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Chapter 0

Introduction

A moduli problem can often be translated to the problem of constructing a certain type
of quotient. In his book [DK94] David Mumford uses ideas from classical invariant
theory to construct these quotients. In particular Mumford shows that for the action of a
reductive group on a scheme 𝑋 we can construct quotients for the locus of (semi-)stable
points 𝑋 𝑠(𝑠) ⊂ 𝑋. Moreover, Mumford provides a numerical criterion for identifying
these (semi-)stable points.

In the paper [Alp13] Jarod Alper introduces the notion of a good moduli space which
generalizes ideas from geometric invariant theory to the setting of algebraic stacks. One
of the main objectives of this text is to introduce the notion of a good moduli space and
discuss its properties.

In the first chapter we will start by giving some background on moduli spaces and
invariant theory, then we introduce some of the main results in geometric invariant theory.
In the second chapter we will introduce the notion of an algebraic stack and develop
the theory necessary for the chapters that follow. In chapter three we will introduce the
notion of a good moduli space, state some of its properties and work out an example. In
particular we will show that there is a correspondence between good moduli for certain
quotient stacks and good quotients. Chapter four will revolve around a recent existence
criterion for good moduli spaces given by Jarod Alper, Daniel Halpern-Leistner and
Jochen Heinloth in the article [AHH23]. In this article, Alper, Halpern-Leistner and
Heinloth show that the existence of a good moduli space for an algebraic stack depends
on the algebraic stack satisfying a pair of valuative criteria. We start the chapter off by
discussing so called filterations and a result on these filtrations given by Daniel Halpern-
Leistner in his paper [Hal22], this result will prove to be a useful in the rest of the text.
Then we introduce the valuative criteria and we conclude the chapter by discussing the
main ideas used in proving the existence result and give an outline of its proof. For our
last chapter we return to geometric invariant theory, namely we discuss a generalization
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to algebraic stacks of Mumfords numerical criterion for determining the (semi-)stability
of points, given by Jochen Heinloth in his article [Hei18]. Notably, we will show that for
a quotient stack, the stability of its points corresponds to the classical notion of stability.

Acknowledgements: I would like to express my gratitude to Carel Faber for his su-
pervision of this project and providing me with feedback on previous versions of this
document. I was allowed to choose my own subject and completely free to steer in any
direction that I found interesting. This has made the writing of this thesis extremely
enjoyable and undoubtedly the most valuable learning experience in my mathematics
education. Also, following Professor Faber’s excellent course on invariant theory played
a large role in my choosing of the subject for this project. I am also grateful to Martijn
Kool for acting as second reader. Lastly I want to thank my family for their support
throughout my studies.
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Chapter 1

Moduli spaces and GIT

Throughout this chapter the word scheme will mean an algebraic scheme over a field
𝑘 = 𝑘, i.e., a finite type scheme over an algebraically closed field 𝑘, and point will mean
closed point, or equivalently 𝑘-point, i.e., read mSpec instead of Spec whenever this is
convenient. An algebraic group will be a finite type group scheme. The main references
for this chapter are [Hos16] and [DK94] but there are many others which are cited
throughout the text and included in the bibliography.

1.1 Moduli spaces
In the first section of this chapter we will introduce some of the basic notions in moduli
theory and explain the connection between moduli spaces and quotients.

1.1.1 Moduli problems
In this first subsection we want to introduce some basic concepts in moduli theory. To
give a moduli problem classifying algebro-geometric objects of our choice we need to
give a notion of families of such objects over a scheme and a notion of equivalence of
such families. These notions have to be tailored to the moduli problem at hand, we do
however have the following general requirements.

1. The equivalence classes of families over the ground field correspond to the equiva-
lence classes of the objects of interest;

2. There is a notion of pullback, i.e., for every morphism of schemes 𝜑 : 𝑆′ → 𝑆 there
is a map sending the class of a family over 𝑆, [𝐹/𝑆] to the class of a family over
𝑆′, [(𝜑∗𝐹)/𝑆′]; we require this map to be a functor.
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Definition 1.1.1. A moduli problem is a presheaf M : Sch𝑜𝑝/𝑘 → Set, defined by:

1. 𝑆 ↦→M(𝑆) := {Families over 𝑆}/∼𝑆;

2. (𝜑 : 𝑆′ → 𝑆) ↦→M(𝜑) : M(𝑆) →M(𝑆′), M(𝜑) [𝐹/𝑆] = [(𝜑∗𝐹)/𝑆′] .

Definition 1.1.2. We say that a scheme 𝑀 is a fine moduli space for a moduli problem
M if it represents the moduli problem. If such a fine moduli space exists the family over
𝑀 corresponding to the identity morphism 𝑖𝑑𝑀 is called the universal family.

A fine moduli space as a solution for our moduli problem is the ideal scenario, this
however is often too much to ask for. One possible obstruction to the existence of
such a solution is that the moduli problem simply has no family over some scheme
which parametrizes all the objects, if this is the case we say that our moduli problem is
unbounded.

Another example of an obstruction to the existence of a fine moduli space is the existence
of a non trivial family which is fiberwise trivial, what this means is explained in the
following lemma.

Lemma 1.1.3. Let M : Sch𝑜𝑝/𝑘 → Set be a moduli problem and 𝑆 a variety with
structure map 𝜋 : 𝑆→ Spec(𝑘) and a family F ∈M(𝑆). Assume

1. F is non-trivial, i.e., M is not equal to 𝜋∗𝐹 for some 𝐹 ∈M(𝑘); and

2. F is fiberwise trivial, i.e., F𝑠 ≃ F𝑠′ for all 𝑠, 𝑠′ ∈ 𝑆.

Then M does not admit a fine moduli space.

Proof. We argue by contradiction, let 𝑀 ∈ Sch/C and suppose that [ : M → 𝑀 is a
natural isomorphism and denote the universal family by U . Then since F is fiberwise
trivial and [ is an isomorphism there exists a unique point 𝑚 ∈ 𝑀 (𝑘) such that for all
𝑠 ∈ 𝑆(𝑘), [(𝑠∗F) = 𝑚. Since 𝑆 is a variety and therefore reduced the map [(F) : 𝑆→ 𝑀

has the following factorization

𝑆 𝑀

Spec(𝑘)

[(F )

𝜋
𝑚

where 𝜋 : S → Spec(𝑘) denotes the structure morphism. This follows from the fact that
[(F) is constant and equal to 𝑚 so that we can apply the basic result which says that if
𝑓 : 𝑋 → 𝑌 is a morphism of schemes, 𝑋 is reduced and 𝑓 (𝑋) ⊂ 𝑍 ⊂ 𝑌 where 𝑍 ⊂ 𝑌 is
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a closed subscheme then 𝑓 factors through 𝑍, see [Stacks, Tag 0356]. Now we get the
following identifications

[F] = [[(F)∗U] = [(𝑚 ◦ 𝜋)∗U] = [𝜋∗(𝑚∗U)],

this contradicts F being non-trivial. □

As noted and illustrated by the above obstructions, (interesting) moduli problems are
often not represented in the category of schemes. In order to deal with this unfortunate
reality two possible strategies are

1. Instead of requiring our moduli problem to be equivalent to a scheme, ask for some
weaker form of equivalence;

2. Ask for representability in a larger category.

This first chapter revolves around the first strategy, we will now clarify what we mean by
”weaker form of equivalence”.

Definition 1.1.4. We say that a scheme 𝑀 is a coarse moduli space for a moduli problem
M if there exists a natural transformation [ : M→ 𝑀 such that

1. for every algebraically closed field 𝑘 the families over Spec(𝑘), M(𝑘) are in
bijection with the 𝑘−points in 𝑀 (Spec(𝑘));

2. for any scheme 𝑀′ and natural transformation 𝜓 : M→ 𝑀′ there exists a unique
morphism of schemes 𝑓 : 𝑀 → 𝑀′ filling in the commutative diagram

M 𝑀′

𝑀

[

𝜓

∃! 𝑓

A family 𝐹/𝑀 such that for every point 𝑚 ∈ 𝑀 the fiber 𝐹𝑚 is in the class of M
corresponding to the point 𝑚 is called a tautological family.

1.1.2 Moduli spaces and quotients
In this subsection we will introduce different notions for quotients of schemes and
show that the question of constructing a coarse moduli space for some moduli problem
can under some conditions be translated to a question about the construction of such
quotients.
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Definition 1.1.5. Let 𝐺 be an algebraic group acting on a scheme 𝑋. We say that a
morphism of schemes 𝑓 : 𝑋 → 𝑌 is a categorical quotient if

1. 𝑓 is 𝐺-invariant;

2. for any𝐺-invariant morphism 𝑔 : 𝑋→ 𝑍 there exists a unique morphism ℎ :𝑌 → 𝑍

filling in the commutative diagram

𝑋 𝑍

𝑌

𝑓

𝑔

∃!ℎ

If the preimage of each 𝑘-point in 𝑌 is a single orbit then 𝑓 is called an orbit space.

A stronger notion of quotient is the so called good quotient introduced by Seshadri.

Definition 1.1.6. [Ses72, Def. 1.5, 1.6] Let 𝐺 be an algebraic group acting on a scheme
𝑋. We say that a morphism of schemes 𝜑 : 𝑋 → 𝑌 is a good quotient if

1. 𝜑 is a surjective, affine 𝐺-invariant morphism.

2. 𝜑∗(O𝑋)𝐺 ≃O𝑌 .

3. For any pair of closed, disjoint 𝐺-invariant subsets 𝑋1, 𝑋2 ⊂ 𝑋 we have that
𝜑(𝑋1) ∩𝜑(𝑋2) = ∅.

If 𝜑 is a good quotient and for all 𝑥1, 𝑥2 ∈ 𝑋

𝑓 (𝑥1) = 𝑓 (𝑥2) ⇐⇒ 𝐺 · 𝑥1 = 𝐺 · 𝑥2

we say that 𝜑 is a geometric quotient.

We often use the term good quotient for the codomain of a good quotient as in the above
definition.

Remark. It is not too difficult to prove that given the surjectivity of 𝜑 the third condition
in the definition of a good quotient is equivalent to requiring that 𝜑 is closed on invariant
subsets and that the images of disjoint invariant subsets are disjoint. The only part
of the argument that requires a little work is showing that condition 3 implies that 𝜑
is closed on 𝐺-invariant closed subsets. The argument for this part goes as follows:
assume that𝑊 ⊂ 𝑋 is a 𝐺-invariant closed subset such that 𝜑(𝑊) ⊂ 𝑌 is not closed. Then
𝜑(𝑊) \𝜑(𝑊) contains a closed point 𝑦 and by surjectivity of 𝜑, the closed 𝐺-invariant
subset 𝜑−1(𝑥) is non-empty, this however is in contradiction with our assumed condition
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3 since𝑊 and 𝜑−1(𝑥) are 𝐺-invariant, closed and disjoint but the closures of their images
are not as they both contain 𝑥.

Another important observation is that the definition of good and geometric quotients
is local in the sense that if 𝜑 is a good (resp. geometric quotient) then for any open
subset 𝑈 ⊂ 𝑌 the restriction 𝜑 |𝜑−1 (𝑈) : 𝜑−1(𝑈) →𝑈 is as well and if 𝜑 is 𝐺-invariant,
{𝑈𝑖}𝑖∈𝐼 is an open cover for 𝑌 and the restrictions 𝜑 |𝜑−1 (𝑈𝑖) : 𝜑−1(𝑈𝑖) → 𝑈𝑖 are good
(resp. geometric) quotients then 𝜑 is one as well.

Proposition 1.1.7. [Hos16, Prop. 3.30] If 𝜑 : 𝑋 → 𝑌 is a good quotient for the action of
an algebraic group on a scheme 𝑋 then it is a categorical quotient.

Lemma 1.1.8. Let 𝐺 be an affine algebraic group acting on a scheme 𝑋 and 𝜑 : 𝑋 → 𝑌

a good quotient. Then for every 𝑥1, 𝑥2 ∈ 𝑋

𝜑(𝑥1) = 𝜑(𝑥2) ⇐⇒ 𝐺 · 𝑥1 ∩𝐺 · 𝑥2 ≠ ∅.

Proof. If 𝐺 · 𝑥1 ∩𝐺 · 𝑥2 ≠ ∅ then since 𝜑 is 𝐺-invariant it is constant on orbits and
therefore by continuity also on orbit closures, it follows that 𝜑(𝑥1) = 𝜑(𝑥2). On the other
hand if 𝐺 · 𝑥1 ∩𝐺 · 𝑥2 = ∅ then by the third property in the definition of a good quotient
the images of these sets must be disjoint so that the opposite claim holds as well. □

Motivated by the above lemma, for a good quotient 𝜑 : 𝑋 → 𝑌 we can introduce an
equivalence relation on the set of 𝑘-points of 𝑋 so that the equivalence classes of 𝑋 (𝑘)
under this relation are in bijective correspondence with the 𝑘-points of our good quotient,
this relation between geometric points is called 𝑆-equivalence. To make this more precise
the 𝑆-equivalence relation denoted ∼𝑆 is defined by

𝑥1 ∼𝑆 𝑥2 ⇐⇒ 𝐺 · 𝑥1 ∩𝐺 · 𝑥2 ≠ ∅ for 𝑥1, 𝑥2 ∈ 𝑋 (𝑘).
It is easily verified using the previous lemma that for a good quotient this defines an
equivalence relation on the 𝑘-points in the domain and that the induced map on equiva-
lence classes of points is well-defined and a bijection. After reading the second section
in this chapter also see [Ses77, Prop. 9] and [SS10, Cor. 3.4.6.].

Before we give the relation between quotients and coarse moduli, we first need to define
a certain type of family for a moduli problem.

Definition 1.1.9. Let M denote a moduli problem. We say that a family 𝐹/𝑆 has the
local universal property if for any other family 𝐹′ over a scheme 𝑆′ and for any point
𝑠′ ∈ 𝑆′ there exists a neighborhood 𝑈 of 𝑠′ in 𝑆′ and a morphism 𝜑 :𝑈 → 𝑆 such that
[𝐹′|𝑈] = [𝜑∗𝐹] ∈M(𝑈).
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Proposition 1.1.10. [Hos16, Prop 3.35],[New78, Prop. 2.13] Let M denote a moduli
problem and 𝐹/𝑆 a family with the local universal property. Suppose that 𝐺 is an
algebraic group acting on 𝑆 such that two points 𝑝1, 𝑝2 ∈ 𝑆 lie in the same 𝐺−orbit if
and only if the fibers 𝐹𝑝1 and 𝐹𝑝2 are equivalent. Then

1. any coarse moduli space induces a categorical quotient;

2. a categorical quotient is a coarse moduli space if and only if it is an orbit space.

Proof. To prove this we start by showing that for a scheme 𝑀 there is a bijective corre-
spondence between natural transformations [ : M→ 𝑀 and 𝐺−invariant morphisms
𝜑 : 𝑆→ 𝑀. We define this correspondence as follows: given a natural transformation [
then [𝑆 ( [𝐹]) ∈ 𝑀 (𝑆) defines a 𝐺−invariant morphism since for any two points 𝑠, 𝑠′ ∈ 𝑆
which lie in the same 𝐺−orbit, by naturality of [, we have

[𝑆 ( [𝐹]) (𝑠) = [𝑘 ( [𝐹𝑠]) = [𝑘 ( [𝐹′
𝑠]) = [𝑆 ( [𝐹]) (𝑠′).

On the other hand given a 𝐺−invariant morphism 𝜑 : 𝑆→ 𝑀 and a family 𝐻/𝑆′ by the
local universal property there exists an open cover {𝑈𝑖} of 𝑆′ and morphisms 𝜑𝑖 :𝑈𝑖 → 𝑆

such that [𝐻 |𝑈𝑖
] = [𝜑∗

𝑖
𝐹] for every 𝑖. For points in the intersection 𝑢 ∈𝑈𝑖 ∩𝑈 𝑗 , we have

that

[𝐹𝜑𝑖 (𝑢)] = [(𝜑∗𝑖 𝐹)𝑢] = [𝐻𝑢] = [(𝜑∗𝑗𝐹)𝑢] = [𝐹𝜑 𝑗 (𝑢)]
and therefore that 𝜑𝑖 (𝑢) and 𝜑 𝑗 (𝑢) lie in the same 𝐺−orbit. Now since 𝑓 is 𝐺−invariant
it follows that 𝑓 ◦𝜑𝑖 and 𝑓 ◦𝜑 𝑗 agree on the intersections𝑈𝑖 ∩𝑈 𝑗 and therefore can be
glued to form a morphism [′

𝑆
( [𝐻]) : 𝑆′ → 𝑀. The natural transformation associated to

these morphisms defines an inverse.

Now for the first item if we are given a coarse moduli space [ : M→ 𝑀, then [𝑆 ( [𝐹]) :
𝑆→ 𝑀 is 𝐺−invariant and by the second defining property for coarse moduli spaces,
given another 𝐺−invariant morphism [′

𝑆
( [𝐹]) : 𝑆→ 𝑀′ associated to a natural transfor-

mation [′ : M→ 𝑀′ there exists a unique morphism 𝑓 : 𝑀 → 𝑀′ such that [′
𝑆
( [𝐹]) =

𝑓 ◦[𝑆 ( [𝐹]), thus [𝑆 ( [𝐹]) is a categorical quotient.

For the second statement we claim that a categorical quotient [𝑆 ( [𝐹]) is an orbit space if
and only if it is a bijection on 𝑘-points.

Namely, suppose that [𝑆 ( [𝐹]) is an orbit space, then for all 𝑚 ∈ 𝑀 (𝑘) there exists a
unique orbit 𝐺 · 𝑠 ⊂ 𝑆(𝑘) such that [𝑆 ( [𝐹]) (𝐺 · 𝑠) = 𝑚. It follows that for all 𝑚 ∈ 𝑀 (𝑘)
and 𝑠 ∈ 𝑆(𝑘)
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[𝑘 ( [𝑠∗𝐹]) = 𝑚 ⇐⇒ 𝑠 ∈ 𝐺 · 𝑠.
Now since for any pair 𝑠1, 𝑠2 ∈ 𝐺 · 𝑠 we have that [𝑠∗1𝐹] = [𝑠∗2𝐹] we can conclude that
for all 𝑚 ∈ 𝑀 (𝑘) there exists a unique family [𝑠∗𝐹] ∈M(𝑘) such that [𝑘 ( [𝑠∗𝐹]) = 𝑥.

For the opposite implication suppose that [𝑘 : M(𝑘) → 𝑀 (𝑘) is a bijection then for all
𝑚 ∈ 𝑀 (𝑘) there exists a unique family [𝐻] ∈M(𝑘) such that [𝑘 ( [𝐻/𝑘]) = 𝑚. Now let
𝑠1, 𝑠2 ∈ [𝑆 ( [𝐹])−1(𝑚) then

𝑚 = [𝑆 ( [𝐹]) (𝑠1) = [𝑘 ( [𝑠∗1𝐹]) = [𝑘 ( [𝑠
∗
2𝐹]) = [𝑆 ( [𝐹]) (𝑠2).

It follows that [𝑠∗1𝐹] = [𝐻] = [𝑠∗2𝐹] and therefore that 𝑠1 and 𝑠2 lie in the same 𝐺-
orbit. □

The above result gives us a straightforward way to construct moduli spaces and allows
us to take a moduli problem and translate it to a question about quotients. To sum up
these first two sections, given a class of algebro-geometric objects, e.g., curves, abelian
varieties etc., we can attempt to answer the question of classification by applying the
following steps:

1. Formulate the moduli problem, i.e., give a well-defined notion of families of
objects, pullbacks of families and equivalence of families.

2. Restrict the problem to a solvable subclass of objects.

3. Find a scheme 𝑆 which has a family over it satisfying the local universal property
and a group action on 𝑆 satisfying the requirements of the proposition.

4. Construct a geometric quotient of 𝑆.

In the next section of the first chapter of this text we will shift our attention to constructing
quotients.
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1.2 Geometric Invariant Theory
As explained in the previous chapter one strategy for constructing moduli spaces is
to convert it to a question about quotients. This latter object is where one of the key
concepts in this paper comes into play, namely David Mumford’s geometric invariant
theory. Simply put geometric invariant theory tells us that for the action of a certain type
of group good and geometric quotients exist as well as gives us a method for constructing
these quotients.

The ”invariant theory” in GIT comes from the fact that on affine patches quotients are the
spectra of invariants of the coordinate ring of the affine patches and the study of invariant
rings is what the classical subject, invariant theory is about. In the upcoming section
we will introduce the reader to the types of groups that are used for constructing GIT
quotients and give some important results concerning invariant rings under the action of
these groups.

After having introduced these basics about groups and invariants, we will give the main
results in GIT starting with the affine case for constructing quotients, which essentially
form the building blocks for the more general cases.

1.2.1 The Invariant Theory of Reductive Groups
In this section we will introduce a class of groups whose actions are suitable for con-
structing quotients, we will give an important, perhaps the most important result, in
classical invariant theory which says that under a suitable action of such a group the
algebra of invariants for a finitely generated algebra over a field is finitely generated.

Definition 1.2.1. Let 𝐺 be an affine algebraic group over an algebraically closed field 𝑘.
We say that

• 𝐺 is linearly reductive if the functor Rep(𝐺) → Vect𝑘 , 𝑉 → 𝑉𝐺 taking a 𝐺-
representation to its 𝐺-invariants is exact.

• 𝐺 is reductive if 𝐺 is smooth and every smooth, connected, unipotent, normal,
algebraic subgroup of 𝐺 is trivial.

• 𝐺 is geometrically reductive if for every finite dimensional linear representation
𝐺 → GL𝑛 (𝑉) and every non-zero invariant 𝑣 ∈ 𝑉𝐺 there exists a non-constant
𝐺-invariant homogeneous polynomial 𝑓 ∈O(𝑉) (:= Sym∗(𝑉)) such that 𝑓 (𝑣) ≠ 0.

Remark. These definitions can be adapted to more general settings, in the third chapter
we will see one such generalization for the notion of linear reductivity.

12



Linearly reductive groups can be characterized in many equivalent ways, we will now
list some of these characterizations.

Proposition 1.2.2. [Hos16, Prop. 4.14.],[Alp24, App. B.1.34.] Let 𝐺 be an affine
algebraic group over an algebraically closed field. Then the following are equivalent:

1. 𝐺 is linearly reductive.

2. Every finite dimensional linear representation decomposes as a direct sum of
irreducible representations.

3. The functor Rep 𝑓 𝑑 (𝐺) →Vect𝑘 , 𝑉→𝑉𝐺 taking a finite dimensional𝐺-representation
to its 𝐺-invariants is (right-)exact.

4. Given a finite dimensional linear representation 𝐺→ GL(𝑉), for any 𝐺-invariant
subspace 𝑉 ′ ⊂ 𝑉 there is a subrepresentation 𝑉 ′′ ⊂ 𝑉 such that 𝑉 =𝑉 ′⊕𝑉 ′′.

5. For any finite dimensional linear representation𝐺→ GL(𝑉) and every 0 ≠ 𝑣 ∈𝑉𝐺 ,
there exists a 𝐺-invariant linear form 𝑓 :𝑉 → 𝑘 such that 𝑓 (𝑣) ≠ 0.

Moreover, for a smooth affine algebraic group over an algebraically closed field the
different notions of reductivity are connected in the following way, in char. 𝑝 > 0 we
have the implications

linearly reductive =⇒ reductive ⇐⇒ geometrically reductive

and in char. 0 the three notions are equivalent. See [DK94, App. A] for a short history of
these results and a proof of the second equivalence, note that for Mumford an algebraic
group is by definition smooth. Some examples are the following.

Example 1.2.3. 1. The algebraic groups (G𝑚)𝑛 are linearly reductive for every 𝑛.

2. Any finite group of order not divisible by the characteristic of 𝑘 is linearly reductive.

3. For 𝑛 > 1 GL𝑛, PGL𝑛,SL𝑛 and SP2𝑛 are reductive but not linearly reductive in
characteristic 𝑝 > 0.

4. The additive group G𝑎 is not reductive.

Remark. In fact, Nagata showed in his 1961 paper on the complete reducibility of
rational representations of a matrix group [Nag61, Thm. 2], that in characteristic 𝑝 > 0
linearly reductive smooth algebraic groups are precisely the groups for which the identity
component 𝐺0 is a torus and the quotient 𝐺/𝐺0 is of finite order not divisible by 𝑝.
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We will now state the result about finite generation of invariant algebras.

Theorem 1.2.4. Let 𝐺 be a linearly reductive group acting rationally on a finitely
generated 𝑘-algebra 𝐴. Then 𝐴𝐺 is finitely generated.

Remark. It has been known for a long time that this result is also true in the case of a
reductive group in positive characteristic, see [DK94, Thm. A.1.1]. In the 1964 paper
titled Invariants of a group in an affine ring [Nag64] Nagata showed that this result holds
in the semi-reductive case, semi-reductive is the terminology used by Nagata for what
we call geometrically reductive, and therefore by the statement above in the reductive
case. Then in the 1979 article on Hilbert’s theorem on invariants [Pop79] Popov goes on
to show that reductivity is in fact equivalent to the finite generation of invariant algebras.

We will not give a rigorous proof of this theorem, instead we will discuss some of the
ideas used. The main ingredient in the proof of the theorem is the following notion.

Definition 1.2.5. For the action of a group on a 𝑘-algebra 𝐴, a Reynolds operator is a
𝐺-invariant linear map 𝑅𝐴 : 𝐴→ 𝐴𝐺 which is a projection, i.e., the restriction of this
map to the invariant algebra is the identity.

One of the properties of linearly reductive groups is that if such a group is acting on an
affine variety then there exists a unique Reynolds operator for the action on the coordinate
ring [DK15, Thm. 2.2.5], the following is a concrete example in the case of the action of
a one-dimensional torus, i.e., the multiplicative group.

Example 1.2.6. [DK15, Example 2.2.4] Consider the action of G𝑚 on an affine algebraic
group Spec(𝐴). There is a coaction 𝜌# : 𝐴→ 𝐴[𝑦, 𝑦−1], 𝑓 ↦→∑

𝑖 𝑓𝑖𝑦
𝑖 and the map 𝑅𝐴 :

𝐴→ 𝐴𝐺 , 𝑓 ↦→ 𝑓0 defines a Reynolds operator.

We will now discuss the general structure of the argument. First we reduce to the case
of a linear action of a polynomial algebra. Since the action of the algebra is assumed to
be rational there exists a 𝐺-invariant vector subspace 𝑉 of 𝐴 containing a set of algebra
generators for 𝐴. Thus there is a surjection 𝑘 [𝑉] ≃ 𝑘 [𝑥1, . . . , 𝑥𝑛] → 𝐴 and by exactness
of taking invariants for linearly reductive groups the map 𝑘 [𝑉]𝐺 → 𝐴𝐺 is surjective as
well so that it is sufficient to prove the finite generation of 𝑘 [𝑉]𝐺 .

Now let 𝐼 denote the ideal in 𝑘 [𝑉] generated by all homogeneous invariants of positive
degree (> 0), then by Hilbert’s basis theorem this ideal is finitely generated, thus we
can write 𝐼 = ( 𝑓1, . . . , 𝑓𝑟) with 𝑓1, . . . , 𝑓𝑟 ∈ 𝑘 [𝑉]𝐺 . Then the theorem follows from the
claim that 𝑘 [𝑉]𝐺 is generated by the 𝑓𝑖 as a 𝑘-algebra. Proving the claim is done by an
induction argument on the degree and use of the Reynolds operator, see [DK15, Thm.
2.2.10] for details.
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Moreover if 𝑓1, . . . , 𝑓𝑟 ∈ 𝑘 [𝑉] is any set of homogeneous generators for the ideal 𝐼 then
𝑅𝐴 ( 𝑓1), . . . , 𝑅𝐴 ( 𝑓𝑟) form a set of generators for the invariant algebra, see [DK15, Prop.
4.1.1]. We will use this statement later in the construction of an algorithm for computing
invariant rings.

1.2.2 Affine GIT quotient
In this subsection we will prove that the action of a reductive group on an affine scheme
has a good quotient. In preparation of the proof we will state two results.

Lemma 1.2.7. [Hos16, Lemma 4.29] Let 𝐺 be a reductive group acting on an affine
scheme 𝑋. If 𝑊1 and 𝑊2 are disjoint 𝐺-invariant closed subsets of 𝑋, then there is an
invariant function 𝑓 ∈ O𝑋 (𝑋)𝐺 which separates these sets, i.e.,

𝑓 (𝑊1) = 0 and 𝑓 (𝑊2) = 1.

Lemma 1.2.8. [New78, Lemma 3.4.2] Let 𝐺 be a reductive group acting rationally on a
finitely generated 𝑘-algebra 𝑅. If 𝑓1, . . . , 𝑓𝑛 ∈ (∑𝑛

𝑖=1 𝑓𝑖𝑅) ∩𝑅𝐺 , then 𝑓 𝑟 ∈ ∑𝑛
𝑖=1 𝑓𝑖𝑅

𝐺 for
some positive integer 𝑟.

In addition to there being a good quotient for the action of a reductive group on an affine
scheme, there also is a subset of so called stable points of the scheme for which there is a
geometric quotient.

Definition 1.2.9. Let 𝐺 be a reductive group acting on an affine scheme 𝑋. We say that
a point 𝑥 ∈ 𝑋 (𝑘) is stable if its 𝐺-orbit is closed in 𝑋 and dim𝐺 · 𝑥 = dim𝐺.

We will now give the main result for this subsection.

