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Abstract

Let Mg,n and Mg,n denote the moduli spaces of smooth and stable curves of genus g with n
marked points respectively. We introduce and study these spaces. In particular, we are inter-
ested in their cohomology groups. There is an action of Sn onMg,n andMg,n permuting their
marked points, which extends to an action on the cohomology, making them Sn-representations.
Moreover taking advantage of the fact that -depending on the chosen cohomology theory- the
cohomology groups are also mixed Hodge structures or ℓ-adic representations of Gal(Q/Q),
we can determine several motivic Euler characteristics using point counts over finite fields.
We introduce local systems Vλ on Mg given by a partition λ of n into at most g parts, and
investigate the motivic Euler characteristic given by the sheaf cohomology with coefficients in
Vλ. Calculating the trace of Frobenius on these Euler characteristics then gives information
on the existence of non-tautological cohomology onMg. For g = 4 and q = 2, 3, 4, we attempt
to detect non-tautological cohomology using these trace calculations.
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INTRODUCTION

In this thesis we introduce and study the moduli space Mg,n of smooth curves of genus g
with n marked points, and its compactification Mg,n consisting of stable curves of arithmetic
genus g admitting nodal singularities as introduced by Deligne and Mumford in their paper
The irreducibility of the space of curves of given genus [21].

Over the complex numbers, for low values of g and n, the spaces Mg,n and Mg,n may be
described explicitly. For example, M0,3 is a point, since three distinct points on P1 can be
translated to 0, 1, ∞. The moduli space M1,1 parametrizing elliptic curves is isomorphic
to the affine line A1, since elliptic curves are parametrized by the j-line. Curves of genus 2
can always be written as double coverings of the projective line (see for example [32, Exercise
IV-2.2]), and can therefore be given as the quotient of A3 by a finite group.

The spacesMg,n andMg,n were originally investigated as schemes, in which case their C-points
correspond bijectively to isomorphism classes of curves over C. Unfortunately, the category of
schemes is not flexible enough to guarantee the representability of a moduli functor, so Mg,n

and Mg,n lack certain desirable properties. Most of these problems arise to the existence of
curves with non-trivial automorphisms. For example, Rauch proves that Mg is not smooth in
general, with singularities coming from curves which have non-trivial automorphisms, [41].

Many modern authors therefore prefer to work in the category of stacks, where we find the DM
stacksMg,n andMg,n which exhibit more desirable properties, such as smoothness. Following
other authors in this field, we will occasionaly venture into this category, treating the spaces
as schemes as much as possible and adapting our theory to suit stacks whenever needed.

It is hard to determine the precise structure ofMg,n in general for higher values of g and n. To
make useful deductions about this space, various authors have studied its Euler characteristic.
In 1986, Harer and Zagier [30] find a closed expression for the orbifold Euler characteristic of
Mg,n in terms of Bernoulli numbers Bk:

χ(Mg,n) = (−1)n (2g − 1)B2g

(2g)!
(2g + n− 3)!.
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Consequently, Bini and Harer [13] find a closed expression for the ordinary Euler characteristic
ofMg,n for any g and n non-negative such that 2g− 1+ n > 0, which agrees with the orbifold
Euler characteristic whenever n ≥ 2g+3, since curves with at least 2g+3 marked points have
no non-trivial automorphisms.

Studying the Euler characteristics of various moduli spaces Mg,n allows us to make useful
deductions about their cohomology. For example, in [3], Arbarello and Cornalba prove that
H1(Mg,n;Q), H3(Mg,n;Q) and H5(Mg,n;Q) vanish for all values of g and n, and find explicit
generators and relations on H2(Mg,n;Q) using Euler characteristics.

While knowing the ordinary (numerical) Euler characteristic of Mg,n is certainly useful, we
can make stronger deductions about the cohomology groups if we take advantage of some ad-
ditional structures. As is proved by Deligne in [20], any quasi-projective variety X admits
a canonical mixed Hodge structure on its cohomology, so Hk(Mg,n(C);Q) has such a struc-
ture. Furthermore, the Sn-action onMg,n permuting the marked points on a curve extends to
Hk(Mg,n(C);Q), making it an
Sn-representation.
We can also study the ℓ-adic cohomology ofMg,n. The spaces Hk(Mg,n⊗Q;Qℓ) are then ℓ-adic
Gal(Q/Q)-representations, which we call Galois representations, as well as Sn-representations.
Considering Mg as a stack, it is smooth and proper, it satisfies Poincaré duality and its coho-
mology groups Hk(Mg(C);Q) admit a pure Hodge structure of weight k. This means that we
can read off the cohomology from the expression

ec(Mg,n) :=
∑
i≥0

(−1)i[H i
c(Mg,n(C);Q)] ∈ K0(MHSQ)

taking values in the Grothendieck group of mixed Hodge structures over Q. Since we can
write a nodal curve in Mg,n in terms of its normalization, given by curves of lower genus, it
is possible to define a stratification of Mg,n in terms of quotients by products of symmetric
groups of products of moduli spaces Mh,m. This then means that the expression e(Mg,n)
could be determined if we know all Euler characteristics of the moduli spaces occurring in the
stratification. Just the information

ec(Mh,m) :=
∑
i≥0

[H i
c(Mh,m(C);Q)]

is not enough, however, since it does not remember the action of Sn permuting the marked
points. To take these structures into account, we will study the Sn-equivariant Euler charac-
teristics

eSnc (Mg,n(C);Q) ∈ K0(MHSQ)⊗ Λ

and
eSnc (Mg,n⊗Q;Qℓ) ∈ K0(GalQℓ

)⊗ Λ,

where Λ is the ring
lim←−Q[x1, . . . , xn]

Sn
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of symmetric functions, containing all Schur polynomials sλ. The Euler characteristics
eSnc (Mg,n(C);Q) and eSnc (Mg,n ⊗Q;Qℓ) are then defined analogously. These expressions take
values in the Grothendieck groups of mixed Hodge structures over Q or Galois representations,
both with the additional action of Sn. In their paper titled Modular Operads [28], Getzler
and Kapranov describe how to determine the Euler characteristic of Mg,n in terms of the Sn-
equivariant Euler characteristics of certain Mh,m’s.

The trace of the Frobenius endomorphism Fq for almost all prime powers q on Mg,n then
determines the Euler characteristic as an element of K0(MHSQ) or K0(GalQℓ

) [46]. Using the
Lefschetz trace formula on étale cohomology, knowing the trace of Frobenius on the Euler char-
acteristic is essentially reduced to counting points of Mg,n defined over a finite field. This is a
painstaking exercise of counting all stable curves of genus g and n marked points defined over
said finite field, together with the size of their automorphism group. Knowing the trace of Fq
on ec(Mg,n) for almost all primes is then equivalent to saying that this count is a polynomial
in q. We can obtain the Sn-equivariant Euler characteristic in a similar fashion by counting
points equivariantly. With an Sn-equivariant point count, we mean the number of fixed points
of Fq ◦σ onMg,n for any σ ∈ Sn. If it is also a polynomial in q for all σ, this is sufficient to de-
termine the Euler characteristic as an element of K0(MHSQ)⊗Λ or K0(GalQℓ

)⊗Λ. Equivariant
points counts have been determined and are polynomials in q for at least

•M0,n for n ≤ 11, found in [34]
•M1,n for n ≤ 9, found in [12]
•M2,n for n ≤ 7, found in [7]
•M3,n for n ≤ 5, found in [7] and [12]
•M4,n for n ≤ 3, found in [8].

We can determine the Sn-equivariant point counts for Mg,n if we know the equivariant counts
for all moduli spaces occurring in the stratification. If they are all polynomial in the sense
above, so is the equivariant count of Mg,n. Finally, this is enough to determine both the
equivariant and non-equivariant Euler characteristics of Mg,n and Mg,n. These results allow
the authors in [8] to extend the above-mentioned results of [3] to conclude that Hk(Mg,n)
vanishes for all odd k ≤ 9.

Using these methods, we can better understand the cohomology ring H∗(Mg,n;Qℓ). It contains
a subring, the tautological sing

RH∗(Mg,n)⊆H∗(Mg,n;Qℓ)

consisting of images of tautological classes from the Chow ring under the cycle class map. This
ring has been studies extensively by Mumford [40]. The images of these cycles are sent to
cohomology in even degree, so any odd nonzero cohomology must come from non-tautological
classes. Conversely, results on this tautological subring give information relevant to the Euler
characteristic. In [15], the authors prove that if H∗(Mg,n;Qℓ) = RH∗(Mg,n), then Mg,n has
polynomial point count. They moreover prove that this condition is satisfied for g = 2, n ≤ 9
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and for g ≥ 3, 2g + n ≤ 14. As a consequence, it is possible to conclude that Mg,n has poly-
nomial point count for all 2g + n ≤ 12. Note that this is a slight improvements on the bounds
listed above.

Instead of studying the rational or ℓ-adic cohomology ofMg,n, we can also consider the (ℓ-adic)
sheaf cohomology of Mg. In particular, there exists a locally constant sheaf V on Mg whose
stalks V[C] are given by H1(C;Q) (or H1(C;Qℓ)). Given a partition λ = (λ1 ≥ . . . ≥ λg ≥ 0)
of n into g parts, we can construct a sheaf Vλ associated to λ, which occurs in the product

Symλ1−λ2(∧1V)⊗ · · · ⊗ Symλg−1−λg(∧g−1V)⊗ Symλg(∧g V).

It is then possible to compute the trace of Frobenius at q on the Euler characteristic of Vλ

ec(Mg;Vλ) :=
∑
i≥0

(−1)i[H i
c(Mg;Vλ)] ∈ K0(MHSQ) (or ∈ K0(GalQℓ

).

There is a close connection between these Euler characteristics and the Sn-equivariant Euler
characterstics defined above. For example, it follows from the work of Getzler [27] that mak-
ing Sn-equivariant point counts of Mg,n over Fq for all n ≤ N is equivalent to computing
Tr(Fq, ec(Mg ⊗Fq);Vλ) for all λ such that |λ| = n. Conversely, the Euler characteristic of
Vλ can be expressed in terms of equivariant Euler characteristics of Mg,n. Using methods
from a recent paper by Chan, Faber and Payne [16] to compute the weight 0 cohomology of
ec(Mg,n(C);Q), we can attempt to detect non-tautological cohomology occurring in ec(Mg;Vλ)
by testing the polynomiality of this expression for some low values of q.
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Chapter I

MODULI SPACE OF SMOOTH
CURVES

In this chapter, we will introduce the moduli functor and discuss its representability in the
category of sheaves. We then discuss the coarse moduli space Mg,n, which does not represent
the moduli functor, but is useful enough for most of our purposes.

1 Moduli Functors

Broadly speaking, moduli functors occur frequently within the context of classification, or
moduli problem. To define a moduli space which parametrizes all isomorphism classes of
objects, it might be more natural to first consider a functor which does what we want. The
existence of a moduli space is then reduced to showing the representability of this functor.

Definition I.1 (Moduli Functor). [31, Section A] A moduli functor is a functor

h : Schop
k → Sets,

assigning to a scheme B the set of all families of objects with base B.

For example, we can choose the moduli functor sending a scheme B to the set of all families
of curves of genus g indexed by B, up to isomorphism. In general the definition of a moduli
functor can vary based on the circumstances, like the type of objects indexed by a scheme B,
and what it means for two such objects to be isomorphic.

Definition I.2 (Fine Moduli Space). [31, Section A] A fine moduli space is a scheme M
representing a moduli functor h. That is, there is a natural isomorphism Φ: h → hM :=
Mork(−,M). Such a scheme M is then called a fine moduli space for the functor h.
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The fact that h can be represented allows us to define a universal family using the universal
element.

Definition I.3. Given h a moduli functor and M a fine moduli space for h, define the universal
family U ∈ h(M) to be the element in h(M) which is mapped to the canonical element IdM ∈
Mork(M,M) = hM (M).

By the Yoneda Lemma, natural transformations of Mor(−,M) are in one-to-one corre-
spondence with elements of h(M). There is a natural way to define this correspondence. If
Φ: Mor(−,M) → h is a natural transformation, we can always define u := ΦM (IdM ). Con-
versely, given an element u ∈ h(M), define the natural transformation Φ: Mor(−,M) → h
as ΦX(f) = h(f)(u). Whenever such a natural transformation is a natural isomorphism, the
corresponding element u ∈ h(M) has an interesting property, which we will characterize in the
following definition.

Definition I.4. (Universal Element) A universal element of a functor F : C → Sets is a pair
(M,u) consisting of A ∈ C and u ∈ F (M) such that for every X ∈ C and v ∈ F (X) there exists
a unique morphism f : X →M such that F (f)(u) = v.

Given a fine moduli space M for h, we can now deduce the following.

Proposition I.5. The universal family U ∈ h(M) is a universal element of the functor h.

Proof. If ψ : C → B is any family over B, i.e., some element F of h(B), then Φ(F ) is a morphism
Φ(F ) : B →M . For U to be a universal element of the functor h, there needs to exist a unique
morphism φ : B → M such that h(φ)(U) = F . The natural choice would be φ : B → M , the
image of F under Φ. Indeed, since Φ is a natural isomorphism of functors, we get the following
commutative diagram:

h(M) Mor(M,M)

h(B) Mor(S,M)

Φ(M)

h(φ)

Φ(B)

hM (φ)

So hM (φ)◦Φ(M)(U) = hM (φ)◦IdM = IdM ◦φ = φ = Φ(B)h(φ)(U). Furthermore, Φ(B)(F ) =
φ by definition. Since Φ is a natural isomorphism, Φ(B) is a bijection, so h(φ)(U) = F . Since
Φ is a natural transformation, this map φ is unique.

Generally, this is what causes obstructions for the existence of a fine moduli space. Simply
said, this is caused by the existence of nontrivial automorphisms. The following example is
taken from [42, Section 2.3]. Let k be an algebraically closed field and let Y be a scheme over
k. Recall the Picard group

Pic(Y ) = {L : L an invertible sheaf on Y }/ ∼ .
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To define a moduli functor using this set, we need to consider what it means to be a family
of line bundles over a scheme X. An obvious choice would be to take the product X × Y , the
trivial family with fiber Y over X. To this end, consider the following functor.

Definition I.6 (Absolute Picard Functor). Define the absolute Picard functor PicY : Schop →
Sets of the scheme Y 6= ∅ as

PicY (X) = Pic(X × Y ).

For f : X → X ′, we define the corresponding morphism PicY (X ′) → PicY (X) by pulling
back an invertible sheaf along f × IdY .

Proposition I.7. For Y 6= 0, the functor PicY is not representable.

Proof. Let X be any scheme and M any nontrivial line bundle. Let πX : X × Y → X be the
projection onto X. Now considerMX = π∗XM∈ Pic(X×Y ) = PicY (X). Since Y is nonempty,
it has a k-point. Therefore, we can map s : X → X × Y such that πX ◦ s is the identity. Thus,
s∗MX = M. This means MX is nontrivial. Now assume PicY were representable by some
scheme P over k. Let U ∈ PicY (P ) be the universal family. Then by definition of universal
family, there exists a unique morphism g : X → P with (g × IdY )∗U =MX . Similarly, there
exists a unique morphism p : Spec k → P corresponding to the trivial line bundle OSpec k×Y
under our natural isomorphism of functors. This then satisfies (p × IdY )∗U = OSpec k×Y . Let
{Ui} be some open affine cover of X trivialising M. This exists by definition of an invertible
sheaf. Then the pullbacks MUi of MX to Ui × Y are trivial. This means they are pullbacks
of OSpec k×Y under the maps Ui → Spec k to a point. Therefore, the unique map Ui → P
associated to MUi factors through p : Spec k → P . This gives us a diagram

X P

tiUi Spec k

g′

g

p

Since the restrictions of g : X → P to the opens Ui all factor through p, so the map g must
also factor through p by some map g′. However,

MX = (g × IdY )∗U = (g′ × IdY )∗(p× IdY )∗U = (g′ × IdY )∗OSpec k×Y = OX×Y ,

contradicting the fact that MX is nontrivial.

The idea used in this proof can be generalized to any family over a scheme B in which all
fibers are isomorphic, except for one. Take for example the family of curves indexed by t ∈ C:
Et : y

2 = x3 − t. Then all Et for t 6= 0 are isomorphic as they have the same j-invariant, 0.
This is because there is no x-term in Et. However, for t = 0 we get the cuspidal curve y2 = x3.

Proposition I.8. There is no fine moduli space for the moduli functor h : Schop → Sets
sending a scheme B over C to the set of all families of genus 1 curves parametrised by B, up
to isomorphism.
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Proof. Consider the family Et : y
2 = x3 − t indexed by the scheme A1

C. Assume there exists
a fine moduli space M for the functor h. Then for the nontrivial family indexed by A1

C, we
get a unique morphism f : A1

C → M . Since M is a fine moduli space, all values of t 6= 0 get
mapped to the same point q ∈ M , while 0 gets mapped to a different point p. However, since
A1
C is connected and f is continuous, this map cannot be a morphism of schemes. This is a

contradiction, so such a scheme M cannot exist.

So in the context of families of curves, such a fine moduli space appears to be too much
to ask for. Having a functor be representable is certainly a strong condition. However, to find
a space that parametrizes curves of a given genus up to isomorphism, it is enough to ask for
slightly less. To this end, we define the coarse moduli space as follows.

Definition I.9. [31, Section A] Let h be a moduli functor h : Schop → Sets. A coarse moduli
space for the functor h is a scheme M and a natural transformation ψM from h to hM , the
functor of points of M such that

1. The map ψSpec k : h(Spec k)→M(k) is a bijection for every algebraically closed field k.

2. Given another scheme M ′ and a natural transformation ψM ′ : h → hM
′ , there exists a

unique map π : M → M ′ such that the induced natural transformation Π: hM → hM
′

satisfies ψM ′ = Π ◦ ψM .

This definition still preserves the bijection on k-points and if we have any other scheme M ′

parametrising objects, this parametrisation factors uniquely through M . In fact, it follows from
this condition that if a coarse moduli space M exists, it is unique up to canonical isomorphism.

Proposition I.10. If a coarse moduli space (M,ψ) for a moduli functor h exists, it is unique
up to canonical isomorphism.

