
Calculating Ext for comodules over
a finite field

Chris Vos

Supervised by

Gijs Heuts and Christian Carrick

Department of Mathematics
University Utrecht

Utrecht, Netherlands
14 June, 2024

Calculating Ext Chris Vos

1 Introduction

The goal of this thesis is to provide an algorithm which can compute Exts,tA (k,N) for a given finite
field k, where k is also a comodule, A is a k-coalgebra and N is an A-comodule. To do so we
will first go over all the definitions we will need, where we will show the duality between modules,
comodules, algebras and coalgebras. Then, we will prove that there is a simple way to find Ext.
We will show that in our construction of the coresolution, the Exts group becomes equal to Hom at
filtration index s and that the Hom vector space is isomorphic to the vector space Vs, which can be
found in a cofree comodule at filtration index s in the cofree coresolution of N . Afterwards, we will
show all routines (computer programs) with which we can instruct the computer to calculate Ext.
Finally, we will show an optimization in our routines and discuss how this work can be improved
upon.

There exists computer programs which can calculate resolutions and Ext for specific algebras.
Namely, Robert R. Bruner’s Ext solver[1] can find Ext over the specific algebra A and A(2) for
F2, the mod 2 steenrod (sub)algebras. The Sage CAS[6] also supports calculating Ext over any mod
p steenrod (sub)algebra.

Our work expends on this by calculating Ext for an arbitrary connected coalgebra over any finite
field. This means we can also find Ext for the dual mod p steenrod (sub)coalgebra.

To motivate why we work with coalgebras and comodules. In the context of Algebraic topology one
usually works with hopf algebras, which are both algebras and coalgebras. In general, it is more
natural to look at the dual coalgebra structure of hopf algebras, because it appears to be easier to
define the dual comultiplication for hopf algebras than its non-dual multiplication.

Since no Ext solver exists to work over coalgebras and comodules, our work offers a new tool that
other researchers can use to calculate Ext for their coalgebras and comodules.

As a disclaimer, during this thesis I have worked together with Jacco Hijmans. Together we have
made the computer program and studied the required theory. However, we have written our the-
ses independently, where Jacco’s thesis will go into the motivations behind writing the computer
program.

2 Preliminaries

Before we can explain how we calculate Ext, we should first lay out some basic groundwork. Where
our goal is to define coalgebras, comodules and graded vector spaces. We expect the reader to be
familiar with concepts such as linear algebra, modules (with its morphisms) and finite fields.

Commutative Diagrams

We will present a lot of objects and definitions in terms of their commutative diagram(s). A com-
mutative diagram says something about the relation different morphisms have. Such a diagram also
makes it explicit how the domain and codomain between different morphisms relate to each other.

Page 1 of 48

Calculating Ext Chris Vos

Here is an example of a commutative diagram:

A B

C D

f

g h

i

If we want to explicitly write down all information in this diagram we would do the following.
First we define the four morphisms that we have, with their corresponding domains. So we have
morphisms:

f : A → B, g : A → C, h : B → D, i : C → D,

It must hold that, h ◦ f = i ◦ g as morphisms from A → D. This requirement is also where a
commutative diagram takes it name from.

What always has to hold in a commutative diagram is that, in whatever object one starts and ends,
it should not matter how one gets to that end object. So in this example it should not matter if we
go from A → B → D using f and h or if we go from A → C → D using g and i. We should end up
with the same function.

This makes commutative diagrams way more effective at conveying information than defining ev-
erything explicitly. Another reason we will use these commutative diagrams is because it will make
dualizing (in a categorical sense) a lot more clear.

k-(bi)linear maps

Definition 2.1. A k-linear is a map f from the k-vector space V to the k-vector space W . This
map f has to respect the following property for each i.

f(k · v1 + v2) = k · f(v1) + f(v2)

Definition 2.2. A k-bilinear map is a map f : V1 × V2 → W where V1, V2,W are k-vector spaces,
for which the following holds,

f(k · v1 + v2, v3) = k · f(v1, v3) + f(v2, v3)

f(v1, k · v2 + v3) = k · f(v1, v2) + f(v1, v3)

In other words, it is linear in each of its arguments and respects the underlying field.

Graded vector spaces

Definition 2.3. A graded vector space V is a direct sum
⊕

i∈I V
i where V i is a vector space itself

and I is any index set.

In this thesis we will only consider I to be N1.

Definition 2.4. Any homomorphism between vector spaces should respect this grading. Meaning
that for f : W → V with W and V being N-graded vector spaces, we have that, f(W i) ⊂ V i. We
will refer to morphisms of graded vector spaces as graded linear maps.

1In general I could really be any index set, but once we define graded algebras we will require that I be a
commutative monoid, which N clearly is

Page 2 of 48

Calculating Ext Chris Vos

Tensors

A tensor product is an object which gets build from two k-modules M and N2. We will call M ⊗kN
the tensor product of M and N over k. This tensor product is constructed by first considering the
free Z-module of M ×N . Now consider the ideal generated by the following elements,

(m1 +m2, n)− (m1, n)− (m2, n)

(m,n1 + n2)− (m,n1)− (m,n2)

k · (m,n)− (k ·m,n)

k · (m,n)− (m, k · n)

Then we take the quotient of the free Z-module of M ×N with this ideal, and this quotient is what
we define as the tensor product of M and N .

Definition 2.5. The tensor product of M and N over k is defined,

M ⊗k N = M ×Z N/
I

Where M ×Z N is the free Z-module, and I is the ideal we described above.

Note that the definition of a tensor product might seem somewhat complicated, but the important
part to remember are its linearity properties, defined by the ideal with which we quotient. We see
that we get the following equations which have to hold for the tensor,

m1 +m2 ⊗ n = m1 ⊗ n+m2 ⊗ n

m⊗ n1 + n2 = m⊗ n1 +m⊗ n2

k · (m⊗ n) = (k ·m⊗ n)

k · (m⊗ n) = (m⊗ k · n)

Note that an arbitrary element x ∈ M ⊗k N can be written as a finite sum,
∑n

i mi ⊗ ni. We have
also not yet defined how this tensor product is a k-module. But by construction it is an additive
group, and we can define the action as, (k,

∑n
i (mi ⊗ ni) 7→

∑n
i ki · (mi ⊗ ni)). It is easy to check

that this satisfies the definition of a module. However, in general one should remember that the
tensor product is a quotient, thus that any element could have multiple representatives.

If we have chosen a basis {vi}i∈I for V andW with basis {wj}j∈J then V⊗W has basis {vi ⊗ wj}i,j∈I,J .

There exists a canonical map from the direct product to the tensor product defined as follows,
(m,n) 7→ m⊗ n. It is clear that this map is bilinear by the properties of the tensor product.

Lemma 2.6. There exists a bijective relation between k-bilinear maps from M×N to L and k-module
homomorphism from M ⊗k N and L.

M ×N M ⊗k N

L

i

Φ
φ

2Because k is a commutative ring, M and N are a bimodule over k in a canonical way. For brevity, we will ignore
the subtleties that exist when talking about left and right comodules.

Page 3 of 48

Calculating Ext Chris Vos

This means that we can express any bilinear map as a k-module homomorphism that originates from
the tensor. We will not prove this lemma, the proof can be found in Dummit and Foote[2]. When
the field is clear, we will not write the subscript k on the tensor anymore.

There is also a natural method to construct a tensor product between two graded vector spaces as
follows.

Definition 2.7. If V and W and graded vector spaces, we define V ⊗k W in each degree i as,

(V ⊗W)
i
=
⊕

j+k=i

V j ⊗W k

(Associative) algebras

Because we only consider (associative) algebras over a field k, we can define an algebra as fol-
lows,

Definition 2.8. an algebra A is a vector space with a k-linear map (a k-module homomorphism)
∗ : A⊗k A → A called the multiplication and a k-linear map η : k → A which we will call the unit
map.

Note that we now have two multiplications. One from we got from the vector space which we will
call the scalar multiplication, and the multiplication we have just defined. This multiplication also
has to be associative, which means that the following diagram must commute,

(A⊗A)⊗A

A⊗ (A⊗A) A⊗A

A⊗A A

∼=
∗⊗1

1⊗∗
∗

∗

To clarify the notation. 1 : A → A is the identity function on A and 1 ⊗ ∗ means we will take the
identity with respect to the left most A and multiply the two right A’s. By this definition an algebra
is also a ring, which might be a more familiar structure for the reader.

The unit function η defines how k ”sits” inside our algebra. This function η should also make the
following diagram commute.

k ⊗k A A⊗A

A

A⊗k k A⊗A

η⊗1

∗
∼=

∼=

1⊗η

∗

Where A ∼= A ⊗k k, which is easily deduced by the properties of the tensor product. We will
assume throughout the rest of this thesis that any ring, thus also any algebra, should always have a
multiplicative identity.

Page 4 of 48

Calculating Ext Chris Vos

Example 2.9. We consider M(k)2, the space of 2 by 2 matrices over the field k. The addition
of matrices and scalar multiplication give it its vector space structure. The matrix multiplication
(which we know to be associative) together with scalar multiplication of the identity matrix as the
unit function completes its algebra structure. Note that matrix multiplication is not commutative
in general!

This gives rise to a special class of algebras, namely commutative algebras. This requires the
multiplication to be commutative as well. Thus,

A⊗A A⊗A

A

T

∗ ∗

Here, T is defined to be the twisting morphism, sending a⊗ b → b⊗ a.

Example 2.10. k[X] (the polynomials in one unknown over k) also has a natural algebra structure.
Where we know that the polynomial multiplication is commutative.

Example 2.11. An example of a non-associative algebra (which we won’t consider further in this
thesis) is the vector space R3 where multiplication is defined to be the cross product.

Graded algebra

Up until now we defined an algebra A over a vector space, but we could also define it over a graded
vector space.3 What changes now is that the morphism of A are not linear maps anymore, but graded
linear maps, thus have to respect the grading. We also define the unit function from η : k → A to
be graded with respect to zero. Thus, that η(k) ⊂ A0.

The multiplication of the algebra, which is defined as ∗ : A ⊗ A → A, now also has to respect the
grading. This means that in each degree i we have to have that ∗(

⊕
j+k=i A

j ⊗ Ak) ⊂ Ai, or in

other words that AjAk ⊂ Aj+k.

Example 2.12. Again k[X] gives us a perfect example. Here we define the grading to be equal to
the degree of the homogenous elements of the polynomial. Thus, that Xt ∈ (k[X])t. We also now
that when we multiply two polynomials, the grades get summed together, thus our multiplication
indeed respects the grading.

There is also a special class of algebras which we will see later when we are building the algo-
rithm.

Definition 2.13. We call an algebra connected if η is an isomorphism with respect to A04.

Note that in a connected algebra we don’t need to explicitly give η as it can be naturally constructed
from the isomorphism with A0 and the fact that k always has degree zero.

3Previously we only required the index set to be a set, now we require that it is also a commutative monoid.
However, as we only consider N, which is a commutative monoid, we are fine.

4There is also a notion of connectiveness for algebras, which requires that there is no negative grading. But this
automatically holds for N.

Page 5 of 48

Calculating Ext Chris Vos

(Coassociative) coalgebra

When we define a coalgebra the reader should keep special notice of the resemblance between the
definition of an algebra and that of a coalgebra.

Definition 2.14. A coalgebra is a k-vector space A together with two k-linear maps.

∆ : A → A⊗A and ε : A → k

We will refer to ∆ as the comultiplication and ε as the counit. For these two functions the following
two diagrams should commute.

