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Introduction

The purpose of this thesis is to study the toroidal compactification of the moduli space of
principally polarized abelian varieties.
Any complex abelian variety can be regarded as a complex torus. If a complex torus admits a
holomorphic embedding into PN

C for some positive integer N , then it is an algebraic variety by
the theorem of Chow and thus an abelian variety. It turns out that if the torus V/L admits
a Riemann form, i.e, an alternating bilinear form E : Λ × Λ → Z such that the R-linear
extension E : V × V → R satisfies E(iv, iw) = E(v, w) and the associated hermitian form
H(x, y) = E(ix, y) + iE(x, y) is positive definite, it is an abelian variety. Using this result,
we can construct the moduli space of polarized abelian varieties analytically. Let

Hg = {Z ∈Mg(C)|tZ = Z, ImZ > 0}

be the Siegel upper half space. The symplectic group Sp(2g,Z) acts on Hg biholomorphically,
the quotient Ag = Sp(2g,Z)\Hg by Sp(2g,Z) turns out to be the moduli space of principally
polarised abelian varieties over C.
This space Ag is not compact. The first compactification is given by Satake [24]. The Satake
compactification ASat

g of Ag can be written as a disjoint union

ASat
g = Ag ⨿ Ag−1 ⨿ ...⨿ A0.

It admits a structure of projective variety and contains Ag as a Zariski open subset. However,
the boundary ASat

g − Ag has codimension g and is highly singular.
The moduli space is a special case of locally symmetric varieties. In [3], Mumford and his
collaborators constructed toroidal compactifications of locally symmetric varieties. We will
use their method to construct the toroidal compactification of Ag. The boundary of the
toroidal compactification Ag has codimension 1 and at worst quotient singularities.

In the first section, we discuss complex abelian varieties and construct its analytic mod-
uli space. In the second section, we give all the necessary knowledge of toric varieties for
the construction of the toroidal compactification of Ag and provide an application of a com-
pactification of a Kummer modular surface, which is also related to the boundary of toroidal
compactification of A2. In the third section, we introduce all the background for the toroidal
compactification, including the boundary components of Hg, the structure of the stabilizing
subgroups of the boundary components and a short introduction to the Satake compact-
ification of Ag. In the final section, we first introduce the general steps of the toroidal
compactification of Ag. The toroidal compactification has a stratification using the orbit-
cone correspondence, which allows us to describe the toroidal compactification of Ag easily.
We provide a toy example of g = 1 case to help understand the toroidal compactification.
Then we work on the case of g = 2 in detail.

2



Contents

1 Abelian Varieties and Moduli 4
1.1 Abelian Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Complex Abelian Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Moduli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Toric Varieties 17
2.1 Algebraic Torus over C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Fans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 The Orbit-Cone Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Applications on Kummer Modular Surfaces . . . . . . . . . . . . . . . . . . . 33

3 The Satake Compactification 38
3.1 Boundary Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Structure of Stabilizing Subgroups . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 The Satake Compactification . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Toroidal Compactification 50
4.1 General Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Stratification By Torus Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 g=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 g=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Degree One And Two Boundary Components . . . . . . . . . . . . . 65
4.4.2 Degree Zero Boundary Component . . . . . . . . . . . . . . . . . . . 66
4.4.3 Gluing and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A Complex Analytic Spaces 77



1 Abelian Varieties and Moduli

1.1 Abelian Varieties

In this subsection, we provide a brief introduction to abelian varieties over an arbitrary field
k. The main reference for this section is Milne’s notes [15]. We take the convention that an
algebraic variety over k is a geometrically reduced separated scheme of finite type over k.

Definition 1.1.1. A group variety over k is an algebraic variety V over k with morphisms

m : V ×k V → V (multiplication)

inv : V → V (inverse)

and an element e ∈ V (k) such that the structure on V (k) defined by m and inv is a group
with identity element e.

Remark 1.1.2. We list a few properties of group varieties.
• Group varieties are nonsingular. It suffices to prove this over the algebraic closure k
of k. Note that any variety contains a nonsingular dense open subvariety U . We can
define the right translation ta : V → V for a ∈ V (k) by x→ m(x, a). We can translate
U such that ∪a∈V (k)ta(U) covers V .

• Connected group varieties are geometrically connected. Actually, the connectedness
of varieties and the existence of a k-rational point are sufficient to show geometric
connectedness, see [22, tag 04KV].

Definition 1.1.3. A proper connected group variety is called an abelian variety.

Theorem 1.1.4 ([15],Corollary 1.4). The group law on an abelian variety is commutative.

To prove this, we need an important theorem - the Rigidity Theorem:

Theorem 1.1.5 ([15], Theorem 1.1). Consider a morphism of algebraic varieties α : V ×
W → U and assume that V is complete and V ×W is geometrically irreducible. If there are
u0 ∈ U(k), v0 ∈ V (k) and w0 ∈ W (k) such that

α(V × {w0}) = {u0} = α({v0} ×W )

then α(V ×W ) = {u0}.

With this theorem, we have

Corollary 1.1.6 ([15],Corollary 1.2). Every morphism of abelian varieties α : A→ B is the
compositition of a homomorphism with a translation.

Proof. Write the group additively, and denote e as 0. The morphism will send the k-rational
point 0 of A to a k-rational point b of B. After postcomposing α with the translation
t−b, we may assume α(0) = 0. Consider the map φ : A × A → B given by φ(a, a′) =
α(a+a′)−α(a)−α(a′). It suffices to show that φ = 0. Note that φ is the difference of α ◦m
and m ◦ (α× α), the map φ is a morphism. Then φ(A× 0) = 0 = φ(0×A). By the rigidity
theorem, φ = 0.
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Proof of Theorem 1.1.4. Use the corollary above and consider the morphism A → A given
by a 7→ −a.

Another important property of abelian varieties is:

Theorem 1.1.7 ([15],Theorem 6.4). Abelian varieties are projective.

1.2 Complex Abelian Varieties

In this section, we focus on complex abelian varieties. We will show that any complex abelian
variety is a torus. And any torus which satisfies certain conditions is an abelian variety.

Definition 1.2.1. A lattice L in a complex vector space V of dimension g is a discrete
subgroup of V such that the quotient group V/L is compact.

Remark 1.2.2. A lattice L is a free abelian group of rank 2 dimC(V ) and we have an iso-
morphism L⊗Z R

∼−→ V .

Definition 1.2.3. A complex torus is the quotient V/Λ where V is a complex vector space
and Λ is a lattice in V .

Suppose we have an abelian variety X over C. Since it is a proper connected group
variety, Xh is a compact connected complex Lie group, i.e., a compact connected complex
manifold with a group structure on the underlying set such that the maps Xh × Xh → Xh

and Xh → Xh defined by (x, y) 7→ xy and x 7→ x−1 are holomorphic. One can show that the
group structure on Xh is commutative.

Theorem 1.2.4 ([18], p.1). Any compact complex connected Lie group is commutative.

We can show that Xh is a complex torus.

Theorem 1.2.5 ([18], p.2). Let X be a compact connected Lie group. The exponential map
exp : V = Lie(X) → X is a surjective homomorphism of complex Lie groups with kernel a
lattice Λ. We have an induced isomorphism V/Λ

∼−→ X, i.e., X is a complex torus.

Conversely, we want to investigate under what conditions a complex torus can be an
abelian variety over C.

If a complex torus admits a holomorphic embedding into PN
C for some positive integer N ,

then it is an algebraic variety by the Theorem of Chow, see the Appendix. In particular, it
is an abelian variety.

Example 1.2.6 ([25],Theorem 3.5 & Proposition 3.6). Recall elliptic curves over C. Let
V = C and Λ a lattice in V . We can define the Weierstrass ℘-function

℘(z) =
1

z2
+

∑
ω∈Λ\{0}

[
1

(z − ω)2
− 1

ω2

]
so that ℘′(z) =

∑
ω∈Λ−2(z − ω)−3. Note that ℘(z) and ℘′(z) are both elliptic functions, i.e.

meromorphic functions on C that satisfy f(z + λ) = f(z) for all z ∈ C and λ ∈ Λ. For all
z ∈ C\Λ, the Weierstrass ℘-function and its derivative ℘′ satisfy the relation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3
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where g2 = g2(Λ) = 60
∑

ω∈Λ\{0} ω
−4 and g3 = g3(Λ) = 140

∑
ω∈Λ\{0} ω

−6. Note that ∆(Λ) =

g32 − 27g23 is nonzero. Then the map

ϕ : C\Λ→ E(C) ⊂ P2
C, z 7→ [℘(z) : ℘′(z) : 1]

maps the torus V/Λ to the elliptic curve E = {y2 = 4x3 − g2x − g3} ⊂ P2
C. And ϕ is

holomorphic.

By the example above, we know that every complex torus of dimension 1 is an abelian
variety. It’s not true for higher dimensions. We will investigate what condition makes a
complex torus an abelian variety. We are now going to find the analogue of the Weierstrass
℘-function by relaxing the condition of the elliptic function and requiring that f(z + λ) =
(some factor)f(z). These are so-called theta functions, which will be formally introduced
later. Note that we can get elliptic functions by taking the ratio of two such functions with
the same factor.

Recall the definition of a holomorphic line bundle:

Definition 1.2.7. Let X be a complex manifold. A (holomorphic) line bundle on X is a
complex manifold L together with a surjective holomorphic map π : L → X such that

(a) π−1(x) ∼= C for any x ∈ X;

(b) (locally trivial of rank 1): there is an open covering X = ∪α∈AUα such that there is
a biholomorphic map ϕα : π−1(Uα)

∼−→ Uα × C such that pr1 ◦ ϕα = π|π−1(Uα) and the
transition maps

ϕαβ = ϕα ◦ ϕ−1
β : (Uα ∩ Uβ)× C→ (Uα ∩ Uβ)× C, (x, z) 7→ (x, fαβ(x)z)

are given by fαβ(x) ∈ GL(C) = C∗.

Definition 1.2.8. A global section of a line bundle L is a map s : X → L such that π◦s = id.

Remark 1.2.9. The space of global sections is a C-vector space. We denote it as Γ(X,L) or
H0(X,L).

If the line bundle L is basepoint-free and there are linearly independent global sections
s0, · · · sn ∈ H0(X,L) where n = dimH0(X,L) − 1, we obtain a morphism from X to Pn

given by (s0 : · · · : sn). Hence it is meaningful to look at line bundles. We will also discuss
the ampleness conditions on line bundles making the morphism a closed immersion.

Definition 1.2.10. A line bundle L is trivial if it is biholomorphic to C×X.

Proposition 1.2.11 ([7], Lemma 2.1.1). All holomorphic line bundles on CN are trivial.

If we have a holomorphic line bundle on a torus X = V/Λ, then the pullback π∗(L) where
π is the projection V → X = V/Λ is trivial by the above proposition.

Consider the canonical action of Λ on π∗(L), which is an action such that the quotient
π∗(L)/Λ ∼= V ×C/Λ = L. Then λ has to act on V by translation and act on C by a nowhere
vanishing holomorphic function f(λ,−) ∈ H0(V,O∗

V ) to fix the base. The action is given by

λ : V × C→ V × C, (v, z)→ (v + λ, f(λ, v)z).
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The function f has to satisfy the 1-cocycle condition to make the action well-defined, i.e.,

f(λ+ µ, v) = f(λ, v + µ)f(µ, v)

These functions form an abelian group under multiplication Z1(Λ, H0(V,O∗
V )) and we call

them factors of automorphy. If we choose another trivialization π∗(L) → V × C by
multiplying with nowhere vanishing holomorphic function h on V , the change to f(λ, z) is
that it is multiplied by a coboundary h(λ + v)h(v)−1 ∈ B1(Λ, H0(V,O∗

V )). Thus we defined
a map from Pic(X) = H1(X,O∗

X) to H1(Λ, H0(V,O∗
V )). Conversely, if we have a cocycle

f ∈ H1(Λ, H0(V,O∗
V )), we can define a line bundle L on X as the quotient of V × C by the

action of Λ given by (v, z) 7→ (v + λ, f(λ, v)z). Therefore, we have an isomorphism

Pic(X) = H1(X,O∗
X)
∼= H1(Λ, H0(V,O∗

V )).

This is saying that any holomorphic line bundle can be described by means of factors of
automorphy.

Next, we will introduce the first Chern class. On any complex analytic space X = V/Λ,
we have a short exact sequence

0 Z OX O∗
X 0e2πi−

It has an associated long exact sequence, partially given by

0 H1(X,Z) H1(X,OX) H1(X,O∗
X) H2(X,Z) · · ·c1

Definition 1.2.12. Let L be a line bundle. The first Chern class of L is the image c1(L) of
L ∈ H1(X,O∗

X) in H
2(X,Z).

Remark 1.2.13. We define the Neron-Severi group NS(X) as the image c1(H
1(X,O∗

X)) and
Pic0(X) as the kernel of c1.

The following theorem shows how to calculate the first Chern class of line bundle in terms
of a factor of automorphy associated to that line bundle.

Theorem 1.2.14 ([7], Theorem 2.1.2). There is a canonical isomorphism H2(X,Z) →
Alt2(Λ,Z), which maps the first Chern class c1(L) of a line bundle L on X with a factor
of automorphy f = exp(2πig) to the alternating form

EL(λ, µ) = g(µ, v + λ) + g(λ, v)− g(λ, v + µ)− g(µ, v)

for all λ, µ ∈ Λ and v ∈ V .

We can extend E R-linearly to a map V × V → R:

Proposition 1.2.15 ([18], p.18). If we extend E R-linearly to a map V × V → R, then E
satisfies E(ix, iy) = E(x, y) for all x, y ∈ V .

The following lemma shows that the alternating form corresponding to the first Chern
class of a line bundle is just the imaginary part of a hermitian form. Recall a hermitian form
on a complex vector space V is a function H : V × V → C such that H is C-linear in the
first argument and H(u, v) = H(v, u) for all v, u ∈ V .
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Lemma 1.2.16. There is 1-1 correspondence between the hermitian forms H on a complex
vector space V and the real alternating forms E on V satisfying the identity E(ix, iy) =
E(x, y) given by

E(x, y) = ImH(x, y), H(x, y) = E(ix, y) + iE(x, y).

Proof. Given E, we have

H(x, y) = E(ix, y) + iE(x, y) = −E(iy,−x)− iE(y, x) = H(y, x)

hence H is hermitian. On the other hand, given H, the form E = ImH is alternating and
E(ix, iy) = ImH(ix, iy) = ImH(x, y) = E(x, y).

Conversely, given an alternating form E with integral values on Λ × Λ that satisfies
E(ix, iy) = E(x, y), we seek to find the corresponding factor of automorphy as explicitly as
possible.

Lemma 1.2.17 ([18],p.20). Let H be a hermitian form on V such that E = im H has
integral values on Λ × Λ. There exists a map χ : Λ → U(1) = {z ∈ C∗ : |z| = 1}, called a
semicharacter for H, which satisfies

χ(λ+ µ) = χ(λ)χ(µ) exp(iπImH(λ, µ)) = χ(λ)χ(µ)(−1)ImH(λ,µ)

for λ, µ ∈ Λ. If we put

a(λ, v) := χ(λ) exp(πH(v, λ) +
π

2
H(λ, λ)),

then a is a factor of automorphy.

Remark 1.2.18. We call this factor of automorphy associated to (H,χ) the canonical factor
for L(H,χ).

Definition 1.2.19. L(H,χ) is the quotient of V ×C for the action of Λ given by λ : (v, z) 7→
(v + λ, χ(λ) exp(πH(v, λ) + π

2
H(λ, λ))z).

Remark 1.2.20. We denote the set of all pairs (H,χ) as P(Λ). Note that if ai corresponds
to the pair (Hi, χi), then a1a2 corresponds to the pair (H1 + H2, χ1χ2). Hence we have an
isomorphism

L(H1, χ1)⊗ L(H2, χ2) ∼= L(H1 +H2, χ1χ2).

Theorem 1.2.21 (Appell-Humbert,cf. [18, p.20]). There is a canonical isomorphism of exact
sequences

1 Hom(Λ, U(1)) P(Λ) NS(X) 0

1 Pic0(X) Pic(X) NS(X) 0

L,∼=

ι

L,∼=

pr

=

c1

where NS(X) on the top row is regarded as the group of hermitian forms H such that Im H
has integral values on Λ× Λ.
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The significance of the Appell-Humbert Theorem is that instead of thinking of line bun-
dles, we can think of hermitian forms on complex vector space and semicharacters, which is
easy to deal with.

We now focus on the global sections of the line bundle L of a torus X = V/Λ. For any line
bundle L, we have a natural isomorphism H0(X,L) ∼−→ H0(V, π∗(L))Λ. For the trivialization
α : π∗(L) ∼−→ V ×C, we have an induced isomorphism: H0(V, π∗(L))Λ → H0(V, V ×C)Λ. As
we have discussed before, for any trivialization, we have an associated factor of automorphy
f , the elements in H0(V, V ×C)Λ are the holomorphic functions θ on V invariant under the
action of Λ, i.e.,

θ(v + λ) = f(λ, v)θ(v).

Such a function is called a theta function. If L = L(H,χ) where H is a hermitian form
and χ a semicharacter, then we have

θ(v + λ) = χ(λ) exp(πH(v, λ) +
π

2
H(λ, λ))θ(z), z ∈ V, λ ∈ Λ.

We call it a canonical theta function.

By studying theta functions, we can prove that

Lemma 1.2.22 ([18], p.25). If H is degenerate, the line bundle L(H,χ) cannot be ample.

Proof. Suppose H is degenerate. Then N = {x ∈ V |H(x, y) = 0, ∀y ∈ V } = {x ∈
V |E(x, y) = 0,∀y ∈ V } is nonempty and is a complex subspace of V , and N ∩ Λ is a
lattice in N . If θ is a canonical theta function, then

θ(v + λ) = χ(λ)θ(v), ∀λ ∈ N ∩ U.

If K is a compact subset of N such that N = K +N ∩ U , we have

|θ(v + w)| ≤ sup
ζ∈K
|θ(v + ζ)| = c

for all w ∈ N . By the Maximum modulus principle, we have θ(v +w) = θ(v) for w ∈ N and
θ is constant modulo N . This implies that θ(v+λ) = θ(v) for all λ ∈ N ∩U , hence χ(λ) = 1.
If s ∈ H0(X,L) is the corresponding section for the line bundle L, then s(x) = s(x + y) if
y ∈ N/(N ∩ Λ), which means that s doesn’t separate points. Since N is the same for L⊗k,
the line bundle L is not ample.

Lemma 1.2.23 ([18], p.26). If H is not positive definite, the line bundle L(H,χ) cannot be
ample.

Proof. Let W be a complex subspace in V such that H(w,w) < 0 for all w ∈ W and w ̸= 0.
Let K be a compact subset of V with V = Λ + K. Let v0 ∈ V and w ∈ W , and write
w = k + λ, k ∈ K,λ ∈ Λ. Then we have

|θ(v0 + w)| = |θ(v0 + k + λ)| = |θ(v0 + k)| exp(πReH(v0 + k, λ) +
1

2
πH(λ, λ)).
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And

ReH(v0 + k, λ) +
1

2
H(λ, λ)

=ReH(v0 + k, w)− ReH(v0 + k, k) +
1

2
H(w,w) +

1

2
H(k, k)− ReH(w, k)

=
1

2
H(w,w) + ReH(v0, w) + a function with respect to k and v0.

Fix v0. Since
1
2
H(w,w) is a real negative definite quadratic form in w, ReH(v0, w) is linear in

w and the function with respect to k and v0 is bounded, we have that ReH(v0+k, λ)+
1
2
H(λ, λ)

tends to −∞ as w tends to ∞. By the Maximum modulus principle, we have θ(v0 + w) = 0
hence θ ≡ 0. Then L(H,χ) has no non-zero section.

Proposition 1.2.24 ([18], p.26). When H is positive definite and E = Im H, then

dimH0(X,L(H,χ)) = dim[space of theta-functions with respect to (H,χ)] =
√
detE.

Theorem 1.2.25 (Lefschetz,[18], p.26). Let L = L(H,χ) be a line bundle on a complex torus
X = V/Λ. The following statements are equivalent:

1. The hermitian form H is positive definite.

2. The line bundle L = L(H,χ) is ample, and L⊗n is very ample for each n ≥ 3.

Definition 1.2.26. A polarization or a Riemann form on a complex torus X = V/Λ is a
positive definite hermitian form H on V such that ImH has integral values on Λ × Λ. The
pair (X,H) is called a polarized abelian variety.

Remark 1.2.27. The above theorem shows that if a polarization on a complex torusX = V/Λ
exists, then the complex torus is an abelian variety.

1.3 Moduli

In this section, we discuss the moduli spaces of polarized abelian varieties. Here we only
adopt a naive interpretation of moduli spaces - a moduli space is a complex analytic space
or complex manifold where there is a one-to-one correspondence between the points in this
space and isomorphism classes of certain types of objects.

To describe a complex torus, we introduce the concept of a period matrix.

Definition 1.3.1. Let e1, · · · , eg be a basis of V and λ1, · · ·λ2g be a basis of Λ. We can write
λ in terms of the basis e1, · · · eg : λi =

∑g
j=1 λjiej. The matrix

Π =

λ11 · · · · · · λ1,2g
...

...
λg1 · · · · · · λg,2g


is called the period matrix.
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Not all matrices Π ∈Mg×2g(C) are period matrices for some complex tori:

Proposition 1.3.2 ([7], Proposition 1.1.2). Π ∈Mg×2g(C) is the period matrix of a complex

torus if and only if the matrix P =

(
Π
Π

)
∈ M2g(C) is nonsingular, where Π̄ denotes the

complex conjugate matrix.

Proof. Π is a period matrix if and only if the column vectors of Π are linearly independent
over R.
Suppose the columns of Π are linearly dependent over R. Then there is a nonzero x ∈ R2g

and Πx = 0, and so Px = 0. This implies that detP = 0. Conversely, suppose P is singular,
then there exist some x, y ∈ R2g, not both zero, such that P (x+ iy) = 0. But then we have

Π(x+ iy) = 0 and Π(x− iy) = Π(x+ iy) = Π(x− iy) = 0 which implies that Πx = Πy = 0.
Hence the columns of Π are linearly dependent over R.

We can write the complex torus X = V/Λ as X = Cg/ΠZ2g. Recall a complex torus
is an abelian variety if it admits a polarization. We start with an arbitrary nondegenerate
alternating form E on Λ. Denote its matrix with respect to the basis λ1, ..., λ2g as A. Extend
E R-linear to Λ⊗ R = Cg. Define H : Cg × Cg → C by

H(u, v) = E(iu, v) + iE(u, v).

We want to check if the form H is a hermitian form and positive definite.

Theorem 1.3.3 ([7], Theorem 4.2.1). A nondegenerate alternating matrix A ∈ M2g(Z)
determines a polarization if and only if

i) ΠA−1tΠ = 0,

ii) iΠA−1tΠ̄ > 0.

Remark 1.3.4. The conditions i) and ii) are called Riemann relations.

Lemma 1.3.5 ([7], Lemma 4.2.2). The form H is a hermitian form on Cg if and only if
ΠA−1tΠ = 0.

Proof. By Theorem 1.2.14, the form H is hermitian form if and only if E(iu, iv) = E(u, v)
for all u, v ∈ Cg. Let

I =

(
Π
Π

)−1(
i1 0
0 −i1

)(
Π
Π

)
.

The matrix satisfies iΠ = ΠI. Since E(Πx,Πy) = txAy for all x, y ∈ R2g, the form H is
hermitian if and only if

txAy = E(Πx,Πy) = E(iΠx, iΠy) = E(ΠIx,ΠIy) = txtIAIy.

or equivalently A = tIAI. This says(
i1 0
0 −i1

)((
Π
Π

)
A−1

(
tΠ tΠ

))−1(
i1 0
0 −i1

)
=

((
Π
Π

)
A−1

(
tΠ tΠ

))−1

and hence ΠA−1tΠ = −ΠA−1tΠ which implies that ΠA−1tΠ = 0.

