbations in Eq. 4.20
vanish. In the case of l = 1, it is shown in [21, P. 37] that the odd parity perturbations are
pure gauge. Therefore, they can be removed with a gauge transformation.

Next we derive mode stability of the even parity perturbations. In [20, P. 5] it is shown that the
even l = 0 perturbations correspond to the difference between two Schwarzschild solutions of
mass M and M+δM . Furthermore, the even l = 1 perturbations correspond to a displacement
of the black hole by δx. These are stable transformations. Therefore, we only need to show
the stability for l ≥ 2.

Lemma 4.1.13. The linearized Einstein equations of the Schwarzschild metric for even parity
modes and l ≥ 2 can be rewritten into a even parity master equation of the following form

−d
2K̂

dr∗2
+ Veven K̂ = ω2K̂, (4.31)

with the potential

Veven(r) =
(r − rs)(8r

3λ(1 + λ) + 12rsr
2λ2 + 18rs

2rλ+ 9rs
3)

r4(3rs + 2rλ)2
. (4.32)
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Proof. Perturbations of even parity can be written as in Eq. 4.21. The linearized Einstein
equations in the even parity case for l ≥ 2 give two algebraic relations, three first order
differential equations, and three second order differential equations. From δR22 = 0 we derive
that H0 = H2 ≡ H. Using this relation to replace H0 and H2, the first order differential
equations are

dK

dr
+
l(l + 1)

2iωr2
H1 −

1

r
H +

r − 3
2rs

r(r − rs)
K = 0 (δR01 = 0), (4.33)

dH1

dr
+

rs
r(r − rs)

H1 +
iωr

r − rs
H +

iωr

r − rs
K = 0 (δR02 = 0), (4.34)

dH

dr
+

[
iωr

r − rs
+
l(l + 1)

2iωr2

]
H1 +

r − 2rs
r(r − rs)

H +
r − 3

2rs

r(r − rs)
K = 0 (δR12 = 0). (4.35)

The other algebraic relation follows from δR11 = 0, from which we get

2(r − rs)
dH

dr
− (2r − 2rs)

dK

dr
+ 4iωrH1− (4.36)

(l + 2)(l − 1)H +

[
(l + 2)(l − 1)− 2ω2r3

r − rs

]
K = 0.

If we substitute the derivatives in Eq. 4.36 with the expressions we get from Eq. 4.33 and
4.35, then we end up with the relation[

2iωr +
l(l + 1)rs
2iωr2

]
H1 −

[
(l + 2)(l − 1 +

3rs
r

]
H+ (4.37)[

(l + 2)(l − 1) +
rs(r − 3

2rs)

r(r − rs)
− 2ω2r3

r − rs

]
K = 0.

It can be shown that the three second order equations follow directly from these relations. For
the full set of equations we refer to the Regge & Wheeler paper [20, P. 5].

We would like to obtain an equation of Schrödinger type, where we can describe the system
with one function. Using the algebraic relation from Eq. 4.37, we can already get rid of
one function. We choose to solve it for H, and substitute this expression in the differential
equations for H1 and K. Additionally, it turns out to be convenient to define R = H1

ω . Using
R the differential equations will be of the following form

dK

dr
=
[
α0(r) + α2(r)ω

2
]
K +

[
β0(r) + β2(r)ω

2
]
R, (4.38)

dR

dr
=
[
γ0(r) + γ2(r)ω

2
]
K +

[
δ0(r) + δ2(r)ω

2
]
R, (4.39)

where the α, β, γ and δ functions only depend on r, m∗ and l and not on ω.

We now want to make a transformation [22]

K = f1(r)K̂ + f2(r)R̂, (4.40)

R = g1(r)K̂ + g2(r)R̂, (4.41)

such that these new functions K̂ and R̂ satisfy the differential relations

dK̂

dr∗
= R̂, (4.42)

dR̂

dr∗
=
[
V (r)− ω2

]
K̂, (4.43)
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Figure 4.1: The odd and even potentials belonging to the master equations 4.23
and 4.31, respectively. The horizontal axis represents the tortoise coordinate r∗.
We set rs = 2 and λ = l = 2.

where r∗ is the tortoise coordinate 4.29, and V (r) is some potential. If such a transformation
exists, then we can combine the two differential relation to find a master equation of the desired
Schrödinger form 2.59.

We can substitute Eq. 4.40 and 4.41 into Eq. 4.38 and 4.39. If we combine the resulting
equations with our requirements, then we have four equations to solve for the four unknown
functions f1, f2, g1 and g2. This can be done to find

f1(r) =
λ(λ+ 1)r2 + 3m∗rλ+ 6m∗2

r2( 32rs + rλ)
, f2(r) = 1 (4.44)

g1(r) =
i(r2λ− 3

2rsrλ− 3m∗2)

(rs − r)( 32rs + rλ)
, g2(r) =

ir2

r − rs
, (4.45)

where λ = 1
2 (l − 1)(l + 2). Finally, we find the master equation from Eq. 4.31.

On first sight the potential in Eq. 4.32 looks very different compared to the potential in the
odd case in Eq. 4.24. However, if we look at Fig. 4.1, then we see that they are actually
very similar. With this fact, we conclude that there is no difference between the behaviour of
odd and even perturbations. In particular, by Cor. 2.3.20 and Theorem 2.3.23 we conclude
that the even perturbation modes all have real frequency and that there are no exponentially
growing modes.

Lemma 4.1.14. All even parity modes of the Schwarzschild black hole (R4, gs) have a real
frequency.

With Lem. 4.1.12 and 4.1.14 it follows that all modes of the Schwarzschild black hole are
stable. In particular this proves Theorem 4.1.10.
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4.2 Gregory-Laflamme Instability

In the previous section we have proven the stability of the Schwarzschild metric in four di-
mensions. In this section we analyse the stability of black holes in five-dimensional flat space.
According to Gregory and Laflamme [18], there exist unstable five-dimensional black holes.
We analyse this instability such that we can generalize it to the instabilities in the RS model
in the next section.

In Section 4.2.1, we derive two different five-dimensional black hole solutions: the hyperspher-
ical black hole and the black string. In Section 4.2.2, we use an entropy argument to argue
that the hyperspherical black hole is preferred over the black string if the extra dimension is
large. This indicates the existence of an instability of the black string. We analytically prove
this mode instability in the rest of the subsections.

We prove it by first deriving the master equation of the modes of the black string in Section
4.2.3. This master equation defines the black string operator with a potential. The strategy
to prove the instability is to construct proper test functions and use Theorem 2.3.16 to prove
that the black string operator admits negative eigenvalues. In Section 4.2.4 we define the
asymmetric finite well potential, which is a good approximation of the black string potential.
We can use the eigenfunctions of the asymmetric finite well operator as test functions. The
eigenfunctions are derived in Section 4.2.5. Finally, we use these eigenfunctions and apply
Theorem 2.3.16 to prove the existence of negative eigenvalues in Section 4.2.6.

4.2.1 Black holes and black strings

In this section we derive two black hole solutions in five-dimensional flat space. In four di-
mensions, the Schwarzschild solution is derived by solving the vacuum Einstein equations 2.27.
The Schwarzschild solution is the unique, static and spherically symmetric solution solving the
vacuum Einstein equations for µ = 0. However, in higher dimensions, there are multiple black
hole solutions.

Birkhoff’s theorem 2.1.17 can be generalized to five-dimensions [61, Theorem 1]. In that case we
consider the five-dimensional spherical symmetry. This gives a five-dimensional generalization
of the Schwarzschild solution. This leads to a hyperspherical black hole with metric in spherical
coordinates given by

gHS = −f5(r)dt2 + f5(r)
−1dr2 + r2dΩ2

3, (4.46)

where dΩ2
3 is the standard metric on S3 and f5 is given by

f5(r) = 1− r25
r2
, r25 =

8G5M

3π
. (4.47)

Here r5 denotes the radius of the horizon and M the mass of the five-dimensional black hole.

However, also non-spherically symmetric black holes exist in five-dimensions [62]. Namely, we
can still construct solutions which are spherically symmmetric in a four-dimensional plane.
Similar to RS, there exists a black string solution in five-dimensional flat space. Any metric of
the form

g(4)(x) + dy2, (4.48)

is Ricci flat if the four-dimensional metric g(4) is Ricci flat. Therefore, a solution is obtained
by substituting the Schwarzschild metric for g(4). This is the black string solution given by

gBS = −(1− rs
r
)dt2 +

1

1− rs
r

dr2 + r2dΩ2
2 + dy2, (4.49)
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L

Figure 4.2: The spherical black hole in a space with compact extra dimensions
of length L. It interacts with itself along the extra dimension.

with the Schwarzschild radius
rs = 2G4M. (4.50)

One could ask why this does not give a string-like black hole in four-dimensions using the
same construction. However, in three dimensions general relativity is much simpler. In fact
the Riemann tensor is fully determined by the Ricci tensor [63, Eq. 7]. Therefore, a Ricci
flat space is completely flat. Therefore, there are no Ricci flat black hole solutions in three
dimensions.

