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Abstract

Background

Human interaction affects emotional health, cognitive development, and social learning.
Physiological synchrony, where individuals’ physiological processes mirror each other during
interactions, is especially vital in parent-child relationships for fostering emotional bonding and
empathy. However, analyzing heart rate variability (HRV) to understand interaction states
presents challenges, particularly with neurodivergent children who show atypical responses.
This study utilizes one-dimensional convolutional neural networks (1D CNNs) to enhance the
analysis of these complex signals.

Methods

This study employs 1D CNNs to classify interaction states using ECG data from neu-
rodivergent child-caregiver dyads. The approach combines hand-crafted feature extraction
with supervised learning, optimizing neural network architectures to process time-series data
efficiently. The model’s performance is evaluated using accuracy and F1 score metrics. The
neural network architecture includes layers for convolution, ReLU activation, and dense layers,
concluding with a softmax output layer for classification.

Results

The neural network achieved 97% for accuracy and F1 score in ternary classification of
interaction states. The results highlight the effectiveness of using deep learning for HRV
analysis in this context.

Conclusions

The study demonstrated the potential of deep neural networks to develop robust, continu-
ous, and noninvasive methods for synchrony detection. The ultimate goal is to improve the
quality of life for neurodivergent children and their caregivers through enhanced understanding.
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1 Background

The complexity of human interaction significantly influences emotional health, social learning,
and cognitive development. Within this network of social signals, physiological synchrony, where
individuals’ physiological processes mirror each other during interactions, has become a key area
of scholarly interest. This phenomenon is especially relevant in parent-child relationships, where
synchrony plays a role in emotional bonding, social learning, and empathy development (Feldman,
2007). However, analyzing complex physiological signals, such as Heart Rate Variability (HRV)
as measured through Interbeat Intervals (IBI), to understand and classify interaction states,
particularly in dyads involving neurodivergent children, remains a challenge.

HRV, which is derived from the variation in time intervals between consecutive heartbeats,
is a non-invasive measure that reflects the autonomic nervous system’s regulatory dynamics. It
is widely recognized as a marker of emotional and physiological states, providing insight into an
individual’s emotional landscape and autonomic control (Thayer et al., 2012). In the context
of parent-child interactions, HRV synchrony, as observed through aligned IBIs, is believed to
indicate a harmonious connection, with significant implications for the child’s social and emotional
development (Porges, 2007). However, classifying interaction states—synchrony, desynchrony, and
asynchrony—using ECG data in dyads involving neurodivergent children is complex. Children
with conditions such as autism spectrum disorders (ASD) and attention deficit hyperactivity
disorder (ADHD) often exhibit atypical physiological and emotional regulation patterns. These
atypical patterns complicate the establishment and interpretation of synchrony, making traditional
classification methods less effective and often unreliable (Porges et al., 1996).

The advent of computational and machine learning approaches has introduced new possibilities
for analyzing physiological data within the health and behavioral sciences. However, there is still a
significant gap in the application of deep learning models, particularly 1D CNNs, for the nuanced
task of ternary synchrony detection in dyadic interactions involving neurodivergent children. Neural
networks have the capacity to efficiently process and interpret time-series data like ECG signals,
distinguishing complex physiological states. This capability represents a new frontier in this
research domain (Kiranyaz et al., 2016).

This study aims to bridge this gap by developing a deep 1D CNN model to analyze HRV time-
series data for synchrony detection in parent-neurodivergent child interactions. The deep learning
approach, embodied by the 1D CNN, leverages its proven effectiveness in managing time-series
data across various fields, including speech recognition and biomedical signal analysis, to improve
the accuracy and reliability of interaction state classifications within these unique dyads (LeCun et
al., 1998; Zheng et al., 2014). This effort is expected to fill a void in scientific understanding and
contribute towards providing a scalable, nuanced tool for researchers and practitioners, facilitating
more personalized and effective interventions for neurodivergent children and their families.

HRV’s role extends beyond its function as a health indicator, encapsulating the dynamics of
human emotions and social interactions. Studies suggest that HRV synchrony between individuals
can serve as a non-verbal communication form, aligning with theories of emotional contagion and the
mirror neuron system, highlighting the potential of HRV analysis in enhancing our understanding of
human emotional and social exchange (Hatfield et al., 1993; Gallese et al., 1996). The significance
of HRV in these areas is particularly pronounced in parent-child interactions, where it is considered
a fundamental component of emotional bonding and attachment, critical to the child’s capacity for
emotional regulation and social development (Feldman, 2007).

Investigating interactions between caregivers and neurodivergent children presents distinct
challenges due to their unique patterns of emotional and physiological regulation. The social
communication difficulties and diverse emotional responses often associated with neurodivergence
tempt a reassessment of traditional methods. These methods typically rely on observable behavioral
cues and self-reported measures, which may not fully capture the complexities of communication
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dynamics within these dyads (Schoen et al., 2009; Lord et al., 2012).
Deep learning models, especially 1D CNNs, offer a promising approach for analyzing physiological

signals, including HRV. These models are well-suited, for this task because they can handle the
complex, non-linear nature of physiological data over time. 1D CNNs can automatically learn
hierarchical patterns within the data, allowing them to distinguish subtle and intricate features
(Goodfellow et al., 2016). In the context of HRV analysis for neurodivergent child-parent pairs,
deep learning models have the potential to reveal subtle physiological signs of synchrony that may
not be identified using traditional analysis methods.