11



Lemma 1.3.6 ([7], Lemma 4.2.3). Suppose the form H is hermitian. Then 2i(ΠA−1tΠ)−1

is the matrix of H with respect to the basis λ1, ..., λ2g. In particular H is positive definite if
and only if iΠA−1tΠ > 0.

Proof. Let u = Πx and v = Πy with x, y ∈ R2g. Use the same notation as above. Note that
we have ΠA−1tΠ = 0. Now compute

E(iu, v) = E(iΠx, y) = E(ΠIx, y) = txtIAy

= t

(
u
u

)
tP−1 tIAP−1

(
v
v

)
= t

(
u
u

) (
i1
−i1

) ((
Π
Π

)
A−1

(
tΠ tΠ

))−1(
v
v

)

= t

(
u
u

) (
i1
−i1

) (
ΠA−1tΠ ΠA−1tΠ

ΠA−1tΠ ΠA−1tΠ

)−1(
v
v

)

= t

(
u
u

) i
(
ΠA−1tΠ

)−1

−i
(
ΠA−1tΠ

)−1

(
v
v

)

= itu
(
ΠA−1tΠ

)−1

v − itu
(
ΠA−1tΠ

)−1

v.

Similarly, we can compute

E(u, v) = E(Πx,Πy) = txtIAy

= t

(
u
u

)
tP−1AP−1

(
v
v

)
= t

(
u
u

)((
Π
Π

)
A−1

(
tΠ tΠ

))−1(
v
v

)

= t

(
u
u

) (
ΠA−1tΠ

)−1(
ΠA−1tΠ

)−1

(
v
v

)

= tu
(
ΠA−1tΠ

)−1

v + tu
(
ΠA−1tΠ

)−1

v.

so
H(u, v) = E(iu, v) + iE(u, v) = 2itu(ΠA−1tΠ)−1v.

Also note that the inverse and the transpose of a positive definite matrix is still positive
definite and tA = −A, hence H is positive definite if and only if iΠA−1tΠ is positive definite.

To simplify our problem, we can choose a basis such that E has a simple form and write
the period matrix with respect to the basis. We now need a result from Frobenius.

Proposition 1.3.7. Let Λ be a free finitely generated Z-module and E : Λ × Λ → Z be a
nondegenerate alternating form. Then there exists a basis λ, ..., λg, µ1, ..., µg of Λ such that
the matrix of E with respect to this basis is(

0 D
−D 0

)
12



where D = diag(d1, ..., dg) with integers di ≥ 0 and di | di+1 for i = 1, ..., g − 1.

We refer to proposition 3.1 of [6] for a proof of this.

Definition 1.3.8. An abelian variety is called principally polarised if D = I.

Remark 1.3.9. The vector (d1, ..., dg) and the matrix D are called the type of corresponding
line bundle L. The basis λ1, ..., λg, µ1, ..., µg are called a symplectic basis of Λ. That the
line bundle L is nondegenerate implies that the form H and thus E, is nondegenerate. This
is equivalent to say that di > 0 for i = 1, ..., g.

Define ei = µi/di for i = 1, ..., g. The vectors e1, ..., eg form a C-basis for V . With respect
to the basis, the period matrix is of the form

Π = (Z,D)

for some Z ∈Mg(C).

Proposition 1.3.10 ([7], Proposition 8.1.1).

a) tZ = Z and ImZ > 0,

b) (ImZ)−1 is the matrix of the hermitian form.

Proof. These are just the Riemann Relations. The matrix of H is 2i(Π

(
0 D
−D 0

)
tΠ)−1 =

(ImZ)−1.

Thus we have seen that a polarized abelian variety of type D with symplectic basis
corresponds to a point in the following set:

Definition 1.3.11. The Siegel upper half-plane of degree g is defined to be

Hg := {Z ∈Mg(C) : tZ = Z, ImZ > 0}.

Remark 1.3.12. This is an open subset of the symmetric matrices, hence its dimension is
g(g + 1)/2.

Conversely, given a type D, any Z determines a polarized abelian variety with symplectic
basis.

Proposition 1.3.13 ([7], Proposition 8.1.2). Given a type D, there is 1-1 correspondence
between the points on the Siegel upper half plane Hg and polarized abelian varieties of type D
with a symplectic basis.

Proof. It suffices to show that given a type D and an element Z ∈ Hg, we can find a polarized
abelian variety with a symplectic basis.
Define a hermitian form HZ by the matrix (ImZ)−1 with respect to the standard basis of Cg

and ΛZ be the lattice (Z,D)Z2g. Claim that HZ is a polarization of type D. It is already
positive definite. Let λ1, ..., λg, µ1, ..., µg be the columns of (Z,D) and they are a basis of ΛZ .
With respect to this basis, ImHZ |ΛZ×ΛZ

is given by the matrix

Im(t(Z,D)(ImZ)−1(Z,D)) =

(
0 D
−D 0

)
.

13



Now we want to get rid of the choice of basis and construct an analytic moduli space for
the polarized abelian varieties.

Definition 1.3.14. GD := {M ∈ Sp2g(Q)|tMΛD ⊆ ΛD} where

ΛD =

(
1g

D

)
Z2g.

Proposition 1.3.15 ([7],Proposition 8.1.2). Denote ΛZ := (Z,D)Z2g, XZ := Cg/Λz and
HZ a hermitian form whose matrix with respect to the standard basis of Cg is (ImZ)−1. The
polarized abelian varieties (XZ , HZ) and (XZ′ , HZ′) of type D are isomorphic if and only if

Z ′ = (αZ + β)(γZ + δ)−1 for some M =

(
α β
γ δ

)
∈ GD.

Before proving this, we need a lemma:

Lemma 1.3.16 ([7],Proposition 1.2.1). Let h : X = V/Λ → X ′ = V ′/Λ′ be a holomorphic
map.

a) There is a unique homomorphism f : X → X ′ such that h = th(0)f where th(0) : X →
X, x 7→ x+ h(0).

b) There is a unique C-linear map F : V → V ′ with F (Λ) ⊂ Λ′ induced from the homo-
morphicm f .

This lemma gives an injective homomorphism of abelian groups

ρa : Hom(X,X ′)→ HomC(V, V
′), f 7→ F,

the analytic representation of Hom(X,X ′), and an injective homomorphism (since the re-
striction F |Λ determines F hence f completely)

ρr : Hom(X,X ′)→ HomZ(Λ,Λ
′), f 7→ F |Λ

the rational representation of Hom(X,X ′).

Proof of Proposition 1.3.15 . Suppose Z,Z ′ ∈ Hg and there is an isomorphism φ of polarized
abelian varieties φ : (XZ′ , HZ′) → (XZ , HZ) which means ϕ is an isomorphism between the
complex tori XZ′ and XZ and φ∗HZ = HZ′ .
Let A ∈ Mg×g(C) and R ∈ M2g×2g(Z) denote the matrices of the analytic and rational
representation of φ with respect to the standard basis of Cg and the symplectic bases of ΛZ′

and ΛZ . Since ρa(φ)(Λ
′) ⊂ Λ, we have

A(Z ′, D) = (Z,D)R.

Define

N =

(
1g

D

)
R

(
1g

D

)−1

=
t(
α β
γ δ

)
(1)

14



with α, β, γ, δ ∈Mg×g(Q). Then the relation

A(Z ′, D) = (Z,D)R = (Z, I)

(
1g

D

)
R

is equivalent to
AZ ′ = Ztα + tβ and A = Z tγ + tδ

Since φ is an isomorphism, the matrix tA = γZ + δ is invertible. Thus we can write

Z ′ =
t
Z ′ =

t
(Z tα + tβ) tA−1 = (αZ + β)(γZ + δ)−1.

Taking imaginary parts of φ∗HZ = HZ′ , we have tR

(
0 D
−D 0

)
R =

(
0 D
−D 0

)
. In terms of

N , this is tN

(
0 1g
1g 0

)
N =

(
0 1g
−1g 0

)
. Hence N is contained in the symplectic group

Sp2g(Q) =

{
M ∈M2g×2g(Q)| tM

(
0 1g
−1g 0

)
M =

(
0 1g
−1g 0

)}
.

Also note that the construction of N from (1) implies that NΛD ⊆ ΛD since R ∈M2g×2g(Z).
The group Sp2g(Q) is invariant under transposition, the matrix M := tN is an element of
the group

GD = {M ∈ Sp2g(Q)| tMΛD ⊆ ΛD}.

Conversely, if we have Z ′ = (αZ+β)(γZ+δ)−1, then

(
1g

D

)−1
tM

(
1g

D

)
is the rational

representation of an isomorphism (XZ′ , HZ′)→ (XZ , HZ).

We can check the action in the proof above Z → (αZ + β)(γZ + δ)−1 for M =

(
α β
γ δ

)
is well-defined.

Lemma 1.3.17 ([7], Lemma 8.2.1). Let R be a commutative ring with 1.

a) The group Sp2g(R) is closed under transposition.

b) For a matrix M =

(
α β
γ δ

)
∈ Sp2g(R) the following conditions are equivalent:

(i) M ∈ Sp2g(R).
(ii) tαγ and tβδ are symmetric and tαδ − tγβ = 1g.

(iii) α tβ and γ tδ are symmetric and α tδ − β tγ = 1g.

Proof. IfM ∈ Sp2g(R), then tM

(
0 1g
−1g 0

)
M =

(
0 1g
−1g 0

)
. HenceM−1 =

(
0 −1g
1g 0

)
tM

(
0 1g
−1g 0

)
.

Since M−1 ∈ Sp2g(R), use the ralation
t
M−1

(
0 1g
−1g 0

)
M−1 =

(
0 1g
−1g 0

)
, we can get

tM

(
0 1g
−1g 0

)
M =

(
0 1g
−1g 0

)
.

Statement b) follows from the definition and a).
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Proposition 1.3.18 ([7],Proposition 8.2.2). The group Sp2g(R) acts biholomorphically on
Hg by

Z 7→M(Z) = (αZ + β)(γZ + δ)−1

for all M =

(
α β
γ δ

)
∈ Sp2g(R).

Proof. Claim that the matrix γZ + δ is invertible. Note that by Lemma 1.3.17, we can get

t
(γZ + δ)(αZ + β)−

t
(αZ + β)(γZ + δ) = Z − Z = 2iImZ.

Suppose (γz + δ)v = 0 for some v ∈ Cg. Then we have tv(ImZ)v = 0 and thus v = 0, since
ImZ > 0. Hence (γz + δ) is invertible and M(Z) is well-defined.
Now we check M(Z) ∈ Hg. We have

t(γZ + δ)(M(Z)− tM(Z))(γZ + δ) = Z − tZ = 0.

Thus M(Z) is symmetric.
To check M(Z) is positive definite, note that

t
(γZ + δ)ImM(Z)(γZ + δ) =

1

2i

t
(γZ + δ)(M(Z)−M(Z))(γZ + δ)

=
1

2i

t
(γZ + δ)(M(Z)−

t
M(Z))(γZ + δ)

= ImZ.

By direct calculation, one can show that M1(M2(Z)) = (M1M2)(Z) for all M1,M2 ∈ GD and
Z ∈ Hg.

In addition, we can show that

Proposition 1.3.19 ([7], Proposition 8.2.5). Any discrete subgroup G ⊂ Sp2g(R) acts prop-
erly and discontinuously on Hg.

By Theorem A.0.7, we know that Hg/GD is a complex analytic space.

Corollary 1.3.20. The complex analytic space AD = Hg/GD is a moduli space for polarized
abelian varieties of type D.

In this thesis, we mainly focus on the moduli space Hg/Sp(2g,Z) of principally polarized
abelian varieties. We denote it as Ag. It is not compact and is a quasiprojective variety.
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2 Toric Varieties

In this section, we introduce the basic knowledge of toric varieties we need. This section
offers a small number of proofs but provides plenty of examples to illustrate the main results.
Our main reference for this section is [8] and [14].

2.1 Algebraic Torus over C
Definition 2.1.1. A n-dimensional torus T over C is an affine variety isomorphic to the
affine variety (C∗)n with coordinate ring

C[X±1
1 , · · ·X±1

n ].

Elements of this ring are called Laurent polynomials.

The affine variety (C∗)n has a group structure under component-wise multiplication and
so T inherits a group structure.

Definition 2.1.2. A character of a torus T is a morphism of algebraic groups χ : T → C∗.

For example, r = (r1, ..., rn) ∈ Zn gives a character χr : (C∗)n → C∗ defined by

χr : (t1, · · · , tn) 7→ tr11 · · · trnn . (2)

Indeed all characters of (C∗)n are given in this way. Thus the characters of (C∗)n form a
group isomorphic to Zn.

For an arbitrary torus T , its characters form a free abelian group M of rank equal to the
dimension of T . We say r ∈M gives the character χr : T → C∗.

Definition 2.1.3. A one-parameter subgroup of the n-dimensional torus T is a morphism
of algebraic groups λ : C∗ → T .

For example, a = (a1, ..., an) ∈ Zn gives a one-parameter subgroup λa : C∗ → (C∗)n

defined by
λa : t 7→ (ta1 , ..., tan). (3)

Indeed, all one-parameter subgroups of (C∗)n are given in this way. Thus the group of
one-parameter subgroups of (C∗)n is isomorphic to Zn.

For an arbitrary torus T , the one-parameter subgroups form a free abelian groupN of rank
equal to the dimension of T . We say a ∈ N gives the one-parameter subgroup λa : C∗ → T .

There is a natural pairing ⟨, ⟩ :M ×N → Z defined as follows. Given a character χr and
a one-parameter subgroup λa, the composition χr ◦ λa : C∗ → C∗ is a character of C∗ given
by t 7→ tl for some l ∈ Z. Then ⟨χr, λa⟩ = l. If T = (C∗)n with r = (r1, ..., rn) ∈ Zn and
a = (a1, ..., an) ∈ Zn, then we have

⟨r, a⟩ =
n∑

i=1

riai, (4)

i.e., the pairing is the usual dot product.
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The pairing ⟨, ⟩ :M ×N → Z identifies N with HomZ(M,Z) and M with HomZ(N,Z).
The torus can be characterized byM and N equally. We have HomZ(M,C∗) = N⊗ZC∗ ∼=

T via u ⊗ t → λa(t). Then it is customary to write a torus as TN . Picking an isomorphism
TN ∼= (C∗)n induces isomorphisms M ∼= Zn and N ∼= Zn that turn characters into Laurent
monomials (2), one-parameter subgroups into monomial curves (3), and the pairing into the
dot product (4).

The torus T can also be described analytically as T̃ /π1(T ) where T̃ is the universal
covering space of T and is a complex vector space. The fundamental group π1(T ) is a
discrete subgroup, generating T̃ over C, and acts on T̃ via translations. For all a ∈ π1(T ),
the map

ϕ̃a : C→ T̃ , λ 7→ λ · a
induces a map

ϕa : C/Z→ T̃ /π1(T ) = T

and we have C/Z ∼= C∗ via λ 7→ exp 2πiλ. Thus every a ∈ π1(T ) induces ϕa ∈ N . Indeed,
this is an isomorphism between π1(T ) and N . Since T̃ = π1(T )⊗ C, we have

1. N ⊗ C ∼= the universal covering space of T .

2. N ⊗ C/N ∼= T .

3. We have the covering map T̃ ∼= N ⊗ C ∼= Cn → T = T̃ /π1(T ) ∼= N ⊗ C/N ∼= (C∗)n

given by z = (z1, ..., zn) ∈ Cn 7→ exp 2πiz = (exp(2πiz1), ..., exp(2πizn)) ∈ (C∗)n.

2.2 Toric Varieties

Definition 2.2.1. A toric variety is an irreducible varietyX that contains a torus TN ∼= (C∗)n

as a Zariski open subset such that the action of TN on itself extends to an action of TN on
X.

Remark 2.2.2. Toric varieties containing a torus TN were originally known as torus embed-
dings of TN .

Example 2.2.3. Two trivial examples are (C∗)n and Cn.

Example 2.2.4. The variety V = V(XY −ZW ) ⊂ C4 is a 3-dimensional affine toric variety
with torus

V ∩ (C∗)4 = {(t1, t2, t3, t1t2t−1
3 ) | ti ∈ C∗} ∼= (C∗)3.

The action T × V → V is given by

(t1, t2, t3), (x, y, z, w) 7→ (t1x, t2y, t3z, t1t2t
−1
3 w).

Example 2.2.5. The projective space Pn is a toric variety with torus

TPn = Pn\V(X0 · · ·Xn) = {(a0 : ... : an) ∈ Pn | a0 · · · an ̸= 0}
= {(1 : t1 : ... : tn) ∈ Pn | t1, ..., tn ∈ C∗} ∼= (C∗)n.

The action TPn × Pn → Pn is

(t1, ..., tn)(a0 : a1 : · · · an) = (a0 : t1a1 : · · · tnan).
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In this subsection, we look only at affine toric varieties.
Now we show how to construct affine toric varieties via lattice points, toric ideals and

semigroups.
Let a torus TN with character lattice M be given. Let A be a set {m1, ...,ms} ⊂ M .

Consider the map
ΦA : TN 7→ Cs, t 7→ (χm1(t), ..., χms(t)).

Define YA to be the Zariski closure of the image of the map ΦA.

Proposition 2.2.6 ([8, Proposition 1.1.8]). YA is an affine toric variety whose torus has
character lattice ZA, i.e., a lattice generated by A. The action of TN on YA is given by

t · (x1, ..., xs) = (χm1(t)x1, ..., χ
ms(t)xn).

Proof. The map ΦA : TN → (C∗)s is a map of tori. By [8, Proposition 1.1.1], the image
T = ΦA(TN) is a torus that is closed in (C∗)s. Since YA is the Zariski closure of T , the torus
T is an open dense torus in YA. As T is irreducible, its Zariski closure YA is also irreducible.
Consider the action of T . Since T ⊂ Cs, an element t ∈ T acts on Cs. Then T = t ·T ⊂ t ·YA.
So YA ⊂ t · YA. Replacing t with t−1, we have YA = t · YA. So the action of T induces an
action on YA. Hence YA is an affine toric variety.
Now compute the character lattice of T , which we denote by M ′. Since T = ΦA(TN), we
have the following commutative diagram

TN (C∗)s

T

ΦA

.

This induces a commutative diagram of character lattices

M Zs

M ′

Φ̂A

.

Since Φ̂ : Zs → M sends the standard basis e1, ..., es to m1, ...,ms, the image ΦA is ZA. So
we have M ′ ∼= ZA.

The map ΦA : TN → (C∗)s induces a map of character lattices Φ̃A : Zs → M that maps
the standard basis e1, ..., es to m1, ...,ms. Let L be the kernel of this map, we have an exact
sequence

0 L Zs M .

For every l = (l1, ..., ls) of L, we have
∑s

i=1 limi = 0. Let l+ =
∑

li>0 liei and l− = −
∑

li<0 liei.
Then l = l+ − l− and l+, l− ∈ Ns. The binomial

X l+ −X l− =
∏
li>0

X li
i −

∏
li<0

X−li
i
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vanishes on the image of ΦA:∏
li>0

χlimi(t)−
∏
li<0

χlimi(t) = χ
∑

li>0 limi(t)− χ
∑

li>0 limi(t) = 0.

Since YA is the Zariski closure of the image, the binomial also vanishes on YA.

Proposition 2.2.7 (cf. [8, Proposition 1.1.9]). The ideal of the affine toric variety YA ⊂ Cs

is
I(YA) = ⟨X l+ −X l− | l ∈ L⟩ = ⟨Xα −Xβ | α, β ∈ Ns and α− β ∈ L⟩.

Let {l1, ..., lr} be generators of the relations of mi, i.e., generators of the kernel of the
homomorphism Zs →M that maps ei to mi. Then the toric ideal I(YA) is

⟨X li+ −X li− | i = 1, ..., r⟩.

Let L ⊂ Zs. We call the ideal IL = {X l+ − X l− | l ∈ L} the lattice ideal and a toric
ideal if it is also prime. Moreover, an ideal is toric if and only if it is prime and generated by
binomials (cf. [8, Proposition 1.1.1]).

We now construct toric varieties via semigroups.

Definition 2.2.8. A semigroup is a set S with associative binary operation.

We also assume that a semigroup in our setting contains the identity element.
Given a finitely generated semigroup S ⊂ M , the semigroup algebra C[S] is the vector

space over C with S as a basis and multiplication induced by the semigroup structure of S.
More explicitly, we have

C[S] = {
∑
r∈S

crχ
r | cr ∈ C and cr = 0 for all but finitely many r}.

with multiplication induced by
χr · χr′ = χr+r′ .

If S is generated by r1, ..., rs ∈ M , i.e., every element can be written as
∑s

i=1 airi for some
am ∈ Z≥0, then C[S] = C[χr1 , ..., χrs ].

If e1, ..., en is a basis of M , then M is generated by {±e1, ...,±en}. Let Ti = χei , we have
the ring of Laurent polynomials

C[M ] = C[T±e1
1 , ..., T±en

n ],

which is the coordinate ring of the torus TN .

Proposition 2.2.9 ([8, Proposition 1.1.14]). Let S ⊂ M be finitely generated, then C[S] is
an integral domain and finitely generated as C-algebra. Moreover, Spec(C[S]) is an affine
toric variety whose torus has character lattice ZS, the group generated by S. If S = NA,
then Spec(C[S]) = YA.
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Proof. If S is generated by r1, ..., rs ∈ M , C[S] = C[χr1 , · · ·χrs ] is finitely generated. Since
C[S] ⊂ C[M ] and C[M ] an integral domain, C[S] is also an integral domain.
Let A = {r1, ..., rs}. We have the C-algebra homomorphism

π : C[x1, ..., xs]→ C[M ]

where xi → χri ∈ C[M ]. This corresponds to the morphism

ΦA : TN → (C)s.

The kernel of π is the toric ideal I(YA). The image of π is C[χm1 , ..., χms ] = C[S], and then
the coordinate ring of YA is

C[x1, ..., xn]/I(YA) = C[x1, ..., xn]/ker(π) ∼= Im (π) = C[S].

This proves that Spec(C[S]) = YA. Since S = NA implies that ZS = ZA, the torus YA =
Spec(C[S]) has the character lattice ZS.

Three constructions are equivalent:

Theorem 2.2.10 ([8, Theorem 1.1.17]). Let V be an affine variety. The following are equiv-
alent:

a.) V is an affine toric variety.

b.) V = YA for a finite set A.

c.) V is an affine variety defined by a toric ideal.

d.) V = Spec(C[S]) for a finitely generated semigroup S ⊂M .

Proof. All the implications have been proved by Proposition 2.2.6,2.2.7, 2.2.9. It remains to
show the implication (a) ⇒ (d).
Let V be an affine toric variety containing the torus TN with character latticeM . Then C[V ]
is a subalgebra of C[M ] stable under the action of TN . Claim that

C[V ] =
⊕

χm∈C[V ]

C · χm

so that C[V ] = C[S] for the semigroup S = {m ∈M | χm ∈ C[V ]}. And since C[V ] is finitely
generated, we can find f1, ..., fs ∈ C[V ] such that C[v] = C[f1, ..., fs]. Expressing fi in terms
of characters gives us a finite generating set of S.
Now we restate the claim and prove the claim. Let A ⊂ C[M ] be a subspace stable under the
action of TN . We want to prove A =

⊕
χm∈A C ·χm. It’s easy to see that

⊕
χm∈A C ·χm ⊂ A.