Now we found two different black hole solutions in five dimensions. We can ask ourselves which
type of black hole is more natural, i.e. which type would form after the collapse of a star. Let
us consider the five-dimensional case with one compact dimension of length L such that the
manifold would become (R4 × S1, g). Then the black string metric in Eq. 4.49 is still valid.
However, the hyperspherical black hole is not an exact solution any more. As can be seen in
Fig. 4.2, the hyperspherical black hole will now interact with itself along the extra dimension.
This will cause a distortion in the black hole. When the size of the black hole is much smaller
than L, one can use construct a solution using Weyl metrics as is explained in [64], it turns
out that the metric in Eq. 4.49 is still a good approximation. When the size of the black
hole becomes comparable to L an exact solution can no longer be constructed and numerical
computations are necessary.

For very big masses, when the size of the black hole becomes bigger than L, a hyperspherical
is no longer possible. Therefore, in this case it is clear which solution is favourable. The
hyperspherical black hole no longer fits into the cage, and a black string solution is forced.
The story is different for small black holes. When M is small we can still approximate the
hyperspherical black hole by the solution in Eq. 4.46. Likewise, the black string is still a
solution. Normally, a physical system evolves to the state with lowest energy. However, in this
case both solutions have the same energy M . Instead, we have to study the entropy of the
black holes. According to the second law of thermodynamics, the entropy of a system is always
growing. Therefore, the state with the highest entropy will be the preferred one.
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4.2.2 Entropy of black holes

In the previous section we derived that there exist two types of black holes in five-dimensional
flat space. We want to determine which state is the preferred physical state after for example
gravitational collapse of a star. In this section we use an entropy argument to prove the
following lemma.

Lemma 4.2.1. Let (R4 × S1, gHS) and (R4 × S1, gBS) be the hyperspherical black hole and
black string, respectively. Suppose both spaces have mass M and size of the compact dimension
L. Then the hyperspherical black hole is entropically favourable over the black string if

M <
8L

27π
≈ 0.09L. (4.51)

According to Bekenstein and Hawking [65], information of a black hole is stored on its boundary.
Therefore, the entropy of a black hole SBH is proportional to its surface area A

SBH =
A

4G5
. (4.52)

We can compare the entropy of the spherical black hole to the entropy of the black string.
Using Eq. 4.52 and the surface areas, the entropies are given by

SBH =
π2r35
2L

, SBS =
πLG2

4r
2
s

G5
. (4.53)

With these expressions for the entropy, we can determine which state is preferred.

Proof of Lemma 4.2.1. From Eq. 3.7 we can read off how the four-dimensional Newton’s con-
stant relates to the five-dimensional one. It is given by

G5 = LG4 = L,

if we set G4 = 1. Using this relation and Eq. 4.47 and 4.50, we can express the entropy of the
black holes in terms of the mass

SBH =

√
128πLM3

27
, SBS = 4πM2. (4.54)

Clearly, by fixing M and raising L, then at some point the hyperspherical black hole becomes
entropically favourable over the black string. From Eq. 4.54 we read off that the hyperspherical
black hole is favourable when

M <
8L

27π
. (4.55)

Therefore, we expect long wavelength instabilities for the black string in this range. We derive
the existence of these instabilities in the next subsections.

4.2.3 Perturbations of the black string

According to the entropy argument that was just derived, a long wavelength instability in the
black string can be expected. In this section we take the first step in finding this instability
by perturbing the metric.



CHAPTER 4. MODE STABILITY OF BLACK STRINGS 85

Let gBS denote the black string metric from Eq. 4.49, and let g = gBS + h be the perturbed
metric. We would expect this instability to already occur on the spherically symmetric level.
This corresponds in terms of spherical harmonics to the l = 0 case. Odd parity perturbations
vanish at the l = 0 level. Therefore, we can decompose the perturbation in one even parity
component. Additionally, since the background metric is independent of both t and y we can
take a Fourier-Lagrange transform over both of these coordinates. We define

hab =

∫
dω

∫
dmeωteimyh̃ab(ω,m, r). (4.56)

Since we are looking for an instability we decomposed the perturbation in a way such that the
modes with ω ∈ R≥0 correspond to an instability. It is only necessary to analyse each mode
individually. Therefore, we can decompose the perturbation as

hMN = eωteiny


H0 H1 0 0 H3

H1 H2 0 0 H4

0 0 K 0 0
0 0 0 K sin2 θ 0
H3 H4 0 0 H5

 , (4.57)

where the Hi and K are scalar functions that only depend on the r-coordinate. In this section
we derive the following master equation for mode perturbations of the black string.

Lemma 4.2.2. The modes of the flat black string (R4 × S1, gBS) from Eq. 4.57 that have
ω ∈ R are determined by the black string master equation given by

−d
2Ĥ

dx2
+ Vm̂(r̂)Ĥ = −ω̂2Ĥ. (4.58)

with potential

Vm̂(r̂) =
(−1 + r̂)

(
1 + 3m̂2(3− 4r̂)r̂3 + m̂6r̂9 + 3m̂4r̂6(−3 + 2r̂)

)
r̂4 (1 + m̂2r̂3)

2 . (4.59)

By Def. 2.2.9 the modes from Eq. 4.57 need to satisfy ∆Lh = 0, where ∆L is the Lichnerowicz
operator defined in Eq. 2.50. Note that so far we have assumed spherical symmetry, however
we have not done any gauge fixing yet. Since we are in vacuum, we can fix h to be in the
transverse traceless gauge, which simplifies the Lichnerowicz operator.

Lemma 4.2.3. There exist a gauge transformation such that the metric gBS + h is in the
transverse traceless gauge from Def. 2.2.11.

Proof. Using the Regge-Wheeler harmonics from section 4.1.1 a spherically symmetric covector
has components

Xa = eωteimy


f0(r)
f1(r)
0
0

f2(r)

 .

Therefore, we have three degrees of freedom. One can show for perturbations as in Eq. 4.57
we already have

∇Mh
M
2 = ∇Mh

M
3 = ∇Mh

M
5 = 0.

Therefore, only have to fix the three quantities hMM , ∇Mh
M
0 and ∇Mh

M
1 to be zero. This we

can do using the three degrees of freedom we have.
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Another simplification happens because the background metric is Ricci flat. With these facts
the Lichnerowicz operator becomes

∆LhMN = □gBShMN + 2RMPNQh
PQ. (4.60)

Lemma 4.2.4. The y-components of the Riemann tensor associated to the black string metric
in Eq. 3.42 vanish.

Proof. Note that a Christoffel symbol with a y-component vanishes, ΓNM5 = 0 for M,N =
0, 1, 2, 3, 5. Therefore, also all y-components of the Riemann tensor vanish.

From the lemma it follows that the (55)-component of Eq. 4.60 is given by

∆Lh55 = □gBSh55 = H ′′
5 +

(
2r − rs
r − rs

)
H ′

5

r
−
(
m2r(r − rs) + ω2r2

) H5

(r − rs)2
= 0. (4.61)

Close to the horizon of the black hole and at r → ∞ solutions to Eq. 4.61 behave as

H5 ∼e±
√
ω2+m2r as r → ∞, (4.62)

H5 ∼(r − rs)
±ωrs as r → rs. (4.63)

For a proper perturbation we expect that H5 ∈ H2(R). Then according to Lem. 2.3.6, H5

vanishes both at the horizon x→ −∞ and asymptotically x→ ∞. To show that h55 does not
contribute to the instability the following lemma is useful.

Lemma 4.2.5. Let f ∈ C2 ((a, b),R) non-zero such that limx→a f(x) = 0 and limx→b f(x) = 0,
then there exists a turning point x ∈ (a, b) for which f ′(x) = 0 and

f ′′(x)

f(x)
< 0. (4.64)

Therefore, there exists a r ∈ (rs,∞) with H ′
5(r) = 0 and H ′′

5 (r)/H5(r) < 0. From Eq. 4.61 at
this r we have

H ′′
5

H5
=
m2r(r − rs) + ω2r2

(r − rs)2
. (4.65)

This can only become negative when ω is imaginary. In our decomposition unstable modes
had real ω. Consequently, an unstable mode has H5 = 0.

With the same arguments we can conclude that H3 and H4 are zero for unstable modes. So
any unstable mode can now be reduced to the form

hab = eωteimy


H0 H1 0 0
H1 H2 0 0
0 0 K 0
0 0 0 K sin2 θ

 , (4.66)

for a, b = 0, 1, 2, 3 and hM5 = 0 for M = 0, 1, 2, 3, 5.