Analyzing HRV synchrony can provide valuable insights into the physiological mechanisms
underlying interactions between individuals. This knowledge has the potential to significantly
impact therapeutic and educational approaches for neurodivergent children and their families.
By understanding the physiological underpinnings of these interactions, researchers can develop
personalized interventions tailored to the specific needs of each child and family. These interventions
could target improved communication and emotional regulation. Furthermore, the findings of
this research can inform the creation of tools and resources for parents, educators, and therapists.
These resources could promote the development of supportive and understanding environments
that nurture positive interactions and emotional connections between neurodivergent children and
their caregivers (Rogers et al., 2014).

This exploration clarifies the role of HRV in studying human interactions, the challenges of
interactions within neurodivergent child-parent dyads, the potential of deep learning models in this
research, and the implications for developing targeted interventions. Advancing a deep 1D CNN
model for HRV synchrony detection aims to address a gap in our understanding of these interactions
and contribute to the well-being of neurodivergent children and their families. This effort, grounded
in a multidisciplinary approach, demonstrates the potential of combining computational methods
with psychological and physiological research to enhance our understanding of human interactions.
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2 Methods

The study employed an approach that combined hand-crafted feature extraction with supervised
learning using 1D CNNs.

The performance of the model was evaluated based on metrics: Accuracy and the F1 Score.
Accuracy measures the overall correctness of the model across all classes, while the F1 Score
provides a balance between precision and recall. The formulas for these metrics are provided below:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(1)

F1 Score = 2× Precision× Recall

Precision + Recall
(2)

Precision =
True Positives

True Positives + False Positives
(3)

Recall =
True Positives

True Positives + False Negatives
(4)

2.1 Participants and Data Collection

2.1.1 Participants

The study recruited 10 parent-child dyads, including children 6-12 years old with autism spectrum
disorders (ASD), to examine physiological synchrony during homework sessions. The inclusion
criteria for children included a formal diagnosis of ASD for the neurodivergent group. Parents were
required to be the primary caregivers, fluent in the language of the study, and without any severe
mental health conditions that could impact the interaction dynamics.

2.1.2 Data Collection

Data collection involved recording electrocardiogram (ECG) signals from both the child and the
parent using Polar H10 heart rate monitors. These devices were chosen for their reliability and
accuracy in capturing heart activity. The procedure began by moistening the electrode area of
the strap with room-temperature water to ensure good conductivity. The strap was then fastened
around the participant’s chest, ensuring that the electrode area was centered and the strap was
tight enough to stay in place throughout the session. Adjustments were made for smaller children
by tying a knot or using an extra clip to secure the strap properly.

Once the straps were fitted, the Polar H10 devices were connected to a mobile application,
ECG Logger (ECG Logger for Polar H10, ECG Logger, Finland), via Bluetooth. This application
was used to start and monitor the ECG recordings. Both the child and the parent were seated
comfortably in chairs to minimize movement artifacts during the recording.

The data collection session comprised a 5-minute benchmarking period followed by a 30-minute
homework session. The benchmarking period allowed for the stabilization of physiological signals,
ensuring that subsequent measurements were not influenced by initial adjustments or environmental
changes. During the homework session, both the ASD child and the parent engaged in various
assignments such as cutting paper, color painting, or solving math questions. This design aimed to
simulate real-life interactive tasks that require cooperation and communication, thus providing a
naturalistic setting for studying physiological synchrony.

Throughout the 30-minute session, the interaction between the child and the parent was
unstructured, allowing for natural interaction patterns to emerge. This approach was intended to
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capture a wide range of synchrony dynamics, reflecting the variability in everyday parent-child
interactions.

Upon completion of the session, the recordings were saved as CSV files with a sampling frequency
of 130 Hertz (Hz) in the ECG Logger app. These files were then transferred to a computer for
further analysis. The raw ECG data were processed using Python (Appendix A).

2.2 ECG Data Pre-processing

An important step in this study focused on establishing a target variable, the categorical synchrony
direction. This variable was derived through a sequence of processing steps designed to capture
the dynamics of physiological synchrony in dyadic interactions. The methodology employed was
based on established scientific practices, in attempt to ensure reliability in the classification of
interaction states.

2.2.1 Categorical Synchrony Direction

The derivation of the categorical synchrony direction target variable, which classified interactions
into synchrony, desynchrony, or asynchrony, involved several precise steps:

1. Detection of R Peaks: The process began with the detection of R peaks in the ECG
signal. R peaks represent the apex of the QRS complex in an ECG signal, and their accurate
detection is crucial for deriving HRV measures such as IBI. This was performed using an automated
algorithm capable of handling the noise and artifacts typically present in physiological data, as
detailed by Reindl et al. (2022). Manual correction of R peaks and removal of artifacts were
performed as necessary to ensure accuracy.