A A⊗A

A⊗A A⊗A⊗A

∆

∆ 1⊗∆

∆⊗1

and,

k ⊗k A A⊗A

A

A⊗k k A⊗A

ε⊗1

∆
∼=

∼=

1⊗ε

∆

We say that ∆ is coassociative and ε is a counit. We see that these diagrams and functions look like
those for an algebra. What has changed is that the arrows in the diagrams have been flipped. This
process is not something unique to algebras and coalgebras, but can be generalized to any such a
construction, and is what we will be referring to as dualizing.

A coalgebra is cocommutative if the following diagram commutes, where T is the twisting morphism
again,

A A⊗A

A⊗A

∆

∆
T

Example 2.15. k[X] can also be made into a coalgebra by letting,

∆(Xn) =

n∑
l=0

(
n

l

)
X l ⊗Xn−l

ε(Xn) =

{
1 if n = 0

0 otherwise

Page 6 of 48

Calculating Ext Chris Vos

This example is also cocommutative. Now we have an example which is both an algebra and a
coalgebra, such a structure is a called a hopf algebra if the two structures are compatible with each
other.

Graded coalgebra

Now for a coalgebra we take the exact same approach as we just did, where the object is now a
graded vector space and every morphism is now a graded linear map.

Definition 2.16. We will call a coalgebra connected if ε : A0 → k is an isomorphism.

Note that in a connected coalgebra we don’t need to explicitly give ε as it can be naturally constructed
from the isomorphism and the fact that k has degree zero.

Example 2.17. The comultiplication we had previously defined on k[X],

∆(Xn) =

n∑
l=0

(
n

l

)
X l ⊗Xn−l

clearly respects the grading. Thus, we can extend k[X] to a graded coalgebra.

Dualizing

Up until now we have mostly been dualizing structures/concepts. But the dualizing the reader is
most familiar with is most probably the dualization of vector spaces.

This takes a vector space V , to the space of functionals on V namely V ∗ := {φ : V → k}, where
each φ is a linear map. We also know that for finite dimensional V , V is isomorphic to its dual V ∗.
For the infinite case V need not be isomorphic to V ∗. It also holds that (V ⊗W)∗ ∼= V ∗⊗W ∗ when
V and W are finite.

Now when we look at any morphism between vector spaces f : V → W , we see that if we dualize
there exists an induced morphism f∗ defined as follows. f∗ : W ∗ → V ∗ by ϕ 7→ ϕ ◦ f . This is
legal because both ϕ and f were linear maps and the resulting linear map goes from V → k lies in
V ∗.

Now if we look at this for our k-algebra A, we see that if this algebra is finite we can dualize it to
make it into a coalgebra. Because the multiplication ∗ : A⊗A → A is a linear map we see that after
dualizing this becomes a map ∗∗ : A∗ → A∗ ⊗ A∗. The same happens for the unital function and if
one dualizes all the diagrams we see that this dual is a coalgebra.

This means that (for a finite algebra) we can always consider its dual coalgebra, which might be
easier to work with, and vice versa.

We will call a graded vector space V of finite type if each V i ∈ V is finite. For graded vector spaces
of finite type one can dualize by taking the dual of each V i, thus V ∗ =

⊕
i∈N(V

i)∗.

Modules and comodules

Definition 2.18. An A-(left)module M is a vector space together with a linear map ∗ : A⊗k M →
M , which we call the action of A, the algebra, on M . The action on M should also make the
following diagrams commute,

Page 7 of 48

Calculating Ext Chris Vos

A⊗A⊗M A⊗M

A⊗M M

1⊗∗M

∗A⊗1 ∗M

∗M

k ⊗k M A⊗M

M

η⊗1

∗
∼=

Example 2.19. From the above definitions and diagrams we can see that any algebra is also a
module. This can be seen by replacing M with A in the diagrams and noticing that the diagrams
for a module are a subset of the diagrams we had for an algebra.

A morphism of A-modules, which is also a linear map, should commute the following diagrams,
where f : M → N .

A⊗M M

A⊗N N

∗M

1⊗f f

∗N

The definition of an A-(left)comodule is completely dual to that of an A-module, where A is now a
coalgebra.

Definition 2.20. A comodule M is a vector space with a linear map, ∆ : M → A ⊗ M which
adheres to the dual of the above diagrams. Meaning,

M A⊗M

A⊗M A⊗A⊗M

∆M

∆M ∆A⊗1

1⊗∆M

and,

k ⊗k M A⊗M

M

∼=

ε⊗1

∆

This can be intuitively understood to mean that the coaction on M is compatible with the comul-
tiplication and counit of A.

Page 8 of 48

Calculating Ext Chris Vos

Morphisms of comodules, which are also linear maps, should have that,

M A⊗M

N A⊗N

∆M

f 1⊗f

∆N

From now on, we will always consider (co)modules to be leftA-(co)modules, whereA is a (co)algebra.

Graded (co)modules

A graded (co)module is just a (co)module where the object is now a graded vector space and the
maps are graded linear maps. In the graded setting we must have that AiM j ⊂ M i+j for modules
and ∆(Mk) ⊂

⊕
i+j=k A

i ⊗M j for comodules, which follows from the fact that we have a graded
linear map.

To avoid constantly writing (graded) everywhere, one can always assume that when it is not explicitly
mentioned, the definitions and proofs work for both graded and non-graded objects and morphisms.
When there is a special case for either the graded or non-graded case, it will be mentioned.

Example 2.21. When A is a connected coalgebra we can make k into a comodule. k is already
clearly a vector space over k. The coaction on k is given by ∆k : x 7→ 1⊗ x ∈ A0.

Subcomodules and quotients comodules

Definition 2.22. A subcomodule N of a comodule M is a subspace of the vector space of M for
which there exist a lift,

N A⊗N

M A⊗M

i 1⊗i

∆M

between N and A ⊗ N . In other words, that the coaction stays within N , thus for n ∈ N ⊂ M it
holds that ∆(n) ∈ A⊗N .

Definition 2.23. For a comodule M , the quotient comodule Q is an object with a projection
π : M ↠ Q. There should also be a natural lift from Q → A⊗Q and the following diagram should
commute,

kerπ

M A⊗M

Q A⊗Q

0∆M

π 1⊗π

This guarantees that for m ∈ M , if π(m) = 0 then (1⊗ π)(∆M (m)) = 0. In words, the coaction for
elements in the kerπ remain zero in A⊗Q. This way we can also see that Q is a quotient space with

Page 9 of 48

Calculating Ext Chris Vos

Q = M/
kerπ . It is trivial to see that kerπ is a subcomodule. In general, we can make a quotient

comodule Q such that Q = M/
N , where N is any subcomodule of M .

Hopf algebra

A hopf algebra5 H is a k-vector space which is both an algebra and a coalgebra and for which
the following diagrams commute. These diagrams define the way in which the two structures are
”compatible” with each other. We won’t require the properties of these diagrams, we only provide
them for completeness.

H ⊗H H H ⊗H

H ⊗H ⊗H ⊗H H ⊗H ⊗H ⊗H

∗

∆⊗∆

∆

1⊗T⊗1

∗⊗∗

H ⊗H H

k ⊗ k k

∗

ε⊗ε ε

∼=

H H ⊗H

k k ⊗ k

∆

η η⊗η

∼=

k

H

k

η

1

ε

Now we are not really interested in the meaning or purpose of all these diagrams. What we are
mostly interested in is the fact that a hopf algebra is self-dual6. This means that if there exist a dual
of H, then that dual H∗ is automatically also a hopf algebra. That means that when something is
true about H∗ then it is also true for H.

The reason we are interested in hopf algebras is that most coalgebras we get are actually hopf
algebras, the more specific reason with regard to algebraic topology is given in Jacco Hijmans thesis.
It is also more natural to work with coalgebras in context of Algebraic Topology.

Moreover, the multiplication ∗ is usually more complicated to express than its dually induced co-
multiplication ∆. One only has to describe what the coaction does on the ring generators for H.

5Milnor moore’s[5] paper calls this definition a hopf algebra, but other sources will call this a bialgebra. And refer
to it as a hopf algebra if it has an antipode. We are primarily interested in the self duality of this structure and won’t
bother with all the other details.

6This was already the case when we merely considered an object H which is both an algebra and a coalgebra

Page 10 of 48

Calculating Ext Chris Vos

And because it is both an algebra and coalgebra, its coaction is also a ring homomorphism. Thus,
we know what the coaction does for every element in H.

In the case that H is finite, a dual H∗. One should always remember that a finite algebra and its
dual (finite) coalgebra are really two ways of looking at the same information.

3 Calculating Ext

We have seen some basic concepts we will need in order to define Ext. Now we will start of with
some more specific concepts we will need in order to define Ext. Afterwards we will show how we
can find Ext algorithmically.

Exactness

Consider the following sequence of A-comodules Fi with comodule morphisms fi,

F1 F2 F3 · · ·f1 f2 f3

Definition 3.1. We call this sequence exact if for each i we have that im (fi) = ker(fi+1). Such a
sequence can be finite or infinite.

Note that this definition works for different types of structures, for example, groups, rings and in
our case A-comodules. In more generality one can speak about exactness when the category one
looks at is an abelian category.

Example 3.2. In the category of k-vector spaces where morphisms are linear maps, we have that

the following sequence 0 → X
f→ Y is exact if and only if the function f : X → Y is injective. This

follows immediately from the fact that for injective linear maps the kernel is equal to zero. And by
linearity im (0) = 0 ∈ X. Thus ker f = 0 = im (0) ⊂ X

Example 3.3. In the same category we can also have the following sequence X
g→ Y → 0 which is

exact if and only if g is surjective.

Definition 3.4. An exact sequence with the following form is called a short exact sequence,

0 → X
f→ Y

g→ Z → 0

Such sequences are found all over homological algebra and algebra in general. We won’t pay special
attention to these sequences in this thesis, but note that these sequences are often seen.

(Co)free (Co)module

Definition 3.5. Let A be an algebra. A free A-module M is any module M which can be written
as A⊗k V , with V a vector space, and for which the action is defined using the following diagram,

A⊗A⊗ V A⊗ V

A⊗M M

∗A⊗1

∗M

Page 11 of 48

Calculating Ext Chris Vos

Thus on elements it acts as ∗M (a⊗m) = ∗M (a⊗ (
∑

ai ⊗ vi)) =
∑

(∗A(a⊗ ai)⊗ vi).

A more well known definition of a free module uses a basis set S ⊂ M for which S is linearly
independent and generates the whole of M . But one should notice that a basis of V , with the action
we defined and the fact that we tensor with A, fulfills exactly this role!

Now a cofree comodule is the same, but dualized.

Definition 3.6. Let A be a coalgebra. An A-comodule M is called cofree if M ∼= A ⊗k V and its
coaction be defined as follows,

A⊗ V A⊗A⊗ V

M A⊗M

∆A⊗1

∼= ∼=

∆M

Coresolution

A resolution7 of M , where M is an A-module and A an algebra, is an exact sequence,

· · · F2 F1 F0 M 0
d3 d2 d1 ϵ

where every Fi is a free module. This sequence need not be infinite, but in most cases will be.

Example 3.7. Consider A as an A-module. Note that A ∼= A ⊗ e1 is trivially free, thus we can

make the following resolution. 0 → A
1→ A → 0. This sequence is clearly exact because the identity

is both injective and surjective. Notice that 0 is also a free module, and we have a resolution of A.

Now a coresolution of N , where N is an A-comodule, is again dual to the definition we have just
given.

