
Benchmarking AlphaFold2-RosettaRelax for Predicting the Impact of Indel Variants in DHFR

Student: Heleen Lanters – 0757624

Date: 24-05-2024

Bioinformatics profile internship as part of the master Molecular and Cellular Life Sciences at Utrecht

University

Internship performed at the RNA and Computational Biology group of Amelie Stein at the University

of Copenhagen.

Daily Supervisor: Marion Silverstini

Examiner: Amelie Stein

Examiner Utrecht University: Basten Snoek

Layman’s summary
This project focused on using a computational method to predict how certain types of mutations,

known as insertions and deletions (indels), affect proteins. Indels involve either adding or removing

one or more amino acids (the building blocks of proteins), which can change the protein’s structure

and function. Understanding these changes is important because indels are common in the human

genome and can lead to diseases. Additionally, knowing how indels affect proteins can help in designing

new proteins for medical and industrial purposes. The computational method we used combines two

advanced tools: AlphaFold2 (AF2) and RosettaRelax (RR). AlphaFold2 is a program that predicts the 3D

structure of a protein from its amino acid sequence, while RosettaRelax refines these structures further

and calculates how stable they are. We used the protein dihydrofolate reductase (DHFR) in our study

because it is small, well-studied, and essential for cells. We created 374 DHFR variants, with 187 having

a single amino acid added and 187 having one removed. Using AF2, we predicted the 3D structures of

these variants. Then, we applied RR to refine these structures and calculate their stability scores. To

check if our predictions were accurate, we compared them with experimental data obtained using a

technique called CPOP. CPOP measures the actual folding stability of proteins in a lab, giving us a

benchmark to compare our computational results against. Our findings showed that the AF2-RR

method could predict the effects of indels with reasonable accuracy, making it a promising tool for

further development. However, we found that the method struggled to accurately predict instability

caused by indels in the middle of the DHFR protein. This suggests that improvements are needed,

possibly by including more structural or functional data. Interestingly, we discovered that indels in

secondary structures (like helices and sheets) were generally not tolerated, meaning they often made

the protein unstable. In contrast, indels in less structured regions, such as loops or surface areas, were

more tolerated. Finally, our study opens the door to using other advanced methods like INDELi-X, which

combines information about the position of the indel in the protein with other data to make

predictions. This method has shown high accuracy in other studies and could be a valuable tool for

analysing DHFR and other proteins in the future. Overall, this study demonstrates the potential of

combining AF2 and RR to understand how indels affect protein stability, offering insights that could

advance both basic science and practical applications in protein engineering.

Abstract
In this study, we evaluated a computational method combining AlphaFold2 (AF2) and RosettaRelax (RR)

to predict the impact of insertion and deletion (indel) mutations on the stability of dihydrofolate

reductase (DHFR). We generated a series of DHFR variants, each containing a single amino acid

insertion or deletion, and predicted their structural stability using AF2 to predict the fold and RR to

refine the structures and calculate the change in free energy (ΔG). The predictions were compared with

experimental data acquired with the CPOP system, to evaluate the performance of the method. The

AF2 predictions included the pLDDT score to assess the confidence in the predicted structures, while

the RR provided ΔG scores to estimate the stability of the variants. Additionally, we ran RR on DHFR

complexed with methotrexate (MTX) to examine how the presence of this ligand affects protein

stability. Our results indicate that the AF2-RR combined protocol is effective in predicting the stability

changes due to indel mutations, but no significance improvement was found in accuracy when using

MTX in the RR predictions. However, the method shows limitations in accurately predicting instability

caused by mutations in the core region of the protein, though this might be specific to DHFR. We also

observed that indels located within secondary structures such as helices or sheets were generally non-

tolerated. This study highlights the utility of AF2 and RR in structural biology and provides insights into

the stability of DHFR variants. Furthermore, the availability of the CPOP indel dataset allows for the

testing of other computational methods, such as INDELi-X, which combines substitution scores with

indel location to enhance prediction accuracy.

Figure 1: Graphical Abstract of the Experimental and Computational Workflow.