2. Epoch Segmentation: Once R peaks were detected, the ECG signal was segmented into
2-second epochs. Epoch segmentation divides the continuous ECG signal into shorter, manageable
segments, allowing for detailed and localized analysis of interaction intervals. The epoch size of 2
seconds was selected based on the minimal amount of time required to reliably approximate the
heart rate (Helm et al., 2018). This technique, facilitates the isolation of specific intervals where
synchrony, desynchrony, or asynchrony can be analyzed effectively.

3. Extraction of IBIs: The next step involved calculating the average IBI for each epoch
across all participants. This created a series of average IBIs for each participant over time. Since
cleaning the initial IBI data removed some data points, these gaps (missing values) were filled in
using cubic spline interpolation. However, if a participant (either adult or child) had more than
5% of their data missing within a single recording session, the entire recording (including both
participants) was excluded from that particular experimental condition. The resulting IBI series
data was then prepared for further processing.

4. Detrending: The IBI series data was detrended using second-order polynomial regression
to remove any linear or quadratic trends that could obscure the true variability and synchrony
patterns. This detrending step ensures that the analysis focuses on the genuine fluctuations in
HRV rather than any underlying trends that might distort the results.

5. ARIMA Modeling: To refine the data further, ARIMA (AutoRegressive Integrated
Moving Average) modeling was applied to the detrended IBI values with one autoregressive term,
one moving average term, and integrated noise. ARIMA modeling is used to analyze and forecast
time-series data by removing any remaining autocorrelations in the ECG data. This results in
residuals that better represent the true synchrony between dyad members. The choice of ARIMA
model parameters was based on the partial autocorrelation functions (PACF) of the detrended IBI
series, which indicated a strong autocorrelative component at lag 1.

6. Cross-Correlation Calculation: The next step involved computing the cross-correlation
between the ARIMA residuals of the two individuals in the dyads. Cross-correlation measures
the similarity between two time series as a function of the lag of one relative to the other. This
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technique quantifies the degree of synchrony between the dyad members by identifying how well
their HRV signals align over time. Higher cross-correlation values indicate higher synchrony,
whereas lower values indicate desynchrony or asynchrony.

7. Classification of Epochs: The correlated values for each epoch were extracted, and
thresholds were set at the 33rd and 66th percentiles of these values. Epochs with cross-correlation
values above the 66th percentile were classified as synchrony, those below the 33rd percentile as
desynchrony, and those in between as asynchrony. These thresholds were chosen based on their
ability to optimally distinguish between the three interaction states. This method provides a
ternary classification that captures the nuanced dynamics of the interactions (Appendix A & C).

2.2.2 Visual Representations

The workflow described above is visualized in several figures:
1. Pre-processing Workflow:

Figure 1 illustrates the overall pre-processing workflow adapted from Reindl et al. (2022).

Figure 1: Pre-processing workflow adopted from Reindl et al. (2022)

2. Post-Detrending Signal:
Figure 2 shows an exemplary illustration of the IBI signal after detrending.

3. Categorical Synchrony Distribution:
Figure 3 depicts the distribution of the categorical synchrony classification, illustrating the thresh-
olds used for classification.

2.3 Neural Networks

The architecture of 1D CNNs is designed to mimic the human visual cortex, enabling the effec-
tive processing of time-series data through several layers of convolution and activation. These
layers facilitate the extraction of significant features for pattern recognition in physiological data
(Goodfellow et al., 2016).

2.3.1 Model Overview

The neural network model utilized in this study consisted primarily of convolutional layers, which
are the building blocks of CNNs. These layers applied filters to the input data, which allowed
the network to perform convolution operations that capture temporal dependencies and patterns
within the ECG data. Each convolution layer was followed by an activation function, typically the
Rectified Linear Unit (ReLU), which introduced non-linearity into the model.
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Figure 2: Exemplary illustration of high synchrony for a dyad [Synthetic data]

Figure 3: Exemplary illustration of the categorical synchrony distribution [Synthetic data]

2.3.2 Convolution by Filtering and Activation

Mathematically, a convolution operation in a CNN can be represented as:

z[l] = w[l] · a[l] + b[l] (5)

Symbol Description

z[l] Output of the current layer (l)
w[l] Filter weights of the current layer
a[l] Activation of the previous layer
b[l] Bias term of the current layer

9



Applied Cognitive Psychology Master’s Thesis (27.5 ECTS) Libretto

The activation function, often the ReLU function, was then applied to the output of the
convolution:

z[l] = w[l] · a[l] + b[l] (6)

a[l] = g
(
z[l]

)
(7)

g(z)j =
ezj∑K
k=1 e

zk
(8)

Symbol Description

g(z)j Output probability for class j
zj Output of the j-th unit in the output layer
K Total number of classes in the classification task

The softmax function provided a probabilistic interpretation of the model’s output, which made
it easier to predict the category with the highest probability.

2.4 Convolutional neural network for signals from chest-worn sensors

The CNN was built to take in and analyze handcrafted features from physiological signals from a
human chest-mounted electrocardiogram (ECG) sensor. With the input divided into segments of
2 seconds, the network performs ternary synchrony detection in parent-child dyads, categorizing
three distinct states: asynchrony, desynchrony, and synchrony.