Conversely, we pick f ̸= 0 in A. Since A ⊂ C[M ], we can write f =
∑

m∈B cmχ
m where

B ⊂M is finite and cm ̸= 0 for all m ∈ B. Then f ∈ B∩A, where B = Span(χm | m ∈ B) ⊆
C[M ]. Note that B ∩ A is stable under the action of TN . Since A ∩ B is finite-dimensional,
B ∩ A is spanned by simultaneous eigenvectors of TN . In C[M ], simultaneous eigenvectors
are characters. It follows that B ∩ A is spanned by characters. Therefore f ∈

⊕
χm∈AC.
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We have various ways to describe the points of affine toric varieties:

Proposition 2.2.11 ([8, Proposition 1.3.1]). Let V = Spec(C[S]) where S is a finitely gen-
erated semigroup in M . There are natural bijections between:

a) Closed points p ∈ V .

b) Maximal Ideals m ⊂ C[S].

c) Semigroup homomorphisms γ : S → C, where C is considered as a semigroup under
multiplication.

Proof. The equivalence of a) and b) is standard algebraic geometry.
To show a)⇒ c), given a point p ∈ V , we define S → C by sending m ∈ S to χm(p).
To show c)⇒ b), for any semigroup homomorphism γ : S → C, since {χm}m∈S is a basis

of C[S], the map γ extends to a surjective linear map γ̃ : C[S] → C, which is a C-algebra
homomorphism. The kernel of the map C[S]→ C is a maximal ideal.

Remark 2.2.12. Given a semigroup homomorphism γ : S → C, we can construct p explicitly.
Let A = {m1, ...,ms} generate S such that V = YA. Let p = (γ(m1), ..., γ(ms)) ∈ Cs. By
Proposition 2.2.7, the point p lies in V . Moreover, for f ∈ C[S], as we have γ̃(f) = f(p), the
maximal ideal {f ∈ C[S] | f(p) = 0} is the kernel of the C-algebra homomorphism C[S]→ C.
Remark 2.2.13. Viewing a point as a semigroup homomorphism, we can see the toric variety
intrinsically without embedding it into affine space. Let t ∈ TN , A = {m1, ...,ms}, p ∈ V =
YA corresponding to the semigroup homomorphism m → γ(m), the action t · p is given by
the semigroup homomorphism m 7→ χm(t)γ(m). This corresponds to the point

(χm1(t), ..., χms(t)) · (γ(m1), ..., γ(ms)) = (χm1(t)γ(m1), ..., χ
msγ(ms)).

Indeed, we can classify all toric varieties containing a torus TN as a Zariski open subset.

Definition 2.2.14. Let Vi be the toric variety with torus TNi
, i = 1, 2. Then a morphism ϕ :

V1 → V2 is toric if and only if ϕ(TN1) ⊆ TN2 and ϕ|TNi
: TN1 → TN2 is a group homomorphism.

Remark 2.2.15. A toric morphism ϕ : V1 → V2 is equivariant, i.e., we have a commutative
diagram:

TN1 × V1 V1

TN2 × V2 V2

Φ1

ϕ|TN1
×ϕ ϕ

Φ2

where Φi is the action of TNi
on Vi.

If S generates M , then Proposition 2.2.9 implies that

Proposition 2.2.16 ([14, Proposition 1]). The correspondence S 7→ Spec(C[S]) defines a
bijection between the set of finitely generated semigroups S ⊂ M which generated M as a
group and the set of isomorphic classes of affine toric varieties containing T whose character
lattice is M . Moreover, the morphisms of affine toric varieties containing T correspond in a
contravariant way to the inclusion between semigroups in M .
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We now discuss the normality of toric varieties.

Definition 2.2.17. Let S ⊂M be a semigroup. We say that S is saturated if for all k ∈ Z>0

and m ∈M , km ∈ S implies m ∈ S.

Proposition 2.2.18 ([8, Theorem 1.3.5]). Let X be an affine toric variety with torus TN
corresponding to a finitely generated semigroup S in the character lattice M of TN , i.e.,
X = Spec(C[S]). Then X is normal if and only if S is saturated.

Combining Proposition 2.2.16 and Proposition 2.2.18, we have

Theorem 2.2.19. The correspondence S 7→ Spec(C[S]) defines a bijection between the set of
finitely generated semigroups S ⊂ M generating M as a group and saturated in M , and the
set of affine normal toric varieties of TN .

2.3 Cones

We can associate the semigroups that occur in Theorem 2.2.19 to some combinatorial data.
Extend M and N R-linearly, we have MR =M ⊗Z R and NR = N ⊗Z R.

Definition 2.3.1. A convex polyhedral cone in NR is a set of the form

σ = Cone(S) = {
∑
u∈S

λuu | λu ≥ 0}

where S ⊂ NR is finite. We say that σ is generated by S.

Remark 2.3.2. A convex polyhedral cone is convex, meaning that x, y ∈ σ implies that
λx + (1 − λ)y ∈ σ for 0 ≤ λ ≤ 1. As we will only consider convex cones, the cones defined
above will be called simply ”polyhedral cones”.

Definition 2.3.3. Given a polyhedral cone σ ⊂ NR, its dual cone is defined by

σ∨ = {m ∈MR | ⟨m,u⟩ ≥ 0 for all u ∈ σ}

Proposition 2.3.4. Let σ ⊂ NR be a polyhedral cone. Then σ∨ is a polyhedral cone in MR
and (σ∨)∨ = σ.

We can also obtain the polyhedral cone using hyperplanes.

Definition 2.3.5. Given m ̸= 0 ∈MR, the hyperplane defined by m is

Hm = {u ∈ NR | ⟨m,u⟩ = 0} ⊆ NR.

The closed half-space is
H+

m = {u ∈ NR | ⟨m,u⟩ ≥ 0} ⊆ NR.

If σ ⊂ H+
m and σ is a polyhedral cone in NR, then Hm is a supporting hyperplane of σ and

H+
m is a supporting half-space.
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If m1, ...,ms generate σ
∨, then it is easy to check that

σ = H+
m1
∩ · · ·H+

ms
,

i.e., every polyhedral cone is an intersection of finitely many closed half-spaces. Note that in
[14], there is an equivalent definition of a polyhedral cone by using linear functionals, namely,
a polyhedral cone is a set

{x | li(x) ≥ 0 for all i = 1, ..., s}

where li, i = 1, ..., s are linear functionals. By Rieze’s representation theorem, for every linear
functional li, we have a unique mi ∈MR such that li(x) = ⟨mi, x⟩. Then each linear function
determines a closed half-space H+

mi
. The elements satisfying li(x) ≥ 0 for i = 1, ..., s lie in

H+
m1
∩ · · ·H+

ms
.

Then it is easy to check Proposition 2.3.4 by noticing that if σ = {x | li(x) ≥ 0, i = 1, ..., s},
then σ∨ is the set of

∑s
i=1 λili where λi ≥ 0. So we can write σ∨ as Cone(l1, ..., ls) or

Cone(m1, ...,ms).
We can use supporting hyperplanes to define the faces of a polyhedral cone.

Definition 2.3.6. A face of the polyhedral cone σ is τ = Hm ∩ σ for some m ∈ σ∨. Denote
it as τ ⪯ σ.

Remark 2.3.7. When m = 0, then σ is a face of itself. Faces τ ̸= σ are called proper faces,
written τ ≺ σ.

The faces of a polyhedral cone have the following properties:

Proposition 2.3.8 ([8, Lemma 1.2.6]). Let σ be a polyhedral cone. Then:

a.) If τ ⪯ σ, then τ is a polyhedral cone.

b.) If τ1, τ2 ⪯ σ, then τ1 ∩ τ2 ⪯ σ.

c.) If τ1 ⪯ τ2 and τ2 ⪯ σ, then τ1 ⪯ σ.

Proposition 2.3.9. Let τ ≺ σ. If v, w ∈ σ and v + w ∈ τ , then v, w ∈ τ .

Proof. Since τ ≺ σ, the face τ equals Hm∩σ for some m ∈ σ∨. Since v, w ∈ σ and v+w ∈ τ ,
we have ⟨v,m⟩ ≥ 0, ⟨w,m⟩ ≥ 0 and ⟨v+w,m⟩ = 0, this implies that v, w ∈ Hm ∩ σ = τ .

Proposition 2.3.10 ([14, p.7]). Let σ = {x | li(x) ≥ 0, i = 1, ..., s} be a polyhedral
cone and τ ⪯ σ, then there exists a subset I of {1, 2, ..., s} such that τ = σ ∩ {x | li(x) =
0 for all i ∈ I}. The face τ has codimension |I|.

Example 2.3.11 ([8, Example 1.2.11]). Let NR = R3 and σ = Cone(e1, e2) ⊂ NR.

In the example above, the origin is a face of σ but not a face of σ∨.

Definition 2.3.12. Let σ ⊂ NR ∼= Rn be a polyhedral cone. The cone σ is strongly convex
if one of the equivalent conditions holds:
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Figure 1: σ and its dual cone σ∨

i.) {0} is a face of σ;

ii.) σ contains no positive-dimensional subspace of NR;

iii.) σ ∩ (−σ) = {0};

iv.) dim σ∨ = n.

To associate a polyhedral cone to a toric variety, we need one more condition:

Definition 2.3.13. A polyhedral cone σ ⊂ NR is rational if σ = Cone(S) for some finite set
S ⊂ N .

Note that faces and duals of rational polyhedral cones are also rational.
Given a rational polyhedral cone σ ⊂ NR, the lattice points

Sσ = σ∨ ∩M

form a semigroup.

Proposition 2.3.14 (Gordan’s Lemma, cf. [8, Proposition 1.2.17]). Sσ is a finitely generated
semigroup.

Since we can construct affine toric varieties by finitely generated semigroups S ⊂ M , we
have

Theorem 2.3.15. Let σ ⊂ NR ∼= Rn be a rational polyhedral cone with semigroup Sσ =
σ∨ ∩M . Then

Uσ = Spec(C[Sσ]) = Spec(C[σ∨ ∩M ])

is an affine toric variety.
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Example 2.3.16. Let 0 ≤ r ≤ n and σ = Cone(e1, ..., er) ⊂ NR = Rn. Then

σ∨ = Cone(e1, ..., er,±er+1,±en).

The corresponding toric variety is

Uσ = Spec(C[T1, ..., Tr, T±1
r+1, ..., T

±1
n ]) = Cr × (C∗)n−r

where Ti = χei . This toric variety is smooth. Indeed a toric variety Uσ is smooth if and only
if there is a basis n1,...,nr of the lattice N over Z such that σ = Cone(n1, ..., nr) for some
k ≤ r and we also have Uσ

∼= Ck × (C∗)r−k (cf. [8, Definition 1.2.16, Theorem 1.3.12]).

Moreover, with the condition of strong convexity, we have

Lemma 2.3.17 ([14, Lemma 2]). The correspondence σ 7→ σ∨∩M defines a bijection between
the set of strongly convex rational polyhedral cones in NR and the set of finitely generated
saturated semigroups S ⊂M which generate M as a group.

Combining Lemma 2.3.17 and Theorem 2.2.19, we have

Theorem 2.3.18. The correspondence σ 7→ Spec(C[σ∨∩M ] = Uσ defines a bijection between
the set of strongly convex rational polyhedral cones in NR and the set of affine toric normal
varieties with torus TN .

Note that cone generators and semigroup generators are not the same.

Example 2.3.19 ([8, Example 1.2.21]). Let NR = R2 and σ = Cone(4e1− e2, e2) ⊂ R2. One
can compute its dual cone is σ∨ = Cone(e1, e1 + 4e2). The semigroup σ∨ ∩M is generated
by the lattice points (1, i) for 0 ≤ i ≤ 4.

Figure 2: The cone σ∨

The white dots in Figure 2 are our generators of σ∨ ∩M . Let A be the set containing
(1, i) for 0 ≤ i ≤ 4. The affine toric variety Uσ is the Zariski closure YA of the image of the
map Φ : (C∗)2 → C5 defined by

Φ(s, t) = (s, st, st2, st3, st4)

with the toric ideal
I = ⟨xixj+1 − xi+1xj | 0 ≤ i ≤ j ≤ 3⟩.
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2.4 Fans

In this subsection, we will use fans to patch affine toric varieties together.

Definition 2.4.1. A fan is a finite collection of strongly convex rational polyhedral cones σ
such that

a.) If σ ∈ Σ and τ ≺ σ, then τ ∈ Σ.

b.) If σ1, σ2 ∈ Σ, then σ1 ∩ σ2 ≺ σ1, σ2.

Recall the gluing procedure (cf. [10, Exercise II 2.12]). If we have a collection of gluing
data

{({Xi}i, {Uij}i,j}, {gij}i,j}

where {Xi} is a family of schemes and Uij is Zariski open in Xi and gi,j : Uij → Uji satisfies:

(1) For each i, j, gij = g−1
ij ;

(2) Cocycle: For each i, j, k, gij(Uij ∩ Uik) = Uji ∩ Ujk and gik = gjk ◦ gij on Uij ∩ Uik,

we can glue these Xi along gij:
X = ⨿iXi/ ∼

and for a ∈ Xi and b ∈ Xj, a ∼ b if a ∈ Uij and gij(a) = b for some j.
We now show how the fans give the combinatorial data to glue affine toric varieties to

yield an abstract toric variety.
If τ ≺ σ, i.e., τ = Hm ∩ σ where m ∈ σ∨ ∩M . We can show that Sτ = Sσ + Z(−m) (cf.

[8, Proposition 1.3.16]). Then the semigroup algebra C[Sτ ] = C[τ∨ ∩M ] is the localization
of C[Sσ] = C[σ∨ ∩M ] at χm ∈ C[Sσ]. If τ = σ1 ∩ σ2, then by the Separation Lemma (cf.
[8, Lemma 1.2.13], we have

τ = Hm ∩ σ1 = Hm ∩ σ2
for some m ∈ σ∨

1 ∩ (−σ2)∨ ∩M . This implies that

Uσ1 ⊇ (Uσ1)χm = Uτ = (Uσ2)χ−m ⊆ Uσ2 .

We then have an isomorphism

gσ2,σ1 : (Uσ1)χm ∼= (Uσ2)χ−m

which is the identity on Uτ . Then it is also easy to check the cocycle condition is satisfied.

Theorem 2.4.2 ([8, Theorem 3.1.5]). Let Σ be a fan in NR. The variety XΣ obtained by
glueing the collection of affine toric varieties {Uσ}σ∈Σ is a normal separated toric variety.

Conversely, any separated normal toric variety comes from a fan:

Theorem 2.4.3 ([8, Corollary 3.1.8]). Let X be a normal separated toric variety with torus
TN . Then there exists a fan Σ in NR such that X ∼= XΣ.
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Figure 3: The fan Σ for P2

Example 2.4.4. Consider the fan Σ in NR = R2. The fan has 3 two-dimensional cones
σ0 = Cone(e1, e2), σ1 = Cone(−e1 − e2, e2) and σ2 = Cone(e1,−e1 − e2), together with 3
one-dimensional rays and the origin. We can calculate the dual cones σ∨

0 = Cone(e1, e2),
σ∨
1 = Cone(−e1 + e2,−e1) and σ∨

2 = Cone(e1 − e2,−e2). Then the toric varieties XΣ is
covered by the three affine opens

Uσ0 = Spec(C[Sσ0 ])
∼= Spec(C[x, y]),

Uσ1 = Spec(C[Sσ1 ])
∼= Spec(C[x−1, x−1y]),

Uσ2 = Spec(C[Sσ2 ])
∼= Spec(C[xy−1, y−1]).

Moreover, for τ01 = σ0 ∩ σ1, we have τ = He1 ∩ σ1 = He1 ∩ σ2. Hence we have gluing data on
the coordinate rings

g∗σ1,σ0
: C[x, y]x ∼= C[x−1, x−1y−1]x−1 .

Similarly, we have

g∗σ2,σ0
: C[x, y]y ∼= C[xy−1, y−1]y−1 ,

g∗σ2,σ1
: C[x−1, x−1y]x−1y

∼= C[xy−1, y−1]xy−1 .

If we use the homogeneous coordinates (x0, x1, x2) on P2, then x 7→ x1/x0 and y 7→ x2/x0
identifies the standard affine open Ui ⊂ P2 with Uσi

. We have XΣ = P2.

Example 2.4.5. We can classify all one-dimensional normal toric varieties as follows. Let
N = Z and NR = R. The only cones are σ0 = Cone(e1), σ1 = Cone(−e1) and the trivial cone
τ = {0}. As all normal varieties arise from some fans, we only need to consider the fans in
R. There are only 4 possible fans Σ1 = {τ}, Σ2 = {σ0, τ}, Σ1 = {σ1, τ} and Σ4 = {σ0, σ1, τ}.
We have affine toric varieties U{0} ∼= Spec(C[x, x−1]) ∼= C∗, Uσ0

∼= Spec(C[x]) ∼= C, Uσ0
∼=

Spec(C[x−1]) ∼= C. Gluing them, we have XΣ1 = C∗, XΣ2
∼= C, XΣ3

∼= C and XΣ
∼= P1.

We also need to study group actions on normal toric varieties. First note that it is a
special case of toric morphisms.

A compatible Z-linear mapping gives rise to a toric morphism of normal toric varieties.
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Definition 2.4.6. Let N1, N2 be two lattices with Σ1 a fan in (N1)R and Σ2 a fan in (N2)R.
A Z-linear mapping ϕ : N1 → N2 is compatible with the fans Σ1 and Σ2 if for every cone
σ1 ∈ Σ1 there exists a cone σ2 ∈ Σ2 such that ϕR(σ1) ⊆ σ2.

Theorem 2.4.7 ([8, Theorem 3.3.4]). a) If ϕ : N1 → N2 is a Z-linear map that is com-
patible with Σ1 and Σ2, then there is a toric morphism ϕ : XΣ1 → XΣ2 such that ϕ|TN1

is the map
ϕ⊗ 1 : N1 ⊗Z C∗ → N2 ⊗Z C∗.

b) Conversely, if ϕ : XΣ1 → XΣ2 is a toric morphism, then ϕ induces a Z-linear map
ϕ : N1 → N2 that is compatible with the fans Σ1 and Σ2.

Remark 2.4.8. We are interested in the case that N1 = N2.
Suppose a group G acts on an algebraic torus by group homomorphisms. For simplicity,

let M = Zr, N = Zr and T = (C∗)r. For every element g ∈ G, the morphism of tori
g : T → T induces a Z-linear map g : N → N given by

n ∈ N 7→ A(g)n

for some r×r matrix A(g). Write A(g) = (aij), this corresponds to the group homomorphism

g : (t1, ..., tr) 7→ (ta
11

1 · · · ta1rr , ..., ta
r1

r · · · tarrr ).

From duality, the action of G on the dual lattice M is given by

g :M →M m 7→ tA(g)−1m

by noticing that the pairing is given by ⟨m,n⟩ = tm · n.
By Proposition 2.4.7, we have

Proposition 2.4.9. Let a group G act on an algebraic torus TN by group homomorphisms
and Σ a fan in NR. For every element g ∈ G, if the induced Z-linear map g : N → N has
the property that g(σ) ∈ Σ for every σ ∈ Σ, then the action G× T → T extends to an action
G×XΣ → XΣ.

Remark 2.4.10. If the group action of G on T has the property above, every element g ∈ G
gives a isomorphism of open affine sets Uσ in XΣ by

g ∈ G : C[g(σ)∨ ∩M ]
∼−→ C[σ∨ ∩M ].

2.5 The Orbit-Cone Correspondence

In this subsection, we study the orbits for the action of TN on the toric variety XΣ. We will
show that there is a one-to-one correspondence between the cones and TN -orbits.

Definition 2.5.1. Let σ ⊂ NR, we define

σ⊥ = {m ∈MR | ⟨m,u⟩ = 0 for all u ∈ σ}.

The interior of σ is the set of elements u ∈ σ such that ⟨m,u⟩ > 0 for all m ∈ σ∨\σ⊥. We
denote it as Int(σ).

29



Example 2.5.2. Consider the projective space P2 as we studied in Example 2.2.5 and Ex-
ample 2.4.4. The torus TN is P2\V(X0X1X2) = {(1 : t1 : t2) ∈ Pn | t1, t2 ∈ C∗}. For each
u = (a, b) ∈ N = Z2, we have the corresponding curve in P2:

λu(t) = (1, ta, tb).

Take the classical topology, we can consider the limit point of λa(t) as t→ 0. The limit point
depends on a as shown in the Figure 4.

Figure 4: limt→0 λu(t) for u = (a, b) ∈ Z2

The picture shows that given a cone σ, all elements u in Int(σ) ∩N give the limit point
limt→0 λu(t). Different cones give different limit points.

We can relate them to the TN -orbits. There are seven TN -orbits in P2:

1. O1 = {(x0, x1, x2) | xi ̸= 0 for all i}

2. O2 = {(x0, x1, x2) | x2 = 0 and x0, x1 ̸= 0} ∋ (1, 1, 0)

3. O3 = {(x0, x1, x2) | x1 = 0 and x0, x2 ̸= 0} ∋ (1, 0, 1)

4. O4 = {(x0, x1, x2) | x0 = 0 and x1, x2 ̸= 0} ∋ (0, 1, 1)

5. O5 = {(x0, x1, x2) | x1 = x2 = 0 and x0 ̸= 0} = (1, 0, 0)

6. O6 = {(x0, x1, x2) | x0 = x2 = 0 and x1 ̸= 0} = (0, 1, 0)

7. O7 = {(x0, x1, x2) | x0 = x1 = 0 and x2 ̸= 0} = (0, 0, 1)
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Each orbit contains one of the unique limit points. Then we have a correspondence between
cones σ and orbits O by

σ corresponds to O ⇔ lim
t→0

λu(t) ∈ O for all u ∈ Int(σ).

We wish to generalize these observations on P2 to all toric varieties.
We first discuss the limit points. They can also be described via semigroup homomor-

phisms by Proposition 2.2.11. Fix a cone σ in NR. Define γ : Sσ = σ∨ ∩M → C given
by

m ∈ Sσ 7→

{
1 m ∈ Sσ ∩ σ⊥ = σ∨ ∩ σ⊥ ∩M = σ⊥ ∩M
0 otherwise

This is a semigroup homomorphism. Indeed σ∨ ∩ σ⊥ is a face of σ∨. If m,m′ ∈ Sσ and
m+m′ ∈ Sσ ∩ σ⊥, then m,m′ ∈ Sσ ∩ σ⊥ by Proposition 2.3.9.

We denote this point by γσ and call it the distinguished point corresponding to σ.
The point γσ is fixed under the TN -action if and only if dimσ = dimNR (cf. [8, Corollary
1.3.3]).

The distinguished point defined above is exactly the limit point of the one-parameter
subgroup λu(t) for u ∈ σ.

Proposition 2.5.3 ([8, Proposition 3.2.2]). Let σ ⊂ NR be a strongly convex polyhedral cone
and let u ∈ N . Then

u ∈ σ ⇔ lim
t7→0

λu(t) exists in Uσ.

Moreover, if u ∈ Int(σ), then limt→0 λu(t) = γσ.

The proposition indicates that to each cone σ, we can associate a distinguished point γσ.
This gives a TN -orbit

O(σ) = TN · γσ ⊆ XΣ.

Proposition 2.5.4 ([8, Lemma 3.2.5]). Let Σ be a fan in NR and σ ∈ Σ. The TN -orbit O(σ)
is

O(σ) = {γ : Sσ → C | γ(m) ̸= 0⇔ m ∈ σ⊥ ∩M} ∼= HomZ(σ
⊥ ∩M,C∗).

Proof. Recall TN acts on semigroup homomorphisms: if p ∈ Uσ is represented by γ : SΣ → C,
the point t · p is represented by the semigroup homomorphism:

t · γ : m 7→ χm(t)γ(m).

Let O′ = {γ : Sσ → C | γ(m) ̸= 0 ⇔ m ∈ σ⊥ ∩M}. By the definition of distinguished
points, the point γσ ∈ O′. Also, O′ is invariant under the action of the torus TN . Hence
O(σ) = TN · γσ ⊆ O′.