Definition 3.8. A coresolution of N is an exact sequence where each Fi is a cofree comodule,

0 N F0 F1 F2 · · ·ϵ d1 d2 d3

Hom

To study the properties of a comodules N we can look at maps from another comodule to N . This
can be useful when the comodule N self is too complex to understand. But there are a lot of reasons
why one would want to do this. The way in which we express this is by using the Hom functor

A functor is like a function but instead of sending elements to elements, it sends an object to a new
object in a possibly different category. We will consider the specific functor HomA(D,),8 where A
is a coalgebra and D is a comodule. When you apply this functor to an A-comodule M we get the
object HomA(D,M), which is the collection of all A-comodule morphisms between D and M .

7One officially requires that Fi is projective, but any free module is also projective.
8One can describe the Hom functor in general for any category, but that would require making concepts from

category theory more concrete than we want to, and we will try to avoid that in this thesis.

Page 12 of 48

Calculating Ext Chris Vos

Definition 3.9.
HomA(D,M) = {A-comodule morphisms | D → M}

On first sight this is merely a set. We have lost theA-module structure we had onM andD. However,
we can add the k-vector space structure again as follows. For two morphisms f, g ∈ HomA(D,M)
let (f + g) := x 7→ f(x) + g(x) and (k · f) := x 7→ k · f(x).

Lemma 3.10. For f, g ∈ HomA(D,M) and k an element of our field, (f + k · g) is an A-comodule
morphism. This makes HomA(D,M) into a k-vector space.

Proof. It is clear that this map is still a linear map. What we will verify is that it respects the
coaction, thus checking that the following diagram commutes,

D A⊗D

M A⊗M

∆D

f+g 1⊗(f+g)

∆M

First we see that for any y ∈ A⊗D, y can be written as
∑

i ai ⊗ di. Now we see that

(1⊗ f)(y) + k · (1⊗ g)(y) =
∑
i

ai ⊗ f(di) + k ·

(∑
i

ai ⊗ g(di)

)
=

∑
i

ai ⊗ f(di) +
∑
i

ai ⊗ (k · g(di)) =
∑
i

ai ⊗ (f(di) + k · g(di)) = (1⊗ (f + k · g))(y)

We recall that ∆M and ∆N are linear maps and see for every d ∈ D,

∆M ((f + k · g)(d)) = ∆M (f(d)) + k ·∆M (g(d)) =

(1⊗ f)(∆D(d)) + k · (1⊗ g)(∆D(d)) = (1⊗ (f + k · g))(∆D(d))

This shows that the diagram commutes and thus that (f + k · g) ∈ HomA(D,M)

Example 3.11. We have already seen an example of using the Hom functor in this thesis, namely
dualizing vector spaces. V ∗ is defined as all k-linear maps from V → k. But we could also express
this as Homk(V, k). Note that we are now in the category of k-vector spaces and linear maps, not
A-comodules and A-comodule morphisms.

Definition 3.12 (Induced morphisms). Let f be a morphism between A-comodules M and N .
Then there also exists an induced morphism f∗ : HomA(D,M) → HomA(D,N) sending ϕ → f ◦ ϕ.
Because f and ϕ are both morphisms of A-comodules, their composition is again an A-module
morphism.

When we are considering graded comodules there also exists a natural grading on Hom as fol-
lows.

Definition 3.13.
HomA(D,M) :=

⊕
t∈N

Homgraded
A (D[t],M)

Where Homgraded
A (D[t],M) are graded A-comodule morphisms and D[t] is almost the same as D,

but every element in D has had its grading shifted by t.

Page 13 of 48

Calculating Ext Chris Vos

ExtA(D,M)

ExtA(D,M) is defined over a coalgebra A and two A-comodules D and M . We construct Ext by
first making a cofree coresolution of M .

0 M F0 F1 F2 · · ·ϵ d1 d2 d3

Then we remove M from this sequence, and we apply the HomA(D,) functor to the remaining
sequence to give us,

0 HomA(D,F0) HomA(D,F1) HomA(D,F2) · · ·
d∗
1 d∗

2 d∗
3

Now we define,

Definition 3.14.
ExtsA(D,M) = ker d∗s+1

/
im d∗s

For the case where s = 0 we define Ext0A(D,M) = ker d∗1.

It should be noted that Ext does not depend on the choice of coresolution. This is not trivial to see,
a proof of this fact can be found in Dummit and Foote [2, Chapter 17, Theorem 6]. The action of
taking the quotient of the kernel and the image, is something which occurs more often in math and
especially algebraic topology. Such constructions are called cohomology groups.

When we consider graded modules we also gain an extra index t where Ext now becomes,

Exts,tA (D,M) =
(
ker d∗s+1

/
im d∗s

)t
3.1 Algorithmically making a coresolution

To construct a coresolution we will need two ingredients.

• We need to be able to construct the cokernel.

• We need to inject from any comodule to a cofree comodule.

Constructing the cokernel

Consider any morphism f : M → N , where M and N are A-comodules9.

Definition 3.15. The cokernel of f is defined to be the object which makes the following sequence
exact.

0 ker f M N coker f 0i f π

Note that ker f injects to M and that the image of that injection is by definition equal to the kernel
of f . ker f is also clearly a subcomodule, and thus a comodule (this means it is a valid object to use
in this sequence). This makes the first part of the sequence exact.

9This works for any abelian category

Page 14 of 48

Calculating Ext Chris Vos

Lemma 3.16. For A-comodules the cokernel of f is isomorphic to the quotient N
/
im f

10

Proof. First we should quickly verify whether this quotient actually makes sense, and for that we will
check if im f is a subcomodule. So we require that if n ∈ im f then ∆N (n) ∈ A⊗ im f . Remember
that for an A-comodule morphism the following diagram commutes,

M A⊗M

N A⊗N

∆M

f 1⊗f

∆N

Because n ∈ im f we have that ∃m ∈ M such that f(m) = n. Now by the diagram we have that

∆N (n) = ∆N (f(m)) = (1⊗ f)(∆M (m)) = (1⊗ f)

(
n∑
i

ai ⊗mi

)
=

n∑
i

ai ⊗ f(mi)

This shows that ∆N (n) ∈ A⊗im f , and thus im f is a submodule with which we can take a quotient.

Call π the projection to the quotient N
/
im f . We now readily see that im f = kerπ by definition

of the quotient. We also know that the projection is always surjective. This proves that the whole
sequence is indeed exact.

Making an injection to a cofree comodule

Before we construct an injection from M to a cofree comodule we will show there exists a bijection
between linear maps to V and A-comodule morphisms to A⊗ V .

Lemma 3.17. There exists a bijective relation between HomA(M,A ⊗ V) ↔ Homk(M,V), A-
comodule morphisms to cofree A⊗ V and k-linear maps to V .

The only thing we will need for now is the method to construct an A-comodule morphism from a
k-linear map to V , later we will prove the full statement.

Proof. This map is constructed as follows, for f : M → V ∈ Homk(M,V), we define f̄ := (1⊗f)◦∆M .

M A⊗M A⊗ V
∆M 1⊗f

This is clearly linear, but we verify if this is actually an A-comodule morphism. For this we will use
the properties of the coaction for a cofree comodule. Consider the following diagram,

V M A⊗M

A⊗M A⊗A⊗M

A⊗ V A⊗A⊗ V

f ∆M

∆M 1⊗∆M

∆A⊗1

1⊗f 1⊗1⊗f

∆A⊗1

10Such a quotient exists in general for abelian categories

Page 15 of 48

Calculating Ext Chris Vos

Because M is a comodule, the top part of this diagram commutes. We need to verify that for
x =

∑
(ai ⊗mi) ∈ A⊗M , (1⊗ 1⊗ f)(∆A ⊗ 1)(x) = (∆A ⊗ 1)(1⊗ f)(x), the commutativity of the

bottom part.

(1⊗ 1⊗ f)(∆A ⊗ 1)(x) = (1⊗ 1⊗ f)
(∑

∆A(ai)⊗mi

)
=(∑

∆A(ai)⊗ f(mi)
)
= (∆A ⊗ 1)

(∑
ai ⊗ f(mi)

)
=

(∆A ⊗ 1)(1⊗ f)
(∑

ai ⊗mi

)
= (∆A ⊗ 1)(1⊗ f)(x)

Now to check if f̄ is an A-comodule morphism, we check if the following diagram commutes,

M A⊗M

A⊗ V A⊗A⊗ V

∆M

f̄ 1⊗f̄

∆A⊗1

By using the previous diagram we see that the only thing which we should check is 1⊗ f̄ = (1⊗ 1⊗
f)(1⊗∆M).

We write 1⊗ f̄ as 1⊗((1⊗f)◦∆M). Now we do the same as we have just seen for the commutativity
of the previous diagram to show the commutativity of the diagram.

With that we have shown that f̄ is an A-comodule morphism.

Now, for any comodule M , we can always create an injection to a cofree comodule. We construct this
cofree comodule together with the morphism iteratively. Starting this process we create a morphism
i : M → 0 ∼= A⊗ 0, a zero cofree comodule.

Now we describe a step in the iteration, assume i : M → A⊗ {e1, · · · , en}. Here we abuse notation
a little, with {e1, · · · , en} we mean the span of the vector space by this basis.

• First we take the lowest graded element q ̸= 0 ∈ ker i, (if we are in the non-graded case, take
any element). If such a q does not exist, ker i = 0 and we are done.

• Make a morphism f : M → A⊗ en+1 for which f(q) ̸= 0. This guarantees that q won’t be in
the kernel.

• Now we define ī to be M → A⊗ {e1, · · · , en} ∪ {en+1}, with ī(m) := i(m) + f(m).

• We repeat the process with i = ī until the ker i = 0.

Here we should prove a few things, first that such a morphism f actually exists and that summing
the i and f is legal. We should also check that the kernel is actually shrinking. To guarantee that
our algorithm terminates we will have to assume that M is of finite type.

First that summing is legal,

Page 16 of 48

Calculating Ext Chris Vos

Proof. To show this we will extend i and f to be maps from M → A ⊗ {e1, · · · , en, en+1}. Call
these maps ĩ and f̃ . Now these are clearly still linear maps, because we just ignore all the added
basis elements. What we will verify is that they are still A-comodule morphisms. Thus, that the
following diagram commutes,

M A⊗M

A⊗ {e1, · · · , en, en+1} A⊗A⊗ {e1, · · · , en, en+1}

∆M

ĩ 1⊗ĩ

∆A⊗1

We know that this commutes for our normal i. This implies that ĩ(M) doesn’t go outside A ⊗
{e1, · · · , en}, meaning ĩ(M) ⊂ A⊗{e1, · · · , en}. So now we can immediately conclude that because
i commutes, ĩ must also commute. The same works for f .

When we were proving Lemma 3.10 we have already seen that the sum of two A-comodule morphisms
is still an A-comodule morphism. This proves that the sum we are taking is legal.

We show that the kernel is shrinking,

Proof. First we note that the element q we chose to construct our f , won’t appear in the kernel
in the next iteration. This follows from the fact that ĩ(q) = i(q) + f(q) = 0 + f(q) ̸= 0. Now the
question remains, are there elements in ker ĩ which were not in the ker i. This would mean that there
exists an m ∈ M such that ĩ(m) = 0 but i(m) ̸= 0. Let i(m) =

∑n
j aj ⊗ ej and f(m) = an+1⊗ en+1.

Now,

0 = ĩ(m) = i(m) + f(m) =

n∑
i

ai ⊗ ei + an+1 ⊗ en+1

This would imply that
∑n

i ai ⊗ ei = −an+1 ⊗ en+1 but because ei is a basis, this can only be true
if all ai’s are zero. But this contradicts our assumption that i(m) ̸= 0.