Lemma 4.2.6. For an unstable mode of the black string, the Lichnerowicz operator reduces to
the four-dimensional Lichnerowicz operator plus a mass term

∆Lhab = ∆s
Lhab −m2hab, (4.67)

here ∆s
L denotes the Lichnerowicz operator associated to the four-dimensional Schwarzschild

solution.
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Proof. Since both the y-components of the Riemann tensor and the perturbation vanish for
unstable modes, we have ∆LhM5 = 0 already. For the other components of the equation we
have

∆Lhab =□gBShab + 2RaMbNh
MN

=□gshab + h′′ab + 2Rsabcdh
ab

=∆s
Lhab −m2hab.

Here gs denotes the four-dimensional Schwarzschild metric and Rs the corresponding Riemann
tensor. Furthermore, the second equality is a consequence of the fact that all y-components of
the Christoffel symbol vanish.

We have now simplified the linearized Einstein equations enough to be able to compute the
master equation.

Proof of Lem. 4.2.2. Using this result we can compute the equations we get from the linearized
Einstein equations ∆LhMN = 0. This leads to two differential equations and one relation. They
are given by

H+ =
H−

V

(
2r2ω2 + r2m2V − (1− V 2)/2

)
(r2m2 + 1− V )

− rH

ω

(
4ω2 +m2(1− 3V )

)
(r2m2 + 1− V )

, (4.68)

H ′ =
ω (H+ +H−)

2V
− (1 + V )H

rV
, (4.69)

H ′
− =

m2H

ω
+
H+

r
+

(1− 5V )H−

2rV
, (4.70)

where we defined

V =1− rs

r
, (4.71)

H± =
H0

V
± V H2, (4.72)

H =H1. (4.73)

By redefining R = ωH− and using the relation in Eq. 4.68 to get rid of H+, we obtain a system
of two differential equations of the form

dR

dr
=(α0 + ω2α2)R+ (β0 + ω2β2)H, (4.74)

dH

dr
=(γ0 + ω2γ2)R+ (δ0 + ω2δ2)H. (4.75)

This is system similar to the even parity Schwarzschild case. Therefore, we again define a
transformation to R̂ and Ĥ with

R =f1(r)R̂+ f2(r)Ĥ, (4.76)

H =g1(r)R̂+ g2(r)Ĥ. (4.77)

In order to obtain a Schrödinger equation we want the derivatives of the new variables to be
equal to

dĤ

dr∗
= R̂,

dR̂

dr∗
=
(
ω2 − Vm(r)

)
Ĥ, (4.78)

where again r∗ is the tortoise coordinate. Additionally, the potential Vm should only depend
on m and not on the frequency ω. There are multiple solutions that solve this. The solution
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we will use is the following:

f1(r) =1, f2(r) =
m2r2 +m4r4 − (6 +m2r2)V + 6V 2

2r2 (r +m2r3 − rV )
,

g1(r) =− r

2V
, g2(r) =

(−1 + V )
(
1 +m2r2 + 5V

)
4r2V (−1−m2r2 + V )

.

To simplify the equation it is useful to work with the dimensionless variables, x = r∗/rs,
r̂ = r/rs, m̂ = rsm and ω̂ = rsω. The coordinate r̂ has domain (1,∞) and is related to x by

x = r̂ + log(r̂ − 1). (4.79)

With these new variables the potential in Eq. 4.78 for this solution is given by Eq. 4.59. We
can combine the two differential relations in Eq. 4.78 to find the Schrödinger type master
equation in Eq. 4.58.

We have found a m̂-dependent potential. To determine if modes with wavenumber m̂ are stable
we need to analyse these potentials. We can derive some properties that are independent of
m̂.

Lemma 4.2.7. The black string potential Vm̂ from Eq. 4.59 has the following limits

lim
x→−∞

Vm̂(x) = 0, (4.80)

lim
x→∞

Vm̂(x) = m̂2. (4.81)

Proof. From Eq. 4.79 we see that r̂ goes to 1 as x goes to −∞, and r̂ goes to ∞ as x goes to
∞. Using Eq. 4.59 we indeed see that

lim
x→−∞

Vm̂(x) = lim
r̂→1

Vm̂(r̂) = 0,

lim
x→∞

Vm̂(x) = lim
r̂→∞

Vm̂(r̂) = m̂2.

Since we have written Eq. 4.58 in Schrödinger form we can turn the left hand side into an
operator.

Definition 4.2.8. The black string operator Am̂ : H2(R) → L2(R) of wavenumber m̂ is
the Schödinger operator

Am̂ = − d2

dx2
+ Vm̂, (4.82)

with potential Vm̂(r̂) as in Eq. 4.59.

Lemma 4.2.9. The black string operator Am̂ is self-adjoint on D(Am̂) = H2(R) for any
m̂ ∈ R.

Proof. Note that the potential Vm̂ from Eq. 4.59 is bounded for any m̂. Therefore, by Cor.
2.3.20 the black string operator is self-adjoint on H2(R).

We conclude that unstable modes correspond to eigenfunctions of the black string Schrödinger
operator with negative eigenvalue. The self-adjointness of Am̂ allows us to study its spec-
trum. In the next subsections we will try to estimate the lowest eigenvalue of the black string
operator.
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4.2.4 The asymmetric finite well potential

In the previous subsection we derived the master equation 4.58 for spherically symmetric
perturbations on a black string spacetime. This equation is written in Schrödinger form. In
this subsection we will take the first step in finding negative eigenvalues of the black string
Schrödinger operator by approximating the potential by a step function.

Looking at the numerical results of Gregory and Laflamme [18, P. 11], we expect the lowest
negative eigenvalue of the operator to be around m̂ = 0.4. The plot of the potential for this
wavenumber can be seen in fig. 4.3. Note that by Lem. 4.2.7 the potential converges to 0 as
x → −∞ and to m̂2 = 0.16 as x → ∞. Around x = 0, there is a dip in the potential and it
has a negative minimum. The fact that the potential takes negative values indicates that there
might exist negative eigenvalues.

The strategy that we use to find these negative eigenvalues is the strategy explained in section
2.2. According to Theorem 2.3.16 a negative eigenvalue exists, if there exists a f ∈ D(Am) =
H2(R) such that ⟨f,Amf⟩ < 0. To find such a f we try to approximate the black string
potential by a simpler potential such that we can analytically derive eigenfunctions of the
new Schrödinger operator. Once we have these eigenfunctions we can estimate the negative
eigenvalues of the black string operator.

Let us try to determine what such a function f should look like. We have

⟨f,Am̂f⟩ =
∫ ∞

−∞
−d

2f

dx2
f(x) + Vm̂(x)f(x)2 dx

=

∫ ∞

−∞

(
df

dx

)2

+ Vm̂(x)f(x)2 dx.

We want this to be negative. Therefore, we want f to be a bump function that peaks at
the minimum of the potential Vm̂. However, this bump function must have a very gradual
slope, since a non-zero derivative will have a positive contribution to the inner product. This
contribution should not cancel the negative contribution from the potential term.

To find a bump function that has this behaviour, we construct eigenfunctions of a Schrödinger
operator with a potential that has similar behaviour as the black string potential. Recall the
asymptotic behaviour from Lem. 4.2.7. If we combine this with the fact that there is a dip
around x = 0, we can approximate the potential by a discontinuous step function that has
precisely these three properties.

Definition 4.2.10. Let a, V0,m ∈ R≥0. The asymmetric finite well potential Vafw : R →
R of width a, depth V0 and a wall of height m2 is defined by

Vafw(x) =


0 if x < −a,
−V0 if − a < x < a,

m2 if a < x.

(4.83)

We can then approximate the black string potential of wavenumber m̂ by an asymmetric finite
well potential that has V0 equal to the absolute value of the minimum of the black string
potential, a equal to the distance from the minimum to the first zero of the potential, and
m = m̂. In Fig. 4.3 we can see how the asymmetric finite well approximates the black string
potential.

Note that the asymmetric finite well potential is bounded for any choice of parameters. Let
A be a Schrödinger operator with an asymmetric finite well potential. According to Cor.



CHAPTER 4. MODE STABILITY OF BLACK STRINGS 90

V0.4

Vafw

-4 -2 0 2 4 6 8 10
-0.2

-0.1

0.0

0.1

0.2

x

V

Figure 4.3: The black string potential for m̂ = 0.4 compared to the asymmetric
finite well potential with a = 1.5, V0 = 1.7 and m = 0.4.