Table of contents
Layman’s summary ...1

Abstract ..2

Introduction ..3

Methods ...7

Results & Discussion ...8

Conclusion .. 14

Word of thanks ... 14

Bibliography .. 15

Supplements ... 16

Introduction
Mutations are fundamental alterations in the genetic material of an organism and lie at the heart of

genetic diversity, evolutionary processes, and disease mechanisms 1 2. Understanding the nature,

mechanisms, and consequences of mutations is essential for deciphering the workings of the genome
1 2. These DNA changes come in various forms, from single nucleotide substitutions to large-scale

chromosomal rearrangements 1. Among the diverse spectrum of genetic alterations, single nucleotide

polymorphisms (SNPs) are the most common in the human genome 1 3. SNPs denote single base pair

changes in the DNA sequence, and if they occur within the protein-coding region of a gene, they can

lead to an amino acid (AA) change, also known as a missense mutation. The second most frequent

mutation type in the human genome are insertions and deletions (indels), characterised by the addition

or removal of one or more nucleotide bases within the DNA sequence 3. Approximately 22% of

mutations associated with diseases are attributed to indels 4. These mutations can vary in size, ranging

from a single base pair to larger sequences, and can occur in coding or non-coding regions 3. Indels

represent a distinct type of mutation compared to missense mutations 5. While missense mutations

only alter the side chain of a protein, indels modify the backbone of the protein, thereby changing its

length 6. Therefore indels can significantly impact protein structure and function, as they can lead to

frameshift mutations, alter reading frames, and affect gene expression and protein functionality 5.

In this project, we focus on a specific subtype of indels: the insertion or deletion of three basepairs,

resulting in the addition or removal of exactly one amino acid (AA) without causing a frameshift in the

protein. These small single AA indels can have profound effects on protein structure and function.

While indels are generally considered more deleterious than missense mutations, they may also offer

novel functionalities that missense mutations cannot provide 5. This potential for novel functionality

makes indels particularly intriguing for industries seeking to optimise enzyme stability or activity. They

present new opportunities for enhancing protein function that may not be achievable through

missense mutations 6. However, indels are poorly understood and inadequately studied, primarily due

to a lack of systematic indel data sets 7. A significant challenge is the scarcity of structural indel data, as

indels often destabilise protein structures 7. Experiments to study indels are time-consuming and

expensive, underscoring the need for a computational method to model the effects of single AA indels.

Such a method would be beneficial in advancing protein research 6 7.

Currently there are several computational variant effect predictors (VEPs) available to model the effects

of indels, however, none of them were specifically developed for indels 8. The relatively poor

performance of these VEPs on indels is shown by Topolska et al., who tested three methods 8. Topolska

et al. created an extensive experimental dataset of nine different protein domains, with 1 AA insertions

and deletions for every position. The effect of each indel was quantified with abundance protein

fragment complementation assay (aPCA). 8 This data was used to benchmark the performance of the

VEPs. The first is Combined Annotation Dependent Depletion (CADD), where deleteriousness is

measured by comparing annotations of fixed or nearly fixed derived alleles in humans with simulated

variants. This method combines different genome annotations to evaluate potential human single

nucleotide variant (SNV) or small insertion/deletion (indel) events, providing a thorough assessment of

variant impact throughout the genome 9. On the indel data from Topolska et al. CADD performed very

poorly on insertions (Pearson’s R = -0.07) and deletions (Pearson’s R = -0.08) 8. Protein Variation Effect

Analyzer (PROVEAN) is a software tool designed to anticipate the effects of AA substitutions or indels

on a protein's biological function 10. By employing a rapid computational method for pairwise sequence

alignment scores, PROVEAN has generated precomputed predictions for 20 single AA substitutions and

a single AA deletion at each position across all protein sequences in both human and mouse genomes
10. For Topolska et al. PROVEAN performed better on their insertions (Pearson’s R = 0.43) and deletions

(Pearson’s R = 0.32) 8. Best of the three tested VEPs was ESM1b, a language model adapted to predict

all ~450 million possible human missense variant effects, which was recently adapted to predict indels
11. Topolska et al. noted varying scores on their nine different protein domains for indels (Pearson’s R =

0.55 average, ranging from: 0.19 – 0.61) and deletions (Pearson’s R = 0.58 average, ranging from: 0.27

– 0.64) 8. The ESM1b method performed best on average on the indel data set of Topolska et al.,

however the machine learning method is difficult to apply for a non-computational researcher and the

scores were inconsistent over the 9 protein domains 11 8. All three methods, CADD, PROVEAN, and

ESM1b, show there is room for improvement when modelling the effect of indels. One of the main

reasons for this lacking performance in predicting one AA indels is the lack of data for models to be

trained on 7. Which is why researchers like Topolska et al. are producing large indel datasets, to develop

computational methods to predict the effect of the indels 8 7.