This concludes that our kernel is shrinking at each step. Because M is of finite type, the algorithm
eventually terminates.

Now to show that such an f actually exists,

Proof. We will start by constructing a linear map from M → k. The map we want has to at least
send q to 1 ∈ k. In the graded setting we have to be a bit more careful. Here we will define the map
to be from M → {en+1}, a 1-dimensional graded k-vector space where en+1 has the same degree as
q.

The element q can be written as
∑

i ki · mi, where mi is a basis element of M . Without loss of
generality we will assume that k1 = 1, if not we can always look at k−1

1 · q as our element from ker i.

For a linear map it is enough to define what the map does on basis elements of M . We define
f̄(m1) = en+1 and f̄(mi ̸=1) = 0. This gives us that f̄(q) = en+1.

We now use Lemma 3.17 to get a map f : M → A ⊗ {en+1}. All we need to verify now is that
f(q) ̸= 0. Because M is a comodule we know that,

Page 17 of 48

Calculating Ext Chris Vos

k ⊗k M A⊗M

M

∼=

ε⊗1

∆

This diagram says that q ∼= 1⊗ q = (ε⊗ 1)(∆M (q)). Consider the following diagram,

M A⊗M

k ⊗M

V k ⊗ V A⊗ V

∆M

∼=

f̄

ε⊗1

1⊗f̄

1⊗f̄

ε⊗1

The top triangle commutes because M is a comodule and the left square commutes trivially. The
right square commutes because (ε ⊗ 1) ◦ (1 ⊗ f) = ε ⊗ f = (1 ⊗ f) ◦ (ε ⊗ 1). This gives us that
f̄ ∼= (ε⊗ 1) ◦ (1⊗ f̄) ◦∆M = (ε⊗ 1) ◦ f . Because f̄(q) ̸= 0 we must have that f(q) ̸= 0.

This concludes everything we had to check. Now we can construct an injection from a comodule M
to a cofree comodule A⊗ V .

Combining both

So if we combine these two techniques we see that if we have a morphism, f : M → N . We can
iteratively, extend this to a sequence with cofree comodules as follows,

M N F

Q ∼= N/
im f

f i◦π

π i

Now because i is injective we know that ker i = 0 and thus that ker i ◦ π = kerπ = im f . And we
can conclude that the sequence,

M
f→ N

i◦π→ F

is exact.

Now we can also do this for the special case where M = 0 and N is the comodule for which we make
a coresolution. We can do it in the following way, and this gives us the following coresolution,

0 N F0 F1 F2 · · ·

Q0 Q1 Q2

0 ε

π

d1

π

d2

πi i i

Constructing this quotient module and creating an injection to a cofree comodule is the most im-
portant part of the algorithm we have written. How we instructed the computer to calculate this is
what we will explain after we show how we can deduce Ext in a special case.

Page 18 of 48

Calculating Ext Chris Vos

3.2 Ext for this coresolution

What we will see is that using our algorithm, the induced morphisms will be zero and when we Hom
with A-comodule k we get that HomA(k,A ⊗ V) ∼= V 11. This makes it very easy to calculate Ext,
because Ext(k,M)s ∼= Vs, where Fs = A⊗ Vs the cofree comodule in index s in the coresolution of
M .

To start, we will give the full proof of Lemma 3.17, which says there is a bijection between
HomA(M,A⊗ V) ↔ Homk(M,V).

Proof. We already showed the construction from right to left, which takes f : M → V to (1⊗f)◦∆M .

F :
(
M

f→ V
)
7→
(
M

∆M→ A⊗M
1⊗f→ A⊗ V

)
The construction from left to right is as follows.

We have an A-comodule morphism g : M → A⊗ V , and we take it to (ε⊗ 1) ◦ g.

G :
(
M

g→ A⊗ V
)
7→
(
M

g→ A⊗ V
ε⊗1→ k ⊗ V ∼= V

)
These are clearly all linear maps thus (ε⊗ 1) ◦ g is a k-linear map.

What we will now prove is that F and G are left and right inverses.

First F ◦G,

This comes down to checking whether g = (1 ⊗ ((ε ⊗ 1) ◦ g)) ◦∆M (g). We have already shown in
the partial proof of this Lemma 3.17, that (1 ⊗ ((ε ⊗ 1) ◦ g)) = (1 ⊗ ε ⊗ 1) ◦ (1 ⊗ g). Consider the
following diagram,

M A⊗M

A⊗ V A⊗A⊗ V

A⊗k k ⊗ V

∆M

g 1⊗g

∆A⊗1

∼= 1⊗ε⊗1

The commutativity of the top square is guaranteed by the fact that g is an A-comodule morphism.
We know that the in a coalgebra the following diagram must commute,

A

A⊗k k A⊗A

∼=

1⊗ε

∆

11In general this holds whenever the coresolution is minimal. What we will show is that this also holds for our
construction of the coresolution.

Page 19 of 48

Calculating Ext Chris Vos

Because we only take the identity between each V , we get that the bottom part of our previous
diagram also commutes. Showing that F ◦G = id.

Now G ◦ F ,

Here we verify for f : M → V that f = (ε ⊗ 1) ◦ (1 ⊗ f) ◦ ∆M (f). It is trivial to see that
(ε⊗ 1) ◦ (1⊗ f) = ε⊗ f = (1⊗ f) ◦ (ε⊗ 1). Now consider the following diagram,

M A⊗M

k ⊗k M A⊗ V

V k ⊗k V

∆M

f

ε⊗1 1⊗f
∼=

1⊗f ε⊗1

∼=

The commutativity of the top triangle follows from the fact theM is a comodule. The commutativity
of the right square is what we have just shown. This together implies that G ◦ F = id.

And with that we see that we have a bijection HomA(M,A⊗ V) ↔ Homk(M,V).

Using the lemma above, we will show that HomA(k,A⊗ V) is (linearly) isomorphic to V .

Lemma 3.18. HomA(k,A⊗ V) ∼=Set Homk(k, V) ∼=k V

Proof. We have already shown the first isomorphism, what remains to show is the second isomor-
phism. Define the map p : Homk(k, V) → V as f 7→ f(1). This map is clearly linear and surjective
because we can construct a map to which sends 1 to a specific element in V . What remains to show
is that it is injective.

Assume we have an f, g ∈ Homk(k, V) such that f(1) = g(1). Then we have that for all j ∈ k,

f(j)− g(j) = j · (f(1)− g(1)) = j · 0 = 0

Because f and g are equal on their domain, they are the same function.

Thus, we have a linear isomorphism Homk(k, V) ∼=k V .

Now to give a slightly different view on the proof,

Example 3.19. One can write f ∈ Homk(k, V) as the following matrix,

k
v1 m1

v2 m2

· · ·
vn mn

Now this shows that in the general case we only have to choose what m1, · · · ,mn are. This makes
{m1, · · · ,mn} into an n dimensional vector space. Because V has dimension n as well, the two
vector spaces are isomorphic.

Page 20 of 48

Calculating Ext Chris Vos

Graded

For the graded case, nothing special happens. Here we will look in each degree individually, where
we use the results we have already seen,

(HomA(k,A⊗ V))
t
= HomA(k[t], A⊗ V) ∼=Set Homk(k[t], V) = (Homk(k, V))

t

V is a graded vector space, thus V =
⊕

t∈N Vt For the second equality we see that (Homk(k, V))
t
=

Homk(k[t],
⊕

t∈N Vt) = Homk(k[t], Vt) ∼=k Vt, where Vt is the vector space in degree t. Now the
complete equality becomes as follows,

HomA(k,A⊗ V) ∼=Graded
Set Homk(k, V) ∼=Graded

k V

What remains is to show that in our coresolution the induced morphisms are zero. Thus, for a
coresolution,

0 N F0 F1 F2 · · ·ϵ d1 d2 d3

After applying HomA(k,) and removing N ,

0 HomA(k, F0) HomA(k, F1) HomA(k, F2) · · ·
d∗
1 d∗

2 d∗
3

We will show that d∗i , which takes f ∈ HomA(k, Fi−1) to di◦f ∈ HomA(k, Fi), is equal to zero.

Lemma 3.20. For a connected coalgebra A, we have that d∗i = 0.

Proof. To prove this, we have to know a bit more about the structure of a connected coalgebra.

Recall that a connected coalgebra is graded and A0 ∼= k. Define A+ = A \ A0. For a connected
coalgebra we must have that the counit ε(A+) = 0 and ε(A0) = k.

Because A is a coalgebra we have the following commuting diagram,

k ⊗k A A⊗A

A

A⊗k k A⊗A

ε⊗1

∆
∼=

∼=

1⊗ε

∆

Here we see that we must have that a⊗ 1 = (1⊗ ε)(∆A(a)). With this we conclude for a ∈ A+ that
∆A(a) = a⊗ 1 + 1⊗ a+

∑
i ai1 ⊗ ai2, where ai1, ai2 ∈ A+.

For degree reasons and the fact the k is a comodule (so it must adhere to the counit diagram) we
must have that ∆k(1) = 1⊗ 1.

Page 21 of 48

Calculating Ext Chris Vos

Now for any f ∈ HomA(k, Fi), with Fi = A⊗Vi we can not have that f(1) =
∑

j aj ⊗ vj , where any

0 ̸= aj ∈ A+. Because f is an A-comodule morphism we have that,

k A⊗ k

A⊗ V A⊗A⊗ V

∆k

f 1⊗f

∆A⊗1

We now see that (1⊗ f)(∆k(1)) = 1⊗ (
∑

i ai ⊗ vi) =
∑

i 1⊗ ai ⊗ vi, but going through A⊗ V we
see that,

(∆A ⊗ 1)(f(1)) =
∑
i

(ai ⊗ 1⊗ vi + 1⊗ ai ⊗ vi + · · ·)

where · · · ∈ A+ ⊗A+ ⊗ V .

But because there exists an i with 0 ̸= ai ∈ A+ we must have that (1⊗f)(∆k(1)) ̸= (∆A⊗1)(f(1)).
That means that we can only have f(1) =

∑
1⊗ vj .

What remains to show is that di+1(1⊗vj) = 0. When we were constructing our coresolution we had
the following diagram,

Fi−1 Fi Fi+1

Q

i◦π=di

π

di+1

i

Because Q is a comodule and A a connected coalgebra we must have that, ∆Q(q) = 1⊗q+
∑

i ai⊗qi,
where ai ∈ A+.

If we look at the construction of i, we see that when we construct the cofree comodule A ⊗ {vn}.
We start with an f̄ : Q → {vn} which sends a q ∈ Q to vn.

Now if we construct the A-comodule morphism we get that, f := (1⊗ f̄)(∆Q) and f(q) = 1⊗ vn +∑
i ai ⊗ f(qi), but because qi is in a different degree then q we must have that f(qi) = 0. This also

means that i(q) = 1⊗ en.

Because π is surjective we now have that ∃x ∈ Fi−1 such that di(x) = 1⊗ vj . This guarantees that
all the basis elements of the form 1⊗ vj ∈ A⊗ Vi are always hit by di.

Now we see that in that when we construct the quotient Fi
/
im di

, we have that π(1⊗ vj) = 0. This

finally gives us that di+1(1⊗ vj) = 0.

We combine the fact that any f ∈ HomA(k, Fi) has f(1) =
∑

1⊗ vj and that di+1(
∑

j 1⊗ vj) = 0.
Now this gives us that, d∗i+1(f)(1) = (di+1 ◦ f)(1) = di+1(

∑
1 ⊗ vj) = 0. Because f was arbitrary

and f and di+1 are linear maps, we have that d∗i+1 = 0.

Let us remind the reader of what we have now done.