Layer Type Details
Conv1D Filters: 64, Filter Size: 3, Activation: ReLU
Conv1D Filters: 64, Filter Size: 3, Activation: ReLU
MaxPool1D Pool Size: 2, Strides: 2
Flatten Converts multi-dimensional input into a single dimension
Dense (Layer 1) Units: 128, Activation: ReLU
Dense (Layer 2) Units: 64, Activation: ReLU
Output Dense Units: 3, Activation: Softmax

Table 1: 1D Convolutional Neural Network Architecture

As illustrated in Table 1, the initial layer of the model was a 1D convolutional layer, which
extracted features from the input data using 64 filters, each with a size of 3. The ReLU (Rectified
Linear Unit) activation function was applied to the output of each filter, adding non-linearity to
the model. This was followed by another 1D convolutional layer, also with 64 filters of size 3 and
ReLU activation, and further refined the features extracted by the first convolutional layer.

Next, a max pooling layer with a pool size of 2 and strides of 2 was applied. This layer reduced
the dimensionality of the feature maps, and retained the most significant information while it
reduced computational complexity.

The subsequent layer was a flattening layer, which converted the multi-dimensional output
from the previous layers into a one-dimensional vector. This flattened output served as the input
for the dense layers that followed.

The model then included two dense layers, also known as fully connected layers. The first
dense layer comprised 128 units, and the second contained 64 units. Both layers used the ReLU
activation function to enable the model to learn complex patterns from the data.

The final layer was an output dense layer with 3 units, corresponding to the three predicted
categories. This layer utilized the softmax activation function, ideal for multi-class classification
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problems. The softmax function converted the raw output scores into probabilities for each class,
and allowed the model to predict the most likely category for a given input.

The model was compiled using the Adam optimizer, with categorical cross-entropy as the loss
function and accuracy as the performance metric (see Appendix B).

Figure 4: 1D Convolutional Neural Network Architecture

Figure 4 illustrates the overall architecture of the proposed deep 1D convolutional neural
network.

2.5 Neural Network Training

Training Element Description

Optimizer Adam
Loss Function Categorical Cross Entropy
Epochs 100
Batch Size 40
Validation Tenfold Cross Validation
Software Keras
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3 Results

The efficacy of the 1D CNN for classifying interaction states of synchrony, desynchrony, and
asynchrony using ECG data was evaluated using accuracy, precision, recall, and the F1 score.
Table 2 presents the performance metrics of the model:

Metric Value
Median Accuracy 0.966126
Median F1 Score 0.965733
Median Recall 0.965395
Median Precision 0.966210

Table 2: Performance metrics of the 1D CNN model

The median accuracy of 0.966 indicates the model’s high overall effectiveness in classifying
interaction states. Precision, recall, and F1 score all hover around 0.966, reflecting the model’s
balanced performance across these critical measures. These metrics collectively suggest that the
model reliably distinguishes between synchrony, desynchrony, and asynchrony with minimal errors.
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4 Discussion

4.1 Summary of Key Findings

The primary findings indicate that the 1D CNN model is highly effective in classifying the states
of interaction in dyadic HRV data. The consistency across accuracy, precision, recall, and F1 score
suggests that the model performs well in both identifying true positive instances and minimizing
false negatives.

4.2 Comparison with Previous Work

Our results align with previous research that has demonstrated the potential of deep learning
models in handling time-series physiological data. For instance, Kiranyaz et al. (2016) highlighted
the efficacy of convolutional neural networks in processing and classifying ECG signals at an
individual level with the proposed approach achieving median 98.1% accuracy. The high accuracy
and robustness of our model corroborate these findings, extending the applicability of deep learning
techniques to the analysis of dyadic interactions involving neurodivergent children.

4.3 Theoretical Implications

The findings of this study have a couple of theoretical implications. First, they support the
notion that physiological synchrony can be effectively quantified and classified using advanced
computational models. This provides a robust framework for investigating the underpinnings
of social and emotional interactions, particularly in parent-child dyads involving neurodivergent
children.

Second, the success of the 1D CNN model underscores the potential of deep learning in
uncovering subtle and complex patterns in dyadic physiological data. This aligns with theories of
emotional contagion and the mirror neuron system, which suggest that physiological synchrony
reflects deeper emotional and cognitive connections between individuals (Hatfield et al., 1993;
Gallese et al., 1996). The ability to accurately classify synchrony states offers new avenues for
exploring these theories in more detail.

4.4 Practical Applications

From a practical perspective, the model’s high performance has implications for therapeutic and
educational settings. Accurate classification of interaction states can inform the development of
personalized intervention strategies aimed at enhancing communication and emotional regulation
in neurodivergent children. For example, therapists and educators can use real-time feedback from
the model to adjust their approaches, ensuring that interventions are tailored to the unique needs
of each child.

Moreover, the model can be integrated into wearable devices, providing continuous monitoring
of physiological synchrony during daily interactions. This can offer valuable insights into the child’s
social and emotional development, enabling parents and caregivers to respond more effectively to
their needs.

4.5 Limitations

Despite the promising results, several limitations need to be addressed. One significant limitation
is the potential impact of noise and artifacts in ECG data. Although preprocessing steps were
employed to mitigate these issues, residual noise could still affect the model’s performance. Future
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research should explore more sophisticated noise reduction techniques to further enhance the
model’s accuracy.