Theorem 1.2.10. Let 𝐺/𝑘 be a reductive group acting (rationally) on an affine algebraic
scheme 𝑋/𝑘, over an algebraically closed field 𝑘. Consider the map 𝜑 : 𝑋 → 𝑋//𝐺 :=
SpecO𝑋 (𝑋)𝐺 induced by the inclusion 𝜑# : O𝑋 (𝑋)𝐺 ↩→O𝑋 (𝑋). Then

1. 𝑋//𝐺 is an affine scheme of finite type over 𝑘.

2. 𝜑 is a good quotient.

3. 𝑋 𝑠 ⊂ 𝑋 is an open 𝐺−invariant subset and 𝑋 𝑠/𝐺 := 𝜑(𝑋 𝑠) is an open subset of
𝑋//𝐺 such that 𝜑−1(𝜑(𝑋 𝑠)) = 𝑋 𝑠 .

4. The restriction 𝜑 |𝑋𝑠 → 𝑋 𝑠/𝐺 is a geometric quotient.
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Proof. Since 𝐺 is a reductive group it follows from our earlier discussion that O𝑋 (𝑋)𝐺
is a finitely generated 𝑘-algebra and therefore that 𝑋//𝐺 is an affine scheme of finite
type over 𝑘 .

To prove the second item we will show that 𝜑 satisfies the defining properties of a good
quotient. Since 𝜑 is induced by the inclusion map it is 𝐺-invariant and affine, and since
we are working with a finite type affine scheme over an algebraically closed field, by
Chevalley’s theorem it is sufficient to show surjectivity on 𝑘-points.

Let 𝑚𝑦 be the maximal ideal in O𝑋 (𝑋)𝐺 corresponding to a point 𝑦 ∈ 𝑋//𝐺 (𝑘). By
Hilbert’s basis theorem the algebra O𝑋 (𝑋)𝐺 is noetherian, thus we can choose a finite
number of generators 𝑓1, . . . , 𝑓𝑛 for 𝑚𝑦 .

Since 𝐺 is reductive it follows from [New78, Lemma 3.4.2] that

𝑛∑︁
1
𝑓𝑖O𝑋 (𝑋) ≠O𝑋 (𝑋),

namely the lemma tells us that if 𝑓 ∈ (∑𝑛
𝑖=1 𝑓𝑖O𝑋 (𝑋)) ∩O𝑋 (𝑋)𝐺 , then 𝑓 𝑟 ∈ 𝑚𝑦 for some

positive integer 𝑟, but since 𝑚𝑦 is a maximal ideal there exists some element in its
complement such that all powers of this element are also in the complement. Now by the
lemma this is an invariant element that is not contained in the ideal

∑𝑛
𝑖=1 𝑓𝑖O𝑋 (𝑋).

We see that the ideal ( 𝑓1, . . . , 𝑓𝑛) ∈ O𝑋 (𝑋) does not generate the ring itself and therefore
must be contained in some maximal ideal 𝑚𝑥 ∈ O𝑋 (𝑋) associated to a point 𝑥 ∈ 𝑋 (𝑘).
In particular the 𝑓𝑖 are contained in the maximal ideal associated to the point 𝑥, therefore
𝑓𝑖 (𝑥) = 0 for 𝑖 = 1, . . . , 𝑛; it follows that 𝑚𝑦 ⊂ 𝜑(𝑚𝑥) and hence that 𝑓 (𝑥) = 𝑦.

Next we want to show that the map O𝑋//𝐺 → (𝜑∗O𝑋)𝐺 is an isomorphism. Note that it
suffices to show this on the basis of distinguished open subsets

{(𝑋//𝐺) 𝑓 : 𝑓 ∈ O𝑋//𝐺 (𝑋//𝐺) =O𝑋 (𝑋)𝐺}.

Using that localization by G-invariant functions commutes with taking G-invariants, this
is Exercise 5.12 in [M F69], we obtain the sequence of isomorphisms

O𝑋//𝐺 ((𝑋//𝐺) 𝑓 ) ≃ (O𝑋 (𝑋)𝐺) 𝑓 ≃ (O𝑋 (𝑋) 𝑓 )𝐺 ≃O𝑋 (𝑋 𝑓 )𝐺 ≃O𝑋 (𝜑−1((𝑋//𝐺) 𝑓 ))𝐺 .
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It follows that the map 𝜑#
𝑈 𝑓

is a surjection for every 𝑓 ∈ O𝑋 (𝑋)𝐺 , and therefore an
isomorphism.

Lastly we want to show that for a pair of disjoint𝐺-invariant closed subsets𝑉1,𝑉2 ⊂ 𝑋 the
closures of the images 𝜑(𝑉1) and 𝜑(𝑉2) are disjoint. By [Hos16, Lemma 4.29] there ex-
ists a 𝐺−invariant global section 𝑓 ∈ O𝑋 (𝑋)𝐺 such that 𝑓 (𝑉1) = 0 and 𝑓 (𝑉2) ≠ 0. Since
O𝑋 (𝑋)𝐺 =O𝑋//𝐺 (𝑋//𝐺), 𝑓 defines a regular function on 𝑋//𝐺 which separates the sub-
spaces 𝜑(𝑉1), 𝜑(𝑉2) ⊂ 𝑋//𝐺. Now it follows from basic topology that 𝜑(𝑉1) ∩𝜑(𝑉2) = ∅

Restricting our attention to the stable subset we first want to show that 𝑋 𝑠 ⊂ 𝑋 is an open
𝐺−invariant subset. Since we are working with a finite type scheme over an algebraically
closed field the set of closed points is a dense subset, therefore it is sufficient to show
that for every point 𝑥 ∈ 𝑋 𝑠 (𝑘) there is an open neighborhood of 𝑥 in 𝑋 which lies in 𝑋 𝑠 .
By semicontinuity of the dimension of stabilizers [Hos16, Prop.3.21] we have that the
set 𝑉 := {𝑥 ∈ 𝑋 : dim𝐺𝑥 > 0} is a closed subset of 𝑋. Let 𝑥 ∈ 𝑋 𝑠 then as before there
exists a 𝐺−invariant function 𝑓 ∈ O𝑋 (𝑋)𝐺 separating the 𝐺−invariant closed subsets
𝑉 and 𝐺 · 𝑥, such that 𝑓 (𝑉) = 0 and 𝑓 (𝐺 · 𝑥) ≠ 0. It follows that 𝑥 is contained in the
distinguished open subset 𝑋 𝑓 . Now we want to show that 𝑋 𝑓 ⊂ 𝑋 𝑠, i.e., that its points
have closed orbits and zero dimensional stabilizers. By construction 𝑋 𝑓 ∩𝑉 = ∅, thus we
only have to check that orbits are closed. We argue by contradiction. Let 𝑦 ∈ 𝑋 𝑓 (𝑘) be a
point with non-closed orbit and 𝑧 ∈ 𝐺 · 𝑦 \𝐺 · 𝑦. Then by 𝐺-invariance of 𝑓 , we have that
𝑧 ∈ 𝑋 𝑓 ⊂ 𝑋 \𝑉. However since by [Hos16, Prop. 3.15], 𝐺 · 𝑦 \𝐺 · 𝑦 is the union or orbits
of strictly lower dimension we must have that dim𝐺 · 𝑧 < dim𝐺 · 𝑦, this is contradictory
because

dim𝐺 · 𝑧 = dim(𝐺) −dim(𝐺𝑧) = dim(𝐺) = dim(𝐺 · 𝑦).
Consequently 𝑋 𝑠 is an open subset of 𝑋 which can be covered by subsets of the form
𝑋 𝑓 . Again using the fact that localization by 𝐺−invariant functions commutes with
taking invariants we have that 𝜑(𝑋 𝑓 ) = (𝑋//𝐺) 𝑓 is open in 𝑋//𝐺 and therefore that
𝜑(𝑋 𝑠) ⊂ 𝑋//𝐺 is open and that 𝑋 𝑓 = 𝜑−1((𝑋//𝐺) 𝑓 ).

To conclude we want to show that 𝜑|𝑋𝑠 → 𝑋/𝐺 is a geometric quotient, i.e., that the
preimage of every point is a single orbit. Note that by our earlier discussion the restriction
�̃� := 𝜑 |𝑋𝑠 → 𝑋/𝐺 is a good quotient and that the action of𝐺 on 𝑋 𝑠 is closed. To conclude
we again argue by contradiction, let 𝑉1,𝑉2 be two distinct closed orbits in the preimage
of some point 𝑦 ∈ 𝑋/𝐺, then since �̃� is a good quotient their images must be disjoint.
We conclude that �̃� is a geometric quotient. □
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1.2.3 Some examples and an algorithm for computing invariants
In this section we want to give some examples of affine GIT-quotients, there are simple
cases in which calculating invariant rings is an easy task, but as the variety or scheme with
which we are working becomes more complex the task of computing its corresponding
invariant ring becomes exponentially more difficult. We are in luck however, since there
are mathematicians who have adopted the computational aspect of invariant theory as the
subject of their research, we will discuss one of the many results in this area of study and
apply it to one of our examples. Throughout this section we work over the field 𝑘 := C.

We start off this section by computing two simple examples which can easily be done by
hand.

Example 1.2.11. For our first example consider the action of the multiplicative group
G𝑚 on the affine line A1 given by the usual multiplication. Let us first determine its
invariant ring, take a function 𝑓 (𝑥) :=

∑𝑛
𝑖=0 𝑐𝑖𝑥

𝑖 ∈ 𝑘 [𝑥] then 𝑔 ∈ G𝑚 acts on 𝑓 by

(𝑔 · 𝑓 ) (𝑥) = 𝑓 (𝑔−1𝑥) =
𝑛∑︁
𝑖=0
𝑥𝑐𝑖𝑔

−𝑖𝑥𝑖,

then it is clear that the only invariant polynomials are those of degree 0 so that OA1 (A1)G𝑚 ≃
𝑘. It follows that there is a good quotient A1 → 𝑘.

Furthermore, one easily observes that there are precisely two G𝑚-orbits: the origin and
the punctured affine line, as depicted in Figure 1.1.

Figure 1.1: G𝑚-orbits of A1

The origin is the only point with a closed orbit, it is not stable however, since its stabilizer
is positive-dimensional, therefore the stable locus is empty.

Example 1.2.12. For our next example consider the action of the multiplicative group
G𝑚 on the affine plane A2 given on points by 𝑔 · (𝑥, 𝑦) = (𝑔𝑥,𝑔−1𝑦). A function in the
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coordinate ring is of the form 𝑓 (𝑥) :=
∑
𝑖, 𝑗 𝑐𝑖 𝑗𝑥

𝑖𝑦 𝑗 ∈ 𝑘 [𝑥, 𝑦], an element 𝑔 ∈ G𝑚 acts on
𝑓 by

(𝑔 · 𝑓 ) (𝑥) = 𝑓 (𝑔−1(𝑥, 𝑦)) =
𝑛∑︁
𝑖=0
𝑐𝑖 𝑗𝑔

𝑗−𝑖𝑥𝑖𝑦 𝑗 ,

thus the polynomial invariants are those of the form
∑
𝑖 𝑐𝑖 (𝑥𝑦)𝑖 so that OA2 (A2)G𝑚 ≃

𝑘 [𝑥𝑦] . It follows that there is a good quotient A2 → A1.

In this case there are four types of orbits the punctured axes, the conics and the origin, as
depicted in Figure 1.2.

Figure 1.2: G𝑚-orbits of A2

Note that the closed orbits are the conics and the origin, the conics are the closed
subvarieties given by equations of the form 𝑥𝑦−𝑐 where 𝑐 ∈ 𝑘 \0.Again, the origin clearly
does not have a zero-dimensional stabilizer, the conics however do have zero-dimensional
stabilizers therefore the stable locus is given by the open subset (A2)𝑠 = (A2)𝑥𝑦 and its
image under the quotient map is isomorphic toA1 \ {0}, thus there is a geometric quotient
(A2)𝑥𝑦 → A1 \ {0}.

We will now give Derksen’s algorithm for computing invariants for linearly reductive
groups [Der99]. Recall from our discussion of the proof for the finite generation of
invariant algebras that finding generators for the algebra of invariants can be done by
finding a set of generators for the ideal 𝐼N generated by all the homogeneous invariants
of (strictly) positive degree and applying the Reynolds operator to the generators, note
that if these generators are already invariants then application of the Reynolds operator is
not necessary.

Suppose that 𝑉 is an 𝑛-dimensional rational representation for a linearly reductive
algebraic group 𝐺 with coordinate ring 𝑘 [𝑥1, . . . , 𝑥𝑠]/𝐼𝐺 where 𝐼𝐺 := (𝑔1, . . . , 𝑔𝑟) then
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the linear action of an element 𝑔 ∈ 𝐺 on the space 𝑘𝑛 given by the coordinates v =

𝑣1, . . . , 𝑣𝑛 ∈ 𝑉 is defined

𝑔 ·v := (𝑎𝑖 𝑗 (𝑔))1≤𝑖, 𝑗≤𝑛 (v)𝑡

where 𝑎𝑖 𝑗 ∈O𝐺 (𝐺). Next consider the closed subset Γ of 𝐺 ×𝑉 ×𝑉 with coordinate ring

OΓ (Γ) = 𝑘 [x,v,w]/𝐼Γ, 𝐼Γ := (𝑔1, . . . , 𝑔𝑟 ,𝑤𝑖 −
𝑛∑︁
𝑗=1
𝑎𝑖 𝑗𝑣𝑖 𝑗 )1≤𝑖≤𝑛

where v = 𝑣1, . . . , 𝑣𝑛 and take 𝐵 to be the closure of the projection of Γ ⊂ 𝐺 ×𝑉 ×𝑉
onto 𝑉 ×𝑉. Then 𝐵 is given by the ideal 𝐼𝐵 = 𝐼Γ ∩ 𝑘 [v,w], this intersection can be
calculated by using Gröbner bases, namely if 𝑆 is a Gröbner basis for 𝐼Γ with respect
to a monomial ordering on 𝑘 [x,v,w] such that the 𝑥𝑖 are larger than any monomial
in 𝑣1, . . . , 𝑣𝑛,𝑤1, . . . ,𝑤𝑛, then 𝑆∩ 𝑘 [v,w] is a Gröbner basis for 𝐼𝐵. Now suppose that
{ 𝑓1, . . . , 𝑓𝑡} ⊂ 𝑘 [v,w]1≤𝑖≤𝑛 is a Gröbner basis for 𝐼𝐵 then { 𝑓1(v,0), . . . , 𝑓𝑡 (v,0)} gener-
ates 𝐼N (see [Der99, Cor. 3.2]), thus {𝑅𝑘 [𝑉] ( 𝑓1(v,0)), . . . , 𝑅𝑘 [𝑉] ( 𝑓𝑡 (v,0))} are invariant
generators for 𝐼N . For a more complete treatment see [Der99] and [DK15, Chapt. 4], the
later reference also contains material on Gröbner bases.

This algorithm is implemented in the computer algebra system SINGULAR [Dec+24;
Bay24], we will use this in our next example.

Example 1.2.13. Consider the action of G𝑚, with OG𝑚
(G𝑚) = 𝑘 [𝑠, 𝑡]/(𝑠𝑡 −1), on the

variety 𝑋 := V(𝑥3𝑥4 − 𝑥1𝑥2𝑥3 + 𝑥3
1𝑥

2
2) ⊂ A

4 induced by the action given by the diagonal
matrix diag(𝑠2, 𝑡3, 𝑠, 𝑡). Then SINGULAR computes that the ideal 𝐼N for the action on
A4 is generated by the monomials {𝑥3𝑥4, 𝑥1𝑥

2
4, 𝑥1𝑥2𝑥3, 𝑥

2
1𝑥2𝑥4, 𝑥2𝑥

3
3, 𝑥

3
1𝑥

2
2} and since these

monomials are invariants there is no need to apply the Reynolds operator.

In order to compute the invariant ring for our variety 𝑋 we recall that taking invariants
by linearly reductive groups is exact, applying this fact to the exact sequence

0 → 𝐼 → 𝑘 [𝑥1, 𝑥2, 𝑥3, 𝑥4] → 𝑘 [𝑥1, 𝑥2, 𝑥3, 𝑥4]/𝐼 → 0
gives us the exact sequence

0 → 𝐼G𝑚 → 𝑘 [𝑥1, 𝑥2, 𝑥3, 𝑥4]G𝑚 → (𝑘 [𝑥1, 𝑥2, 𝑥3, 𝑥4]/𝐼)G𝑚 → 0
where 𝐼 is the ideal defining 𝑋 and 𝐼G𝑚 = 𝐼 ∩ 𝑘 [x]G𝑚 . It follows that

O𝑋 (𝑋)G𝑚 ≃ (𝑘 [𝑥1, 𝑥2, 𝑥3, 𝑥4]/𝐼)G𝑚 ≃ 𝑘 [𝑥1, 𝑥2, 𝑥3, 𝑥4]G𝑚/𝐼G𝑚 .

Now since 𝐼 is G𝑚-invariant we conclude by [Hos16, Lemma 4.24] that O𝑋 (𝑋)G𝑚 ≃
𝑘 [𝑥3𝑥4, 𝑥1𝑥

2
4, 𝑥1𝑥2𝑥3, 𝑥

2
1𝑥2𝑥4, 𝑥2𝑥

3
3, 𝑥

3
1𝑥

2
2]/𝐼 .
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1.2.4 Linearizations and the projective GIT quotients
Given the action of a reductive group 𝐺 on some projective space 𝑋 the strategy for
producing a quotient is the following, for a choice of very ample line bundle L we
can identify our projective space with the projective scheme associated to the algebra
𝑅(𝑋,L) :=

⊕
𝑛≥0𝐻

0(𝑋,L𝑛), i.e., obtained by the Kodaira embedding. And we want
there to be an induced action of 𝐺 on the algebra, this brings us to the notion of lineariza-
tion which we will discuss in this section.

Once we have made this identification and produced an action on the algebra there is a
natural mapping 𝑖 : 𝑅(𝑋,L)𝐺 ↩→ 𝑅(𝑋,L), this however does not necessarily induce a
morphism of schemes but rather a rational mapping, see [Stacks, Tag 01RS],

Proj(𝑅(𝑋,L)) d Proj(𝑅(𝑋,L)𝐺).
We recall that by definition Proj(𝑆) for some graded ring 𝑆 is the set of homogeneous
prime ideals of 𝑆 which do not contain all of 𝑆+ :=

⊕
𝑑>0 𝑆𝑑 . However, if we take an

element of Proj(𝑅(𝑋,L)) associated to a maximal ideal 𝑚 ∈ 𝑅(𝑋,L) then the point
𝑖−1(𝑚) ∈ 𝑅(𝑋,L)𝐺 might contain 𝑅(𝑋,L)𝐺+ , which is inconsistent with the definition
we just gave, see [GW20, Rem. 13.7] or [Stacks, Tag 01MX].

To solve this we remove the points for which this is the case so that we are left with the
points for which there is some section of 𝑅(𝑋)𝐺+ which does not evaluate to zero on the
point. These desirable points are called semi-stable and the restriction to the locus of
semi-stable points results in a representative of the rational map which is a good quotient.

We can further restrict to the so called stable locus which corresponds to the semi-stable
points with the additional requirement that the points have zero-dimensional stabilizers
and the open subsets defined by the non vanishing-locus of 𝐺-invariant sections have
closed actions. The restriction of the rational map to the stable locus mapping onto its
image gives a geometric quotient.

Now the quotient for the semi-stable locus which is the restriction of the rational map
we saw above is essentially given by a collection of affine quotients patched together,
by definition of semi-stability we can cover the semi-stable locus by the non-vanishing
loci of invariant sections, which are affine and whose images are the spectra of invariant
rings. In summary we have

𝑋 𝑠 𝑋 𝑠𝑠 𝑋

𝑖−1(𝑋 𝑠) Proj(𝑅(𝑋,L)𝐺)

geom.
good
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In the next section we will make the informal discussion above more precise, in particular
we will give a proof for the existence of a general (quasi projective) GIT quotient and
also generalize and make more precise the notion of (semi-)stability. We will dedicate
the remainder of this section to formalizing the notion of linearization.

Definition 1.2.14. Let 𝐺/𝑘 be an algebraic group over a field 𝑘 with multiplication
𝑚 : 𝐺 ×𝐺 → 𝐺 and an action 𝜌 : 𝐺 × 𝑋 → 𝑋 on a 𝑘−scheme 𝑋/𝑘. A 𝐺−linearization
is given by an invertible sheaf L on 𝑋 together with an isomorphism Φ : 𝜌∗L→ 𝑝∗2L,
where 𝑝2 : 𝐺 × 𝑋 → 𝑋 is the projection, satisfying the cocycle condition given by the
following commuting diagram:

(𝜌 ◦ (id𝐺 ×𝜌))∗L (𝑝2 ◦ (id𝐺 ×𝜌))∗L

(𝜌 ◦ (𝑚× 𝑖𝑑𝑋))∗L (𝜌 ◦ 𝑝23)∗L

(𝑝2 ◦ (𝑚× id𝑋))∗L (𝑝2 ◦ 𝑝23)∗L

(id𝐺 ×𝜌)∗Φ

(𝑚×id𝑋)∗Φ
𝑝∗23Φ

where 𝑝23 : 𝐺 ×𝐺 × 𝑋 → 𝐺 × 𝑋 is the projection onto the last two factors.

Remark. The above definition also has a geometric interpretation, namely a linearization
is also given by a geometric line bundle 𝜋 : 𝐿→ 𝑋 together with an isomorphism of line
bundles

𝜓 : 𝑝∗2𝐿→ 𝜌∗𝐿

with 𝑝2 and 𝜌 as in the definition, such that the composition

�̃� := 𝐺 × 𝐿
𝜓
→ 𝜌∗𝐿

𝑝2→ 𝐿

where 𝑝2 is the projection (𝐺 × 𝑋) ×𝜌,𝑋,𝜋 𝐿→ 𝐿, is a group action of 𝐺 on 𝐿. In particu-
lar one gets linear isomorphisms on the fibers 𝜓𝑔,𝑥 : 𝐿𝑥 → 𝐿𝑔·𝑥 .

One can check that under the equivalence of the categories of invertible sheaves and
geometric line bundles this definition corresponds to the definition for invertible sheaves,
see [DK94, Chapt. 1.3]. Furthermore the set of 𝐺-linearizations on a scheme 𝑋 modulo
𝐺-equivariant isomorphims of line bundles forms an abelian group which is denoted
Pic𝐺 (𝑋) and a 𝐺-equivariant morphism of schemes 𝑓 : 𝑋→𝑌 induces a homomorphism
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𝑓 ∗ : Pic𝐺 (𝑌 ) → Pic𝐺 (𝑋).

Example 1.2.15. Consider the trivial action of an affine algebraic group 𝐺 on Spec(𝑘)
and let L be the trivial line bundle over Spec(𝑘). Note that for Spec(𝑘) there is no
other choice of action or line bundle. Then interpreting L geometrically it is the trivial
line bundle 𝜋 : A1 → Spec(𝑘) and Pic𝐺 (Spec(𝑘)) ≃ 𝐻𝑜𝑚(𝐺,G𝑚). More concretely a
character 𝛼 : 𝐺→ G𝑚 induces an action 𝐺 ×A1 → A1, (𝑔, 𝑥) → 𝛼(𝑔) · 𝑥.

1.2.5 General GIT quotient
We begin this section by giving a precise definition of (semi-)stability.

Definition 1.2.16. Let 𝐺 be a reductive group acting on a quasi-projective scheme 𝑋 and
L ∈ Pic𝐺 (𝑋). Then we say that

1. 𝑥 ∈ 𝑋 (𝑘) is semi-stable with respect to L if there exists an invariant section
𝜎 ∈ L𝑛 (𝑋)𝐺 for some 𝑛 > 0 such that 𝜎(𝑥) ≠ 0 and 𝑋𝜎 is affine.

2. 𝑥 ∈ 𝑋 (𝑘) is stable with respect to L if dim𝐺𝑥 = 0 and there exists an invariant
section 𝜎 ∈ L𝑛 (𝑋)𝐺 for some 𝑛 > 0 such that 𝜎(𝑥) ≠ 0, 𝑋𝜎 is affine and the action
of 𝐺 on 𝑋𝜎 is closed, i.e., all the 𝐺-orbits are closed.

We denote the stable and semi-stable locus of 𝑋 with respect to L respectively by 𝑋 𝑠L
and 𝑋 𝑠𝑠L , we will often omit the linearization from the notation.

Remark. Our notion of stability is called proper stability in Mumford’s text on geomet-
ric invariant theory, in Mumford’s text for a point to be stable it does not have to have
zero-dimensional stabilizers.

Also note that when 𝑋 is projective and L is an ample linearization, then requiring that
the 𝑋𝜎 are affine is redundant.

Let us now state and prove one of the main results in GIT.

Theorem 1.2.17. [DK94, Thm. 1.10] Let 𝐺/𝑘 be a linearly reductive group acting on a
quasi-projective scheme 𝑋/𝑘 with respect to a linearization 𝐿. Then

1. There exists a good quotient 𝜑 : 𝑋 𝑠𝑠 → 𝑋//𝐿𝐺.

2. 𝑋 𝑠𝑠 and 𝑋//𝐿𝐺 are quasi-projective.

3. There exists an open subset (𝑋//𝐿𝐺)𝑠 ⊂ 𝑋//𝐿𝐺 such that �̃� : 𝑋 𝑠 = 𝜑−1((𝑋//𝐿𝐺)𝑠) →
(𝑋//𝐿𝐺)𝑠 is a geometric quotient.
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Proof. We construct our quotient by gluing affine quotients. By definition of semi-
stability with respect to 𝐿, for every 𝑥 ∈ 𝑋 there exists a section

𝜎𝑖 ∈ 𝐻0(𝑋, 𝐿⊗𝑟𝑖 )𝐺 , for some 𝑟𝑖 > 0

such that 𝑥 ∈ 𝑋𝜎 = {𝑥 ∈ 𝑋 : 𝜎(𝑥) ≠ 0} is affine. Hence by quasi-compactness of 𝑋 we
can cover 𝑋 by a finite number of affines 𝑋𝜎1 . . . 𝑋𝜎𝑛 .

Let 𝑚 =
∏
𝑖 𝑟𝑖 and 𝑚𝑖 =

∏
𝑗≠𝑖 𝑟 𝑗 , then 𝜎𝑚1

1 , . . . ,𝜎
𝑚𝑛
𝑛 ∈ 𝐿𝑚 and note that 𝑋𝜎𝑖 ⊂ 𝑋𝜎𝑚𝑖

𝑖
. De-

note the 𝜎𝑚𝑖

𝑖
by `𝑖 and consider the affine covering 𝑋`1 , . . . , 𝑋`𝑛 . Then by Theorem

1.2.10, there exist good quotients 𝜑𝑖 : 𝑋`𝑖 → 𝑋`𝑖//𝐿𝐺 for the action induced by 𝐺.

Now for every 1 ≤ 𝑖, 𝑗 ≤ 𝑛 consider the fractions `𝑖 𝑗 := ` 𝑗

`𝑖
which induce 𝐺−invariant

global sections of 𝑋`𝑖 and therefore by construction global sections of 𝑋`𝑖//𝐿𝐺, which
we will also denote by `𝑖 𝑗 . Now consider the sets (𝑋//𝐿𝐺)𝑖 𝑗 := {𝑦 ∈ 𝑋`𝑖//𝐿𝐺 : `𝑖 𝑗 (𝑦) ≠
0}. We clearly have

𝜑−1
𝑖 ((𝑋//𝐿𝐺)𝑖 𝑗 ) = 𝑋`𝑖 ∩ 𝑋` 𝑗

= 𝜑−1
𝑗 ((𝑋//𝐿𝐺) 𝑗𝑖);

the elements such that the sections `𝑖 and ` 𝑗 are non-zero are precisely the elements in
the intersection.

Since good quotients are local the restrictions 𝜑𝑖 𝑗 : 𝑋`𝑖 ∩ 𝑋` 𝑗
→ (𝑋//𝐿𝐺)𝑖 𝑗 are good

quotients. And since good quotients are in particular categorical quotients there exist
unique isomorphisms 𝜓𝑖 𝑗 filling in the diagrams

(𝑋//𝐿𝐺)𝑖 𝑗

𝑋`𝑖 ∩ 𝑋` 𝑗

(𝑋//𝐿𝐺) 𝑗𝑖

𝜓𝑖 𝑗

𝜑𝑖 𝑗

𝜑 𝑗𝑖

It follows from the uniqueness of these isomorphisms that they must satisfy the conditions
𝜓 𝑗𝑖 = 𝜓

−1
𝑖 𝑗

and the cocyle condition. We conclude that ({𝑋`𝑖//𝐺}, {(𝑋//𝐺)𝑖 𝑗 }, {𝜓𝑖 𝑗 })
defines a gluing data which forms a scheme 𝑋//𝐺, moreover since good quotients are
local the morphism 𝜑 determined by the 𝜑𝑖 is a good quotient.
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It follows immediately from [New78, Lemma 3.20] that 𝐿𝑚 defines an ample line bundle
on 𝑋 𝑠𝑠 and therefore that 𝑋 𝑠𝑠 is quasi-projective.

Next we want to show that (𝑋//𝐺) is quasi-projective, we do this by constructing an am-
ple line bundle. First note that by construction the sections `𝑖 𝑗 | (𝑋//𝐺)𝑖 𝑗 form a 1-cocycle
and therefore a line bundle on 𝑋//𝐺. Namely, the `𝑖 𝑗 | (𝑋//𝐺)𝑖 𝑗 are units, `𝑖𝑖 | (𝑋//𝐺)𝑖 𝑗 = 1,
`𝑖 𝑗 | (𝑋//𝐺)𝑖 𝑗 = (` 𝑗𝑖 | (𝑋//𝐺) 𝑗𝑖 )−1 and ` 𝑗𝑖 ·`𝑘 𝑗 ·`𝑖𝑘 = 1 on (𝑋//𝐺) 𝑗𝑖∩ (𝑋//𝐺)𝑘 𝑗 ∩ (𝑋//𝐺)𝑖𝑘 .
We denote this line bundle by L and claim that it is ample. We use the condition [Stacks,
Tag 01PS] for ampleness.