Proof. Suppose another coarse moduli space (M,ψ′) exists. Then by property 2 above, there
exists unique morphisms f : M → M ′ and f ′ : M ′ → M such that the induced natural trans-
formations Π: hM → hM

′ and Π′ : hM
′ → hM satisfy ψ = Π′ ◦ ψ′ and ψ′ = Π ◦ ψ. Then

ψ = Π′ ◦Π ◦ ψ and ψ′ = Π ◦Π′ ◦ ψ′. From Yoneda’s Lemma it now follows that f ◦ f ′ = IdM ′

and f ′ ◦ f = IdM , so M ∼=M ′ and Π is a natural isomorphism ψ : hM → hM
′ .

Example I.11. Let h : Schop → Sets be the moduli functor sending a scheme S over an
algebraically closed field k to the set of all isomorphism classes of elliptic curves over S with a
basepoint. The affine line A1

k parametrizes all such elliptic curves according to the j-invariant,
[32, IV-4] so (A1

k, ψ), where ψ is the natural transformation sending an elliptic curve to its j-
invariant is a coarse moduli space for h. Indeed, the first condition is satisfied by definition of
the j-invariant. For the second condition, we use [32, IV, Exercise 4.4]. It states that if k0⊆ k is
a subfield and X is an elliptic curve, which under its canonical embedding in P2 has coefficients
in k0, then its j-invariant is also contained in k0. We have an obvious map A1

k → A1
k0

induced
by the inclusion of subfields which satisfies condition 2, so A1

k is a coarse moduli space for h.
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2 Coarse Moduli Spaces

Consider the following moduli functor Mg,n : Schk → Sets

Mg,n(S) := {(π : C → S; p1, . . . , pn : S → C) : smooth curve over S}/ ∼ .

In his book on Geometric Invariant Theory, [39], Mumford shows the existence of a coarse
moduli space Mg,n for g, n ≥ 0 and 2g − 2 + n > 0, for smooth connected curves C of genus g
over an algebraically closed field k with n marked points. This space has dimension 3g− 3+n
whenever g ≥ 2. When n = 0, we consider Mg,0 = Mg. In their famous paper [21], Deligne-
Mumford show that this space is irreducible for k an algebraically closed field with arbitrary
characteristic. It is in general, however, not compact and not projective. If {Ct} is a family of
curves which becomes a nodal curve in the limit, then clearly this limit cannot be contained in
Mg, since it only parametrizes smooth curves. We would like to somehow compactify the space
Mg (or Mg,n) in such a way that it still parametrizes isomorphism classes of curves, albeit not
necessarily smooth. It turns out the right class of curves to consider to this end are so-called
stable curves, which we will discuss after the following example.

i Curves of Genus 5

We can determine the family of curves of genus 5 whose canonical model in P4 is the complete
intersection of three quadric hypersurfaces. In [32, IV] example 5.5.3, we see that a non-
hyperelliptic curve of genus 5 either has a g13 or it is a complete intersection of three quadric
hypersurfaces in the canonical embedding as a curve of degree 8. For our conventions on curves
and the techniques used in this section, see Appendix C. Using the properties of coarse moduli
spaces and some naive techniques from algebraic geometry, it is possible to deduce some results
on Mg.

Proposition I.12. The curves of genus 5 whose canonical model in P4 is the complete inter-
section of three quadric hypersurfaces form a family in M5 of dimension 12.

Proof. Since M5 is a coarse moduli space, it suffices to find a variety U parametrising the
possible curves C. We then get a morphism U → M5, and the dimension of the image of U
will be given by the dimension of U minus the dimension of its fibres. Let C be a canonically
embedded curve of genus 5 which is the complete intersection of three quadric surfaces. To
determine the choice of these hypersurfaces, we would like to know how many distinct quadrics
can be chosen on C. In general, to choose a quadric in P4 means choosing some element of
Γ(P4,OP4(2)). This space has dimension

(
6
2

)
= 15. To know which of these vanish on C,

consider the exact sequence associated to the closed subscheme C of P4

0→ IC → OP4 → OC → 0,
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where IC is the ideal sheaf of C. Then we can twist by the sheaf OP4(2), which is exact since
it is invertible, to get the sequence

0→ IC(2)→ OP4(2)→ OC(2)→ 0.

We can then take its associated long exact cohomology sequence. Since C is a complete
intersection, by C.15, the map Γ(P4,OP4(2)) → Γ(C,OC(2)) is surjective. This long exact
sequence is therefore

0→ Γ(C, IC(2))→ Γ(P4,OP4(2))→ Γ(C,OC(2))→ 0.

As noted above, dimk Γ(P4,OP4(2)) = 15, and l(2 ·KC) = dimk Γ(C,OC(2)) can be calculated
by using Riemann-Roch. Since C is a complete intersection of three quadrics, ωC ∼= OC(1) by
C.16. Hence,

l(2KC)− l(−KC) = deg 2KC + 1− g = 3g − 3 = 12.

Since KC is effective, l(−KC) = 0. Hence l(2KC) = 12 and dimk Γ(C, IC(2)) = 3. A curve of
this type can therefore be parametrised by opens U, V,W ⊆PΓ(P4,OP4(2)), which each have
dimension 14. We therefore get a map

U × V ×W →M5.

The fibre of an element of M5 is given by the images of the group PGL(4) which has dimension
(4 + 1)2 − 2 = 24, and since we must choose the quadrics so that they intersect in a curve, the
dimension of the fibre increases by the dimension of PΓ(C, IC(2)) in each of the factors. Since
dimk Γ(C, IC(2)) = 3, this fibre has dimension 24 + 2 + 2 + 2. In total the dimension of the
image of U × V ×W is 14 + 14 + 14− 24− 2− 2− 2 = 12.

Proposition I.13. A non-hyperelliptic curve of genus 5 has a g13 if and only if it can be
represented by a plane quintic with a node or a cusp.

Proof. Suppose C has a g13. Pick a divisor D ∈ g13. Then degD = 3 and dim |D| = 1. Consider
the divisor KC −D. It has degree 2g − 5 = 5 and by Riemann-Roch,

l(D)− l(KC −D) = 3 + 1− 5 = −1.

So dim |D| + 1 = dim |KC − D|. This divisor therefore induces a map C → P2 with image
a degree 5 curve of genus 5. By the genus-degree formula, this means we must have one
singularity of δ invariant 1, meaning it is either a node or a cusp.
If C admits a map φ : C → P2 with image a curve of degree 5 with a node or a cusp, then this
map is induced by an invertible sheaf φ∗OP2(1) corresponding to a divisor D which has degree
5 and dim |D| = 2. By Riemann-Roch,

l(D)− l(KC −D) = degD + 1− g = 1.

We know l(D) = 3, so l(KC −D) = 2 and therefore dim |KC −D| = 1. So it contains a g13.
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Proposition I.14. A non-hyperelliptic curve of genus 5 cannot have more than one g13.

Proof. Suppose C is such a curve with two g13’s. Then we get a morphism φ : C → P1×P1

with image a curve C ′ of degree 6. This means that we get a curve of type (3, 3) on Q, the
quadric surface which is the image of the Segre embedding. Therefore by C.11, its genus is
3 · 3− 3− 3+ 1 = 4. The degree of φ is 1 if and only if it is an isomorphism, but this is clearly
not the case, so degφ ≥ 2, so by Hurwitz’s Theorem,

8 = 2g(C)− 2 = degφ(2g(C ′)− 2) + degR ≥ 12 + degR.

But degR ≥ 0, so this is not possible.

Another proof, using the ’basepoint-free pencil trick’ is also possible, as suggested by [2],
Exercises III-B.
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Chapter II

MODULI SPACE OF STABLE
CURVES

In the previous section, we have seen the moduli space Mg,n for g, n ≥ 0 such that 2g−2+n > 0,
parametrizing smooth curves of genus g with n marked points. As was briefly mentioned, this
space is not compact. The following example illustrates this.

Example II.1. Let k be an algebraically closed field of characteristic not 2 or 3 and consider
the family of curves

{x22x3 + x31 + x22t = 0: t ∈ A1
k}

parametrized by the affine line. For all values of t 6= 0, this is a curve smooth of genus 1, while
for t = 0 it is a cuspidal curve. In particular, all curves Ct for t 6= 0 in this family are elements
of the moduli space M1,1, while the limit as t approaches 0 is not.

Moreover, Mg,n is general not proper, not complete and not projective. The authors Deligne
and Mumford [21] construct a suitable compactification Mg,n parametrizing stable curves in-
stead. In this section, we will introduce this space and exhibit some of its relevant properties.

1 Stable Curves

In this section, k is algebraically closed and g ≥ 2 unless otherwise indicated. We follow [31,
Chapter C].

Definition II.2. A stable curve is a complete connected curve that has only nodes as singu-
larities and has only finitely many automorphisms.
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Hurwitz’s Theorem tells us that any complete, nonsingular curve of genus at least two
over an algebraically closed field has only finitely many automorphisms, at most 84(g − 1) to
be exact. For positive characteristic p, this result holds only whenever p does not divide the
order of the automorphism group. It is also true for curves defined over fields that are not
algebraically closed, since a base extension of such a curve X to its algebraic closure induces
an injection Aut(X)→ Aut(Xk̄). The automorphism group of a complete connected curve can
only be infinite if it contains rational components. Therefore, we can reformulate this condition
by saying that a complete connected curve C is stable if and only if

• every smooth rational component of C meets the other components of C in at least three
points; or,

• every rational component of the normalisation of C has at least 3 points lying over singular
points of C.

In short, this is because any automorphism of C preserves the set of singular points and any
rational curve with three marked points is fixed.

Proposition II.3. A complete connected curve C is stable if and only if its dualizing sheaf ωC
is ample.

Proof. Let C be a stable curve, and let Q be the set of points in the normalisation C̃ of C lying
over the nodes of C. Let {Ci} be the set of irreducible components of C with normalisations
C̃i. Then

degω|Ci = 2g(C̃i)− 2 + |Q ∩ C̃i|.

This can be seen by considering the normalisation as a sequence of blowups at all of its nodes.
Then the degree of the canonical divisor is given by this formula, as seen in [32, V]. The
invertible sheaf ωC is ample if and only if its degree is positive on all of its irreducible compo-
nents, [36, Ch 7, Prop 5.5]. This is true if and only if |Q ∩ C̃i| ≥ 3 for all rational components
C̃i of C̃.

In fact, in [21], Deligne-Mumford show that for n ≥ 3, the sheaf ω⊗n
C is very ample.

Definition II.4. A stable n-pointed curve is a complete connected curve C that has only nodes
as singularities, together with an ordered collection p1, . . . , pn ∈ C of distinct smooth points of
C, such that the (n+ 1)-tuple (C; p1, . . . , pn) has only finitely many automorphisms.

Similarly, we can restate this condition by saying that every rational component of the
normalisation of C has at least 3 points lying over singular and/or marked points of C.

Consider the following moduli functor Mg,n : Schk → Sets:

Mg,n(S) := {(π : C → S; p1, . . . , pn : S → C) : stable n-pointed curve over S}/ ∼ .
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Note that the curves we work with are no longer smooth, so from now on, we mean arithmetic
genus whenever we say genus. For the arithmetic genus of a singular curve, see Appendix C. It
follows from C.14 that if C1 . . . , Cv are the irreducible components of C with geometric genera
g1, . . . , gv and δ nodes, that

g =

v∑
i=1

(gi − 1) + δ + 1 =

v∑
i=1

gi + δ − v + 1.

Theorem II.5. There exist coarse moduli spaces Mg and Mg,n of stable n-pointed curves; and
these spaces are projective varieties.

These spaces are called the stable compactifications of Mg and Mg,n. This theorem gives
us an indication that stable curves of genus g indeed form the right class of curves to consider
in our moduli problem. This is further strengthened by the Stable Reduction Theorem by
Deligne-Mumford:

Theorem II.6. Let R be a discrete valuation ring with quotient field K. Let η and s be the
generic and closed points of SpecR respectively. Let C be a smooth geometrically irreducible
curve over K of genus ≥ 2. There exists a finite algebraic extension L of K and a stable curve
CL → SpecRL, where RL is the integral closure of R in L, such that CL,η ∼= C ×K L.

We can derive some bounds on the number of nodes and components on a stable curve.

Proposition II.7. No stable unpointed curve C of genus g can have more than 3g − 3 nodes.

Proof. We will prove this statement by induction in two different ways. First, we do induction
on the number of irreducible components of C. If C has one irreducible component, then C
is irreducible, and it is clear that g is an upper bound for the number of singularities, as each
singularity in an irreducible component adds to the genus. Suppose that every stable curve
with n − 1 components has no more than 3g − 3 singularities. Let C be a stable curve with
n components, and let c be a singular point of C. Consider the normalization C̃ of C at c.
We can distinguish two cases: either c lies on a single irreducible component of C, or on the
intersection of two irreducible components. In the first case, simply continue the induction on
another singularity of C. In the second case, C̃ has two connected components, each with a
point marked c in the preimage of c. If the two connected components C1 and C2 of C̃ are
stable curves of genera g1, g2, then we know that g = g1+ g2. Since C1 and C2 both have fewer
than n irreducible components, the number of singularities on C1 and C2 is bounded by 3g1−3
and 3g2−3 respectively. Since the number of singularities of C is the sum of 1 and the number
of singularities of C1 and C2, we conclude that the number of singularities of C is less than or
equal to

3g1 − 3 + 3g2 − 3 + 1 = 3g − 5 < 3g − 3.

Now assume without loss of generality that C1 is not stable. Then C1 has some rational
irreducible component passing through c ∈ C2 and exactly two other points on irreducible
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components of C1. Consider C ′
1, the stable curve with this irreducible component contracted.

This stable curve has one singularity less than C1, and one irreducible component of genus 0
less than C1. This means that the genus g′1 of C ′

1 equals g1. The image of C ′
1 ∪ C2 under the

normalization map is some stable curve with one rational component removed, and two nodes
less. We have that g = g′1 + g2. Moreover, the number of nodes of C is the sum of 2, with the
number of nodes of C ′

1 and C2. Applying the induction hypothesis gives us the following upper
bound on the number of nodes of C. Denote #C := number of nodes of C.

#C = #C ′
1 + #C2 + 2 ≤ 3g1 − 3 + 3g2 − 3 + 2 = 3g − 4.

We can see this in a different -although less insightful- way by the following observation:
fix a curve C with δ nodes and v irreducible components C1, . . . , Cv with geometric genera
g1, . . . , gv. To specify such a stable curve we have to specify the normalizations C̃i of the Ci
and then specify the points on each that will be identified to form the nodes of C. There will
be 2δ such points, therefore the family of such curves will have dimension

v∑
i=1

(3gi − 3) + 2δ,

which equals
3g − 3− δ

by our genus formula for stable curves. This means precisely that the locus of curves in Mg

with exactly δ nodes has codimension δ. Therefore there cannot be more than 3g − 3 nodes.

Proposition II.8. For every g ≥ 2 there exists a stable curve with exactly 3g − 3 nodes.

Proof. For g = 2, take two smooth rational components meeting in three points. For g > 2, we
can take 2g − 2 nonsingular lines L1, . . . , L,2g−2 and transversally intersect Li with Li−1, Li+1

and Lg−1+i for every 1 ≤ i ≤ g − 1 such that L0 = Lg−1. This gives for each 1 ≤ i ≤ g − 1
two choices Lj , Lk with 1 ≤ j, k ≤ g − 1 and one other Lm for g ≤ m ≤ 2g − 2. In total this
gives 3g − 3 singularities. Since every rational component has three special points, this curve
is stable.

Corollary II.9. A stable curve of genus g ≥ 2 can have at most 2g − 2 components. If this
maximum is reached, all components are rational.

Proof. Since the addition of each component adds a node, the maximal number of components
is reached whenever we reach the maximal number of nodes, 3g − 3. Suppose C is a stable
curve with 3g − 3 nodes. Then by the genus formula for stable curves

g =
v∑
i=1

(gi − 1) + δ + 1
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we see that
2− 2g =

v∑
i=1

(gi − 1).

From this, it follows that there must be at least 2g− 2 rational components. Since all of these
rational components must have three special points, there are at least 6g − 6 marked points
in the rational components of the normalisation of C as it is a stable curve. Any stable curve
with 3g − 3 nodes has exactly 6g − 6 marked points in its normalisation, and every connected
component of the normalisation contains a marked point. Therefore these 2g − 2 rational
components are all components.

2 Boundary Divisors

The space Mg of smooth curves of genus g is a dense open in Mg. Understanding the geometry
of Mg and Mg in particular means understanding the boundary. This next section and chapter
explain some of the phenomena occurring there.

Proposition II.10. The locus of stable curves of genus g with more than δ nodes lies in the
closure of the locus of curves with exactly δ nodes.

Proof. See [31, Chapter 3C].

Since we can always map Mg,n →Mg by forgetting the marked points, this statement also
holds for n-pointed stable curves.
From this result it follows that the boundary ∆ = Mg \Mg is a divisor. Each component
is the closure of a locus of curves with precisely one node. Stable curves with one node are
easy to determine: a stable curve with one node is either irreducible of genus g − 1 and one
node,or the union of two irreducible components with genera i and g− i, i > 0 meeting at one
point. Since this construction is symmetric in i and g − i, these determine the prime divisors
∆0,∆1, . . . ,∆⌊g/2⌋. We can therefore write

Mg =Mg ∪∆0 ∪∆1 ∪ · · · ∪∆⌊g/2⌋.

In particular, the curves in ∆0 with one singularity are precisely those in the image of the map

Mg−1,2 → ∆0

identifying the two marked points. Note that since Mg−1,2 only contains smooth curves, this
map is not surjective.

Proposition II.11. The map
Mg−1,2 → ∆0

identifying the two marked points is surjective.
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Proof. As mentioned above, restricting this map to Mg−1,2 yields precisely those curves in ∆0

with one singularity. Taking the closure, we obtain our result.

Similarly, the curves in ∆i for 0 < i ≤ bg/2c are in the image of the maps

M i,1 ×Mg−i,1 → ∆i,

sending two curves to their union at the marked points.

Definition II.12. The universal curve Cg over Mg is the space Mg,1. We furthermore define
Cg =Mg,1.

Even though Mg,1 is only a coarse moduli space, we still refer to this space as the universal
curve, which might be slightly misleading.
The boundary Cg \ Cg consists of the closures of those stable 1-pointed curves which have
precisely one singularity, which is not equal to the marked point.