Another research group who developed their own indel data to develop indel VEPs is Woods et al. They

aimed to explore the impact of deletion mutations on a small α-helical sterile alpha motif (SAM) domain
7. The SAM domain consists of 72 AAs, including 5 AA repeats, therefore there would be no difference

between either one of them in the protein sequence 7. This resulted in 65 unique deletion variants, 17

of which were classified as soluble (neutral or beneficial) variants and the rest as insoluble (deleterious)

variants by biomolecular NMR and circular dichroism 7. All 17 soluble deletion variants of the SAM

domain were located in either the N-terminus, C-terminus or loop regions of the protein, where all the

residues were either surface exposed or flexible regions of the protein 7. All other deletion variants

resulted in insoluble protein 7. Woods et al. benchmarked four computational methods commonly used

in structural modelling: (1) de novo folding using Rosetta, (2) RosettaCM, (3) RosettaRelax, and (4)

AlphaFold2 (AF2) combined with RosettaRelax (RR) on their SAM domain deletion dataset 7. The

AlphaFold2-RosettaRelax (AF2-RR) combined protocol was best able to separate the soluble from the

insoluble deletion variants 7. Not only did they test the AF2-RR protocol on their own SAM-domain,

they also applied it to a GFP and a Rincin deletion variants dataset. Figure 2 shows the plots of the

pLDDT and ΔΔG scores plotted against each other where the datapoints are coloured by the

experimental scores. The SAM-domain only has a few points in the wrong quadrant, the GFP scores are

worse, mostly due to the high pLDDT score of ~97,3, where almost all variants score lower than that

whilst being acceptable deletion variants according to the experimental data. The same is true for the

Rincin data, where ΔΔG shows good separation between the active (tolerated) and inactive (non-

tolerated) deletion variants, but the pLDDT does not. Figure 2 shows promising results, but how well

the AF2-RR method performs remains unclear from the plots.

Figure 2: Woods plots of the deletion variants of the SAM-domain, GFP, and Rincin. RR ΔΔG score plotted against the AF2
pLDDT score. The black lines represent the wild type scores, meaning scores in the lower right corner are predicted as wild
type like and scores in the top left corner are variants that are detrimental. The datapoints are coloured by the experimental
scores, orange indicating a detrimental variant and blue a wild type-like variant 7.

AF2 is a deep learning model developed by DeepMind to predict protein structures from AA sequences
12. Taking the AA input it searches databases to generate multiple sequence alignments (MSAs) and 3D

templates 12. The 3D templates are used together with a matrix of the input sequence to make a pair

representation matrix 12. These two matrices go into the Evoformer, a neural network, where both

matrices are updated for 48 rounds 12. The output is a refined MSA and a refined pair representation,

which are used as input for the second neural network, the structure module, where the amino acids

are translated and together with physical and chemical constraints, such as bonds and torsion angles,

are used to produce an initial 3D protein structure 12. The 3D structure together with the refined

matrices are used as input for the Evoformer, starting the whole process over again, for three more

rounds 12. The pLDDT (predicted local-distance difference test) score provided by AF2 is a confidence

measure for each residue's position within the predicted structure, with scores ranging from 0 to 100.

A higher pLDDT score indicates higher confidence in the accuracy of the predicted position of that

residue 12. The average pLDDT score for every position per variant is one of the two metrics used by

Woods et al. to predict the effect of a deletion 7. The second metric, ΔΔG, comes from RR,

computational protocol used to refine protein structures by iteratively optimizing them to achieve the

most energetically favourable conformation 13. RR improves the accuracy of predicted structures

obtained from methods like AlphaFold2 by iteratively adjusting them towards the native state using

van der Waals interactions, electrostatics, rotational energy, and hydrogen bonds, to name a few 13.

RosettaRelax outputs ΔG scores, which represent the Gibbs free energy of the folded protein 13. This

score reflects the stability of the protein, with lower (more negative) ΔG values indicating a more stable

protein conformation 13. To compare the stability of the indel variants to the wild type protein, ΔΔG

scores were calculated 13. ΔΔG is determined by subtracting the ΔG of the WILD TYPE protein from the

ΔG of the variant 13. This is important to be able to compare proteins. A ∆∆G score close to zero should

be interpreted as the variant being as stable as the wild type 14. A positive score means the variant is

less stable than the wild type and, vice versa, a score lower than zero means the variant is more stable

than the wild type 14.