Since the sections {`𝑖 𝑗 }𝑖=1,...,𝑛, for some fixed 𝑗 define sections on the open cover
{𝑋`𝑖//𝐿𝐺}𝑖=1,...,𝑛 satisfying `𝑖1 𝑗 = `𝑖2 𝑗`𝑖1𝑖2 they induce a global section 𝑠 𝑗 on L. For
every 𝑥 ∈ 𝑋 𝑠𝑠 there exists an 𝑗 such that 𝑥 ∈ 𝑋 𝑠𝑠` 𝑗

and by construction 𝑥 ∈ 𝑋 𝑠𝑠` 𝑗
if and only

if 𝜑(𝑥) ∈ (𝑋//𝐿𝐺)𝑡 𝑗 = 𝑋` 𝑗
//𝐿𝐺 which is affine. It follows that L is ample and therefore

that 𝑋//𝐿𝐺 is quasi-projective.

For the last item we can choose sections 𝑓 ∈ 𝐻0(𝑋, 𝐿𝑟)𝐺 for some 𝑟 > 0 such that the
action of 𝐺 on 𝑋 𝑓 is closed and 𝑋 𝑠 ⊂ ⋃

𝑓 𝑋 𝑓 . Let (𝑋//𝐿𝐺)𝑐 :=
⋃

𝑓 (𝑋//𝐿𝐺) 𝑓 . Then
we have 𝑋𝑐 = 𝜑−1((𝑋//𝐿𝐺)𝑐) and we can construct a geometric quotient �̃�𝑐 : 𝑋𝑐 →
(𝑋//𝐿𝐺)𝑐 by gluing the geometric quotients 𝜑 𝑓 : 𝑋 𝑓 → (𝑋//𝐿𝐺) 𝑓 . Then by semiconti-
nuity the subset of 𝑋 𝑠 ⊂ 𝑋𝑐 consisting of points which have zero-dimensional stabilizer
is open. We define 𝑋/𝐿𝐺 := 𝜑(𝑋 𝑠) ⊂ (𝑋//𝐿𝐺)𝑐 and claim that it is an open subset.

Since �̃�𝑐 is a geometric quotient and 𝑋 𝑠 ⊂ 𝑋 is a𝐺-invariant subset, �̃�−1
𝑐 (𝑋/𝐿𝐺) = 𝑋 𝑠 and

(𝑋//𝐿𝐺)𝑐 \𝑋/𝐿𝐺 = 𝜑(𝑋𝑐 \𝑋 𝑠). Now since 𝑋𝑐 \𝑋 𝑠 ⊂ 𝑋𝑐 is closed and �̃�𝑐 is a geometric
quotient it follows that (𝑋//𝐿𝐺)𝑐 \ 𝑋/𝐿𝐺 ⊂ (𝑋//𝐿𝐺)𝑐 is closed and therefore that
𝑋/𝐿𝐺 ⊂ (𝑋//𝐿𝐺)𝑐 ⊂ 𝑋//𝐿𝐺 is open. By locality of geometric quotients we conclude
that that the restriction �̃� := �̃�𝑐 | : 𝑋 𝑠 → 𝑋/𝐿𝐺 is a geometric quotient. □

Remark. Recall from the discussion in the previous section that for the projective case
with a very ample linearization there is a morphism of the form

𝑋 𝑠𝑠 → Proj(
⊕
𝑛≥0

𝐻0(𝑋,L𝑛)𝐺).

Then one can easily show that this defines a good quotient and that Proj(
⊕

𝑛≥0𝐻
0(𝑋,L𝑛)𝐺)

is projective by using the locality of good quotients and the fact that
⊕

𝑛≥0𝐻
0(𝑋,L𝑛)𝐺

is a finitely generated 𝑘-algebra; see [Hos16, Thm. 5.3].
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1.2.6 Hilbert-Mumford Criterion
As has become clear in previous sections being able to determine (semi-)stable points is
an important step in the construction of quotients. In this section we state and prove the
Hilbert-Mumford criterion for stability, which is a numerical criterion for the stability
of points. For its formulation and proof we will mostly be following Mumford’s book
[DK94, Chapt. 2.1].

Definition 1.2.18. Let 𝐺 be an algebraic group. A 1-parameter subgroup of 𝐺, often
abbreviated to 1-PS, is a homomorphism _ : G𝑚 → 𝐺.

Consider an algebraic group 𝐺 with a 1-PS _ and an action 𝜌 on a projective scheme 𝑋.
Then for every 𝑥 ∈ 𝑋 (𝑘) there is a map 𝜌(−, 𝑥) ◦_ : G𝑚 → 𝑋 and since 𝑋 is proper, by
the valuative criterion for properness this uniquely extends to a map 𝑓𝑥,_ :A1 → 𝑋 filling
in the following diagram

G𝑚 𝑋

A1 Spec(𝑘)

𝑓𝑥,_

Now since the point lim
𝑔→0

𝜌(−, 𝑥) ◦_(𝑔) := 𝑓𝑥,_ (0) is fixed under the induced G𝑚-action,

i.e., 𝜌(_(𝑔), 𝑓𝑥,_ (0)) = 𝑓𝑥,_ (0) for all 𝑔 ∈ G𝑚, we have that 𝑓𝑥,_ (0) corresponds to a
G𝑚-equivariant morphism Spec(𝑘) → 𝑋 and hence for any 𝐺-linearization (L,Ψ) ∈
Pic𝐺 (𝑋), its fiber L 𝑓𝑥,_ (0) determines a G𝑚-linearization on Spec(𝑘) induced by the
linear isomorphism (𝜓𝑔, 𝑓𝑥,_ (0))−1 : L𝑔· 𝑓𝑥,_ (0) = L 𝑓𝑥,_ (0) → L 𝑓𝑥,_ (0) discussed in Remark
1.2.4 (here we take the inverse in order to stay consistent with Mumfords sign convention
in what follows). By Example 1.2.15 this linearization corresponds to a character of G𝑚;
let 𝑑 denote the integer corresponding to this character. With this we make the following
definition.

Definition 1.2.19. Let 𝐺 be an algebraic group with an action 𝜌 on a finite type scheme
𝑋 proper over 𝑘. Then the Hilbert-Mumford weight for a triple 𝑥 ∈ 𝑋 (𝑘), _ : G𝑚 → 𝐺

and L ∈ Pic𝐺 (𝑋) is denoted `𝐿 (𝑥,_) and is equal to −𝑑 where 𝑑 is the integer obtained
in the previous paragraph.

We are now in the position to state the Hilbert-Mumford criterion.

Theorem 1.2.20. [DK94, Thm. 2.1] Let 𝐺 be a reductive group acting on a projective
scheme 𝑋/𝑘 and L ∈ Pic𝐺 (𝑋) an ample linearization. Then for 𝑥 ∈ 𝑋 (𝑘) we have that

𝑥 ∈ 𝑋 𝑠𝑠L ⇐⇒ `L(𝑥,_) ≥ 0 for all _ ∈ Hom(G𝑚,𝐺),

𝑥 ∈ 𝑋 𝑠L ⇐⇒ `L(𝑥,_) > 0 for all _ ∈ Hom(G𝑚,𝐺).
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Remark. Since `L
𝑛 (𝑥,_) = 𝑛`L(𝑥,_), by the functorial properties of ` [DK94, p. 49],

and L is ample there exists some positive integer 𝑛 such that L𝑛 is very ample, thus we
may assume without loss of generality that L is very ample and therefore induces a 𝐺-
equivariant embedding 𝑖 : 𝑋 → P𝑛−1. With this assumption we have that L ≃ 𝑖∗OP𝑛−1 (1),
so that

`L(𝑥,_) = `𝑖∗OP𝑛−1 (1) (𝑥,_) = `OP𝑛−1 (1) (𝑖(𝑥),_).

Now since 𝑋 𝑠(𝑠)
𝑖∗O

P𝑛−1 (1) = 𝑖
−1((P𝑛−1)𝑠(𝑠)O

P𝑛−1 (1) by the functorial properties given in [DK94,

Chapt. 1.5], it is sufficient to prove the Hilbert-Mumford criterion for 𝑋 = P𝑛−1 and
L =OP𝑛−1 (1).

Set 𝑋 = P𝑛−1 and L =OP𝑛−1 (1). Consider the natural projection from the complement of
the origin in the affine cone of P𝑛−1, i.e., 𝑝 : A𝑛 \ {0} → P𝑛−1, then a point in the affine
cone 𝑥 ∈ A𝑛 (𝑘) is said to lie over a point 𝑥 ∈ P𝑛−1(𝑘) if 𝑥 ≠ 0 and 𝑝(𝑥) = 𝑥. We also note
that the action of 𝐺 on P𝑛−1 naturally induces a linear action which we will denote by
�̃� on the affine cone. The action of 𝐺 on P(𝐻0(P𝑛−1,OP𝑛−1 (1))) with a 𝐺-linearization
of OP𝑛−1 (1) corresponds to a co-module structure on 𝐻0(P𝑛−1,OP𝑛−1 (1))) given by the
composition

𝐻0(𝑋,L)
𝜌#

→ 𝐻0(𝐺 × 𝑋, 𝜌∗L) Φ→ 𝐻0(𝐺 × 𝑋, 𝑝∗2L) ≃ 𝐻
0(𝐺,O𝐺) ⊗𝐻0(𝑋,L)

where the last map is given by the Künneth formula, equivalently if for a section 𝜎 ∈
𝐻0(𝑋,L) its image is given by

∑
𝑖 𝑠𝑖 ⊗𝜎𝑖 ∈ 𝐻0(𝐺,O𝐺) ⊗𝐻0(𝑋,L) we can define a linear

representation by 𝐺→ 𝐺𝐿 (𝐻0(𝑋,L)), 𝑔 ↦→ (𝜎 ↦→∑
𝑖 𝑠𝑖 (𝑔)𝜎𝑖).

Proposition 1.2.21. Let 𝑥 ∈ 𝑋 (𝑘). Then

1. 𝑥 ∈ 𝑋 𝑠𝑠 ⇐⇒ ∃𝑥 ∈ A𝑛 that lies over 𝑥 such that 0 ∉ 𝐺 · 𝑥.

2. 𝑥 ∈ 𝑋 𝑠 ⇐⇒ ∃𝑥 ∈ A𝑛 that lies over 𝑥 such that �̃�(−, 𝑥) : 𝐺→ A𝑛 is proper.

Proof. (1, =⇒ ) By definition 𝑥 ∈ 𝑋 𝑠𝑠 if and only if there exists an integer 𝑑 > 0 and
an invariant section 𝜎 ∈ OP𝑛−1 (𝑑) (P𝑛−1)𝐺 such that 𝜎(𝑥) ≠ 0. This translates to a 𝐺-
invariant homogeneous polynomial function 𝑓 of degree 𝑑 on the affine cone such that
𝑓 (𝑥) ≠ 0 for all non-zero lifts of 𝑥. Since invariant functions are constant on orbits and
their closures, 𝑓 separates 𝐺 · 𝑥 and {0}, hence it follows that 𝐺 · 𝑥∩ {0} = ∅.

(1,⇐=) For the second implication suppose that 𝐺 · 𝑥∩ {0} = ∅. Then since 𝐺 is reduc-
tive by Lemma 1.2.7 there exists a 𝐺-invariant global section of the affine cone which
separates the two closed sets, i.e., there exists an polynomial 𝑓 ∈ OA𝑛 (A𝑛) such that
𝑓 (𝐺 · 𝑥) = 1 and 𝑓 (0) = 0. We can decompose 𝑓 into its homogeneous components so
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that 𝑓 = 𝑓1+ . . .+ 𝑓𝑟 and each 𝑓𝑖 is a homogeneous polynomial of degree 𝑑𝑖 > 0. In partic-
ular there must exists an 𝑖 such 𝑓𝑖 (𝐺 · 𝑥) ≠ 0, this defines a section in OP𝑛−1 (𝑑𝑖) (P𝑛−1)𝐺
which does not vanish at 𝑥, thus 𝑥 is semi-stable.

(2) By definition a point 𝑥 ∈ P𝑛−1(𝑘) is stable with respect to OP𝑛−1 (1) if and only if
dim𝐺𝑥 = 0 and there exists an integer 𝑑 > 0 and a𝐺-invariant section 𝜎 ∈OP𝑛−1 (𝑑) (P𝑛−1)
such that 𝜎(𝑥) ≠ 0 and the action of 𝐺 on (P𝑛−1)𝜎 is closed. This however is equivalent
to saying that the map 𝜌𝜎𝑥 : 𝐺→ (P𝑛−1)𝜎 in the factorization

𝐺 (P𝑛−1)𝜎

P𝑛−1

𝜌𝜎𝑥

𝜌𝑥

is proper. With this equivalence to show that (2) holds it suffices to prove that 𝜌𝜎𝑥 is
proper if and only if �̃�𝑥 := �̃�(−, 𝑥) is proper. As before let 𝑓 denote the homogeneous
polynomial function of degree 𝑑 on the affine cone corresponding to 𝜎. The orbit 𝐺 · 𝑥
is contained in the closed subscheme V( 𝑓 − 𝑓 (𝑥)) ⊂ A𝑛. It follows that we have a
factorization

𝐺 V( 𝑓 − 𝑓 (𝑥))

(P𝑛−1)𝜎

�̃� 𝑓 , �̃�

𝜌𝑥𝜎

where the vertical arrow is induced by the projection 𝑝 : A𝑛 \ {0} → P𝑛−1, note that this
is well-defined since 𝑝(V( 𝑓 − 𝑓 (𝑥))) ⊂ (P𝑛−1)𝜎 .

Since the vertical map is proper we can conclude by basic facts about proper morphisms
that the composition 𝜌𝑥𝜎 is proper if and only if the map �̃� 𝑓 ,𝑥 is proper if and only if the
map �̃�𝑥 is proper. □

Now for a 1−𝑃𝑆 _ :G𝑚→𝐺 we have an inducedG𝑚-action on the affine cone, which can
be diagonalized so that for a suitable choice of basis 𝑒0, . . . , 𝑒𝑛−1 for 𝐻0(P𝑛−1,OP𝑛−1 (1))
the action of ∈ G𝑚 on A𝑛 is given by a diagonal matrices diag(𝑔𝑟0 , . . . , 𝑔𝑟𝑛−1) for fixed
𝑟0, . . . , 𝑟𝑛−1 ∈ Z, i.e., 𝑔 · 𝑒𝑖 = _(𝑔) · 𝑒𝑖 = 𝑔𝑟𝑖𝑒𝑖 for 𝑖 = 0, . . . , 𝑛−1.

Proposition 1.2.22. Let 𝑥 ∈ P𝑛−1 and _ : G𝑚 → 𝐺 a 1-PS. With the above setup we can
choose a point 𝑥 = (𝑥0, . . . , 𝑥𝑛−1) lying over 𝑥 such that with respect to a suitable basis
{𝑒0, . . . , 𝑒𝑛−1},
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�̃�(_(𝑔), 𝑥) =
𝑛−1∑︁
𝑖=0
𝑔𝑟𝑖𝑥𝑖𝑒𝑖 .

Then

`OP𝑛−1 (1) (𝑥,_) = max
0≤𝑖≤𝑛−1

{−𝑟𝑖 : 𝑥𝑖 ≠ 0}

Proof. Write ` := max
0≤𝑖≤𝑛−1

{−𝑟𝑖 : 𝑥𝑖 ≠ 0}. Since �̃�(_(𝑔), 𝑥) = (𝑔𝑟0𝑥0, . . . , 𝑔
𝑟𝑛−1𝑥𝑛−1) we

have that lim
𝑔→0

𝑔`_(𝑔) · 𝑥 = 𝑓𝑔`𝑥,_ (0) exists and is non-zero. Furthermore, since the map

𝑝 : A𝑛 \ {0} → P𝑛−1 is equivariant, 𝑓𝑔`𝑥,_ (0) lies over the specialization 𝑓𝑥,_ (0).

Now if we write

𝑓𝑔`𝑥,_ (0) = lim
𝑔→0

(𝑔𝑟0+`𝑥0, · · · , 𝑔𝑟𝑛−1+`𝑥0) = (𝑠0, · · · , 𝑠𝑛−1)

we clearly have that 𝑠𝑖 = 0 only if 𝑥𝑖 = 0 or 𝑟𝑖 + ` ≥ 0, it follows that

�̃�(_(𝑔), 𝑓𝑔`𝑥,_ (0)) = 𝑔−` 𝑓𝑔`𝑥,_ (0).
Since the fibers of the tautological bundle correspond to lines in affine space, the torus
action on OP𝑛−1 (1) 𝑓𝑥,_ (0) , induced by the action on the fibre 𝑝−1( 𝑓𝑥,_ (0)), is given by
_(𝑔) · 𝑠 = 𝑔`𝑠, thus we can conclude that `OP𝑛−1 (1) (𝑥,_) = `. □

Corollary 1.2.23. In the situation of the above proposition:

1. lim
𝑔→0

�̃�(_(𝑔), 𝑥) = 0 ⇐⇒ ` < 0.

2. lim
𝑔→0

�̃�(_(𝑔), 𝑥) exists and is non-zero ⇐⇒ ` = 0.

3. lim
𝑔→0

�̃�(_(𝑔), 𝑥) does not exist ⇐⇒ ` > 0.

Proposition 1.2.24. With the notations as before:

1. 0 ∈ 𝐺 · 𝑥 ⇐⇒ there exists a 1-PS _ : G𝑚 → 𝐺 such that lim
𝑔→0

�̃�(_(𝑔), 𝑥) = 0.

2. �̃�𝑥 is not proper ⇐⇒ there exists a 1-PS _ : G𝑚 → 𝐺, such that lim
𝑔→0

�̃�(_(𝑔), 𝑥)
exists.
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In order to prove the above proposition we need a result which requires some preparation.
Recall that we work over an algebraically closed field 𝑘, let 𝑅 := 𝑘⟦𝑡⟧ denote the
formal power series ring and 𝐾 := 𝑘 ((𝑡)) its field of fractions and note that 𝐺 (𝑅) is a
subgroup of 𝐺 (𝐾) via the inclusion 𝐺 (𝑅) ↩→ 𝐺 (𝐾) induced by the natural morphism
Spec(𝐾) → Spec(𝑅). We also have a mapping 𝜔 :𝐺 (𝑅) →𝐺 (𝑘) induced by the natural
morphism Spec(𝑘) → Spec(𝑅), and for every 1-PS _ : G𝑚 → 𝐺 we have an induced
𝐾-point ⟨_⟩ ∈ 𝐺 (𝐾) given by

⟨_⟩ := Spec(𝐾)
𝜑
→ G𝑚

_→ 𝐺

where 𝜑 is induced by the map 𝑘 [𝑢,𝑢−1] → 𝑘 ((𝑡)), 𝑢 ↦→ 𝑡. With this notation we are in
the position to formulate the result.

Theorem 1.2.25. [DK94, p. 52. Thm. Iwahori] Let 𝐺/𝑘 be a reductive group over
an algebraically closed field then for any 𝑔 ∈ 𝐺 (𝐾) there exist ℎ, ℎ′ ∈ 𝐺 (𝑅) and a
homomorphism _ : G𝑚 → 𝐺 such that

𝑔 = ℎ1 · ⟨_⟩ · ℎ2.

Remark. These decompositions are called Cartan-Iwahori-Matsumoto decompositions.
We will see in chapter four that the existence of such decompositions is characterized
by a stack theoretic condition called S-completeness and moreover that it characterizes
reductivity.

Now we are ready to prove Proposition 1.2.24.

Proof. (1, ⇐=) If there exists a 1-PS _ such that lim
𝑔→0

�̃�(_(𝑔), 𝑥) = 0 then clearly 0 ∈𝐺 · 𝑥.

(1, =⇒ ) Claim: There exists a commutative diagram

Spec(𝐾) 𝐺

Spec(𝑅) A𝑛

[

�̃� �̃�

[̃

such that [ ∈ 𝐺 (𝐾) \𝐺 (𝑅) and lim
𝑡→0

�̃�([(𝑡), 𝑥) = [̃((𝑡)) = 0.Then using Theorem 1.2.25

we are able to write

[ = ℎ1 · ⟨_⟩ · ℎ2

for some 1-PS _ and a pair ℎ1, ℎ2 ∈ 𝐺 (𝑅), note that _ must be non-trivial, as [ is not
induced by an 𝑅-valued point.
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Now let 𝑔𝑖 := 𝜔(ℎ𝑖), then we may choose a basis for the affine cone A𝑛, with respect to
which 𝑔−1

2 _𝑔2 acts on the affine cone by a diagonal matrix. For 𝑔 ∈ G𝑚 (𝑘) we then have
𝑔−1

2 _(𝑔)𝑔2 = diag(𝑔𝑟0 , . . . , 𝑔𝑟𝑛−1) for some 𝑟0, . . . , 𝑟𝑛−1 ∈ Z. It follows that

�̃�𝑥 ◦[ = 𝜌([,𝑥) = �̃�((ℎ1 · 𝑔2) · (𝑔−1
2 · ⟨_⟩ · 𝑔2) · (𝑔−1

2 · ℎ2), 𝑥),
this makes sense if we use the natural identification of the 𝑘-valued points 𝑥 and 𝑔𝑖, with
𝐾-valued points given by 𝑘 ⊂ 𝐾.

Using the fact that �̃� is a group action we obtain

�̃�((ℎ1 · 𝑔2)−1, �̃�𝑥 ◦[) = �̃�((ℎ1 · 𝑔2)−1, �̃�((ℎ1 · 𝑔2) · (𝑔−1
2 · ⟨_⟩ · 𝑔2) · (𝑔−1

2 · ℎ2), 𝑥)

= �̃�(𝑔−1
2 · ⟨_⟩ · 𝑔2, �̃�(𝑔−1

2 · ℎ2, 𝑥)),
note that the term �̃�((ℎ1 · 𝑔2)−1, �̃�𝑥 ◦[) is an 𝑅-valued point of A𝑛 as �̃�𝑥 ◦[ ∈ A𝑛 (𝑅) and
𝑔2 can be viewed a 𝐾-valued point of 𝐺 contained in the subgroup of 𝑅-valued points
hence (ℎ1 ·𝑔2)−1 ∈𝐺 (𝑅). Now as there is an equivalence of ring maps and maps of affine
schemes an 𝑅-valued point of A𝑛 can be identified with a point in 𝑅𝑛 given by the images
of the coordinates for A𝑛 under the corresponding ring map. Let us denote the 𝑖𝑡ℎ coordi-
nate corresponding to the 𝑅-valued point �̃�((ℎ1 ·𝑔2)−1, �̃�𝑥 ◦[) by ( �̃�((ℎ1 ·𝑔2)−1, �̃�𝑥 ◦[))𝑖 .

Then in the coordinate setting we get

( �̃�((ℎ1 · 𝑔2)−1, �̃�𝑥 ◦[))𝑖 = ( �̃�(𝑔−1
2 · ⟨_⟩ · 𝑔2, �̃�(𝑔−1

2 · ℎ2, 𝑥)))𝑖

= ( �̃�(𝑔−1
2 · (_ ◦𝜑) · 𝑔2, �̃�(𝑔−1

2 · ℎ2, 𝑥)))𝑖 = 𝑡𝑟𝑖 ( �̃�(𝑔−1
2 · ℎ2, 𝑥))𝑖 .

Now note that since lim
𝑡→0

�̃�((ℎ1 · 𝑔2)−1, �̃�𝑥 ◦[) (𝑡) = �̃�((ℎ1 · 𝑔2)−1,0) = 0 the formal power

series corresponding to the coordinate ( �̃�((ℎ1 · 𝑔2)−1, �̃�𝑥 ◦ [))𝑖 is contained in 𝑡𝑅 and
hence ( �̃�(𝑔−1

2 · ℎ2, 𝑥))𝑖 is contained in 𝑡1−𝑟𝑖𝑅.

Since 𝑔2 = lim
𝑡→0

ℎ2(𝑡) we have that lim
𝑡→0

𝑔−1
2 · ℎ2(𝑡) = 𝑒 where 𝑒 is the identity element in 𝐺

so we have that lim
𝑡→0

�̃�(𝑔−1
2 · ℎ2, 𝑥) = 𝑥 so that the 𝑖𝑡ℎ coordinate is

( �̃�(𝑔−1
2 · ℎ2, 𝑥))𝑖 = (𝑥)𝑖 + 𝑡 𝑓𝑖

for some 𝑓𝑖 ∈ 𝑅. Now note that if (𝑥)𝑖 ≠ 0 we have

( �̃�(𝑔−1
2 · ℎ2, 𝑥))𝑖 = (𝑥)𝑖 + 𝑡 𝑓𝑖

31



at the same time we know that

( �̃�(𝑔−1
2 · ℎ2, 𝑥))𝑖 = 𝑡1−𝑟𝑖 𝑝

for some 𝑝 ∈ 𝑅, thus 𝑝 = 𝑡𝑟𝑖−1(𝑥)𝑖 + 𝑡𝑟𝑖 𝑓𝑖, and we must have that 𝑟𝑖 > 0 if (𝑥)𝑖 ≠ 0.
Using the characterization of the Hilbert-Mumford index given in Proposition 1.2.22 we
conclude that the Hilbert-Mumford index corresponding to the 1-PS 𝑔−1

2 ·_ · 𝑔2 is strictly
negative and therefore by Corollary 1.2.23 that

lim
𝑔→0

�̃�((𝑔−1
2 _𝑔2) (𝑔), 𝑥) = 0.

The proof for statement (2) is very similar; we want to note however that for the first part
of the proof for the ( =⇒ ) direction we can argue that there exist points [ and [̃ which
make the following diagram commute

Spec(𝐾) 𝐺

Spec(𝑅) A𝑛

[

�̃� �̃�

[̃

such that [ ∈ 𝐺 (𝐾) \𝐺 (𝑅) by using the fact that morphisms of affine schemes are
separated, hence in particular �̃�𝑥 is separated, so that by using the valuative criteria for
properness and separatedness we can argue that since �̃�𝑥 is separated but not proper
there must be points [ and [̃ which fit into the above diagram such that [ does not factor
through Spec(𝑅). □

We conclude this chapter with two examples.

Example 1.2.26. Consider the action of the multiplicative group G𝑚 on the projective
space 𝑋 := P3 induced by the action on the affine cone A4 as in Example 1.2.13, i.e.,
𝑠 · [𝑥1 : 𝑥2 : 𝑥3 : 𝑥4] = [𝑠2𝑥1 : 𝑠−3𝑥2 : 𝑠𝑥3 : 𝑠−1𝑥4] . Recall that we can characterize stability
(resp. semi-stability) of a point 𝑥 ∈ P3 by the non-existence (resp. non-vanishing) of the
limits

lim
𝑠→0

_(𝑠) · 𝑥,

where 𝑥 ∈ A4 is a point lying over 𝑥 and the _ are the 1-PS’s. Note that since the 1-PS
G𝑚 → G𝑚 are of the form 𝑠 ↦→ 𝑠𝑛 for 𝑛 ∈ Z we only have to consider the 1-PS’s given by
𝑠 ↦→ 𝑠 and 𝑠 ↦→ 𝑠−1. We have

lim
𝑠→0

(𝑠2𝑥1, 𝑠
−3𝑥2, 𝑠𝑥3, 𝑠

−1𝑥4), for 𝑠 ↦→ 𝑠, and

lim
𝑠→0

(𝑠−2𝑥1, 𝑠
3𝑥2, 𝑠

−1𝑥3, 𝑠𝑥4), for 𝑠 ↦→ 𝑠−1,
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both limits do not exist only in the following situation: 𝑥1𝑥2 ≠ 0, or 𝑥1𝑥4 ≠ 0, or 𝑥2𝑥3 ≠
0, or 𝑥3𝑥4 ≠ 0. It follows that

𝑋 𝑠𝑠 = 𝑋 𝑠 = 𝑋𝑥1𝑥2 ∪ 𝑋𝑥1𝑥4 ∪ 𝑋𝑥2𝑥3 ∪ 𝑋𝑥3𝑥4 .

Example 1.2.27. Consider the action of G𝑚 on 𝑋 := P2 induced by the action on the
affine cone A3 given by 𝑠 · (𝑥1, 𝑥2, 𝑥3) = (𝑠𝑥1, 𝑥2, 𝑠

−1𝑥3). Following the same reasoning
as in the previous example, to determine wether a point is (semi-)stable we have to check
for the non-existence and non-vanishing of the limits

lim
𝑠→0

(𝑠𝑥1, 𝑥2, 𝑠
−1𝑥3), lim

𝑠→0
(𝑠−1𝑥1, 𝑥2, 𝑠𝑥3).

In this case the limits exist and are non-zero only for the points (0, 𝑥2,0) ≠ 0 and do not
exist if 𝑥1𝑥3 ≠ 0, thus we have that

𝑋 𝑠 = 𝑋𝑥1𝑥3 , 𝑋 𝑠𝑠 = 𝑋 𝑠 ∪ {[0 : 1 : 0]}.
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Chapter 2

Algebraic stacks

In the first chapter we have seen that moduli problems often do not admit a fine moduli
space in the category of schemes and gave an explicit example of a possible obstruction.
The deeper rooted problem which we did not mention then is that many moduli problems
have non-trivial automorphisms, roughly speaking this prevents the moduli problem
from being a sheaf with respect to a certain notion of topology and therefore in particular
cannot be represented by a scheme. We also mentioned that one way to work around this
is to ask for representability in some larger category, introducing these larger categories
and their geometric structure is what this next chapter is about.