Proposition II.13. We have a decomposition

Cg = Cg ∪ Σ0 ∪ Σ1 ∪ · · · ∪ Σg−1

where Σ0 is the closure of the locus of pairs (C, p), C an irreducible marked curve with a single
node, and Σi is the closure of the locus of pairs (C, p), where C is the union of smooth curves
of genera i and g − i meeting at a point such that p lies in the component of genus i.

Proof. By Proposition II.10, it suffices to determine the loci of stable 1-pointed curves with
one node, since their closures will then determine the rest of the boundary. If (C, p) is some
stable 1-pointed curve with a node, then it is either irreducible, in which case it lands in Σ0,
or it is reducible. If it is reducible, then it must have two smooth irreducible components since
there is only one node. Let C ′ be an irreducible component with genus i. Then the genus of
the other irreducible component must be g − i. Since the marked point is not in the singular
locus, one of the components must contain the marked point p. For every 0 < i ≤ g − 1 we
therefore get a unique locus of curves. Since the genus of (C, p) is at least two, it is clear that
this construction gives a stable curve.

i Moduli Space of Rational Curves

In general, two unmarked genus 0 curves are always isomorphic, therefore the moduli space M0

itself is just a point. Moreover, similarly, M0,n is also a point for n ≤ 3, since we can always
define a projective transformation sending three marked points to 0, 1,∞. If C ∈ ∂M0,3 is
stable, then it has two components of genus 0 meeting at a point. Then in order for this curve
to be stable, both components need to contain three special points. Since both components
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are necessarily smooth outside their intersection, this means not both components can contain
three special points, hence such a curve is not stable. Since a rational curve with a node has
genus 1, this means the only stable rational curve with three marked points are those in M0,3,
i.e. M0,3 =M0,3 = {∗}.

For n = 4 and marked points P1, P2, P3, P4, apply the transformation sending these points
to 0, 1,∞, P . Then the resulting pointed curve is determined up to isomorphism by the choice
of P 6= 0, 1,∞, so M0,4

∼= P1 \{0, 1,∞}. In the case where such a curve is stable, but not
smooth, there can be multiple components. Let C = C1 ∪C2 be a union of two rational curves
at a point. If C1 and C2 are nonsingular outside of their intersection, this curve has genus 0.
For this curve to be stable, both rational components need to contain at least three special
points. Since we have one singularity at their intersection and no others, both components
must contain two marked points. Since any automorphism of C must fix the singularity, two
such stable curves (P1, 0, 1,∞, P ) and (P1, 0, 1,∞, Q) are isomorphic if and only if their marked
points of the decompositions agree, not up to ordering.

More generally, we can determine the moduli space M0,n for n > 4 in a similar way. If
P1, . . . , Pn are the marked points of a smooth rational curve, we can always send the first three
points to 0, 1,∞ to get the marked points 0, 1,∞, Q1, . . . , Qn−3. Since all these Qi need to be
pairwise distinct, we conclude

M0,n
∼= (P1 \{0, 1,∞})n−3 \∆,

where ∆ is the ”large diagonal” ∆ = {(Pi)i : ∃i 6= j s.t. Pi = Pj}
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Chapter III

STRATIFYING THE MODULI
SPACE

In the previous section we have seen that the existence of nontrivial automorphisms prevents
the moduli functor from being representable. In particular, this discards the existence of a
universal family over the coarse moduli space. In this section, we will see that we can almost,
but not quite, identify the space Mg,n+1 as the universal curve over Mg,n. Furthermore, we
define some canonical maps between moduli spaces and use them to stratify Mg,n by dual
graphs.
First, we can define a forgetful morphism π : Mg,n+1 →Mg,n.

Lemma III.1. There exists a morphism π : Mg,n+1 →Mg,n which on k̄-points is given by

π : Mg,n+1(k̄)→Mg,n(k̄)

[(C; p1, . . . , pn, pn+1)] 7→ [(C; p1, . . . , pn)]

by forgetting the last marked point. This is the forgetful morphism.

Proof. Consider the natural transformation of moduli functors π̃ :Mg,n+1 →Mg,n defined for
every S ∈ Schk by

(π : C → S; p1, . . . , pn, pn+1 : S → C) 7→ (π : C → S; p1, . . . , pn : S → C).

Since Mg,n is a coarse moduli space for the functor Mg,n, we have maps Mg,n → hMg,n and
therefore obtain the diagram

Mg,n+1 hMg,n+1

Mg,n hMg,n

π̃ π
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Since Mg,n+1 is a coarse moduli space for Mg,n+1 , the composition Mg,n+1 → hMg,n must
factor uniquely through a map hMg,n+1 → hMg,n . By definition of a coarse moduli space, this
map works as desired on k̄-points.

The construction above does not immediately generalize to the modulis space of stable
curves: whenever we omit a marked point on a stable curve, the result need not be stable.
Indeed, if (C; p1, . . . , pn+1) of genus g has a component Cv of genus 0 with one node and two
marked points, including pn+1, then forgetting pn+1 makes C unstable. This can be fixed by
contracting the rational component Cv. This removes one genus 0 component and maps the
remaining marked point to the node, which becomes a marked point. This operation makes C
into a stable n-pointed curve of genus g. Formally, this construction is given as follows:

Definition III.2. [35] A morphism of pointed stable curves C,C ′ over S with marked points
p1, . . . , pn+1 and p′1, . . . , p

′
n:

C C ′

S S

φ

p p′

=

is called a contraction if

1. C is an (n+ 1)-pointed curve, C ′ is an n-pointed curve and φ ◦pi = p′i for 1 ≤ 1 ≤ n.

2. If we consider the induced morphism on a geometric fibre Cs, we have one of two possible
cases:

(a) φs : Cs → C ′
s is an isomorphism.

(b) There is a rational component E⊆Cs such that pn+1(s) ∈ E,φs(E) = x is a closed
point of C ′

s, and
φs : Cs \ E → C ′

s \ {x}

is an isomorphism.

Why this is the right thing to do is justified by the following theorem. Since we are limited
to coarse moduli spaces and moduli functors, we refer to [35, Theorem 2.4] for the (more
complete) version for stacks.

Theorem III.3. There is a unique forgetful morphism π : Mg,n+1 →Mg,n extending π : Mg,n+1 →
Mg,n which acts on k̄-points by forgetting the last marked point.

Proof. Define a moduli functor Cg,n : Schk → Sets by

S 7→ {(p : C → S; p1, . . . , pn, q : S → C) : stable curve over C}/ ∼ .
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Here, q can be any point of C. In particular, it can be one of the special points. (C; p1, . . . , pn)
is an n-pointed stable curve of genus g. We can then define a natural transformation of functors

ξ̃ : Cg,n →Mg,n

(p : C → S; p1, . . . , pn, q : S → C) 7→ (p : C → S; p1, . . . , pn : S → C).

This is a well-defined map, whence it does not change the curve C nor impact its stability.
This natural transformation then induces a map on coarse moduli spaces like in the lemma
above. The key of the proof is therefore finding a natural isomorphism of functorsMg,n → Cg,n.
This is the content of Knudsen’s paper [35]. The operation φ sends an (n + 1)-pointed curve
(p : C → S; p1, . . . , pn, pn+1 : S → C) to the n-pointed curve

(C → S; p1, . . . , pn, q : S → C), q = pn+1,

if this is stable, and otherwise to the n-pointed curve

(C ′;φ ◦p1, . . . , φ ◦pn, q : S → C), q = φ ◦pn+1,

where q is now no longer a marked point. The inverse of this morphism is called stabilization.
To an n-pointed curve with an extra section

(p′ : C ′ → S; p′1, . . . , p
′
n, q : S → C)

it assigns the (n + 1)-pointed curve C with marked points p′1, . . . , p′n, q if q is not a special
point. If q is one of the special points in the fibre C ′

s of C ′ → S, stabilization modifies C ′
s by

inserting a rational component at the marking p′n that contains q. Although formally defining
this as a natural transformation of functors is difficult, it is easy to see that stabilization and
contraction are inverses when properly defined.
This process yields a natural transformationMg,n+1

∼= Cg,n →Mg,n which descends to a map
of schemes ξ : Mg,n+1 → Mg,n by the properties of coarse moduli spaces. On k̄-points, it is
given by

(C; p1, . . . , pn, pn+1) 7→
{

(C; p1, . . . , pn) if (C; p1, . . . , pn) is stable
(C ′;φ ◦p1, . . . , φ ◦pn) otherwise.

To prove that this is the unique extension of π : Mg,n+1 → Mg,n, we can use the projectivity
of Mg,n, since this implies it is also separated. Clearly, the restriction of ξ to Mg,n+1 is just
π. Now suppose ξ′ : Mg,n+1 → Mg,n is another morphism extending π. Then consider the
pullback diagram

Z Mg,n

Mg,n+1 Mg,n ×Spec kMg,n

∆i

(ξ,ξ′)

By construction, Z is the locus in Mg,n+1 where ξ, ξ′ agree. Since Mg,n is separated, the
diagional morphism ∆ is a closed immersion. As closed immersions are stable under base
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change, we may conclude that i : Z → Mg,n+1 is a closed immersion. Having expressed Z as
a closed subscheme of Mg,n+1, note that it contains the dense open Mg,n+1. As this space is
dense in the projective variety Mg,n+1 and Z is closed, we conclude Z =Mg,n+1 and therefore
ξ = ξ′.

The essence of this proof is essentially the natural isomorphism between the moduli functors
Mg,n+1 and Cg,n which would express the equivalence of the universal curve C over the fine
moduli space Mg,n (in a category where this exists) as the fine moduli space Mg,n+1. While
this does not make sense for our scheme-theoretic interpretation, we can partially justify it. As
noted in [31], we can define the moduli functor

M0
g,n : Schk → Sets

S 7→ {(p : C → S; p1, . . . , pn : S → C) : stable curves C
admitting no nontrivial automorphisms}/ ∼,

which is representable in the category of schemes by a space M0
g,n. Therefore, over this space

we do have a universal curve, M0
g,n+1.

Figure III.1: possible contractions and their inverse stabilizations

1 Gluing Morphisms and Dual Graphs

We have seen that a stable curve can be interpreted as a collection of smooth curves that are
attached at certain points to make a nodal curve. This interpretation lends itself nicely to a
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combinatorial counterpart, the dual graph of a stable curve, which we will introduce in this
section. Through this approach, we will formally define what it means to ’glue’ curves as a
map between moduli spaces. In particular, this theory will allow us to make a stratification of
Mg,n that is essential for the computation of its Euler characteristic.

Definition III.4. [29, A.1] A stable graph is a tuple

A = (V,H,L, g : V → Z≥0, γ : H → V, i : H → H)

satisfying the following properties:

1. V is a vertex set with genus function g,

2. H is a half-edge set equipped with a vertex assignment γ and an involution i,
we denote H(v) := {h ∈ H : γ(h) = v} the set of vertices incident to h,

3. E, the edge set, is defined by the orbits of i in H (self-edges at vertices are permitted),

4. (V,E) is a connected graph,

5. L is a set of numbered legs attached to the vertices,

6. For each vertex v, the stability condition holds:

2g(v)− 2 + n(v) > 0,

where n(v) is the valence of A at v including both half-edges and legs.

The genus of A is defined as
g(A) =

∑
v∈V

g(v) + h1(A).

Let (C, p1, . . . , pn) be a stable n-pointed curve of genus g and w : C̃ : → C its normalization.

Definition III.5. The dual graph ΓC is given by the following infornmation:

• V = {v : C̃v a component of C̃}, g : V → Z≥0 sends a component to its genus,

• H = {p1, . . . , pn} ∪ {q′, q′′ : preimages w−1(q), q a node}
γ : H → V sends a half-edge to the component containing it, i : H → H fixes pi and
exchanges q′, q′′,

• The legs L are given by {p1, . . . , pn}, with an ordered enumeration l(pi) = i.

Example III.6. Let (C, 1, 2, 3) be the three-pointed genus 5 curve given by three irreducible
components C1, C2, C3 of geometric genera 0, 1, 3 intersecting in the points a, b, c and normal-
ization w : C̃ → C such that
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• {a′, a′′} = w−1(a), {b′, b′′} = w−1(b), {c′, c′′} = w−1(c) are the preimages of the nodes,

• i ∈ Ci for i = 1, 2, 3.

Then the dual graph ΓC is given by

• V = {v1, v2, v3}, g(v1) = 0, g(v2) = 1, g(v3) = 3,

• H = {1, 2, 3} ∪ {a′, a′′, b′, b′′, c′, c′′},
γ(i) = v1, γ(a′) = γ(c′′) = v2, γ(c′) = γ(b′) = v1, γ(b′′) = γ(a′′),

• L = {1, 2, 3}.

While this notion of dual graph is heavy in terms of notation, the process is much clearer
in terms of pictures:

Figure III.2: the curve C and its dual graph

Definition III.7. Let Γ be a stable graph of genus g with |L| = n legs. Define

MΓ :=
∏

v∈V (Γ)

Mg(v),n(v),

MΓ :=
∏

v∈V (Γ)

Mg(v),n(v).

Proposition III.8. [42, Proposition 4.15] Let Γ be a stable graph of genus g with |L| = n
legs. Then there exists a morphism

ξΓ : MΓ →Mg,n

which acts on k-points by sending a tuple (Cv, (qh)h∈H(v))v∈V (Γ) to the stable curve (C, p1, . . . , pn)
by gluing qh and qh′ if h = i(h′). Then pi is given by the i-th leg of Γ.
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Proof. To induce the morphism ξ, we will construct a natural transformation of functors.
Define the moduli functor MΓ : Schk → Sets by

S 7→
∏

v∈V (Γ)

Mg(v),n(v)(S).

This functor by construction has MΓ as a coarse moduli space. Consider the natural transfor-
mation

χΓ :MΓ →Mg,n

(fv : Xv → S, (σl : S → Xv)l∈H(Γ))v∈V (Γ) 7→ (f ′ : X ′ → S, σ′1, . . . , σ
′
n : S → X ′),

where the image is a family obtained by identifying the sections σl, σl′ if l, l′ form edges of Γ.
Why this is a well-defined construction in terms of families is described in [?, Section X-7]. In
particular, the fiber of X ′ → S is precisely the curve obtained from Xs by gluing along its dual
curve. This map χΓ then descends to a map ξΓ of coarse moduli spaces which acts as desired
on k-points.

Lemma III.9. Let g, n ≥ 0 such that 2g − 2 + n > 0. Let Γ be a stable graph of genus g and
n legs, and consider the set

MΓ := {(C, p1, . . . , pn) : ΓC ∼= Γ}⊆Mg,n

The morphism ξΓ is finite, and its image is the closure of MΓ in Mg,n.

Proof. We first prove that our morphism is finite. Note that the moduli spaces Mg,n are proper
since they are projective varieties and therefore MΓ is too. In particular, Mg,n is separated.

MΓ Mg,n

Spec k

ξΓ

τ
ρ

where τ is proper, and ρ is separated. Let GξΓ : MΓ → MΓ ×k Mg,n be the map induced by
(Id, ξΓ). Consider the diagram

MΓ MΓ ×kMg,n

Mg,n Mg,n ×kMg,n

GξΓ

ξΓ

∆

We haveMΓ×kMg,n×Mg,n×kMg,n
Mg,n

∼=MΓ, so this diagram is cartesian. Since ρ is separated,
∆ is a closed immersion, so GξΓ is also a closed immersion. In particular, it is proper. Next,
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we have the cartesian diagram

MΓ ×kMg,n Mg,n

MΓ Spec k

τ ′

τ

Since τ is proper, so is τ ′. We have ξΓ = τ ′ ◦ GξΓ , so ξΓ is proper. Since a proper and quasi-
finite morphism is finite, we are left with showing that ξΓ is quasi-finite, i.e., that its fibers
are finite in number. This follows from the fact that our stable curves have only finitely many
components, nodes and automorphisms, so the possible number of ways of taking apart a stable
curve to glue it back together is finite.
To show ξΓ(MΓ) = M

Γ, we first show that MΓ = ξΓ(MΓ). Given a curve with dual graph Γ,
it can be seen as the gluing of its irreducible components of lower genus by definition. On the
other hand, any curve which is in the image of ξΓ has dual graph Γ by construction.
To show the image is closed, we use the fact that ξΓ can be factored as MΓ

GξΓ−−→MΓ×kMg,n →
Mg,n. We have seen that GξΓ is a closed immmersion, so it is closed, and the second map is
closed as MΓ is proper. Hence, MΓ⊆ ξΓ(MΓ), but MΓ is dense in MΓ, so

M
Γ⊆ ξΓ(MΓ)⊆ ξΓ(MΓ) and ξΓ(MΓ)⊆ ξΓ(MΓ) =M

Γ
.

Corollary III.10. The set MΓ is nonempty, irreducible, locally closed and it defines a strati-
fication

Mg,n =
⊔
Γ

MΓ,

where each stratum has dimension

dimMΓ =
∑

v∈V (Γ)

3g(v)− 3 + n(v) = dimMg,n −#E(Γ).

Proof. The map ξΓ is nontrivial and MΓ is nonempty and irreducible, so the image ξΓ(MΓ) =

MΓ is too as ξΓ is closed. It is clear that MΓ \MΓ⊆ ξΓ(MΓ \MΓ) since ξΓ(MΓ) = MΓ. On
the other hand, if C is a curve in MΓ \MΓ, then one of the components C ′ of C must have
a node, and the image of C under ξΓ is therefore a curve with more nodes than Γ has edges,
so ξΓ(C) /∈ MΓ. Now since ξΓ is closed and MΓ \MΓ is closed, the set MΓ \MΓ is closed in
Mg,n, so MΓ is open in M

Γ. Since one curve cannot have multiple dual graphs, the sets MΓ

partition Mg,n. We have that MΓ is irreducible with closure MΓ, so it suffices to determine
the dimension of MΓ since ξΓ is a finite morphism. For this we need the identity

g =
∑

v∈V (Γ)

g(v) + 1 + #E(Γ)−#V (Γ).
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Notice that each factor of MΓ has dimension 3g(v)− 3 + n(v), so the dimension of MΓ is∑
v∈V (Γ)

3g(v)− 3 + n(v).