Now we claim that O′ ∼= HomZ(σ
⊥ ∩M,C∗). Note that σ⊥ is the largest vector space

contained in σ∨. Hence σ⊥∩M is a subgroup of Sσ = σ∨∩M . Restricting γ ∈ O′ to σ⊥∩M
yields a group homomorphism γ̂ : σ∨ ∩M → C∗. Conversely, if γ̂ : σ⊥ ∩M → C∗, we get a
semigroup homomorphism γ : Sσ → by seting γ(m) = 0 for m ∈ Sσ\σ⊥ ∩M .
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Now it remains to show that O′ ⊆ O(σ). Note that TN = HomZ(M,C∗). The inclusion
σ⊥ ∩M ⊂M induces a surjection

TN = HomZ(M,C∗) ↠ HomZ(σ
⊥ ∩M,C∗) ∼= O′

So TN acts transitively on O′ . Then O(σ) = TN · γσ = O′.

Remark 2.5.5. Note that O(σ) is a torus with character group σ⊥ ∩ M . Let Nσ be the
sublattice of N spanned by the points in σ ∩ N and N(σ) = N/Nσ. The orbit is the torus
TN(σ).

Theorem 2.5.6 (Orbit-Cone Correspondence, cf. [8, Theorem 3.2.6]). Let Σ ⊂ NR, and XΣ

the corresponding toric variety.

a) There is a one-to-one correspondence between

{σ ∈ Σ} ←→ {TN − orbits in XΣ}
σ ←→ O(σ) ∼= HomZ(σ

⊥ ∩M,C∗) = TN(σ)

b) dimO(σ) = dimNR − dimσ

c) The affine open subset Uσ is the union of orbits

Uσ =
⋃
τ⪯σ

O(τ)

d) τ ≺ σ if and only if O(σ) ⊆ O(τ), and

O(τ) =
⋃
τ⪯σ

O(σ)

where O(τ) denotes the closure in both the classical and Zariski topology.

Example 2.5.7. We continue our discussion of P2 in Example 2.5.2. There are three types
of cones classified by their dimensions.

• Consider the trivial cone σ = {(0, 0)}. The cone corresponds to O(σ) = TN(σ) = TN ,
which has dimension dim(Oσ) = dimNR − dimσ = 2. This is a face of all other cones,
hence Uσ = O(σ) = TN and all other orbits are contained in the closure of O(σ).

• Consider the three 1-dimensional cones τ . For example, we can consider the cone
τ = Cone(e2). Then τ⊥ ∩M = Ne1 + N(−e1). Hence O(τ) consists of all elements
(1 : x1 : x2) with x1, x

−1
1 ̸= 0 and x2 = 0 by Proposition 2.5.4. The orbit O(τ) has

dimension 1 and is isomorphic to C∗. The closure of O(τ) is the coordinate axis V (x2)
in P2, which is isomorphic to P1.

• The three maximal cones σi in the fan correspond to the three fixed points (1 : 0 : 0),
(0 : 1 : 0) and (0 : 0 : 1) of the torus action of P2.
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Let V (τ) = O(τ). The torus O(τ) = TN(τ) is an open subset of V (τ). We will show that
V (τ) is a normal toric variety with torus O(τ) = TN(τ). Now we want to construct a fan. For
each cone σ ∈ Σ containing τ , let σ be the image cone in N(τ)R under the quotient map

NR → N(τ)R.

Then
Star(τ) = {σ ⊆ N(τ)R | τ ⪯ σ ∈ Σ}

is a fan in N(τ)R. The orbit closure V (τ) is isomorphic to XStar(τ) by Theorem 2.5.6 a) and
d).

2.6 Applications on Kummer Modular Surfaces

In this subsection, we will introduce Shioda and Kummer Modular Surfaces, which is gener-
alization of the construction of universal elliptic curves over certain modular curves. We use
toric varieties to construct a compactification of a Kummer Modular Surface. It turns out
that the compactification of these surfaces has relation with the toroidal compactification of
Ag, which we will show in the later section.

Let H be an arithmetic subgroup, i.e., commensurable with SL(2,Z), which means that
H ∩ SL(2,Z) has finite index in both H and SL(2,Z). For example, the group H can be the
principal congruence group.

Γ(k) =

{(
a b
c d

)
∈ SL(2,Z) | a ≡ d ≡ 1 (mod k), c ≡ d ≡ 0 (mod k)

}
.

Let X◦(H) denote H\H1 and X◦(k) when H = Γ(k).
Note that X◦(H) is a Riemann surface and non-compact. It can be compactified by

adding finitely many points to it. We denote X(H) as the compactified Riemann surface and
call the points added to X(H) the cusps of X(H).

Consider the lattice L ⊂ Q2 of rank 2 which is invariant under the action of H on Q2 by
action

(m,n) 7→ (am+ cn, bm+ dn).

Let
HL = L⋊H.

The group HL can be considered as the matrix group
1 m n
0 a b
0 c d

∣∣∣∣∣∣
(
a b
c d

)
∈ H, (m,n) ∈ L

 .

Regarding C×H1 as a subset of P2 by (z, τ) 7→ (z : τ : 1). Then the group action of HL on
homogeneous coordinates of C×H1 is1 m n

0 a b
0 c d

zτ
1

 =

z +mτ + n
aτ + b
cτ + d

 .
DenoteD◦(HL) asHL\C×H1 andD

◦(k) whenH = Γ(k) and {L = (m,n) ∈ Q2 | m,n ∈ kZ}.
The surface D◦(k) are known as the (open) Shioda modular surface of level k.
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Proposition 2.6.1 ([12, Proposition 2.16]). (i) The space D◦(HL) is a non-compact com-
plex surface which is a holomorphic fiber space over the modular curve X◦(H). If
−1 /∈ H, then the fibers are elliptic curves. If −1 ∈ H, then the fibers are rational
curves arising as quotients of elliptic curves by their natural involutions x 7→ −x. Such
fibers are called Kummer curves since they are 1-dimensional Kummer varieties.

(ii) If the only elements of finite order in H are ±1, then D◦(HL) is non-singular. In
general, D◦(HL) contains at worst finite quotient singularities.

Sketch of Proof. We only prove the first statement, readers may refer to [12, Proposition
2.16].

The action of HL on C×H1 and of H1 are related by the following commutative diagram

HL × (C×H1) C×H1

H ×H1 H1

q×pr2 pr2 .

Hence there is a surjective map π : D◦(HL)→ X◦(H).
If −1 /∈ H, then a generic point τ ∈ H1 has only {1} as its isotropy group in H. The

fibre of D◦(HL) over τ is obtained as the quotient of the fibre of C×H1 → H1 over τ by its
stablizer group in HL, which is

1 m n
0 1 0
0 0 1

∣∣∣∣∣∣(m,n) ∈ L
 .

It acts by [z : τ : 1] 7→ [z +mτ + n : τ : 1] on C × {τ}. Thus the fibre of D◦(HL) over τ is
an elliptic curve, isomorphic to C modulo the lattice {mτ + n | (m,n) ∈ L}.

If −1 ∈ HL, then a genetic point τ ∈ H1 has {±1} as its isotropy group in H. The fibre
of D◦(HL) over τ is obtained as the quotient of C× {τ} over τ by its stabilizing subgroup

L⋊ {±1} =


1 m n
0 ϵ 0
0 0 ϵ

∣∣∣∣∣∣(m,n) ∈ L, ϵ = ±1


The subgroup L acts on C× {τ} as before, giving an elliptic curve E. The element

ι =

1 0 0
0 −1 0
0 0 −1


acts on C × {τ} by [z : τ : 1] 7→ [−z : τ : 1] which induces on the natural involution on
E. The quotient C × τ by L ⋊ {±1} is hence a Kummer curve C. Note that the four fixed
points on E under the involution are two-torsion points. There are 4 two-torsion points (cf.
[25, Theorem 6.1]). Then consider the map E → C and apply Riemann-Hurwitz theorem,
we get g(C) = 0 and hence isomorphic to P1.
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Remark 2.6.2. (i) When −1 /∈ H, the surface D◦(HL) is called an (open) elliptic mod-
ular surface and is denoted by S◦(HL). Note that −1 /∈ Γ(k) when k ≥ 3, the surface
D◦(k) are elliptic modular surfaces denoted by S◦(k).

(ii) If −1 ∈ H, then D◦(HL) is called (open) Kummer modular surface and is denote
K◦(HL). Note that −1 ∈ Γ(k) when k = 1, 2, the surface D◦(k) are Kummer modular
surface denoted by K◦(k).

(iii) Note that the principal congruence group is torsion-free when k ≥ 3 (cf.[1, Lemma
1.4]), which indicates that D◦(k) is non-singular when k ≥ 3.

We now focus on compactifying the Kummer modular surface K◦(1) to the space K(1)
such that the map π : K◦(1)→ X◦(1) = SL(2,Z)\H1 extends to the map π : K(1)→ X(1).

For the compactification of X◦(1) = SL(2,Z)\H1, we simply add this cusp SL(2,Z)\Q ∪
{∞}. It’s easy to see that the stabilizing subgroup P (∞) of ∞ in SL(2,Z) is

P (∞) =

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ac =∞
}

=

{(
ϵ b
0 ϵ

)∣∣∣∣ϵ = ±1, b ∈ Z
}
.

We will construct a partial compactification of K◦(1) by “adding a fiber” over the cusp
∞ of X(H). The action of Z2 ⋊ SL(2,Z) on K◦(1) extends to C × (H1 ∪ Q ∪ {∞}). The
stabilizer P = P (C× {∞}) is

P = L⋊ P (∞) =


1 m n
0 ϵ b
0 0 ϵ

∣∣∣∣∣∣m,n ∈ Z,
(
ϵ b
0 ϵ

)
∈ P (∞)


We can choose a sufficiently small neighbourhood N of C×{∞} in C×H1 which is invariant
under P , e.g.,

N = {(z, τ) ∈ C×H1 | Im τ > t0}, t0 ≫ 0.

For a sufficiently large t0, if the intersection of g(N) and N is non-empty for all g in Z2 ⋊
SL(2,Z), then g must belong to P . So we can choose t0 large enough (indeed t0 = 1 is
sufficient) such that P\N embeds into (Z2 ⋊ SL(2,Z))\(C × H1). Consider the following
normal subgroup of P ,

P ′ =


1 0 n
0 1 b
0 0 1

∣∣∣∣∣∣n, b ∈ Z

 (5)

The quotient P ′′ = P/P ′ can be identified with

P ′′ =


1 m 0
0 ϵ 0
0 0 ϵ

∣∣∣∣∣∣m ∈ Z, ϵ = ±1

 . (6)

The group P ′ acts on the neighbourhood N of C × {∞} and the corresponding ”partial”
quotient map can be given:

e : N → (C∗)2 e(z, τ) = (exp(2πiz), exp(2πiτ)).
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Hence, P ′\N ∼= e(N) ∼= C∗ ×D′ where D′ is the punctured disk of radius exp(−2πt0). The
group P ′′ acts on e(N) and extends to an action on the torus T = (C∗)2. More precisely, the
induced action of g ∈ P ′′ on T is defined by the requirement that the diagram

N N

T T

g

e e

g

commutes. Note that the two matrices

h =

1 1 0
0 1 0
0 0 1

 , ι =

1 0 0
0 −1 0
0 0 −1


generates the group P ′′. It suffices to study h and ι. Let (u, v) = e(z, τ). Then

e(h(z, τ)) = e(z + τ, τ) = (exp(2πi(z + τ)), exp(2πiτ)) = (uv, v).

Similarly,
e(ι(z, τ)) = e(−z, τ) = (exp(−2πiz), exp(2πiτ)) = (u−1, v)

We will now construct a normal toric variety XΣ with the torus T and Σ a P ′′- compatible
fan. Let YΣ be the interior of the closure e(N) in XΣ. In this case, it is e(N)∪ (XΣ−T ). The
partial compactification is P ′′\YΣ. As we have only one cusp, then the identification space

P ′′\YΣ ∪P\N K◦(1)

is the compactification K(1) of K◦(1) we need.
Denote U and V as the two generators of the character group M of the torus T cor-

responding to the two coordinates u and v. Denote U∗ and V ∗ as the corresponding dual
basis. As M ∼= Z2, we may identify U = (1, 0) and V = (1, 0) and consequently U∗ = (1, 0)
and V ∗ = (0, 1). The induced Z-linear maps h and l on the group N of the one-parameter

subgroups of the torus T can be characterized by the matrix A(h) =

(
1 1
0 1

)
and A(l) =(

−1 0
0 1

)
.

Consider the fan in NR which consists of the 2-dimension cones σk = R≥(k, 1) +R≥0(k+
1, 1), for all k ∈ Z and their one-dimensional faces ξk = R≥(k, 1), k ∈ Z and the vertex
{(0, 0)}, see the following figure.

Figure 5: A Decomposition of the upper half plane
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By Orbit-Cone correspondence, we have the following correspondence:

(i) the 0-dimensional cone {(0, 0)} ⇔ T ∼= (C∗)2;

(ii) the 1-dimensional cone ξk ⇔ O(ξk) ∼= C∗;

(iii) the 2-dimension cone σk ⇔ O(σk) ∼= (C∗)0.

For each orbit O(ξk), the closure is a rational curve

O(ξk) = O(ξk) ∪O(σk−1) ∪O(σk) ∼= P1.

Denote it as Ck. We have an infinite string of rational curves, see Figure 6.

Figure 6: Infinite String of rational curves

As P ′′\e(N) = P\N embeds into K0(1), we are now interested in the action of P ′′ on the
infinity string XΣ − T of rational curves.

Consider the action of the element h ∈ P ′′. We have A(h)(ξk) = ξk+1 and A(h)(σk) =
σk+1. Hence we can identify the 1-dimensional orbits O(ξk)’s and identify the 0-dimensional
orbits O(σk)’s. Hence ⟨h⟩\(XΣ − T ) is a single rational curve C̄ with two points identified.

Consider the action of the element ι ∈ P ′′. We have A(ι)(ξk) = ξ−k and A(ι)(σk) = σ−k−1.
In particular, A(h)(ξ0) = ξ0 and A(h)(σ0) = σ−1. We now want to know how ι acts on the
torus O(σ0). The torus has character lattice M ′ = σ⊥

0 ∩M = Z(1, 0) and cocharacter lattice
N ′ = Z(1, 0). As A(l)(1, 0) = (−1, 0). Hence by Remark 2.4.8, the action on O(ζ) is given
by z 7→ z−1. And P ′′\XΣ − T is P1/z ∼ z−1. Note that the quotient of a non-singular curve
by a finite group action is still non-singular. Hence we can apply Riemann-Hurwitzm to get
the genus of this curve is 0 and hence it is isomorphic to P1.

To summarize, the Kummer modular surface K◦(1) can be compactified to a surface K(1)
over X(1) whose fiber over the cusp ∞ is P1.
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3 The Satake Compactification

In this section, we provide all necessary backgrounds for toroidal compactifications and give
a short introduction to the Satake Compactification.

3.1 Boundary Components

In this subsection, we wish to extend Hg. We will show that as a hermitian symmetric
domain, it can be realized as a bounded symmetric domain D in Cg(g+1)/2 so that we can
take the closure D. We will also classify points and pick those that are “rational”. Our main
reference for this section is [20] and [12].

We summarize a few results of hermitian symmetric domains from [16].
A manifold is homogeneous if its automorphism group acts transitively, symmetric if

it is homogeneous and at some point p, there is an automorphism sp such that s2p = 1 and p
is the only fixed point of sp in some neighborhood of p. A riemannian manifold (M∞, g)
is a smooth manifold M with a riemannian metric g. A complex manifold is a smooth
complex analytic space. An almost-complex structure on a smooth manifold is a smooth
tensor field J = (Jp)p∈M ,

Jp : Tgtp(M)→ Tgtp(M)

such that J2
p = −1. In terms of local coordinates z1, ..., zn in a neighbourhood of a point p

on a complex manifold and the corresponding real local coordinates x1, y1, ..., xn, yn, Jp acts
by

∂

∂xr
7→ ∂

∂yr
,

∂

∂yr
7→ − ∂

∂xr
.

A hermitian metric on a complex manifold M is a riemnanian metric g such that

g(JX, JY ) = g(X, Y ) for all vector fields X, Y.

A hermitian manifold (M, g) is a complex manifoldM with a hermitian metric and so it is
also a riemannian manifold. A connected symmetric hermitian manifold is called hermitian
symmetric space.

Any hermitian symmetric space M decomposes into a product

M0 ×M1 × · · ·Mn

whereM0 is a hermitian symmetric space of euclidean type andMi, i > 0 is an irreducible and
non-euclidean hermitian symmetric space (cf. [3, p.105]). The hermitian symmetric spaces of
euclidean type are quotients of a complex space Cg by a discrete subgroup of translations.
For example, a torus C/Λ is a hermitian symmetric space of euclidean type. A non-euclidean
irreducible hermitian symmetric space is of compact type (resp. of non-compact type)
if it is compact (resp. not compact). The Siegel upper half spaces are hermitian symmetric
spaces of non-compact type. The projective space P(C) is a hermitian symmetric space of
compact type. The space M is called non-euclidean, resp. symmetric domain, resp.
of compact type, if, the factor M0 is absent in the decomposition, or all the Mi are of
non-compact type, or all Mi are of compact type.
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A domain D in Cn is a nonempty open connected subset. Every bounded domain has
a hermitian metric, called the Bergman metric. The Bergman metric is invariant under the
action of the group Hol(D) of automorphisms of D as a complex manifold. Hence, a bounded
symmetric domain is a hermitian symmetric domain. Conversely, every hermitian symmetric
domain can be embedded into Cn as a bounded symmetric domain.

Back to our example of Hg.

Proposition 3.1.1 (cf. [20, p.2-3]).

a) The group Sp(2g,R) acts transitively on Hg.

b) The stabilizer of iIg is the compact group{(
α β
−β α

)
∈ Sp(2g,R)

}
∼= U(g),

(
α β
−β α

)
7→ α + iβ

where U(g) is the unitary group.

Consequently, the map

Sp(2g,R)→ Hg, M 7→M(iIg)

is surjective with kernel U(g). Hence we have Hg = Sp(2g,R)/U(g) as smooth manifolds.
All holomorphic automorphisms of Hg arise from the action of Sp(2g,R). The automorphism

group Hol(Hg) is Sp(2g,R)/{±I}. Moreover, the matrix s =

(
0 −Ig
Ig 0

)
has the property

that s2 = Ig and has iIg as its only fixed point. Hence Hg is homogeneous and symmetric as
a complex manifold.

We now realize Hg as a bounded symmetric domain.

Proposition 3.1.2. The map

Φ : Hg → Dg = {Z ∈ Sym(g,C) | Ig − ZZ > 0}

given by
τ 7→ (τ − iIg)(τ + iIg)

−1

is isomorphic with the inverse

Φ−1 : Dg → Hg given by Z 7→ i(Z + Ig)(−Z + Ig)
−1.

Remark 3.1.3. The map Φ is called a Cayley transformation. Sometimes we write Φg to
indicate the dimension g. When g = 1, the map takes the half-plane H1 = {z ∈ C; Imz > 0}
to the complex unit disc {z ∈ C; |z| < 1}.

Proof. This is a specific instance of the Borel and Harish-Chandra embedding, as discussed
in [20, p.118].
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Note that Dg is indeed bounded in Sym(g,C). Since Ig−ZZ is positive definite, we have
xHIgx−xHZZx = ||x||22−||Zx||22 > 0 for all x ∈ Cg where xH denotes the conjugate transpose

of x. Then ||Z||2 = supx̸=0
||Zx||2
||x||2 < 1 for all Z in Dg. By equivalence of norms, the maximal

norm is also bounded in Dg. The bounded domain is also symmetric with a symmetry at
0 = Φ(iIg). The Siegel upper half space Hg has a hermitian metric from the Bergman metric
of Dg, invariant under the action of Hol(Hg). Hence Hg is a hermitian symmetric domain.

Since Dg is a bounded domain in Sym(g,C), compactify it and we get

Dg = {Z ∈M(g,C); tZ = Z, Ig − ZZ ≥ 0}.

Hence the boundary consists of symmetric matrices Z such that Ig − ZZ is positive semi-
definite but not positive definite.

Proposition 3.1.4. The action of Sp(2g,R) on Dg induced from the Cayley transformation

M ∈
(
α β
γ δ

)
: Z 7→ ((α−iγ)(Z+Ig)+i(β−iδ)(Z−Ig))((α+iγ)(Z+Ig)+i(β+iδ)(Z−Ig))−1

extends to the closure of Dg.

Proof. It suffices to show that (α+ iγ)(Z+ Ig)+ i(β+ iδ)(Z− Ig) is invertible. For the whole
proof, we refer to [12, Proposition 3.3] or [20, Proposition 4.3].

We can decompose Dg into a disjoint union of components.

Definition 3.1.5. Two points p, q ∈ Dg are equivalent, denoted as p ∼ q, if and only if
they can be connected by finitely many holomorphic curves, i.e., there are holomorphic maps
ϕi : D = {z ∈ C; |z| < 1} → Dg, i = 1, ...,m, such that p ∈ ϕ1(D), q ∈ ϕm(D) and
ϕi(D) ∩ ϕi+1(D) ̸= 0 for i = 1, ...,m− 1.

Definition 3.1.6. The equivalence classes of points of Dg with respect to ∼ are called
boundary components.

There are a few properties we can get immediately from the definition. Boundary com-
ponents are connected. If F is a boundary component and h ∈ Sp(2g,R), then h(F ) is a
boundary component as h also acts holomorphically on Dg. We will also show that Dg is a
boundary component. This boundary component is called improper. Boundary components
in Dg\Dg are called proper.

The key to the classification of boundary components is to associate them with isotropic
subspaces in R2g. A subspace U ⊂ R2g is called isotropic if ⟨u, v⟩ = uJ tv holds for all u, v ∈ U

and J =

(
0 Ig
−Ig 0

)
.

Proposition 3.1.7. i) For Z ∈ Dg, denote by U(Z) the real subspace ker(ΨZ) of R2g

where

ΨZ : R2g → Cg, v 7→ v ·
(
i(Ig + Z)
Ig − Z

)
.

Then U(Z) is an isotropic subspace of R2g.
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ii) If Z ∈ Dg, then U(Z) ̸= 0 if and only if Z lies on the boundary Dg\Dg.

iii) If Z ∈ Dg and h ∈ Sp(2g,R), then U(h(Z)) = U(Z)h−1.

Proof. i) Identify v = (v1, v2) ∈ R2g where v1 ∈ Rg and v2 ∈ Rg with w = v1 + iv2 ∈ Cg.
We can calculate

ΨZ(w) = ΨZ(v) = v ·
(
i(Ig + Z)
Ig − Z

)
= v ·

(
iIg iIg
−Ig Ig

)(
Z
Ig

)
= i(wZ + w).

If w,w′ ∈ Cg correspond to v, v′ ∈ R2g, then

⟨v, v′⟩ = vJ tv′ = −v2tv
′

1 + v1
tv

′

2 = Im(wtw′).

Moreover, if v, v′ ∈ U(Z) and w = −wZ and w′ = −w′Z, then

⟨v, v′⟩ = Im(wtw′) =
1

2
(wtw′ − wtw′) =

1

2
(−wZtw′ + wZtw′) = 0.

ii) Suppose U(Z) ̸= 0. Then there exists a w ∈ Cg, w ̸= 0, such that w = −wZ. Then
w = −wZ = wZZ, so Ig − ZZ cannot be positive definite.