With these lemmas we have that for a cofree coresolution of N , an A-comodule,

0 N A⊗ V0 A⊗ V1 A⊗ V2 · · ·ϵ d1 d2 d3

Page 22 of 48

Calculating Ext Chris Vos

applying Hom(k,) and removing N ,

0 HomA(k,A⊗ V0) HomA(k,A⊗ V1) HomA(k,A⊗ V2) · · ·0 0 0

Ext, in the graded sense, is defined as,

Exts,∗A (D,M) = ker d∗s+1
/
im d∗s

Now if we look in each degree t we see,

Exts,tA (D,M) =
(
ker d∗s+1

/
im d∗s

)t
= (ker d∗s+1)

t = HomA(k[t], A⊗ Vs) ∼= V t
s

4 The algorithm

Now that we have all the definitions we can finally start describing how we make the computer
calculate Ext for us. We will start by describing the data structures we use to remember all the
information we have to store. Note that from this point on we will only be considering comodules
and coalgebras of finite type. We also introduce a cutoff point for the grading, meaning that our
graded vector spaces will always be finite. We will also only work with connected coalgebras.

4.1 Data structures

First we start of with some basic support types which will help us define more complex data struc-
tures.

type Grading = in t

s t r u c t BasisElement {
name : s t r i ng ,
degree : Grading ,
genera to r : boolean ,

} ;

type Bas i s = L i s t [BasisElement]
type Bas i s Index = in t

type Matrix = . . .

This is not really special yet, we are just defining how we store a basis for our vector space, which
is list of elements with a grading and a name. The generator boolean here is what we will use in
the end to deduce how many cofree copies we have generated and in what degree they are in. This
generator boolean also only makes sense when we are either defining a coalgebra or making a cofree
comodule.

The type of Matrix, is any type which stores finite field elements in a 2-dimensional array and for
which there are certain built in linear algebra routines. Explicitly we require the Matrix type to
support finding the row reduced echelon form of a matrix, taking the transpose, and finding the null
space matrix. Where the null space matrix is a matrix which, when we span the rows give us a basis
for the kernel of our matrix.

Page 23 of 48

Calculating Ext Chris Vos

Our matrix type should also support slicing. Slicing means looking at a subpart of a matrix, and
the syntax is as follows,

subM = M[i : j , k : l]

As an example,

subM = M[1 : 3 , 2 : 4]

Here M is a matrix with dimension at least 3x4, recalling that we start our indexing at zero. Now
subM is a 2x2 matrix, meaning we don’t include the third and fourth index in the sub matrix.

Example 4.1.

M =

 a b c d
e f
i j

(
g h
k l

) subM =

(
g h
k l

)

If there is no integer to either the left or right of :, then we will automatically insert 0 on the left
and the maximum possible index on the right. This means that M = M [:, :].

Coalgebra

s t r u c t Coalgebra {
ba s i s : Basis ,
coac t i on : Matrix ,

} ;

The basis represents the vector space basis of the coalgebra. Note that we also have an implicit
ordering in the basis, which is based on its index in the list, which we use to know what elements
map to where in our coaction matrix. The matrix object represents the coaction on the coalgebra
A.

The coaction is the morphism ∆ : A → A⊗ A. Because we are only working over finite coalgebras,
we can represent the coaction action in a matrix.

The matrix is of dimensions len(basis)2 by len(basis), with len(basis) meaning the size of the list
of basis elements, which is the dimension of the vector space of A.

Note that we do not explicitly store a basis for this tensor product A ⊗ A. But instead we
will make use of the basis of the coalgebra and implicitly use the following basis for the tensor,
{ai ⊗ aj | 1 ≤ i, j ≤ len(basis)}. In the matrix we should also be explicit about the ordering of both
basis, which will be giving as follows,

a1 a2 · · · an
a1 ⊗ a1
a2 ⊗ a1

· · ·
an ⊗ a1 M
A⊗ a2
· · ·

A⊗ an

Page 24 of 48

Calculating Ext Chris Vos

In the top row we see the basis we have defined in our Coalgebra struct. In the column on the left
the computer only knows what its numerical index is, however it doesn’t know which two elements
the element of the tensor product is made up of.

So now we would like to know what basis element of the tensor product this column index is. To
find out the left hand side of the tensor we take the column index modulo len(basis) and for the
right hand side we take the column index divided by len(basis). In code,

l e f t c o a l g e b r a i n d e x = column index % len (ba s i s)
r i g h t c o a l g e b r a i nd ex = column index // l en (ba s i s)

Here % is taking i modulo (%) j, and // is integer division (this is the same as normal division and
afterwards flooring).

Example 4.2. So assume our vector space is only 2 dimensional, with basis {a0, a1}12. We would
then get a coaction matrix of 4x2, which can look (for example) as follows,

a0 a1
a0 ⊗ a0 1 0
a1 ⊗ a0 0 1
a0 ⊗ a1 0 1
a1 ⊗ a1 0 0

Now if we have we are interested in which tensor product is at column index 2, we see that we get,

l e f t c o a l g e b r a i n d e x = column index % len (ba s i s) = 2 % 2 = 0
r i gh t c o a l g e b r a i nd ex = column index // l en (ba s i s) = 2 // 2 = 1

This means that at column index 2 (remember that we start counting at zero) we have the tensor
a0 ⊗ a1.

If we compare this to the definition of a coalgebra we see some things missing. First we don’t store
the unital function, this is because the unital function can be deduced by the fact that we are always
working over connected coalgebras. We also require that the coaction the user provides adheres to
the coassociativity diagram and that the other implicit diagrams also commute.

Comodule

s t r u c t Comodule {
coa lgebra : Coalgebra ,
b a s i s : Basis ,
coac t i on : Matrix ,

} ;

The basis again represents the (finite) vector space basis, and the coalgebra references a coalgebra

12In programming it is normal to start counting from zero and this also somewhat simplifies the formulas for
calculating indices

Page 25 of 48

Calculating Ext Chris Vos

object. Now the coaction is again a matrix and is represented as follows,

m1 m2 · · · mn

a1 ⊗m1

a2 ⊗m1

· · ·
an ⊗m1 M
A⊗m2

· · ·
A⊗mn

However, we now take a tensor product of A⊗k M . We do (almost) the same process to understand
which column index represents which tensor product element. But now we have to divide by the
length of the coalgebra vector space basis,

comodule index = column index % len (coa lgebra . b a s i s)
coa l g eb ra index = column index // l en (coa lgebra . b a s i s)

Morphisms

We would also like to remember morphisms between A-comodules. The only thing we really have
to remember is the linear map between these two comodules.

s t r u c t Morphism {
domain : Comodule ,
codomain : Comodule ,
map : Matrix ,

} ;

Here we don’t explicitly store that the map is an A-comodule map, we only remember the linear
map. We have proven in Chapter 3 that the way in which we construct the map guarantees that
the map commutes the A-comodule morphism diagram.

Example 4.3. If the domain C has basis {c1, · · · , cm} and the codomain D has basis {d1, · · · , dn}.
Then the map is matrix might looks as follows,

c1 c2 · · · cm
d1 1 1 · · · 0
d2 0 1 · · · 1
d3 0 0 · · · 0
· · · · · · · · · · · · · · ·
dn 1 1 · · · 1

Resolution

s t r u c t Reso lut ion {
comodule : Comodule ,
morphisms : L i s t [Morphism] ,

} ;

The resolution object merely the original comodule for which it makes a resolution and it remembers

Page 26 of 48

Calculating Ext Chris Vos

all morphisms from the resolution. The comodule object contains the coalgebra as well. And the
list of morphisms remember their domains and codomains, thus we also know what all the specific
free comodules are.

4.2 Routines

To construct the actual coresolution we will use the description of the algorithm we have given in
Chapter 3.1. That means we should make two routines, one to construct the cokernel and one to
create a minimal injection from a comodule to a cofree comodule.

The routines we provide are not the most efficient algorithms yet, and there are optimizations which
will make them run faster, some of which we will go over later in this thesis. But for understandability
we have chosen to give the most basic algorithm which explains the idea the best.

Cokernel routine

f unc t i on Cokernel (f : Morphism) −> Morphism {
P = f .map . t ranspose () . nu l l s p a c e () . row reduce ()

p i vo t s : L i s t [i n t] = f i n d p i v o t s (P)

// Make ba s i s
Q bas i s : L i s t [BasisElement] = []
f o r p ivot in p ivo t s :

Q bas i s . push (f . codomain . b a s i s [p ivot])

// Get coa lgebra dimension f o r coac t i on matrix
coa lg = f . codomain . coa lgebra
a = len (coa lg . b a s i s)

// Make coac t i on
coac t i on = zero matr ix (a∗ l en (Q bas i s) , l en (Q bas i s))

f o r q i in l en (Q bas i s) : // 1
f i = p ivo t s [q i] // 2
f o r c f i in l en (f . codomain . b a s i s) : // 3

f o r c q i in l en (Q bas i s) : // 4
coac t i on [c q i ∗a : (c q i +1)∗a , q i] += // 5

P[c q i , c f i] ∗ // 6
f . codomain . coac t i on [c f i ∗a : (c f i +1)∗a , f i] // 7

Q = Comodule (coalg , Q basis , coac t i on)
re turn Morphism(f . codomain , Q, P)

}

First we will prove that Q basis is actually the coker f and that M is the correct (linear) map to
Q. For this part we will only be worried about the vector space structure and not yet about the
A-comodule structure. If we look at the definition 3.15 of the cokernel, we see that both the kernel

Page 27 of 48

Calculating Ext Chris Vos

and cokernel can be defined as the objects which make the following sequence exact,

0 ker f M N coker f 0i f π

We know that when dualizing, injective maps become surjective maps and vice versa. Here we
will also be using the fact that Homk(, k), which is dualizing (M∗ := Homk(M,k)), is a left exact
functor. Because dualizing is left exact we have that if the following sequence is exact,13

M N coker f 0
f π

Then the following sequence is also exact,

M∗ N∗ (coker f)∗ 0
f∗

π∗

Because M and N are finite dimensional, M∗ ∼= M and N∗ ∼= N . This implies we also have the
exact sequence,

M N (coker f)∗ 0
f∗

π∗

We also know that the object D which makes the sequence 0 → D → N
f∗

→ M exact is the ker f∗.
Thus, we have that (coker f)∗ ∼= D ∼= ker f∗. Because we have chosen a basis for both M and N we
have that f∗ = fT , the transpose of the matrix f .

Now all that is left is to show that there exists a surjective matrix P from N to kerfT for which it
holds that fT · PT = 0. Meaning that P maps element from the kernel of fT to a basis for kerfT .
This P is exactly given by null space() function. One can think of P as the matrix for which its
rows span a basis for ker fT ⊂ N . With that we see,

coker f

M∗ N∗ (coker f)∗ 0

M N kerf∗ 0

f∗
π∗

fT

P

π∗

Where we have a map P which goes from N to the coker f . There is one extra transformation
which we will apply which will help us later, and that is that we take the row reduced echelon form.
This will make it easier to find an element in N which maps to a specific basis in coker f . This row
reduced echelon form can be seen as a basis transformation on coker f .

Example 4.4. A row reduced echelon matrix has the following form, 1 0 a1 0 b1
0 1 a2 0 b2
0 0 0 1 b3


13The details can be found in Dummit and Foote [2], theorem 33 chapter 10.5.

Page 28 of 48

Calculating Ext Chris Vos

Now we for each row in this matrix P represents an element of a specific degree in N . And we will
create Q basis depending on this degree. We also don’t care about a name for this basis element,
because in our final coresolution we will not remember this intermediate coker object.