Another limitation is the model’s sensitivity to epoch segmentation size. The choice of epoch
segment size influences the granularity and sensitivity of synchrony detection. Shorter segments
may capture transient changes but include more noise, while longer segments provide a more stable
signal but may miss rapid changes. Finding the optimal balance between these trade-offs is key for
improving model performance.

Additionally, the study sample consisted of dyads with 10 high-functioning children with Autism
Spectrum Disorder (ASD) aged 6-12. While this provided a representative sample of the target
population, the findings may not generalize to other age groups, levels of neurodivergence, or
different cultural and socio-economic backgrounds. Future studies should include a more diverse
sample to enhance the generalizability of the results.

4.6 Alternate Explanations

While the 1D CNN model demonstrated high performance, it is important to consider possible
alternate explanations for the results. The model’s success could be attributed to overfitting to the
inherent characteristics of the dataset, such as the specific patterns of ECG data in the studied
population.

Further research is needed to validate the model across larger datasets and different settings to
confirm its robustness and applicability. Exploring the impact of different preprocessing techniques
and model architectures will also enable optimization the model’s performance.

4.7 Significance of the Results

The significance of these results lies in the advancement of our understanding of dyadic interactions
involving neurodivergent children. By leveraging deep learning techniques, this study provides a
novel approach to analyzing dyadic ECG data, offering more accurate and reliable classifications of
interaction states. This contributes to the field of psychology broadly and opens new avenues for
research and practical applications.

The ability to accurately classify synchrony, desynchrony, and asynchrony states has profound
implications for understanding the dynamics of parent-child interactions. It allows researchers
to explore the impact of physiological synchrony on emotional bonding, social learning, and
cognitive development. Furthermore, the insights gained from this study can inform the design of
interventions aimed at enhancing the quality of life for neurodivergent children and their families.
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5 Conclusions

The 1D CNN model developed in this study demonstrated high accuracy, precision, recall, and F1
score in classifying interaction states using ECG data. The results confirm the model’s robustness
and reliability, highlighting its potential for practical applications in therapeutic and educational
settings. Despite some limitations, the findings provide a foundation for future research and
underscore the potential of deep learning in understanding physiological synchrony in dyadic
interactions.

This study contributes to the existing body of knowledge by offering a novel approach to
analyzing dyadic ECG data, addressing a significant gap in the current methodologies. The
integration of advanced computational techniques with psychological and physiological research
enhances our ability to comprehend and support the unique needs of neurodivergent children and
their families. The implications of this work extend beyond the immediate context, providing
insights for applications in health, psychology, and education.
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7 Appendix A

Python code that encapsulates the data preprocessing and produces the dataset the
model learned on.

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import heartpy as hp

import neurokit2 as nk

from scipy.signal import resample , correlate , correlation_lags

from scipy.interpolate import CubicSpline

from statsmodels.graphics.tsaplots import plot_pacf

from statsmodels.tsa.arima.model import ARIMA

import datetime

import os

import re

def parse_datetime_from_filenames(ecg_path , benchmark_path):

""" Parse date from ECG filename and time from benchmark filename to form a

complete datetime object."""

# Extract the date from the ECG filename

date_match = re.search(r"(\d{4} -\d{2} -\d{2})", ecg_path)

if not date_match:

raise ValueError("Date not found in the ECG file path")

date_str = date_match.group(1)

# Extract the time from the benchmark filename

time_match = re.search(r"(\d{2})_(\d{2})_(\d{2})", benchmark_path)

if not time_match:

raise ValueError("Time not found in the benchmark file path")

time_str = f"{time_match.group(1)}:{time_match.group(2)}:{time_match.group(

3)}"

# Combine date and time into a single datetime object

datetime_str = f"{date_str} {time_str}"

datetime_obj = datetime.datetime.strptime(datetime_str , "%Y-%m-%d %H:%M:%S"

)

# Convert datetime object to Unix epoch nanoseconds

epoch_ns = int(datetime_obj.timestamp () * 1e9) # 1 second = 1e9

nanoseconds

return datetime_obj , epoch_ns

def prep_and_get_peaks(data , sample_rate):

’’’Preprocess and detect peaks with NeuroKit2.’’’

# Clean ECG signal

cleaned = nk.ecg_clean(data , sampling_rate=sample_rate , method=’vg’)

# Detect peaks

signals , info = nk.ecg_peaks(cleaned , sampling_rate=sample_rate , method="vg

")

return signals , info

def epoch(data , samples_per_epoch):

""" Divide the data into epochs."""

num_epochs = len(data) // samples_per_epoch

epochs = [data[i * samples_per_epoch:(i + 1) * samples_per_epoch] for i in

range(num_epochs)]

return epochs
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def calculate_epoch_means(epochs):

’’’Calculate mean IBI for each epoch.’’’

return [epoch.mean() for epoch in epochs if not epoch.isnull ().all()]

def interpolate_missing_values(ibi_series):

’’’Interpolate missing values in IBI series with cubic spline interpolation

.’’’