Suppose Z ∈ Dg\Dg. Then 1 is an eigenvalue of ZZ. Consider an eigenvector v ∈ Cg,
v = ZZv, v ̸= 0. If v + vZ = 0, then v ∈ U(Z). Otherwise, let w = iv + ivZ. Then
w ̸= 0 and wZ = i(vZ + vZZ) = i(vZ + v) = −w, so w ∈ U(Z).

iii) One can compute for h ∈ Sp(2g,R) that the matrix multiplication h ·
(
i(Ig + Z)
Ig − Z

)
and

the h action

(
i(Ig + h · Z)
Ig − h · Z

)
give the same kernel. Then

U(h(Z)) = ker(v 7→ v · h ·Ψ(Z)) = ker(v 7→ v ·Ψ(z))h−1 = U(Z)h−1.

Proposition 3.1.8. If Z1, Z2 ∈ Dg and Z1 ∼ Z2, then U(Z1) = U(Z2).

Proof. It suffices to show that if ϕ : D → Sym(g,C) is holomorphic with ϕ(D) ⊂ Dg and
v ∈ U(ϕ(0)), v ̸= 0, then v ∈ U(ϕ(t)) for all t ∈ D. Identify v with w ∈ Cg. Then we have w =
−wϕ(0). In particular, ||wϕ(0)|| = ||w|| ̸= 0. Moreover, ||wϕ(t)||2 = wϕ(t)ϕ(t)tw ≤ wtw =
||w||2. By the maximum modulus principle, wϕ(t) is constant. Hence w = −wϕ(t).

If F is a boundary component of Dg, we can denote by U(F ) the isotropic subspace
U(Z) ⊂ R2g for a Z ∈ F . By the proposition above, U(F ) is independent of the choice of Z
and hence well defined.

Proposition 3.1.9. Fg′ =

{(
Z ′ 0
0 Ig−g′

)
;Z ′ ∈ Dg′

}
∼= Dg′ is a boundary component with

corresponding isotropic subspace

U(Fg′) = {(v1, ..., v2g) ∈ R2g | v1 = ... = vg+g′ = 0}.

In particular Dg is a boundary component.
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Proof. We refer to the proof in [12, Lemma 3.10].

Remark 3.1.10. Boundary components of such form play an important role in compact-
ification. We call them standard boundary components and the associated isotropic
subspaces standard isotropic subspaces.

Proposition 3.1.11. The map Ψ defined in Proposition 3.1.7 induces a one-to-one corre-
spondence between the set of boundary components F and the set of isotropic subspaces of

R2g with respect to the symplectic form J =

(
0 Ig
−Ig 0

)
. This correspondence is Sp(2g,Q)-

equivariant in the sense that U(h(F )) = U(F )h−1.

Before proving the proposition, we need a lemma that claims that any flag of isotropic
subspaces can be transformed into a flag of standard isotropic subspaces by an element in
Sp(2g,R).

Lemma 3.1.12 ([12, Lemma 3.11]). Let Sp(2g,R) be the symplectic group acting on R2g. If
U1 ⊊ U2 ⊊ · · · ⊊ Ul is any flag of isotropic subspaces in R2g with dimUi = g − k(i), then
there exists a h ∈ Sp(2g,R) such that

h(Ui) = Uih
−1 = {(v1, ..., v2g) ∈ R2g | v1 = ... = vg+k(i) = 0}.

Proof of Proposition 3.1.11 . The well-definedness and equivariance have been established,
it remains to show that it is a one-to-one correspondence. Let U be an arbitrary isotropic
subspace in R2g. By the above lemma, there is a k, 0 ≤ k ≤ g and h ∈ Sp(2g,R) such that
U = Ukh

−1 and hence U = U(h(Fg−k)). If U = U(F ′) = U(F ′′) for two boundary components
F ′ and F ′′, then by the lemma above, U = Ukh

−1 and so U(h−1F ′) = U(Fg−k) = U(h−1F ′′).
By Proposition 3.1.9, we have h−1F ′ = Fg−k = h−1F ′′.

Definition 3.1.13. A boundary component F of Dg is called degree g − i or corank i
boundary component if dimR(U(F )) = i.

Lemma 3.1.12 also indicates that any boundary component can be transformed to a
standard boundary component of the same degree. We can write Dg as a union of boundary
components as follows:

Dg =
⋃

h∈Sp(2g,R),0≤k≤g

h(Fk).

Now we discuss the adjacency of boundary components.

Definition 3.1.14. A boundary component F is said to be adjacent to a secondary compo-
nent F ′ if F ̸= F ′ and F ⊂ F ′. We denote this by F ≺ F ′.

Example 3.1.15. Any proper boundary component is adjacent to the boundary component
Dg. For standard boundary components, we have F i ≺ F j whenever 0 ≤ i < j ≤ g.

Proposition 3.1.16. i) The correspondence between boundary components of Dg and
isotropic subspaces of R2g gives rise to a one-to-one correspondence between

a) pairs of adjacent boundary components F ≺ F ′;
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b) pairs of isotropic subspaces U ′ ⊊ U in R4.

ii) The group Sp(2g,R) acts on pairs of adjacent boundary components. Moreover, every
pair F ≺ F ′ is equivalent under Sp(2g,R) to one of the pairs Fi ≺ Fj where 0 ≤ i <
j ≤ g.

Proof. Suppose u ∈ U(F ′). Identify u with w ∈ Cg. Then wZ ′ + w = 0 for all Z ′ ∈ F ′. As
F ⊂ F ′, then wZ + w = 0 for Z ∈ F as limit of Z ′ ∈ F ′. This implies that U(F ′) ⊂ U(F ).
Because F ̸= F ′, we have U(F ′) ⊊ U(F ).

Let U ′ ⊊ U be a pair of isotropic subspaces of R4. Then by Lemma 3.1.12, there exists
h ∈ Sp(2g,R) such that U ′h ⊊ Uh is one of the pairs of Ui ⊊ Uj where i < j. This implies
that the boundary components corresponding to U and U ′ are h(Fg−j) and h(Fg−i). Since
we have Fg−j ≺ Fg−i, we have h(Fg−j) ≺ h(Fg−i).

Part (ii) easily follows from the discussion above.

Via Lemma 3.1.12 and Proposition 3.1.16, whenever we need to consider boundary compo-
nents, we can pass them to standard boundary components and work on standard boundary
components.

We have decomposed Dg. We now look at the rationality of the boundary components.
Recall the process of compactifying a modular curve, i.e., g = 1, we only focus on the
”rational points” {Q ∪ ∞}. For general g, we also focus only on those ”rational boundary
components” when compactifying.

Definition 3.1.17. Let F be a boundary component, we define its stabilizing subgroup in
Sp(2g,R) by

P(F ) = {h ∈ Sp(2g,R) | h · F = F}.

Remark 3.1.18. i) If U = U(F ) is the corresponding isotropic subspace, then by Propo-
sition 3.1.11,

P(F ) = P(U) = {h ∈ Sp(2g,R) | Uh−1 = U}.

ii) Let F1 and F2 be two boundary components and h · F1 = F2 for some h ∈ Sp(2g,R),
then P(F2) = hP(F1)h

−1.

iii) P(F ) is a maximal parabolic subgroup of Sp(2g,R). Indeed, there is a one-to-one cor-
respondence between proper parabolic subgroups of Sp(2g,R) and flags of nontrivial
isotropic subspaces in R2g(cf. [12, Remark 3.45]). The parabolic subgroup correspond-
ing to a given flag 0 = U0 ⊊ U1 ⊊ · · ·Uk is the stabilizing subgroup P of this flag, i.e., a
group that consists of all elements h such that h ·Ui = Ui for i = 0, ..., k. The maximal
parabolic subgroups correspond to flags of isotropic subspaces which have length 1.

Definition 3.1.19 ([20, Definition 4.15]). A boundary component F of Dg is called rational
if one of the following equivalent conditions holds:

i) The stabilizing subgroup P(F ) is defined over Q, i.e., there is a subgroup PQ ⊂
Sp(2g,Q) such that P(F ) = PQ(R), the R-valued points of the algebraic group of
PQ.
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ii) The isotropic subspace U(F ) is defined over Q, i.e., it has a basis chosen in Q2g.

iii) There exists h ∈ Sp(2g,Q) such that h · F = Fg′ .

Remark 3.1.20. The correspondence in Remark 3.1.18 restricts to a bijective correspondence
between parabolic subgroups defined over Q and flags of isotropic subspaces of Q2g (cf.
[12, Remark 3.45]).

When g = 1, we have one standard proper boundary component F0 = {1} which is {∞}
under the inverse of the Cayley transformation. The rational proper boundary components
are h · F0 for h ∈ Sp(2g,Q), which is Q under the inverse of the Cayley transformation.
As SL(2,Z) acts transitively on the rational boundary components Q ∪ {∞}, for higher
dimensions we also have

Proposition 3.1.21. If F is a rational boundary component of Dg′, then there exists h ∈
Sp(2g,Z) such that h · F = Fg′.

Proof. See [20, Remark 4.16].

Hence, we can consider the union of all rational boundary components:

Definition 3.1.22. We define the rational closure of Dg as

Drc
g =

⋃
F :rational

F =
⋃

h∈Sp(2g,Z),0≤k≤g

h(Fk).

3.2 Structure of Stabilizing Subgroups

In this subsection, we discuss the structure of stabilizing subgroups of boundary components.
Readers may skip this subsection and revisit it when needed.

As shown in Remark 3.1.18, if h · F1 = F2 for F1, F2 two boundary components and
h ∈ Sp(2g,R), we have P(F2) = hP(F1)h

−1. Hence it is important to know the stabilizing
subgroups of standard boundary components.

For a standard boundary component, we have its stabilizing subgroup:

Proposition 3.2.1 ([12, Proposition 3.87]).

Pg′ = P(Fg′) =



A 0 B ∗
∗ tQ−1 ∗ ∗
C 0 D ∗
0 0 0 Q


∣∣∣∣∣∣∣∣
(
A B
C D

)
∈ Sp(2g′,R), Q ∈ GL(g − g′,R)

 .

Definition 3.2.2. • Ru(P(F )) := the unipotent radical of P(F );
• P ′(F ) := the center of Ru(P(F ));
• V (F ) := Ru(P(F ))/P ′(F ).

Remark 3.2.3. We have inclusions of normal subgroups P ′(F ) ⊴ Ru(F ) ⊴ P(F ).
Remark 3.2.4. Ru(P(h · F )) = hRu(P(F ))h−1 and P ′(F ) = hP ′(F )h−1 for h ∈ Sp(2g,R).
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For standard boundary components, we can give more explicit matrix forms of these
subgroups.

Proposition 3.2.5 (cf. [20, Proposition 4.8 and 5.4] and [12, Proposition]). For a standard
boundary component Fg′

Ru(P(Fg′)) =



Ig′ 0 0 tN
M Ig−g′ N S
0 0 Ig′ −tM
0 0 0 1


∣∣∣∣∣∣∣∣M

tN + S = N tM + tS

 .

P ′(Fg′) =



Ig′ 0 0 0
0 Ig−g′ 0 S
0 0 Ig′ 0
0 0 0 Ig−g′


∣∣∣∣∣∣∣∣S = tS

 ∼= Sym(g − g′,R).

Moreover, Ru(P(Fg′))/P ′(Fg′) is isomorphic to Mat(g − g′, g′;C) by
Ig′ 0 0 tN
M Ig−g′ N S
0 0 Ig′ −tM
0 0 0 1

 7→ iM +N.

For a standard boundary component Fg′ , we consider two more subgroups of P(Fg′):

Gh(Fg′) :=



A 0 B 0
0 Ig−g′ 0 0
C 0 D 0
0 0 0 Ig−g′


∣∣∣∣∣∣∣∣
(
A B
C D

)
∈ Sp(2g′,R)

 ∼= Sp(2g′,R), (7)

Gl(Fg′) :=



Ig′ 0 0 0
0 tQ−1 0 0
0 0 Ig′ 0
0 0 0 Q


∣∣∣∣∣∣∣∣Q ∈ GL(g − g′,R)

 ∼= GL(g − g′,R). (8)

Definition 3.2.6. For a boundary component F of Dg, i.e. F = h(F ′
g) for some h ∈

Sp(2g,R), define

Gh(F ) = Gh(h(Fg′)) := hGh(Fg′)h
−1; Gl(F ) = Gl(h(Fg′)) := hGl(Fg′)h

−1.

Proposition 3.2.7 (cf. [20, Proposition 4.10] and [3, Theorem 3.10]).

i) P(F ) = (Gh(F )×Gl(F ))⋉Ru(P(F )).

ii) Let Z(F ) be the centralizer of a boundary component F , i.e., Z(F ) = {g ∈ G | gx =
x for all x ∈ F}. Then we have Z(F ) = Gl(F )⋉Ru(P(F )).

iii) Gh(F ) = Aut(F ).
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To know how these groups act on the Siegel upper spaceHg the following is also important:

Proposition 3.2.8 ([12, Proposition 3.91]). Let τ =

(
τ1

tτ2
τ2 τ3

)
∈ Hg where the rows and

columns are divided into ranges of g′ and g − g′ rows resp. columns.Then the groups defined
above act as follows:

g1 ∈ Gh(Fg′) : g1(τ) =

(
(Aτ1 +B)(Cτ1 +D)−1 ∗

τ2(Cτ1 +D)−1 τ3 − τ2(Cτ1 +D)−1Ctτ2

)
,

g2 ∈ Gl(Fg′) : g2(τ) =

(
τ1 ∗

tQ−1τ2
tQ−1τ3Q

−1

)
,

g3 ∈ Ru(P(Fg′)) : g3(τ) =

(
τ1 ∗

τ2 +Mτ1 +N τ ′3

)
,

τ ′3 = τ3 +Mτ1
tM +M tτ2 +

t(M tτ2) +N tM + S,

g4 ∈ P ′(Fg′) : g4(τ) =

(
τ1 ∗
τ2 τ3 + S

)
,

where the entries ∗ are determined by symmetry.

Now we identify the quotient group P ′′(F ′
g) = P(Fg′)/P ′′(Fg′).

Proposition 3.2.9 ([12, Proposition 3.90]). The quotient group P ′′(F ′
g) = P(Fg′)/P ′′(Fg′)

in the short exact sequence

1→ P ′(Fg′)→ P(Fg′)
π−→ P ′′(Fg′)→ 1

can be identified as the group consisting of the block matrices.tQ−1 M N
0 A B
0 C D


where

(
A B
C D

)
∈ Sp(2g′,R), Q ∈ GL(g − g′,R) and M,N ∈ Mat(g − g′, g′,R) satisfying

M tN = N tM . Furthermore, the natural quotient map π is given by

π(g1) =

1 0 0
0 A B
0 C D

 ; π(g2) =

tQ−1 0 0
0 1 0
0 0 1

 ; π(g3) =

1 M N
0 1 0
0 0 1

 .

3.3 The Satake Compactification

In this subsection, we give a short introduction to the construction of the Satake compact-
ification of the quotient of the Siegel upper half space Hg by an arithmetic group. By
arithmetic subgroup of Sp(2g,R), we mean a subgroup Γ in Sp(2g,Q) that is commensurable
with Sp(2g,Z), i.e., the group H ∩ Sp(2g,Z) having finite index in both H and Sp(2g,Z).
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We recall the case of the upper half plane H1: We consider Γ a congruence subgroup of
SL(2,Z), it is obviously an arithmetic subgroup of SL(2,Q). Let Hrc

1 = H1 ∪Q ∪ {∞}. The
action of Γ on H1 extends to Hrc

1 and Γ\Hrc
1 is a compactification of H1.

We topologize Hrc
1 as follows. The set H1 is set to be an open set with its original topology.

If τ =∞, then a neighbourhood basis is given by

Nt ∪ {∞} = {τ ′ ∈ H1 | Im(τ ′) > t} ∪ {∞}, t > 0.

If τ ∈ Q, there exists h ∈ SL(2,Z) such that g(∞) = τ . For example, if τ = a/c with
a, c ∈ Z and gcd(a, c) = 1, meaning that ad − bc = 1 for some b, d ∈ Z. So we have h =(
a b
c d

)
∈ SL2(Z) such that h(∞) = τ . Then τ has a neighbourhood basis {h(Nt ∪ {∞})}.

Since fractional linear transformations are conformal and take circles to circles, h(Nt ∪∞) is
a horoball, i.e., an open disk tangent to the real axis at τ with τ itself as shown at the left
side of Figure 7.

The Cayley transformation Φ : H1 → D1 = {z ∈ C | |z| < 1} extends to a bijection
Hrc

1 → Drc
1 . We give Drc

1 = Φ(Hrc
1 ) a topology by requiring that Φ be a homeomorphism.

The Cayley transformation Φ is also a conformal map. Hence Φ takes the open disk h(Nt)
to the open disk Φ(h(Nt ∪ {∞})). Specifically, we have Φ(∞) = 1, the image Φ(Nt ∪ {∞})
is a horoball in D1 as shown at the right side of Figure 7.

Figure 7: Neighbourhoods of τ ∈ Q in Hrc
1 and neighbourhoods of 1 in Drc

1

We now consider the situation of Drc
g . Consider the standard boundary component Fi.

Let Z ∈ Fi, then

Z =

(
Zi 0
0 Ig−i

)
, Zi ∈ Di.

Let τ be the inverse Φ−1
i of the Cayley transformation of Zi, i.e., τ = Φ−1

i (Zi). We can regard
Z as the image under Φ of 

τ 0 0 0
0 i∞ 0 0

0 0
. . . 0

0 0 0 i∞

 .
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Regarding Fi
∼= Hi as a boundary component of those Fj

∼= Hj where i ≤ j ≤ g, we want to
associate a neighbourhood of Z in Hj as a higher-dimensional generalization of Nt.

Definition 3.3.1. Let Sym+(n,R) denote the set of positive definite symmetric n × n ma-
trices. Let i ≤ j. Define the maps πj,i : Hj → Hi and ρj,i : Hj → Sym+(j − i,R):

πj,i

(
τ1

tτ2
τ2 τ3

)
= τ1, ρj,i

(
τ1

tτ2
τ2 τ3

)
= Im (τ3)− Im (τ2)Im (τ1)

−1Im (tτ2).

For U an open set in Hi and Sj−i ∈ Sym(j − i,R), define the set

Nj(U, Sj−i) = {τ ∈ Hj | πj,i(τ) ∈ U, ρj,i(τ)− Sj−i > 0}.

Example 3.3.2. Note that for a real symmetric matrix M =

(
A tC
C B

)
with A positive

definite, we have M positive definite if and only if B − CA−1tC is positive definite since(
I 0

−CA−1 I

)(
A tC
C B

)(
I −A−1tC
0 I

)
=

(
A 0
0 B − CA−1tC

)
.

Hence Ng(Hg′ , 0g−g′) = {τ ∈ Hg | πg,g′(τ) ∈ Hg′ , ρg,g′(τ) > 0} = Hg.

Example 3.3.3. Ni(U, S0) = U for U an open set in Hi.

Let z be an element lying in the standard boundary component Fi. We now want to
define a neighbourhood basis of z in Drc

g . Let U be a neighborhood of z in Hi
∼= Fi. We may

view Nj(U, Sj−i) as a subset of Fj via the identification Hj
∼= Fj. As the action of Sp(2g,Q)

extends to Drc
g , we define a subset of Drc

g by

Ñg(U, S, i) = Ñg(U, Sg−i, Sg−1−i, · · · , Si−i) = Sp(2g,Z)∩(Gl(Fi)⋉Ru(P(Fi))(
⋃

g≥j≥i

Nj(U, Sj−i)).

Definition 3.3.4. We define the cylindrical topology on Drc
g as the weakest topology

generated by
B = {Ng(U, S, i)}

and its translates under the action of Sp(2g,Q).

Remark 3.3.5. i) As for an open subset U in Hi
∼= Fi, we have Ni(U, S0) = U , and

Z(Fi) = Gl(Fi) ⋉ Ru(P(Fi)) acts trivially on Fi (see Proposition 3.2.7), the topology
on Fi is just its usual topology. In particular, as a standard boundary component Dg

is open in Drc
g .

ii) The cylindrical topology makes Drc
g a Hausdorff space.

The following proposition shows Dg is dense in Drc
g .

Proposition 3.3.6 ([20, Scholie 5.9]). Let τn =

(
τ ′n

tτ
′′′
n

τ
′′′
n

tτ
′′
n

)
be a sequence in Hg

∼= Dg with

τ
′
n ∈ Hg′. Let τ ′ ∈ Hg′

∼= Fg′, then τn converges to the boundary point τ ′ in Drc
g with the

cylinder topology if and only if

τ
′

n → τ ′, ρg,g′(τ
′

n)→∞

or under the assumption that {τ ′′′n } is bounded, if and only Im τ ′′′n →∞.
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We are now ready to introduce the Satake compactification.

Theorem 3.3.7 ([12, Theorem 6.5]). Let Γ be an arithmetic subgroup of Sp(2g,R) and
consider the rational closure Drc

g of Dg.
a) The action of Γ on Dg extends continuously to a properly discontinuous action of Γ

on Drc
g . In the quotient topology, the quotient Γ\Drc

g is a compact Hausdorff space
containing Γ\Dg as a dense open subset.

b) The quotient Γ\Drc
g is a normal projective algebraic variety containing Γ\Dg as a

Zariski open subset (a quasi-projective variety).

Definition 3.3.8. We call (Γ\Dg)
∗ := Γ\Drc

g the Satake compactification.

Example 3.3.9. Let Γ = Sp(2g,Z), we see as a set

A∗
g = Sp(2g,Z)\Drc

g = Ag ⨿ Ag−1 ⨿ · · · ⨿ A0

where Ag′ = P(Fg′) ∩ Γ\Fg′ = Gh(Fg′) ∩ Γ\Fg′
∼= Sp(2g′,Z)\Hg′ . The boundary A∗

g\Ag has
codimension

g(g + 1)/2− (g − 1)g/2 = g.

Part a) of Theorem 3.3.7 is due to Satake [24] in the case Γ = Sp(2g,Z), and part
b) is due to Baily [4]. Later Baily and Borel [5] proved a generalization of this theorem,
constructing compactifications of quotients of bounded symmetric domains (or hermitian
symmetric domains by realizing them as bounded symmetric domains) by arithmetic groups.
Note that the topology on Drc

g defined by Satake - Baily - Borel (called Satake topology) is
different from the cylindrical topology, but they define the same topology in the quotient (cf.
[20, Remark 5.11]).

We end this section by stating some general important results of the Baily-Borel com-
pactification.

Theorem 3.3.10 ([16, Theorem 3.12]). Let D(Γ) = Γ\D be the quotient of a hermitian
symmetric domain D by an arithmetic subgroup Γ of the identity component of Hol (D).
Then D(Γ) has a canonical realization as a Zariski-open subset of a projective algebraic
variety D(Γ)∗.

Remark 3.3.11. By GAGA, the compactification D(Γ)∗ is a compact Hausdorff space con-
taining D(Γ) as an open dense subset. The compactification D(Γ)∗ is a finite union of
subspaces of the form

ΓF\F

where F is a rational boundary component and ΓF is the intersection of the stabilizing group
of F and Γ. The closure of ΓF\F in D(Γ)∗ is the union of ΓF\F and ΓF ′\F ′ with F ′ of
smaller dimension (cf. [3, Theorem 6.2]).

Definition 3.3.12. An algebraic varietyD(Γ) arising from Theorem 3.3.10 is called a locally
symmetric variety.
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4 Toroidal Compactification

In the previous section, we discussed the Satake Compactification of Ag. The boundary is of
codimension g. It turns out that it has very complicated singularities

In [2], Mumford and his collaborators developed the toroidal compactification of locally
symmetric varieties. In this section, we apply Mumford’s toroidal compactification method
to the moduli space of principally polarized abelian varieties. The general strategy is that we
first construct all the partial compactifications and glue these partial compactifications based
on some equivalence relations. We will show that the boundary is of codimension 1 and it is
almost smooth, i.e., it contains at worst finite quotient singularities. Our main reference for
this section is [12] and [20].