2.3.20 A is self-adjoint on H2(R). By constructing eigenfunctions with negative eigenvalues
of this operator, we generate a set of test functions that we can use to prove the existence
of negative eigenvalues of the black string operator. Therefore, we are interested in finding
negative eigenvalues of A. These eigenfunctions will be constructed in the next section.

4.2.5 Eigenfunctions of the asymmetric finite well operator

In the previous section we derived a simple potential that is a good approximation the black
string potential. This potential is called the asymmetric finite well potential. In this section
we construct the eigenfunctions with negative eigenvalues of the Schrödinger operator with
asymmetric finite well potential 4.83. It turns out that not for every set of parameters (a, V0,m)
a negative eigenvalue exists. In particular, as one might expect the existence of a negative
eigenvalue is less likely if m is really large, or when the well is shallow. In this section we prove
the following relation.

Theorem 4.2.11. The Schrödinger operator A with asymmetric finite well potential Vafw of
width a, depth V0 and height m2, has at least one negative eigenvalue if and only if

2
√
V0a > arctan

(
m√
V0

)
. (4.84)

If this inequality is satisfied, then every E ∈ σ(A) with −V0 < E < 0, has a corresponding
eigenfunction ψ ∈ H2(R) given by

ψ(x) =


Ce

√
−E(x+a)

√
1 + E

V0
if x < −a,

C cos
(√

V0 + E(x+ a)− arctan(
√
−E√
V0+E

)
)

if − a < x < a,

Ce−
√
m2−E(x−a)

√
V0+E
V0+m2 if a < x,

(4.85)

where C ∈ R is a normalization constant.

Let us construct a solution ψ ∈ H2(R) such that Aψ = Eψ for E ∈ R with −V0 < E < 0. To
achieve this we analyse what ψ should look like in each region of the potential and try to glue
these solutions together.
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First of all, if x < −a, then it holds that d2ψ
dx2 = −Eψ. This is solved by

ψ(x) = Ae
√
−Ex +Be−

√
−Ex, (4.86)

with constants A,B ∈ R. Since ψ should decay when x → −∞, we can discard the e−
√
−Ex

solution and we are left with ψ(x) = Ae
√
−Ex.

Secondly, in the region where −a < x < a the equation becomes d2ψ
dx2 = −(V0 + E)ψ. Now

there is a negative value on the right hand side, therefore it is solved by

ψ(x) = C cos
(√

V0 + Ex+ δ
)
, (4.87)

with coefficient C ∈ R and phase shift δ ∈ (−π, π].

Thirdly, for x > a the equation becomes d2ψ
dx2 = (m2 − E)ψ. Now the factor on the right hand

side is positive again, so this is solved by

ψ(x) = Fe
√
m2−Ex +Ge−

√
m2−Ex, (4.88)

with constants F,G ∈ R. Since we want ψ(x) to vanish as x → ∞, we have to set F = 0.
Combining Eq. 4.86, 4.87 and 4.88 a solution of Aψ = Eψ is given by

ψ(x) =


Ae

√
−Ex if x < −a,

C cos
(√
V0 + Ex+ δ

)
if − a < x < a,

Ge−
√
m2−Ex if a < x.

(4.89)

We want ψ ∈ H2(R), to achieve this we have to fix the constants A,C,D and G such that both
ψ and ψ′ are continuous. This gives us the following conditions

Ae−
√
−E a =C cos

(
−
√
V0 + E a+ δ

)
, (ψ(−a)) (4.90)

Ge−
√
m2−E a =C cos

(√
V0 + E a+ δ

)
, (ψ(a)) (4.91)

A
√
−Ee−

√
−E a =− C

√
V0 + E sin

(
−
√
V0 + E a+ δ

)
, (ψ′(−a)) (4.92)

G
√
m2 − Ee−

√
m2−E a =C

√
V0 + E sin

(√
V0 + E a+ δ

)
, (ψ′(a)). (4.93)

As we will see shortly, these conditions put relations on the coefficients A,C,G and the phase
shift δ, but also restrict the possible eigenvalues E.

Let us first focus on the terms that come from the continuity conditions at x = −a. From Eq.
4.90 we can find an expression for A, namely

A = Ce
√
−Ea cos

(
−
√
V0 + Ea+ δ

)
. (4.94)

If we substitute this into Eq. 4.92, we end up with

C
√
−E cos

(
−
√
V0 + Ea+ δ

)
= −C

√
V0 + E sin

(
−
√
V0 + Ea+ δ

)
. (4.95)

Therefore, we either have C = 0 or

tan
(
−
√
V0 + Ea+ δ

)
= −

√
−E√

V0 + E
. (4.96)

Setting C = 0 would lead to the trivial solution, so we discard this possibility.
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Similarly, using the conditions that we got from demanding continuity at x = a, we can use
Eq. 4.92 to derive an expression for G. It is given by

G = Ce
√
m2−Ea cos

(√
V0 + Ea+ δ

)
. (4.97)

Then this can be substituted into Eq. 4.93 to find

tan
(√

V0 + Ea+ δ
)
=

√
m2 − E√
V0 + E

. (4.98)

Now we have two equations for δ that should both hold. By eliminating δ from the equations
we get restrictions on the allowed values of E.

To simplify the resulting equation we define new variables z0 =
√
V0 and z =

√
V0 + E. Using

this new variable and combining Eq. 4.96 and 4.98 we find an equation for z, which is given
by

arctan

(√
z20
z2

− 1

)
+ arctan

(√
z20 +m2

z2
− 1

)
= 2za− kπ, (4.99)

where k ∈ Z. We define the functions fm(z) : (0, z0) → R and lk(z) : R → R, as the left
and right hand side of Eq. 4.99, respectively. Now each point of intersection between fm and
lk for some k ∈ Z corresponds to a negative eigenvalue of the Schrödinger operator A. Even
though the left hand side of Eq. 4.99 is well defined in the point z = z0, we excluded it from
the domain of fm since an intersection in the point z = z0 would correspond to an eigenvalue
E = 0, whereas we are interested in strictly negative eigenvalues. In Fig. 4.4 we see a plot of
both side of Eq. 4.99. In this figure we see that when the height of the wall m increases, the
function fm moves up. As a consequence, it is possible that f0 has a point of intersection with
lk, but fm does not.

Lemma 4.2.12. If fm and lk have a point of intersection, then k ≥ 0.

Proof. The function fm monotonically decreases on the domain (0, z0] and has a range (π, arctan
(
m
z

)
].

If k < 0 then on this domain lk monotonically and has range (−kπ, 2z0a − kπ]. There is no
overlap between these ranges, so there cannot be a point of intersection.

Lemma 4.2.13. If fm has a point of intersection with lk for k ∈ N and k ̸= 0, then fm has a
point of intersection with lk−1.

Proof. Suppose that fm(ẑ) = lk(ẑ). Note that lk−1(z) = lk(z) + π. Furthermore, fm is a
positive function and monotonically decreases on the domain (0, ẑ) from π to lk(ẑ). On the
same domain lk−1 monotonically increases from (1− k)π to lk(ẑ) + π. Now we have

lk−1(0) = (1− k)π < π

lk−1(ẑ) = lk(ẑ) + π > lk(ẑ).

Therefore, there must be a point of intersection between fm and lk−1 on the domain (0, ẑ).

Combining these two lemma’s, we get a improved requirement for the existence of a negative
eigenvalue.

Corollary 4.2.14. The Schrödinger operator A with asymmetric finite well potential has a
negative eigenvalue if and only if fm and l0 have a point of intersection.
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Figure 4.4: The functions on both sides of Eq. 4.99 for different m and k. In
these plots we set a = 7, V0 = 0.49 and compare the cases m = 0 and m = 1. Each
intersection corresponds to a negative eigenvalue of the Schrödinger operator.

Proof. If fm and l0 have a point of intersection, then this corresponds to a negative eigenvalue
of A.

If A has a negative eigenvalue, then we derived that fm has a point of intersection with a lk,
with k ∈ Z. From Lem. 4.2.12 it follows that k ≥ 0. Additionally, by applying Lem. 4.2.13
repetitively, it follows that fm has a point of intersection with l0.

We now have all the ingredients we need to prove Theorem 4.2.11.

Proof of Theorem 4.2.11. By Cor. 4.2.14 we know that A has a negative eigenvalue if and only
if fm and l0 have a point of intersection. Since fm monotonically decreases on its domain (0, z0]
from π to arctan

(
m
z

)
and l0 monotonically increases on this domain from 0 to 2z0a, there is a

point of intersection if and only if

2z0a > arctan
(
m

z0

)
. (4.100)

Using that z0 =
√
V0, we find the inequality from Eq. 4.84.

The corresponding eigenfunctions can be computed from the previous derivation. An eigen-
function of the asymmetric finite well operator is of the form as in Eq. 4.89. We can substitute
the coefficients A and G by the expressions in Eq. 4.94 and 4.97, respectively. Furthermore,
from Eq. 4.96 we get an expression for δ

δ =
√
V0 + Ea− arctan

( √
−E√

V0 + E

)
.