2.1 Basics of stack theory

2.1.1 Prestacks
To start this chapter off we introduce the notion of a prestack, also called categories
fibered in groupoids, the reason for this will soon become clear. Essentially a prestack
allows a moduli problem to take values in the category of groupoids, which is a category
in which all morphisms are isomorphisms. In some sense the notion of a prestack gener-
alizes the notion of a presheaf and with regards to moduli problems it allows us to keep
track of automorphisms. Our goal for this section is to make the notion of a prestack
precise and give some basic results, constructions and definitions for prestacks.

For a pair of categories C and S we say that C is a category over S if C is equipped with
a functor 𝑝 : C → S . For a pair of objects 𝑢, 𝑣 ∈ C, with an arrow 𝜑 : 𝑢→ 𝑣 we use the
notation
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𝑢 𝑣

𝑝(𝑢) 𝑝(𝑣)

𝜑

𝑝(𝜑)

and say that 𝑢 and 𝑣 are over 𝑝(𝑢) and 𝑝(𝑣) and that 𝜑 is over 𝑝(𝜑).

Definition 2.1.1. A category X over a category S equipped with a functor 𝑝 : X → S is
called a prestack over S if

1. For every object 𝑢 in X and object 𝑆 in S with an arrow 𝑆
𝑓
→ 𝑝(𝑢) in S there

exists an object over 𝑆, which we call a pullback and denote by 𝑓 ∗𝑢, and an arrow
𝑓 ∗𝑢→ 𝑢 over 𝑓 filling in the diagram

𝑓 ∗𝑢 𝑢

𝑆 𝑝(𝑢)

𝜑

𝑓

2. For every triple of objects 𝑢, 𝑣 and 𝑤 in X and arrows 𝑢
𝜓
→ 𝑤, 𝑣

[
→ 𝑤 and 𝑝(𝑢)

𝑓
→

𝑝(𝑣) there exists a unique arrow 𝑢→ 𝑣 over 𝑓 filling in the diagram

𝑢 𝑣 𝑤

𝑝(𝑢) 𝑝(𝑣) 𝑝(𝑤)

𝜓

𝜑 [

𝑓 𝑝([)

Remark. A pullback of an object 𝑢 ∈ X (𝑆) by a morphism 𝑓 : 𝑆′ → 𝑆 is sometimes also
denoted 𝑢 |𝑆′ .

Definition 2.1.2. If X is a prestack over S, the fiber category over an object 𝑆 in S,
denoted X (𝑆) is the category consisting of objects in X over 𝑆 and morphisms in X over
the identity id𝑆 in S .

As alluded to at the start of this section the terminology: category fibered in groupoids,
is natural, this is the case because the fibered categories of prestacks are groupoids. This
follows easily from the second axiom in the definition of a prestack because it ensures
the existence of an inverse for every morphism.
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Next we will give our first example of a prestack. We will see that we can take existing
moduli problems and identify them with a prestack, moreover we can do this for any
presheaf and in particular for any scheme.

Example 2.1.3. Let S denote some category. To every presheaf 𝐹 : S → Set we can
associate a prestack which we will denote by X𝐹 over S in the following way: let 𝑆 ∈ S
then an object (𝑠, 𝑆) ∈ X𝐹 over 𝑆 is given by an object 𝑠 ∈ 𝐹 (𝑆). Note that X𝐹 defines a
category over S by sending an object (𝑠, 𝑆) to the object 𝑆 ∈ S .

A morphism (𝑠′, 𝑆′) → (𝑠, 𝑆) is given by a 𝑓 : 𝑆′→ 𝑆 such that 𝐹 ( 𝑓 ) (𝑠) = 𝑠′. In particular
by taking the functorial point of view for schemes we can associate to every scheme
a prestack. In what follows we will often conflate schemes and presheaves with their
associated prestacks.

Now that we have defined prestacks and have given an example, we want to give some
basic definitions and constructions, starting with morphisms of prestacks.

Definition 2.1.4. Let 𝑝X : X → S and 𝑝Y : Y → S be a pair of prestacks over a site S . A
morphism of prestacks 𝐹 : X → Y is a functor such that the following triangle commutes

X Y

S

𝐹

𝑝X 𝑝Y

In addition to morphisms between prestack we can also define certain morphisms between
morphisms of prestacks, which will allow us to define the category of morphisms of
prestacks.

Definition 2.1.5. Let 𝐹,𝐺 : X → Y be morphims of prestacks. A natural transformation
[ : 𝐹 → 𝐺 is called a 2-isomorphism if for every object 𝑥 ∈ X (𝑇) the morphism [𝑥 :
𝐹 (𝑥) → 𝐺 (𝑥) is contained in the fiber category Y (𝑇).

We say that a diagram of prestacks

. . .

X Y

. . .

ww�[
is 2-commutative if the compositions are 2-isomorphic, where

[
=⇒ is to indicate the

2-isomorphism, we often leave this out of the notation and say commutative instead of

36



2-commutative when there is no risk of confusion.

For a pair of prestacks X and Y we let Mor(X ,Y) denote the category with objects
morphisms of prestacks X → Y and its morphisms 2-isomorphisms.

We say that a morphism of prestacks 𝑓 : X → Y is a monomorphism if it is fully faithfull
and an epimorphism if it is essentially surjective. We say that 𝑓 is an isomorphism
if it is a monomorphism and epimorphism, or equivalently if there exists a morphism
𝑔 : Y →X and 2-isomorphisms 𝑓 ◦𝑔 ≃ idY and 𝑔◦ 𝑓 ≃ idX . Moreover, fully faithfullness
of 𝑓 can be checked on fiber categories so that 𝑓 is an isomorphism if and only if it is an
epimorphism and for all 𝑆 ∈ S, 𝑓𝑆 : X (𝑆) → Y (𝑆) is fully faithfull.

With the above definitions we can give a version of the Yoneda lemma which allows us
to identify the fiber categories over objects with the category of morphisms of prestacks
given in the previous paragraph. This version of the Yoneda lemma is called the 2-Yoneda
lemma due to the fact that it is a 2-categorical analog for the usual result.

Lemma 2.1.6. [Alp24, Lemma 2.4.21] For a prestack X → S and an object 𝑆 ∈ S there
is an equivalence of categories

Mor(𝑆,X ) → X (𝑆), 𝐹 ↦→ 𝐹𝑆 (id𝑆)

Remark. For the remainder of this text we will often not differentiate between objects
of prestacks and isomorphisms between objects and their corresponding morphisms and
2-isomorphisms.

An important construction is that of the fiber product we will introduce this next as well
as a notion of cartesian diagrams.

Definition 2.1.7. Let 𝑓 : X → Z and 𝑔 : Y → Z be a pair of morphisms of prestacks
over a category S . Then the 2-fiber product associated to 𝑓 and 𝑔 is the prestack over S
denoted X ×Z Y consisting of

1. objects which are triples (𝑥, 𝑦,𝛼), where 𝑥 ∈ X (𝑆) and 𝑦 ∈ Y (𝑆) are objects over
the same object 𝑆 ∈ S and 𝛼 : 𝑓 (𝑥) → 𝑔(𝑦) is an isomorphism in Z (𝑆).

2. For (𝑥′, 𝑦′, 𝛼′) ∈ X ×Z Y (𝑆′) and (𝑥, 𝑦,𝛼) ∈ X ×Z Y (𝑆) a morphism (𝑥′, 𝑦′, 𝛼′) →
(𝑥, 𝑦,𝛼) is given by a triple (ℎ, 𝜑,[) where ℎ : 𝑆′→ 𝑆 is a morphism in S, 𝜑 : 𝑥′→ 𝑥

is a morphism over ℎ in X and [ : 𝑦′ → 𝑦 is a morphism in Y over ℎ such that the
following diagram commutes
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𝑓 (𝑥′) 𝑓 (𝑥)

𝑔(𝑦′) 𝑔(𝑦).

𝑓 (𝜑)

𝛼′ 𝛼

𝑔([)

The fiber category of the prestack X ×Z Y over an object 𝑆 ∈ S is the fiber product of
groupoids X (𝑆) ×Z (𝑆) Y (𝑆).

Roughly, a 2-commutative diagram

T Y

X Z

𝑝

𝑞 𝑔

𝑓

is called cartesian, or 2-cartesian, if it satisfies the usual universal property for fiber
products with statements about commutativity replaced by 2-commutativity, see [Alp24,
Thm. 2.4.35, Def. 2.4.36] for a precise definition. We will often place a small square in
the center of a diagram to indicate that it is cartesian, as follows

T Y

X Z

𝑝

𝑞 □ 𝑔

𝑓

A fiber product X ×Z Y together with the projections 𝑝1 : X ×Z Y → X , (𝑥, 𝑦,𝛼) ↦→ 𝑥

and 𝑝2 : X ×Z Y → Y , (𝑥, 𝑦,𝛼) → 𝑦 gives rise to a 2-cartesian diagram, see [Alp24, p.
93]. One can analogously define the notion of a cocartesian diagram.

We will conclude this section with two important examples of cartesian diagrams of
prestacks.

Example 2.1.8. [Stacks, Tag 04Z1] Our first example is a generalization of the magic
diagram in algebraic geometry. Namely for a prestack X → S over a category S and
objects 𝑥1 ∈ X (𝑋1) and 𝑥2 ∈ X (𝑋2) there is a cartesian diagram

𝑋1 ×X 𝑋2 𝑋1 × 𝑋2

X X ×X

□ 𝑥1×𝑥2

Δ

where Δ is the diagonal and 𝑥1, 𝑥2 are the morphisms given by the 2-Yoneda lemma.
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For our second example we first must give a definition.

Definition 2.1.9. Let X → S be a prestack over S . Then for an object 𝑆 ∈ S and a pair
of objects 𝑥, 𝑦 ∈ X (𝑆) we define the presheaf

IsomX (𝑆) (𝑥, 𝑦) : (S/𝑆)𝑜𝑝 → Set

( 𝑓 : 𝑇 → 𝑆) → MorX (𝑇) ( 𝑓 ∗𝑥, 𝑓 ∗𝑦),
where we make a choice of pullbacks 𝑓 ∗𝑥 and 𝑓 ∗𝑦.When 𝑥 = 𝑦 we also write AutX (𝑆) (𝑥, 𝑥) :=
IsomX (𝑆) (𝑥, 𝑥). For a description which includes its behaviour on morphisms and a veri-
fication that it is indeed a presheaf, see [Stacks, Tag 02Z9].

Example 2.1.10. [Stacks, Tag 04SI] For a prestack X and a pair of objects 𝑥, 𝑦 ∈ X (𝑆)
there is a cartesian diagram

IsomX (𝑆 ) (𝑥,𝑦 ) 𝑆

X X ×X
□ (𝑥,𝑦 )

Δ

2.1.2 Sites and sheaves
In our first step towards adding geometric structure to prestacks we need to give a notion
of topology on categories and a reasonable notion of a sheaf for these topologies. The
notion that gives this generalization of a topological space is that of a Grothendieck
topology, we start this section by defining this notion, then we give some examples and
give the correct notion of a sheaf.

Definition 2.1.11. Let C be a category. A Grothendieck topology on C is given by the
following data: for every object 𝐶 ∈ C, there is a collection Cov(𝐶) consisting of sets of
morphisms {𝐶𝑖 → 𝐶}𝑖∈𝐼 in C called coverings that satisfy the following conditions.

1. (identity) If𝑈→ 𝐶 is an isomorphism, then {𝑈→ 𝐶} ∈ Cov(𝐶).

2. (restriction) If {𝐶𝑖 → 𝐶}𝑖 ∈ Cov(𝐶) and 𝑈 → 𝐶 is a morphism, then the fiber
products 𝐶𝑖 ×𝐶𝑈 exist in C and {𝐶𝑖 ×𝐶𝑈→𝑈}𝑖∈𝐼 ∈ Cov(𝑈).

3. (composition) If {𝐶𝑖 → 𝐶}𝑖∈𝐼 ∈ Cov(𝐶) and for every 𝑖 ∈ 𝐼 there is a covering
{𝑈𝑖 𝑗 → 𝐶𝑖} 𝑗∈𝐽𝑖 , then {𝑈𝑖 𝑗 → 𝐶𝑖 → 𝐶}𝑖∈𝐼, 𝑗∈𝐽𝑖 ∈ Cov(𝐶).
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A category with a Grothendieck topology is called a site.

We will now give the examples that are most relevant to this text.

Example 2.1.12. Denote the category of schemes by Sch and the category of schemes
over some scheme 𝑆 by Sch/𝑆.

Let 𝑋 be a scheme. The small étale site on 𝑋 denoted 𝑋𝑒𝑡 is the full subcategory of
Sch/𝑋 whose objects are schemes étale over 𝑋 with coverings given by collections of
étale morphisms {𝑈𝑖 →𝑈}𝑖∈𝐼 such that

∐
𝑖∈𝐼𝑈𝑖 →𝑈 is surjective.

The big étale site denoted Sch𝑒𝑡 is the category Sch together with the Grothendieck
topology given by coverings {𝑋𝑖 → 𝑋}𝑖∈𝐼 which consist of étale morphisms such that∐
𝑖 𝑋𝑖 → 𝑋 is surjective.

Replacing étale by open immersions or faithfully flat and locally of finite presenta-
tion gives us respectively the notion of the big Zariski site denoted Sch𝑍𝑎𝑟 and that of
the big fppf site denoted Sch 𝑓 𝑝𝑝 𝑓 . One can analogously construct the sites (Sch/𝑆)𝑒𝑡 ,
(Sch/𝑆)𝑍𝑎𝑟 , (Sch/𝑆) 𝑓 𝑝𝑝 𝑓 by replacing schemes by 𝑆-schemes and morphisms by 𝑆-
morphisms.

Another example arises when we take some scheme 𝑋 and the full subcategory of Sch/𝑋
whose objects are schemes smooth over 𝑋, denoted Lis-ÉT(𝑋). Then the lisse-étale site
is the category Lis-ÉT(𝑋) together with the Grothendieck topology given by coverings
{𝑈𝑖 →𝑈} which consist of étale morphisms such that

∐
𝑖𝑈𝑖 →𝑈 is surjective.

Remark. One issue with the above examples is that the coverings may not be sets. This
can be resolved by making suitable restrictions as explained in the last paragraph of
[Stacks, Tag 00VI]. For the particular example of the big étale site see [Stacks, Tag
0214]. We will not go into further detail on these technicalities, it is however good to
keep in mind that throughout this text whenever we encounter a site which has this issue,
there is a strategy to resolve it and that the arguments given are mostly not affected by
the modification.

Definition 2.1.13. Let S be a site. A presheaf 𝐹 on S is called a sheaf if for every object
𝑈 ∈ S and covering {𝑈𝑖 →𝑈}𝑖∈𝐼 the sequence

𝐹 (𝑈) →
∏
𝑖∈𝐼
𝐹 (𝑈𝑖)⇒

∏
𝑖, 𝑗∈𝐼

𝐹 (𝑈𝑖 ×𝑈𝑈 𝑗 ),

where the first map is induced by the inclusions and the two maps on the right are induced
by the projections𝑈𝑖 ×𝑈𝑈 𝑗 →𝑈𝑖 and𝑈𝑖 ×𝑈𝑈 𝑗 →𝑈 𝑗 , is exact.
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2.1.3 Stacks and stackification
Now that we have given the notion of a site we can give the definition of a stack. In some
sense the relation of stack to a prestack can be viewed as analogous to that of a sheaf and
a presheaf. Namely a stack over a site is a prestack for which objects and morphisms glue
uniquely with respect to the given Grothendieck topology, furthermore in the same way
that we can sheafify a presheaf to get a corresponding sheaf we can stackify prestacks to
get a stacks. We begin this section by giving the precise definition of a stack.

Definition 2.1.14. A stack is a prestack X over a site S such that for all coverings
{𝑆𝑖 → 𝑆}𝑖∈𝐼 ∈ Cov(𝑆) of objects 𝑆 ∈ S the following conditions are satisfied:

1. For objects 𝑥, 𝑦 ∈ X (𝑆) and morphisms 𝜑𝑖 : 𝑥 |𝑆𝑖 → 𝑦 such that 𝜑𝑖 |𝑆𝑖 𝑗 = 𝜑 𝑗 |𝑆𝑖 𝑗
there exists a unique morphism 𝜑 : 𝑥→ 𝑦 over id𝑆 making the following diagram
commute

𝑥 |𝑆𝑖

𝑥 |𝑆𝑖 𝑗 𝑥 𝑦

𝑥 |𝑆 𝑗

𝜑𝑖

𝜑

𝜑 𝑗

over

𝑆𝑖

𝑆𝑖 𝑗 𝑆

𝑆 𝑗

where 𝑆𝑖 𝑗 denotes the fibre product 𝑆𝑖 ×𝑆 𝑆 𝑗 and the maps 𝑆𝑖 𝑗 → 𝑆𝑖( 𝑗) are the
projections.

2. For objects 𝑥𝑖 ∈ X (𝑆𝑖) and isomorphisms 𝜓𝑖 𝑗 : 𝑥𝑖 |𝑆𝑖 𝑗 → 𝑥 𝑗 |𝑆𝑖 𝑗 , as displayed in the
diagram

𝑥𝑖 |𝑆𝑖 𝑗 𝑥𝑖

𝑥

𝑥 𝑗 |𝑆𝑖 𝑗 𝑥 𝑗

𝜓𝑖 𝑗 over

𝑆𝑖

𝑆𝑖 𝑗 𝑆

𝑆 𝑗

satisfying the cocycle condition 𝜓 𝑗 𝑘 |𝑆𝑖 𝑗𝑘 ◦𝜓𝑖 𝑗 |𝑆𝑖 𝑗𝑘 =𝜓𝑖𝑘 |𝑆𝑖 𝑗𝑘 on 𝑆𝑖 𝑗 𝑘 := 𝑆𝑖×𝑆 𝑆 𝑗 ×𝑆 𝑆𝑘
there exists an object 𝑥 ∈ X (𝑆) and isomorphisms 𝜑𝑖 : 𝑥 |𝑆𝑖 → 𝑥𝑖 over id𝑆𝑖 such that
𝜑𝑖 |𝑆𝑖 𝑗 = 𝜑 𝑗 |𝑆𝑖 𝑗 ◦𝜓𝑖 𝑗 on 𝑆𝑖 𝑗 .
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Remark. It is not too difficult to show that the first axiom is equivalent to requiring that
for all objects 𝑥, 𝑦 ∈ X (𝑆) the presheaf IsomX (𝑆) : S/𝑆→ Set is a sheaf on S/𝑆.

A morphism of stacks is a morphism of prestacks and a substack of a stack is a strictly
full subcategory, see [Stacks, Tag 001D].

We extend the Example 2.1.3 of a prestack, namely if a presheaf is a sheaf then its
associated prestack is a stack.

Example 2.1.15. Recall that to every presheaf 𝐹 : S → Set we can associate a prestack.
If we equip S with a Grothendieck topology then 𝐹 is a sheaf on the site S if and only if
X𝐹 is a stack. Since any scheme 𝑋 is a sheaf on the big étale site its associated prestack
is a stack on Sch𝑒𝑡 .

As mentioned in the introduction to this subsection we can associate a stack to a prestack
through a process called stackification, this is the content of the following proposition.

Proposition 2.1.16. [Alp24, Thm. 2.5.18] Let 𝑝 : X → S be a prestack over a site S .
There exists a stack 𝑝𝑠𝑡 : X 𝑠𝑡 → S which is called the stackification of X and a morphism
of prestacks 𝐹 : X → X 𝑠𝑡 over the site S such that for every stack Y → S the induced
functor

Mor(X 𝑠𝑡 ,Y) → Mor(X ,Y)
is an equivalence of categories.

We will conclude this subsection with some facts on stackification, see [Stacks, Tag
02ZO].

1. The stackification of a prestack is unique up to an equivalence that is unique up to
unique 2-isomorphism.

2. For every object 𝑆 ∈ S, and any 𝑥′ ∈ X 𝑠𝑡 (𝑆) there exists a covering {𝑆𝑖 → 𝑆}𝑖∈𝐼
such that for every 𝑖 ∈ 𝐼 the pullback 𝑥′|𝑆𝑖 is in the essential image of the functor
𝐹 : X (𝑆𝑖) → X 𝑠𝑡 (𝑆𝑖).

3. Let X ×Z Y be a fiber product of prestacks over a site S, then

(X ×Z Y)𝑠𝑡 ≃ X 𝑠𝑡 ×Z𝑠𝑡 Y 𝑠𝑡 .
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2.1.4 Algebraic stacks and properties of morphisms
We are now ready to give the definition of an algebraic stack. Furthermore we will extend
many properties of morphisms of schemes to morphisms of algebraic stacks, and give an
even more general version of the Yoneda Lemma. Before we can define algebraic stacks
we first have to define algebraic spaces.

Definition 2.1.17. Let 𝑓 : X → Y be a morphism of prestacks. We say that 𝑓 is rep-
resentable by schemes if for every morphism 𝑆→ Y from a scheme the fiber product
X ×Y 𝑆 is a scheme.

Furthermore for a property P of morphisms of schemes which is stable under base change,
we say that a morphism representable by schemes 𝑓 : X → Y has the property P if for
every morphism 𝑆→ Y the projection 𝑝2 : X ×Y 𝑆→ 𝑆 has the property P.

Definition 2.1.18. Let 𝑋 be a sheaf over the big étale site. We say that 𝑋 is an algebraic
space if there exists a scheme𝑈 and a surjective étale morphism𝑈→ 𝑋 representable
by schemes. Such a morphism is called an étale presentation.

Let P be a property of morphisms of schemes. We say that P is smooth (resp. étale) local
on the source if for every smooth (resp. étale) surjection of schemes 𝑋 →𝑌, a morphism
𝑌 → 𝑍 satisfies the property P if and only if 𝑋 → 𝑌 → 𝑍 does, and we say that P is
smooth (resp. étale) local on the target if for every smooth (resp. étale) surjection of
schemes 𝑍 → 𝑌, a morphism 𝑋 → 𝑌 satisfies the property P if and only if 𝑋 ×𝑌 𝑍 → 𝑍

does.

Definition 2.1.19. Let 𝑓 : X → Y be a morphism of prestacks. We say that 𝑓 is rep-
resentable if for every morphism 𝑆→ Y from a scheme the fiber product X ×Y 𝑆 is an
algebraic space.

Furthermore for a property P of morphisms of schemes which is stable under base change
and étale local the on source we say that a representable morphism 𝑓 : X → Y has the
property P if for every morphism 𝑆→ Y and every étale presentation𝑈→ X ×Y 𝑆 the
composition

𝑈→ X ×Y 𝑆→ 𝑆

has the property P.

We are now ready to give the definition of an algebraic stack.

Definition 2.1.20. Let X → Sch𝑒𝑡 be a stack over the big étale site. We say that X is an
algebraic stack if there exists a scheme𝑈 and a representable smooth surjection,𝑈→X .
We call such morphisms smooth presentations. If the morphism is also étale we say that
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X is a Deligne-Mumford stack, this is often abbreviated to DM-stack. In this case we
also say that the morphism is an étale presentation.

Definition 2.1.21. Let X → Sch𝑒𝑡 be a stack over the big étale site. A substack Z of
X is called an open (resp. closed) substack if the inclusion Z ↩→ X is representable by
schemes and an open (resp. closed) immersion.

A property P of schemes is called smooth (resp. étale) local if for any smooth (resp.
étale) surjection of schemes 𝑋 → 𝑌, 𝑋 has the property P if and only if 𝑌 has P.

Definition 2.1.22. Let P be a smooth (resp. étale) local property of schemes, e.g., locally
noetherian, reduced or regular, then we say that an algebraic stack (resp. DM-stack) has
the property P if there is a smooth (resp. étale) presentation from a scheme with the
property P.

For a stack Y over Sch𝑒𝑡 and an algebraic stack X there is a further generalization of
the Yoneda lemma giving us a useful description for the category Mor(X ,Y). Namely,
for a smooth presentation 𝑋 → X , denote the projections by 𝑝𝑖 : 𝑋 ×X 𝑋 → 𝑋 and
𝑝𝑖 𝑗 : 𝑋 ×X 𝑋 ×X 𝑋 → 𝑋 ×X 𝑋, then we define Y (X ) to be the category consisting of

• (Objects): An object is a pair (𝑦,𝜓) where 𝑦 ∈ Y (𝑋) and 𝜓 : 𝑝∗1𝑥
∼→ 𝑝∗2𝑥 is an

isomorphism which satisfies the cocycle condition 𝑝∗23𝜓 ◦ 𝑝∗12𝜓 = 𝑝∗13𝜓.

• (Morphisms): A morphism (𝑦,𝜓) → (𝑦′,𝜓′) is given by a morphism [ : 𝑦→ 𝑦′

such that 𝑝∗2[ ◦𝜓 = 𝜓′ ◦ 𝑝∗1[.

i.e., the category of descent data corresponding to the sequence

Y (𝑋) Y (𝑋 ×X 𝑋) Y (𝑋 ×X 𝑋 ×X 𝑋) ,

see [Stacks, Tag 026B]. We note that Y (X ) is independent of the smooth presentation.
This generalization of the Yoneda lemma then claims that there is an equivalence of
categories [Alp24, Lemma 3.1.24]

Y (X ) ∼→ Mor(X ,Y).
Also see [Hal21, Sect. 6.4.3].

Next we want to extend the above definitions for properties of representable morphisms,
to properties of morphisms of algebraic stacks which are not necessarily representable,
by using presentations.
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Definition 2.1.23. Let P be a property for morphisms of schemes which is stable under
composition and base change and is smooth local on the source and target, e.g., flatness,
smoothness, surjectivity, locally of finite presentation and locally of finite type. We say
that a morphism of algebraic stacks X → Y has the property P if there exist smooth
presentations 𝑌 → Y and 𝑈 → X ×Y 𝑌 such that the composition of the latter smooth
presentation with the projection map

𝑈→ X ×Y 𝑌 → 𝑌

has the property P.

For a property of morphisms of schemes P that is stable under base change and a mor-
phism of algebraic stacks representable by schemes X → Y , we say that the morphism
has the property P if for any morphism from a scheme 𝑆→ Y the projection X ×Y 𝑆→ 𝑆

has the property P.

Remark. For a morphism of algebraic stacks to have a property P ∈{isomorphism, open
immersion, (locally) closed immersion, (quasi-)affine} it has to be representable by
schemes.

Moreover if we replace smooth by étale in the first part of the definition we can make a
similar definition for DM-stacks, in particular this allows us to define unramifiedness
and étaleness for morphisms of DM-stacks.

We define étale and unramified morphisms separately for a class of morphisms of
algebraic stacks which are called DM morphisms.

Definition 2.1.24. A morphism of algebraic stacks 𝑓 : X → Y is called DM or relatively
Deligne-Mumford if for every morphism from a scheme 𝑋→Y the fiber product X ×Y 𝑋
is a Deligne-Mumford stack.

Definition 2.1.25. A morphism X → Y of algebraic stacks is étale (resp. unramified) if
it is DM and for every smooth presentation𝑈→ Y and étale presentation 𝑉 → X ×Y𝑈
the composition 𝑉 → X ×Y𝑈→𝑈 is étale (resp. unramified).

We conclude this subsection with a useful result.

Proposition 2.1.26. [Alp24, Prop. 3.3.4] Consider a property of morphisms of algebraic
stacks P ∈{representable, isomorphism, open immersion, closed immersion, (quasi-
)affine}. Then if we have a cartesian diagram of algebraic stacks

X ′ Y′

X Y
□
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and Y′ → Y is smooth and surjective, the morphism X ′ → Y′ has the property P if and
only if X → Y has the property P.

2.1.5 Topology
In this subsection we generalize the notions of points and topology to algebraic stacks.

Definition 2.1.27. Let X be an algebraic stack. The topological space of X , denoted |X |,
is the set of field valued points 𝑥 : Spec(𝑘) → X modulo the relation which identifies
two points 𝑥1 : Spec(𝑘1) → X and 𝑥2 : Spec(𝑘2) → X if and only if there exist field
extensions 𝑘1 → 𝑘 and 𝑘2 → 𝑘 such that the diagram

Spec(𝑘) Spec(𝑘1)

Spec(𝑘2) X

is 2-commutative.

Now the topology on this set is defined as follows: a subset𝑈 ⊂ X is open if there exists
an open substack U ⊂ X such that |U | = 𝑈. In particular a morphism 𝑓 : X → Y of
algebraic stacks induces a continuous map | 𝑓 | : |X | → |Y |.

We will now list some properties of algebraic stacks and morphisms thereof which can
be defined using the underlying topological space.

Definition 2.1.28. Let X and Y be algebraic stacks and 𝑓 : X → Y a morphism, then

• X is quasi-compact, connected or irreducible if |X | is.

• 𝑓 is quasi-separated if its diagonal X → X ×Y X and second diagonal X →
X ×X×YX X are quasi-compact.

• X is noetherian if it is locally noetherian, quasi-compact and quasi-separated.

• 𝑓 is quasi-compact if for every morphism Spec(𝐴) → Y from an affine scheme
the fiber product X ×Y Spec(𝐴) is quasi-compact.

• 𝑓 is of finite type if it is locally of finite type and quasi-compact.

• 𝑓 is universally closed if for every morphism of algebraic stacks Y′ → Y the
morphism X ×Y Y′ → Y′ induces a closed map |X×YY′| → |Y′|.