4.1 General Steps

To construct a toroidal compactification, one of the important things is to compactify prin-
cipal bundles. The definitions we use are based on [17].

Let G be a topological group.

Definition 4.1.1. A left (resp. right) G-space Z is a space with a continuous left (resp.
right) G-action.

Note that any left G-action on a space X can be converted to a right action by setting
xg = g−1x for x ∈ X and g ∈ G. Similar for a right G-action.

Definition 4.1.2. Suppose that X is a right G-space equipped with a G-map π : X → S,
where G acts trivially on X . We say that π : X → S is a principal G-bundle if π : X → S
satisfies the following the locally triviality condition:

S has a covering by open sets U such that there exist G-equivariant homeomorphisms
ϕU : π−1U → U ×G commuting in the diagram

π−1U U ×G

U

ϕU

Here U ×G has the right G-action (u, g)h = (u, gh).

Remark 4.1.3. The condition implies that G acts freely on X and the fibers are isomorphic
to G.

Let π : X → S be a principal G-fiber bundle and Z is a right G-space. We can form the
accociated fiber bundle X ×G Z over S with fiber Z. We can regard X ×G Z as the orbit
space X ×G Z of the action (x, z)g = (xg, g−1z).

Definition 4.1.4. A (trivial) torus bundle of rank r is a (trivial) principal fiber bundle
π : X → S over a complex manifold S whose fiber is an algebraic torus T ∼= (C∗)r.

Remark 4.1.5. We also allow torus bundles to have rank 0. They have fibers (C∗)0, which
are points.
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Let π : X → S be a torus bundle with fiber TN and Σ be a fan in NR where N is the
group of one-parameter subgroups. Let XΣ be the normal toric variety with fan Σ. We can
form the associated bundle XΣ = X ×TN

XΣ. If π̄ : XΣ → S is the projection, then we have
the commutative diagram

X XΣ

S S

i

π π̄

=

We now outline the steps of the partial compactification in the direction of a rational
boundary component F . For more explanations, we refer to [3, III].

Let F be a rational boundary component and P ′(F ) be the center of the unipotent radical
of the stabilizing group P(F ). Let

D(F ) = P ′(F )C ·Dg =
⋃

h∈P ′(F )C

h ·Dg.

It can be shown thatD(F ) is isomorphic to F×V (F )×P ′(F )C where V (F ) isRu(P(F ))/P ′(F ).
When Fi is the standard boundary component, we have

D(Fi) ∼=
{(

τ1 τ2
tτ2 τ3

)
| τ1 ∈ Hi

∼= Fi; τ2 ∈ V (Fi) ∼= Ci(g−i); τ3 ∈ P ′(Fi)C = Sym(g − i,C)
}
.

In general P ′(F ) is a real vector space and P ′(F ) = P(F ) ∩ Γ for a arithmetic subgroup Γ
of Sp(2g,R) is a lattice in P ′(F ). The quotient P ′

C(F )/P
′(F ) is a complex torus with rank

r, where r is the rank of P ′(F ). We have a trivial torus bundle

X (F ) = P ′(F )\D(F ) ∼= F × V (F )× (P ′
C(F )/P

′(F ))→ F × V (F ).

The image X(F ) of Dg under the partial quotient

e(F ) : Dg → P ′(F )\Dg

is isomorphic to an open subset of X (F ). The induced action of the quotient group P ′′(F ) =
P (F )/P ′(F ) on the partial quotient P ′(F )\Dg

∼= X(F ) extends to an action of P ′′(F ) on
X (F ).

We now want to construct a normal toric variety on the fiber T = P ′
C(F )/P

′(F ) ∼=
P ′(F )⊗ C/P ′(F ). We wish to have a fan such that it is P ′′(F )-compatible (see Proposition
2.4.9). First the group P(F ) acts on P ′(F ) by conjugation. It can be shown that only the
Gl(F )-part of P(F ) (see Proposition 3.2.7) acts non-trivially, i.e.,

Gl(F ) ∼= Aut(P ′(F )).

For example, when F is a standard boundary component, this is easy to verify using the
matrix shown in Subsection 3.2. Hence it suffices to construct a Gl(F ) ∩ Γ-compatible fan
Σ. Let TΣ be the normal toric variey with fan Σ. Let

XΣ(F ) := X (F )×T TΣ
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be the associated fiber bundle with fiber TΣ. We use P̄ (F ) to denote the group Gl(F ) ∩ Γ.
Then the action of P ′′(F ) on X (F ) extends to an action of P ′′(F ) on XΣ(F ). Define

XΣ(F )

as the interior of the closure of X(F ) = P ′(F )\Dg in XΣ(F ). Define

YΣ(F ) := P ′′(F )\XΣ(F )

as the partial compactification of Γ\Dg in the direction F .
We summarize the key steps for the partial compactification in the direction of a rational

boundary component F :

Step 1 Consider the partial quotient X(F ) = P ′(F )\Dg. It is an open subset of the trivial
torus bundle X (F ) = F × V (F )× (P ′(F )⊗ C/P ′(F ))→ F × V (F ).

Step 2 Choose a P̄ (F )-compatible fan Σ in P ′(F ) and do torus embedding on the fiber to get
XΣ(F ).

Step 3 Take the interior XΣ(F ) of the closure of X(F ) in XΣ(F ). The partial compactification
of Γ\Dg in the direction of F is YΣ(F ) = P ′′(F )\XΣ(F ).

To do toroidal compactifications, the fan needs to be more than P̄ (F )-compatible. We
now describe the so-called P̄ (F )-admissible fan we need for toroidal compactification. We
hope this fan is neither too large nor too small and gives a good quotient P ′′(F )\XΣ(F ).

Definition 4.1.6. (i) The Harish-Chandra map φ of the group Sp(2g,R) is the homomor-
phism of Lie groups

φ : U(1)× SL(2,R)g → Sp(2g,R)

φ(λ,

(
α1 β1
γ1 δ1

)
, · · · ,

(
αg βg
γg δg

)
) =



α1 β1
. . . . . .

αg βg
γ1 δ1

. . . . . .

γg δg


where U(1) is the unitary group.

(ii) Let F be a boundary component of Dg, i.e., F = h(Fi) for some h ∈ Sp(2g,R). Define
a map

φF : U(1)× SL(2,R)→ Sp(2g,R)
φF (e

iθ, s) = hφ(eiθ, H(θ), · · · , H(θ)︸ ︷︷ ︸
i

, s, · · · , s︸ ︷︷ ︸
g−i

)h−1

where

H(θ) =

(
cos θ sin θ
− sin θ cos θ

)
∈ SL(2,R).
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(iii) Define

ΩF = φ(1,

(
1 1
0 1

)
).

Note that for any boundary component F ofDg, we have F = h(Fi) for some h ∈ Sp(2g,R)
and Fi standard boundary component. By definition (ii) above, ΩF = Ωh(Fi) = hΩFi

h−1

where

ΩFi
=


Ii 0 0 0
0 Ig−i 0 Ig−i

0 0 Ii 0
0 0 0 Ig−i

 ∈ P ′(Fi).

Since P ′(hFi) = hP ′(F )h−1, ΩF = Ωh(Fi) ∈ P ′(F ). Recall P(F ) acts on P ′(F ) by conjuga-
tion, this leads to the following definition:

Definition 4.1.7. Let F be a boundary component of Dg. Define the P(F )-orbit of ΩF

C(F ) := {gΩFg
−1 | g ∈ P(F )}.

Remark 4.1.8. (i) By our previous discussion, only Gl(F ) acts on non-trivially P ′(F ).
Hence C(F ) is also the Gl(F )-orbit of ΩF .

(ii) If F = h(F ′) for some h ∈ Sp(2g,R), we have C(F ) = hC(F ′)h−1 from P(F ) =
h(P(F ′))h−1.

(iii) It can be shown that C(F ) is an open homogeneous cone in P ′(F ). The centralizer
of ΩF in Gl(F ) is the maximal compact subgroup Gl(F ) ∩ U(g). Hence C(F ) ∼=
Gl(F )/Gl(F ) ∩ U(g) (cf. [3, Theorem III.4.1]).

Proposition 4.1.9. Let F be a standard boundary component. The cone C(Fi) in P ′(Fi) is
isomorphic to the cone Sym+(d− i,R) of positive definite symmetric (d− i)×(d− i) matrices,
i.e.,

C(Fi) =



1i 0 0 o
0 Ig−i 0 S
0 0 Ii 0
0 0 0 Ii


∣∣∣∣∣∣∣∣S ∈ Sym+(g − i,R)

 .

Proof. Using the matrix form (8) of Gl(Fi) and noting that Gl(Fi) acts on P ′(Fi) by conju-
gation, we have

C(Fi) =



1i 0 0 o
0 Ig−i 0 S
0 0 Ii 0
0 0 0 Ii


∣∣∣∣∣∣∣∣S = tQ−1Ig−iQ

−1, Q ∈ GL(g − i,R)

 .

To introduce the fan we are going to use, we give a precise statement of the boundary
components of open cones in a real vector space V .
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Definition 4.1.10. Suppose that C is an open cone in a real vector space V .

(i) A proper boundary component C ′ of C is a cone C ′ of the form C ′ = (C̄ ∩ V ′)◦ where
V ′ is a linear subspace of V such that V ′ ∩ C = ∅. The closure C̄ of C is taken in V ,
and the interior of C̄ ∩ V ′ is taken in V ′. If C ′ is a proper boundary component of C,
then C ′ is adjacent to C, which we denote C ′ ≺ C.

(ii) Now suppose V has an underlying integral structure VZ, i.e., V = VZ⊗ZR. A boundary
component C ′ of C is called rational if it can be written C ′ = (C̄ ∩ V ′)◦ where V ′ is a
rationally defined subspace of V .

(iii) The union of C with all rational boundary components of C is called the rational closure
of C. We denote it by Crc.

The adjacencies of the open cones C(F ) have a correspondence with the adjacencies of
the boundary components F of Dg.

Proposition 4.1.11 (cf. [12, Proposition 3.60] and [3, Theorem III.4.8]). (i) If F ≺ F ′

is a pair of adjacent boundary components, then P ′(F ′) is a subspace of P ′(F ) and
C(F ′) = (C(F )∩P ′(F ′))◦ where C(F )∩C(F ′) = ∅. Hence C(F ′) is a proper boundary
component of C(F ).

(ii) Fixing F , the map F ′ 7→ C(F ′) is an order-reversing bijection between the set of bound-
ary components F ′ with F ≺ F ′of Dg and the set of boundary components of C(F ).
Moreover, adding the rational condition gives an order-reversing bijection between the
set of rational boundary components of Dg and the set of rational boundary components
of open cones.

We now define the fan we need for the toroidal compactification.

Definition 4.1.12. Let F be a rational boundary component of Dg. A fan Σ in P ′(F ) is
called P̄ (F )-admissible for the construction of a partial compactification if it satisfies the
following three conditions:

(a)
⋃

σ∈Σ σ = C(F )rc.

(b) P̄ (F )-compatible: h(σ) ∈ Σ for every σ ∈ Σ and every h ∈ P̄ (F ).

(c) There are only finitely many orbits in Σ under the action of P̄ (F ) on Σ, i.e., P̄ (F )\Σ
is a finite set.

Proposition 4.1.13 (cf. [12, Proposition 3.62]). Let F be a rational boundary component
of Dg, and let Σ be an P̄ (F )-admissible fan in P ′(F ). Then the induced action of P ′′(F ) on
X(F ) extends in a unique way to a properly discontinuous action of P ′′(F ) on XΣ(F ). The
quotient space

YΣ(F ) = P ′′(F )\XΣ(F )

is a complex analytic space. If XΣ(F ) is smooth, then YΣ(F ) contains at worst finite quotient
singularities. The space YΣ(F ) contains P (F )\Dg as an open and dense analytic subspace,
whose boundary YΣ(F )− (P (F )\Dg) is a purely 1-codimensional complex analytic space.
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Assume that for every direction of rational boundary components F , we have constructed
one partial compactification YΣ(F )(F ) and have a collection Σ̃ that contains all the fans Σ(F ).

We will now investigate under which conditions on the collection Σ̃ the partial compactifica-
tions can be glued to form a compactification Γ\Dg.

There are three conditions we need to consider. First, of course, every fan Σ(F ) in the
collection Σ̃ needs to be P̄ (F )-compatible. Second, we hope for some compatibility of the
partial compactifications with the action of Γ on the set of rational boundary components of
Dg. The last condition should ensure that the gluing of adjacent partial compactifications
possible. These lead to the following definition:

Definition 4.1.14. Let Σ̃ = {Σ(F )} be a collection of fans Σ(F ) ⊂ P ′(F ), one fan Σ(F )
in each Σ̃ for each rational boundary component F of Dg. The collection Σ̃ is called an
Γ-admissible collection (of fans) if it satisfies the following conditions:

(a) Σ(F ) ⊂ P ′(F ) is P̄ (F )-admissble.

(b) If F = h(F ′) for some h ∈ Γ, then Σ(F ) = h(Σ(F ′)) = {hσ′h−1 | σ′ ∈ Σ(F ′)} as fans
in P ′(F ) = h(P ′(F )).

(c) If F ≺ F ′, then Σ(F ′) = Σ(F ) ∩ P ′(F ′) holds as fans in P ′(F ′) ⊂ P ′(F ).

Remark 4.1.15. (i) Let Σ̃ = {Σ(F )} be an admissible collection of fans and let F ≺ F ′.
For every cone σ ∈ Σ(F ) the intersection σ ∩ P ′(F ′) is a face of σ.

(ii) Part (c) implies that an admissible collection is determined by the fans Σ(F ) associated
with minimal rational boundary components. We will discuss this in the case of Γ =
Sp(2g,Z) in Proposition 4.4.15. A rational boundary component F is called minimal
if there is no rational boundary component F ′ such that F ′ ≺ F .

For those rational boundary components F, F ′ on the same Γ-orbit, i.e., F = h(F ′)
for some h ∈ Γ, we wish to glue the partial compactifications together. Condition (b) in
Definition 4.1.14 is sufficient for the existence of a natural isomorphism between YΣ(F ′)(F

′)
and YΣ(F )(F ) if F = h(F ′) for some h ∈ Γ so that the two partial compactifications YΣ(F )(F )
and YΣ(F ′)(F

′) can be identified pointwise.
First note that if F = h(F ′) for h ∈ Γ, then h induces a natural isomorphism from

P (F ′)\Dg to P (F )\Dg by sending [x] to [h · x].
For convenience, we will use Tσ and TΣ instead of Uσ and XΣ in Section 2 to denote toric

varieties.

Proposition 4.1.16 ([12, Proposition 3.69]). Let F and F ′ be rational boundary components
of Dg such that F = h(F ′) for some h ∈ Γ. Suppose that Σ(F ) and Σ′(F ) are admissible
fans in P ′(F ) resp. P ′(F ) satisfying Σ(F ) = h(Σ(F ′)). Then

(i) There exists a natural isomorphism h̃ : XΣ(F ′)(F
′)

∼−→ XΣ(F )(F ) such that the following
diagram commutes:

XΣ(F ′)(F
′) XΣ(F )(F )

P ′(F ′)\Dg P ′(F )\Dg

h̃

h
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(ii) There is a natural isomorphism h̄ : YΣ(F ′)(F
′)

∼−→ YΣ(F )(F ) induced by the isomorphism

h̃ of (i) such that the following diagram commutes

YΣ(F ′)(F
′) YΣ(F )(F )

P (F ′)\Dg P (F )\Dg

h̄

h

Proof. The action of h on Dg induces an isomorphism h : P (F ′)\Dg → P (F )\Dg which
extends to an isomorphism h1 : X (F ′)→ X (F ) of the trivial torus bundles.

There is an isomorphism

h : T ′ = P ′(F )⊗R C/P ′(F ′)
∼−→ P ′(F )⊗R C/P ′(F ).

By Definition 4.1.14 (b), the action of h is compatible with the fans Σ(F ) and Σ(F ′)(see
Definition 2.4.6) and thus the map h : T ′ → T extends to an isomorphism h2 : T

′
Σ(F ′)

∼−→ TΣ(F )

(see Theorem 2.4.7). The isomorphism of products h1×h2 : X (F ′)×T ′
Σ(F ′)

∼−→ X (F )×TΣ(F )

induces a natural isomorphism ĥ : XΣ(F ′)(F
′) → XΣ(F )(F ). Restricting ĥ on XΣ(F ′)(F

′)

yields the isomorphism h̃ which extends h : P ′(F ′)\Dg → P ′(F )\Dg. Part (ii) is a trivial
consequence of part (i).

We now consider condition (c) of Definition 4.1.14. If F ≺ F ′ is a pair of adjacent rational
boundary components of Dg, we have P ′(F ′) ⊂ P ′(F ) and hence P ′(F ′) ⊂ P ′(F ). There
exists a natural quotient map

π0(F
′, F ) : P ′(F ′)\Dg → P ′(F )\Dg

which is an unramified analytic covering. We will show if condition (c) of Definition 4.1.14 is
satisfied, the map π0(F

′, F ) extends to an étale map π(F ′, F ) from XΣ(F
′) to XΣ(F )(F ). Note

that a étale map here means a smooth map with discrete fibers. And note that π(F ′, F ) is
not surjective.

Proposition 4.1.17 (cf. [12, Proposition 3.71] and [3, Lemma III.5.4]). Let F ≺ F ′ be a pair
of adjacent rational boundary components of Dg and let Σ(F ) and Σ(F ′) be two admissible
fans in P ′(F ) resp. P ′(F ′) satisfying Σ(F ′) = Σ(F ) ∩ P ′(F ′). Consider the complex tori
T = P ′(F )⊗R C/P ′(F ) and T ′ = P ′(F ′)⊗R C/P ′(F ′).

(i) The inclusion P ′(F ′) ⊂ P ′(F ) gives rise to an inclusion of complex tori T ′ ⊂ T and
hence gives T the structure of a principal T ′-bundle over T/T ′. Then there is a natural
isomorphism

TΣ(F ′)
∼= T ×T ′ T ′

Σ(F ′).

Moreover, TΣ(F ′) is an open and dense subvariety of TΣ.

(ii) The group P ′(F ) acts on X (F ′). The action induces a natural étale map

π(F ′, F ) : XΣ(F ′)(F
′)→ XΣ(F )(F )

between the subsets XΣ(F ′)(F
′) of XΣ(F ′)(F

′) and XΣ(F )(F ) of XΣ(F )(F ). The map
π(F ′, F ) extends π0(F

′, F ).
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Proof. (i) Denote N and N ′ as the groups of one-parameter subgroups P ′(F ) and P ′(F ′)
of T and T ′ respectively. Denote M and M ′ as the dual lattices of N and N ′. Note
that we have N ′ = P ′(F ′) ⊂ P ′(F ) = N and M ′ ⊂M .

Regard T ×T ′ T ′
Σ(F ′) as the quotient of T × T ′

Σ(F ′) by the right T ′-action by t′ : (t, x) 7→
(tt′, t′−1x), t′ ∈ T ′. Pick (t, x) ∈ T × T ′

Σ(F ′). Then t and x can be represented by

semigroup homomorphisms φ
(1)
t : M → C and σ∨

M ′
R
∩ M ′ → C where σ ∈ Σ(F ′) is

chosen such that x ∈ T ′
σ ⊂ T ′

Σ(F ′) and σ
∨
M ′

R
is the dual cone of σ in M ′

R. The dual cone

σ∨
MR

of σ in MR projects onto σ∨
MR

via the natural projection q :MR →M ′
R. Hence we

have compositions of semigroup homomorphisms:

σ∨
MR
∩M î−→M

φ
(1)
t−−→ C

σ∨
MR
∩M q̂−→ σ∨

M ′
R
∩M ′ φ

(2)
x−−→ C

where q̂ is the restriction q on σ∨
MR
∩M .

Define φy : σ
∨
MR
∩M → C to be the product φy = (φ

(1)
t ◦ î) · (φ

(2)
x ◦ q̂), so φy represents

a point y ∈ Tσ ⊂ TΣ(F ′). This point does not depend on the choice of σ. Two
points (t1, x1), (t2, x2) ∈ T × T ′

Σ(F ) determine the same point y ∈ TΣ(F ′) if and only if
(t2, x2) = (t1t

′, t′−1x1) for some t′ ∈ R′. We can set f(t, x) = y which determines an
isomorphism f : T ×T ′ T ′

Σ(F ′)

∼−→ TΣ(F ′). As Σ(F
′) is a subfan of Σ(F ), the toric variety

TΣ(F ′) is a union of some open affines and thus TΣ(F ′) is open in TΣ(F ).

P ′(F )\XΣ(F ′)(F
′) = P ′(F )\(X (F ′)×T ′ T ′

Σ(F ′))

⊂ X (F )×T ′ T ′
Σ(F ′)

∼= (X (F )×T T )×T ′ T ′
Σ(F ′)

∼= X (F )×T (T ×T ′ T ′
Σ(F ′))

∼= X (F )×T TΣ(F ′)

⊂ X (F )×T TΣ(F )

where both occurrences of ”⊂” mean open inclusions here.

The quotient map of part (ii) restricts to a map from XΣ(F ′)(F
′) to XΣ(F )(F ). This

map is étale because it is an unramified covering on the base spaces of the fiber bundle,
and open inclusions of their fibers.

Remark 4.1.18. We use the notation Π(F ′, F ) to denote the quotient map XΣ(F ′)(F
′) →

P ′(F )\XΣ(F ′)(F
′) ⊂ X (F )×T TΣ(F ) = XΣ(F )(F ). Note that Π(F ′, F )|XΣ(F ′)(F

′) = π(F ′, F ).

Proposition 4.1.19 ([3, Lemma III.5.5]). Let x ∈ XΣ(F )(F ). Among all rational boundary
components F ′ such that there is some x′ ∈ XΣ(F ′)(F

′) such that π(F ′, F )(x′) = x, there is a
maximal one Fx. Moreover, Fh·x = h · Fx for all h ∈ Γ.
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We call this boundary component Fx the boundary component associated with x or say
that x belongs to the Fx-stratum.

The following proposition is a consequence of the naturality of the two constructions in
Proposition 4.1.17 and Proposition 4.1.16.

Proposition 4.1.20. Let F ≺ F ′ be a pair of adjacent rational boundary components of Dg

and let Σ(F ) and Σ(F ′) be two admissible fans in P ′(F ) resp. P ′(F ′) satisfying Σ(F ′) =
Σ(F ) ∩ P ′(F ′). For any h ∈ Γ, the following diagram commutes:

XΣ(F ′)(F
′) XΣ(F )(F )

Xh(Σ(F ′))(h(F
′)) Xh(Σ(F ))(h(F ))

π(F ′,F )

g̃,∼= g̃,∼=

π(h(F ′),h(F ))

Now we are ready to introduce the toroidal compactification of Γ\Dg.

Definition 4.1.21. Suppose that Σ̃ = {Σ(F )} is an admissible collection of fans. We define
the toroidal compactification Γ\Dg determined by Σ̃ to be the quotient space

Γ\Dg = X/∼

where
X =

∐
F :rational

boundary component

XΣ(F )(F ).

The space Γ\Dg is given the quotient topology. The equivalence relation ∼ is defined as
follows: Let x ∈ XΣ(F )(F ) and x

′ ∈ XΣ(F ′)(F
′), then

(a) x ∼ x′ if there is a h ∈ Γ such that F = h(F ′) and x = h̃(x′) where h̃ is the isomorphism
defined in Proposition 4.1.16.

(b) x ∼ x′ if F ≺ F ′ and π(F ′, F )(x′) = x, where π(F ′, F ) is the étale gluing map defined
in Proposition 4.1.17.