This gives the eigenfunction in Eq. 4.85.

Finally, if fm(ẑ) = lk(ẑ) then a negative eigenvalue is given by

E = z2 − z20 . (4.101)
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Figure 4.5: The eigenfunctions of the Schrödinger operator with parameters a =
7, z0 = 0.7 and m = 1. The eigenfunctions correspond to the three intersections
in Fig. 4.4 from left to right. the red dashed lines are the lines x = ±7, indicating
the different regions of the potential.

Note that in the limit m = 0, the potential is no longer asymmetric. This case is called the
finite well potential and it is a well-studied problem in quantum mechanics. As a sanity check,
we can see if our results agree with the literature on the finite well in the case that m = 0.
From Eq. 4.84 it follows that for a, V0 > 0 and m = 0, a negative eigenvalue always exists.
From Eq. 4.99 it follows that an eigenvalue solves the equation

tan(za) =

√
z20
z2

− 1. (4.102)

This corresponds with the results from any quantum mechanics textbook [24].

The story changes once m ̸= 0. In Fig. 4.4 the end point of the function is moved slightly up
compared to the end point in the m = 0 case in Fig. 4.4. When m ̸= 0, the left hand side of
Eq. 4.99 still has a domain (0, z0) but now a range between arctan

(√
m2

z20

)
and π. Therefore,

fm can have less points of intersection compared to f0. In Fig. 4.4 we see that f0 intersects
l3, whereas f1 does not. In Fig. 4.5 the eigenfunction are plotted corresponding to the case
m = 1.

When the inequality 4.84 is not satisfied, there is no negative eigenvalue. This happens for a
very shallow well as can be seen in Fig. 4.6. For a wide and deep well a negative eigenvalue
always exists. Namely, note that the right hand side of Eq. 4.84 is always smaller than π/2.
Therefore, as long as

√
V0a > π/4 there always exists a negative eigenvalue.

If we look at the n = 0 eigenfunction in Fig. 4.5, we see that this function meets the require-
ments we set for a suitable bump function in Sec. 4.2.4. Namely, this function peaks at the
minimum of the potential, and it decays very gradually at the asymptotes. Furthermore, note
that the peak is slightly moved towards the side where potential equals 0. In the next section
we use these eigenfunctions to prove the existence of negative eigenvalues of the black string
operator.
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Figure 4.6: The two functions in Eq. 4.99 for a = 2, z0 = 0.16 and m = 2. In
this case there is no intersection.
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Figure 4.7: The eigenfunction in the original r̂-coordinate for the asymmetric
finite well potential with a = 7, V0 = 0.49, m = 1.
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Figure 4.8: The black string potential for different wavenumbers.

4.2.6 Unstable modes of the flat black string

In the previous subsection the eigenfunctions of the asymmetric finite well operator were con-
structed. The eigenfunctions corresponding to the lowest negative eigenvalue have the be-
haviour that is required for bump functions with ⟨f,Af⟩ < 0. Therefore, these eigenfunctions
form a set of suitable test functions. In this subsection we use these test functions to prove
the existence of a negative eigenvalue of the black string operator. We use Theorem 2.3.16 for
this. We compute ⟨f,Am̂f⟩ for different test functions. If there is a test function for which
this becomes negative, then the black string operator admits a negative eigenvalue. With this
we can determine at which mass black strings become unstable.

Theorem 4.2.15. The Einstein manifold (R4 × S1, gBS) with compact extra dimension of
length L, and gBS the black string metric 3.42 with mass M admits unstable modes when

M ∈
[
0.1L

4π
,
0.85L

4π

]
. (4.103)

The asymmetric finite well potential is not a good approximation of Vm̂ for all m̂ ≥ 0. The
black string potential has the same asymptotic behaviour for every m̂, which we derived in
Lem. 4.2.7. However, not for every m̂ there is a minimum around x = 0. In Fig. 4.8 the
black string potential 4.59 is plotted for different m̂. At m̂ = 0 there is no minimum. For
small m̂ ̸= 0 the dip appears. For m = 1.2 there is still a dip, however it seems negligible
compared to the high wall. Around m̂ = 2 the dip completely disappears again. According to
Theorem 2.3.23 if the potential is non-negative, then there cannot exist a negative eigenvalue.
Therefore, to find the unstable modes we only need study the operators where the potential
becomes negative somewhere.

As discussed in section 4.2.4, for the m̂ for which the potential does become negative somewhere
we need to find a f ∈ D(Am̂) such that ⟨f,Am̂f⟩ < 0. We use the eigenfunctions with negative
eigenvalue of the asymmetric finite well operator as test functions.

It is important that we make smart choices for the parameters of the asymmetric finite well,
such that it approaches the black string potential as good as possible. For V0 and m it seems
clear what good choices would be. Namely, for m̂ we can set V0 to be equal to the absolute
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Figure 4.9: A lower bound for the negative eigenvalues of the black string
operator using eigenfunctions of the asymmetric finite well operator. The black
string operator admits negative eigenvalues for 0.1 < m̂ < 0.85.

value of the minimum of the potential Vm̂, and m to be equal to m̂. For a the choice is less
trivial, with some trial and error we found that the best choice is around a = 1.2 + m̂2.

We compute ⟨ψ,Am̂ψ⟩ for different normalized eigenfunctions of the asymmetric finite well
operator in Eq. 4.85, where the parameters are close to the best approximation described
above. In Fig. 4.9 the estimated eigenvalues are shown which are found using this procedure.
From this plot we conclude that the black string operator admits a negative eigenvalue when
0.1 < m̂ < 0.85. Comparing this plot with the negative eigenvalues Gregory and Laflamme
found by numerically integrating the equations, we see that the estimates are quite good.
Another way to estimate the eigenvalues is by approximating the black string potential by the
asymmetric finite well potential and determine the negative eigenvalues for this operator. In
Fig. 4.10 these eigenvalues are plotted. The plot has very similar shape as the plot in Fig. 4.9,
however it seems like it overestimates the eigenvalues.

Proof of Theorem 4.2.15. Recall the decomposition of the perturbation h in Eq. 4.66. We
require that h(y) = h(y + L). This limits the amount of possible values for m. This requires
m = 2πk

L for k ∈ N. The smallest m > 0 then has k = 1. According to our calculations, an
unstable mode has 0.1 < m̂ < 0.85, where m̂ = mrs. This can be rewritten to

0.1L

4π
< M <

0.85L

4π
. (4.104)

Comparing this result with Lem. 4.2.1, we see that the range when the black string becomes
unstable according to the analysis agrees very well with what is expected from the entropy
argument. However, we expect that there also should be unstable modes in the rangeM < 0.1L

4π .

To fully prove the instability it is important to show that these modes are physical. Therefore,
we have to show that they cannot be removed by a gauge transformation.

Lemma 4.2.16. The unstable modes in Eq. 4.66 with ω > 0 are not pure gauge.
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Figure 4.10: An estimate of the negative eigenvalues of the black string operator
for different m̂. The eigenvalues are obtained by approximating the black string
potential by the asymmetric finite well potential. For the asymmetric finite well
potential we fixed a = 1.7 and set V0 to match with the minimum of the black
string potential.

Proof. If these modes were pure gauge then there should be a small vector fieldX ∈ Γ(TR4×S1)
such that

hMN = ∇MXN +∇NXM . (4.105)

Suppose that hMN is of this form. Then X should be of the form X = eωteimyv(r) for some
v ∈ Γ(TR4 × S1), similar to the modes. However, if m ̸= 0, then either X = 0 or h5M ̸= 0 for
some M = 0, 1, 2, 3, 5. However, for unstable modes we showed that h5M = 0.

We conclude that there are unstable modes that cannot be removed by a gauge transformation.
Therefore, the black string is modally unstable. An intuitive picture of what this perturbation
looks like is shown in Fig. 4.11. For unstable modes, the notches grow until the black string
’snaps’. What remains is an array of hyperspherical black holes. This procedure is explained
in more detail in [66]

4.3 Unstable modes of the Randall-Sundrum black string

In the previous section we have seen that the black string in five-dimensional flat space is
unstable under long wavelength perturbations. It turns out that we can generalize these insta-
bilities to curved five-dimensional space, such as RS. Recall the black string solution which we
derived in Section 3.2.6. In this section we will derive the instabilities of the RS black string.