In this project, we implemented the AlphaFold2-RosettaRelax method developed by Woods et al. to

evaluate its performance using our dataset. We specifically focused on the protein dihydrofolate

reductase (DHFR), a 186 AA protein, part of DNA synthesis and repair 15. DHFR is well studied and

understood essential enzyme which catalyses the NADPH dependent reduction of DHF to THF needed

for purine and pyrimidine synthesis 15. Furthermore, DHFR has an inhibitor, methotrexate (MTX), which

binds to the active site, inhibiting DHFR activity but at the same stabilizing DHFR 15. This gives the

opportunity to explore a wider range of effects of the indels. For every position within the protein

either a glycine 9G) was inserted or the AA was deleted. A G was chosen because it is a small neutral

amino acid, enabling the study of the effect of change in protein length and not the effect of the side

chain. The DHFR indel variants were evaluated with the circular permutated OPRTase (CPOP) system, a

protein folding sensor (Figure 3) 16. It makes use of the essential protein OPRTase, which de novo

synthesizes the pyrimidine nucleotides like uracil 16. The OPRTase is split in an N and C terminal domain

with a short linker in between 16. In the CPOP system the N and C terminal are switched around and the

linker in between is lengthened and placed in an expression vector 16. This has no impact on the function

of the OPRTase, as tested in a yeast strain with a double knock-out of the two uracil producing genes,

URA5 and URA10 16. A protein of interest, in this case DHFR, can be placed in the linker, if the protein

of interest folds the N and C terminals of the OPRTase protein can still reach each other and form a

normally functioning enzyme and therefore the double knock out yeast can grow 16. If a protein does

not fold, or does not fold properly the OPRTase is unable to form, therefore no yeast can grow 16. All

the DHFR indel variants are transformed into the CPOP system and grown in yeast. From there the DNA

is extracted and sequenced with Next Generation sequencing. Per variant the reads were counted,

followed by variant calling (is it an insertion or an deletion), from which the experimental scores are

calculated including normalization.

In our experimental set up the CPOP experiments were performed in four different conditions: 30°C,

°C + MTX, 37°C, and °C + MTX. To test the variants in a wider range of conditions. Furthermore adding

MTX should stabilize DHFR, if a variant cannot be stabilized this might be due to a conformational

change of the binding site. RR was run with and without taking MTX into account as a small molecule

within the 3D protein structure. AF2 was run without the addition of MTX.

Figure 3: Schematic representation of the CPOP system.
A shows the wild type orientation of the N-terminal and C-terminal domains, followed by the switched orientation of the
domains and the longer linker in the CPOP system, and finally how a protein of interested can be integrated in the linker.
B shows the schematic representation of the folded state of an empty CPOP, followed by a folded CPOP with a correctly folded
protein of interest in the linker, and finally a unfolded CPOP due to the unfolded protein of interest.
Image credits: Sven Larsen-Ledet

Methods
Generation of DHFR Indel Variants

The amino acid sequence of dihydrofolate reductase (DHFR) was obtained from the PDB entry 1U72

and saved in a FASTA file. For the insertion variants, a glycine (G) was inserted after every position in

the DHFR sequence, resulting in one variant per insertion. Each variant was named based on the

position of the amino acid after which the glycine was inserted (e.g., inserting a glycine after the 10th

amino acid results in insertion variant 10). Similarly, for the deletion variants, each amino acid was

individually deleted from the sequence, and the variant was named based on the position of the

deleted amino acid (e.g., deleting the 10th amino acid results in deletion variant 10).

AlphaFold2 (AF2) Predictions

All indel variants were inputted into AlphaFold2 (version 2.2.4) with the following flags:

-t 2021-11-01: This sets the maximum template release date to November 1, 2021, only templates

released up to this date are considered in the predictions.

-r false: This flag disables the final relaxation step, meaning the predicted models are not subjected to

additional refinement post-prediction.