Since n(v) = #H(v), summing over all valences just gives #H(Γ), but this latter quantity is
n+ 2#E(Γ). Combining these identities, we get

dimMΓ = dimMΓ =
∑

v∈V (Γ)

3g(v)− 3 + n(v)

=
∑

v∈V (Γ)

3g(v)− 3#V (Γ) + 2#E(Γ) + n

=
∑

v∈V (Γ)

3g(v) + 3#E(Γ)− 3#V (Γ) + n−#E(Γ)

= 3g − 3 + n−#E(Γ) = dimMg,n −#E(Γ).

Corollary III.11. Let g, n ≥ 0 such that 2g− 2+n > 0. The boundary ∂Mg,n :=Mg,n \Mg,n

is a Weil divisor.

Proof. Let C ∈ ∂Mg,n and let w : C̃ → C be its normalization. Let q ∈ C be a choice of node
and let q′, q′′ ∈ w−1(q). Let C ′, C ′′ be the curves obtained by gluing all points except q′, q′′.
This gives us a partial normalization ŵ : Ĉ = C ′tC ′′ → C, allowing us to write C as the image
of a gluing morphism

Mg−i,n−k+1 ×M i,k+1 →Mg,n

given by a stable graph with one edge. It is also possible for q′ and q′′ to be on the same
component, in which case C is the image of a curve under the gluing morphism

Mg−1,n+2 →Mg,n.

On the other hand, any stable graph with more than one edge is given by a curve with at least
one node. Hence, we have an equality

∂Mg,n =
⋃

#E(Γ)=1

ξΓ(MΓ) =
⋃

#E(Γ)=1

M
Γ
.

By the preceding corollary, any MΓ has codimension 1 in Mg,n, completing the proof.
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Chapter IV

COHOMOLOGY AND DUALITY

In this section, we introduce sheaf cohomology with compact support and highlight some of
its important properties. We follow [38]. In this section, X is variety over a k. That is, a
geometrically reduced and irreducible scheme, separated and of finite type over a field k and
F a sheaf of abelian groups on X. Note that the cohomology discussed in [38] is based on
a treatment of étale cohomology, but as noted in the introduction of Chapter 3, and indeed
in [44, Tag 03DW], sheaf cohomology agrees with étale cohomology for quasi-coherent sheaves.
We will therefore omit the étale cohomology from our notation.

1 Cohomology with Compact Support

Definition IV.1. Let f : X → Y be a morphism of varieties. The direct image with compact
support is the functor

f! : Sh(X)→ Sh(Y )

sending the sheaf F to the sheaf f!F given by

U 7→ {s ∈ F(f−1U) : f
∣∣
supp(s) : supp(s)→ U is proper}.

This defines f!F as a subsheaf of the direct image sheaf f∗F . Whenever f is the embedding
of X as an open subvariety of Y , this sheaf is just extension by zero.

Definition IV.2. The group of sections with compact support of F is defined as

Γc(X,F) =
⋃

ker(Γ(X,F)→ Γ(X \ Z,F))

where Z runs through the complete subvarieties of X.
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Since the global sections functor is exact, so is the global sections functor Γc(X,−). How-
ever, we do not define the cohomology groups of F with compact support as the right derived
functors of Γc(X,−). Instead, note that by Nagata’s Compactification Theorem, there exists
an embedding j : X → X of X into a complete subvariety X as an open subvariety. This leads
naturally to the following definition:

Definition IV.3. Let j : X → X be the open embedding of X in a complete subvariety X.
Then the p-th cohomology with compact support of F is

Hp
c (X,F) := Hp(X, j!F).

Proposition IV.4. Let F , j : X → X be as above. Then

1. H0
c (X,F) = Γc(X,F).

2. The functors Hp
c (X,−) functorially associate long exact sequences of abelian groups to

short exact sequences of sheaves.

Proof. See [38, III-Proposition 1.29].

Remark. Note that in the definition of cohomology with compact support, we have made a
choice of embedding j : X → X, but a different choice of embedding does not change the
cohomology groups Hp

c (X,F). See [38, VI-Proposition 3.1].

One of the advantages of working with cohomology with compact support is that it has
more than one canonical long exact sequence associated to it.

Proposition IV.5. Let Z ⊆X be a closed subscheme. Then there exists a long exact sequence
of cohomology with compact support

· · · → Hp
c (X \ Z,F)→ Hp

c (X,F)→ Hp
c (Z,F)→ Hp+1

c (X \ Z,F)→ · · ·

Proof. As Z ⊆X is a closed subscheme, we have the closed immersion i : Z → X and the open
immersion k : X \ Z → X fitting in the short exact sequence of sheaves

0→ k!F
∣∣
X\Z → F → i∗F

∣∣
Z
→ 0.

Indeed, k!F|X\Z → F is just the inclusion of the sheaf F|X\Z extended by zero, which is clearly
injective. The map F → i∗F|Z is the map restricting F to Z, which is clearly surjective. We
are left with showing exactness at F . Let s ∈ F(U) be in the image of k!F|X\Z → F , then
it is zero on Z by construction. On the other hand, let t ∈ F(U) be a nonzero section which
maps to zero under restriction to Z. This must mean it is nonzero on X \ Z and can be given
as a section on k!F |X\Z(U) = F(X \ Z ∩ U) extended by zero. Let j : X → X be the open
embedding of X into a complete variety. Now this embeds j ◦ i : Z → X into Z ⊆X and
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j ◦ k : X \ Z → X as X \ Z. The functor j! is exact by [38, II-Proposition 3.13] and therefore
we obtain

0→ j!k!F
∣∣
X\Z → j!F → j!i∗F

∣∣
Z
→ 0,

hence there is a long exact sequence

· · · → Hp(X \ Z, j!k!F
∣∣
X\Z)→ Hp(X, j!F)→ Hp(Z, j!i∗F

∣∣
Z
)→ · · ·

yielding the desired long exact sequence of cohomology with compact support.

Definition IV.6. We define the numerical Euler characteristic with compact support of X and
F as

ec(X,F) :=
∑
i≥0

(−1)i dimH i
c(X,F).

The long exact sequence above in particular implies that the Euler characteristic with
compact support is additive:

Corollary IV.7. Let U ⊆X be an open subscheme and Z its complement. Then

ec(X,F) = ec(U,F) + ec(Z,F).

Proof. This is a direct consequence of the existence of the long exact sequence

· · · → Hp
c (U,F)→ Hp

c (X,F)→ Hp
c (Z,F)→ · · ·

Corollary IV.8 ( [3]). Let X be a quasi-projective variety and let

X = Xd ⊃ Xd−1 ⊃ · · · ⊃ X0 6⊃ ∅

a filtration by closed subvarieties such that Xi = Xi \Xi−1 is empty or of pure dimension i.
Then

ec(X,F) =
∑
i≤d

ec(Xi,F).

Proof. We will do induction on d. If d = 0, then the statement is trivially true. Now assume
the statement holds for a filtration by d− 1 subvarieties. Then

ec(Xd−1,F) =
∑
i<d

ec(Xi,F).

Furthermore, we can write X = Xd = Xd ∪Xd−1 since Xd = Xd \Xd−1. We therefore have a
long exact sequence of cohomology with compact support:

· · · → H i
c(Xd,F)→ H i

c(X,F)→ H i
c(Xd−1,F)→ . . .

and hence ec(X,F) = ec(Xd,F) + ec(Xd−1,F) = ec(Xd,F) +
∑

i<d ec(Xi,F).
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As an example, we can use this filtration method to compute the numerical Euler charac-
teristics of the spaces M0,n for some low values of n. By a slight abuse of notation, let Q be
the constant sheaf with value Q.

Proposition IV.9. ec(M0,3,Q) = 1, ec(M0,4,Q) = −1 and ec(M0,5,Q) = 2.

Proof. Since three points fix a rational curve, M0,3 is just a point and ec({∗},Q) = 1. We can
identify M0,4 with the complex plane without two points, so it directly follows that

ec(M0,4,Q) = ec(C1,Q)− ec({0, 1},Q) = 1− 2 = −1.

The space M0,5 can be identified with the complement of the lines x1 = 0, x1 = 1, x2 = 0, x2 =
1, x1 = x2 in C2. We can see this as the complement of the six projective lines in P2 with
homogeneous coordinates x0, x1, x2:

M0,5
∼= P2 \{x0 = 0, x1 = 0, x2 = 0, x0 = x1, x0 = x2, x1 = x2}.

Out of the six lines L1, . . . , L6 that are omitted, two or more meet in seven distinct points
P1, . . . , P7. We therefore obtain a filtration

P2 ⊃
⋃
i≤6

Li ⊃
⋃
j≤7

Pj

such that P2 \
⋃
i≤6 Li

∼= M0,5 and for each Li such that Pk, Pl, Pm ∈ Li we have Li \
{Pk, Pl, Pm} ∼=M0,4. Therefore

ec(M0,5,Q) + 6ec(M0,4,Q) + 7 = ec(P2,Q).

Using the fact that ec(P2,Q) = 3 and the results above, we conclude that ec(M0,5,Q) = 2.

2 ℓ-adic Cohomology

As we will see later, Mg,n and Mg,n are smooth stacks, and therefore they satisfy a form of
Poincaré Duality.

Definition IV.10. Let X be a scheme of finite type over an algebraically closed field k. Let
Zℓ be the ring of ℓ-adic integers and Qℓ its quotient field. We define the ℓ-adic cohomology for
a prime ℓ 6= char k by

H i
c(X,Qℓ) = lim←−

r

(H i
c(X,Z /ℓr Z))⊗Zℓ

Qℓ

This definition is given in [32, Appendix C] for regular sheaf cohomology, but works in the
same way for cohomology with compact support. More generally, we can define a form of ℓ-adic
sheaf cohomology.
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Definition IV.11. [38, V-1] Let ℓ be a prime number. An ℓ-adic sheaf on X is given by
an inverse system of sheaves F = (Fn)n∈N such that for any n, the given map Fn+1 → Fn
is isomorphic to the canonical map Fn+1 → Fn+1 ⊗Z Z /ℓn Z, that is, Fn+1 → Fn induces an
isomorphism Fn+1/ℓ

nFn+1 → Fn. The ℓ-adic cohomology groups are then defined as

Hr(X,F ) := lim←−
n

Hr(X,Fn).

Choosing an open embedding X → X, we can define cohomology with compact support as
before via an open embedding j : X → X. If X → S is a separated morphism of finite type,
define the higher direct image sheaf

Rqf!(F ) := Rqg∗(j!F )

where g : X → S is a proper morphism such that g ◦ j = f . If F is a constructible ℓ-adic sheaf,
we can make it a Qℓ-sheaf by setting F ′ := F ⊗Zℓ

Qℓ. We then set

Hr(X,F ′) := Hr(X,F )⊗Zℓ
Qℓ

Let Λ denote the constant sheaf Z /(n), where n is coprime to the characteristic of our base
field k. Then we can express a form of Poincaré Duality for the cohomology with compact
support:

Proposition IV.12. Let X be a smooth scheme of finite type of dimension d over a separably
closed field k. Let F be a constructible sheaf of Λ-modules on X. Then there is a perfect pairing

Hr(X,F )×H2d−r
c (X,F∨(d))→ H2d

c (X,Λ(d)) ∼= Λ,

where F∨(d) = Hom(F, µ⊗dn ) denotes the d-th Tate-twist of the dual of F by µn, the group of
roots of unity.

Proof. See [18, VI-3].

Corollary IV.13. Let X be a smooth scheme of finite type of dimension d over a separably
closed field k and let ℓ a prime not equal to the characteristic p of k. Then for an ℓ-adic sheaf
F = (Fn)n∈N, there is a perfect pairing

Hr(X,F )×H2d−r
c (X,F∨(d))→ Qℓ .

Proof. Consider the perfect pairings for the sheaves of Z /ℓn Z-modules Fn and take the inverse
limit:

lim←−(H
r(X,Fn)× lim←−(H

2d−r
c (X,F∨

n (d))→ lim←−(Z /ℓi Z) ∼= Zℓ .

Now tensoring by Qℓ yields the desired formula.
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Let G := Gal(k/k), then the cohomology groups H i
c(X,F

∨(d)) are ℓ-adic Galois representa-
tions of G. Identifying Qℓ with Qℓ(1), the ℓ-adic cyclotomic character, we have the isomorphism
of ℓ-adic Galois representations

H i
c(X,F )

∨(d) ∼= H2d−i
c (X,F ),

where H i
c(X,F )

∨(d) denotes the d-th Tate twist.

i Lefschetz Fixed-Point Formula

Let X be a smooth scheme of finite type and dimension d that is defined over a finite field
k = Fq, and let X = X ×k k be the extension to the algebraic closure. We can count the
number of k-points on X using étale cohomology. The following is taken from [32, Appendix
C].

Definition IV.14. Let X and k be as above. We define the Frobenius morphism f : X → X
via the morphism of rings

f# : OX → OX
x 7→ xq.

Furthermore, a point P of X is an Fqr -point if and only if it is fixed under the Frobenius
morphism f r. Denote Nr := Number of fixed points of f r.

Proposition IV.15. Let X and k be as above. Then

Nr =
d∑
i=0

(−i)i Tr((f r)∗;H i(X,Qℓ)).

This is known as the Lefschetz Fixed-Point Formula.

In [4], Behrend generalizes this formula to the category of algebraic stacks. We discuss this
in a later section, but provisionally take the point of view of schemes.
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INTERLUDE

In the first chapters we have introduced the moduli functorsMg,n andMg,n; the coarse moduli
spaces Mg,n and Mg,n almost representing them and determined some basic facts about their
structure. These have been interesting objects of study, but do not satisfy certain proper-
ties. Crucially, these schemes are not smooth in general, and do not admit a universal family
π : Mg,n+1 →Mg,n, even though we pretend like they do.

In the coming chapters, we will introduce some objects and techniques which require our spaces
to be smooth and have a universal family over them. To be able to apply this to our study of
the moduli space of curves, we will follow the example of many other authors in this field and
promote to the moduli stacks Mg,n and Mg,n.
These are smooth (in the appropriate sense) Deligne Mumford (DM) stacks, and come with
projection morphisms

ρ :Mg,n →Mg,n

ρ : Mg,n →Mg,n,

allowing us to translate results about the moduli stacks to the coarse moduli spaces. These
latter objects are also coarse moduli spaces in the sense of stacks: every morphism from the
stack to a scheme must factor through the coarse moduli space via the projection morphism,
and this map induces a bijection on geometric points.

All objects used henceforth, like sheaves and cohomology, will need to be redefined for stacks.
This is needed for an appropriate justification, but we omit these details here, for they will
not be of much use. Indeed, even the definition of a Deligne Mumford stack is outside of the
scope of this thesis. Whenever needed, we will highlight the difference between moduli stacks
and their coarse spaces, suitably adapting our theory, how unsatisfactory it may be. For more
details on the moduli stacksMg,n andMg,n and why their use is justified, we refer to [31, 3D]
and [?], in particular section 12.5.
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Chapter V

LOCAL SYSTEMS

In this section, we introduce the sheaves ℓV, which we will use in the context of sheaf cohomol-
ogy on the moduli space. These sheaves arise naturally in the sense that they only remember
the most important information about the cohomology of a curve. Following [32, Appendix C],
we see that the trace of Frobenius on the cohomology of a curve C is most interesting on its
first cohomology H1(C;Qℓ). We would like to use this local information to describe the moduli
space globally. The sheaves ℓV turn out to be the right tool for this: the trace of Frobenius
on the cohomology of Mg can then be described using the stalks of ℓV, which are given by
H1(C;Qℓ).

Definition V.1. [37] Let X be a topological space. A local system on X is a sheaf of abelian
groups L such that for every x ∈ X there exists an open neighbourhood U ⊆X such that L|U
is isomorphic to a constant sheaf.

If F is a sheaf of abelian groups on a scheme X and f : X → Y is a morphism of schemes,
then we can associate to Y the direct image sheaves Rif∗, which allows us to study the coho-
mology of X relative to Y . Let A(X) be the category of sheaves of abelian groups on a scheme
X.

Definition V.2. [32, III-8] Let f : X → Y be a continuous map of topological spaces. We
define the higher direct image functors Rif∗ : A(X) → A(Y ) to be the right derived functors
of the direct image functor f∗.
For each i ≥ 0 and each F ∈ A(X), Rif∗(F) is the sheaf associated to the presheaf

V 7→ H i(f−1V,F
∣∣
f−1V

).

We will apply this construction to the forgetful morphism Mg,1 → Mg for g ≥ 2 and
M1,2 →M1,1 for g = 1 since elliptic curves require a choice of basepoint.
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Definition V.3. Let Q be the constant sheaf with coefficients in Q onMg,1 andM1,2 and Qℓ

the constant sheaf with coefficients in Qℓ on Mg,1⊗Z[1/ℓ] and M1,1⊗Z[1/ℓ]. Then set

V := R1π∗]Q

ℓV := R1π∗Qℓ .

In order to properly define the local system ℓV, we need to define the higher direct image
sheaves Riπ∗(F) for F an ℓ-adic sheaf. For details on this construction, see [38]. Here, we
moreover find a proof that higher direct images of constructible sheaves are again constructible,
which in this case is enough to conclude that the sheaves V and ℓV are indeed local systems
on Mg or M1,1.
The sheaves V and ℓV are natural objects of interest since they have well-behaved stalks, as is
illustrated by the following proposition:

Proposition V.4. Let [C] ∈Mg, then V[C]
∼= H1(CC ,Q).

Proof. Let k([C]) be the residue field at [C] ∈ Mg over the field k. Consider the scheme-
theoretical fiber CC of the universal family π : Cg →Mg given by the cartesian square

CC = Cg ×Mg Spec k([C]) Spec k([C])

Cg Mg

p2

sp1

π

where s ∈ Spec k([C]) → Mg has image [C]. We have that the local ring of Spec k([C]) at
its unique point is k([C]), while the local ring A of Mg at [C] satisfies Q(A) = k([C]). The
morphism s is therefore flat, and we can apply [32, III] Proposition 9.3 to the constant sheaf
Q on Cg. We get that

s∗R1π∗Q ∼= R1(p2)∗(p
∗
1Q).

The left hand side of this isomorphism is just the stalk of V at [C]. On the other hand, the
pullback of a constant sheaf is constant. Hence, the right hand side is the sheafification of the
presheaf

Spec k([C]) ⊃ U 7→ H1(p−1
2 (U),Q),

but since p2 is a constant map on the level of spaces, its preimage on a nonempty open is just
CC .