• [Stacks, Tag 04XI] 𝑓 is surjective if and only if | 𝑓 | : |X | → |Y | is.
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• [Stacks, Tag 04XH] For a pair of morphisms X → Z and Y → Z the morphism
|X ×Z Y | → |X | ×|Z | |Y | is surjective.

Remark. [Stacks, Tag 04YC] For an algebraic stack (resp. quasi-separated algebraic
stack) X quasi-compactness (resp. noetherianness) is equivalent to the existence of a
smooth presentation Spec(𝐴) →X (resp. a smooth presentation Spec(𝐴) →X with 𝐴 a
noetherian ring).

2.1.6 Properness, separatedness and valuative criteria
In this section we will introduce the notions of properness and separatedness for algebraic
stacks and give valuative criteria for these properties.

Before giving the definitions of separatedness and properness we first have to discuss
diagonal morphisms. Namely for algebraic stacks and morphisms of algebraic stacks we
have the following results.

Proposition 2.1.29. [Alp24, Chapt. 3.2.1]

1. The diagonal morphism Δ : X → X ×X of an algebraic stack (resp. algebraic
space) X is representable (resp. representable by schemes).

2. If X → Y is a morphisms (resp. representable morphism) of algebraic stacks, then
X → X ×Y X is representable (resp. representable by schemes).

Giving the definitions of separatedess and properness has to be done by first giving the
definitions for representable morphisms and then building the general definition on the
representable case.

Definition 2.1.30. Let 𝑓 : X → Y be a morphisms of algebraic stacks.

1. If 𝑓 is representable then we say that 𝑓 is separated if the diagonal X → X ×Y X ,
which is representable by schemes, is proper.

2. If 𝑓 is representable we say that 𝑓 is proper if it is universally closed, separated
and of finite type.

3. 𝑓 is separated if the diagonal morphism X → X ×Y X , which is representable, is
proper.

4. 𝑓 is proper if it is universally closed, separated and of finite type.

We conclude this subsection by stating the valuative cirteria.
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Theorem 2.1.31. [Alp24, Thm. 3.8.2] Let 𝑓 : X → Y be a quasi-compact and quasi-
separated morphism of locally noetherian algebraic stacks. Consider a 2-commutative
diagram

Spec(𝐾) X

Spec(𝑅) Y

(2.1.1)

where 𝑅 is a discrete valuation ring with fraction field 𝐾. Then

1. 𝑓 is proper if and only if 𝑓 is of finite type and for every diagram 2.1.1, there exists
an extension 𝑅→ 𝑅′ of discrete valuation rings with the induced map 𝐾 → 𝐾′ on
fraction fields having finite transcendence degree and a lifting of the form

Spec(𝐾′) Spec(𝐾) X

Spec(𝑅′) Spec(𝑅) Y

(2.1.2)

which is unique up to unique isomorphism.

2. 𝑓 is separated if and only if every two liftings of a diagram 2.1.2 are uniquely
isomorphic.
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2.2 Examples of algebraic stacks

2.2.1 Quotient Stacks
The leading example in the chapters that follow will be that of the quotient stack, in
this section we will define this stack, give some of its properties and show that it is an
algebraic stack.

Definition 2.2.1. A groupoid in algebraic spaces consists of the data (𝑋, 𝑅, 𝑠, 𝑡, 𝑐, 𝑒, 𝑖)
where 𝑋 and 𝑅 are algebraic spaces, 𝑠, 𝑡 : 𝑅 → 𝑋, 𝑐 : 𝑅 ×𝑋 𝑅 → 𝑅, 𝑒 : 𝑋 → 𝑅 and
𝑖 : 𝑅→ 𝑅 are morphisms, which respectively are called the source, target, composition,
identity and inverse, such that the following diagrams commute:

1. (Associativity)

𝑅×𝑋 ×𝑅×𝑋 𝑅 𝑅×𝑋 𝑅

𝑅×𝑋 𝑅 𝑅

𝑐×𝑖𝑑

𝑖𝑑×𝑐 𝑐

𝑐

2. (Identity)

𝑋

𝑋 𝑅 𝑋

𝑖𝑑
𝑒

𝑖𝑑

𝑠 𝑡

𝑅 𝑅×𝑋 𝑅 𝑅

𝑅

(𝑒◦𝑠,𝑖𝑑)

𝑖𝑑
𝑐

(𝑒◦𝑡,𝑖𝑑)

𝑖𝑑

3. (Inverse)

𝑅 𝑅 𝑅

𝑋

𝑖

𝑠
𝑡

𝑖

𝑠

𝑅 𝑋

𝑅×𝑋 𝑅 𝑅

𝑠

(𝑖𝑑,𝑐) 𝑒

𝑐

𝑅 𝑋

𝑅×𝑋 𝑅 𝑅

𝑡

(𝑖𝑑,𝑖) 𝑒

𝑐

If in addition the source and target morphisms are étale (resp. smooth) we say that it
is an étale (resp. smooth) groupoid in algebraic spaces. We often denote this data as
𝑠, 𝑡 : 𝑅⇒ 𝑋.
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Remark. This definition can be given for an arbitrary category with finite fiber products,
for our purposes however the only relevant categories are schemes and algebraic spaces.
If (𝑠, 𝑡) : 𝑅→𝑈 ×𝑈 is a monomorphism we say that 𝑠, 𝑡 : 𝑅⇒𝑈 ×𝑈 is an étale (resp.
smooth) equivalence relation of algebraic spaces. We also want to note that the identity
and inverse are uniquely determined by the other data and therefore often omitted.

For our first example we consider the action of a group scheme on a scheme, this is also
the example that we will use the most throughout this text.

Example 2.2.2. Let 𝑆 be a scheme. Consider the data (𝑋,𝐺 × 𝑋, 𝑝2, 𝜌, 𝑐, 𝑒, 𝑖) where

1. 𝐺/𝑆 is an étale (resp. smooth) group scheme with multiplication 𝑚, inverse
(−)−1 :𝐺→𝐺, identity 𝑒𝐺 : 𝑆→𝐺 and an action 𝜌 :𝐺×𝑋→ 𝑋 on the 𝑆-scheme
𝑋.

2. The source 𝑝2 : 𝐺 × 𝑋 → 𝑋 is the second projection.

3. The composition 𝑐 : ((𝐺 × 𝑋) ×𝑋 (𝐺 × 𝑋) → 𝐺 × 𝑋) ≃ 𝐺 ×𝐺 × 𝑋 → 𝐺 × 𝑋 is the
morphism induced by the multiplication 𝑚 :𝐺 ×𝐺→𝐺, on points this is given by
((𝑔′, 𝑔, 𝑥)) ↦→ (𝑔′𝑔, 𝑥).

4. The identity 𝑒 : 𝐺 × 𝑋 → 𝑋 is the morphism induced by the identity 𝑒𝐺 : 𝑆→ 𝐺,

on points this is given by 𝑥 ↦→ (𝑒𝐺 , 𝑥).

5. The inverse 𝑖 : 𝐺 × 𝑋 → 𝐺 × 𝑋 is the morphism which on points is given by
(𝑔, 𝑥) ↦→ (𝑔−1, 𝑔𝑥). Then 𝑝2, 𝜌 : 𝐺 × 𝑋 ⇒ 𝑋 is an étale (resp. smooth) groupoid in
schemes.

We will now give the definition of a quotient stack.

Definition 2.2.3. Let 𝑠, 𝑡 : 𝑅⇒ 𝑋 be a smooth groupoid in algebraic spaces. The quotient
prestack [𝑋/𝑅] 𝑝𝑟𝑒 associated to 𝑠, 𝑡 : 𝑅⇒ 𝑋 is the category fibered in groupoids with:

• Objects: For every scheme 𝑇 an object over 𝑇 is given by a morphism 𝑇 → 𝑋.

• Morphisms: A morphism (𝑇 ′ 𝑥→ 𝑋) → (𝑇
𝑦
→ 𝑋) is given by the data of a mor-

phism 𝜑 : 𝑇 ′ → 𝑇 and an element 𝑟 ∈ 𝑅(𝑇) such that 𝑠(𝑟) = 𝑥 and 𝑡 (𝑟) = 𝜑∗𝑦.

The stackification of the quotient prestack is called the quotient stack and is denoted
[𝑋/𝑅] .

For our second example we will see that algebraic stacks have an associated groupoid,
and that algebraic stacks can be identified with the quotient stacks associated to these
groupoids.
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Example 2.2.4. Let X be an algebraic stack with a smooth presentation 𝜑 :𝑈 → X .
Then we can define a smooth groupoid in algebraic spaces given by the data (𝑈,𝑈 ×X
𝑈, 𝑝1, 𝑝2, 𝑐) :

1. The source and target are given respectively by the projections 𝑝1 :𝑈 ×X 𝑈→𝑈

and 𝑝2 :𝑈 ×X 𝑈→𝑈.

2. The composition is given by 𝑐 := (𝑝1 ◦ 𝑝′1, 𝑝2 ◦ 𝑝′2) : (𝑈 ×X 𝑈) ×𝑈 (𝑈 ×X 𝑈) →
𝑈 ×X 𝑈. Recall the definition of a fiber product, explicitly on 𝑇-points the compo-
sition acts by

((𝑢1, 𝑢2, [ : 𝜑(𝑢1)
∼→ 𝜑(𝑢2)), (𝑢′1, 𝑢

′
2, [

′ : 𝜑(𝑢′1)
∼→ 𝜑(𝑢′2)), 𝑓 : 𝑢1

∼→ 𝑢′2)

↦→ (𝑢1, 𝑢
′
2, 𝜑( 𝑓 ) : 𝜑(𝑢1)

∼→ 𝜑(𝑢′2)).

Moreover the morphism 𝜑 induces an equivalence 𝜑𝑐𝑎𝑛 : [𝑈/𝑈 ×X 𝑈]
∼→ X , see [Stacks,

Tag 04T5]. A smooth groupoid (𝑋, 𝑅, 𝑠, 𝑡, 𝑐) together with an equivalence 𝜑 : [𝑈/𝑅] →X
is called a presentation of X . Note that analogous constructions can be made if we replace
an algebraic stack with a smooth presentation by a DM-stack or algebraic space with an
étale presentation.

In our next example we will see that applying the quotients stack construction to a
groupoid induced by the action of a smooth affine algebraic group has a particularly nice
description.

Example 2.2.5. In the situation of Example 2.2.2, the quotient prestack associated to
𝑝2, 𝜌 :𝐺×𝑋⇒ 𝑋 is denoted by [𝑋/𝐺] 𝑝𝑟𝑒, its objects are the points of 𝑋 and a morphism
(𝑇 ′ 𝑥→ 𝑋) → (𝑇

𝑦
→ 𝑋) consists of the data of a morphism 𝜑 : 𝑇 ′ → 𝑇 and an element

𝑔 ∈ 𝐺 (𝑇 ′) such that 𝑔 · 𝑥 = 𝜑∗𝑦, its stackification is denoted by [𝑋/𝐺] . If 𝐺/𝑆 is smooth
and affine a principal 𝐺-bundle over an 𝑆-scheme 𝑇 is a morphism of schemes 𝑃→ 𝑇

with an action of 𝐺 on 𝑃 via 𝜎 : 𝐺 ×𝑆 𝑃→ 𝑃 such that 𝑃→ 𝑇 is a 𝐺-invariant smooth
morphism and

(𝜎, 𝑝2) : 𝐺 ×𝑆 𝑃→ 𝑃×𝑇 𝑃, (𝑔, 𝑝) ↦→ (𝑔𝑝, 𝑝)
is an isomorphism. For𝐺/𝑆 smooth and affine the stack [𝑋/𝐺] has the following explicit
description:

1. For every scheme 𝑇 an object over 𝑇 is given by a pair (𝑃→ 𝑇,𝑃→ 𝑋) where
𝑃→ 𝑇 is a principal 𝐺−bundle and 𝑃→ 𝑋 is a 𝐺−equivariant morphism.
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2. A morphism (𝑃′ → 𝑇 ′, 𝑃′ → 𝑋) → (𝑃 → 𝑇,𝑃 → 𝑋) is given by the data of a
morphism 𝑇 ′ → 𝑇 and a 𝐺−equivariant morphism 𝑃′ → 𝑃 such that the following
diagram commutes

𝑃′ 𝑃 𝑋

𝑇 ′ 𝑇

□

and the left square is cartesian.

Remark. The above example can be easily generalized to the situation of the action of
a group scheme on an algebraic space. Namely an action of a group scheme 𝐺 on an
algebraic space 𝑋 is a morphism 𝐺×𝑋→ 𝑋 satisfying the same axioms as in the scheme
theoretic definition of a group action. Moreover similar explicit descriptions can also be
given for the actions of group schemes, or more generally group algebraic spaces, which
are smooth or even fppf, dropping the affineness assumption, see [Alp24, Chapt. 6.3.2].

Suppose that we are in the following situation, 𝐺/𝑘 is a smooth algebraic group over
a field 𝑘 acting on an algebraic space 𝑋 locally of finite type over 𝑘. Let 𝐻 ↩→ 𝐺 be a
subgroup scheme with the free action on 𝐺 × 𝑋 given by ℎ · (𝑔,𝑥) = (𝑔ℎ−1, ℎ𝑥) which
is induced by the action of 𝐺 on 𝑋 and the group multiplication of 𝐺. Then we define
𝐺 ×𝐻 𝑋 := [𝐺 × 𝑋/𝐻] . In this setting we have the following result.

Lemma 2.2.6. [Hal21, Lemma 7.2.3.2],[Alp24, Sect. 3.4.2] The quotient 𝐺 ×𝐻 𝑋 is
an algebraic space and for the action of 𝐺 on the algebraic space 𝐺 ×𝐻 𝑋, induced by
𝑔 · (𝑔′, 𝑥) = (𝑔𝑔′, 𝑥), there is an isomorphism

[𝑋/𝐻] ≃ [(𝐺 ×𝐻 𝑋)/𝐺] .

We will now state two properties of quotient stacks. First we look at a useful cartesian
diagram.

Lemma 2.2.7. Let 𝑠, 𝑡 : 𝑅⇒ 𝑋 be a smooth groupoid in algebraic spaces. There exists a
morphism 𝑝 : 𝑋 → [𝑋/𝑅] such that the following diagram is cartesian.

𝑅 𝑋

𝑋 [𝑋/𝑅]

𝑠

𝑡 □ 𝑝

𝑝
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Proof. Define 𝑝𝑝𝑟𝑒 : 𝑋 → [𝑋/𝑅] 𝑝𝑟𝑒 to be the morphism that sends an object (𝑥,𝑇) ∈
𝑋 (𝑇) to the corresponding morphism obtained by the 2-Yoneda lemma (𝑇 → 𝑋) ∈
[𝑋/𝑅] 𝑝𝑟𝑒 (𝑇), and a morphisms 𝑓 : (𝑥′,𝑇 ′) → (𝑥,𝑇) in 𝑋 to the morphism ( 𝑓 , 𝑒𝑇 ′ (𝑥′)) :
𝑥′ → 𝑥 where 𝑒𝑇 ′ is the identity of the groupoid over 𝑇 ′. This makes sense because
𝑠(𝑒𝑇 (𝑥′)) = 𝑥′ and 𝑓 ∗𝑥 = 𝑥′ = 𝑡 (𝑒𝑇 ′ (𝑥′)). We obtain the morphism 𝑝 by composing 𝑝𝑝𝑟𝑒

with the stackification functor.

In order to show that the diagram is cartesian we first want to show that it is 2-
commutative, that is: there exists a natural transformation 𝛼 : 𝑝 ◦ 𝑠 → 𝑝 ◦ 𝑡 which
for every scheme 𝑇 and object 𝑟 ∈ 𝑅(𝑇) defines an isomorphism

𝛼𝑟 : 𝑝 ◦ 𝑠(𝑟) → 𝑝 ◦ 𝑡 (𝑟) ∈ [𝑋/𝑅] (𝑇).
We do this by first constructing a 2-isomorphism 𝛼𝑝𝑟𝑒 : 𝑝𝑝𝑟𝑒 ◦ 𝑠→ 𝑝𝑝𝑟𝑒 ◦ 𝑡. An element
𝑟 ∈ 𝑅(𝑇) defines an isomorphism (𝑖𝑑𝑇 , 𝑟) : 𝑠 ◦ 𝑟 → 𝑡 ◦ 𝑟 in [𝑈/𝑅] 𝑝𝑟𝑒 (𝑇), using this we
construct the isomorphism 𝛼𝑝𝑟𝑒 which for every scheme 𝑇 and 𝑟 ∈ 𝑅(𝑇) is given by
𝛼
𝑝𝑟𝑒
𝑟 := (𝑖𝑑𝑇 , 𝑟) : (𝑝𝑝𝑟𝑒 ◦ 𝑠) (𝑟) → (𝑝𝑝𝑟𝑒 ◦ 𝑡) (𝑟). To show that the transformation defined

in this way is natural, take a pair of objects 𝑟′ ∈ 𝑅(𝑇 ′) and 𝑟 ∈ 𝑅(𝑇) and a morphism
𝑓 : (𝑟′,𝑇 ′) → (𝑟,𝑇), then using the defining properties of groupoids we have that

(𝑖𝑑𝑇 , 𝑟) ◦ ((𝑝𝑝𝑟𝑒 ◦ 𝑠) ( 𝑓 )) = (𝑖𝑑𝑇 , 𝑟) ◦ ( 𝑓 , 𝑒𝑇 ′ (𝑠𝑇 ′ (𝑟′)))

= (𝑖𝑑𝑇 ◦ 𝑓 , 𝑐𝑇 ′ (𝑅( 𝑓 ) (𝑟), 𝑒𝑇 ′ (𝑠𝑇 ′ (𝑟′)))) = ( 𝑓 , 𝑐𝑇 ′ (𝑟, 𝑒𝑇 ′ (𝑠𝑇 ′ (𝑟′))))

= ( 𝑓 ◦ 𝑖𝑑𝑇 ′ , 𝑐𝑇 ′ (𝑒𝑇 ′ (𝑡𝑇 ′ (𝑟′)), 𝑟′)) = ( 𝑓 ◦ 𝑖𝑑𝑇 ′ , 𝑐𝑇 ′ (𝑅(𝑖𝑑𝑇 ′) (𝑒𝑇 ′ (𝑡𝑇 ′ (𝑟′))), 𝑟′))

= ( 𝑓 , 𝑒𝑇 ′ (𝑡 (𝑟′))) ◦ (𝑖𝑑′𝑇 , 𝑟′) = ((𝑝𝑝𝑟𝑒 ◦ 𝑡) ( 𝑓 )) ◦ (𝑖𝑑𝑇 ′ , 𝑟′).
Hence 𝛼𝑝𝑟𝑒 is a natural transformation and composing with the stackification gives us
the desired natural transformation 𝛼, proving the 2-commutativity of the diagram.

Next we want to show that there is an isomorphism 𝑅 → 𝑋 ×[𝑋/𝑅] 𝑋. Consider the
morphism 𝜑 : 𝑅→ 𝑋 ×[𝑋/𝑅] 𝑋, 𝑟 ↦→ (𝑠(𝑟), 𝑡 (𝑟), 𝛼𝑟) for 𝑟 ∈ 𝑅(𝑇), we claim that this is an
isomorphism.

This follows from the fact that objects in the fiber product are determined by the objects
𝑟 ∈ 𝑅(𝑇). Namely, consider a pair of objects 𝑦′, 𝑦 ∈ [𝑋/𝑅] and objects 𝑥′, 𝑥 ∈ [𝑋/𝑅] 𝑝𝑟𝑒
which under stackification are respectively mapped to 𝑦′ and 𝑦. The sheaf 𝐼𝑠𝑜𝑚(𝑦′, 𝑦)
is isomorphic to the sheafification of the presheaf 𝐼𝑠𝑜𝑚(𝑥′, 𝑥), the latter however is an
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algebraic space, it is not difficult to see that it is isomorphic to the fiber product 𝑇 ×𝑈×𝑈 𝑅
given by the morphisms (𝑥, 𝑥′) and (𝑠, 𝑡), see [Stacks, Tag 044V], and therefore in
particular a sheaf. Now our claim follows because isomorphisms 𝑥′ → 𝑥 over 𝑖𝑑𝑇 are, by
definition, given by an 𝑟 ∈ 𝑅(𝑇) such that 𝑠(𝑟) = 𝑥′ and 𝑡 (𝑟) = 𝑥. □

Our second result is the statement that a quotient stack is a categorical quotient among
stacks.

Lemma 2.2.8. Let 𝑝2, 𝜌 : 𝐺 × 𝑋 ⇒ 𝑋 be the smooth groupoid in schemes from Example
2.2.2, then the morphism 𝑝 : 𝑋 → [𝑋/𝐺] is a categorical quotient among stacks, that is,
for a 2-commutative diagram:

𝐺 × 𝑋 𝑋

𝑋 [𝑋/𝐺]

X

𝜌

𝑝2
⇒
𝛼 𝑝

𝑞
𝑝

𝑞

⇒
𝛽

there exists a morphism 𝜑 : [𝑋/𝐺] →X filling in the diagram and a pair of 2-isomorphisms
𝜏 : 𝑞→ 𝜑 ◦ 𝑝 and [ : 𝜑 ◦ 𝑝→ 𝑞 making the diagram commute.

Proof. We construct the morphism 𝜑𝑝𝑟𝑒 : [𝑋/𝐺] 𝑝𝑟𝑒 → X as follows, since 𝑝𝑝𝑟𝑒 is the
identity on objects, 𝜑𝑝𝑟𝑒 sends an object 𝑥 ∈ [𝑋/𝐺] 𝑝𝑟𝑒 to 𝑞(𝑥). A morphism ( 𝑓 : 𝑇 ′ →
𝑇,𝑔) : 𝑥′ → 𝑥 is sent to the morphism

𝑞(𝑥′) 𝑞(𝜌(𝑔−1, 𝑓 ∗𝑥)) 𝑞 ◦ 𝜌(𝑔−1, 𝑓 ∗𝑥) 𝑞 ◦ 𝑝2(𝑔−1, 𝑓 ∗𝑥) 𝑞( 𝑓 ∗𝑥)

𝑞(𝑥)
𝜑(( 𝑓 ,𝑔))

𝛽

𝑞( 𝑓 )

Now by stackification we obtain the desired morphism 𝜑 : [𝑋/𝐺] →X . For more details,
see [Stacks, Tag 044U]. □

Finally, we want to conclude this section by showing that quotient stacks are algebraic.

Theorem 2.2.9. If 𝑠, 𝑡 : 𝑅⇒ 𝑋 is a smooth groupoid of algebraic spaces, then [𝑋/𝑅]
is an algebraic stack and the natural map 𝑋 → [𝑋/𝑅] is a smooth, surjective and
representable morphism.
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Proof. Let 𝑇 → [𝑋/𝑅] be a morphism from a scheme 𝑇. Note that by definition [𝑋/𝑅]
is the stackification of the prestack [𝑋/𝑅] 𝑝𝑟𝑒, and that the morphism 𝑇 → [𝑋/𝑅] can
be identified with an object in the fiber category 𝑢 ∈ [𝑋/𝑅] (𝑇). Hence by properties
of stackification there exists an étale cover 𝑇 ′ → 𝑇 such that the pullback 𝑥 |𝑇 ′ lies in
the essential image of the stackification [𝑋/𝑅] 𝑝𝑟𝑒 → [𝑋/𝑅], i.e., there exists an object
𝑥𝑝𝑟𝑒 ∈ [𝑋/𝑅] 𝑝𝑟𝑒 (𝑇) = 𝑋 (𝑇) which has image 𝑥′ isomorphic to 𝑥 |𝑇 ′ . Now by applying
the Yoneda lemma to the isomorphism 𝑥′ ≃ 𝑥 |𝑇 ′ we obtain a 2-commutative diagram

𝑇 ′ 𝑋

𝑇 [𝑋/𝑅]

And since there is a cartesian diagram

𝑅 𝑋

𝑋 [𝑋/𝑅]

𝑠

𝑡 □ 𝑝

𝑝

we can construct the following cube

𝑋𝑇 ′ 𝑇 ′

𝑋𝑇 𝑇

𝑋 [𝑋/𝑅]

𝑅 𝑋

□

□

□

The bottom, top, inside and outside squares are cartesian, 𝑋𝑇 is a sheaf [Stacks, Tag
05UJ] and 𝑋𝑇 ′ is an algebraic space. Since 𝑇 ′ → 𝑇 is surjective, étale and representable
by schemes the base change 𝑋𝑇 ′ → 𝑋𝑇 is as well. Now by composing 𝑋𝑇 ′ → 𝑋𝑇 with an
étale presentation𝑈→ 𝑋𝑇 ′ we obtain an étale presentation for 𝑋𝑇 . It follows that 𝑋𝑇 is
an algebraic space, thus 𝑋 → [𝑋/𝑅] is representable.

Since 𝑅→ 𝑋 is smooth and surjective the base change 𝑋𝑇 ′ →𝑇 ′ is smooth and surjective
and therefore 𝑋𝑇 → 𝑇 is smooth and surjective. It follows that 𝑋 → [𝑋/𝑅] is smooth
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and surjective. Now by composing the morphism 𝑋 → [𝑋/𝑅] with an étale presentation
for the algebraic space 𝑋𝑇 we get a smooth presentation for [𝑋/𝑅] . □

Corollary 2.2.10. Let 𝐺/𝑆 be a smooth affine group scheme acting on an algebraic
space 𝑋/𝑆. The quotient stack [𝑋/𝐺] is an algebraic stack over 𝑆 and the natural map
𝑝 : 𝑋 → [𝑋/𝐺] is a principal 𝐺-bundle, i.e., 𝑋 → [𝑋/𝐺] is representable by schemes
and for every morphism from a scheme 𝑇 → [𝑋/𝐺] the projection

𝑋 ×[𝑋/𝐺] 𝑇 → 𝑇

is a principal 𝐺-bundle over 𝑇.

2.2.2 Orbits, stabilizers and residual gerbes
Before moving on to our next example we will introduce three important notions in the
theory of algebraic stacks. The first notion is that of a stabilizer.

Definition 2.2.11. Let X be an algebraic stack and 𝑥 : 𝑇 → X a 𝑇-point, then the
stabilizer of 𝑥, often denoted 𝐺𝑥 , is the fiber product

𝐺𝑥 := AutX (𝑇) (𝑥) 𝑇

X X ×X

(𝑥,𝑥)

Remark. For field valued points the stabilizers are group algebraic spaces. Furthermore
if X has a quasi-separated diagonal, these stabilizers are group schemes locally of finite
type [Alp24, p. 117].

An important class of morphisms of algebraic stacks are the morphisms which preserve
stabilizers in the following sense.

Definition 2.2.12. [AHH23, Sect. 4.1] Let 𝑓 : X → Y be a morphism of algebraic stacks.
Then for a point 𝑥 ∈ |𝑋 | we stay that 𝑓 is stabilizer preserving at 𝑥 if there exists a
representative 𝑥, or equivalently for all representatives, of 𝑥 such that the natural map
𝐺𝑥 → 𝐺 𝑓 (𝑥) is an isomorphism of group algebraic spaces.

Remark. In this text we will say that a morphism 𝑓 : X → Y is stabilizer preserving
if it is so for all points 𝑥 ∈ |X |. However, in for example the article [Alp17, Sect. 2.1],
a more general definition is given where morphisms satisfying the above definition at
all points are called pointwise stabilizer preserving and a morphism is called stabilizer
preserving if it induces isomorphisms of stabilizers at all 𝑇-valued points for schemes 𝑇.
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For a verification of the fact that the property has to hold only for one representative in
order for it to hold for all representatives of 𝑥 see [Stacks, Tag 0DTV]. Moreover it is
useful to note that this property is stable under base change [Stacks, Tag 0DUB].

In addition to stabilizers we can also define orbits of 𝑇-valued points.

Definition 2.2.13. Let X be an algebraic stack, 𝑥 : 𝑇 → X a 𝑇-point and 𝑋 → X an
fppf presentation, i.e., a locally of finite presentation, faithfully flat and representable
morphism from a scheme. Then we define the orbit of 𝑥 in 𝑋 denoted 𝑜𝑋 (𝑥), set-
theoretically as the image of 𝑋 ×X 𝑇 → 𝑋 ×𝑇. Moreover if the stabilizer is an fppf group
scheme, i.e., fppf over its base scheme, then the orbit is given by the cartesian diagram

𝑜𝑋 (𝑥) 𝑋 ×𝑇

𝐵𝐺𝑥 X ×𝑇

In particular if 𝑥 : Spec(𝑘) → X is a geometric point then its orbit is given by the fiber
product

𝑜𝑋 (𝑥) 𝑋𝑘

𝐵𝐺𝑥 X𝑘

and we say that the point 𝑥 : Spec(𝑘) → X has closed orbit if 𝐵𝐺𝑥 → X → X𝑘 is a
closed immersion. An algebraic stack is said to have closed orbits if every geometric
point has a closed orbit.

Another important concept in the theory of algebraic stacks is that of a residual gerbe,
this concept is meant to mimic the fact that for points in schemes we can construct
monomorphisms from their residue fields. This notion is made precise in the following
definition.

Definition 2.2.14. Let X be an algebraic stack and 𝑥 ∈ |X | a point. Then a residual gerbe
of X at 𝑥 is an algebraic stack G𝑥 together with a monomorphism G𝑥 ↩→ X such that |G𝑥 |
is a singleton and the image of |G𝑥 | in |X | is 𝑥.

Remark. If a residual gerbe G𝑥 at a point 𝑥 ∈ |X | exists, then it is unique and G𝑥 is a
reduced and locally noetherian substack of X , moreover by [Stacks, Tag 06MV] it is a
regular algebraic stack.