Now to make the coaction we will do the following,

N A⊗N

coker f A⊗ coker f

∆N

P 1⊗P

∆coker f

We will make the coaction on coker f by looking at what it does for ∆N . We know that P is
surjective. Thus, for each element in the coker f we have a preimage in N , these are step (1), (2).
Now we iterate over all elements in N as well as all elements in coker f , step (3), (4). The most
difficult step is now as follows.

For each c f i we look at the coaction for f i with respect to a part of the tensor. This means that
we are interested in ∆N (fi), but only in elements with respect to A⊗ c f i, step (7). This gives us a
vector where its size is the dimension of A. Now we look at what P does to c f i in each basis c q i
of coker f , step (6). This gives us a scalar. Now we multiply this scalar with the vector we got, and
we add that to the coaction of ∆coker f (qi), where we again only look at elements with respect to
A⊗ c q i, step (5).

This gives us a coaction ∆coker f , and because we have deduced this coaction from the coaction on
N , we can deduce the commutativity of the coassociativity and the counit diagrams by using the
fact that ∆N already makes these commute. Thus we have constructed the coker f correctly.

We also used this auxiliary routine to find pivot elements in a surjective row reduced matrix,

f unc t i on f i n d p i v o t s (su r j r r e f map : Matrix) −> L i s t [i n t] {
// Get the dimensions o f the matrix
rows , c o l s = su r j r r e f map . shape

p ivo t s = []
f o r r in rows :

f o r c in c o l s :
i f s u r j r r e f map [r , c] == 1 :

p i vo t s . push (c)
break

return p ivo t s
}

Page 29 of 48

Calculating Ext Chris Vos

Injection to cofree comodule routine

f unc t i on i n j e c t i o n (M: Comodule) −> Morphism {
growing = zero morphism (M, zero comodule (M. coa lgebra))
a = len (M. coa lgebra . b a s i s)

whi l e True :
k e rne l = growing .map . nu l l s p a c e ()

m 1 = lowes t deg r e e e l ement (kerne l , M)

i f m 1 == −1:
re turn growing

F = co f r e e (M. ba s i s [m 1] . grading)
M to F = M. coac t i on [m 1∗a : (m 1+1)∗a]
m 1 morph = Morphism(M, F, M to F)

growing = combine morphisms (growing , m 1 morph)
}

Recall 3.1, where we describe the initialization and the iteration of the algorithm.

We start with a morphism to a zero cofree comodule and the iteration each step goes as follows,

• First we take the lowest graded element q ̸= 0 ∈ ker i, (if we are in the non-graded case, take
any element). If such a q does not exist, ker i = 0 and we are done.

• Make a morphism f : M → A⊗ en+1 for which f(q) ̸= 0. This guarantees that q won’t be in
the kernel.

• Now we define ī to be M → A⊗ {e1, · · · , en} ∪ {en+1}, with ī(m) := i(m) + f(m).

• We repeat the process with i = ī until the ker i = 0.

If we look at the routine above we see that we start with a zero morphism (called growing) from
M .

Then for the iteration, We take the null space, the kernel, of the current growing morphism matrix.
And then using the lowest grade element subroutine we get the element m1, a basis element in M
which we also got in the proof 3.1.

Now we construct A⊗{en+1}, where en+1 has the same degree as m1. This is just copying the basis
of A and shifting the degree of this basis with the degree of m1.

If we look at the proof again we see that we constructed the map to A ⊗ {en+1} as (1 ⊗ f̄) ◦∆M ,
where f(m1) = en+1 and f(mi>1) = 0. We see that this function (1 ⊗ f) ◦∆M does the following

Page 30 of 48

Calculating Ext Chris Vos

to our coaction matrix on M ,

m1 m2 · · · mn

a1 ⊗ f(m1)
a2 ⊗ f(m1)

· · ·
an ⊗ f(m1) ∆M

A⊗ f(m2)
· · ·

A⊗ f(mn)

=

m1 m2 · · · mn

a1 ⊗ f(m1)
a2 ⊗ f(m1)

· · ·
an ⊗ f(m1) ∆M

A⊗ 0
· · ·

A⊗ 0

=

Now to construct the mapping from M → A ⊗ {en+1} we only need to consider all basis elements
which are non zero. Thus we can just copy the top part of the matrix as follows,

m1 m2 · · · mn

a1 ⊗ en+1

a2 ⊗ en+1 M to F
· · ·

an ⊗ en+1

And this is the same as the array slicing we do in our routine. Then finally we combine this morphism
with the growing morphism we already have. Which happens in one of the following subroutines.
First the lowest degree element,

f unc t i on l owes t deg r e e e l ement (nu l l : Matrix , M: Comodule) −> Bas is Index {
rows , c o l s = nu l l . shape

ba s i s i nd ex = −1
degree = 0

f o r r in range (rows) :
f o r c in range (c o l s) :

i f nu l l [r , c] != 0 :
i f M. ba s i s [c] < degree or ba s i s i nd ex = −1:

b a s i s i nd ex = c
degree = M. ba s i s [c]

break
return ba s i s i nd ex

}

Here we construct A⊗ {en+1},

f unc t i on c o f r e e (degree : Grading , coa lg : Coalgebra) −> Comodule {
ba s i s = []
f o r b in coa lg . b a s i s :

b . degree += grading
ba s i s . push (b)

re turn Comodule (coalg , bas i s , coa lg . coac t i on)
}

Here we construct a zero A-comodule,

Page 31 of 48

Calculating Ext Chris Vos

f unc t i on zero comodule (coa lgebra : Coalgebra) −> Comodule {
re turn Comodule (coa lgebra , [] , z e ro matr ix (0 , 0))

}

A morphism between two comodules which sends everything to zero,

f unc t i on zero morphism (domain : Comodule , codomain : Comodule) −> Comodule {
map = zero matr ix (l en (codomain . b a s i s) , l en (domain . b a s i s))
re turn Morphism(domain , codomain , map)

}

The direct sum just takes the two basis and sums them together. It also takes a block sum of the
coaction matrixes

f unc t i on d i rect sum (M: Comodule , N: Comodule) −> Comodule {
ba s i s = M. ba s i s + N. ba s i s
coac t i on = M. coac t i on . block sum (other . coac t i on)
re turn Comodule (M. coa lgebra , bas i s , coac t i on)

}

Example 4.5. Assume A is a coalgebra with two a basis of two elements {a0, a1} If we had two
comodules M and N with basis {m0,m1} and {n0, n1} with the following coactions,

∆M =

m0 m1

a0 ⊗m0 1 0
a1 ⊗m0 0 1
a0 ⊗m1 0 1
a1 ⊗m1 0 0

∆N =

n0 n1

a0 ⊗ n0 1 0
a1 ⊗ n0 1 1
a0 ⊗ n1 0 1
a1 ⊗ n1 0 1

The direct sum would have basis {m0,m1, n0, n1} and coaction,

∆M+N =

m0 m1 n0 n1

a0 ⊗m0 1 0 0 0
a1 ⊗m0 0 1 0 0
a0 ⊗m1 0 1 0 0
a1 ⊗m1 0 0 0 0
a0 ⊗ n0 0 0 1 0
a1 ⊗ n0 0 0 1 1
a0 ⊗ n1 0 0 0 1
a1 ⊗ n1 0 0 0 1

Here we combine two morphisms with the same domain. We take a direct sum of the codomains
and we (vertically) stack the two matrices.

f unc t i on combine morphisms (a : Morphism , b : Morphism) −> Morphism {
map = a .map . s tack (b .map)
codomain = direct sum (a . codomain , b . codomain)
re turn Morphism(a . domain , codomain , map)

}

Page 32 of 48

Calculating Ext Chris Vos

Example 4.6. assume the domain of a and b is {m0,m1} and the codomain of a is {a0} and the
codomain of b is {b0, b1}. The maps of a and b are,

a =
m0 m1

a0 1 0
b =

m0 m1

b0 1 0
b1 1 1

Then the stack becomes,
m0 m1

a0 1 0
b0 1 0
b1 1 1

The coresolution

Now the routine to construct the coresolution is not special anymore.

f unc t i on r e s o l u t i o n (M: Comodule) −> Core so lu t i on {
zero = zero morphism (zero comodule () , M)
morphisms = [zero]

// Make the c o r e s o l u t i o n
f o r n in range (FILTRATION MAX) :

// Get the l a t e s t morphism from our l i s t o f morphisms
morph = morphisms [−1]

// Get the coke rne l
coker = coke rne l (morph)

// I n j e c t i o n from the coke rne l to a c o f r e e comodule
i n j e c = i n j e c t i o n (coker . codomain)

// Compose the two morphisms
f i n a l = i n j e c @ coker

// Add the composed map to the l i s t
morphisms . append (f i n a l)

re turn Reso lut ion (M, morphisms)
}

Now we have shown in chapter 3.2 that Exts,tA = V t
s . And to find the generators of V t

s , we do the
following,

Page 33 of 48

Calculating Ext Chris Vos

f unc t i on v s t (co r e s : Coreso lut ion , s : int , t : Grading) −> L i s t [BasisElement] {
v s = co r e s . morphisms [s] . codomain . b a s i s

g ene ra to r s = []
f o r b in v s :

i f b . generato r and b . degree = t :
g ene ra to r s . push (b)

re turn gene ra to r s
}

Our program now gives us the following output for N = k as a comodule, and A = A(1)∗ the dual
mod 2 steenrod subcoalgebra,

Figure 1: A(1)∗ with x axis equal to t

Here the y axis represents s and the x axis represents t. We draw a dot whenever V t
s ̸= 0. In the

literature we usually let the x axis represent t− s, that would look as follows,

Figure 2: A(1)∗ with x axis equal to t− s

Page 34 of 48

Calculating Ext Chris Vos

5 Structure Lines

Up until this point we have only calculated vector basis generators for Ext. However, there also
exists a ring structure on Ext. The precise definition of this ring structure goes beyond the scope of
this thesis.

This ring structure can be (partially) displayed in the Ext page by drawing lines between Extn and
Extn+1. Where to draw these lines follows some rules. We will naively use these rules to display the
structure lines and thus ring structure of Ext.

Definition 5.1. A primitive element of a coalgebra A, where 1 is the multiplicative identity of A,
is an element a for which the coaction is,

∆A(a) = a⊗ 1 + 1⊗ a

We will also refer to a primitive element x in a cofree comodule if x = a ⊗ vi ∈ A ⊗ V , where a
is primitive in the coalgebra. This means that there can be multiple primitive elements in a cofree
comodule which get represented by the same primitive element a in the coalgebra.

Every primitive element of A has its own class of structure lines. In the coresolution for N we have

Fi
di+1→ Fi+1, with Fi and Fi+1 both cofree. We can rewrite this to A ⊗ Vi

di+1→ A ⊗ Vi+1. Let Vi

have basis {vik}k∈I and Vi+1 have basis
{
v(i+1)l

}
l∈J

. Remember as well that we only consider A

coalgebras which are connected. Thus, we will represent the basis of A0 as 1. Also remember that
after applying the Hom functor with k we only keep the Vi part. Thus, HomA(k,A⊗Vi) ∼= Vi.

We draw a structure line between two basis elements vik and v(i+1)l for the primitive element a
whenever 1⊗ v(i+1)l is in the sum di+1(a⊗ vik) =

∑
b ab⊗ v(i+1)b ∈ A⊗Vi+1. In words, when a gets

mapped to 1 we draw a structure line between their respective basis elements.