Remark 4.1.22. (i) By Proposition 4.1.16, the group acts on X by permuting XΣ(F )(F ).
The equivalence (a) implies that X → X/∼ factors through Γ\X. Note that it is
possible that F = F ′, i.e., h ∈ P (F ). The quotient of XΣ(F )(F ) by P (F ) is the partial
compactification YΣ(F )(F ). Thus Γ\X maybe considered as an identification space
arising from an equivalence relation on the disjoint union

Y =
∐

F :rational
boundary component

YΣ(F )(F ).

We have
X → Y → Γ\X → X/∼.

(ii) Note that the equivalence relation defined here is the same as the equivalence relation
defined in [3, p.163]. Let x1 ∈ XΣ(F ′)(F

′) and x2 ∈ XΣ(F ′′)(F
′′). Then x1 ∼ x2 if and

only if
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(a) there is a rational boundary component F and h ∈ Γ, such that F ′ ≺ F and
h(F ′′) ≺ F .

(b) there is a point x ∈ XΣ(F )(F ) that π(F, F
′)(x) = x1 and π(F, h(F ′′))(x) = h̃(x2)

where h̃ is the isomorphism XΣ(F ′′)(F
′′)→ XΣ(h(F ′′))(h(F

′′)).

Remark 4.1.23 ([12, Remark 3.77]). By the remark above, the compositions XΣ(F )(F ) ↪→
X ↠ X/∼ = Γ\Dg give rise to natural maps

p∗(F ) : YΣ(F )(F )→ Γ\Dg

which extend the natural projections

p(F ) : P (F )\Dg ↠ Γ\Dg.

Since the maps used to define the equivalence relation ∼ are open maps, the maps p∗(F )
are open maps. By Proposition 4.1.17, the image of p∗(F ′) is contained in the image of
p∗(F ) as a dense open subset whenever F ≺ F ′. Then it follows the sets of images p∗(F ),
F minimal, form an open cover of Γ\Dg. Moreover the image of p∗(F ) is dense in Γ\Dg

for every boundary component F . Finally, it’s easy to check that the equivalence relation ∼
does not introduce any identifications on Γ\Dg and so p∗(Dg) : Γ\Dg → Γ\Dg is an open
inclusion with dense image.

Definition 4.1.24. For a rational boundary component F of Dg, the open boundary com-

ponent ∂F (Γ\Dg) is defined to be

∂F (Γ\Dg) = p∗(F )(YΣ(F )(F ))−
⋃

F≺F ′

p∗(F ′)(YΣ(F ′)(F
′))

and the closed boundary component

∂̄F (Γ\Dg) = ∂F (Γ\Dg) ∪
⋃

F ′≺F

∂F ′(Γ\Dg).

Remark 4.1.25. The closure of ∂F (Γ\Dg) is ∂̄F (Γ\Dg) (cf. [12, Remark 3.79 ii.]). Note that

if F is minimal, then ∂F (Γ\Dg) = ∂̄F (Γ\Dg).

Hence we have a stratification

Γ\Dg =
∐

F mod Γ

∂F (Γ\Dg).

Definition 4.1.26. The boundary of the toroidal compactification of Γ\Dg is

∂(Γ\Dg) = Γ\Dg − Γ\Dg.
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4.2 Stratification By Torus Orbits

Now we will provide a more detailed description of a toroidal compactification by using
torus orbits, which will help us understand the stratification and boundaries of toroidal
compactification better and compute the compactly supported cohomology.

For each XΣ(F )(F ), we have a fibrewise T = P ′
C(F )/P

′(F )-orbit decomposition (cf. The-
orem 2.5.6): ∐

σ∈Σ(F )

X (F )×T O(σ).

Denote by OF (σ) the fibrewise orbit X (F )×T O(σ) for convenience.
It’s easy to see that the decomposition has the following properties:

Proposition 4.2.1 ([20, p.61]).

(i) Each OF (σ) is an torus bundle over F × V (F ) (cf. Theorem 2.5.6 (a)).

(ii) τ ≺ σ if and only if OF (σ) ⊂ OF (τ). Moreover, OF (τ) =
⋃

τ≺σ OF (σ) (cf. Theorem
2.5.6 (d)).

(iii) If σ = {0}, then OF (σ) = X (F ).

(iv) dimσ + dimOF (σ) = dimDg.

The following proposition tells us which fibrewise orbits lie in XΣ(F )(F ), the interior of
the closure of P ′(F )\Dg in XΣ(F )(F ).

Proposition 4.2.2. [20, Facts 7.9] Let F be a rational boundary component and C(F ) be
its open cone. If σ ∩ C(F ) ̸= ∅, then OF (σ) ⊂ XΣ(F )(F ).

Recall in Proposition 4.1.17, for a pair of adjacent boundary boundary components F ≺
F ′, we have a map Π(F ′, F ) : XΣ(F ′)(F

′) → XΣ(F )(F ). Restrict it to fibrewise torus orbits,
we have

OF ′(σ)→ OF (σ) for all σ ∈ Σ(F ′).

Moreover, the disjoint union of fibrewise orbits

OF :=
∐

σ∩C(F )̸=∅

OF (σ)

is the complement of the union of the image of π(F ′, F ) : XΣ(F ′)(F
′) → XΣ(F )(F ) for all F

′

such that F ≺ F ′ (cf. [20, p.64]). These are the points essentially added with respect to F .
By Proposition 4.2.1 (ii), the disjoint union is closed in XΣ(F )(F ).

To get the partial compactification YΣ(F )(F ) in the direction of a rational boundary com-
ponent F , we quotient XΣ(F )(F ) by P ′′(F ) = P (F )/P ′(F ). Then the quotient P ′′(F )\OF

is a closed set in the partial compactification YΣ(F ). By reduction theory, it can be shown
that the map p∗(F ) : YΣ(F )(F )→ Γ\Dg is injective near P ′′(F )\OF (cf. [20, p.69]).

The open boundary component ∂F (Γ\Dg) in the last subsection is

∂F (Γ\Dg) = P ′′(F )\OF .
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When F is a standard boundary component of degree i, we can write

∂F (Γ\Dg) = P ′′(F )\OF =
∐

σ mod GL(g,Z)
σ∩C(F )̸=∅

Stab(σ)\T (σ)

where Stab(σ) = {h ∈ GL(g,Z | h ·σ = σ} and T (σ) is the trivial torus bundle over the g− i
fold universal family X g−i

i , i.e., the quotient of Hi × C(g−i)i by the group with generators

A 0 B 0
0 Ig−i 0 0
C 0 D 0
0 0 0 Ig−i


∣∣∣∣∣∣∣∣
(
A B
C D

)
∈ Sp(2i,Z)


and 


Ii 0 0 tN
M Ig−i N 0
0 0 Ii −tM
0 0 0 Ig−i


∣∣∣∣∣∣∣∣M,N ∈ Mat(g − i, i;Z)

 .

Such groups are called Jacobi groups (cf. [9, p.17]). The toroidal compactification Γ\Dg has
a stratification as a set

Γ\Dg =
∐

F mod Γ

∂F (Γ\Dg) =
∐

F mod Γ

P ′′(F )\OF .

Next, we briefly discuss the relation between the toroidal compactification of Γ\Dg and
the Satake compactification (Γ\Dg)

∗. We want to define a map

f : X =
∐

F :rational

XΣ(F )(F )→ (Γ\Dg)
∗.

Let x ∈ XΣ(F )(F ) and let Fx be its associated rational boundary component. By Proposition
4.1.19, there exists a point x′ ∈ XΣ(Fx)(Fx) such that π(Fx, F )(x

′) = x. Recall XΣ(Fx)(Fx)
is the interior of the closure of P ′(F )\Dg in Fx × V (Fx) × T ×T TΣ(Fx), there is a natural
projection

prFx
: XΣ(Fx)(Fx)→ Fx.

We define the image via f of x as the image x′ via the composition

XΣ(Fx)(Fx)
prFx−−→ Fx ⊂ Drc

g → (Γ\Dg)
∗.

It’s easy to see that

(i) The definition of f(x) is independent of the choice of x′.

(ii) The restriction f |Dg of f on Dg is the natural projection from D to Γ\Dg ⊂ (Γ\Dg)
∗.

(iii) Two points in X that are equivalent under the equivalence relation ∼ defining the
toroidal compactification have the same image in (Γ\Dg)

∗.
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(iv) f |XΣ(F )(F ) factors as

XΣ(F )(F )→ P ′(F )\Drc
g → (Γ\Dg)

∗.

(v) The restriction of f on OF is the natural projection from OF → P (F )\F ⊂ (Γ\Dg)
∗.

Moreover f |−1
XΣ(F )(F )(P (F )\F ) = OF .

Then we get a map
f̄ : Γ\Dg = X/∼ → (Γ\Dg)

∗.

It can be shown that the map f̄ is continuous (cf. [3, Proposition 6.8]).
As X → Γ\Dg factors through Y → Γ\Dg, we have the following commutative diagram

f̄ : Γ\Dg (Γ\Dg)
∗

YΣ(F )(F ) (Γ\Dg)
∗

∂F (Γ\Dg) = P ′′(F )\OF P (F )\F

⊂ ⊂

||

This gives us a correspondence between the stratifications of the toroidal compactification of
Γ\Dg and of the Satake compactification of Γ\Dg.

4.3 g=1

We give a detailed description of the toroidal compactification in the simplest case:

H1 = {τ ∈ C | Im τ > 0}, Γ = Sp(2,Z) = SL(2,Z).

By the Cayley transformation

Ψ : H1
∼−→ D1 = {z ∈ C | |z| < 1}.

Take the closure in C, we have D1 = {z ∈ C | |z| ≤ 1}. There are two standard boundary
components:

F0 = {1} and F1 = D1.

Since all boundary components are either h · F0 or h ·D1 for h ∈ SL(2,Z) (see Proposition
3.1.21), we only need to consider these two standard boundary components F0 and F1. All
other partial compactifications are isomorphic to either YΣ(F0)(F0) or YΣ(F1)(F1) by Propo-
sition 4.1.16. Note that 1 corresponds to ∞ and h · F0 corresponds to {Q ∪ ∞} under the
inverse of the Cayley transformation.

We first do the partial compactification in the directions of F1 = D1 and F0 = {1} and
glue these partial compactifications.

(a) Consider F1 = D1. By the matrix forms of different subgroups given in Subsection 3.2,
we have

P(F ) = SL(2,R); Ru(P(F )) = P ′(F ) = {I}; V (F ) = Ru(P(F ))/P ′(F ) = {I}
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and thus

P (F ) = SL(2,Z); P ′(F ) = {I}; P ′′(F ) = P (F )/P ′(F ) = SL(2,Z).

Step 1. Take the partial quotient

e(F1) : D1
∼= H1

∼=−→ P ′(F )\H1 = H1
∼= H1 × V (F )× (P ′

C(F )/P
′(F )).

Note that in Step 1, we actually considerHg instead ofDg as the action of Sp(2g,R)
on Hg is easier than the action on Dg.

Step 2. The fan Σ(F1) = {{0}} is the only possible fan in P ′(F ). Hence TΣ(F1) = (C∗)0

and thus XΣ(F1) = H1.

Step 3. Indeed we’ve changed nothing by the torus embedding in Step 2. Hence we have

XΣ(F1)(F1) = H1

and the partial compactification in the direction of F1 is

P ′′(F )\H1 = SL(2,Z)\H1.

(b) Consider F0 = {1}. We have

P(F0) =

{(
Q−1 ∗
0 Q

)∣∣∣∣Q ∈ GL(1,R) = R∗
}
; Ru(P(F0)) = P ′(F0) =

{(
1 ∗
0 1

)}
; V (F0) = {I}

and thus

P (F0) =

{(
Q−1 ∗
0 Q

)∣∣∣∣Q = ±1
}
; P ′(F0) =

{(
1 S
0 1

)∣∣∣∣S ∈ Z
}
; T = P ′

C(F0)/P
′(F0) ∼= (C)∗.

Step 1. Take the partial quotient

e(F0) : H1 → P ′(F0)\H1 ⊂ T ∼= (C)∗.

As P ′(F0) acts on H1 by (
1 S
0 1

)
: τ 7→ τ + S

the partial quotient is given by

e(F0) : τ 7→ exp(2πiτ).

The image X(F0) of e(F0) is

X(F0) = {z ∈ C | 0 < |z| < 1}.

63



Step 2. We have

P̄ (F0) = Aut(P ′(F0))∩SL(2,Z) = Gl(F0)∩SL(2,Z) =
{(

Q 0
0 Q

)∣∣∣∣Q = ±1
}
∼= P ′′(F0)

Note that P̄ (F0) acts on P ′(F0) by conjugation, hence it is indeed a trivial action.
We have the open homogeneous cone associated to F0

C(F0) =

{(
1 S
0 1

)∣∣∣∣S > 0

}
∼= R>0.

The rational closure C(F0)
rc is R≥0. The fan Σ(F0) = {{0},R≥0} is the only

possible P̄ (F0)-admissible fan in P ′(F0). Then TΣ(F0)
∼= C.

Step 3. Take the interior of the closure of X(F0) in C, we have

XΣ(F0)(F0) = {z ∈ C | |z| < 1}.

Since P ′′(F0) ∼= P̄ (F0) acts on T = C trivially, the partial compactification in the
direction of F0 is

YΣ(F0)(F0) = XΣ(F0)(F0) = {z ∈ C | |z| < 1}.

As Γ = SL(2,Z), we don’t need to consider condition (a) of the equivalence relation used
to define a toroidal compactification (see Definition 4.1.21) and only need to consider
the adjacent pair F0 ≺ F1.

Note that the map

π0 : X(F1) = H1 → X(F0) = P ′(F0)\H1 = {z ∈ C | 0 < |z| < 1}

is the same as the map e(F0). The map extends to a map

π(F1, F0) : XΣ(F1)(F1) = H1 → XΣ(F0)(F0) = {z ∈ C | |z| < 1}.

The toroidal compactification of A1 = SL(2,Z)\H1 is

A1 = X/∼ = (XΣ(F1)(F1)⨿XΣ(F0)(F0))/ ∼′

where the equivalence relation ∼′ is as follows: Let x ∈ XΣ(F0)(F0) and x
′ ∈ XΣ(F1)(F1),

then x ∼′ x′ if π(F1, F0)(x
′) = x.

We have ∂F0(Γ\Dg) = {z = 0}, which corresponds to the infinity point ∞ as ∞ =

limz→0 logZ, and ∂F1(Γ\Dg) = SL(2,Z)\H1 = A1. As a set, we have

A1 = A1 ∪ {∞}.

4.4 g=2

In this subsection, we discuss the toroidal compactification in the simplest nontrivial case,
i.e.,

D2
∼= H2, Γ = Sp(4,Z).

Similar to what we did for g = 1, we analyze the partial compactification in the direction of
the three standard boundary components F0

∼= H0, F1
∼= H1 and D2 = F2

∼= H2.
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4.4.1 Degree One And Two Boundary Components

Similar to what we get in the case of g = 1, we have

Proposition 4.4.1. For the standard boundary component F2
∼= H2, we have P ′(F2) = {0}

and C(F2) = {0}. The trivial fan Σ(F2) = {{0}} is the only admissible fan in P ′(F2). It
gives rise to

XΣ(F2)(F2) = H2; YΣ(F2)(F2) = Sp(4,Z)\H2 = A2.

Now we analyze the standard boundary component F1
∼= H1. Again by Subsection 3.2,

we have

P ′(F1) =



1 0 0 0
0 1 0 S
0 0 1 0
0 0 0 1


 ∼= R; V (F1) ∼= C; P ′

C(F1)/P
′(F1) = C∗.

As the group P ′(F2) acts on H2 by
1 0 0 0
0 1 0 S
0 0 1 0
0 0 0 1

 :

(
τ1 τ2
τ2 τ3

)
7→

(
τ1 τ2
τ2 τ3 + S

)
,

the partial quotient e(F1) : D2
∼= H2 → P ′(F1)\H2 is given by

e(F1) : H2 → H1 × C× C∗
(
τ1 τ2
τ2 τ3

)
7→ (τ1, τ2, exp(2πiτ3)).

The group P̄ (F1) = Aut(P ′(F1)) ∩ Γ has the form

1 0 0 0
0 Q 0 0
0 0 1 0
0 0 0 Q


∣∣∣∣∣∣∣∣Q = ±1

 .

It acts on P ′(F1) by conjugation, hence it acts trivially on P ′(F1) and preserves the cone
C(F1) = R>0 in P ′(F1). The only admissible fan Σ(F1) in P ′(F1) with support C(F1)

rc = R≥0

is
Σ(F1) = {{0},R≥0}.

Hence TΣ(F1) = C. This means that we have a principal C∗-bundle X (F1) = H1 × C × C∗

embedded into its associated bundle XΣ(F1)(F1) = H1 × C× C with fibre C.
Note that the map π0(F2, F1) : X(F2) = P ′(F2)\H2 = H2 → X(F1) = P ′(F1)\H2 coin-

cides with the map e(F1) and extends to the map π(F2, F1) : XΣ(F2)(F2) = H2 → XΣ(F1)(F1).
The complement of Im π(F2, F1) in XΣ(F1)(F1) is

OF1 = H1 × C×OF1(R≥0) = H1 × C× {0}.

Since the action of P ′′(F1) on the fibre of X (F1) is trivial (as P̄ (F1) acts trivially on P ′(F1)),
it remains to investigate its action on the base H1 × C.
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Proposition 4.4.2. The open boundary component ∂F1(A2) = P ′′(F1)\OF1 is isomorphic to
the open Kummer modular surface K0(1) = Z2 ⋊ SL(2,Z)\(H1 × C).

Proof. By Proposition 3.2.9, we have

P ′′(F ) =


ϵ m n
0 a b
0 c d

∣∣∣∣∣∣
(
a b
c d

)
∈ SL(2,Z),m, n ∈ Z, ϵ = ±1


with the induced action on H1 × C given by−1 0 0

0 1 0
0 0 1

 :(τ1, τ2) 7→ (τ1,−τ2);1 m n
0 1 0
0 0 1

 :(τ1, τ2) 7→ (τ1, τ2 +mτ1 + n);

1 0 0
0 a b
0 c d

 :(τ1, τ2) 7→ ((aτ1 + b)(cτ1 + d)−1, τ2(cτ1 + d)−1).

This shows that P ′′(F1)\(H1 × C× {0}) ∼= K◦(1).

Remark 4.4.3. There is no priori reason to believe that ∂̄F1(Ag) is isomorphic to the re-
spective compactified Kummer modular surfaces, although it indeed is. We will prove this
later.

4.4.2 Degree Zero Boundary Component

Now we consider the standard boundary component F0.
We have

P ′(F0) =

{(
I2 S
0 I2

)∣∣∣∣tS = S

}
∼= Sym(2,R); V (F ) = {I}.

Hence the partial quotient map e(F0) : H2 → P ′(F0)\H2 ⊂ (C∗)3 = X (F0) is given by(
τ1 τ2
τ2 τ3

)
7→ (exp(2πiτ1), exp(2πiτ2), exp(2πiτ3)).

In this case, the partial quotient X(F0) is contained in a trivial torus bundle whose base is
just a point and whose fibre is a 3-dimensional algebraic torus.

Note that

Gh(F0) = {I}, Gl(F0) =

{(
tQ−1 0
0 Q

)∣∣∣∣Q ∈ GL(2,Z)
}
, Ru(P(F0)) = P ′(F0).

The group P (F0) consists of matrices(
tQ−1 0
0 Q

)(
I2 S
0 I2

)
.
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Let π : P (F0)→ GL(2,Z) be defined by

π

((
tQ−1 0
0 Q

)(
I2 S
0 I2

))
= Q.

Then the map π identifies the quotient group P ′′(F0) = P (F0)/P
′(F0) with GL(2,Z). Let

ψ : P ′(F0)→ Sym(2,R) be defined by

ψ

(
I2 S
0 I2

)
= S.

The open cone C(F0) under the identification of ψ is Sym+(2,R). Under the identifications
π and ψ defined above, the action of P ′′(F0) on P ′(F0) is given by

Q · S = tQ−1SQ−1.

In this case, P ′′(F0) is isomorphic to P̄ (F0). Thus a P̄ (F0)-compatible fan is the same as a
P ′′(F0)-compatible fan.

We now define a fan Σ ∈ P ′(F0) to construct a normal toric variety TΣ = XΣ(F0) with
torus X (F0) ∼= (C∗)3. The group P ′(F0) of the one-parameter subgroups of X (F0) is generated
by (

1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
in the lattice Sym(2,Z) under the identification of ψ.

Definition 4.4.4. Let σ3 ⊂ Sym(2,R) be the 3-dimensional simplicial cone

σ3 = R≥0

(
1 0
0 0

)
+ R≥0

(
1 1
1 1

)
+ R≥0

(
0 0
0 1

)
.

The Legendre decomposition ΣL is the set of cones in Sym(2,R) which consists of all
GL(2,Z)-translates of σ3 with all their faces.

Our current goal is to show that

Theorem 4.4.5. The Legendre decomposition ΣL is a P̄ (F0)-admissible fan.

We can regard Sym+(2,R) as the space of positive definite binary quadratic form S =(
a b
b c

)
giving the quadratic forms φ(x1, x2) = (x1, x2)S

t(x1, x2) = ax21+2bx1x2+cx
2
2. Recall

GL(2,Z) acts on Sym+(R) by contragredient congruence, i.e., h ∈ GL(2,Z) acts by h(S) =
th−1Sh−1. It is indeed a integral change of basis: If (x1, x2) 7→ h((x1, x2)) = (x1, x2)h

−1, then
S 7→ h(S). Sometimes we use quadratic forms to denote cones. For example, the cone σ3
can be written as ⟨x21, (x1 + x2)

2, x22⟩.
We discuss more general cases. There is a one-to-one correspondence between quadratic

forms and symmetric bilinear forms on a real vector space. Regard a quadratic form φ as a
symmetric bilinear form and set

ker(φ) = {v ∈ V | φ(v, w) = 0 for all w ∈ V }.

It’s easy to see the following.
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Proposition 4.4.6. Let V be a finite-dimensional inner product space over R with a fixed
orthonormal basis. Then there is a one-to-one correspondence between Sym+(V ), the space
of positive semi-definite forms on V , and

{(W,φ′) | W is a subspace of V and φ′ ∈ Sym+(W )}

given by
φ 7→ (W = ker(φ)⊥, φ′ = φ|W ).

Moreover, this correspondence is equivariant with respect to the action of GL(V ) given by

h(φ) = th−1φh−1, h(W,φ′) = (Wh−1, th−1φh−1|Wh−1).

Remark 4.4.7. (i) If φ has rank r, then W has dimension r. Fix a subspace W of V ,
Sym+(W ) forms a boundary component of the open homogeneous cone Sym+(V ).
Hence, we can write

Sym+(V ) =
∐

W : subspace of V

Sym+(W ).

(ii) Now assume that V = VZ⊗Z R for some lattice VZ. Then a rationally defined subspace
W of V determines a rational boundary component Sym+(W ) of Symrc

+(V ). Hence

Symrc
+(V ) =

∐
W :rationally defined

subspace of V

Sym+(W ).

Return to our situation. Every cone σ ̸= 0 in the Legendre decomposition ΣL is spanned
by one, two, or three rational rays on the boundary of Sym+(2,R), that is, by 1-dimensional
cones of the form R≥0φ, where φ is a positive semi-definite, but not definite, symmetric
matrix with rational (or integral) coefficients. If W is a 1-dimensional subspace of R2, then
for any two elements in Sym+(W ), they are proportional by a positive real number. We have
a one-to-one correspondence{

R≥0φ (rational) ray of positive
semi-definite forms of rank 1 on R2

}
⇔

{
W 1-dimensional (rationally defined)

subspace of R2

}
We can use the 1-dimensional subspaces to index rational rays.