In [38], we find an ℓ-adic equivalent of [32, III] Proposition 9.3 for ℓ-adic sheaves. In
particular, the proof above extends to the local system ℓV. That is, for [C] ∈Mg,

ℓV[C]
∼= H1(CC ;Qℓ).

Note that the choice of local system ℓV or V is based on the field over which Mg is defined.
We could choose k = C or k = Fp for any p 6= ℓ. The local systems ℓV are shown to commute
with base-change and are therefore independent of this choice.
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Proposition V.5. Let ρ : Mg → SpecZ[1/ℓ] be the structure map. If V is a locally constant
system on Mg, then Riρ!V is a locally constant system over SpecZ[1/ℓ] that commutes with
base change.

Furthermore, local systems occur quite naturally in topology. If p : X̃ → X is a universal
covering space of a topological space X with fundamental group G, then representations of G
determine local systems on X in the context described above. In fact, if X is a locally path
connected paracompact Hausdorff space, there is a one-to-one correspondence between locally
constant sheaves on X and representations of its fundamental group. See [43, Chapter 6].
Given a representation V of G, we equip it with the discrete topology and consider the product

X̃ × V /G,

where we quotient out by the relations (xg, v) = (x, gv). Then consider the projection map

X̃ × V /G→ X̃/G ∼= X.

We can then define a local system V corresponding to the representation V by taking the space
of continuous sections of this projection. For any x ∈ X̃, we can find a neighbourhood U such
that gU ∩ U = ∅ for any g ∈ G nontrivial, since X̃ is the universal cover of X. Then on this
subset U , all fibers are isomorphic to V , and hence V|U is just the constant sheaf associated to V .

In Appendix B, we define the Schur functors assigning to the standard representation S of
Sp(2g,C) an irreducible representation S⟨λ⟩ S indexed by a partition λ of n into g parts. To
extend these constructions to GSp(2g,C), let W (∼= C2g) be the standard representation of
GSp(2g,C) and set V := η⊗−1 ⊗W [22, p. 224]. Now for a partition λ = (λ1 ≥ λ2 ≥ . . . ≥
λg ≥ 0) of n, we can define an irreducible representation Vλ, occurring with highest weight in

Symλ1−λ2(∧1V )⊗ · · · ⊗ Symλg−1−λg(∧g−1V )⊗ Symλg(∧gV ),

which is the image of the Young symmetrizer on V ⟨n⟩. In this case, however, the highest weight
is given by (λ1− λ2)γ1 + · · ·+ λgγg − |λ|η for γi suitable fundamental roots. This construction
does not yield all irreducible representations of GSp(2g,C), however, since we can still tensor
with η.
The local system V under this construction will now correspond to the representation V of
GSp(2g,C) given above. By applying a Schur functor we then obtain the local system Vλ with
highest weight (λ1 − λ2)γ1 + · · ·+ λgγg − |λ|η.
We obtain other irreducible representations by tensoring Vλ with ηk for k ∈ Z. As noted
in [22, p. 238], these will then correspond to Tate-twists of Vλ. These are the local systems
Vλ(k). For example, [9] if g = 2,

∧2V ∼= V1,1 ⊕ V0,0 ⊗ η−1

and hence
∧2V ∼= V1,1⊕V0,0(−1).
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i The Moduli Space of Abelian Varieties

We have seen that the local systems Vλ arise naturally via representations of the symplectic
group, and can be expressed as a tensor product of the local system V whose stalks are given
by cohomology groups H1(C;Q). To see why these local systems occur naturally on Mg, we
will need to go through the moduli space of principally polarized abelian varieties of dimension
g, commonly denoted Ag. Since a proper treatment of this space is outside the scope of this
thesis, we will restrict ourselves to a simple overview of the most relevant facts, summarized
in the following theorem. For details and proofs of these statements, see [47] and [22].

Theorem V.6. There exists a Deligne-Mumford stack Ag, which is smooth over SpecZ and of
relative dimension g(g + 1)/2. Over the complex numbers, this space parametrizes all isomor-
phism classes of principally polarized abelian varieties of dimension g, and can be identified as
the arithmetic quotient

[Hg/Sp(2g,Z)],

where Hg denotes the Siegel upper half space. See [47].

Note that this generalizes the construction ofM1,1 as the arithmetic quotient [H/SL(2,Z)].
Indeed, for g = 1, we would expect an isomorphism M1,1 → A1, since abelian varieties of
dimension 1 are simply elliptic curves. More generally, there is a morphism

tg : Mg → Ag
[C] 7→ [J(C)],

sending a curve to its jacobian. See [32, Chapter 4]. As a consequence of the Torelli Theorem,
this map is injective on coarse moduli spaces, and we often call it the Torelli morphism.
For g = 2, it is an open dense embedding, but for g ≥ 3, tg : Mg → Ag has degree 2 as
a morphism of stacks, since any jacobian variety admits an automorphism of order 2, while
generally, curves of genus g ≥ 3 do not.

The space Ag also comes with a universal family

π : Ξg → Ag,

which allows us to define the local system ℓV′ := R1π∗Qℓ on Ag[1/ℓ] or V′ := R1π∗Q on Ag(C)
like we did for Mg. These local systems then come with a symplectic pairing

ℓV× ℓV→ Qℓ(−1).

As is then noted in [22, p. 238], local systems on Ag correspond to representations of the group
GSp(2g,Z), defining the local systems V′

λ as before. As is noted by various authors [26] [11],
the pullback t∗g V′

λ toMg is just the local system Vλ defined previously, so we will simply write
Vλ instead of V′

λ to indicate a local system on either Mg or Ag.
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Chapter VI

EQUIVARIANT EULER
CHARACTERISTICS

In a previous chapter we have discussed the stratification ofMg,n by topological type, express-
ing the disjoint strata MΓ as a product of certain moduli spaces Mh,m for h ≤ g, m ≤ n
and how these appear in the computation of the numerical Euler characteristic. In their paper
Modular Operads, Getzler and Kapranov [28] generalize this procedure and give a generating
function for the Sn equivariant Ruler characteristic of Mg,n. In this chapter, following [11],
we will introduce some of their results and define the Sn-equivariant Euler characteristic of
Mg,n taking values in different Grothendieck groups. We first summarize some important
information about counting points on stacks.

1 Point Counts on Stacks

To adjust our point counts for the context of stacks, we need to include the information on the
automorphism groups of all Fq-points. We take the following definition from [8].

Definition VI.1. If X is an algebraic stack defined over Z so that the reduction to a finite
field Fq with q elements is defined, then X (Fq) is a finite groupoid and by definition

#X (Fq) :=
∑

x∈X (Fq)

1

# AutFq x
.

Proposition VI.2 ( [5] [4]). Let X be an algebraic stack.

1. If X is stratified by locally closed substacks X = X0 t · · · t Xn, then

#X (Fp) = #X0(Fp) + · · ·+ #Xn(Fp).
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2. If X is a quotient [X/G] for X a scheme and G a connected linear algebraic group, then

#X (Fq) = #X(Fq)/#G(Fq).

3. If X is a DM stack with course moduli space X, then #X (Fq) = #X(Fq).

4. If X is a DM stack over Fq and l is prime to q, then

#X (Fq) = Tr(Fq,H•
c (XFq

;Qℓ))

where Fq denotes the geometric Frobenius endomorphism and Tr the graded trace.

The final identity is commonly known as Behrend’s Trace Formula, generalizing the Grothendieck
Trace Formula to stacks. In fact, we can also express a more general version of this same state-
ment using ℓ-adic sheaf cohomology.

Proposition VI.3 ( [24]). Let X be a smooth DM stack of dimension n over Fq of finite type
and F a constructible Qℓ-sheaf for ℓ 6= charFq. Then

∑
x∈X (Fq)

Tr(Fq,Fx) =
2n∑
i=0

(−1)i Tr(Fq,H i
c(X ;F))

Indeed, the stacks we are interested in satisfy all of these properties. The following theorem
justifies much of what we do.

Theorem VI.4 ( [44, Section 0E9C]). Let g ≥ 2. The algebraic stack Mg is a Deligne-
Mumford stack, proper and smooth over SpecZ of pure relative dimension. Moreover, the locus
Mg parametrizing smooth curves is a dense open substack.

In the proposition above, we can see that counting points over Fq can be done by taking
traces of the Frobenius over the ℓ-adic cohomology of XFq

. The following two Lemmas (3.1
and 3.2 from [46]) show that we can also work over Qp, and that for our purposes, the coarse
moduli space of a DM stack provides enough information to do work in the context of schemes,
given the information above.

Lemma VI.5. Let X be a Deligne-Mumford stack which is smooth and proper over Zp. For
every prime ℓ 6= p and every i ≥ 0, the canonical map of Gal(Qp/Qp)-representations

H i
c(XFp

;Qℓ)→ H i
c(XQp

;Qℓ)

is an isomorphism. In particular, H i
c(XQp

;Qℓ) is unramified.

Lemma VI.6. Let X be a separated DM stack of finite type over an algebraically closed field of
characteristic 0. Let X denote its coarse moduli space and q : X → X the canonical projection.
Then the pullback maps

q∗ : H i
c(X,Qℓ)→ H i

c(X ,Qℓ)

are isomorphisms for all i ≥ 0.
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The proofs of these lemmas are in [46], in our case adapted to cohomology with compact
support by Poincaré duality.

i Grothendieck Groups and the Lefschetz Motive

To define an Euler characteristic which is the sum of cohomology groups, we first need to
find a space where these sums are well-defined. We can take the direct sum of two cohomology
groups as mixed Hodge structures for example, defining a commutative monoid of mixed Hodge
structures. This can then be turned into an abelian group, called the Grothendieck group.

We take the following definition from [1].

Definition VI.7. Given an additive category C, we can define a Grothendiek Group Ks
0(C)

by generators and relations as follows. We have one generator [X] for each isomorphism class
of objects X ∈ C, and we impose the relation [X3] = [X1] + [X2] whenever X3

∼= X1 ⊕ X2.
When the category C possesses exact sequences, we define K0(C) by imposing the relation
[X3] = [X1] + [X2] whenever there is a short exact sequence

0→ X1 → X3 → X2 → 0.

Following [27], let C be a symmetric monoidal category that is additive over a field of
characteristic 0 and has finite colimits. The exact definition of such a category can be found
in [27]. For example, MHSQ is an example of such a category. We associate to C the category
CSn whose objects are objects of C with an action of the symmetric group Sn by morphisms in
C. Let GalQ be the category of Qℓ-vector spaces equipped with the ℓ-adic topology that have a
continuous action of the absolute Galois group Gal(Q/Q). As noted in [11], this is a symmetric
monoidal additive category over Qℓ with finite colimits, which we will call the category of Galois
representations. For example, if k = Fq, H i

c(Mg,n⊗kk̄,Qℓ) is a Galois representation equipped
and the action of Sn permuting the marked points of a Mg,n extends to a morpism of Galois
representations by pullback.

Theorem VI.8 ( [27, Theorem 4.8]). There is a canonical isomorphism

K0(C
Sn) ∼= K0(C)⊗ Λn.

One very important class occurring in the Grothendieck groups we will use is the Lefschetz
motive

Definition VI.9. [11] [33] Denote by Q(−1) the one-dimensional Hodge Structure of motivic
weight 2 [8]. This can be given by the pure Hodge structure on H2

c (P1,Q) and is denoted by
L in K0(MHSQ). For any H ∈ MHSQ, denote H(−k) := H ⊗ Q(−1)⊗k. Similary, let Qℓ(1)
denote the ℓ-adic cyclotomic character, that is, the Tate module of the group of roots of unity
in Qs

ℓ /Qℓ and Qℓ(−1) its dual representation. For H ∈ Gal, denote H(−k) := H ⊗Qℓ(−1)⊗k.
In K0(Gal), [Qℓ(−1)] = [H2

c (P1,Qℓ)]. In both cases, we say H(−k) is the k-th Tate twist of H.
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2 Boundary Contributions

To determine the Euler characteristic of Mg,n from its strata, Getzler and Kapranov [28]
develop the following theory.

Definition VI.10. A stable S-module V in the category C is a collection, for all g, n ≥ 0 of
chain complexes {V((g, n))i} of objects of CSn such that V((g, n)) = 0 if 2g + n− 2 ≤ 0.

Definition VI.11. Let R := {Ri} be a finite chain complex of objects of CSn for some n ≥ 0.
The characteristic of R is defined as

chn(R) :=
∑
i

(−1)i[Ri] ∈ K0(C
Sn).

For example, if X is an algebraic stack over C, we can define a chain complex {Ci} of objects
Ci := H i

c(X (C);Q) in MHSQ by setting all differentials to be zero. Define the Sn-equivariant
Hodge Euler characteristic of X as

eSnc (X ) := chn(H•
c (X ;Q)) ∈ K0(MHSQ)⊗ Λn.

Definition VI.12. Let V be a stable S-module. Then the characteristic of V is defined as

Ch(V) :=
∑

2g+n−2>0

hg−1 chn(V((g, n))) ∈ K0(C)⊗ Λ((h)),

where Λ((h)) is the ring of Laurent series with coefficients in Λ.

In [28, Section 6], to an S-module V in the category C is associated a free modular operad
MV. Considering the stable S-module given by V((g, n)) := H•

c (Mg,n⊗Q̄;Q) ∈ MHSQ, the
free modular operad associated to it is given by MV((g, n)) := H•

c (Mg,n ⊗ Q̄;Q) (see [27]).

Definition VI.13. For every pair of non-negative integers g, n such that 2g + n− 2 > 0, let

Dg,n := {(h,m) : 0 ≤ h ≤ g,max{0, 3− 2h} ≤ m ≤ 2(g − h) + n}

Theorem VI.14 ( [28, Theorem 8.13]). There exists an operation on K0(C)⊗ Λ((h)), which
we will denote F , allowing us to express the relationship between the characteristics Ch(V) and
Ch(MV);

Ch(MV) = F (Ch(V)).

In particular, to compute Ch(MV((G,N))), it suffices to know Ch(V((g, n))) for (g, n) ∈
DG,N . Whenever chn(V((g, n))) is an element of Q[L] ⊗ Λ for all (g, n) ∈ DG,N , so is
Ch(MV((G,N))). In this case, the operations in F can be computed by use of Stembridge’s
Maple package [45] for symmetric functions.
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3 Equivariant Point Counts

As mentioned above, the compactly supported ℓ-adic cohomology H i
c(Mg,n⊗k̄;Qℓ) of Mg,n

(defined over k = Fq or k = Q) has the action of Frobenius Fq ∈ Gal(Q/Q) which commutes
with the action of Sn permuting marked points. This gives a Galois representation, or when
including the Sn-action, a Gal(k/k) × Sn-representation, i.e. an element of GalSnQ . We can
therefore consider an Euler characteristic of Mg,n taking values in the Grothendieck group
K0(GalSnQ ).
Definition VI.15. Suppose X is a space defined over k with an action of Sn commuting
with the action of the absolute Galois group Gal(k/k). Since any representation is a direct
sum of irreducible representations, we can write H i

c(X ⊗ k;Qℓ) as a direct sum of irreducible
representations indexed by partitions of n, so we can write

H i
c(X ⊗ k;Qℓ) =

∑
λ⊢n

H i
c,λ(X ⊗ k;Qℓ)sλ ∈ GalSnQ ,

where H i
c,λ(X ⊗ k;Qℓ) is the irreducible Sn representation indexed by λ, and sλ is the corre-

sponding Schur polynomial. Now define

ec,λ(X ⊗ k,Qℓ) =
∑
i≥0

(−1)i[H i
c,λ(X ⊗ k;Qℓ)] ∈ K0(GalQ).

Using the terminology defined earlier, we define a stable S-module V by

V((g, n)) := H•
c (Mg,n,Qℓ).

Since we can write the decomposition

H i
c(Mg,n⊗Q;Qℓ) =

⊕
λ⊢n

H i
c,λ(Mg,n⊗Q;Qℓ)sλ ∈ GalSnQ ,

we have the following expression in the Grothendieck group of Galois representations with
Sn-actions:

[H i
c(Mg,n⊗Q;Qℓ)] =

∑
λ⊢n

[H i
c,λ(Mg,n⊗Q;Qℓ)]sλ

and therefore

eSnc (Mg,n,Qℓ) := chn(V((g, n))) =
∑
i≥0

(−1)i[H i
c(Mg,n⊗Q;Qℓ)]

=
∑
i≥0

(−1)i
∑
λ⊢n

[H i
c,λ(Mg,n⊗Q;Qℓ)]sλ.

This is what we call the Sn-equivariant Euler characteristic. Let χλ denote the character of
the irreducible Sn-representation indexed by λ. Then by definition of this character, (see [11,
Section 3.1])

eSnc (Mg,n,Qℓ) =
∑
λ⊢n

(χλ(id))−1ec,λ(Mg,n⊗Q;Qℓ )sλ ∈ K0(GalQ)⊗ Λn.
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We have seen that it is possible to express the trace of the Frobenius endomorphism acting
on ec(Mg,n) as the point count ofMg,n over a finite field, but this Euler characteristic does not
keep track of the additional Sn-action like the Sn-equivariant Euler characteristic eSnc (Mg,n)
that we have introduced above. To make this work for our new characteristic, we need to count
points differently.

Definition VI.16. Let X be a variety over Fq with σ ∈ AutX. Then there is a unique
twisted form of X, denoted Xσ with an isomorphism Xσ

Fq
→ XFq

that identifies the geometric
Frobenius action on Xσ

Fq
with the action of Fq ◦ σ on XFq

.

We can realize the moduli space Mg,n Sn-equivariantly by using the fact that it can be
written as the quotient of a smooth and proper variety Xg,n by a finite group H, see [14]. Then
define the twisted form

Mg,n := [Xσ
g,n/H].

Definition VI.17. Let Fq be the geometric Frobenius and let XFq be a smooth DM stack of
constant dimension and of finite type over Fq that has an action of Sn. We denote by XFq

the
coarse moduli space of XFq

. An Sn-equivariant count of the number of points defined over Fq
of XFq

is the number of fixed points
|XFq◦σ

Fq
|

for all σ ∈ Sn.