Routines

To programmatically find these structure lines we should first know which elements are primitive in
the coalgebra. To do this we append the basis element data structure as follows,

s t r u c t BasisElement {
name : s t r i ng ,
degree : Grading ,
genera to r : boolean ,
p r im i t i v e i nd ex : None | int ,
genera ted index : int ,

} ;

Each primitive element in the basis of our coalgebra has a unique primitive index. In a cofree
comodule, generated index represents to which basis element vij of Vi it belongs. Before structure
lines, we did not need to keep apart multiple basis elements in the same degree. We were only
interested in the amount of generators in each degree. This generated index is now necessary
because we also want to know to exactly which basis element in HomA(k, Fi) we map.

This also slightly changes the way in which we make a cofree comodule in the Injection to cofree
comodule routine. We keep track of how many basis elements there implicitly are in Vi.

Page 35 of 48

Calculating Ext Chris Vos

f unc t i on r e s o l v e (Q: Comodule) −> Morphism {

growing = zero morphism (Q, zero comodule (Q. coa lgebra))
a = len (Q. coa lgebra . b a s i s)

genera ted index = 0
whi l e True :

//

F = co f r e e (Q. ba s i s [l ow e l] . grading ,
Q. coa lgebra , genera ted index)

//

g enera ted index += 1
}

f unc t i on c o f r e e (degree : Grading , coa lg : Coalgebra ,
index : i n t) −> Comodule {

ba s i s = []
f o r b in coa lg . b a s i s :

b . degree += grading
b . genera ted index = index
ba s i s . push (b)

re turn Comodule (coalg , bas i s , coa lg . coac t i on)
}

The routine

Now we will discuss the routine to find these structure lines,

f unc t i on s t r u c t u r e l i n e s (domain : Basis , codomain : Basis , map : Matrix)
−> L i s t [(BasisIndex , BasisIndex , i n t)] {

l i n e s = []
f o r pr im id in p r im i t i v e i n d i c e s (domain) :

f o r t a r g e t i d in range (l en (codomain)) :
// I f we don ’ t map to t h i s element , cont inue
i f map [t a r g e t i d , pr im id] == 0 :

cont inue

// Check i f the element we map to i s a generato r
t a r g e t = codomain . b a s i s [t a r g e t i d]
i f t a r g e t . genera to r == False :

cont inue

p r im i t i v e = domain [pr im id] . p r im i t i v e i nd ex

// Get the genera to r element be long ing
// to t h i s p r im i t i v e element
pr im generated index = domain [pr im id] . genera ted index
pr im generator = domain . f i n d g en e r a t o r (pr im generated index)

Page 36 of 48

Calculating Ext Chris Vos

l i n e s . push ((prim gen , e l i d , p r im i t i v e))
re turn l i n e s

}

f unc t i on p r im i t i v e i n d i c e s (b a s i s : Bas i s) −> L i s t [Bas i s Index] {
prims = []
f o r p id in range (l en (ba s i s)) :

i f b a s i s [p id] . p r im i t i v e != None :
prims . push (p id)

re turn prims
}

f unc t i on f i nd g en e r a t o r (ba s i s : Basis , g ene ra to r index : i n t) −> Bas is Index {
f o r e l i d in range (l en (ba s i s)) :

e l = ba s i s [e l i d]
i f e l . g enera to r and e l . genera ted index == generated index :

re turn e l i d
}

Here prim id is an index of a primitive element in the basis list of the domain. Such an element
is thus (implicitly) of the form ap ⊗ vi with ap primitive. Then we check for each element it send
to, if that element is a generator. An element in a cofree comodule is a generator if it (implicitly)
represents 1⊗vi. And if it is an element we collect find the generator corresponding to the primitive
element we started with and add the structure line it produces to the list of structure lines.

Example 5.2. We again look at the previous example A(1)∗, which is isomorphic to the polynomial

algebra F2[ξ1, ξ2]
/
⟨ξ41 , ξ22⟩

. The coaction for the indeterminates is,

∆A(ξ1) = ξ1 ⊗ 1 + 1⊗ ξ1

∆A(ξ2) = ξ2 ⊗ 1 + 1⊗ ξ2 + ξ21 ⊗ ξ1

One can easily verify for this coalgebra that ξ1 and ξ21 are primitive elements. The output of our
program now becomes, where the red lines represent a ξ1 going to 1 and the blue lines represent ξ21
going to 1,

Figure 3: A(1)∗ with structure lines

Page 37 of 48

Calculating Ext Chris Vos

6 Grading

Until now our algorithm has not used the fact that we are working over graded vector spaces. This
means that there is a lot of redundant information in our Matrix object. Because for graded vector
space V and W and a map f between them, we have that f(V i) ⊂ W i. This means that in our
matrix we have a lot of zeros. This fact is something we will use. More specifically, if we sort the
basis on V and the basis on W and reorder our matrix using this sorting, we see that we get a block
diagonal matrix.

Definition 6.1. A block diagonal matrix is a matrix M , with submatrices Mi which only occur on
the diagonal. Thus,

M =


M1 0

M2

· · ·
0 Mn


For example,

M =


1 1 2 0
0 1 1 0
1 1 0 0
0 0 0 4


is a block diagonal matrix where,

M1 =

1 1 2
0 1 1
1 1 0

 M2 =
(
4
)

are the submatrices.

The advantage of these block diagonal matrices is that all the operations we do on M can be done
over the submatrices. This greatly reduces the computational complexity, increasing the speed of
our algorithm. We see that,

MT =


M1 0

M2

· · ·
0 Mn


T

=


MT

1 0
MT

2

· · ·
0 MT

n


Finding the basis matrix for the kernel of M can also be done by looking in each submatrix, as well
as finding the row reduced echelon form.

The big downside of using diagonal matrices is that we now have to sort the basis for a graded
vector space. This becomes slightly more difficult when the graded vector space we are looking at is
actually the tensor product of two graded vector spaces. Before, we had a closed formula to calculate
what column index in the coaction matrix represent which basis element in our tensor. Now we will
have to remember a lookup table, which remembers what column index represents what element.
Now we will explain how our code changes to incorporate these changes.

Page 38 of 48

Calculating Ext Chris Vos

Graded Routines

The helper data structures we have change slightly,

s t r u c t BasisElement {
name : s t r i ng ,
genera to r : boolean ,
p r im i t i v e i nd ex : None | int ,
genera ted index : int ,

} ;

type Bas i s = Dict [Grading , L i s t [BasisElement]]
type Bas i s Index = (Grading , i n t)

type GradedMap = Dict [Grading , Matrix]

Here we remember the basis of our graded vector space as a dictionary, where we index depending
on the grading and what we get back is a list of basis elements belonging to that grading. We now
also have graded linear maps which is again a dictionary for the grading together with a matrix
object. This GradedMap type inherits the routines for the null space, transpose and row reduced
echelon form from the underlying Matrix type.

For both the coalgebra and the comodule we now also have to remember the basis for the tensor
product.

For the graded tensor product of V ⊗ W we want to have two maps. One which takes two basis
elements from the two underlying graded vector space basis and gives us the basis element in the
graded tensor product, and we also want a map which takes a basis element from our graded tensor
product back to their original basis elements. This first map is what we will refer to as Constructor
and the second as Deconstructor.

// Comodule Bas i s Index −> Coalgebra Bas i s Index −> Tensor Bas i s Index
type Constructor = Dict [Grading , Dict [Grading , L i s t [Bas i s Index]]]

// Tensor Bas i s Index −> (Comodule BasisIndex , Coalgebra Bas i s Index)
type Deconstructor = Dict [Grading , L i s t [(BasisIndex , Bas i s Index)]]

s t r u c t Coalgebra {
ba s i s : Basis ,
coac t i on : GradedMap ,
cons t ruc t : Constructor ,
decons t ruc t : Deconstructor

} ;

s t r u c t Comodule {
coa lgebra : Coalgebra ,
b a s i s : Basis ,
coac t i on : GradedMap ,
cons t ruc t : Constructor ,
decons t ruc t : Deconstructor

} ;

Page 39 of 48

Calculating Ext Chris Vos

Now we should inspect what this does for our two routines, constructing the cokernel and making
an injection to a cofree comodule.

f unc t i on Cokernel (f : Morphism) −> Morphism {
// P and f .map are now GradedMaps
P = f .map . t ranspose () . nu l l s p a c e () . row reduce ()

// Pivots are now found in each grading
p ivo t s : Dict [Grading , L i s t [i n t]] = f i n d p i v o t s (P)

// Make ba s i s
Q bas i s : Dict [Grading , L i s t [BasisElement]] = {}
f o r degree in p ivo t s :

f o r p ivot in p ivo t s [degree] :
Q bas i s [degree] . push (f . codomain . b a s i s [degree] [p ivot])

// Make the t enso r cons t ruc t and decons t ruct maps
coa lg = f . codomain . coa lgebra
construct , decons t ruc t = make tensor maps (coa lg . bas i s , Q bas i s)

// Make coac t i on
coac t i on : GradedMap = {}
f o r degree in Q bas i s : // 1

coac t i on [degree] =
zero matr ix (l en (decons t ruct [degree]) , l en (Q bas i s)) // 2

f o r q i in l en (Q bas i s [degree]) : // 3
f i = p ivo t s [degree] [q i] // 4
f o r f t e n s in l en (f . codomain . decons t ruct [degree]) : // 5

((coa lg deg , c o a l g i d) , (comod deg , comod id)) = // 6
f . codomain . decons t ruc t [degree] [f t e n s]

f o r c q i in l en (Q bas i s [comod deg]) : // 7
t en so r g r , t e n s o r i d = // 8

cons t ruc t [mod gr] [c q i] [a l g g r] [a l g i d]
coac t i on [t e n s o r g r] [t e n s o r i d] += // 9

P[comod deg] [c q i , comod id]
∗ f . codomain . coac t i on [degree] [f t e n s , f i]

Q = Comodule (coalg , Q basis , coact ion , const ruct , decons t ruct)
re turn Morphism(f . codomain , Q, P)

}

For the cokernel we see that up until the making the coaction nothing scary happens. We just do
everything in a graded way. Now to explain exactly what happens in the creation of the coaction.
At step (1) we loop over all degrees in our Q basis. Then we initialize a zero matrix with the correct
dimensions for the coaction in this degree in step (2). We use the deconstruct map to find out how
many basis elements there are for the tensor product.

Then we iterate for every basis element in the specific degree for Q and get element an in F , the
codomain, that maps to that basis element in Q, steps (3), (4). We loop over every element in the
tensor product belonging to the codomain of F . Using the deconstruct from F we get the original

Page 40 of 48

Calculating Ext Chris Vos

coalgebra degree and element and comodule degree and element, steps (5), (6). So now we have an
element of the form ai ⊗ fj ∈ A⊗ F . We use P in the degree of fj to map to an element in Q, (7).
Then using the construct map on Q we reconstruct the basis element for the tensor product on Q,
(8). Finally, multiply the value of the map P from comod id to c q i with the coaction of F from
f i to f tens, step (9).