Proposition 2.2.15. Let X be an algebraic stack. Then the following are true.
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1. [Stacks, Tag 06RD] If X is quasi-separated, then residual gerbes exist at all points
𝑥 ∈ |X |.

2. [Alp24, Prop. 3.5.17] If X is quasi-separated and of finite type over an al-
gebraically closed field 𝑘, then for every point 𝑥 ∈ |X | with a representative
𝑥 ∈ X (𝑘),

G𝑥 ≃ 𝐵𝐺𝑥 .

Using the notion of a residual gerbe we can also give a definition for orbits of points
𝑥 ∈ |X |.

Definition 2.2.16. Let X be an algebraic stack, 𝑥 ∈ |X | a point and 𝑋 → X an fppf
presentation. The orbit of 𝑥 in 𝑋, denoted 𝑂𝑋 (𝑥), is defined as the fiber product

𝑂𝑋 (𝑥) 𝑋

G𝑥 X

For a representative 𝑥 : Spec(𝑘) → X of 𝑥, set-theoretically 𝑂𝑋 (𝑥) is the image of
Spec(𝑘) ×X 𝑋 → 𝑋. If 𝑠, 𝑡 : 𝑋 ×X 𝑋 ⇒ 𝑋 is the induced groupoid, see Example 2.2.4,
and 𝑥′ ∈ |𝑋 | is a lift of 𝑥, then 𝑂𝑋 (𝑥) = 𝑠(𝑡−1(𝑥)) set-theoretically.
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2.2.3 Stack of vector bundles over a curve
One of the fundamental examples in moduli theory is the moduli space of vector bundles
over a curve. In this section we define the stack and sketch the proof for its algebraicity.
We will work over a smooth connected and projective curve 𝐶 over an algebraically
closed field 𝑘. For this section we mainly follow Alper’s notes [Alp24], also see [Neu09],
[Gro14] and [Wan11].

Definition 2.2.17. The moduli stack of vector bundles of rank 𝑟 and degree 𝑑 over 𝐶,
denoted Bun

𝑟,𝑑
(𝐶) is defined as follows.

• An object 𝐸 ∈ Bun
𝑟,𝑑

(𝐶) (𝑆) is a vector bundle of rank 𝑟 over 𝐶𝑆 which is flat over
𝑆 and of relative degree 𝑑.

• A morphism (𝐸′, 𝑆′) → (𝐸, 𝑆) is given by a morphisms of schemes 𝑓 : 𝑆′→ 𝑆 with
a morphism 𝐸 → (id𝐶 × 𝑓 )∗𝐸′ of O𝐶𝑆

-modules whose adjoint is an isomorphism.

Our strategy for proving the algebraicity of this stack is to show that it is isomorphic
to a quotient stack. We do this by using the following general fact, let 𝐸 denote a
coherent sheaf of rank 𝑟 and degree 𝑑 over the curve 𝐶, and let O𝐶 (1) be an ample
invertible sheaf on 𝐶. Then by a result of Serre [Har77, Thm. II.5.17, Prop. III.5.3],
there exists an integer 𝑛0 such that for all 𝑛 ≥ 𝑛0 the sheaf 𝐸 (𝑛) = 𝐸 ⊗O𝐶

O𝐶 (𝑛) is
finitely globally generated and for all 𝑖 > 0, 𝐻𝑖 (𝐶,𝐸 (𝑛)) = 0. It follows that the canon-
ical evaluation map Γ(𝐶,𝐸 (𝑛)) ⊗𝑘 𝑂𝐶 → 𝐸 (𝑛), which for sections on some open 𝑈 is
defined 𝑠⊗ 𝑓 → 𝑓 · 𝑠 |𝑈 , is a surjection which induces an isomorphism on global sections.

Furthermore, to prove algebraicity we will also use quot schemes, which we will define
next. Let 𝐹 be a coherent sheaf on 𝐶/𝑘 and 𝑃 ∈ Q[𝑥], consider the moduli problem

Quot𝑃
𝐶/𝑘 (𝐹) : Sch/k → Set,

where Quot𝑃
𝐶/𝑘 (𝐹) (𝑆) consists of families of quasi-coherent and finitely presented quo-

tients 𝐹𝑆 ↠ 𝑄 on 𝐶𝑆, i.e., surjecive O𝐶𝑆
-linear homomorphisms of sheaves over 𝐶𝑆,

such that 𝑄 is flat over 𝑆 and 𝑄𝑠 has Hilbert polynomial 𝑃 for all 𝑠 ∈ 𝑆. Furthermore two
𝑆-families 𝑞𝑆 : 𝐹𝑆↠𝑄 and 𝑞′

𝑆
: 𝐹𝑆↠𝑄′ are equivalent if ker(𝑞𝑆) = ker(𝑞′

𝑆
).

It has long been known that this moduli problem is representable by a projective scheme,
see [Alp24, Chapt. 1], the representing scheme is called the quot scheme, we will
however also call the moduli problem itself the quot scheme.

It turns out that the the stack of vector bundles of given rank and degree can be realized
as the quotient of some subscheme of the quot scheme. Note that the Hilbert polynomial
of a coherent sheaf of rank 𝑟 and degree 𝑑 on a curve 𝐶 of genus 𝑔 is given by
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𝑃𝑟,𝑑 (𝑛) = 𝑑 + 𝑟𝑛+ 𝑟 (1−𝑔).
Let 𝑃 := 𝑃𝑟,𝑑 and for each integer 𝑁 consider the open subscheme

𝑈𝑁 ⊂ Quot𝑃
𝐶/𝑘,𝑟,𝑑 (O𝐶 (−𝑁)𝑃(𝑁))

which corresponds to the sheaf which sends a scheme 𝑆/𝑘 to the set of families of
locally free quotient sheaves 𝑝𝑟∗1O𝐶 (−𝑁)𝑃(𝑁) ↠ 𝐹, where 𝑝𝑟1 : 𝐶 × 𝑆→ 𝐶 is the pro-
jection, of rank 𝑟 and degree 𝑑 such that for every 𝑠 ∈ 𝑆, 𝐹 (𝑁)𝑠 is globally generated and
𝐻1(𝐶𝑠, 𝐹 (𝑁) |𝐶𝑠

) = 0.

The algebraic group GL𝑃(𝑁) acts on the quot scheme via precomposition, that is, for
𝑆−points 𝑔 ∈GL𝑃(𝑁) (𝑆) and [𝑞 : 𝑝𝑟∗1O𝐶 (−𝑁)𝑃(𝑁) → 𝐹] ∈Quot𝑃

𝐶/𝑘,𝑟,𝑑 (O𝐶 (−𝑁)𝑃(𝑁)) (𝑆),

𝑔 · [𝑞] := [𝑞 ◦ 𝑝𝑟∗2𝑔
−1 : 𝑝𝑟∗1O𝐶 (−𝑁)𝑃(𝑁)

𝑝𝑟∗2𝑔
−1

−→ 𝑝𝑟∗1O𝐶 (−𝑁)𝑃(𝑁) ↠ 𝐹] .

and the open subschemes 𝑈𝑁 are invariant under this action. We are now prepared to
sketch a proof for the algebraicity of the stack of vector bundles over 𝐶 of given rank
and degree.

Theorem 2.2.18. Let 𝐶 be a smooth, connected and projective curve over an alge-
braically closed field 𝑘. Then for 𝑟, 𝑑 ∈ Z≥0 the stack Bun

𝑟,𝑑
(𝐶) is algebraic.

Proof. Consider the morphism𝑈𝑁 → Bun
𝑟,𝑑

(𝐶) which over a scheme 𝑆/𝑘 is defined by

[𝑞 : 𝑝𝑟∗1O𝐶 (−𝑁)𝑃(𝑁) ↠ 𝐹] → 𝐹.

This map is clearly GL𝑃(𝑁) invariant, since the natural morphism𝑈𝑁 → [𝑈𝑁/GL𝑃(𝑁)] 𝑝𝑟𝑒
is a categorical quotient among prestacks, the morphism𝑈𝑁 →Bun

𝑟,𝑑
(𝐶) factors through

[𝑈𝑁/𝐺𝐿𝑃(𝑁)] 𝑝𝑟𝑒 giving us a morphism Ψ
𝑝𝑟𝑒

𝑁
: [𝑈𝑁/GL𝑃(𝑁)] 𝑝𝑟𝑒 → Bun

𝑟,𝑑
(𝐶).

This map is fully faithfull, namely the set of morphisms Mor[𝑈𝑁 /𝐺𝐿𝑃 (𝑁 ) ] (𝑆) ( [𝑝𝐺], [𝑞𝐹]),
for objects [𝑝𝐺], [𝑞𝐹] in the fiber category [𝑈𝑁/𝐺𝐿𝑃(𝑁)] (𝑆), consists of elements
𝑔 ∈ 𝐺𝐿𝑃(𝑁) (𝑆) such that 𝑖𝑑∗

𝑆
𝐹 = 𝑔 ·𝐺, for some choice of pullback 𝑖𝑑∗

𝑆
𝐹. Hence show-

ing that the map is fully faithfull comes down to checking that the map from the set
{𝑔 ∈ 𝐺𝐿𝑃(𝑁) (𝑆) : 𝑔 · 𝑞𝐹 = 𝐹} to MorBun

𝑟 ,𝑑
(𝐶) (𝑆) (𝐹,𝐹) sending 𝑔 to the automorphism of

sheaves Ψ𝑝𝑟𝑒 ((𝑖𝑑𝑆, 𝑔)) : 𝐹→ 𝐹 is bijection.

We can construct an inverse by composing an automorphism 𝐹 → 𝐹 with the isomor-
phism O𝑃(𝑁)

𝑆
≃ 𝑝𝑟2,∗𝑝𝑟∗1O𝐶 ≃ 𝐹 (𝑁), this then gives us an automorphism O𝑃(𝑁)

𝑆
→O𝑃(𝑁)

𝑆
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which uniquely corresponds to an element in 𝐺 (𝑆).

Now stackification gives us a fully faithfull map Ψ𝑁 : [𝑈𝑁/𝐺𝐿𝑃(𝑁)] → Bun
𝑟,𝑑

(𝐶). Tak-
ing the disjoint union of these maps gives us a morphism Ψ :=

∐
𝑁 Ψ𝑁 : [𝑈𝑁/𝐺𝐿𝑃(𝑁)] →

Bun
𝑟,𝑑

(𝐶).

It follows from the result by Serre which we discussed earlier, that the map Ψ is a
surjection. Let [𝐸] ∈ Bun

𝑟,𝑑
(𝑘), then for some 𝑁 >> 0, 𝐸 (𝑁) is a quotient O𝑃(𝑁)

𝐶
≃

Γ(𝐶,𝐸 (𝑛)) ⊗𝑘 O𝐶 ↠ 𝐸 (𝑁) hence in particular 𝐸 is a quotient of O𝑃(𝑁) (−𝑁) such that
𝐻1(𝐶,𝐸 (𝑁)) = 0. □
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2.3 Sheaves on algebraic stacks
In this section we will give basic definitions and constructions for sheaves on algebraic
stacks. For this section algebraic stacks are assumed to have quasi-compact and quasi-
separated diagonal, note that with this assumption, by [Stacks, Tag 050N], morphisms of
algebraic stacks are quasi-separated. Some good sources on the subject of sheaves on
algebraic stacks are Alper’s notes [Alp24] and the book [Ols16] and article [Ols07] by
Olsson, also see [LM00], [Alo+15] and [Nit08].

In order to define sheaves on algebraic stacks we first have to give a generalization of the
lisse-étale site introduced in the first section.

Definition 2.3.1. Let X /𝑆 be an algebraic stack over a scheme 𝑆. The lisse-étale
site on X , denoted Lis-Ét(X ), is the site given by the full subcategory of X−schemes
whose objects are smooth X−schemes and has coverings given by collections of étale
morphisms {(𝑈𝑖, 𝜑𝑖) → (𝑈,𝜑)}𝑖∈𝐼 such that

∐
𝑖 (𝑈𝑖, 𝜑𝑖) → (𝑈,𝜑) is surjective. We will

often leave the structure morphism out of the notation, writing𝑈 instead of (𝑈,𝜑). The
category of sheaves on Lis-Ét(X ) is denoted X𝑙𝑖𝑠−𝑒𝑡 .

Remark. Note that the notion of a scheme over a stack is slightly different than that of a
scheme over a scheme, in that the compatibility of morphisms with the structure maps
results in a 2-commutative diagram, rather than a commutative diagram.

Using the above definition we define a sheaf on an algebraic stack X to be a sheaf on
the lisse-étale site. The structure sheaf of an algebraic stack X is the sheaf denoted OX
whose sections over an X−scheme𝑈 in Lis-Ét(X ) are given by OX (𝑈) =O𝑈 (𝑈). The
structure sheaf defined in this way is a ring object in the category of abelian sheaves
on Lis-Ét(X ), denoted Ab(X ), this allows us to define the category Mod(OX ) of OX -
modules. To be precise an O𝑋−module F is a sheaf on Lis-Ét(X ) which to every object
𝑈 ∈ Lis-Ét(X ) associates an OX (𝑈)-module F (𝑈) whose module structure is compati-
ble with taking restrictions.

An alternative characterization of X𝑙𝑖𝑠−𝑒𝑡 is the following, let C denote the category
consisting of

1. For each (𝑈,𝑢) ∈ Lis-Ét(X ) a sheaf 𝐹(𝑈,𝑢) on𝑈𝑒𝑡 .

2. For each morphism (𝜑,𝛼) : (𝑈′, 𝑢′) → (𝑈,𝑢), where 𝛼 is the 2-isomorphism giving
compatibility of the structure morphisms, a pair of adjoint morphisms of sheaves
\𝜑,𝛼 : 𝐹(𝑈,𝑢) → 𝜑∗𝐹𝑈′,𝑢′ and \#

𝜑,𝛼 : 𝜑−1𝐹(𝑈,𝑢) → 𝐹𝑈′,𝑢′ .

Furthermore, this data has to satisfy the following conditions

• For any composition (𝑈′′, 𝑢′′)
(𝜑1,𝛼1)−→ (𝑈′, 𝑢′)

(𝜑2,𝛼2)−→ (𝑈,𝑢) in Lis-Ét(X ) the
following diagram commutes
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𝜑−1
1 𝜑−1

2 𝐹(𝑈,𝑢) 𝐹(𝑈′,𝑢′)

(𝜑2𝜑1)−1𝐹(𝑈,𝑢) 𝐹(𝑈′′,𝑢′′)

≃

𝜑−1
1 \ (𝜑2 ,𝛼2 )

\ (𝜑1 ,𝛼1 )

\ (𝜑2 ,𝛼2 )◦(𝜑1 ,𝛼1 )

• For any étale X -morphism (𝜑,𝛼) : (𝑈′, 𝑢′) → (𝑈,𝑢) the induced morphism
\#
(𝜑,𝛼) is an isomorphism.

3. A morphism ({𝐹(−)}, {\ (−)}) → ({𝐺 (−)}, {[(−)}) in C is a collection of morphisms
𝜓(𝑈,𝑢) : 𝐹(𝑈,𝑢) → 𝐺 (𝑈,𝑢) for each (𝑈,𝑢) ∈ Lis-Ét(X ), such that for any morphism
(𝜑,𝛼) : (𝑈′, 𝑢′) → (𝑈,𝑢) the following diagram commutes

𝜑−1𝐹(𝑈,𝑢) 𝜑−1𝐺 (𝑈,𝑢)

𝐹(𝑈′,𝑢′) 𝐺 (𝑈′,𝑢′)

\ (𝜑,𝛼)

𝜑−1𝜓 (𝑈,𝑢)

[ (𝜑,𝛼)

𝜓 (𝑈′ ,𝑢′ )

There is an equivalence of categories C → X𝑙𝑖𝑠−𝑒𝑡 , see [Ols16, Prop. 9.1.12].

Remark. For a sheaf F ∈ X𝑙𝑖𝑠−𝑒𝑡 and an object (𝑈,𝑢) ∈ Lis-Ét(X ) we will use the
notiation F(𝑈,𝑢) to mean the restriction of F to𝑈𝑒𝑡 .

Given a morphism of algebraic stacks 𝐹 : X → Y , there are adjoint functors

X𝑙𝑖𝑠−𝑒𝑡 Y𝑙𝑖𝑠−𝑒𝑡

𝐹∗

𝐹−1

Mod(OX ) Mod(OY )

𝐹∗

𝐹∗

Let (𝑌, 𝑦) be an object in Y𝑙𝑖𝑠−𝑒𝑡 . We define a category denoted I (𝑌, 𝑦) which has as
its objects triples (𝑥 : 𝑋 → X , 𝑓 : 𝑋 → 𝑌,𝛼 : 𝑦 ◦ 𝑓 ∼→ 𝐹 ◦ 𝑥), where (𝑋,𝑥) ∈ Lis-Ét(X ),
these triples correspond to 2-commutative diagrams

𝑋 X

𝑌 Y

𝑥

𝑓
⇒
𝛼 𝐹

𝑦

A morphism is given by a triple (ℎ, 𝛽, 𝛾) : (𝑥′, 𝑓 ′, 𝛼′) → (𝑥, 𝑓 ,𝛼) consisting of a mor-
phism ℎ : 𝑋′ → 𝑋 and 2-isomorphisms 𝛽 : 𝑥′ ∼→ 𝑥 ◦ ℎ and 𝛾 : 𝑓 ′ ∼→ 𝑓 ◦ ℎ.

Now consider the functor [(𝑌,𝑦) : I (𝑌, 𝑦)𝑜𝑝 → 𝑌𝑒𝑡 which sends
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• an object (𝑥, 𝑓 ,𝛼) to the sheaf 𝑓∗F(𝑋,𝑥) which is defined by (𝑌 ′→𝑌 ) ↦→ 𝐹(𝑋,𝑥) (𝑋×𝑌
𝑌 ′→ 𝑋), where 𝑋×𝑌 𝑌 ′→ 𝑋 is the projection, which is étale since étale morphisms
are stable under base change.

• A morphism (ℎ, 𝛽, 𝛾) is sent to the morphism 𝑓∗\ℎ,𝛽 : 𝑓∗F(𝑋,𝑥) → 𝑓 ′∗F(𝑋 ′,𝑥′) , this
makes sense because of the identifications 𝛾 : 𝑓 ′ ∼→ 𝑓 ◦ ℎ and 𝑓∗ℎ∗ ≃ ( 𝑓 ◦ ℎ)∗.
On (𝑌, 𝑦) we define the pushforward of F by 𝐹 to be the limit (𝐹∗F)(𝑌,𝑦) =
limI (𝑌,𝑦) [(𝑌,𝑦) .

If 𝐹 is representable by schemes the pushforward is simply the sheaf

(𝑌, 𝑦) ↦→ F (𝑌 ×Y X → X )
where 𝑌 ×Y X → X is the projection, which is clearly in Lis-Ét(X ) by smoothness

of 𝑦. In a similar fashion one can define the inverse image functor 𝐹−1G for a sheaf
G ∈ Y𝑙𝑖𝑠−𝑒𝑡 . In particular if 𝐹 is smooth it induces a functor Lis-Ét(X ) → Lis-Ét(Y),
(𝑋,𝑥) ↦→ (𝑌,𝐹 ◦ 𝑥) and we denote the direct image of G by 𝐹 as GY ,𝐹 which is defined
via (𝑋,𝑥) ↦→ G (𝐹 ◦ 𝑥).

Furthermore the functor 𝐹∗ is defined by sending an OY -module M to the OX -module
𝐹∗M := 𝐹−1M ⊗𝐹−1OY OX , where the tensor product is the sheafification of 𝑈 ↦→
𝐹−1M(𝑈) ⊗𝐹−1OY (𝑈) OX (𝑈).

For a sheaf F on an algebraic stack X over a scheme 𝑆 with structure morphism
𝜑 : X → 𝑆 we define its global sections by F (X ) := (𝜑∗F)(𝑆,id𝑆) (𝑆)). In addition for a
morphism 𝐹 : X → Y the sections of the pushforward over an object (𝑌, 𝑦) ∈ Lis-Ét(Y)
are given by 𝐹∗F (𝑌, 𝑦) := (𝑝2,∗(FX×Y𝑌,𝑝1))𝑌,id𝑌 (𝑌 ).

Definition 2.3.2. Let X be an algebraic stack. A sheaf F ∈ Mod(OX ) is quasi-coherent
if

1. for every𝑈 ∈ Lis-Ét(X ), the restriction of F to the small Zariski site on𝑈 denoted
F |𝑈𝑍𝑎𝑟

is a quasi-coherent O𝑈𝑍𝑎𝑟
−module.

2. For every morphism 𝑓 :𝑈→𝑉 ∈ Lis-Ét(X ), the induced morphism 𝑓 ∗(F |𝑉𝑍𝑎𝑟
) →

F |𝑈𝑍𝑎𝑟
is an isomorphism.

We denote the category of quasi-coherent sheaves on X by QCoh(X ).

Remark. A quasi-coherent OX -algebra is a quasi-coherent OX -module with a compati-
ble structure as a ring object.
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Lemma 2.3.3. [Ols07, Lemma 6.5] Let 𝐹 : X → Y be a quasi-compact morphism of
algebraic stacks, then 𝐹∗ and 𝐹∗ preserve quasi-coherence.

Example 2.3.4. [Kha22, Cor. 6.13],[Hei18, 1.A.a.] Let 𝐺 be an algebraic group acting
on an algebraic space 𝑋, then

QCoh( [𝑋/𝐺]) ≃ QCoh𝐺 (𝑋),
where QCoh𝐺 (𝑋) is the category of 𝐺-equivariant quasi-coherent sheaves on 𝑋.

In particular, consider the multiplicative group G𝑚 over an algebraically closed field
𝑘 acting on the affine line A1 over 𝑘 by the usual multiplication and a lineariza-
tion L ∈ Pic𝐺𝑚 (A1). Since L is a quasi-coherent rank one OA1-module we have that
L(A1) = 𝑘 [𝑥] · 𝑒 where 𝑒 is some section which is unique up to scalar multiple.

We define an integer called the weight of L denoted wt(L), which is given by the weight
of the G𝑚-coaction on the section 𝑒, i.e., 𝑤𝑡 (L) := 𝑑 with 𝜌# : L(A1) → 𝑘 [𝑦, 𝑦−1] ⊗
L(A1), 𝜌#(𝑒) = 𝑦𝑑 ⊗ 𝑒. Then

L( [A1/G𝑚]) = L(A1)G𝑚 =

{
𝑘 · 𝑥−𝑑𝑒 if wt(L) = 𝑑 ≤ 0
0 if wt(L) = 𝑑 > 0

,

see [Hei18, 1.A.a.].

Now we want to introduce the stack theoretic versions of relative spectra and Proj
constructions.

Definition 2.3.5. Let A be an quasi-coherent OX−algebra. The relative spectrum of A
denoted Spec

X
(A) is the algebraic stack consisting of

1. objects which are pairs (𝑥 : 𝑇 →X , 𝜑) where 𝑥 ∈ X (𝑇) and 𝜑 : 𝑥∗A→O𝑇 is a map
of O𝑇−algebras.

2. A morphism (𝑥′ : 𝑇 ′ → X , 𝜑′) → (𝑥 : 𝑇 → X , 𝜑) is given by a pair of morphisms
( 𝑓 : 𝑇 ′ → 𝑇, 𝑓 𝑏 : 𝑥′ → 𝑥) where 𝑓 𝑏 is a morphism over 𝑓 such that the following
diagram commutes

𝑥′∗A 𝑓 ∗𝑥∗A

O𝑇 ′

𝑓 𝑏

𝜑′

𝑓 ∗𝜑

Definition 2.3.6. Let A be an quasi-coherent graded OX−algebra. The relative Proj of
A denoted Proj

X
(A) is the algebraic stack consisting of
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1. objects which are pairs (𝑥 : 𝑇 → X , 𝜑) where 𝑥 ∈ X (𝑇) and 𝜑 : 𝑇 → Proj𝑇 (𝑥∗A) is
a section of the 𝑇−scheme Proj

𝑇
(𝑥∗A).

2. A morphism (𝑥′ : 𝑇 ′ → X , 𝜑′) → (𝑥 : 𝑇 → X , 𝜑) is given by a pair of morphisms
( 𝑓 : 𝑇 ′ → 𝑇, 𝑓 : 𝑥′ → 𝑥) where 𝑓 is a morphism over 𝑓 such that the following
diagram commutes

𝑇 ′ 𝑇

Proj
𝑇 ′ (𝑥′∗A) Proj

𝑇
(𝑥∗A)

𝑓

𝜑′ 𝜑

𝑓

Remark. We have sneakily inserted stackyness and algebraicity into the above defi-
nitions, this however is not too difficult to prove, we refer the reader to [Ols16, Sect.
10.2].

Next we introduce a variant of the stack theoretic relative Proj, following [QR22], which
is described by a quotient stack. We will work on schemes as this is sufficient for our
purposes, it is however possible to work on general algebraic stacks using the notions
of actions on stacks and quotients of such actions introduced in the article [Rom05],
alternatively there is also a discussion of this construction in Olsson’s book [Ols16, Sect.
10.2] which is not directly identified with a quotient stack.

Let 𝐴 =
⊕

𝑛≥0 𝐴𝑛 be a quasi-coherent graded O𝑋 -algebra and write 𝐴+ for the ideal of 𝐴
generated by

⊕
𝑛>0 𝐴𝑛. There is a natural action of the multiplicative group scheme G𝑚

on Spec
𝑋
(𝐴) induced by the coaction 𝐴→ 𝐴⊗O𝑋

O𝑋 [𝑥, 𝑥−1] that sends a degree 𝑑 sec-
tion 𝑎 to 𝑥𝑑𝑎. Let V(𝐴)◦ denote the complement of the closed subscheme of Spec

𝑋
(𝐴)

defined by the ideal 𝐴+, then there is an induced action of G𝑚 on V(𝐴)◦ and we define
this version of the relative Proj denoted Proj𝑋 (𝐴) to be the quotient stack [V(𝐴)◦/G𝑚] .

This construction comes with a universal property [QR22, Prop. 1.5.1], which we will
not write out here, more important to us is the following consequence [QR22, Prop.
1.7.1]: Let 𝑓 : X → Y be a quasi-compact morphism of algebraic stacks and L an
invertible sheaf on X . Then if for every 𝑥 ∈ 𝑋, there exists an integer 𝑁 > 0 such that
𝑓 ∗ 𝑓∗L⊗𝑁 → L⊗𝑁 is surjective at 𝑥 there exists a morphism 𝜑L : X → ProjY (𝐴).

66



Chapter 3

Good Moduli spaces

A good moduli space for an algebraic stack generalizes the notion of a good quotient
to a stack theoretic setting. In this chapter we will introduce the notion of a good
moduli space, we will see that it shares many of the properties of good quotients and
that important results from Mumford’s geometric invariant theory can be generalized
for these good moduli spaces. Throughout this chapter schemes are assumed to be
quasi-separated, an algebraic space over a scheme 𝑆 is assumed to be quasi-separated
over 𝑆 and an algebraic stack over 𝑆 is assumed to have separated and quasi-compact
diagonal X → X ×𝑆X . The main references for this chapter are [Alp13], [AE12] and
[Alp24].

3.1 Cohomological affineness
In this section we will introduce the notion of cohomological affineness, which is one
of the defining properties of good moduli spaces. We list some of its features and work
out an example. Furthermore, we will also generalize the notion of linear reductivity
introduced in chapter one.

Definition 3.1.1. Let 𝑓 : X → Y be a morphism of algebraic stacks. We say that 𝑓 is
cohomologically affine if 𝑓 is quasi-compact and the induced functor

𝑓∗ : QCoh(X ) → QCoh(Y)
is exact.
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We will now list some useful results for cohomological affineness.

Proposition 3.1.2. [Alp13, Prop. 3.3, 3.10, Lemma 4.9]

1. Cohomologically affine morphisms are stable under composition.

2. Affine morphisms are cohomologically affine.

3. [Alp13, Prop. 3.3](Serre’s criterion) A quasi-compact morphism of algebraic
spaces is affine if and only if it is cohomologically affine.

4. Let 𝑓 : X → Y and 𝑔 : Y → Z be morphisms of algebraic stacks over a scheme
𝑆, and suppose that 𝑔 is quasi affine or Z has quasi affine diagonal over 𝑆. Then
if 𝑔 ◦ 𝑓 is cohomologically affine and 𝑔 has affine diagonal, 𝑓 is cohomologically
affine.

5. [Alp13, Lemma 4.9] (Analogue of Nagata’s fundamental lemmas) If 𝑓 : X → Y is
cohomologically affine and I and J are a pair of quasi-coherent ideal sheaves on
X then

(𝑖) 𝑓∗OX / 𝑓∗I ≃ 𝑓∗(OX /I)

(𝑖𝑖) 𝑓∗I + 𝑓∗J ≃ 𝑓∗(I +J ).

Consider the 2-cartesian diagram of algebraic stacks

X ′ Y′

X Y

𝑓 ′

𝑔′ □ 𝑔

𝑓

6. If 𝑔 is faithfully flat and 𝑓 ′ is cohomologically affine, then 𝑓 is cohomologically
affine.

7. If 𝑓 is cohomologically affine and 𝑔 is quasi-affine, then 𝑓 ′ is cohomologically
affine.

8. If 𝑓 is cohomologically affine and Y has quasi-affine diagonal, then 𝑓 ′ is cohomo-
logically affine.

We will now give a generalization of linear reductivity.