# Create a series with an index that spans the full range

full_index_series = pd.Series(index=np.arange(ibi_series.index[0],

ibi_series.index[-1] + 1))

combined_series = pd.concat([ibi_series , full_index_series], axis=1).iloc[:

, 0]

# Interpolate missing values

non_missing_index = combined_series.notnull ()

if sum(non_missing_index) > 2: # Cubic spline requires at least 4 points

cs = CubicSpline(combined_series.index[non_missing_index],

combined_series[

non_missing_index])

interpolated_series = pd.Series(cs(combined_series.index), index=

combined_series.index)

return interpolated_series

else:

return combined_series # If not enough points for cubic spline , return

original

def exclude_excessive_missing_data(participant_epochs , threshold=0.05):

’’’Exclude epochs with excessive missing data.’’’

valid_epochs = []

for epoch in participant_epochs:

if isinstance(epoch , np.ndarray):

epoch = pd.Series(epoch)

missing_percentage = epoch.isnull ().mean()

if missing_percentage <= threshold:

valid_epochs.append(epoch)

return valid_epochs

def detrend_data(epoch_means):

""" Detrend epoch means time series by removing a second order polynomial

fit."""

# Ensure the data is in a proper format (removing any NaNs and resetting

indices)

y = np.array(epoch_means)

x = np.arange(len(y))

# Fit a second -order polynomial (Polynomial of degree 2)

coeffs = np.polyfit(x, y, 2)

trend = np.polyval(coeffs , x)

detrended = y - trend

return detrended

def fit_arima(series , order):

"""Fit an ARIMA model to the series and return the residuals."""

model = ARIMA(series , order=order)

model_fit = model.fit()

return model_fit.resid

def compute_epoch_cross_correlation(series1 , series2):

if len(series1) != len(series2):
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raise ValueError("Both series must have the same length.")

num_epochs = len(series1)

max_correlations = []

# Iterate over each residual value corresponding to an epoch

for i in range(num_epochs):

residual1 = np.array([series1[i]])

residual2 = np.array([series2[i]])

corr = correlate(residual1 , residual2 , mode=’full’)

max_idx = np.argmax(corr)

max_corr = corr[max_idx]

max_correlations.append(max_corr)

return max_correlations

def calculate_epoch_features(data , samples_per_epoch):

""" Calculate RMSSD (Root Mean Square of Successive Differences) for each

epoch."""

num_epochs = len(data) // samples_per_epoch

rmssd_values = []

for i in range(num_epochs):

# Extract epoch data

start_index = i * samples_per_epoch

end_index = start_index + samples_per_epoch

epoch_data = data[start_index:end_index]

# Ensure there are enough points to compute successive differences

if len(epoch_data) > 1:

# Calculate the successive differences

successive_diffs = np.diff(epoch_data)

# Compute RMSSD

rmssd = np.sqrt(np.mean(successive_diffs ** 2))

else:

rmssd = np.nan # If insufficient data points , return NaN

rmssd_values.append(rmssd)

return rmssd_values

def find_largest_file(directory , keyword):

""" Find the largest file in the directory containing a specific keyword in

its name."""

files = [f for f in os.listdir(directory) if keyword.lower () in f.lower ()]

if not files:

raise FileNotFoundError(f"No file found in the directory containing the

keyword ’{keyword}’")

largest_file = max(files , key=lambda f: os.path.getsize(os.path.join(

directory , f)))

return os.path.join(directory , largest_file)

def process_group_data(asd_group_path , sample_rate , epoch_ms ,

more_synchrony_threshold_pct ,

less_synchrony_threshold_pct):

""" Process data for a specific ASD group."""

child_ecg_path = find_largest_file(asd_group_path , ’child’)

parent_ecg_path = find_largest_file(asd_group_path , ’parent ’)

benchmark_file = [f for f in os.listdir(asd_group_path) if f.startswith("

start")][0]

benchmark_path = os.path.join(asd_group_path , benchmark_file)

benchmark_start_obj , benchmark_start_time_ns =

parse_datetime_from_filenames(

child_ecg_path , benchmark_path)
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child_df = pd.read_csv(child_ecg_path)

parent_df = pd.read_csv(parent_ecg_path)

child_start_index = (child_df[’time’] >= benchmark_start_time_ns).idxmax ()

parent_start_index = (parent_df[’time’] >= benchmark_start_time_ns).idxmax

()

child_data_synced = child_df[child_start_index:]

parent_data_synced = parent_df[parent_start_index:]

min_length = min(len(child_data_synced), len(parent_data_synced))

child_data_synced = child_data_synced.iloc[:min_length]

parent_data_synced = parent_data_synced.iloc[:min_length]

child_ecg = child_data_synced[’ecg’].values

parent_ecg = parent_data_synced[’ecg’].values

samples_per_epoch = int(sample_rate * (epoch_ms / 1000))

child_features = calculate_epoch_features(child_ecg , samples_per_epoch)

parent_features = calculate_epoch_features(parent_ecg , samples_per_epoch)

child_signals , _ = prep_and_get_peaks(child_ecg , sample_rate)

parent_signals , _ = prep_and_get_peaks(parent_ecg , sample_rate)

child_ibi = child_signals[’ECG_R_Peaks ’]