Theorem 4.3.1. The RS1 black string with curvature scale κ, size of the extra dimension yc
and mass M has unstable modes if

M <
0.12

κyc
eκyc . (4.106)

This section is dedicated to prove this theorem. However, let us first analyse some of the
consequences of this theorem. If RS1 would represent our universe, then for sure the black
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Figure 4.11: The shape of the perturbed black string.

holes we observe should be stable. If a black hole has mass M in the RS1 model, then recall
Lem. 3.2.19 where it was shown that on the visible brane we would observe a black hole of
mass Mvis = Me−κyc . Black holes that form through stellar collapse have a mass of at least
three solar masses. Therefore, we would expect black strings with Mvis > M⊙, where M⊙
denotes one solar mass, to be stable. In the RS1 model a solar mass black hole on the visible
brane would correspond to a black hole of mass

M =M⊙e
κyc . (4.107)

Assuming Theorem 4.3.1 is valid we can already deduce the main result of the thesis.

Corollary 4.3.2. The RS1 black string with κyc ∼ 35 and M < M⊙e
κyc is modally unstable.

Proof. From Theorem 4.3.1 it follows that a RS1 black string is stable if the inequality in Eq.
4.106 holds. Converting this to the effective masses on the visible brane, we have to multiply
both sides of Eq. 4.106 by e−κyc . For κyc ∼ 35, This becomes

Mvis =Me−κyc <
0.12

κyc
≈ 2× 10−6M⊙. (4.108)

In particular we conclude that solar mass black holes are stable.

Let us now prove Theorem 4.3.1. We perturb the RS black string metric ĝ from Eq. 3.42

g = ĝ + h.

We need to determine the linearized Einstein equations 2.51. For this we need the following
lemmas.

Lemma 4.3.3. Let (M = R4 × I, ĝ) with ĝ a warped metric of the form

ĝ = A2(y)g(4)(x) + dy2. (4.109)

Let g = ĝ + h be a metric tensor, with ha5 = h55 = 0, and □ĝ the wave operator associated to
ĝ. Then

□ĝh =
1

A2
□g(4)h+

∂2h

∂y2
−

(
4

(
A′

A

)2

+ 2
A′′

A

)
h.
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Proof. The non-trivial Christoffel symbols associated to ĝ are given by

Γcab = Γ(4)c

ab,

Γ5
ab = −A′Ag

(4)
ab ,

Γba5 =
A′

A
δba,

where a, b, c = 0, 1, 2, 3 and Γ(4) denotes the Christoffel symbol associated to g(4). Keeping this
in mind we can compute the wave operator acting on h. We have

□ĝhab =g
MN∇M∇Nhab

=
1

A2
g(4)

cd
∇c∇d +∇5∇5hab

=
1

A2
g(4)

cd (
∂c∇dhab − ΓMcd∇Mhab − ΓMca∇dhMb − ΓMcb∇dhaM

)
+∇5

(
∂5hab − ΓM5ahMb − ΓM5bhaM

)
=

1

A2
g(4)

cd
(∂c∇dhab − Γecd∇ehab − Γeca∇dheb − Γecb∇dhae

− Γ5
cd∇5hab − Γ5

ca∇dh5b − Γ5
cb∇dha5) +∇5

(
∂5hab − ΓM5ahMb − ΓM5bhaM

)
Now we can substitute the expression for the Christoffel symbols that we found

□ĝhab =
1

A2
g(4)

cd
(∂c∇dhab − Γ(4)e

cd∇ehab − Γ(4)e

ca∇dheb − Γ(4)e

cb∇dhae

+AA′
(
g
(4)
cd ∇5hab + g(4)ca ∇dh5b + g

(4)
cb ∇dha5

)
) +∇5

(
∂5hab − 2

a′

a
hab

)
.

Note that even though we assumed ha5 = 0, we still have that

∇cha5 = −Γdc5had = −a
′

a
hac.

Additionally, note that

∇chab = ∂chab − ΓMcahMb − ΓMcb haM

= ∂chab − Γ(4)γ

cahγb − Γ(4)γ

cbhaγ + 0

= ∇(4)
c hab.

Where ∇(4) denotes the covariant derivative induced by g(4). We use this to find

□ĝhab =
1

A2
□g(4)hab +

A′

A

(
4(∂5hab − ΓM5ahMb − ΓM5bhaM )− A′

A
δdahdb −

A′

A
δdbhad)

)
+ ∂25hab − ΓM55∂Mhab − ΓM5a∂5hMb − ΓM5b∂5ha5 − 2

(
A′′

A
−
(
A′

A

)2
)
hab

− 2
A′

A

(
∂5hab − ΓM5ahMb − ΓM5bhaM

)
=

1

A2
□g(4)hab +

A′

A

(
4∂5hab − 10

A′

A
hab

)
+ ∂25hab − 2

A′

A
∂5hab − 2

A′′

A
hab + 2

(
A′

A

)2

hab

− 2
A′

A

(
∂5hab − 2

A′

A
hab

)
=

1

A2
□g(4)hab + ∂25hab − 4

(
A′

A

)2

hab − 2
A′′

A
hab.



CHAPTER 4. MODE STABILITY OF BLACK STRINGS 101

Lemma 4.3.4. Let (M = R4 × I, ĝ) with ĝ a warped metric of the form

ĝ = A2(y)g(4)(x) + dy2.

Let g = ĝ + h be a metric tensor, with ha5 = h55 = 0,. Then

R c d
a b hcd =

1

A2
R

(4)
acbdh

cd +

(
A′

A

)2

hab,

where we used g(4) to raise the indices of h, and R
(4)
acbd is the Riemann tensor associated to

g(4).

Proof. Note that

Racbd =gacR
c
cbd

=gac
(
∂bΓ

c
cd − ∂dΓ

c
cb + ΓcbMΓMcd − ΓcdMΓMcb

)
=gac

(
R(4)c

cbd + Γcb5Γ
5
cd − Γcd5Γ

5
cb

)
=A2R

(4)
acbd −A′2A2g

(4)
ab g

(4)
cd +A′2A2g

(4)
ad g

(4)
cb .

Using this we find

R d c
a b hdc =g

dcgcdRacbdhdc

=
1

A4

(
A2R

(4)
acbd −A′2A2g

(4)
ab g

(4)
cd +A′2A2g

(4)
ad g

(4)
cb

)
hcd

=
1

A2
R

(4)
acbdh

cd +

(
A′

A

)2

hab.

We want to find unstable modes. Therefore, we can fix our modes into any form we want, as
long as they are unstable. We gauge fix our metric in the RS gauge from Def. 3.3.6. The
linearized Einstein equations are given by

∆LhMN = □ĝhMN + 2RP Q
M NhPQ = 0 (4.110)

The RS black string metric ĝ is of the form of Eq. 4.109, with A = e−κyc|y| and g(4) = gs the
Schwarzschild metric. Using Lem. 4.3.3 and 4.3.4 together with the fact that the y-component
of both the Riemann tensor and the perturbation h vanish in the RS gauge, the equations for
the metric reduce to

1

A2

(
□gshab + 2Rsacbdh

cd
)
+ h′′ab − 2

(
A′′

A
+

(
A′

A

)2
)
hab = 0. (4.111)

Here □gs andRsabcd denote the wave operator and Riemann tensor associated to the Schwarzschild
metric, respectively. If we can somehow rewrite this equation into the form of Eq. 4.67, then
the modes of the flat black string can be related to the modes of the RS black string. In par-
ticular, we can use the results from the previous sections to find unstable modes of RS black
string. This requires

h′′ab − 2

(
A′′

A
+

(
A′

A

)2
)
hab = −m

2

A2
hab. (4.112)

To find a suitable h for this, we make an ansatz

hab = um(y)χab(x). (4.113)



CHAPTER 4. MODE STABILITY OF BLACK STRINGS 102

We want to find suitable functions um, such that h solves Eq. 4.112. Substituting the ansatz
and the expression for A, Eq. 4.112 becomes

u′′m − 4κ2y2cum − 4κyc (δ(y)− δ(y − 1))um = −m2e2κyc|y|um. (4.114)

This can be solved with Bessel functions.

Definition 4.3.5. The Bessel functions of the first kind Jα and second kind Yα are two
linearly independent solutions of the differential equation

z2
d2u

dz2
+ z

du

dz
+ (z2 − α2)u = 0. (4.115)

According to [32, P. 361], the Bessel functions have the following useful differential relation.

Lemma 4.3.6. Let fα be a Bessel function and n ∈ N then(
1

z

d

dz

)n
(zαfα(z)) = zα−nfα−n(z). (4.116)

With these Bessel functions we can construct the following solution to Eq. 4.114.

Lemma 4.3.7. The functions

um(y) = BJ2

(
m

κyc
eκyc|y|

)
+ CY2

(
m

κyc
eκyc|y|

)
(4.117)

with coefficients B,C ∈ R such that

BJ1

(
m

κyc

)
= −CY1

(
m

κyc

)
(4.118)

and m such that

J1

(
m

κyc

)
Y1

(
m

κyc
eκyc

)
= J1

(
m

κyc
eκyc

)
Y1

(
m

κyc

)
(4.119)

are solutions to Eq. 4.114.