By [4, 3.1.2], extending the Lefschetz Trace Formula to stacks,

Tr(Fq ◦ σ,H•
c (XFq

;Qℓ)) = |X
Fq◦σ
Fq
|.

Using our identity for the Sn-equivariant Euler characteristic in terms of virtual representations,
we set the Sn-equivariant point count to be

#SnMg,n(Fq) :=
∑
λ⊢n

χλ(id)−1 Tr(Fq, ec,λ(Mg,n⊗Q;Qℓ))sλ.

To see why these counts can be useful, we need the following lemma from [25, 2.31].

Lemma VI.18. Let χλ be the character of the irreducible representation of Sn indexed by λ.
Then

πλ :=
1

n!
χλ(id)

∑
σ∈Sn

χλ(σ)σ : H
i
c(XFq

;Qℓ)→ H i
c(XFq

;Qℓ)

is the projection of H i
c(XFq

;Qℓ) to H i
c,λ(XFq

;Qℓ).

Corollary VI.19.

Tr(Fq, ec,λ(XFq
;Qℓ)) =

1

n!
χλ(id)

∑
σ∈Sn

χλ(σ)|X
Fq◦σ
Fq
|.
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Proof. We can express Tr(Fq, ec,λ(XFq
;Qℓ)) as a trace on eSnc (XFq

;Qℓ)) by use of πλ:

Tr(Fq, ec,λ(XFq
;Qℓ)) = Tr(Fq ◦ πλ, eSnc (XFq

;Qℓ)).

We can write Fq ◦ πλ = 1
n!χλ(id)

∑
σ∈Sn χλ(σ)Fq ◦ σ. Since the Trace map is additive, we

conclude
Tr(Fq ◦ πλ, eSnc (XFq

;Qℓ)) =
1

n!
χλ(id)

∑
σ∈Sn

χλ(σ)|X
Fq◦σ
Fq
|.

4 Galois Representations

Note that we have defined the Frobenius endomorphism as a map on cohomology induced by a
morphism of schemes defined over a finite field Fq. In the definition of the Euler characteristics
above, however, we define our spaces over Q and Q, so to count fixed points under the Frobenius
endomorphism, we will need a workaround.
We have seen that for a smooth and proper DM stack over Zp and ℓ 6= p primes, there is an
isomorphism of Gal(Qp/Qp)-representations

H i
c(XFp

,Qℓ)→ H i
c(XQp

,Qℓ)

which is induced by a natural surjection Gal(Qp/Qp) → Gal(Fp/Fp). We can then define the
geometric Frobenius map Fq ∈ Gal(Fp/Fp) to be the inverse of x 7→ xq. To extend this to
Q, note that we can choose an embedding Q → Qp for each prime p with dense image, which
therefore gives an injection ι : Gal(Qp/Qp) → Gal(Q/Q). Then we can speak of a Frobenius
element F ′

p ∈ Gal(Q/Q) coming from Fp ∈ Gal(Fp/Fp).
The map ι moreover makes the cohomology groups H i

c(XQ;Qℓ) into a Gal(Qp/Qp)-
representation isomorphic to H i

c(XQp
;Qℓ), and hence

Tr(F ′
p,H

i
c(XQ;Qℓ)) = Tr(Fp,H i

c(XFp
;Qℓ)).

So from now on we write F ′
p = Fp by abuse of notation. The same now holds for Fq for q = pk.

Following [10], when X is a smooth and proper DM stack over Z of relative dimension d with
an action of Sn, the irreducible pieces of the semisimplification of the Galois representation
H i
c(XQ;Qℓ) will have weight i. Therefore eSnc (XQ;Qℓ) as an element of K0(GalSnQ ) determines

H i
c(XQ;Qℓ) as an element of K0(GalSnQ ) for all i. Moreover, Poincaré duality implies that in

K0(GalSnQ ) we have
LdH i

c(XQ;Qℓ)
∨ ∼= H2d−i

c (XQ;Qℓ)

for all 0 ≤ i ≤ d.
The following theorem [11, Theorem 6] illustrates when equivariant point counts can be used
to determine eSnc (XQ;Qℓ) as an element of K0(GalSnQ ).
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Theorem VI.20. Let X be a DM stack defined over Z which is proper, smooth, of pure relative
dimension d and that has an action of Sn. Let XFp

be the coarse moduli space of XFp
. For every

partition λ of n, denote by χλ the character of the irreducible representation of Sn indexed by
λ. Furthermore, let S be a set of all but finitely many primes.
Assume that for a partition λ of n there exists a polynomial Pλ(t) ∈ Q[t] such that

1

n!
χλ(id)

∑
σ∈Sn

χλ(σ)|X
σ◦Fpr

Fp
| = Pλ(pr)

for all r ∈ Zr≥1 and p ∈ S. Then Pλ(t) has degree d and non-negative integer coefficients.
Furthermore, if we let bj be the coefficient of qj in Pλ, then for all primes ℓ and all i ≥ 0 there
is an isomorphism of Gal(Q/Q)-representations

H i
c,λ(XQ;Qℓ) ∼=

{
0 if i is odd
Qℓ(−i/2)bi/2 if i is even.

The condition in this theorem is that the trace of the Frobenius element Fpr on ec,λ(XFpr
)

for all r ≥ 1 is a polynomial in pr, or equivalently, that the Sn-equivariant point counts are.
This is commonly referred to as the polynomiality condition.
Furthermore, note that indeed Mg,n is a proper and smooth DM stack over Z of pure relative
dimension, with an action of Sn.

5 Mixed Hodge Structures

In a previous section we have introduced the Sn-equivariant Euler characteristic eSnc (X ) taking
values in K0(MHSQ) ⊗ Λn for an algebraic stack (or scheme) X over C with an action of Sn.
Similarly to the case of Galois representations, we can decompose the groups H i

c(X ,Q) into
irreducible Sn-representations indexed by a partition λ ` n.

Definition VI.21. Let H i
c,λ(X ,Q) be the direct sum of all copies of irreducible representations

of Sn indexed by λ that appear in the rational cohomology groups H i
c(X ,Q). Then set

ec,λ(X (C),Q) :=
∑
i≥0

[H i
c,λ(X ,Q)] ∈ K0(MHSQ).

Define a stable S-module V by

V((g, n)) := H•
c (Mg,n(C),Q).

In the Grothendiek group of mixed Hodge structures with Sn-actions, we can write

[H i
c(Mg,n(C),Q)] =

∑
λ⊢n

[H i
c,λ(Mg,n(C),Q)]sλ.
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Again, for χλ the character of the irreducible Sn-representation indexed by γ,

eSnc (Mg,n(C),Q) =
∑
λ⊢n

(χλ(id))−1ec,λ(Mg,n(C),Q)sλ ∈ K0(MHSQ)⊗ Λn.

We can now reformulate the previous theorem for mixed Hodge structures.

Theorem VI.22 ( [11, Theorem 7]). Let X be a DM stack defined over Z which is proper,
smooth, of pure relative dimension d and that has an action of Sn. Let XFp

be the coarse
moduli space of XFp

. For every partition λ of n, denote by χλ the character of the irreducible
representation of Sn indexed by λ. Furthermore, let S be a set of all but finitely many primes.
Assume that for a partition λ of n there exists a polynomial Pλ(t) ∈ Q[t] such that

1

n!
χλ(id)

∑
σ∈Sn

χλ(σ)|X
σ◦Fpr

Fp
| = Pλ(pr)

and assume that the coarse moduli space XQ of the stack XQ is the quotient of a smooth
projective Q-scheme by a finite group. Then for all partitions λ of n and for all i ≥ 0, there is
an isomorphism of pure Q-Hodge structures

H i
c,λ(X (C);Q) ∼=

{
0 if i is odd
Qℓ(−i/2)bi/2 if i is even,

where the left hand side is equipped with the canonical Hodge structure of [20].

Note that by [14], the spaces Mg,n have a coarse moduli space which over Q is a quotient
of a smooth Q-scheme by a finite group.

Thus, whenever a point count on X satisfies the polynomiality condition, we can determine the
Euler characteristic of X as an element of the Grothendieck group of Galois representations or
mixed Hodge structures.

Given a polynomial point count for everyMg,n such that (g, n) ∈ DG,N and every partition
λ of n, we can determine ec,λ(∂Mg,n) using the methods from [28]. Since
Tr(Fq, ec,λ(Mg,n⊗Q;Qℓ)) is a polynomial in q for all (g, n) ∈ DG,N , we can conclude the
same for Tr(Fq, ec,λ(Mg,n ⊗ Q;Qℓ)). This allows us to apply the theorems in the sections
above. Note that this argument also extends to the category of mixed Hodge structures. We
summarize this in the following theorem:

Theorem VI.23 ( [11, Theorem 8]). Assume that for all Mg,n with (g, n) ∈ DG,N and for all
partitions λ of n, the equation

1

n!
χλ(id)

∑
σ∈Sn

χλ(σ)|X
σ◦Fpr

Fp
| = Pλ,g,n(p

r) (VI.1)
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is fulfilled for some set S and polynomial Pλ,g,n(t). Then the following holds for all (g, n) ∈ DG,N
and for all partitions λ of n.
For Mg,n, equation (1) is fulfilled for some set S and polynomials Qλ(t). Hence both theorems
above hold for Mg,n. Moreover,

1. eλ(Mg,n⊗ZQ,Qℓ) = Pλ,g,n([Qℓ(−1)]) ∈ K0(GalQ), and

2. eλ(Mg,n(C),Q) = Pλ,g,n(L) ∈ K0(MHSQ).
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Chapter VII

COHOMOLOGY OF LOCAL
SYSTEMS

Let Mg be defined over a finite field k with characteristic p. Recall that for ℓ 6= p, the local
system ℓV = R1π∗Qℓ on Mg ⊗Z[1/ℓ] and a partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λg ≥ 0) determine
a local system appearing in

Symλ1−λ2(V)⊗ Symλ2−λ3(∧2V)⊗ · · · ⊗ Symλg−1−λg(∧gV)

on Mg ⊗Z[1/ℓ]. Since V is an ℓ-adic sheaf, so is the associated local system Vλ. For ease of
notation, we denote the sheaf ℓV as V, since it will be clear from context which sheaf we mean.
This leads us to the following definition:

Definition VII.1. Let Vλ be the ℓ-adic local system on Mg ⊗Z[1/ℓ] defined above. We set

ec(Mg ⊗k;Vλ) :=
∑
i≥0

(−1)i[H i
c(Mg;Vλ)],

taking values in the Grothendieck group of Galois representations or mixed Hodge struc-
tures, depending on the choice of local system R1π∗Q or R1π∗Qℓ. Like before, the cohomology
groups H i

c(Mg ⊗Q;Vλ) come with an action of Gal(Q/Q) which has a Frobenius element
coming from Gal(Fq/Fq) by way of the surjection Gal(Fq/Fq) → Gal(Qp/Qp) and injection
Gal(Qp/Qp)→ Gal(Q/Q), moreover inducing isomorphisms [9]

H i
c(Mg ⊗Fq;Vλ) ∼= H i

c(Mg ⊗Qp;Vλ) ∼= H i
c(Mg ⊗Q;Vλ)

of Gal(Qp/Qp)-representations for all p 6= ℓ. This gives us an equality of traces

Tr(Fq, ec(Mg ⊗Fq;Vλ)) = Tr(Fq, ec(Mg ⊗Qp;Vλ)) = Tr(Fq, ec(Mg ⊗Q;Vλ)),
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allowing us to compute traces over finite fields.

The stalks of the sheaf V are known: for [C] ∈ Mg(Fq) V[C]
∼= H1(C;Qℓ). The trace for-

mula therefore allows us to express the trace of the Frobenius on ec(Mg;Vλ) in terms of the
eigenvalues of the Frobenius acting on H1(C;Qℓ).

Proposition VII.2. Let α1(C), . . . , α2g(C) be the eigenvalues of Fq acting on H1(C;Qℓ)
ordered such that αi(C) is conjugate to αg+i(C) and let s<λ>(x1, . . . , x2g; t) ∈ Z[t] be the Schur
polynomial for Sp(2g,C) associated to λ. Then

Tr(ec(Mg ⊗Fq;Vλ)) =
∑

[C]∈Mg(Fq)

s<λ>(α1(C), . . . , α2g(C); q)

|AutFq C|
.

Proof. Since the local system Vλ is induced by an irreducible representation given by a Schur
functor, we know that the trace of Frobenius on (Vλ)C⊗Fq

is given by

s<λ>(α1(C), . . . , αg(C), αg+1(C), . . . , α2g(C)).

All eigenvalues satisfy |αi(C)| =
√
q, and the complex conjugate of αi(C) is also an eigenvalue,

which we order such that αg+i(C)αi(C) = q. We can then make the Schur polynomial s⟨λ⟩ into
a homogenized weighted polynomial in the variables x1, . . . , xg of weight 1 and t of weight 2.
Then the trace of Frobenius will be given by s⟨λ⟩(α1(C), . . . , αg(C); q). Now applying the trace
formula for stacks yields the desired result.

1 Local Systems on the Moduli Space of Elliptic Curves

We can see the formula above working for elliptic curves. In this case, the local systems Vλ are
given by partitions of size 1, yielding the local systems Vm = SymmV. The Euler characteristics
of these local systems on M1,1 are well-known. In [9], it is recalled that

ec(M1,1,Vm) =


0 m odd
L m = 0

−1− S[m+ 2] m > 0 even

as motives in the Grothendieck group of mixed Hodge structures. A motivic construction of
the spaces S[a + 2] can be found in [17]. It is the motive corresponding to the space Sa+2 of
cusp forms of weight a + 2. In particular, the trace of Frobenius at p on S[a + 2] equals the
trace of the Hecke operator at p on Sa+2. Hence, computing the trace of Frobenius at p of
ec(M1,1,Vm) gives useful information on traces of Hecke operators on cusp forms.
In order to make the computations more manageable, the following lemma will be of use:
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Lemma VII.3. Let α1, α2 be the eigenvalues of the Frobenius at p on H1(C;Qℓ). Let hm(x1, x2)
be the complete homogeneous symmetric polynomial of degree m in two variables. Then the
eigenvalues of Frobenius at p on SymmH1(C;Qℓ) are given by

hm(α1, α2) =

⌊m/2⌋∑
i=0

(−1)i
(
m− 2i

i

)
e1(α1, α2)p

i.

Proof. Suppose M is a matrix with eigenvalues λ1, . . . , λn and a basis of eigenvectors v1, . . . , vn.
Then the basis of eigenvectors of SymkM is given by the symmetrizations of the tensors

vi1 ⊗ · · · ⊗ vik
indexed by integers i1 ≤ . . . ≤ ik. The eigenvalues are then given by λi1 · · ·λik . And thus
Tr(Fp, SymkM) = hk(λ1, . . . , λn). We can express these complete homogeneous symmetric
polynomials in terms of lower degrees and elementary symmetric polynomials since there exists
a relation

m∑
i=0

(−1)ieihm−i = 0,

and therefore
hm =

m∑
i=1

(−1)i+1eihm−i.

We will use induction. For m = 1, we have

h1(α1, α2) = α1 + α2 = (−1)0
(
m

0

)
e1(α1, α2)p

0 = α1 + α2,

corresponding to the formula above.
Now suppose that for all m ≥ i ≥ 1, hm−i(α1, α2) is of the desired form. Then

hm(α1, α2) =
m∑
i=1

(−1)i+1ei(α1, α2)hm−i(α1, α2)

=

m∑
i=1

(−1)i+1ei(α1, α2)

⌊m−1
2

⌋∑
i=0

(−1)i
(
m− 2i

i

)
em−3i
1 pi.

The eigenvalues α1 and α2 satisfy |α1| = |α2| =
√
p, so e2(α1, α2) = p and ek(α1, α2) = 0 for

all k ≥ 3. Hence,

hm(α1, α2) = e1(α1, α2) ·
⌊m−1

2
⌋∑

i=0

(−1)i
(
m− 2i

i

)
em−3i
1 pi − p ·

⌊m−1
2

⌋∑
i=0

(−1)i
(
m− 2i

i

)
em−3i
1 pi

=

⌊m/2⌋∑
i=0

(−1)i
(
m− i
i

)
em−2i
1 pi.
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Given a list of elliptic curves up to Fp-isomorphism, together with their number of points
over Fp and the order of their automorphism group, we can determine the trace of Frobenius
at p on the Euler characteristic ec(M1,1;Vm) for all m ≥ 1. Carel Faber has determined this
list of isomorphism classes, which for p = 2, 3 is shown in the following tables:

|C(F2)|
∑ 1

|AutF2 C| α1(C) + α2(C)

1 1/4 2

2 1/2 1

3 1/2 0

4 1/2 −1
5 1/4 −2

Table VII.1

We also include the polynomial e1(α1(C), α2(C)), which we can determine using the Lef-
schetz fixed-point formula, which yields the identity

|C(Fpr)| = 1 + pr − α1(C)
r − α2(C)

r.

For reference, see [32, Appendix A]. Moreover, we know that the number of points on an
elliptic curve over a finite field is bounded by the Hasse-Weil bound,

|C(Fp)− (pr + 1)| ≤ 2
√
pr.

In particular, over F2, an elliptic curve has at most 5 points, while it has at most 7 points over
F3. For p = 3, we obtain the following table:

|C(F3)|
∑ 1

|AutF3 C| α1(C) + α2(C)

1 1/6 3

2 1/2 2

3 1/2 1

4 2/3 0

5 1/2 −1
6 1/2 −2
7 1/6 −3

Table VII.2

Proposition VII.4.
Tr(Fp, ec(M1,1;Vm)) ≡ −1 (mod p)

for p = 2, 3 and m > 1 even.
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Proof. Let sp,m(Ci) denote the polynomial hm for the prime p evaluated at (α1(Ci), α2(Ci))
for Ci an elliptic curve with i points over Fp, the eigenvalues of Frobenius at p on H1(C;Qℓ).
Then

Tr(Fp, ec(M1,1;Vm)) =
∑

[C]∈M1,1

sp,m(C)

|AutFp C|
.

Since m ≥ 0 is even, the sign of e1(α1(C), α2(C)) is irrelevant, hence sp,m(Ci) = sp,m(Ck−i) for
k = 5, 7 and p = 2, 3 respectively. We therefore find that

Tr(F2, ec(M1,1;Vm)) = s2,m(C1)/2 + s2,m(C2) + s2,m(C3)/2.