parent_ibi = parent_signals[’ECG_R_Peaks ’]

child_ibi_interpolated = interpolate_missing_values(child_ibi)

parent_ibi_interpolated = interpolate_missing_values(parent_ibi)

child_epochs = epoch(child_ibi_interpolated , samples_per_epoch)

parent_epochs = epoch(parent_ibi_interpolated , samples_per_epoch)

child_valid_epochs = exclude_excessive_missing_data(child_epochs)

parent_valid_epochs = exclude_excessive_missing_data(parent_epochs)

child_epoch_means = calculate_epoch_means(child_valid_epochs)

parent_epoch_means = calculate_epoch_means(parent_valid_epochs)

child_epoch_means_detrended = detrend_data(child_epoch_means)

parent_epoch_means_detrended = detrend_data(parent_epoch_means)

child_residuals = fit_arima(child_epoch_means_detrended , order=(1, 0, 1))

parent_residuals = fit_arima(parent_epoch_means_detrended , order=(1, 0, 1))

max_correlations = compute_epoch_cross_correlation(parent_residuals ,

child_residuals)

more_synchrony_threshold = np.percentile(max_correlations ,

more_synchrony_threshold_pct)

less_synchrony_threshold = np.percentile(max_correlations ,

less_synchrony_threshold_pct)

num_epochs = min(len(child_features), len(max_correlations))

data = pd.DataFrame({

"Time": pd.date_range(start=benchmark_start_obj , periods=num_epochs ,

freq=’2S’),

"Child RMSSD": child_features[:num_epochs],

"Parent RMSSD": parent_features[:num_epochs],

"Child IBI": [np.nanmean(epoch) if len(epoch) > 0 else np.nan for epoch
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in child_valid_epochs][:

num_epochs],

"Parent IBI": [np.nanmean(epoch) if len(epoch) > 0 else np.nan for

epoch in parent_valid_epochs][:

num_epochs],

"Child Detrended IBI": child_epoch_means_detrended[:num_epochs],

"Parent Detrended IBI": parent_epoch_means_detrended[:num_epochs],

"Child ARIMA Residuals": child_residuals[:num_epochs],

"Parent ARIMA Residuals": parent_residuals[:num_epochs],

"Max Correlations": max_correlations[:num_epochs],

"Sync Direction": ["Synchrony" if corr >= more_synchrony_threshold else

"Desynchrony" if corr <=

less_synchrony_threshold else "

Asynchrony" for corr in

max_correlations[:num_epochs]],

})

return data

# Aggregating results from multiple ASD groups

base_directory = "/content/Sample"

asd_group_directories = [os.path.join(base_directory , d) for d in os.listdir(

base_directory) if os.path.isdir(os.

path.join(base_directory , d))]

all_data = []

sample_rate = 130

epoch_ms = 2000

more_synchrony_threshold_pct = 66

less_synchrony_threshold_pct = 33

for asd_group in asd_group_directories:

group_data = process_group_data(asd_group , sample_rate , epoch_ms ,

more_synchrony_threshold_pct ,

less_synchrony_threshold_pct)

all_data.append(group_data)

data = pd.concat(all_data , ignore_index=True)

data.to_excel("Dyadic_dataset_iter2.xlsx")
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8 Appendix B

Python code for creating 1D CNN, running the model on the data, and displaying
the training results.

import matplotlib.pyplot as plt

from tensorflow.keras.callbacks import Callback

import pandas as pd

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv1D , Flatten , Dense , MaxPool1D

from tensorflow.keras.utils import to_categorical

from sklearn.preprocessing import LabelEncoder , MinMaxScaler

from sklearn.model_selection import KFold

from sklearn.metrics import accuracy_score , f1_score , recall_score ,

precision_score

import numpy as np

# Load the data

file_path = ’/content/Dyadic_dataset_iter2.xlsx’

df = pd.read_excel(file_path)

df_clean = df.drop(columns=[’Unnamed: 0’])

# Encode the target variable and apply one -hot encoding

label_encoder = LabelEncoder ()

targets = label_encoder.fit_transform(df_clean[’Sync Direction ’])

targets = to_categorical(targets)

# Prepare features

features = df_clean[[’Child RMSSD ’, ’Parent RMSSD ’, ’Child IBI’, ’Parent IBI’,

’Child Detrended IBI’, ’Parent

Detrended IBI’, ’Child ARIMA Residuals ’

, ’Parent ARIMA Residuals ’, ’Max

Correlations ’]].values

# Normalize the feature data

scaler = MinMaxScaler ()

features_normalized = scaler.fit_transform(features)

# Reshape data for 1D CNN

features_reshaped = features_normalized.reshape (( features_normalized.shape[0],

features_normalized.shape[1], 1))

# Custom callback to capture metrics during training

class MetricsHistory(Callback):

def __init__(self , validation_data):

super(MetricsHistory , self).__init__ ()

self.validation_data = validation_data

def on_train_begin(self , logs=None):

self.epoch_metrics = {

’loss’: [],

’accuracy ’: [],

’val_loss ’: [],

’val_accuracy ’: [],

’val_f1 ’: []