Definition 4.4.8. Given a pair (a, b) of relative prime integers, (a, b) ̸= (0, 0). We label
by (a, b) the rational ray R≥0φa,b on the boundary of the cone Sym+(2,R), where the form
φ(a, b) corresponds to the 1-dimensional subspace ker(φa,b) = (a, b)⊥. Up to a positive scalar,
the form φa,b is

φa,b =

(
a2 ab
ab b2

)
.

Remark 4.4.9. The index is equivariant in the sense that for any Q ∈ GL(2,Z), we have
Q(φa,b) =

tQ−1φa,bQ
−1 = φa′,b′ , where (a′, b′) = (a, b)Q−1.

Using reduction theory, we can find the fundamental domain in Sym+(2,R) with respect
to the action of GL(2,Z).
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Figure 8: The Legendre Decomposition

Theorem 4.4.10 (Legendre). Every positive definite binary quadratic form is equivalent
under GL(2,Z) to a unique form(

a b
c d

)
, 0 < a ≤ c, 0 ≤ b ≤ a/2.

We call such a form reduced.

Proof. See [12, Theorem 3.120].

We may represent the Legendre decomposition by taking its intersection with a sphere
around the origin of Sym(2,R) as in Figure 8. The triangle marked as F̄ is the intersection
of the fundamental domain with the sphere.

Proof of Theorem 4.4.5. We prove this by means of triangle groups.

Definition 4.4.11. Let l,m, n be integers greater than or equal to 2. A triangle group
T (l,m, n) is a group of motions of the hyperbolic plane generated by the reflections along
the sides of a triangle with angles π/l, π/m and π/n.

Give the disk the Poincaré metric, substitute geodesics for the straight lines we have drawn
and consider the simplicial complex obtained by taking the first barycentric subdivisions of
all simplices. We obtain the tesselation of the disk by fundamental domains for the triangle
group T (3, 2,∞), see Figure 9.

By Theorem 4.4.10, we have a fundamental domain for the action of GL(2,Z) on quadratic
forms which is indicated as F̄ in Figure 8. We then have an identification of GL(2,Z) with
T (3, 2,∞). Let σ̄3 be the intersection of the cone σ3 with the sphere, which is the triangle
with vertices (0, 1), (0, 1) and (1, 1). The group T (3, 2,∞) acts on the disk in such a way that
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Figure 9: Tesselation for T (3, 2,∞)

any translate g(σ3), g ∈ T (3, 2,∞) either coincides with σ̄3 (by reflection through the dotted
line in σ̄3) or has one common edge with σ3 (by reflection through the edges of σ̄3), or has just
one common vertex with σ̄3. Consequently, each cone g(σ3) ∈ ΣL, g ∈ GL(2,Z) ∼= T (3, 2,∞),
either coincides with σ3, or intersects σ3 in a proper face of σ3. This suffices to show that ΣL

is a fan.
Now we prove the GL(2,Z)-admissibility. Since F is a fundamental domain, every point

in C(F0)
rc is in the image of some GL(2,Z)-translate of F , and hence of σ3.

Restricting our attention to the solid lines, we obtain the tesselation of the disk by funda-
mental domains of the triangle group T (∞,∞,∞), see Figure 10. Since F̄ is one-sixth of the
fundamental domain σ̄3 of T (∞,∞,∞), the group T (∞,∞,∞) is index 6 in GL(2,Z). The
quotient GL(2,Z)/T (∞,∞,∞) is indeed isomorphic to S3, which is generated by reflections
along the sides of F̄ . The triangle group T (∞,∞,∞) also acts freely on ΣL. Thus the action
of GL(2,Z) preserves ΣL.

By the definition and the analysis above, we have 4 orbits of ΣL, which are by

σ0 = {0}, σ1 =

{(
0 0
0 λ

)∣∣∣∣λ ≥ 0

}
, σ2 =

{(
λ1 0
0 λ2

)∣∣∣∣λ1, λ2 ≥ 0

}
, σ3.

In the spirit of Proposition 4.1.11, we discuss the correspondence between the adjacencies
of the boundary components of C(F0) and of boundary components of D2.

Proposition 4.4.12. Let l be an isotropic line. Denote by F (l) the corank 1 (degree 1)
boundary component associated to the line l. The correspondence between the rational rays
R≥0φa,b lying on the boundary of Sym+(2,R) and corank 1 boundary components F (l) to
which F0 is adjacent to is given by

R≥0φa,b ⇔ l = Q(0, 0, a, b)
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Figure 10: Tesselation for T (∞,∞,∞)

and this correspondence is P (F0)-equivariant.

Proof. Regard C(F0) as Sym+(2,R). By Proposition 4.1.11 (ii), every rational ray R≥0φa,b,
(a, b) ̸= (0, 0) corresponds to a corank 1 rational boundary component F of D2 such that
F0 ≺ F .

First R≥0φ0,1 = (C(F0)
rc ∩ P ′(F1))

◦ and l(0,1) = U(F1) = Q(0, 0, 0, 1). So the ray R≥φ0,1

corresponds to l(0,1) = Q(0, 0, 0, 1). Now for any pair (a, b) ∈ Z2 with gcd(a, b) = 1, we can
find Q ∈ GL(2,Z) such that (a, b) = (0, 1)Q−1. Then Q(R≥0φ0,1) = R≥0Q(φ0,1) = R≥0φa,b.

Let h ∈ P (F0) be such that it has the form(
tQ−1 0
0 Q

)(
I2 S
0 I2

)
where S is chosen arbitrarily such that tS = S, then

h(C(F0)
rc ∩ P ′(F1)) = C(F0)

rc ∩ h(P ′(F1)) = C(F0)
rc ∩ P ′(h(F1)).

Also note that U(h(F1)) = U(F1)h
−1 = Q(0, 0, 0, 1)h−1 = Q(0, 0, a, b) since (0, 0, 0, 1)h−1 =

(0, 0, a′, b′) where (a′, b′) = (0, 1)Q−1 = (a, b).

Proposition 4.4.13. (i) The normal toric variety TΣL
defined by the Legendre decompo-

sition ΣL is smooth.

(ii) The partial compactification YΣL
(F0) in the direction of F0 has at worst quotient sin-

gularities.

Proof. (i.) The cone σ3 is generated by the basis(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
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of the lattice Sym(2,Z), hence the toric variety Tσ is smooth by the discussion in
Example 2.3.16. Since each h ∈ GL(2,Z) induces an isomorphism h : Tσ3 → Th(σ3), all
toric varieties Th(σ3) are smooth, hence the identification space TΣL

of Th(σ3) is smooth.

(ii.) By Proposition 4.1.13, the group P ′′(F ) acts properly discontinuously on XΣL
(F0) =

TΣL
. And YΣL

(F0) is an open subset of the quotient space. Thus YΣL
(F0) has at worst

quotient singularities.

Use m1,m2,m3 to denote the three generators in the character lattice M ∼= Sym(2,Z) of
the torus T = P ′(F )⊗ C/P ′(F ):(

1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
.

Recall the orbit-cone correspondence gives us a stratification of a toric variety. There are four
cones up to the permutation of GL(2,Z), which are σ0, σ1, σ2, σ3 as discussed in the proof of
Theorem 4.4.5. These four cones give four orbits:

(i) σ0 = {0}, σ⊥
0 ∩M = M , hence O(σ0) ∼= Hom(σ⊥

0 ∩M,C∗) ∼= {(t1, t2, t3) | t1, t2, t3 ̸=
0} ∼= T.

(ii) σ1 =

{(
0 0
0 λ

)∣∣∣∣λ > 0

}
, σ⊥

1 ∩M = Zm1 + Zm2, hence O(σ1) ∼= Hom(σ⊥
1 ∩M,C∗) ∼=

{(t1, t2, 0) | t1, t2 ̸= 0} ∼= (C∗)2.

(iii) σ2 =

{(
λ1 0
0 λ2

)∣∣∣∣λ1, λ2 ≥ 0

}
, σ⊥

2 ∩M = Zm2, hence O(σ2) ∼= Hom(σ⊥
2 ∩M,C∗) ∼=

{(0, t2, 0) | t2 ̸= 0} ∼= C∗.

(iv) σ3, σ
⊥
3 ∩M = {0}, hence O(σ3) ∼= {(0, 0, 0)} ∼= (C∗)0.

Among all these four cones, only σ2 and σ3 contain positive definite symmetric matrices,
hence we have

OF0 =
∐

h∈GL(g,Z),σ∈{σ2,σ3}

O(h(σ)).

The open boundary component is

∂F0(A2) = P ′′(F )\OF0 = Stab(σ3)\O(σ3)⨿ Stab(σ2)\O(σ2)

where Stab(σ) = {h ∈ GL(2,Z) | h(σ) = σ} for σ = σ2 or σ3.
AsO(σ3) is just a point, there is nothing to quotient out. We mainly look at Stab(σ2)\O(σ2).

By the analysis of the GL(2,Z)-action on the fan ΣL in Theorem 4.4.5, we know that Stab(σ2)
contains the elements ±I2, which act on the fan ΣL trivially, and the reflection of σ̄3 along
the edge connecting the vertices (1, 0) and (0, 1), which is

±
(
1 0
0 −1

)
.
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Proposition 4.4.14. The elements ±
(
1 0
0 −1

)
act on the torus O(σ2) = by z 7→ z−1.

Proof. Let z denote the coordinate corresponding to the generator

(
0 1
1 0

)
of the character

lattice σ⊥
2 ∩M of the torus O(σ2). The cocharacter lattice is also generated by

(
0 1
1 0

)
. The

two elements act on the generator of the cocharacter lattice by

th−1

(
0 1
1 0

)
h−1 = −

(
0 1
1 0

)
, h = ±

(
1 0
0 −1

)
which corresponds to the morphism z 7→ z−1 by the discussion in the last part of Subsection
2.4.

The open boundary component ∂F0(A2) is {0} ∪ (C∗/ ∼) where z ∼ z−1. We can also
view it as a projective line quotient by its involution z 7→ z−1, which is isomorphic to P1.

4.4.3 Gluing and Summary

We can define a Sp(4,Z)-admissible collection of fans: if F = h(Fi) for some h ∈ Sp(4,Z),
then let Σ(F ) = h(Σ(Fi)). It is independent of the choice of h. It suffices to check that if
h(Fi) = Fi for some h ∈ P (Fi) and Fi a standard rational boundary component, h(Σ(Fi)) =
Σ(Fi). As P̄ (Fi) = Gl(Fi) ∩ Sp(4,Z) = Aut(P ′(Fi)) ∩ Sp(4,Z), h(Σ(Fi)) = Σ(Fi) as Σ(Fi) is
P̄ (Fi)-admissible. It’s also easy to check the condition (c) in Definition 4.1.14 holds so that
the collection of fans is admissible.

We proceed a bit further to more general cases.

Proposition 4.4.15. To do the toroidal compactification of Dg in the case of Γ = Sp(2g,Z),
giving an Sp(2g,Z)-admissible collection of fans is equivalent to giving a GL(g,Z)-admissible
fan in Sym(g,R).

Proof. First, for the standard boundary component F0, we have

P ′(F0) ∼= Sym(g,R) and P̄ (F ) ∼= GL(g,Z).

Hence a P̄ (F )-admissible fan in P ′(F0) is a GL(g,Z)-admissible fan in Sym(g,R).
Suppose we have an admissible collection Σ̃. For any rational boundary component F ,

there exists an h ∈ Sp(2g,Z) such that F = h(Fi). Then

Σ(F ) = Σ(h(Fi)) = h(Σ(Fi)) = h(Σ(F0) ∩ P ′(Fi)).

Then a P̄ (F )-fan in P ′(F ) is determined by Σ(F0). Conversely, given a GL(G,Z)-admissible
fan in Σ(F0), we have an admissible collection Σ̃ by its definition.

Remark 4.4.16. It is an old problem in reduction theory to find an explicit decomposition
of Sym+(n,R) invariant under GL(n,Z). For higher dimensions, it is also important to find
a fundamental cone σ like σ3 in this subsection. When n ≤ 3, Sym+(n,R) is the union
of all tranlates γσ of σ where γ ∈ GL(n,Z) and σ is the fundamental cone. For n ≥ 4,
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we need more cones. There are at least three widely-used decompositions: Perfect cone
decomposition (also known as the 1st Voronoi decomposition), Central cone decomposition,
and Second Voronoi decomposition. For more details, we refer to [2, II.6] or [20, §8].

We give a detailed description of the gluing map in Proposition 4.1.17. Note that due to
Proposition 4.1.20, it suffices to discuss gluing maps on standard boundary components.

Proposition 4.4.17. (i.) The gluing maps π(F2, F ) where F is a rational boundary com-
ponent can be described as compositions

π(F2, F ) : XΣ(F2)(F2) = H2 ↠ P ′(F2)\H2 ↪→ XΣ(F )(F )

(ii.) The image of XΣ(F1)(F1) under the gluing map π(F1, F0) is contained in the affine toric

variety Tξ ⊂ XΣL
(F0) where ξ is the cone R≥0

(
0 0
0 1

)
.

(iii.) The gluing map π(F1, F0) is obtained at the restriction to XΣ(F1)(F1) of the composition
of the exponential map

e′(F1) : XΣ(F1)(F1) ∼= H1 × C× C→ C∗ × C∗ × C
e′(F1)(τ1, τ2, t3) = (exp(2πiτ1), exp(2πiτ2), t3)

with the natural inclusion Tξ ↪→ TΣL
.

Proof. (i.) Since π(F2, F ) extends the map π0(F2, F ) : H2 → X(U), there is a commutative
diagram

H2 = XΣ(F2)(F2) XΣ(F )(F )

H2 = X(F2) X(F ) = P ′(F )\H2

π(F2,F )

||

π0(F2,F )

and π0(F2, F ) is the quotient by the action of the group P ′(F ).

(ii.) We are following the construction of Proposition 4.1.17. In this case F ′ corresponds to
F1 and F corresponds to F0, so T

′ ∼= C∗ and T ∼= (C∗)3. The fans are Σ(F0) = ΣL and

Σ(F1) = {{0}, ξ} where ξ = R≥0

(
0 0
0 1

)
.

Note that X (F0) is a T -bundle over a single point, hence X (F0) = TΣL
. As a conse-

quence, the quotient map in Proposition 4.1.17 is

Π(F1, F0) : XΣ(F1)(F1)→ P ′(F0)\XΣ(F1)(F1) ⊂ TΣ(F1) = Tξ ⊂ TΣL
.

Thus the image of π(F1, F0) lies in the open subset Tξ of TΣL
.

(iii.) follows easily by the discussion of (ii.).
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Proposition 4.4.18. The open boundary component ∂F1(A2) is the image of the open Kum-
mer modular surface K◦(1) under an embedding f ◦ : K◦(1) ↪→ A2. This map f ◦

0 extends to
an analytic map f : K(1)→ A2

Proof. The first statement has been proved in Proposition 4.4.2.
The proof of Proposition 4.4.2 shows that the embedding f ◦ is induced by an embedding f̃ ◦

of H1 × C into XΣ(F1)(F1), that is, there is a commutative diagram

H1 × C XΣ(F1)(F1)

K◦(1) A2

f̃◦

mod SL(2,Z)⋉Z2 mod ∼

f◦

.

The map f ◦ is also induced by the embedding of the image π(F1, F0)(f̃
◦(H1 × C)) into

XΣL
(F0). By Proposition 4.4.17, the map from H1 × C to π(F1, F0)(f̃

◦(H1 × C)) coincides
with the quotient map defined by the action of P ′ on H1 × C, where P ′ is defined in (5)

P ′ =


1 0 n
0 1 b
0 0 1

∣∣∣∣∣∣n, b ∈ Z

 .

This gives a natural action of the group

P ′′ =


1 m 0
0 ϵ 0
0 0 ϵ

∣∣∣∣∣∣m ∈ Z, ϵ = ±1


defined in (6) on π(F1, F0)(f̃

◦(H1×C)). We can identify π(F1, F0)(f̃
◦(H1×C)) with D∗×C∗

where D∗ = {z ∈ C | 0 < |z| < 1}. We have a commutative diagram

D∗ × C∗ XΣL
(F0)

P ′′\D∗ × C∗ A2

f̂◦

mod P ′′

f◦

.

Denote by YΣ the interior of the closure of D∗ × C∗ in TΣ defined by the fan Σ as shown in
Figure 5. The partial compactification of K◦(1) over the cusp ∞ is P ′′\YΣ.

We now extend the embedding f̂ ◦ to an embedding f̄ ◦ : YΣ ↪→ XΣL
(F0).

By Proposition 4.4.17, the image f̂ ◦(D∗ × C∗) lies in O(ξ) contained in the boundary of
XΣL

(F0) ⊂ TΣL
, T = (C∗)3. Consider the closure of O(ξ) in TΣL

. It is isomorphic to TStar(ξ),
a nomal toric varieties arising from the fan

Star(ξ) = {σ̄ ⊂ N(ξ)R | ξ ⪯ σ ∈ Σ}.

Choose the three matrices (
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
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as a basis. Then Star(ξ) is determined by the projections of cones σ ∈ ΣL onto the plane
generated by the first two elements in the basis. It is easy to see that Star(ξ) is the same as
the fan constructed in Figure 5. Thus we may extend f̂ ◦ to an embedding f̄ ◦ as follows:

YΣ XΣL
(F0)

P ′′\YΣ A2

f̄◦

mod P ′′ mod ∼

∃?

It remains to be seen that f̄ ◦ is an equivariant map such that the above diagram commutes.
For this, we need to verify that the stabilizing subgroup of ξ in GL(2,Z) is isomorphic to P ′′

such that f̄ ◦ is an equivariant map. The stabilizing subgroup of ξ in GL(2,Z) is of the form

Stab(ξ) =

{
Q ∈ GL(2,Z)

∣∣∣∣Q ∈ (
±1 Z
0 1

)}
from which the claim follows.
Thus we have extended f ◦ to a map f : K(1) ↪→ A2. The image f(K(1)) is contained and

dense in ∂̄F1(A2) = ∂F1(A2). Then we have f(K(1)) = ∂̄F1(A2) since both are closures of
f ◦(K(1)) = ∂F1(A2).

To summarize, we have the toroidal compactification of A2 as a set

A2 = A2 ∪ (K◦(1)) ∪ P1

The map φ : A2 → A∗
2 from the toroidal compactification of A2 to the Satake compactification

of A2 is given as φ−1(A0) = P1, φ−1(A1) = K0(1) and φ−1(A2) = A2 Take the closure of
K◦(1) in A2, we get the boundary of A2: A2 − A2 = K(1). Moreover, it can be shown that
A2 is a projective variety (cf. [12, Proposition 3.151]).
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A Complex Analytic Spaces

In this appendix, we compile various results on algebraic varieties over C, complex analytic
spaces, and their correspondences as described in [10]. Additionally, we discuss the quotients
of complex analytic spaces, referencing the works [7], [21], and [23].

Definition A.0.1. A complex analytic space is a ringed space (X,OX) which admits an
open covering U such that each (U,OU) is isomorphic, as a locally ringed space, to the
following locally ringed space (Y,OY ): Let D ⊂ Cn be the polydisc {|zi| < 1|i = 1, ..., n},
let f1, ..., fq are holomorphic functions on U , let Y ⊆ D be the closed subset with respect to
the usual topology consisting of the common zeros of f1, ..., fq and take OY to be the sheaf
OD/(f1, ..., fq) where OD is the sheaf of holomorphic functions on D.

If X is a scheme of finite type over C, we can define the associated complex analytic
space Xh. We can cover X by open affines Yi = SpecAi. Then Ai is an algebra of finite
type over C, hence we can write Ai = C[x1, ..., xn]/(f1, ..., fq) where f1, ..., fq are polynomials
which can be regarded as holomorphic functions on Cn. Then their set of common zeros is
a complex analytic subspace (Yi)h. Use the same glueing data as we glued Yi to X, we can
glue the analytic spaces (Yi)h into an analytic space Xh.

The construction is functorial. We denote the functor from the category of schemes of
finite type over C to the category complex analytic spaces as h.

For the coherent sheaves F on X, we can also define the associated coherent analytic
sheaf Fh. Since the sheaf F is coherent on a locally noetherian scheme X, it is locally finite
presentable

Om
U

φ−→ On
U → F .

Since the topology on Xh is finer than the Zariski topology, Uh is open in Xh. Hence we have

Om
Uh

ϕh−→ On
Uh
→ Fh → 0.

We list a few factors about the relationship between a scheme x and its associated analytic
space Xh.

• X is separated over C if and only if Xh is Hausdorff.
• X is connected in the Zariski topology if and only if Xh is connected in the usual
topology.

• X is reduced if and only if Xh is reduced.
• X is smooth over C if and only if Xh is a complex manifold.
• X is proper over C If and only if Xh is compact.

The main theorem in Serre’s paper GAGA is

Theorem A.0.2 (Serre). Let X be a projective scheme over C. Then the functor h induces
an equivalence of categories from the category of coherent sheaves on X to the category of
coherent analytic sheaves on Xh. Furthermore, for every coherent sheaf F on X, the natural
maps

αi : H
i(X,F)→ H i(Xh,Fh)

are isomorphisms, for all i.
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Serre also obtains a new proof of a theorem of Chow:

Theorem A.0.3 (Chow). If X is a compact analytic subspace of the complex manifold Pn
C,

then there is a subscheme X ⊂ Pn with Xh = X.

Using Theorem A.0.2, one can also prove that

Corollary A.0.4. If X and X ′ are two projective scheme schemes such that Xh
∼= X ′

h, then
is X ∼= X ′.

Now we discuss the quotients of complex analytic spaces.
Let G be a group acting on a complex analytic space X. The quotient X/G, endowed

with the quotient topology, naturally admits the structure of a ringed space. Let π : X→ G
be the canonical projection. Then by definition OX/G(U), for U ⊂ X/G open, is the set of
functions f : U → C, for which f ◦ π is is an element of OX(π

−1U).

Definition A.0.5. A group G acts properly discontinuously on a complex analytic space X
if for all compact sets K ⊂ X the set

{γ ∈ G : γ(K) ∩K ̸= ∅}

is finite.

Remark A.0.6.

(a) The condition implies that the isotropy groups

Gx := {γ ∈ G : γ(x) = x}

are finite for all x ∈ X.

(b) Replacing K by the union of two compact sets K and L and noting that γ(K)∩L is a
subset of γ(K ∪ L) ∩ (K ∪ L), this leads to the following equivalent definition: G acts
properly discontinuously on X, if for all compact sets K,L ⊂ X, the set

{γ ∈ G : γ(K) ∩ L ̸= ∅}

is finite.

(c) Under this condition, one can show that for all x ∈ X, there exist neighborhoods Ux of
x such that

γ(Ux) = Ux, ∀γ ∈ Gx; γ(Ux) ∩ Ux = ∅, ∀γ ∈ G/Gx.

Theorem A.0.7 (cf. [7, Theorem A.6,Corollary A.7.]). Let X be a complex analytic space
and G be a group acting properly discontinuously on X. The orbit space X/G is also a complex
analytic space. If X is normal, so is X/G. If X is a complex manifold and G is a group acting
free and properly discontinuously on X, the quotient X/G is also a complex manifold.

Remark A.0.8. The complex analytic spaces that are locally equivalent to orbit spaces are
called “complex V -manifolds”(cf.[21]) .
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Definition A.0.9 (cf. [21]). A singularity that is isomorphic to a singularity of a quotient
X/G of a complex manifold X by a properly discontinuously action of a group G is called a
quotient singularity. Singularities represented by pairs(X, p) with X a complex V -manifold
and p ∈ X are called V -germs.

Theorem A.0.10 (cf. [21, p. 379] and [23, Theorem 8.10]). Each quotient singularity is
isomorphic to a quotient Cn/G at the origin, where G is a finite subgroup of GL(n,C). We
call (Cn/G, τ(0)) where τ : Cn → Cn/G the standard model of the singularity.
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