Definition 3.1.3. Let 𝐺/𝑆 be a faithfully flat, finitely presented and separated group
scheme over a scheme 𝑆. We say that 𝐺/𝑆 is linearly reductive if 𝐵𝐺→ 𝑆 is cohomolog-
ically affine.
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Remark. In the case that 𝑆 is the spectrum of some algebraically closed field, we can use
the fact that the category of quasi-coherent O𝐵𝐺-modules is equivalent to the category of
𝐺-representations, see [Sch18, Thm. 2.1]. The characterization of a linearly reductive
group scheme as a group scheme for which the functor𝑉 ↦→𝑉𝐺 taking a𝐺-representation
to its 𝐺-invariants is exact then implies that the above definition is equivalent to the
classical definition from chapter one.

We conclude this section with an example.

Example 3.1.4. Let 𝐺/𝑆 be a linearly reductive group scheme with an action 𝜌 : 𝐺 ×
𝑋 → 𝑋 on a scheme 𝑋/𝑆 affine over 𝑆. Then the induced map 𝜑 : [𝑋/𝐺] → 𝑆 is
cohomologically affine. Since the square

𝐺 × 𝑋 𝐺

𝑋 𝑆

□

is cartesian, it follows from [Stacks, Tag 04ZN] that the square

𝑋 [𝑋/𝐺]

𝑆 𝐵𝐺

□

is cartesian. Since 𝑋 → 𝑆 is affine and 𝑆→ 𝐵𝐺 is smooth and surjective it follows from
Proposition 2.1.26 that [𝑋/𝐺] → 𝐵𝐺 is affine and since 𝐺 is linearly reductive 𝐵𝐺→ 𝑆

is cohomologically affine, thus the composition [𝑋/𝐺] → 𝐵𝐺→ 𝑆 is cohomologically
affine.
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3.2 Good moduli spaces and the GIT quotient
We will now finally give the definition of a good moduli space.

Definition 3.2.1. Let 𝜋 : X → 𝑋 be a quasi-compact and quasi-separated morphism of
algebraic stacks where 𝑋 is an algebraic space. We say that 𝑓 is a good moduli space if

1. 𝜋 is cohomologically affine, and

2. O𝑋 → 𝜋∗OX is an isomorphism.

Remark. There also is the notion of a tame moduli space, see [Alp13, Sect. 7], which is
a good moduli space that also is a bijection of sets on geometric points. In particular for
a locally noetherian algebraic stack a tame moduli space is a good moduli space as well
as a coarse moduli space. In some sense the notion of a tame moduli space generalizes
geometric quotients. Also see [AOV08] for more background on the theory of tame
stacks.

The earlier mentioned relation with the notion of a good quotient will become clear once
we list some properties of these good moduli.

Proposition 3.2.2. [Alp13, Thm. 4.16, 6.6, Prop. 4.7] Let 𝜋 : X → 𝑋 be a good moduli
space, then

1. 𝜋 is surjective.

2. 𝜋 is universally closed.

3. If Z1,Z2 are closed substacks of X , then

im(Z1) ∩ im(Z2) = im(Z1 ∩Z2)

where the intersections and images are scheme-theoretic.

4. Let 𝑘 be an algebraically closed field, there is an equivalence relation on the
isomorphism classes of geometric points in X (𝑘) given by 𝑥1 ∼ 𝑥2 if {𝑥1}∩{𝑥2} ≠ ∅
in the base change |X𝑘 |. This relation induces a bijection [X (𝑘)]/∼→ 𝑋 (𝑘). In
particular 𝜋 induces a bijection on closed points.

5. [Alp13, Thm. 4.16, 6.6] If X is locally noetherian then 𝜋 is universal for maps to
algebraic spaces, i.e., the natural map Mor(𝑋,𝑌 ) → Mor(X ,𝑌 ) is a bijection of
sets. If 𝑌 is a scheme we can drop the locally noetherian assumption.

6. [Alp13, Prop. 4.7] Suppose

X ′ X

𝑋′ 𝑋

□

𝑓

𝜋′ 𝜋

𝑔
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is a cartesian diagram of algebraic stacks with 𝑋′ and 𝑋 algebraic spaces. Then
(i) If 𝜋 is a good moduli space, then 𝜋′ is a good moduli space.
(ii) If 𝑔 is fpqc and 𝜋′ is a good moduli space, then 𝜋 is a good moduli space.

Once one looks at some of the proofs of some of these results it starts to become clear why
we require cohomological affineness in the definition of a good moduli space. Property 3
for example follows from Proposition 3.1.2.5 and 4 is a consequence of 3, in particular
we see that 4 is a clear analogue for our discussion of good quotients in chapter one
where we introduced the notion of 𝑆-equivalence.

Example 3.2.3. Let 𝐺/𝑆 be a linearly reductive group scheme with an action 𝜌 : 𝐺 ×
𝑋 → 𝑋 on a scheme 𝑋/𝑆 affine over 𝑆. Then the map 𝜋 : [𝑋/𝐺] → Spec

𝑆
(𝜑∗O[𝑋/𝐺]),

obtained from the factorization

[𝑋/𝐺] 𝑆

Spec
𝑆
(𝜑∗O[𝑋/𝐺])

𝜑

𝜋
𝑓

where 𝜑 : [𝑋/𝐺] → 𝑆 is the cohomologically affine map from Example 3.1.4, 𝑓 is affine
and by construction OSpec

𝑆
(𝜑∗O[𝑋/𝐺 ] ) ≃ 𝜋∗O[𝑋/𝐺] , is a good moduli space.

For cohomological affineness of 𝜋 write X := [𝑋/𝐺], 𝑋 := Spec
𝑆
(𝜑∗O[𝑋/𝐺]) and con-

sider the pair of 2-cartesian diagrams

X X ×𝑆 𝑋

𝑋 𝑋 ×𝑆 𝑋

(idX ,𝜋)

□

Δ

X ×𝑆 𝑋 𝑋

X 𝑆

𝑝2

□

In the left diagram, since affine morphisms are stable under base change and 𝑋 → 𝑆 is

affine, the diagonal 𝑋
Δ→ 𝑋 ×𝑆 𝑋 is affine and therefore by Proposition 2.1.26 the map

(idX , 𝜋) : X → X ×𝑋 𝑋 is affine, hence also cohomologically affine. In the righthand
diagram the morphism X → 𝑆 is cohomologically affine and 𝑆 is a scheme and therefore
has quasi-affine diagonal, thus by Proposition 3.1.2.8 X ×𝑆 𝑋

𝑝2→ 𝑋 is cohomologically
affine. It follows that the composition 𝑝2 ◦ (idX , 𝜋) = 𝜋 is cohomologically affine, hence
a good moduli space.

Remark. In fact if 𝐺/𝑆 is a smooth affine linearly reductive group scheme acting on a
scheme, or more generally an algebraic space 𝑋/𝑆, and [𝑋/𝐺] → 𝑆 is cohomologically
affine, then 𝑋 → 𝑆 is affine. This follows from Proposition 3.1.2.3. Since 𝑋 → 𝑆 is the
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composition 𝑋 → [𝑋/𝐺] → 𝑆, by Proposition 2.1.26 and affineness of 𝐺→ 𝑆 we can
deduce from the cartesian diagram

𝑋 [𝑋/𝐺]

𝐺 ×𝑆 𝑋 𝑋

𝐺 𝑆

□

□

that 𝑋→ [𝑋/𝐺] is affine and by assumption [𝑋/𝐺] → 𝑆 is cohomologically affine, thus
the composition 𝑋 → 𝑆 is affine.

Extending this further, we can say that if there exists a 𝐺-invariant morphism 𝜑 : 𝑋 →𝑌,

then the induced morphism 𝜋 : [𝑋/𝐺] → 𝑌 is a good moduli space if and only if

1. 𝜑 is affine.
2. O𝑌 → 𝜑∗(O𝑋)𝐺 is an isomorphism.

Once we observe that 𝜋∗O[𝑋/𝐺] ≃ 𝜑∗(O𝑋)𝐺 this follows from the above.

Recalling the definition of a good quotient from chapter one, if we take 𝑆 to be the
spectrum of an algebraically closed field, this last result gives us a clear correspondence
between good quotients and good moduli, namely 𝜑 : 𝑋 → 𝑌 is a good quotient if and
only if 𝜋 : [𝑋/𝐺] → 𝑌 is a good moduli space.

The above discussion can be further generalized for arbitrary stacks, via the following
generalization of stability for algebraic stacks.

Definition 3.2.4. Let 𝑝 : X → 𝑆 be an algebraic stack, quasi compact over 𝑆, L an
invertible sheaf on X and 𝑥 ∈ X (𝑘) a geometric point with 𝑝(𝑥) = 𝑠 ∈ 𝑆(𝑘). Then

1. 𝑥 is pre-stable if there exists an open substack U ⊂ X containing 𝑥 which is coho-
mologically affine over 𝑆 and has closed orbits. We denote the pre-stable locus by
X 𝑠
𝑝𝑟𝑒 .

2. 𝑥 is semi-stable with respect to L if there is an open subscheme𝑈 ⊂ 𝑆 containing 𝑠
and a section 𝜎 ∈L𝑛 (𝑝−1(𝑈)) for some 𝑛 > 0 such that 𝜎(𝑥) ≠ 0 and 𝑝−1(𝑈)𝜎 →𝑈

is cohomologically affine. We denote the semi-stable locus by X 𝑠𝑠
L .

3. 𝑥 is stable with respect to L if there is an open subscheme𝑈 ⊂ 𝑆 containing 𝑠 and
a section 𝜎 ∈ L𝑛 (𝑝−1(𝑈)) for some 𝑛 > 0 such that 𝜎(𝑥) ≠ 0, 𝑝−1(𝑈)𝜎 → 𝑈 is
cohomologically affine and 𝑝−1(𝑈)𝜎 has closed orbits. We denote the stable locus
by X 𝑠

L.
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Example 3.2.5. [Alp13, Chapt. 13.5] Consider the action of a linearly reductive group
scheme over an algebraically closed field 𝑘 on a quasi-compact 𝑘-scheme 𝑋 and let 𝐿 be
a 𝐺-linearization on 𝑋. If L is the corresponding line bundle on [𝑋/𝐺], then scheme
theoretic GIT stability with respect to the linearization 𝐿 and the above notion of stability
coincide in the sense that [𝑋/𝐺] (𝑠)𝑠L = [𝑋 (𝑠)𝑠

𝐿
/𝐺] .

Remark. [ER21, Rem. 3.16] An alternative characterization of the semistable locus
X 𝑠𝑠
L is the following. Let U ⊂ X be the open locus where 𝑝∗𝑝∗L𝑁 → L𝑁 is surjective

for some positive integer 𝑁 and let 𝑉 ⊂ Proj𝑆 (⊗𝑛≥0𝑝∗L𝑛) be the largest open subset
over which the induced morphism 𝜑L : U →Proj𝑆 (⊗𝑛≥0𝑝∗L𝑛) is cohomologically affine.
Then we have X 𝑠𝑠

L = 𝜑−1
L (𝑉) so that X 𝑠𝑠

L →𝑉 is a good moduli space.

The above remark gives us the following analogue of Theorem 1.2.17.

Theorem 3.2.6. [Alp13, Thm. 11.5] Let 𝑝 : X → 𝑆 be an algebraic stack, quasi-compact
over 𝑆, and L an invertible sheaf on X . Then

1. There exists a good moduli space 𝜋 : X 𝑠𝑠
L → 𝑋 with 𝑋 an open subscheme of

Proj𝑆 (
⊕

𝑛≥0 𝑝∗L𝑛).
2. There is an open subscheme𝑈 ⊂ 𝑋 such that 𝜋−1(𝑈) = X 𝑠

L and 𝜋 |X 𝑠
L

: X 𝑠
L →𝑈 is

a tame moduli space.
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Chapter 4

Existence criterion for good moduli
spaces

In this chapter we will introduce a recent result giving us an existence criterion for
good moduli spaces. Namely in the article, [AHH23] Alper, Halpern-Leistner and
Heinloth prove that the existence of a good moduli space for a certain class of algebraic
stacks depends on the fulfillment of two valuative criteria called Θ-reductivity and
𝑆-completeness. We will start this chapter off with a different result given by Halpern-
Leistner in his article [Hal22], which gives us a description of the so called filtrations of
an algebraic stack, which are maps from a certain quotient stack. This latter result will
prove to be a useful tool in this chapter as well as the next chapter where we introduce a
numerical criterion for the stability of points in algebraic stacks.

4.1 Filtrations
As noted in the introduction to this chapter we will dedicate this section to introducing
the notion of filtrations and give a description of these filtrations.

Definition 4.1.1. Let X and Y be a pair of stacks over a scheme 𝑆.We define the mapping
stack denoted Map

𝑆
(Y ,X ) to be the prestack with fiber category over an 𝑆-scheme 𝑇

given by Mor𝑆 (Y ×𝑇,X ).

Over Spec(Z) we write Θ := [A1/G𝑚] where the multiplicative group acts on the affine
line by the standard multiplication, and we let 𝐵G𝑚 := [Spec(Z)/G𝑚] denote the clas-
sifying stack of the multiplicative group. For a scheme 𝑆 we write Θ𝑆 := Θ× 𝑆 and
𝐵G𝑚,𝑆 := 𝐵G𝑚 × 𝑆.

Definition 4.1.2. For an algebraic stack X → 𝑆 over a scheme 𝑆 we define and denote
the stack of filtered points in X to be the following mapping stack
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Filt(X ) := Map
𝑆
(Θ𝑆,X ).

Note that for A1 ×𝑇 → Θ𝑇 is a smooth presentation. Then using the generalization of
the Yoneda lemma given in section 2.1.4 together with the cartesian diagrams given
in section 2.2.1 we can describe the fiber categories Filt(X ) (𝑇) = Mor(Θ𝑇 ,X ) as the
categories of descent data associated to the sequences

G𝑚 ×G𝑚 ×A1 ×𝑇 G𝑚 ×A1 ×𝑇 A1 ×𝑇𝜌

𝑚

𝑎

𝜌

𝑎

where 𝑚 denotes the group multiplication, 𝜌 is the action of G𝑚 on A1 and 𝑎 is the map
that forgets the leftmost group element. Thus, the category Filt(X ) (𝑇) consists of

• (Objects): An object is a pair (𝑥,𝜓) where 𝑥 ∈ X (A1 ×𝑇) and 𝜓 : 𝑎∗𝑥 → 𝜌∗𝑥 a
morphism satisfying the cocycle condition 𝜌∗𝜓 ◦ 𝑎∗𝜓 = 𝑚∗𝜓.

• (Morphisms): A morphism (𝑥,𝜓) → (𝑥′,𝜓′) is given by a morphism [ : 𝑥 → 𝑥′

such that 𝜓′ ◦ 𝑎∗([) = 𝜌∗([) ◦𝜓.

In the paper [Hal22] Halpern-Leistner gives an even nicer description of these filtrations
by identifying them with certain quotient stacks. This identification will prove to be
useful in upcoming sections, the rest of this section is dedicated to formulating this result.

Let 𝑘 be an algebraically closed field, 𝐺 a smooth algebraic group over 𝑘 acting on a
quasi-separated algebraic space over 𝑘 and _ : G𝑚 → 𝐺 a cocharacter. We define the
functors

𝐿_ := {𝑙 ∈ 𝐺 : 𝑙 = _(𝑡)𝑙_(𝑡)−1 ∀𝑡},

𝑃+
_ := {𝑝 ∈ 𝐺 : lim

𝑡→0
_(𝑡)𝑝_(𝑡)−1 exists},

𝑋0
_ := MapG𝑚

𝑘
(Spec(𝑘), 𝑋),

𝑋+
_ := MapG𝑚

𝑘
(A1, 𝑋).

The first two functors are self explanatory, the latter two functors are G𝑚−equivariant
mapping stacks. The first of the two associates to a 𝑘-scheme 𝑇, G𝑚-equivariant maps
𝑇 → 𝑋 where G𝑚 acts trivially on 𝑇 and the action on 𝑋 is induced by the action of
the group 𝐺 and the cocharacter _. The second functor associates to a 𝑘-scheme 𝑇 a
G𝑚-equivariant map 𝑇 ×A1 → 𝑋 where G𝑚 acts trivially on 𝑇 and with the scaling action
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on A1 and again via the action of 𝐺 and the map _ on 𝑋.

When 𝑋 is separated there is a particularly nice description for the 𝑘-points of 𝑋+
_
, given

in [Dri15, Sect. 1.3], namely consider the map

𝑒𝑣_1 : 𝑋+
_ (𝑘) → 𝑋 (𝑘)

given by evaluating morphisms A1 → 𝑋 at 1, i.e., compose with 1 : Spec(𝑘) → A1. The
collection of 𝑘-points 𝑥 := 𝑒𝑣_1 (A

1 → 𝑋) can be identified with the set {_(−) · 𝑥 : G𝑚 →
𝑋} so that 𝑋+

_
(𝑘) surjects onto the set of maps _(−) · 𝑥 with 𝑥 ∈ 𝑋 (𝑘) which can be

extended to A1, i.e.,

G𝑚 𝑋

A1

_(−)·𝑥

∃ 𝑓𝑥,_

and since 𝑋 is separated by the valuative criterion these extensions are unique if they
exist. Now using the notation introduced in our discussion of the Hilbert-Mumford
criterion we have that 𝑋+

_
(𝑘) is in bijective correspondence with the set {𝑥 ∈ 𝑋 (𝑘) :

lim𝑔→0_(𝑔) · 𝑥 exists}.

We are now ready to formulate the result.

Theorem 4.1.3. [Hal22, Thm. 1.4.8] Let 𝐺 be a smooth affine algebraic group over
an algebraically closed field 𝑘 with split maximal torus acting on a quasi-separated
algebraic space locally of finite type over 𝑘. Then there exists an isomorphism

Filt( [𝑋/𝐺]) ≃
⊔
_∈Λ

[𝑋+
_ /𝑃+

_]

where Λ = 𝐻𝑜𝑚(G𝑚,𝐺)/(_ ∼ 𝑔_𝑔−1, ∀𝑔 ∈ 𝐺).

Remark. The isomorphism in the Theorem 4.1.3 is induced by maps Θ× [𝑋+
_
/𝑃+

_
] →

[𝑋/𝐺] which on 𝑘-points are given by A1 × 𝑋 ∋ (𝑎,𝑥) ↦→ _(𝑎) · 𝑥 ∈ 𝑋, see [Hal13,
Lemma 4.2.1].

In addition to the a stack of filtered points there also is a stack of so called graded points
which is denoted and defined by:

Grad(X ) := Map
𝑆
(𝐵G𝑚,𝑆,X )

For quotient stacks, as in 4.1.3, Halpern-Leistner ([Hal22, Thm. 1.4.8]) also shows that
there are isomorphisms
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Grad( [𝑋/𝐺]) ≃
⊔
_∈Λ

[𝑋0
_/𝐿_] .

4.2 Θ-Reductivity
If 𝑅 is a discrete valuation ring with maximal ideal 𝑚𝑅 generated by the uniformizer
𝜋, field of fractions 𝐾 := Frac(𝑅) and residue field ^ := 𝑅/𝑚𝑅, then we write Θ𝑅 :=
Θ×Spec(𝑅) ≃ [A1

𝑅
/G𝑚] and 0 ∈ Θ𝑅 is the closed point associated to the maximal ideal

(𝑥, 𝜋).

Definition 4.2.1. A morphism of locally noetherian algebraic stacks 𝑓 : X → Y is Θ-
reductive if for every discrete valuation ring 𝑅 there is a unique dotted arrow filling in
any commutative diagram of the form

Θ𝑅 \0 X

Θ𝑅 Y

We say that an algebraic stack X over 𝑆 is Θ-reductive if its structure morphism is
Θ-reductive.

Remark. As explained in [Hal22, Warning 5.1.4] for an algebraic stack X over a scheme
𝑆, Θ-reductivity can equivalently be defined by the requirement that the evaluation
morphism 𝑒𝑣1 : Filt𝑆 (X ) → X given by 𝑓 ↦→ 𝑓 (1) satisfies the valuative criterion for
properness with respect to the class of all valuation rings.

Proposition 4.2.2. Let 𝐺 be a smooth split reductive algebraic group over a field 𝑘
acting on a quasi-separated algebraic space 𝑋 locally of finite type over 𝑘. Then

[𝑋/𝐺] is Θ-reductive ⇐⇒ ∀_ ∈ 𝐻𝑜𝑚(G𝑚,𝐺), 𝑒𝑣_1 : 𝑋+
_ → 𝑋 is proper.

Proof. Under the identification of filtrations of quotient stacks given in 4.1.3, the mor-
phism 𝑒𝑣1 : Filt( [𝑋/𝐺]) → [𝑋/𝐺] corresponds to the coproduct of morphisms of quo-
tient stacks: [𝑒𝑣_1] : [𝑋+

_
/𝑃+

_
] → [𝑋/𝐺], induced by the (𝑃+

_
→ 𝐺)-equivariant mor-

phisms 𝑒𝑣_1 : 𝑋+
_
→ 𝑋. Now since we have equivalences [𝑋+

_
/𝑃+

_
] ≃ [𝐺 ×𝑃+

_ 𝑋+
_
/𝐺], the

morphisms [𝑒𝑣_1] can be factored as follows:

[𝐺 ×𝑃+
_ 𝑋+

_ /𝐺] → [𝐺 ×𝑃+
_ 𝑋/𝐺] → [𝑋/𝐺],

induced by the morphisms
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𝐺 ×𝑃+
_ 𝑋+

_ → 𝐺 ×𝑃+
_ 𝑋 → 𝑋

which on points are defined by (𝑔, 𝑓 ) ↦→ (𝑔, 𝑓 (1)) ↦→ _(𝑔) · 𝑥. Since 𝐺 is reductive, the
𝑃+
_

are parabolic subgroups of 𝐺 and therefore the 𝐺/𝑃+
_

are projective, in particular
the structure morphisms [𝐺/𝑃+

_
] → Spec(𝑘) of the associated stacks are proper. Since

properness is a property that is stable under base change, it follows from the cartesian
diagrams [

𝑋/𝑃+
_

]
[𝑋/𝐺]

[
𝐺/𝑃+

_

]
Spec(𝑘)

□

that the compositions are proper if and only if the maps 𝑒𝑣_1 : 𝑋+
_
→ 𝑋 are proper. □

Corollary 4.2.3. Let 𝐺 be a smooth split reductive algebraic group over an algebraically
closed field 𝑘 acting on an affine finite type k-scheme 𝑋 := Spec(𝑅). Then [𝑋/𝐺] is
Θ-reductive.

Proof. Let _ ∈ Hom(G𝑚,𝐺), then the G𝑚-action on 𝑋 induced by _ corresponds to a
grading on O𝑋 (𝑋) such that the 𝑛th graded piece is given by functions 𝑓 ∈ O𝑋 (𝑋) with
(𝑔 · 𝑓 ) (𝑥) = 𝑓 (𝑔−1 · 𝑥) = 𝑓 (_(𝑔)−1 · 𝑥) = 𝑔𝑛 𝑓 (𝑥) for all 𝑔 ∈ G𝑚 .

Recall from our discussion in the first section of this chapter that since 𝑋 is affine
and therefore separated over Spec(𝑘) we can view 𝑋+

_
(𝑘) as the collection of points in

𝑥 ∈ 𝑋 (𝑘) for which lim𝑔→0_(−) · 𝑥 exists, now it is clear that these limits only exist
for positively graded pieces, thus 𝑋+

_
can be identified with the closed subscheme of

𝑋 given by Spec(𝑅/𝐼−) where 𝐼− is the ideal generated by the homogeneous elements
of strictly negative degree. We conclude that the morphisms 𝑒𝑣_1 : 𝑋+

_
→ 𝑋 are closed

immersions and therefore in particular proper so that by the previous result [𝑋/𝐺] is
indeed Θ-reductive. □
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4.3 S-completeness
Let 𝑅 be a discrete valuation ring with maximal ideal 𝑚𝑅 generated by the uniformizer
𝜋, field of fractions 𝐾 := Frac(𝑅) and residue field ^ := 𝑅/𝑚𝑅 . For the action of G𝑚 on
𝑅[𝑥, 𝑦]/(𝑥𝑦− 𝜋) given by 𝑔 · (𝑥, 𝑦) = (𝑔𝑥,𝑔−1𝑦) we write ST𝑅 := [Spec(𝑅[𝑥, 𝑦]/(𝑥𝑦−
𝜋))/G𝑚] and 0 ∈ ST𝑅 is the closed point associated to the maximal ideal (𝑥, 𝑦).
Definition 4.3.1. A morphism of locally noetherian algebraic stacks 𝑓 : X → Y is S-
complete if for every discrete valuation ring 𝑅 there is a unique dotted arrow filling in
any commutative diagram of the form

ST𝑅 \0 X

ST𝑅 Y
We say that an algebraic stack X over 𝑆 is S-complete if its structure morphism is
S-complete.

Remark. Note that the complement of the point 0 in ST𝑅 is isomorphic to two copies of
Spec(𝑅) glued along Spec(𝐾)

ST𝑅 \0 ≃ Spec(𝑅)
⋃

Spec(𝐾)
Spec(𝑅).

Namely we have the following identifications for the open cover given by the non-
vanishing locus of the coordinates 𝑥 and 𝑦

ST𝑅 \{𝑥 = 0} ≃ [Spec(𝑅[𝑥, 𝑥−1, 𝑦]/(𝑥𝑦−𝜋))/G𝑚] ≃ [Spec(𝑅[𝑥, 𝑥−1])/G𝑚] ≃Spec(𝑅) and

ST𝑅 \ {𝑦 = 0} ≃ [Spec(𝑅[𝑥, 𝑦, 𝑦−1]/(𝑥𝑦−𝜋))/G𝑚] ≃ [Spec(𝑅[𝑦, 𝑦−1])/G𝑚] ≃ Spec(𝑅)

so that we have a cocartesian diagram

Spec(𝐾) Spec(𝑅)

Spec(𝑅) ST𝑅 \0.

Moreover we see that a morphism to an algebraic stack 𝜑 : ST𝑅 \ 0 → X is given
by the pair 𝜑 |{𝑥≠0}, 𝜑 |{𝑦≠0} : 𝑅→ X together with an isomorphism of the restrictions
(𝜑 |{𝑥≠0}) |Spec(𝐾) ≃ (𝜑 |{𝑦≠0}) |Spec(𝐾) . In the terminology of the paper [AHH23, Def. 3.36]
these two morphisms are a modification of one another.
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We will now list some properties of S-completeness given in [AHH23, Sect. 3.5].

Proposition 4.3.2.
1. S-complete morphisms are stable under composition and base change provided

that the locally noetherian assumption is preserved.

2. An affine morphisms of locally noetherian algebraic stacks is S-complete.

3. Let 𝑘 be an algebraically closed field, then 𝐵𝐺𝐿𝑛,𝑘 → Spec(𝑘) is S-complete.

4. If X and Y are locally noetherian and Y′ → Y is étale representable and surjective,
then X → Y is S-complete if and only if X ×Y Y′ → Y′ is.

Proposition 4.3.3. Let 𝑘 be an algebraically closed field, X an algebraic stack of finite
type over Spec(𝑘) with affine diagonal and 𝜋 : X → 𝑋 a good moduli space. Then X is
S-complete if and only if 𝑋 is separated.

Proof. ( =⇒ ) Suppose that X is S-complete and that we have a (strictly) commutative
diagram

Spec(𝐾) Spec(𝑅) 𝑋.
𝑓1

𝑓2

Then by surjectivity of good moduli, after possibly an extension of Spec(𝑅), we choose
a lift Spec(𝐾) → X

X

Spec(𝐾) Spec(𝑅) 𝑋.

𝜋

𝑓1

𝑓2

Furthermore, since good moduli are universally closed, by the valuative criterion for
universal closedness we may, after possibly extending Spec(𝑅) once more, choose lifts
𝑓1, 𝑓2 : Spec(𝑅) → X yielding a commutative diagram

Spec(𝐾) X

Spec(𝑅) X .

𝜋

𝑓1

𝑓2

Now by our earlier remark the diagram

Spec(𝐾) Spec(𝑅) X .
𝑓1

𝑓2
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induces a morphism ST𝑅 \0≃ Spec(𝑅)⋃Spec(𝐾) Spec(𝑅) →X and by S-completeness of
X this morphism can be extended to a morphism ST𝑅 →X . Now since ST𝑅 → Spec(𝑅)
is a good moduli space, by universality of good moduli for morphisms to algebraic
spaces we obtain a unique morphism 𝑓 : Spec(𝑅) → 𝑋. It follows from the unicity of
this morphism that we must have 𝑓 = 𝑓1 = 𝑓2 so that 𝑋 satisifies the valuative criterion
for separatedness.

For proof of the (⇐) direction, see [AHH23, Prop. 6.8.20]. □

Note that S-completeness of the quotient of an affine scheme by a reductive group directly
follows, namely we have the following.

Corollary 4.3.4. Let 𝐺 be a smooth affine linearly reductive group over an algebraically
closed field 𝑘 acting on a finite type affine 𝑘-scheme Spec(𝐴). Then [Spec(𝐴)/𝐺] is
S-complete.

Proof. We have seen in the previous chapter that [Spec(𝐴)/𝐺] admits a good moduli
space [Spec(𝐴)/𝐺] → Spec(𝐴𝐺). Then since Spec(𝐴𝐺) is separated, by the previous
result [Spec(𝐴)/𝐺] is S-complete. □

Note that in particular the classifying stack of a linearly reductive group is S-complete,
this however is a specific example of a much stronger result, namely S-completeness
characterizes reductivity in the following sense.