This just comes down to chasing the following diagram for basis elements in Q, but now in a graded
way,

F A⊗ F

Q A⊗Q

∆F

P 1⊗P

∆Q

For the injection we see,

Page 41 of 48

Calculating Ext Chris Vos

f unc t i on i n j e c t i o n (M: Comodule) −> Morphism {
growing = zero morphism (M, zero comodule (M. coa lgebra))
a = len (M. coa lgebra . b a s i s)

whi l e True :
// Take the kerne l , but now in a graded way
ke rne l = growing .map . nu l l s p a c e ()

// S t i l l r e tu rn s a BasisIndex ,
// but that now c o n s i s t s o f both a degree and index
m 1 degree , m 1 index = lowes t deg r e e e l ement (kerne l , M)

// I f no lowest degree element i s found , we are done
i f m 1 index == −1:

re turn growing

// Create a c o f r e e copy with a s p e c i f i c grading
F = co f r e e (M. ba s i s [m 1 degree] [m 1 index] . grading)

// Construct the A−comodule morphism to F
M to F : GradedMap = {}

c o a l g e b r a t o t e n s o r = Q. cons t ruc t [m 1 degree] [m 1 index]

// We go through a l l coa lgebra grades
f o r a gr in c o a l g e b r a t o t e n s o r :

t en so r g rade = add grade (m 1 degree , a g r)

ze ro matr ix = zero (l en (c o a l g e b r a t o t e n s o r [a g r]) ,
l en (M. ba s i s [t en so r g rade]))

f o r a i d in l en (c o a l g e b r a t o t e n s o r [a g r]) :
(, t i d) = coa l g e b r a t o t e n s o r [a g r] [a i d]
z e ro matr ix [a i d] = M. coac t i on [t en so r g rade] [t i d]

mapping to F [t en so r g rade] = zero matr ix

m 1 morph = Morphism(M, F, M to F)

growing = combine morphisms (growing , m 1 morph)
}

Again nothing special happens here, except that we have to do more bookkeeping. We loop over all
elements ai ⊗m 1, for basis elements ai ∈ A, the coalgebra, and create the map to F depending on
what the coaction on M is. The only place we should take notice is when taking the direct sum of
the codomains. There we also have to be careful to update the construct and deconstruct maps to
refer to the correct basis elements.

Page 42 of 48

Calculating Ext Chris Vos

7 Example

We will calculate Exts,tA(2)∗
(F2,F2), for 0 ≤ s ≤ 20 and 0 ≤ t − s ≤ 63. Here A(2)∗ is the dual mod

2 steenrod subcoalgebra and this coalgebra is isomorphic to,

F2[ξ1, ξ2, ξ3]
/
⟨ξ81 , ξ42 , ξ23⟩

For the general dual steenrod algebra, and also for the subcoalgebra, we have that the degree of
ξn = 2n − 1 and the coaction is,

∆A(ξn) =
∑

0≤i≤n

ξ2
i

n−i ⊗ ξi

Because the steenrod algebra and its dual are both hopf algebras it suffices to define the coaction
on only the indeterminates. The coaction is a ring homomorphism and that way we can find what
the coaction does on all basis elements.

If we run our program we will see the following output,

Figure 4: Our output

Assume we had the following coresolution,

0 N A⊗ V0 A⊗ V1 A⊗ V2 · · ·ϵ d1 d2 d3

Here, each dot represents a graded vector space basis element in a Vs. If a dot is in location x, y
that would mean that we have a basis element in Vx in the degree x+ y.

If we compare our output to the output from Robert R. Bruner’s ext solver[1] we see,

Page 43 of 48

Calculating Ext Chris Vos

Figure 5: Robert R. Bruner’s ext for A(2)

On careful inspection we can see that these are the same. Giving extra confidence that our program
is correct.

Our program also has an advantage over the program from Robert R. Bruner because our program
can calculate Ext for an arbitrary connected coalgebra. While Robert R. Bruner’s program can only
calculate Ext for A and A(2), the steenrod algebra and subalgebra.

8 Future work

There are two places where one can look to improve the work so far,

• Work over polynomial rings instead of fields.

• Make the algorithm in Cpp instead of Python, to speed up calculations and to provide true
parallelism.

Polynomial rings

When we started the thesis our goal was to write a piece of code which calculates Ext for the
equivariant case. This would mean that instead of looking at a k-coalgebra we would be looking
over k[X,Y]-coalgebras. Here X and Y both have a degree and the grading overall would become a
bigrading, meaning the index set for the grading would become N2.

In this thesis we haven’t succeeded in doing so yet. But we have written an algorithm which
calculates Ext for specific coalgebras and comodules, and can create coresolutions in the more
general case.

Future work can focus on expanding the current algorithm to accommodate for coalgebras over a
polynomial ring in any number of unknowns. It should not be incredibly difficult to do this. Because
it is enough to know where the 1 ∈ K[X1, · · · , Xn] of a polynomial ring is sent to. The rest of the
map is now dictated by the fact that we have k[X1, · · · , Xn]-”linear” maps. Most of the work will
probably be in verifying if all the math checks out. Where it is most important to look at what
happens after Hom and what that implies for Ext. The programming will probably just be more
bookkeeping.

Page 44 of 48

Calculating Ext Chris Vos

Cpp

Right now we can run our code with the galois package or the sage environment. Although sage is
roughly twice as fast as the galois package, sage is quite difficult to install, especially on Windows.
This is why our algorithm supports both implementations

Both of these packages work with python, and sadly, python is not the fastest language. These
packages were also not primarily written for speed, but for exactness and correctness. It is also not
clear what translation layers are necessary from python to both of the libraries.

Next to that, our algorithm is quite suited to parallelism, because we can calculate most things in a
graded way. Python sadly does not provide any thread parallelism due to its global interpreter lock.
One could circumvent this by launching multiple processes. But they sadly can’t share any memory,
thus you would need to copy whole objects to do any parallelism. Both the process coordination
and copying of objects turned out to take longer then the serial algorithm would take. Cpp however,
provides enough options for true thread (or even ’green thread’) parallelism.

All of this combined makes it worth it to switch over to the Cpp programming language, where we
will use the linbox library to provide us with finite field linear algebra. Our estimations are that
this will increase speed anywhere from 20 up until 1000 times. Which is not uncommon for number
crunching programs which get translated from Python to a fast compiled language like Cpp.

9 Appendix

All code we have written can be found in the following Github repository14. To run the program
we require a python3.11 installation, with the following modules installed: matplotlib, numpy and
galois.

In our program the user can define their own coalgebra in two ways,

• Define the whole graded vector space basis and the coaction on each basis

• If the coalgebra is a polynomial hopf algebra, it suffices to define what the coaction and degree
are for each indeterminate, and what the (monomial) relations15 are.

To define the whole coalgebra we create a .txt file as follows,

− FIELD
p

− BASIS
name : degree
. . . .

− GENERATOR
name of generator

− COACTION
name : k i ∗ name 1 | name 2 + . . .
. . . .

14The word GitHub should have a hyperlink, but here it is again. https://github.com/Chrisvossetje/ext-solver/
15The software does not support relations which are sums of different elements, for example, ξ1 + ξ2.

Page 45 of 48

https://github.com/Chrisvossetje/ext-solver/

Calculating Ext Chris Vos

Here p is the prime field over which to work. For the basis we give each element a name and its
degree. We also have to define what basis element is responsible for the connected part. Finally, we
define for each basis element, by referencing its name, the coaction on that basis element. If p = 2,
we don’t write what ki is, else ki is the coefficient and name 1 | name 2 reference the tensor basis
v1 ⊗ v2.

Example 9.1. A(1)∗, the dual steenrod subcoalgebra is encoded as follows,

− FIELD
2

− BASIS
1 : (0 , 0)
x i1 ˆ1 : (1 , 0)
x i2 ˆ1 : (3 , 0)
x i1 ˆ3 : (3 , 0)
x i1 ˆ2 : (2 , 0)
x i1 ˆ1 x i2 ˆ1 : (4 , 0)
x i1 ˆ2 x i2 ˆ1 : (5 , 0)
x i1 ˆ3 x i2 ˆ1 : (6 , 0)

− GENERATOR
1

− COACTION
1 : 1 |1
x i1 ˆ1 : x i1 ˆ1 |1 + 1 | x i1 ˆ1
x i2 ˆ1 : x i2 ˆ1 |1 + xi1 ˆ2 | x i1 ˆ1 + 1 | x i2 ˆ1
x i1 ˆ3 : x i1 ˆ3 |1 + xi1 ˆ2 | x i1 ˆ1 + 1 | x i1 ˆ3 + xi1 ˆ1 | x i1 ˆ2
x i1 ˆ2 : x i1 ˆ2 |1 + 1 | x i1 ˆ2
x i1 ˆ1 x i2 ˆ1 : x i1 ˆ1 x i2 ˆ1 |1 + xi2 ˆ1 | x i1 ˆ1 + xi1 ˆ3 | x i1 ˆ1 + more terms
x i1 ˆ2 x i2 ˆ1 : x i1 ˆ2 x i2 ˆ1 |1 + xi1 ˆ2 | x i2 ˆ1 + xi1 ˆ2 | x i1 ˆ3 + more terms
x i1 ˆ3 x i2 ˆ1 : x i1 ˆ3 x i2 ˆ1 |1 + xi1 ˆ2 x i2 ˆ1 | x i1 ˆ1 + xi1 ˆ3 | x i2 ˆ1 + more terms

If the coalgebra is a polynomial hopf algebra we define it as follows,

− FIELD
p

− GENERATOR
name : degree
. . . .

− RELATION
name 1ˆ i ∗name 2ˆ j ∗

− COACTION
name : k i ∗ name 1 | name 2 + . . .

Now it is enough to define the coaction on each generator, because in a hopf algebra we have that
the coaction must also respect the multiplicative structure.

Page 46 of 48

Calculating Ext Chris Vos

Example 9.2. A(2)∗, another dual steenrod subcoalgebra is encoded as a hopf algebra as follows,

− FIELD
2

− GENERATOR
xi1 : (1 , 0)
x i2 : (3 , 0)
x i3 : (7 , 0)

− RELATION
xi1 ˆ8
x i2 ˆ4
x i3 ˆ2

− COACTION
xi1 : 1 | x i1 + xi1 |1
x i2 : 1 | x i2 + xi2 |1 + xi1 ˆ2 | x i1
x i3 : 1 | x i3 + xi3 |1 + xi2 ˆ2 | x i1 + xi1 ˆ4 | x i2

Our program also has the ability to make a coresolution for any N , where N is an A-comodule.
When no comodule is provided the coresolution will be made for k, as an A-comodule.

A comodule is also defined in a .txt file as follows,

− FIELD
p

− BASIS
name : degree
. . . .

− COACTION
name : k i ∗ name 1 | name 2 + . . .

Here name 1 comes from the coalgebra we have just defined, and name 2 comes from the basis of
the comodule.

In globals.py the user can define what the maximum filtration index and the maximum stem index
is.

References

[1] Robert R. Bruner. ext1.9.5, ext calculator for the steenrod algebra. 2022. url: http://www.
rrb.wayne.edu/papers/#code.

[2] David S. Dummit and Richard M. Foote. Abstract Algebra, third edition. John Wiley & Sons,
Inc., 2004.

[3] Dan Isaksen. Classical and C-motivic Adams charts. 2022. url: https://s.wayne.edu/
isaksen/adams-charts/.

[4] John Milnor. “The Steenrod Algebra and Its Dual”. In: Annals of Mathematics 67.1 (1958).

Page 47 of 48

http://www.rrb.wayne.edu/papers/#code
http://www.rrb.wayne.edu/papers/#code
https://s.wayne.edu/isaksen/adams-charts/
https://s.wayne.edu/isaksen/adams-charts/

Calculating Ext Chris Vos

[5] John W. Milnor and John C. Moore. “On the Structure of Hopf Algebras”. In: Mathematics
Department, Princeton University 81.2 (1965).

[6] Sage CAS. url: https://www.sagemath.org/.

Page 48 of 48

https://www.sagemath.org/

	Introduction
	Preliminaries
	Calculating Ext
	Algorithmically making a coresolution
	Ext for this coresolution

	The algorithm
	Data structures
	Routines

	Structure Lines
	Grading
	Example
	Future work
	Appendix