Note that the expressions s2,m(C1) and s2,m(C3) both contain a factor of 2 in every term, so
clearly s(2,m)(C1)/2+ s2,m(C2)+ s2,m(C3)/2 ≡ 0 (mod 2). On the other hand, the expression
s2,m(C2) contains a factor of 2 in every term, except when i = 0, so

Tr(Fp, ec(M1,1;Vm)) = s2,m(C1)/2 + s2,m(C2) + s2,m(C3)/2 ≡ −1 (mod 2).

For p = 3,

Tr(F3, ec(M1,1;Vm)) = s3,m(C1)/3 + s3,m(C2) + s3,m(C3) + 2s3,m(C4)/3.

The terms s3,m(C1) and s3,m(C4) are both clearly divisible by 3, so that s3,m(C1)/3+2s3,m(C4)/3 ≡
0 (mod 3). The terms of s3,m(C3) are all divisible by 3, except when i = 0, we have (−1)0

(
m
0

)
1m =

1. Lastly,

s3,m(C2) =

m/2∑
i=0

(−1)i
(
m− i
i

)
2m−2ipi,

whose terms are also all divisible by 3, except for the term where i = 0, in which case it is
of the form 22k for some integer k, since m is assumed to be odd. Since 4 ≡ 1 (mod 3), we
conclude that

Tr(F3, ec(M1,1;Vm)) = s3,m(C1)/3 + s3,m(C2) + s3,m(C3) + 2s3,m(C4)/3

≡ 0 + 1 + 1 + 0 ≡ −1 (mod 3).

As a direct consequence, we can now conlude the following:

Corollary VII.5. Let T (p) be the Hecke operator at the prime p acting on the space of cusp
forms Sm+2 for m even. Then

Tr(T (p), Sm+2) ≡ 0 (mod p).

for p = 2, 3.
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2 Detecting Non-tautological Cohomology

Recall that the cohomology H•
c (Mg,n(C);Q) carries a canonical mixed Hodge structure and a

weight filtration W . In 2022, Chan, Faber, Galatius and Payne [16] find an expression for the
Sn-equivariant top weight Euler characteristic of Mg,n for g ≥ 2. Their results are stated for
the top weight of the weight filtration on H i(Mg,n(C);Q), which corresponds to weight 0 on
compactly supported cohomology by Poincaré Duality. The filtration is supported in degrees
from 0 to 2d for d = dimMg,n.
Like H i

c(Mg,n(C);Q) can be decomposed into irreducible Sn-representations, the weight 0 co-
homology can be written as

GrW0 H i
c(Mg,n(C);Q) ∼=

⊕
λ⊢n

ciλVλ

for Vλ the irreducible Sn-representation indexed by λ, a partition of n. As an expression in
the Grothendieck group of mixed Hodge structures with an action of Sn, we can write the
generating function of this weight 0 cohomology as

zg =
∑
i,λ

(−1)iciλsλ.

In [16], the authors exhibit a closed expression for zg given in terms of homogeneous power
sums and Bernoulli numbers. Note that this formula holds for the cohomology of Mg,n, not
the cohomology of Mg with respect to Vλ. We can compute the weight 0 part of this latter
cohomology using the former. The Euler characteristics ec(Mg ⊗Q;Vλ) can be used to de-
termine the Sn-equivariant Euler characteristic of Mg,n and vice versa. The following lemma
illustrates this connection.

Lemma VII.6 ( [10, Lemma 4.7]). For each partition µ of n, there are elements aµ,λ ∈ Z[L]
such that

ec,λ(Mg,n;Qℓ) =
∑
|λ|≤n

aµ,λec(Mg;Vλ).

Conversely, for each λ with |λ| = n, there are elements bλ,µ ∈ Z[L] such that

ec(Mg;Vλ) =
∑
|µ|≤n

bλ,µec,µ(Mg,n;Qℓ).

Alternatively, we can formulate this in terms of generating series in K0(MHSQ)⊗Λ as seen
in [27]. We have

∞∑
n=0

eSnc (Mg,n;Q) =
∞∏
k=1

(1 + pk)
1
k

∑
d|k µ(k/d)(1−ψd(V)−L),

where the pi are the symmetric polynomials of the power sums, µ(k/d) is the Mobius function
and ψd is the d-th Adams operation.
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Having expressed ec(Mg;Vλ) in terms of ec(Mg,n(C);Q) for all n ≤ |λ|, we can then determine
the weight 0 part of ec(Mg;Vλ), which we will denote by zg,λ. Using the trace formula, we can
then compute the expressions

Tr(Fq, ec(Mg;Vλ))− zg,λ (mod q) (⋆)

using Maple. If the expression (⋆) is nonzero, then we know there exists cohomology which is
not Tate-twisted, since Tr(Fq,L) = q.
Using this method, it is possible to detect the motive S[12] on M1,11 at the prime p = 11.
Consequently, the detection of motives in Mg,n for (g, n) such that (1, 11) ∈ Dg,n is not very
effective at p = 11: this could simply be the motive S[12] coming fromM1,11. More generally, if
the DM stackMg,n has a unirational coarse moduli space, then we expect no non-tautological
cohomology [10, Theorem 7.1]. If Mg′,n′ for (g′, n′) ∈ Dg,n has non-tautological cohomology
which is detected at the prime p, then we subsequently expect the expression (⋆) to be nonzero
for p and some λ such that |λ| = n on the dense open Mg,n of Mg,n.
Example VII.7. For example, we can detect non-tautological cohomology for g = 3 in weight
17 for the local systems given by λ = (11, 3, 3) and (7, 7, 3) ( [10]) at p = 5. Due to the existence
of the gluing morphism identifying two points

M3,17 →M4,15,

there is a stratum isomorphic to M3,17 / S2 in the boundary of M4,15. We then expect to find
local systems Vλ of weight 15 such that (⋆) is nonzero for p = 5 since M4,n is unirational for
all n ≤ 15 [6]. We find four local systems given by the partitions λ =

(11, 2, 2, 0) (10, 3, 2, 0) (7, 6, 2, 0) (6, 6, 3, 0),

such that Tr(F5, ec(M4;Vλ)) − z4,λ 6≡ 0 (mod 5). Indeed, these are all partitions λ = (λ1 ≥
λ2 ≥ λ3 ≥ λ4 ≥ 0) that can be induced by the partitions (11, 3, 3) and (7, 7, 3). The local
system Vλ occurs in the Euler characteristic ec,µ(Mg,n⊗Q;Qℓ) for |λ| = n and µ the conjugate
partition to λ. The S2-action permuting two marked points then restricts the partition µ to a
partition µ′ such that |µ′| = |µ|−2. To do this, consider the Young tableaux corresponding to µ,
and remove a block at the end of a row and column twice. Since the alternating representation
vanishes under an action permuting two points, we cannot remove two blocks from the same
column. Now taking the dual partitions of all possible µ′ gives the local systems satisfying
Tr(F5, ec(M4;Vλ))− z4,λ 6≡ 0 (mod 5).

Detecting new motives in the cohomology of local systems on M4 is therefore not possible
at p = 5, since it is likely to come from an already known motive from M3. We can still use
this method at q = 2, 3 or 4.
For all local systems Vλ up to weight 20, we find that

Tr(Fq, ec(M4;Vλ))− z4,λ ≡ 0 (mod q),

for q = 2, 3, 4. These calculations have been performed using Maple, using a program written
by Carel Faber.
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Appendix A

HODGE STRUCTURES

1 Hodge Structures

In this section we introduce Hodge structures and Mixed Hodge structures. We follow [23].

Definition A.1. A (pure) Hodge structure of weight n ∈ Z, denoted (HZ,H
p,q) consists of a

finitely generated free abelian group HZ along with a decomposition HC =
⊕

p+q=nH
p,q of the

complexification HC := HZ ⊗Z C, which satisfies Hp,q = Hq,p.

As an example, define HC = Hk,k and Hp,q = 0 for (p, q) 6= (k, k). This is the trivial Hodge
Structure of weight 2k.
Less trivially, we can take HZ = 2πiZ⊆C and HC = H−1,−1. This is a pure Hodge structure of
weight−2. It is the unique 1-dimensional pure Hodge structure of weight−2 up to isomorphism.
It is called the Tate Hodge structure and is often denoted by Z(1). Its n-th tensor product,
denoted Z(n), is a Hodge structure of dimension 1 and weight −2n.
We can also define a pure Hodge structure by a Hodge filtration.

Definition A.2. Given a complex vector space HC, a Hodge filtration of degree n ∈ Z on HC
is a filtration {F p}

HC = F 0 ⊃ F 1 ⊃ · · · ⊃ Fn ⊃ {0}
such that HC ∼= F p ⊕ Fn−p+1.

In fact, this is no different from a pure Hodge structure of weight n: given a decomposition
HC =

⊕
p+q=nH

p,q, define a filtration by setting

F p := Hn,0 ⊕ · · · ⊕Hp,n−p.

Conversely, given a filtration {F p}, define a decomposition by setting Hp,q := F p ∩ F q.
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We can take the dual of a Hodge structure (HZ,H
p,q) of weight n by setting H∨

Z := Hom(HZ,Z)
with the dual Hodge decomposition (H∨)p,q = (H−p,−q)∨. This is a pure Hodge structure of
weight −n. In particular, Z(1)∨ ∼= Z(−1).

Definition A.3. Given a Hodge structure (HZ,H
p,q) of weight n, we define its r-th Tate twist

to be the Hodge structure (H(r)Z,H(r)p,q) of weight n− 2r given by

H(r)Z = HZ , H(r)p,q = Hp−r,q−r.

Alternatively, given (HZ,H
p,q) and (H ′,H ′p,q) two Hodge structures of weight n and n′,

define their tensor product (H ′′
Z,H

′′p,q) by setting H ′′
Z := HZ ⊗H ′

Z and

H ′′p,q :=
⊕

r+r′=p, s+s′=q

Hr,s ⊗H ′r′,s′ .

This defines a Hodge structure of weight n+n′. We can then see the r-th Tate twist of a Hodge
structure (HZ,H

p,q) as the tensor (HZ,H
p,q)⊗ Z(r).

In addition, new Hodge structures can be formed by the following multi-linear algebra con-
structions:

1. Given two Hodge structures (HZ,H
p,q) and (H ′

Z,H
′p,q) of weight n, their direct sum is a

Hodge structure of weight n given by the latticeHZ⊕H ′
Z and setting the (p, q)-components

to be the direct sum of the (p, q)-components of each term Hp,q ⊕H ′p,q.

2. Using the dual Hodge structure and tensor product Hodge structure for Hodge struc-
tures (HZ,H

p,q) and (H ′
Z,H

′p,q) of weights n and n′, we obtain a Hodge structure on
Hom(HZ,H

′
Z)
∼= H∨

Z ⊗H ′
Z of weight n′ − n.

3. Given (HZ,H
p,q) a Hodge structure of weight n, the symmetric and wedge products

SymkHZ and ∧kHZ are Hodge structures of weight kn.

The cohomology of algebraic varieties provides an ample source of Hodge structures. In
particular, recall that a smooth projective variety X over C admits the structure of a compact
Kähler manifold. We have the following

Theorem A.4 ( [48, Section 6.1.3]). Let X be a smooth projective variety over C. Then there
exists a decomposition

Hn(X,C) =
⊕
p+q=n

Hp,q(X),

where Hp,q(X) ∼= Hq(X,ΩpX), ΩX the sheaf of 1-forms on X and Hp,q(X) = Hq,p(X).

If we set HZ(X) := Hn(X,Z)/torsion, then this theorem shows (HZ,H
p,q(X)) defines a

pure Hodge structure of weight n.
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Example A.5. Let X be a smooth curve of genus g over C. Then H i for i = 0, 1, 2 admits a
pure Hodge structure. We have

H0(X,C) = H0(X,OX)
H2(X,C) = H1(X,ΩX)

H1(X,C) = H0(X,ΩX)⊕H1(X,OX)

2 Mixed Hodge Structures

We have seen that the cohomology groups Hn(X,C) for a smooth projective variety X admit a
pure Hodge structure of weight n. This is not true for varieties that are not smooth/projective,
however. The cohomology groups of a variety that is not smooth still admit certain filtrations
{F p}. These induce a pure Hodge structure on the graded pieces of HQ. Using these filtrations,
we can generalize the previously defined Hodge structures to mixed Hodge structures. In 1973,
Deligne [19] proves that all cohomology groups of smooth varieties over C carry a natural and
functorial mixed Hodge structure. He extends this result in 1974 [20] to arbitrary varieties over
C.

Definition A.6. A mixed Hodge structure (HZ,W, F ) consists of a Z-module HZ together with
an increasing filtration W

· · · ⊆W0⊆W1⊆W2⊆ · · ·
of HQ := HZ ⊗Z Q and a decreasing filtration F

HC = F 1 ⊃ F2 ⊃ F 3 ⊃ · · ·

of HC := HZ ⊗Z C such that F defines a pure Hodge structure of weight k on the graded piece
GrWk HQ =W kHQ/W

k−1HQ.

Intuitively, the weight filtration can be interpreted by considering Grk as the k-th cohomol-
ogy group of a smooth projective variety. As an example, let X be a smooth projective variety
and set

HZ =
⊕
i

H i(X,Z)/torsion

WkHQ =
⊕
i≤k

H i(X,Q)

F pC =
⊕
i

F pH i(X,C)

where F pH i(X,C) denotes the usual Hodge filtration of H i(X,C). Then (HZ,W, F ) is a mixed
Hodge structure.
After proving that the cohomology of a smooth variety over C admits a canonical mixed Hodge
structure [19], Deligne [20] proves the following:
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Theorem A.7. Let X be a quasi-projective variety over C. For each k, there is an increasing
weight filtration

0 =W−1⊆W0⊆ · · ·⊆W2k = Hk(X,Q)

and a decreasing Hodge filtration

Hk(X,C) = F 0 ⊃ F 1 ⊃ · · · ⊃ F k ⊃ F k+1 = 0

such that the filtration induced by F • on GrWk gives a pure Hodge structure of weight k.

Moreover, the weight filtration satisfies the following properties for X a variety over C:

1. If X is projective and smooth, the weight filtration is trivial, i.e. for all k,

0 =Wk−1⊆Wk = Hk(X,Q)

and hence Hk(X,Q) is pure of weight k.

2. If X is projective, then for all k,

0 =W−1⊆W0⊆ · · ·Wk = Hk(X,Q).

3. If X is smooth, then for all k,

0 =Wk−1⊆Wk⊆ · · ·⊆W2k = Hk(X,Q).

4. For any φ : X → Y a morphism of algebraic varieties over C,

φ∗(Wk)⊆Wk.

Moreover, φ∗ preserves the pure Hodge structure of weight k on GrWk for each k.

Importantly, this last property implies that an exact sequence of cohomology groups induced
by morphisms of varieties remains exact when considering only the graded pieces GrWk .
For our purposes, we can extend this construction to a mixed Hodge structure on the coho-
mology groups Hk

c (X,Q) by Poincaré duality.
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Appendix B

SYMPLECTIC
REPRESENTATIONS

Following [22, Page 219], let GSp(2n,C) be the group of matrices

γ =

(
A B
C D

)
such that ABT = BAT , CDT = DCT , and ADT −BCT = ηIn for some η ∈ C×. The function
η : GSp(2n,C)→ C defines a character, which we will call the multiplier representation.
We define Sp(2n,C) to be the subgroup of matrices γ ∈ GSp(2n,C) such that η = 1. These
are called the general symplectic group and symplectic group respectively.

1 Symmetric Functions

The following results and definitions are taken from [25, Appendix A].

Definition B.1. Let Λn be the subring of Z[x1, . . . , xn] generated by the monomials that are
invariant under permutations. Define the complete symmetric polynomials

hj =
∑

1≤i1≤···≤ij

xi1 · · ·xij for 1 ≤ j ≤ n.

This identifies Λn with the ring Z[h1, . . . , hn]. Another class of symmetric polynomials are the
elementary symmetric polynomials

ej =
∑

1<i1<···<ij

xi1 · · ·xij for 1 ≤ j ≤ n.
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Let λ = (λ1, . . . , λn) be a partition of d. This uniquely defines a Schur polynomial, which we
will denote by sλ. These polynomials can be expressed in the hj as a determinant

sλ =

∣∣∣∣∣∣∣∣∣
hλ1 · · · hλ1+n−1

hλ2−1 · · ·
...

hλn−n+1 · · · hλn

∣∣∣∣∣∣∣∣∣
The rings Λn consist of homogeneous polynomials of at most degree n, but it would be more
convenient not to have to worry about the number of variables or their degree. To this end,
set

Λ := lim←−Λn.

The subring Λn⊆Λ can be identified with Z[h1, . . . , hn]. The ring Λ can be freely gener-
ated as an abelian group by the Schur polynomials or the elementary symmetric polynomials.
Extending to Q, the ring Λ⊗Q is freely generated as an algebra by the elementary power sums

pn =
∑
i≥1

xni .

2 Schur Functors

Given a representation V of a group G, we can construct new representations by considering
its n-th tensor power V ⊗n or its symmetric and antisymmetric powers Symn V and ∧nV . Here,
we will introduce an operation, the Schur functor, which makes a new G-representation Vλ by
means of the Young symmetrizer. We follow [25, Sections 4, 6].

Definition B.2. Let V be a representation of a group G and λ = (λ1, . . . , λk) a partition of
n > 0. Then define the operation aλ as

aλ : V
⊗n 7→ Symλ1 V ⊗ Symλ2 V ⊗ · · · ⊗ Symλk V ⊆V ⊗n.

For µ = (µ1, . . . , µl) the conjugate partition to λ, define the operation bλ as

bλ : V
⊗n 7→ ∧µ1V ⊗ ∧µ2V ⊗ · · · ⊗ ∧µlV ⊆V ⊗n.

Finally, let cλ be the Young symmetrizer, defined as

cλ = aλ ◦ bλ.

For example, when λ = (n), cλ(V ⊗d) = Symn V . For λ = (1, 1, . . . , 1), we get cλ(V ⊗n) =
∧nV .

The images of the symmetrizers cλ in V ⊗n provide essentially all the finite-dimensional ir-
reducible representations of GL(V ). In particular, for Sn we know the following.
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Theorem B.3. Some scalar multiple of cλ is idempotent, and the image of cλ is an irreducible
representation Vλ of Sn for all partitions λ of n. Moreover, every irreducible representation of
Sn can be obtained in this way for a unique partition.