Proposition 4.3.5. Let𝐺 be a smooth affine algebraic group over an algebraically closed
field 𝑘. Then 𝐺 is reductive if and only if 𝐵𝐺 is S-complete.

Proof. ( =⇒ ) Suppose that 𝐺 is reductive. Note that since 𝐺 is an affine algebraic group
it can be realized as a subgroup of 𝐺𝐿𝑛 for some 𝑛, and since 𝐺𝐿𝑛 is reductive as well it
follows from Matsushima’s theorem, see [Alp24, Thm. B.1.43], that the quotient 𝐺𝐿𝑛/𝐺
is affine. Now since there is a cartesian diagram

𝐺𝐿𝑛/𝐺 Spec(𝑘)

𝐵𝐺 𝐵𝐺𝐿𝑛

□

where Spec(𝑘) → 𝐵𝐺𝐿𝑛 is smooth and surjective, it follows from Proposition 2.1.26
that 𝐵𝐺→ 𝐵𝐺𝐿𝑛 is affine and hence by Proposition 4.3.2.2 S-complete, moreover since
𝐵𝐺𝐿𝑛 → Spec(𝑘) is S-complete by Proposition 4.3.2.3 and S-completeness is stable
under composition we can conclude that 𝐵𝐺→ Spec(𝑘) is S-complete.

(⇐) Before we prove the second implication we will first give another property of groups
that S-completeness characterizes. □
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Namely, in the article [AHH21] Alper, Halpern-Leistner and Heinloth prove that S-
completeness is also equivalent to existence of Cartan-Iwahori-Matsumoto deompositions.
Assume that 𝑅 is a complete discrete valuation ring and note that a formal power
series ring over an algebraically closed field is an example of such a ring. Recall the
notation from our discussion of the Hilbert-Mumford criterion in chapter one, for a 1-PS
_ : G𝑚 → 𝐺 of a smooth affine algebraic group 𝐺/𝑘 over an algebraically closed field 𝑘
we write

⟨_⟩ := Spec(𝐾)
𝜑
→ G𝑚

_→ 𝐺

where 𝜑 is induced by the ring map 𝑘 [𝑢,𝑢−1] → 𝐾, 𝑢 ↦→ 𝜋. Then we have the following
result.

Proposition 4.3.6. [AHH21, Lemma 3.6] Let 𝐺/𝑘 be a smooth affine algebraic group
over an algebraically closed field 𝑘. Then the following are equivalent:

1. For any 𝑔 ∈𝐺 (𝐾) there exist ℎ1, ℎ2 ∈𝐺 (𝑅) and a homomorphism _ :G𝑚 →𝐺 such
that

𝑔 = ℎ1 · ⟨_⟩ · ℎ2.

2. There exists a dotted arrow filling in the commutative diagram

ST𝑅 \0 𝐵𝐺

ST𝑅

𝜏𝑔

We will now return to our proof of proposition 4.3.5.

Proof of prop 4.3.5(⇐) . We will prove the contrapositive statement. Suppose that 𝐺 is
not reductive. Then since 𝐺 is not reductive its unipotent radical R(𝐺)𝑢 is non-trivial.
Note that since R(𝐺)𝑢 is non-trivial and unipotent it admits a normal subgroup 𝐻 ≃ G𝑎,
see [Mil15, Chapt. 15.b]. Then by [Mil15, Thm. 5.21] the quotients 𝐺/R(𝐺)𝑢 and
R(𝐺)𝑢/𝐻 are affine and using the cartesian diagrams

𝐺/R(𝐺)𝑢 Spec(𝑘)

𝐵R(𝐺)𝑢 𝐵𝐺

□

R(𝐺)𝑢/𝐻 Spec(𝑘)

𝐵𝐻 𝐵R(𝐺)𝑢

□
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as before we have that 𝐵𝐻→R(𝐺)𝑢 and R(𝐺)𝑢 → 𝐵𝐺 are affine and therefore that the
composition 𝐵𝐻 →R(𝐺)𝑢 → 𝐵𝐺 is affine, then if 𝐵𝐺 → Spec(𝑘) is S-complete we
have that 𝐵𝐻 ≃ 𝐵G𝑎 → Spec(𝐾) is S-complete. This however cannot be the case as the
additive group does not admit a Cartan-Iwahori-Matsumoto decomposition. To see this,
first note that the only 1-PS G𝑚 → G𝑎 is the trivial one. Namely, the elements of G𝑎 are
unipotent, as the group can be embedded in the standard unipotent group U2 via the map

𝑔 ↦→
(
1 𝑔

0 1

)
and the elements of G𝑚 can be realized as diagonal matrices via the obvious map. Since
by [Mil15, p. 11.20] homomorphisms G𝑚 → G𝑎 preserve unipotent and semi-simple
elements and only the identity element is both unipotent and semisimple, the only
homomorphism _ : G𝑚 → G𝑎 is the trivial one. Now we can simply take 𝑅 := 𝑘⟦𝑥⟧ with
𝐾 := 𝑘 ((𝑥)), then the element 1

𝑥
∈ G𝑚 (𝐾) does not admit a decomposition. We conclude

that 𝐵𝐺 is not S-complete. □

We can conclude by the above that in our setting we have the following equivalences

𝐺 is reductive ⇐⇒ 𝐺 has Cart.-Iwa.-Mats. decomps. ⇐⇒ 𝐵𝐺 is S-complete

this chain of equivalences can be further generalized for the setting of a smooth affine
group scheme over a noetherian scheme, see [AHH21, Thm. 1.3].

Another useful conclusion that we can draw from the above is that a closed point of an
S-complete locally noetherian algebraic stack with smooth and affine stabilizers has a
reductive stabilizer.

83



4.4 Existence result
We will not state the main result for this chapter.

Theorem 4.4.1. [AHH23, Thm. 5.4] Let X be an algebraic stack of finite presentation
over a quasi separated and locally noeherian algebraic space 𝑆, with affine stabilizers
and separated diagonal. Then X admits a good moduli space 𝑋 separated over 𝑆 if and
only if

1. every closed point of X has linearly reductive stabilizer.

2. X → 𝑆 is Θ-reductive.

3. X → 𝑆 is S-complete.

We will not give a proof for this theorem, we will however lay out the main ingredients
and sketch the proof for (⇐) in the case that 𝑆 := Spec(𝑘) where 𝑘 is an algebraically
closed field of characteristic zero and X is an algebraic stack of finite type over Spec(𝑘)
with affine diagonal, following [Alp24]. The simplification to characteristic zero al-
lows us to leave out the first condition since S-completeness implies that stabilizers at
closed points of X are reductive and hence linearly reductive by our characteristic zero
assumption. Besides [Alp24] and [AHH23] another useful reference is [Hal21, Lec. 15],
moreover, for a precursor to the current existence result also see the article [AFS17].

When introducing the main results used in the proof we will, in some cases, state versions
of these results that are more general than needed for our application, as this might be
of independent interest to the reader, and then modify to the version suitable for our
application.

Definition 4.4.2. Let X be an algebraic stack and 𝑥 ∈ |X |. A quotient presentation
around 𝑥 is a pointed flat morphism 𝑓 : (W ,𝑤) → (X , 𝑥) of algebraic stacks such that
the following holds

1. W ≃ [Spec(𝐴)/GL𝑁 ] for some 𝑁.

2. 𝑓 induces an isomorphism of stabilizer groups at the point 𝑤.

Theorem 4.4.3. Assume the following

1. 𝑆 is a quasi-separated algebraic space.

2. X is an algebraic stack locally of finite presentation and quasi separated over 𝑆,
with affine stabilizers.

3. 𝑥 ∈ |X | with image 𝑠 ∈ |𝑆 | such that the residue field extension is finite and the
stabilizer of 𝑥 is linearly reductive.
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Under these assumptions there exists an étale quotient presentation 𝑓 : (W ,𝑤) → (X , 𝑥)
around 𝑥. Moreover if X has separated (resp. affine) diagonal, then there exists exists a
representable (resp. affine) étale quotient presentation 𝑓 : (W ,𝑤) → (X , 𝑥).

Remark. We have stated the version of the local structure theorem for algebraic stacks
given in [AHH23, Thm. 2.2]. The version that we will use is the following [Alp24, Thm
6.6.1]: if 𝑆 is the spectrum of an algebraically closed field of characteristic zero and X is
of finite type over 𝑆 with affine diagonal, there exists an affine étale quotient presentation
𝑓 : (W ,𝑤) → (X , 𝑥) such that W ≃ [Spec(𝐴)/𝐺𝑥] where 𝐴 is a finite type 𝑘-algebra.

We will now introduce two notions which motivate the necessity of Θ-reductivity and
S-completeness. Namely as will become clear later on, we will want to construct an étale
quotient presentation which in some neighborhood preserves closed points and stabilizers.
These conditions are captured respectively by the notions, Θ-surjectivity and unpunctured
inertia. Roughly speaking Θ-reductivity is required to show that Θ-surjectivity holds
and Θ-surjectivity ensures that the étale quotient presentation preserves closed points
on some open neighborhood. On the other hand S-completeness implies the condition,
which we have not defined yet, called unpunctured inertia and this condition in turn
implies that the étale quotient presentation is stabilizer preserving.

We will now work towards making this vague explanation more precise. For the sake
of completeness, we will begin by defining Θ-surjectivity and unpunctured inertia. Let
𝑘 be a field, then taking the complement of the closed point 0 ∈ Θ𝑘 we have an open
immersion which we denote by 𝑗 : Spec(𝑘) ≃ Θ𝑘 \0 ↩→ Θ𝑘 .

Definition 4.4.4. Let 𝑓 : X → Y be a morphism of algebraic stacks and 𝑥 ∈ X (𝑘) a
geometric point. Then 𝑓 is said to be Θ-surjective at 𝑥 if there exists a morphism Θ𝑘 →X
filling in any diagram of the form

Spec(𝑘) X

Θ𝑘 Y

𝑥

𝑗

We say that 𝑓 is Θ-surjective if and only if it is Θ-surjective at every geometric point in
X .

Definition 4.4.5. A noetherian algebraic stack is said to have unpunctured inertia if for
any closed point 𝑥 ∈ |X | and any formally smooth morphism 𝑝 : (𝑈,𝑢) → (X , 𝑥), where
𝑈 is the spectrum of a local ring of a smooth neighborhood of 𝑥 with closed point 𝑢,
each connected component of the inertia groupscheme AutX (𝑝) →𝑈 has non-empty
intersection with the fiber over 𝑢.
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We will now give an important result which is essential to the proof of the existence
theorem.

Theorem 4.4.6. [Alp24, Prop. 6.9.12, 6.9.19, Thm. 6.9.22] Let X be an algebraic stack
of finite type over an algebraically closed field with affine diagonal such that the closed
points in X have linearly reductive stabilizers. Suppose that 𝑥 ∈ X is a closed point
and 𝑓 : ( [Spec(𝐴)/𝐺𝑥],𝑤) → (X , 𝑥) is an affine étale quotient presentation and write
𝜋 : [Spec(𝐴)/𝐺𝑥] → Spec(𝐴𝐺𝑥 ). Then

1. X is S-complete =⇒ X has unpunctured inertia.

2. X has unpunctured inertia =⇒ there exists an affine open neighborhood 𝑈 ⊂
Spec(𝐴𝐺𝑥 ) of 𝜋(𝑤) such that the restriction 𝑓 |𝜋−1 (𝑈) induces isomorphisms on the
stabililizer groups for all closed points.

3. X is Θ-reductive =⇒ there exists an affine open neighborhood𝑈 ⊂ Spec(𝐴𝐺𝑥 ) of
𝜋(𝑤) such that the restriction 𝑓 |𝜋−1 (𝑈) is Θ-surjective, in particular this restriction
preserves closed points.

The last result that we want to introduce before beginning our proof is Luna’s fundamental
lemma and one of its corollaries.

Theorem 4.4.7. [Alp24, Thm. 6.4.27, Cor. 6.4.30] Consider a commutative diagram

X ′ X

𝑋′ 𝑋

𝑓

𝜋′ 𝜋

𝑔

where X and X ′ are noetherian algebraic stacks with affine diagonal, 𝑓 : X ′ → X is
a separated and representable morphism, and where 𝜋′ : X ′ → 𝑋′ and 𝜋 : X → 𝑋 are
good moduli spaces. Let 𝑥′ ∈ X ′ be a point such that

• 𝑓 is étale at 𝑥′.

• 𝑓 is stabilizer preserving at 𝑥′.

• 𝑥′ ∈ X ′ and 𝑓 (𝑥′) = 𝑥 ∈ X are closed points.

Then there is an open neighborhood 𝑈′ ⊂ 𝑋′ of 𝜋′(𝑥′) such that 𝑈′ → 𝑋 is étale and
such that𝑈′×𝑋 X ≃ 𝜋′−1(𝑈′).

Moreover, if we assume that 𝑓 is étale and that for all closed points 𝑥′ ∈ X ′,

• 𝑓 (𝑥′) is closed and

• 𝑓 is stabilizer preserving at 𝑥′,
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then 𝑔 : 𝑋′ → 𝑋 is étale and the diagram is cartesian.

Now using the above we will outline the proof for the existence result.

Proof of existence theorem in char. 0. Step 1: Under the assumption of S-completeness
every closed point has reductive stabilizer and since we are working over a field of char-
acteristic zero reductivity of an algebraic group is equivalent to linear reductivity. Com-
bining this observation with the local structure theorem it follows that every closed point
has an affine étale quotient presentation of the form 𝑓𝑥 : ( [Spec(𝐴)𝑥/𝐺𝑥],𝑤) → (X , 𝑥).

Step 2: Now by the above theorem for every 𝑓𝑥 : ( [Spec(𝐴𝑥)/𝐺𝑥],𝑤) → (X , 𝑥) there
exists an open substack [Spec( �̃�𝑥)/𝐺𝑥] ⊂ [Spec(𝐴)𝑥/𝐺𝑥], note that open/closed sub-
stacks of quotient stacks are of this form [Hei09, Rem. 2.3], such that the restriction
𝑓𝑥 | [Spec( �̃�𝑥)/𝐺𝑥] is Θ-surjective and stabilizer preserving.

Step 3: Since X is of finite type and hence in particular quasi-compact there exist finitely
many closed points {𝑥𝑖}𝑖∈𝐼 of X such that the images of 𝑓𝑥𝑖 | [Spec( �̃�𝑥𝑖

)/𝐺𝑥𝑖
] cover X . The

stabilizers are linearly reductive, hence we can choose embeddings 𝐺𝑥𝑖 ↩→ GL𝑛 for some
𝑛. Note that there are equivalences [Spec( �̃�𝑥𝑖 )/𝐺𝑥𝑖 ] ≃ [Spec( �̃�𝑥𝑖 ) ×𝐺𝑥𝑖 GL𝑛/GL𝑛] for
every 𝑖 ∈ 𝐼 . Now set 𝐴 :=

∏
𝑖∈𝐼 ( �̃�𝑥𝑖 ×𝐺𝑥𝑖 GL𝑛), so that we have constructed a surjective,

affine and étale morphism

𝑓 : X1 := [Spec(𝐴)/GL𝑛] → X
which is Θ-surjective and stabilizer preserving. And X1 admits a good moduli space
𝜋1 : X1 → 𝑋1 := Spec(𝐴GL𝑛) since GL𝑛 is linearly reductive in characteristic zero.

Step 4: We can construct a groupoid 𝑝1, 𝑝2 :X2 :=X1×X X1⇒X1, where the projections
X2 → X1 are affine, étale, Θ-surjective and stabilizer preserving by the stability of these
properties under base change. Moreover X2 ≃ [Spec(𝐵)/GL𝑛], This follows from the
characterization of global quotient stacks given in [Kha22, Prop. 6.8.(iii)], because the
composition X2 → X1 → 𝐵GL𝑛 is affine by simple base change arguments and the fact
that the diagrams of the form

𝑋 Spec(𝑘)

[𝑋/𝐺] 𝐵𝐺,

where 𝑋 → Spec(𝑘) is the structure morphism, are cartesian. This representation of X2
implies that there is a good moduli space 𝜋2 :X2 ≃ [Spec(𝐵)/GL𝑛] → 𝑋2 := Spec(𝐵𝐺𝐿𝑛).
It follows from universality of good moduli for morphisms to schemes that there is a
commutative diagram
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[Spec(𝐵)/GL𝑛] ≃ X2 X1

Spec(𝐵GL𝑛) := 𝑋2 𝑋1

and by Luna’s fundamental lemma this diagram is cartesian and the projection morphisms,
which we will denote by 𝑞1, 𝑞2 : 𝑋2⇒ 𝑋1, are étale. Furthermore, 𝑋2⇒ 𝑋1 inherits a
groupoid structure from X2⇒ X1 in the following way

1. (composition) First note that since by our previous diagram X2 ≃ 𝑋2 ×𝑋1 X1 the
diagram

X2 ×X1 X2 𝑋2 ×𝑋1 𝑋2

X1 𝑋1

is cartesian and since good moduli are stable under base change the map X2 ×X1

X2 → 𝑋2 ×𝑋1 𝑋2 is a good moduli space. We obtain our composition map from
the universal property for good moduli, namely there exists a map 𝑋2 ×𝑋1 𝑋2 → 𝑋2
filling in the commutative diagram

X2 ×X1 X2 X2 𝑋2

𝑋2 ×𝑋1 𝑋2

𝑐

where 𝑐 : X2×X1 X2 →X2 denotes the composition map for the groupoid X2⇒X1.

2. (identity/inverse) The identity and composition map are also easily obtained by the
universality of good moduli. Let 𝑒 : X1 → X2 and 𝑖 : X2 → X2 denote respectively
the identity and inverse morphisms. Then there are morphisms 𝑋1 → 𝑋2 and
𝑋2 → 𝑋2 filling in the diagrams

X1 X2 𝑋2

𝑋1

𝑒 X2 X2 𝑋2

𝑋2

𝑖

giving us the groupoid structure for X2⇒ X1.
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Conclusion: Next we want to show that the induced groupoid structure on 𝑋2 ⇒ 𝑋1
defines an algebraic group [𝑋1/𝑋2], then we can argue for the existence of a good moduli
space X → [𝑋1/𝑋2] as follows: by étale descent there exists a morphism X → [𝑋1/𝑋2]
such that the diagram

X1 X

𝑋2 [𝑋1/𝑋2]

𝑓

is cartesian and we can conclude by Proposition 3.2.2.6 that X → [𝑋1/𝑋2] is a good
moduli space, moreover by S-completeness of X , [𝑋1/𝑋2] is separated.

Step 5: The last step required to reach the above conclusion is showing that 𝑋2⇒ 𝑋1 is
indeed an equivalence relation. In our setting it is sufficient to show that the morphism
(𝑞1, 𝑞2) : 𝑋2 → 𝑋1 × 𝑋1 is injective on 𝑘-points.

With this in mind, let (𝑥1, 𝑥1) denote a 𝑘-point in the image of (𝑞1, 𝑞2) : 𝑋2 → 𝑋1×𝑋1 and
let 𝑥2, 𝑥

′
2 ∈ (𝑞1, 𝑞2)−1((𝑥1, 𝑥1)), our objective is to show that 𝑥2 = 𝑥

′
2. Since 𝜋1 : X1 → 𝑋1

and 𝜋2 : X2 → 𝑋2 are good moduli spaces, by Proposition 3.2.2.4, there exist unique
closed points 𝑥1 ∈ 𝜋−1

1 (𝑥1), 𝑥2 ∈ 𝜋−1
2 (𝑥2) and 𝑥′2 ∈ 𝜋

−1
2 (𝑥′2). By Θ-surjectivity of the 𝑝′

𝑖
𝑠

the points 𝑝𝑖 (𝑥2) and 𝑝𝑖 (𝑥′2) in X1 are closed points for 𝑖 = 1,2. Since these points lie
over the point 𝑥1 which has the unique closed point 𝑥1 in its preimage under the map
𝜋1 it follows that these points are equivalent to 𝑥1. Now as 𝑓 and the projections 𝑝𝑖 are
stabilizer preserving it follows that

𝐺𝑥2 ≃ 𝐺𝑥′2
≃ 𝐺𝑥1 ≃ 𝐺 𝑓 (𝑥1) .

Let us denote the group corresponding to these stabilizers by 𝐺. We claim that the
following diagram is cartesian

𝐵𝐺 X2 X

𝐵𝐺 ×𝐵𝐺 X1 ×X1 X ×X

Using the generalization of the magic diagram we see immediately that the right hand
square is cartesian since X2 ≃ X1 ×X X1 and that

𝐵𝐺 ×𝐵𝐺 ×X×X X ≃ 𝐵𝐺 ×X 𝐵𝐺.
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The natural map 𝐵𝐺 ×X 𝐵𝐺 → 𝐵𝐺 is an isomorphism. It is clearly a surjection and
since 𝐵𝐺 is the residual gerbe at 𝑓 (𝑥1), 𝐵𝐺→ X is a monomorphism hence by [Stacks,
Tag 04ZX] 𝐵𝐺 ×X 𝐵𝐺 → 𝐵𝐺 is a monomorphism as well and therefore fully faithful
[Stacks, Tag 04ZZ]. Thus, 𝐵𝐺 ×X 𝐵𝐺 → 𝐵𝐺 is an isomorphism. It follows that the
outer diagram is cartesian, thus the left hand diagram is also cartesian.

Now since X2 ×X1×X1 𝐵𝐺 × 𝐵𝐺 ≃ 𝐵𝐺 and 𝐵𝐺 consists of a single point, by definition
of the fiber product of stacks we have that there exists precisely one point in X2 whose
image under the morphism X2 → X1 ×X1 is equivalent to 𝑥1. In conclusion we have that
𝑥2 = 𝑥

′
2 and therefore that 𝑥2 = 𝑥

′
2. □
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Chapter 5

A numerical criterion for stability on
algebraic stacks

5.1 The criterion
In this section we introduce a numerical criterion for the stability of points in algebraic
stacks, which generalizes the Hilbert-Mumford criterion. Our discussion will be based on
the work of Jochen Heinloth [Hei18]. Throughout this section we work with an algebraic
stack X which is locally of finite type over an algebraically closed field 𝑘 and has affine
diagonal.

Definition 5.1.1. Let 𝑥 ∈ |X | be a geometric point. We say that a filtration 𝑓 : [A1/G𝑚] →
X is a very close degeneration for 𝑥 if 𝑓 (1) ≃ 𝑥 and 𝑓 (0) ; 𝑥 where 0 and 1 are the
geometric points corresponding to 0 and 1 in A1.

Now for a line bundle L on an algebraic stack and a very close degeneration 𝑓 we can
generalize the Hilbert-Mumford index introduced in chapter one in the following way.
Recall that a line bundle on a quotient stack [𝑋/𝐺] corresponds to a 𝐺-linearization on
𝑋. With this in mind we define the weight of a line bundle on X with respect to a very
close degeneration 𝑓 , to be the weight of the G𝑚-action on the fiber ( 𝑓 ∗L)0, we denote
the weight of a line bundle with respect to a very close degeneration by wtG𝑚

(L, 𝑓 ).

Definition 5.1.2. Let L be a line bundle on X . A geometric point 𝑥 ∈ |X | is called
L-stable if

1. For every very close degeneration 𝑓 : [A1/G𝑚] → X for 𝑥 we have

wtG𝑚
(L, 𝑓 ) < 0, and

2. dim𝑘 (AutX (𝑘) (𝑥)) = 0.
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A point is L-semi-stable if the first condition holds with ≤ instead of the strict inequality.

Throughout this section by point we will mean geometric point.

Recall that a geometric point 𝑥 ∈ X is semi-stable with respect to a line bundle on X , in
the sense of Definition 3.2.4, if there exists a section 𝑠 ∈ L𝑛 (X ) for some 𝑛 > 0 such that
𝑠(𝑥) ≠ 0 and X𝑠 is cohomologically affine. It is not too difficult to show that if a point is
semi-stable in the usual sense it is also semi-stable according to the notion introduced in
this section, this is the content of the following lemma.

Lemma 5.1.3. [Zha22, Lemma 6.0.2] A geometric point 𝑥 ∈ X (𝑘) is semi-stable with
respect to a line bundle L over X in the sense of Definition 3.2.4 then it is semi-stable in
the sense of Definition 5.1.2.

Proof. Suppose that for some 𝑛 > 0 there exists a global section 𝑠 ∈ L𝑛 (X ) such that
𝑠(𝑥) ≠ 0 and X𝑠 is cohomologically affine. If 𝑓 : [A1/G𝑚] → X is a very close de-
generation then since 𝑓 (1) ≃ 𝑥 and 𝑠 does not vanish at 𝑥 we have that the pullback
𝑓 ∗𝑠 ∈ 𝑓 ∗L𝑛 (X ) does not vanish at 1. Now recall from Example 2.3.4 that a line bundle
L on the quotient stack [A1/G𝑚] has a non-zero global section if and only if its weight
is ≤ 0. We recall the properties of the Hilbert-Mumford weight given in [DK94, p. 49]
and conclude that since 𝑓 ∗𝑠 is a non-vanishing global section of 𝑓 ∗L the following holds

wtG𝑚
(L, 𝑓 ) ≤ 𝑛 ·wtG𝑚

(L, 𝑓 ) = wtG𝑚
(L𝑛, 𝑓 ) ≤ 0.

□
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5.2 Application to quotient stacks
The remainder of this chapter will be dedicated to showing that for a certain class of
quotient stacks the semi-stable points are precisely those points corresponding to the
semi-stable points of the scheme that we are taking the quotient of.

Theorem 5.2.1. Let 𝐺 be a reductive group acting on a projective scheme 𝑋 over 𝑘
and L ∈ Pic𝐺 (𝑋) an ample linearization. A geometric point in 𝑋 (𝑘) is semi-stable in
the sense of chapter one if and only if the point corresponding to it in [𝑋/𝐺] (𝑘) is
semi-stable in the sense introduced in this chapter.

To prove this we want to show that there is a correspondence between very close
degenerations for a point 𝑥 in a quotient stack and the maps 𝑓𝑥,_ obtained in the section
on the classical Hilbert-Mumford criterion by using the valuative criterion for properness.
This is made precise in the following lemma.

Proposition 5.2.2. For any 1-PS _ :G𝑚 →𝐺 and point 𝑥 ∈ 𝑋 (𝑘) that is not a fixed point
of _ the equivariant map 𝑓𝑥,_, as defined in chapter one, defines a very close degeneration
𝑓 𝑥,_ : [A1/G𝑚] → [𝑋/𝐺] for the point in [𝑋/𝐺] corresponding to 𝑥. Moreover, any
very close degeneration in the stack [𝑋/𝐺] is of the form 𝑓 𝑥,_ for some 𝑥,_.

Proof. This proposition is essentially a corollary of Theorem 4.1.3. First suppose that
we have a 𝐺-equivariant morphism 𝑓𝑥,_ corresponding to a point 𝑥 ∈ 𝑋 (𝑘) and a 1-PS _
such that 𝑥 is not a fixed point of _. The morphism 𝑓𝑥,_ : A1 → 𝑋 induces an equivariant
morphism A1 → [𝑋/𝐺] and by Lemma 2.2.8 there is a morphism 𝑓 𝑥,_ filling in the
2-commutative diagram

G𝑚 ×A1 A1

A1 [A1/G𝑚]

[𝑋/𝐺]

𝜌

𝑝2 𝑝
𝑓𝑥,_

𝑝

𝑓𝑥,_

𝑓 𝑥,_

Now since 𝑓𝑥,_ (0) is a fixed point of _, in the sense that 𝜌(_(𝑔), 𝑓𝑥,_ (0)) = 𝑓𝑥,_ (0) for all
𝑔 ∈ G𝑚 and 𝑥 is not, we have that

𝑓 𝑥,_ (0) ; 𝑓 𝑥,_ (1) ≃ 𝑝(𝜌(_(1), 𝑥)) ≃ 𝑝(𝑥)

where 𝑝 : 𝑋 → [𝑋/𝐺] is the natural map. Thus 𝑓 𝑥,_ is a very close degeneration for 𝑥.
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Now suppose that 𝑓 : [A1/G𝑚] → [𝑋/𝐺] is a very close degeneration. Then 𝑓 is a
point in Filt( [𝑋/𝐺]) (𝑘) and therefore under the isomorphism given in Theorem 4.1.3
corresponds to a point in [𝑋+

_
/𝑃+

_
] (𝑘) with _ the conjugacy class of some 1-PS G𝑚 →𝐺.

In particular we get a pair (𝑥, _̃) where _̃ is some representative for _, 𝑥 ∈ 𝑋 (𝑘) is a point
corresponding to 𝑓 (1) and lim

𝑔→0
_(𝑔) · 𝑥 exists and corresponds to 𝑓 (0). This data gives

us the desired G𝑚-equivariant map 𝑓 : A1 → 𝑋 which fills in the commutative triangle

G𝑚 𝑋

A1

_·𝑥

𝑓

□

Theorem 5.2.1 is an easy consequence of the above proposition.

Proof of Theorem 5.2.1. First note that by projectivity of 𝑋 for any point 𝑥 ∈ 𝑋 (𝑘)
and 1-PS _ : G𝑚 → 𝐺 there is an equivariant map 𝑓_,𝑥 : A1 → 𝑋 extending the map
_(−) ·𝑋 :G𝑚 → 𝑋. Now by our proposition this is equivalent to a very close degeneration
𝑓 : [A1/G𝑚] → [𝑋/𝐺] and for a linearization L on 𝑋, by definition of the Hilbert-
Mumford weight, we have that

` 𝑓
∗L = −wtG𝑚

(L, 𝑓 ).
We conclude that 𝑥 satisfies the Hilbert-Mumford criterion if and only if the point
corresponding to it in the quotient stack is L-semi-stable. □
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