}

def on_epoch_end(self , epoch , logs=None):

self.epoch_metrics[’loss’].append(logs.get(’loss’))

self.epoch_metrics[’accuracy ’].append(logs.get(’accuracy ’))
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self.epoch_metrics[’val_loss ’].append(logs.get(’val_loss ’))

self.epoch_metrics[’val_accuracy ’].append(logs.get(’val_accuracy ’))

# Calculate F1 score using logs

val_predict = np.argmax(self.model.predict(self.validation_data[0]),

axis=1)

val_targ = np.argmax(self.validation_data[1], axis=1)

_val_f1 = f1_score(val_targ , val_predict , average=’macro’)

self.epoch_metrics[’val_f1 ’].append(_val_f1)

def create_model4_v1(input_shape):

model = Sequential([

Conv1D(filters=64 , kernel_size=3, activation=’relu’, input_shape=

input_shape),

Conv1D(filters=64 , kernel_size=3, activation=’relu’),

MaxPool1D(pool_size=2, strides=2),

Flatten (),

Dense(128 , activation=’relu’),

Dense(64, activation=’relu’),

Dense(3, activation=’softmax ’)

])

model.compile(optimizer=’adam’, loss=’categorical_crossentropy ’, metrics=[’

accuracy ’])

return model

# Function to run each model

def run_model_with_metrics(model_func , input_shape , fold_data):

model = model_func(input_shape)

metric_values = []

all_epoch_metrics = []

for train_index , test_index in fold_data:

metrics_history = MetricsHistory(validation_data=(features_reshaped[

test_index], targets[test_index

]))

model.fit(features_reshaped[train_index], targets[train_index],

batch_size=40, epochs=100 ,

verbose=0,

validation_data=(features_reshaped[test_index], targets[

test_index]),

callbacks=[metrics_history])

predictions = model.predict(features_reshaped[test_index])

predictions = np.argmax(predictions , axis=1)

true_classes = np.argmax(targets[test_index], axis=1)

# Calculate metrics

accuracy = accuracy_score(true_classes , predictions)

f1 = f1_score(true_classes , predictions , average=’macro’)

recall = recall_score(true_classes , predictions , average=’macro’)

precision = precision_score(true_classes , predictions , average=’macro ’)

metric_values.append([accuracy , f1, recall , precision])

all_epoch_metrics.append(metrics_history.epoch_metrics)

metrics_df = pd.DataFrame(metric_values , columns=[’Accuracy ’, ’F1 Score ’, ’

Recall ’, ’Precision ’]).median ().

tolist ()

return metrics_df , all_epoch_metrics

# Prepare for K-fold validation

num_folds = 10
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kfold = KFold(n_splits=num_folds , shuffle=True)

fold_data = list(kfold.split(features_reshaped))

# Run the model and collect results and metrics history

results = {}

all_metrics_histories = {}

model_functions = [create_model4_v1]

for i, model_func in enumerate(model_functions , start=1):

model_name = f"Model{i}"

results[model_name], all_metrics_histories[model_name] =

run_model_with_metrics(model_func ,

(features_reshaped.shape[1], 1),

fold_data)

# Convert results to DataFrame and display

results_df = pd.DataFrame(results , index=[’Median Accuracy ’, ’Median F1 Score ’,

’Median Recall ’, ’Median Precision ’])

print(results_df)

# Plot metrics

for model_name , metrics_histories in all_metrics_histories.items():

# Initialize lists for aggregated metrics

avg_metrics = {

’loss’: np.mean([history[’loss’] for history in metrics_histories],

axis=0),

’accuracy ’: np.mean([history[’accuracy ’] for history in

metrics_histories], axis=0),

’val_loss ’: np.mean([history[’val_loss ’] for history in

metrics_histories], axis=0),

’val_accuracy ’: np.mean([history[’val_accuracy ’] for history in

metrics_histories], axis=0),

’val_f1 ’: np.mean([history[’val_f1 ’] for history in metrics_histories],

axis=0),

}

plt.figure(figsize=(14 , 6))

# Plot Loss

plt.subplot(1, 3, 1)

plt.plot(avg_metrics[’loss’], label=’Train Loss’)

plt.plot(avg_metrics[’val_loss ’], label=’Validation Loss’)

plt.title(f’{model_name} Loss’)

plt.xlabel(’Epoch’)

plt.ylabel(’Loss’)

plt.legend ()

# Plot Accuracy

plt.subplot(1, 3, 2)

plt.plot(avg_metrics[’accuracy ’], label=’Train Accuracy ’)

plt.plot(avg_metrics[’val_accuracy ’], label=’Validation Accuracy ’)

plt.title(f’{model_name} Accuracy ’)

plt.xlabel(’Epoch’)

plt.ylabel(’Accuracy ’)

plt.legend ()

# Plot F1 Score

plt.subplot(1, 3, 3)

plt.plot(avg_metrics[’val_f1 ’], label=’Validation F1 Score’)

plt.title(f’{model_name} F1 Score’)

plt.xlabel(’Epoch’)
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plt.ylabel(’F1 Score’)

plt.legend ()

plt.tight_layout ()

plt.show()
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9 Appendix C

A weblink providing access to the dataset used to train the 1D CNN.
Click for data
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