Proof. To solve Eq. 4.114, we define z = m
κyc

eκycy. Then away from the branes, the equation
in terms of this new variable becomes

z2
d2um
dz2

+ z
dum
dz

+ (z2 − 4)um = 0. (4.120)

Comparing this to the differential equation defining the Bessel functions in Eq. 4.115, we see
that this is solved by Eq. 4.117. The coefficients B and C are determined by the boundary
conditions at the branes. The boundary conditions are obtained by integrating over a small
area around the branes. By integrating around y = 0 we obtain the condition

2u′m(0)− 4κycum(0) = 0. (4.121)

Using the differential relation of the Bessel functions from Eq. 4.116 in the case n = 1, α = 2,
we get the relation

m

κyc
J ′
2

(
m

κyc

)
+ 2J2

(
m

κyc

)
=

m

κyc
J1

(
m

κyc

)
. (4.122)
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The same can be done for the Y2 term. By using the solution in Eq. 4.117 and these differential
relations of the Bessel functions, we can rewrite the boundary condition in Eq. 4.121 to the
relation

BJ1

(
m

κyc

)
= −CY1

(
m

κyc

)
. (4.123)

This applies to both the RS1 and RS2 model.

In the RS1 model, we obtain an additional boundary condition due to the presence of a second
brane at y = 1. In a similar fashion this boundary condition is given by

BJ1

(
m

κyc
eκyc

)
= −CY1

(
m

κyc
eκyc

)
. (4.124)

This puts a restriction on the allowed values of m, since the two boundary conditions in Eq.
4.123 and 4.124 can be combined into the requirement in Eq. 4.119.

We conclude that with the ansatz from Eq. 4.113 and um of the form as in Eq. 4.117, the
linearized Einstein equations of the RS black string reduce to the linearized Einstein equations
of the flat black string. Therefore, for 0.1 < 2Mm < 0.85 we can find unstable modes of the
RS black string using our results from the previous sections. Nevertheless, there are boundary
conditions caused by the branes such that the wavenumbers m have to satisfy Eq. 4.119.
Therefore, fixing a value for the curvature scale κ and the size of the extra dimension yc, limits
the amount of allowed values for the wavenumber m in the RS1 model. We are interested in
the smallest m > 0 that solves Eq. 4.119, because this will give an upper bound to the mass of
unstable black holes. Recall that RS1 solves the hierarchy problem if κyc ∼ 35, in which case
eκyc ≫ 1. Therefore, J1( mκyc e

κyc) and Y1( mκyc e
κyc) oscillate very quickly, so we expect the first

m to be very small.

Lemma 4.3.8. The smallest wavenumber m > 0 of the RS1 black string modes with κyc ≫ 1
is equal to the smallest m > 0 for which

J1(
m

κyc
eκyc) = 0. (4.125)

Proof. We know that the wavenumbers satisfy Eq. 4.119. We want to prove that for κyc ≫ 1,
we can approximate the first m > 0 solution to this equation by solutions of Eq. 4.125. For
z ≪ 1 the Bessel functions have the following asymptotic form

J1(z) =
z

2
+O(z2), Y1 (z) = − 2

πz
+O(1). (4.126)

For z ≫ 1 the Bessel functions behave as

J1(z) =

√
2

πz
cos

(
z − 3π

4

)
+O(z−1), Y1(z) =

√
2

πz
sin

(
z − 3π

4

)
+O(z−1). (4.127)

For big κyc, we expect for this m that m
κyc

< 1, but m
κyc

eκyc ≫ 1. Using the asymptotics

from Eq. 4.126 and 4.127 we see that in this range the functions J1
(
m
κyc

)
∼ m

2κyc
≪ 1 and

Y1

(
m
κyc

eκyc
)

is oscillatory in m. Therefore, the left hand side of Eq. 4.119 will be an oscillatory
function of m with a small amplitude.

On the right hand side of Eq. 4.119, in this range it holds that Y1
(
m
κyc

)
∼ − 2κyc

πm ≫ 1 and

J1

(
m
κyc

eκyc
)

is oscillatory as a function of m. Therefore, the right hand side of Eq. 4.119 will
be an oscillatory function of m with a big amplitude. We want to determine the first point
of intersection between the left and right hand side. According to our observations this would
approximately correspond to the point where J1

(
m
κyc

eκyc
)
= 0.
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In [32] we find that the first zero of J1(z) is at z = 3.8317. Therefore, the smallest m > 0 for
which the eigenfunctions um exist is

m ≈ 4κyce
−κyc . (4.128)

With this we can prove Theorem 4.3.1.

Proof of Theorem 4.3.1. In section 4.2.6 we saw that unstable modes of the flat black string
exist when 0 < 2mM < 0.9. In Lem. 4.3.7, we constructed functions such that the RS black
string linearized Einstein equations reduce to the black string linearized Einstein equations.
Therefore, also for the RS black string, unstable modes exist when 0 < 2mM < 0.9. In the
RS1 model, due to the boundary conditions, the spectrum of allowed values of m is discrete.
In Lem. 4.3.8 we derived that the smallest allowed m > 0 is equal to the first zero of Eq. 4.125.
Using the zeroes of the Bessel function this is given by Eq. 4.128. By combining the results
we indeed find that the RS1 black string is unstable if

8Mκyce
−κyc < 0.9.

This can be rewritten to the inequality from the theorem in Eq. 4.106.

On the other hand, since in the RS2 model there is only one brane which is located at y = 0,
the only boundary condition is the condition in Eq. 4.123. Consequently, there is a continuous
spectrum for allowed values of m. Therefore, there exist unstable modes for the RS black
string of any mass. This agrees with Hawking’s expectation that the black string cannot reach
the AdS horizon, which was discussed in section 3.2.6. However, instead of resulting in the
black cigar that Hawking postulated, it seems that this instability causes the black string to
split apart into an array of disc shaped black holes, which become smaller and smaller as the
y-coordinate increases. Therefore, towards the AdS horizon this would lead to Planck mass
black holes stacked together as can be seen in Fig. 4.12.

Lemma 4.3.9. Let m be the wavenumber of an unstable mode of the RS black string. Then
in the y-direction, consecutive zeroes of the mode are separated by

δy =
π

m
e−κyc|y|. (4.129)

Proof. The distance between black holes corresponds with the consecutive zeroes of the function
um. According to the asymptotic behaviour of the Bessel functions from Eq. 4.127, the
consecutive zeroes are separated by a distance of π. Therefore, suppose um(y0) = 0 and let
um(y0 + δy) be the next zero. Then we can approximate δy using the fact that

m

κyc
eκyc(y0+δy) − m

κyc
eκycy0 = π.

We can rewrite this to
κycδy = log

(
1 +

κycπ

m
e−κycy0

)
.

Recall that m
κyc

e−κyc ≫ 1, such that we can approximate this by

δy =
π

m
e−κycy0 .

So indeed the distance between black holes decreases as y increases. As the mass of the black
holes also decreases in the positive y-direction, the instability results into an accumulation of
mini-black holes stacked together towards the AdS horizon. This might be a consequence of
the singularity at y = ∞. Note that this array of black holes can always be prevented or
stopped by adding another brane in front of the AdS horizon.
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Figure 4.12: The shape of the perturbed RS black string. Notice that the
distance between consecutitive peaks decreases quickly as y increases.



Chapter 5

Conclusion and outlook

5.1 Discussion and conclusion

In this thesis we analysed the mode stability of black strings in the warped spacetime called
the Randall-Sundrum model. In particular, we derived the range of masses for which Randall-
Sundrum black strings are unstable for both the finite and infinite model.

In Chapter 2 we defined the stability problem in general relativity in accordance with the
literature. Furthermore, we stated some results from spectral theory there were powerful tools
for solving stability problems. We saw that once we can rewrite a stability problem in a
Schrödinger type of equation, the problem analysis comes down to studying the potential.
We proved that bounded and piecewise continuous potentials induce self-adjoint Schrödinger
operators. We followed the ideas of Visheswara to show that if the potential is non-negative
as well, then mode stability follows immediately.

We wanted to apply this to the Randall-Sundrum model. We considered both the finite RS1
model and infinite RS2 model. We showed how Randall and Sundrum constructed this model
and came up with a unique solution to the hierarchy problem. The hierarchy problem was
solved due to the warping factor. Additionally, we saw that four-dimensional gravity was
retained on the brane where the standard model is located. We were also able to construct
black hole solutions in the form of RS black strings. However, Hawking derived that the
Riemann tensor has a singularity at the AdS horizon for the RS2 model. This indicated the
existence of an instability.