We therefore find a 1− 1 correspondence given by partitions λ of n,

{Schur polynomials sλ} ↔ {Irreducible representations of Sn}.

Since conjugacy classes of Sn are determined by their cycle types, which in turn determine
partitions of n, we also find a correspondence between irreducible representations of Sn and
conjugacy classes.
As an example, the partition (n) gives the trivial representation U of Sn, while λ = (1, 1, . . . , 1)
gives the alternating representation.

In [25, Section 4], we can find explicit identities for the characters and dimensions of the
representations Vλ. In particular, we find that the character of Sn evaluated at g in the conju-
gacy class Ci of cycle type i = (i1, . . . , in) can be directly related to certain Schur polynomials.
For a large enough k ∈ Z and symmetric polynomials pj(x) = xj1 + xj2 + · · ·+ xjk,∏

j

pj(x)
ij =

∑
χλ(Ci)sλ,

where we sum over all partitions λ of n in at most k parts. Furthermore, the conjugacy class
of the identity corresponds to i = (n), so

dimVλ = χλ(C(n)).

If λ = (λ1, . . . , λk), the identity then becomes

dimVλ =
n!

l1! · · · lk!
∏
i<j

(li − lj),

with li = λi + k − i.
Alternatively, we can compute the dimension using the hook length formula. Given a Young
diagram of a partition λ, the hook length of a box is given by the number of squares directly
below or directly to the right of the box, including the box once. Then,

dimVλ =
n!∏

(Hook lengths) .

Definition B.4. Let λ be a partition of n > 0 and let V be a representation of a group G, then
V ⊗n is also a representation of G. Denote Sλ V := im(cλ|V ⊗n). This is also a representation of
G. We call the construction

V 7→ Sλ V

the Schur functor corresponding to λ.
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Note that we can consider the space V ⊗n as an Sn-representation, with structure given by
permuting the components. For an arbitrary group G, Sλ V is not necessarily irreducible, but
it is for G = GL(V ).
As an example, consider the representation V ⊗ V of GL(V ) for V some finite dimensional
complex vector space. We have a canonical decomposition

V ⊗ V = Sym2 V ⊕ ∧2V.

Continuing this process, V ⊗ V ⊗ V is also a representation of GL(V ), which now has a
decomposition into irreducible representations as

V ⊗ V ⊗ V ⊗ V = Sym3 V ⊕ ∧3V ⊕ (S(2,1) V )⊕2.

In fact, we can generalize this to arbitrary tensor powers. The following theorem summarizes
the important information about the representations Sλ V .

Theorem B.5 ( [25, Theorem 6.3]). Let k = dimV and λ = (λ1 ≥ · · · ≥ λl ≥ 0) a partition
of n. Then Sλ V is zero if λk+1 6= 0. If λ = (λ1 ≥ · · · ≥ λk ≥ 0), then

1. dim Sλ V = sλ(1, . . . , 1).

2. Let mλ be the dimension of the irreducible representation Vλ of Sn corresponding to λ.
Then

V ⊗n ∼=
⊕
λ

Sλ V ⊗mλ .

3. For any g ∈ GL(V ), the trace of g on Sλ V is the value of the Schur polynomial on the
eigenvalues x1, . . . , xk of g on V :

χSλ V (g) = sλ(x1, . . . , xk).

4. Each Sλ V is an irreducible representation of GL(V ).

3 Representations of the Symplectic Group

The Schur functors Sλ also induce irreducible representations of the symplectic group Sp(2n,C).
In this case, we need to adapt the construction slightly. We will follow the outline of Weyl’s
construction for symplectic groups as seen in [25, Section 17.3]. Let n ≥ 0 and V = C2n.
Let λ = (λ1 ≥ · · · ≥ λ2n) be a partition of n =

∑
λi. The symplectic form Q determines a

contraction for each pair of integers I = {p < q} of integers between 1 and n:

ΦI : V
⊗n → V ⊗(n−2),

v1 ⊗ · · · ⊗ vd 7→ Q(vp, vq)v1 ⊗ · · · ⊗ v̂p ⊗ · · · ⊗ v̂q ⊗ · · · ⊗ vn.
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Definition B.6. Let V ⟨n⟩⊆V ⊗n denote the intersection of the kernels of all of these contrac-
tions. We then set

S⟨λ⟩ V = V ⟨n⟩ ∩ Sλ V.

We can also see this representation as the image of the Young symmetrizer:

S⟨λ⟩ V = V ⟨n⟩cλ = im(cλ : V
⟨n⟩ → V ⟨n⟩).

We summarize some of the most useful facts about the representations S⟨λ⟩ V in the following
theorem.
Theorem B.7. The space S⟨λ⟩ V is nonzero if and only if λn+1 = 0. In this case, S⟨λ⟩ V is an
irreducible representation of the symplectic group Sp(2n,C). It is the irreducible representation
of highest weight occuring in

Symλ1−λ2(∧1V )⊗ · · · ⊗ Symλn−1−λg(∧g−1V )⊗ Symλg(∧gV ).

The characters of these irreducible representations are now now longer directly given by
the Schur polynomials. Rather, we need the so-called symplectic Schur polynomials.
Definition B.8. [25, A.45] For λ = (λ1, . . . , λk) and hj the j-th complete symmetric poly-
nomial in k variables, let s⟨λ⟩ be the polynomial given by the determinant whose i-th row is
given by

|hλi−i+1 hλi−i+2 + hλi−i · · ·hλi−i+k + hλi−k+2|.

Following [25, Section 24.2], let

Jd(x1, . . . , xn) = hd(x1, . . . , xn, x
−1
1 , . . . , x−1

n ),

where hd is the d-th complete symmetric polynomial in 2n variables. That makes Jd the
character of the representation Symd(C2n) of Sp(2n,C). Generalizing this,
Proposition B.9. The character of the irreducible representation S⟨λ⟩ V is the determinant of
the k × k matrix whose i-th row is

|Jλi−i+1 Jλi−i+2 + Jλi−i · · · Jλi−i+k + Jλi−i−k+2|.

In other words, it is the symplectic Schur polyonmial s⟨λ⟩ evaluated in x1, . . . , xn, x−1
1 , . . . , x−1

n .
We can use this character formula to determine the local systems Vλ in terms of simpler local
systems.
Example B.10. The character of the local system V1,1 is given by the determinant∣∣∣∣J1 J2 + J0

J0 J1

∣∣∣∣ .
So even withous computing these polynomials, we know that

V1,1
∼= V1⊗V1−V0⊗(V2⊕V0),

since Jd equals the character of the representation Symd V .
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Appendix C

CURVES

In this thesis we will study the isomorphism classes of algebraic curves, by which we will mean a
complete nonsingular variety over a field k of dimension one. Over the complex numbers, these
correspond to Riemann surfaces, for which there is a well-known invariant called the genus,
corresponding to its number of handles. Topologically, this is enough to classify these surfaces
completely. We introduce the algebraic equivalent, which defines a birational invariant. By a
variety, we mean a geometrically reduced and irreducible scheme, separated and of finite type
over a field k.

Definition C.1. [32, III] Let X be a smooth variety over k. We define the canonical sheaf
on X to be ωX =

∨nΩX/k, where n is the dimension of X and ΩX/k is the sheaf of relative
differentials of X. If X is projective and nonsingular, we define the geometric genus of X to
be pg := dimk Γ(X,ωX).

This geometric genus is a birational invariant.

Theorem C.2. [32, III-Theorem 8.19] Let C and C ′ be two birationally equivalent smooth
projective varieties over k. Then pg(C) = pg(C

′).

Heuristically, this is the algebraic equivalent of the topological genus. Indeed, these concepts
overlap when considering a smooth curve C over C as a Riemann surface. There is another
notion of genus, which will be of use later when working with curves with nodal singularities.

Definition C.3. Let C be a curve over k. Then we define the arithmetic genus of X as
pa(g) = dimkH

1(X,OX).

It is possible to define the arithmetic genus in a more general way for varieties using
the Hilbert polynomial. For the case of curves, however, this is equal to the dimension of
H1(X,OX). Fortunately, these notions of genus overlap whenever C is smooth.
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Proposition C.4. If C is a smooth curve, pa = pg.

Proof. This is a consequence of Serre duality; the space H1(X,OX) is dual to H0(X,ωX),
hence their dimensions are equal.

When we say a curve C over the field k, there is a structure morphism C → k. We can
generalize this to define a family of curves parametrized by a scheme S

Definition C.5. Given g, n ≥ 0, an n-pointed familiy of genus g curves over a scheme S is a
tuple

(π : C → S; p1, . . . , pn : S → C)

such that

• π is a (smooth/flat), proper, surjective, finitely presented morphism of schemes such that
the fibre Cs over any geometric point s ∈ S is a smooth/stable, projective, connected
curve of arithmetic genus g.

• the morphisms p1, . . . , pn are pairwise disjoint sections of π, with image in the smooth
locus of π.

Note that when π is smooth, it is also flat, so the flatness condition is required only in the
case of stable curves.
Morphisms of families of curves are diagrams of the form

C C ′

S T

πpi

g

φ

π′ p′i

where

• φp′i = pig for 1 ≤ 1 ≤ n

• φ, π′ induce an isomorphism C ′ ∼−→ C ×S T

1 Curves on Quadric Surface

We have determined some results on curves of genus 5 in chapter 1. We use several results and
definitions from [32, II-6] and [32, V-1] to compute the genus of curves on a quadric surface
using intersection theory. As a bonus, we can use this theory to show that smooth curves of
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genus g exist for all g ≥ 0. Following [32] Chapter V, can define an intersection pairing on the
divisors of a surface. This unique pairing satisifies the following conditions. [32, V-Theorem
1.1] Let X be a surface, i.e. a nonsingular projective surface over an algebraically closed field
k.

Theorem C.6. There is a unique pairing DivX × DivX → Z, denoted C.D for any two
divisors C.D such that

1. if C and D are nonsingular curves meeting transversally, then C.D = #(C ∩ D), the
number of points of C ∩D,

2. it is symmetric: C.D = D.C,

3. it is additive: (C1 + C2).D = C1.D + C2.D,

4. it depends only on the linear equivalence classes: if C1 ∼ C2, then C1.D = C2.D.

Lemma C.7. [32, V-Lemma 1.3] Let C be an irreducible nonsigular curve on X and let D
be any curve meeting C transversally. Then

#(C ∩D) = degC(L(D)⊗OC)

Proof. See [32].

Recall the Segre Embedding P1
k → P3

k. Its image is a quadric curve defined by xy = zw.
From this, we gather the following fact.

Lemma C.8. Let Q⊆P3
k be the quadric surface defined by xy = zw. Then the class group of

Q, Cl(Q) ∼= Z⊕Z.

Proof. See [32], Example 6.6.1 from Chapter II.

Definition C.9. Let Q be the surface as defined above. Then for any divisor D on Q, define
the type of D to be the ordered pair of integers (a, b) corresponding to the class of D in Cl(Q).
We say the divisor D is of type (a, b).

So whenever C is a curve on Q, we can see it as a prime divisor and therefore has a type.

Proposition C.10. [32, V-Proposition 1.5] If C is a nonsigular curve of genus g on the
surface X, and if K is the canonical divisor on X, then

2g − 2 = C.(C +K).
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Proof. By Proposition II-8.20 from [32], the canonical sheaf ωC ∼= ωX ⊗L(C)⊗OC . We know
the canonical divisor of a curve has degree 2g − 2, so the degree of ωC is 2g − 2. On the other
hand, by C.7, we have

degC(ωX ⊗ L(C)⊗OC) = C.(C +K).

This identity is called the adjunction formula

Note that it is in particular possible to consider the self intersection D2 of a divisor. Since
this cannot clearly be stated in terms of intersection points, we use property 4 from the inter-
section pairing: simply choose a linearly equivalent divisor D′ ∼ D and consider D2 = D.D′.

Theorem C.11. Let C be a curve of type (a, b) on Q. Then

g(C) = ab− a− b+ 1.

Proof. On the surface Q, choose generators (1, 0) and (0, 1) of ClQ corresponding to projective
lines l,m⊆Q. Since Q ∼= P1×P1, we may conclude that l.m = 1, while l2 = m2 = 0. Now by
linearity, this extends to divisors D,D′ of types (a, b) and (a′, b′) respectively to the identity
D,D′ = ab′ + a′b. Since we have embedded Q in P3, ωX ∼= OX(−2) by C.16. Therefore, the
type of K is (−2,−2), since OX(−2) ∼= OX(−2H) for H some hyperplane section, whose class
generates ClQ, and the class of H is (1, 1). Furthermore, the type of C +K is (a − 2, b − 2).
Using the adjunction formula, we get that

2g − 2 = a(b− 2) + b(a− 2), so
g = ab− a− b+ 1,

as desired.

Corollary C.12. For any g ≥ 0, there exist curves of genus g.

Proof. Let D be a divisor of type (g+1, 2) on Q, the quadric surface above. Then by [32, III],
Exercise 5.6, there exists a nonsingular curve Y , which as a divisor is linearly equivalent to D.
Then by C.11, the genus of this curve is g.

2 Arithmetic Genus of Singular Curves

The following result is a combination of [32, IV], exercise 1.8 and [31, 3A], exercise 3.2.

Lemma C.13. Let X be a curve over k (algebraically closed), and let π : X̃ → X be its
normalisation. Let ÕP be the integral closure of OP . Then there exists a short exact sequence
of sheaves

0→ OX → π∗OX̃ →
∑
P∈X
ÕP /OP → 0.
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Proof. We know that for each U = SpecA⊆X open affine, π−1(U)⊆ X̃ is given by Ũ := Spec Ã,
the affine given by the integral closure of A in its fraction field. The canonical mapOX → π∗OX̃
induced by the morphism of schemes π defines the first map. The second map can be given on
an open U ⊆X by sending x ∈ OX̃(π−1U) to its classes in ÕP (U)/OP (U). This then extends
to the sheafification. To show this is exact, we can take the stalks. If we take the stalk at
a point Q ∈ X, then (ÕP /OP )Q = 0 for P 6= Q and is the identity otherwise. Since the
normalisation is given on all open affines by taking integral closure, the stalk of π∗OX̃ is given
by the integral closure of OQ. So on stalks, the maps above give the sequence

0→ OQ → ÕQ → ÕQ/OQ → 0,

which is clearly exact.

Theorem C.14. Let X be a curve over k (algebraically closed), and let π : X̃ → X be its
normalisation. Let ÕP be the integral closure of OP . Define δP = length(ÕP /OP ). Then

pa(X) = pa(X̃) +
∑
P∈X

δP .

Proof. By [32, Chapter III], exercise 4.1, we know that H i(X,π∗OX̃) ∼= H i(X̃,OX̃). Fur-
thermore, since X is a curve, the arithmetic genus is given by H1(X,OX). Since k is al-
gebraically closed, both H0(X,OX) and H0(X̃,OX̃) are one-dimensional. Since ÕP /OP is
nontrivial only if P is singular, it is clear that for V ⊆U opens in X, the restriction map
(
∑

P∈X ÕP /OP )(U) → (
∑

P∈X ÕP /OP )(V ) is surjective, as V contains possibly less singu-
larities than U . The sheaf

∑
P∈X ÕP /OP is therefore flasque, hence all its cohomologies H i

vanish for i > 0. The long exact sequence of cohomology associated to the short exact sequence
in the lemma above is

0→ Γ(X,O)→ Γ(X̃,OX̃)→ Γ(X,
∑
P∈X
ÕP /OP )→

H1(X,OX)→ H1(X̃,OX̃)→ H1(X,
∑
P∈X
ÕP /OP )→ · · ·

By our computations above, this gives the short exact sequence

0→ Γ(X,
∑
P∈X
ÕP /OP )→ H1(X,OX)→ H1(X̃,OX̃)→ 0.

Since there are only finitely many singularities and cohomology commutes with finite direct
sums, this given us pa(X) = pa(X̃) +

∑
P δP .

Importantly, δP is 1 whenever P is a node. We conclude with some results on complete
intersections.

Proposition C.15. If Y is a complete intersection of codimension at least 1 in Pnk that is
normal, then for all l ≥ 0, the natural map Γ(Pn,OPn(l))→ Γ(Y,OY (l)) is surjective.
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Proof. We will first show that such a Y is projectively normal, i.e. the ring k[x0, . . . , xn]/(I(Y ))
is integrally closed. Note that if Y is of codimension at least one, then its singular locus must
be of codimension at least 2 by applying Theorem II, 8.23b from [32], and therefore the singular
locus of the affine cone of Y , C(Y ) also has codimension at least 2, hence it is normal. Since
C(Y ) is affine by Exercise I-2.10 in [32], every localisation at a prime of k[x0, . . . , xn]/(I(C(Y )))
is integrally closed by definition of normal for affine schemes. As I(C(Y )) and I(Y ) are the
same ideal, we conclude k[x0, . . . , xn]/(I(Y )) is integrally closed. Now apply II-Exercise 5.14a,
which says that k[x0, . . . , xn]/(I(Y )) ∼= S′ :=

⊕
l≥0 Γ(Y,OY (l)) since Y is projectively normal.

We have that Γ(Pn,OPn(l)) = Sl, and Γ(Y,OY (l)) = S′
l. Since S′ arises as a quotient of S,

S → S′ is surjective, so in particular Sl → S′
l is surjective. This proves our result

Proposition C.16. Let Y ⊆Pnk be a nonsingular complete intersection of hypersurfaces H1, . . . , Hr,
r < n such that degHi = di. Then the canonical sheaf ωY ∼= OY (

∑r
i=1 di − n− 1).

Proof. We begin with the case where Y itself is a hypersurface. Suppose Y = H for some
hypersurface H of degree d. Then by Proposition II-8.20 in [32], ωY ∼= ωPn

k
⊗ L ⊗ OY , where

L is the invertible sheaf on Pnk associated to Y , i.e. the sheaf denoted L(Y ). Since PicPnk ∼= Z
by the degree map, this sheaf is isomorphic to L(d). Thus, ωY ∼= OPn

k
(−n− 1)⊗L(d)⊗OY ∼=

OY (d− n− 1). Now repeat this formula to obtain the desired result.
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