To understand this instability we first analysed the stability of other black holes. By combining
the results from Regge and Wheeler [20], Vishveshwara [21] and Zerilli [22], we were able to
show the mode stability of the Schwarzschild black hole in four-dimensions for both even and
odd parity perturbations. We saw that both type of perturbations have similar potentials in
the final Schrödinger equation, showing that these have similar behaviour.

One of the main results of the thesis was the analytical prove of the Gregory-Laflamme insta-
bility for the black string in flat space. This long wavelength instability was expected because
in large extra dimensions the hyperspherical black hole has a higher entropy compared to the
black string. We analytically showed that there is an instability for

mrs ∈ [0.1, 0.8]. (5.1)

This is in agreement with the numerical results in [23]. These unstable modes were derived using
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Figure 5.1: The comparison between the approximation of negative eigenval-
ues using test functions from Section 4.2.6 (red dotted line) and the numerical
frequencies Gregory & Laflamme found (black line) [23]. For consistent results
one would expect the red graph to be below the black graph.

the self-adjoint Schrödinger operator and using eigenfunctions of a similar potential, which is
the asymmetric finite well potential. We saw that these eigenfunctions have negative energies
also for the black string operator which meant that this operator admits negative eigenvalues.
This shows that functions of the simplified potential have the same type of behaviour as for
the black string potential. This improves the understanding of the black string.

However, some of the negative values we found disagree with the results of Gregory and
Laflamme. According to Theorem 2.3.16 the test functions should always find a value higher
than the lowest eigenvalue. In Fig. 5.1 it can be seen that for mrs ∼ 0.7 we found higher fre-
quency values, which means that these modes have an energy lower than the lowest eigenvalue
found by Gregory and Laflamme. Therefore, either our calculations are not precise enough
and the value we found is incorrect, or the numerical values found by Gregory and Laflamme
are incorrect. The error on our calculations is estimated to be 10−4.

The other method we tried was to approximate the black string potential with the asymmetric
finite well potential. One would expect that this overestimates the negative eigenvalues, since
now the potential takes its minimal value over an entire range instead of just at one point.
This is indeed the case as can be seen in Fig. 5.2. We can combine our two methods to find a
region where we would expect the negative eigenvalue to be located. This is shown in Fig. 5.3.
As we just discussed, the values found by Gregory & Laflamme fall out of this region around
mrs = 0.7.

Furthermore, in 2021, Collingbourne [25, Prop. 4.5] analytically proved the Gregory Laflamme
instability in the range mrs ∈ [0.3, 0.8]. His proof used test functions that were constructed
by hand. The advantage of this was that he could compute the integrals analytically. In this
thesis we have improved this result to the range in Eq. 5.1. Furthermore, in Fig. 5.1, we
see that the test functions approach the eigenfunctions really well at some points. Therefore,
we can improve our understanding of the black string perturbations by studying the quantum
physics problem of the asymmetric finite well. This observation improves our understanding
of the mode instability.
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Figure 5.2: The comparison between the estimation of the eigenvalues by ap-
proximating the potential by the asymmetric finite well potential and the negative
eigenvalues Gregory & Laflamme found through numerical results [23] These es-
timates overshoot the negative eigenvalues of Gregory & Laflamme.

Finally, we could generalize the Gregory Laflamme instability to the RS black string. We
concluded that in the RS1 model with κyc ∼ 35, black holes with a mass below the mass of
the Earth, are unstable on the visible brane. Moreover, in RS2 black strings of any mass are
unstable. This prevents the formation of the singularity at the AdS horizon. Nevertheless,
as a consequence there appears to arise an array of Planck mass black holes closely packed
together at the AdS horizon. This can be prevented by adding an additional brane as in the
RS1 model. We conclude that Hawkings intuition was right and that the RS2 black string is
modally unstable. Nevertheless, we note that, at least on this mode level, this instability does
not form the black cigar shape as postulated by Hawking.

5.2 Outlook

Of course the story does not end here, and there are many topics that are interesting to study
further. First of all, the analyses in this thesis does not yet prove the mode stability of solar
mass black holes. The construction in Section 4.3 only considers perturbations of a suitable
form, such that the linearized Einstein equations of the RS black string reduce to the same
form as in the flat case. In order to prove mode stability one needs to consider the full set of
perturbations of a particular mode. Nevertheless, observe that the bound for the mass under
which black holes become unstable that we found is equal to Mvis < 2× 10−6M⊙. This is six
orders of magnitude lower than the mass of the sun. Therefore, we conjecture that solar mass
black holes are indeed stable.

Conjecture 5.2.1. The RS1 black string with κyc ∼ 35 and M > M⊙e
κyc has mode stability.

The first motivation to study this topic was to derive the waveform of gravitational wave signals
originating from binary black hole mergers in Randall-Sundrum. This study has already been
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Figure 5.3: Combining the overestimation and the underestimation we would
expect the true frequencies to be in the red-zone. However, around m/rs = 0.7
the numerical values found by Gregory & Laflamme lay outside of this zone.

done for small compact flat extra-dimensions [9], but is interesting to study for warped spaces.
Especially now that we believe that solar mass black holes are stable in RS1 it makes sense
to study gravitational waves from binary black holes in this model. Comparing the waveforms
with gravitational wave observations, could be a new way of restricting the parameters of the
Randall-Sundrum model.

Conjecture 5.2.2. Gravitational waveforms in the RS1 model agree with gravitational wave
observations.

Another gravitational wave related topic is the study the l > 0 perturbation modes of the black
string. To derive the Gregory-Laflamme instability we assumed that the perturbations are
spherically symmetric. For the non-spherically symmetric modes one can derive a Schrödinger
operator with bounded positive potential. Therefore, these modes are stable. This potential
only slightly differs from the four-dimensional potential we obtained from the Schwarzschild
solution. In particular, in the case m → 0, the two potentials agree. This extra m-dependent
terms would effect the quasi-normal modes emitted during the ringdown of a black hole. Using
an Eikonal approximation [67], it is possible to derive differences between waveforms from
a black string and a four-dimensional black hole. This is another nice way to probe extra
dimensions using gravitational waves.

Question 5.2.3. What is the m-dependence of the quasi-normal modes of the black string?

Additionally, it is interesting to improve the analyses of the Gregory-Laflamme instability. We
analytically proved the instability in the range in Eq. 5.1, but according to the numerical
simulations there should exist unstable modes in the range mrs ∈ (0, 0.9). Other hints for the
existence of unstable modes in a wider range are that the potential already becomes negative
for any small m̂ > 0. It would be a great achievement to prove the stability in this whole
range. This could be done by improving the approximation. For example, extra steps could be
included in the step potential. As can be seen in Fig. 4.3, there are still maxima of V0.4 around
x = −3 and x = 5. By adding two extra steps in the potential, these properties could also
be taken into account and the resulting eigenfunctions might even be a better approximation.
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One could also try the method of Coulingbourne, who computed the test functions by hand.
Possibly different functions are required at the edges of the range, but one can analyse the
required behaviour and try to construct suitable functions.

Conjecture 5.2.4. The black string is modally unstable in the range 0 < mrs < 0.9.

Another way to increase our understanding of the black string is to analyse the linear instability.
A possible way would be similar to the proof of Price’s law [68]. The equation describing the
linear problem is obtained by replacing each ω term by a time-derivative. Then the equation
becomes

d2

dt2
ψ(t) +Aψ(t) = 0

where ψ : R → L2(R), and A is the self-adjoint Schrödinger operator. Then by using results
the spectral theorem 2.3.25, the solution with initial conditions ψ(0) = f and ψ′(0) = g is
given by

ψ(t) = cos
(
t
√
A
)
f +

sin
(
t
√
A
)

√
A

g, (5.2)

where operators such as
√
A are defined by the spectral mapping. Studying the linear stability

then comes down to understanding the operators cos
(
t
√
A
)

and
sin(t

√
A)√

A
. The black string

would be linearly unstable if there exist arbitrarily small f and g such that ψ(t) diverges as
t→ ∞.

Conjecture 5.2.5. The black string (R4 × S1, gBS) is linearly unstable.

Finally, the main reason to study the RS black string instability was because of Hawking’s
discovery that the RS2 black string is singular at the AdS horizon. He postulated that instead
a black cigar would form. Since then black cigar are interesting objects, and there are many
studies on them [69]. By studying the mode instability, we saw that this instability could
be visualised as in Fig. 4.12. Instead of forming a black cigar, it seems that an array of
mini-black holes is formed. It is interesting to study whether there is a relation or a possible
transformation from this mode instability to a black cigar solution.

Conjecture 5.2.6. The RS2 black string unstable modes can be combined to form a black
cigar.
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