AF2 predicts five structures for each DHFR variant. Each position in every variant structure is assigned

a pLDDT (predicted local-distance difference test) score, which represents the confidence in the

accuracy of the predicted position of each residue. A mean pLDDT score is also given by AF2, an average

of all the individual pLDDT position scores. The ΔpLDDT score was calculated by subtracting the wild

type pLDDT score from the variant score, for easier comparison between variants. Besides the mean

pLDDT a local average was also calculated around every indel position, using different window sizes.

The windows at the beginning and end of the sequence were trimmed to still get a score for the variants

at the edges of the sequence. The same windows were used to calculate the DHFR wild type per

position score to subtract from the variant score for a ΔpLDDT per position score

RosettaRelax (RR) predictions

The output structures from AlphaFold2 were further refined using RosettaRelax (version 2021 Aug

c7009b3) with the following flags:

-nstruct 10: Specifies that ten independent relaxation trajectories should be run on each input

structure, resulting in 10 ΔG scores.

relax:constrain_relax_to_start_coords 1: Adds coordinate constraints to backbone heavy atoms based

on the input structure, ensuring the relaxed structure remains close to the original predicted

conformation.

To predict stability scores in the presence of methotrexate (MTX), a PDB file containing the DHFR and

aligned MTX was used as input for RosettaRelax. A params file defining the properties of MTX as a new

residue type was included. An additional flag was used to incorporate this params file into the

relaxation process:

-extra_res_fa <params_file_path>: Includes the params file, ensuring that the properties of MTX are

accurately represented in the computational predictions.

Per indel variant, 5 Alpha Fold structures were used as input for Rosetta Relax, producing 10 ΔG scores

each, totalling 50 ΔG scores per variant. Following the Woods protocol only the top 3 ΔG scores were

taken and averaged to ensure the capture of the global minimum. The same was done with the DHFR

wild type scores. Subtracting the wild type ΔG score from the variant ΔG score resulted in the ΔΔG

score via Equation 1 to correct for nucleotide length (+1 for insertions and -1 for deletions):

𝛥𝛥𝐺 = 187 × (
𝛥𝐺𝑖𝑛𝑑𝑒𝑙
187 ± 1

) − 𝛥𝐺𝑤𝑡

Equation 1: calculating the ΔΔG score adjusting for the change in length of the indel variants.

ROC Curve Analysis

To assess the predictive performance of our computational methods, we utilised Receiver Operating

Characteristic (ROC) curve analysis. A ROC curve is a graphical plot that illustrates the diagnostic ability

of a binary classifier system as its discrimination threshold is varied. It is calculated by plotting the true

positive rate (sensitivity) against the false positive rate (1-specificity) at various threshold settings. The

area under the curve (AUC) provides a single metric to summarise the performance of the classifier,

where an AUC of 1 indicates perfect prediction, 0.5 indicates no discriminative power.

For our analysis, the continuous CPOP data was converted to binary outcomes using a cutoff score of

0.5. Variants with scores equal to or below 0.5 were labelled as 0 (deleterious), while those with scores

above 0.5 were labelled as 1 (beneficial/wild-type-like). This binary categorisation allowed us to

generate ROC curves for each of the four CPOP conditions using three computational scores: pLDDT,

ΔΔG, and ΔΔG + MTX. Separate ROC curves were created for both insertion and deletion variants.

It is important to note that we used deduplicated scores for accuracy in benchmarking. For insertions,

sequences resulting from inserting a glycine (G) before or after an already present G resulted in a

duplication of the AA sequence and were therefore considered duplications and removed, leaving 174

unique variants after excluding 13 duplicates. Similarly, for deletions, sequences where the deletion of

one of two or more consecutive identical amino acids resulted in duplications of the AA sequence and

were excluded, leaving 176 unique variants after removing 11 duplicates.

This deduplication process ensures that our ROC curve analysis accurately reflects the predictive

capability of our computational methods without bias introduced by duplicated sequences. The ROC

curves and corresponding AUC values were used to evaluate and compare the performance of the

computational scores under different CPOP conditions.

SSDraw: tool for plotting secondary protein stuctures

SSDraw google colab notebook 17 was used to obtain the secondary structure of DHFR. The AF2 wild

type pdb was used to obtain the secondary structure figure.

Results & Discussion
In our study, we applied the AlphaFold2-RosettaRelax (AF2-RR) method developed by Woods et al. to

evaluate its performance using our CPOP dataset of the DHFR indel variants. The computational scores

were benchmarked against the experimental CPOP dataset under four different conditions. The

distribution of scores is illustrated in Figure 4A-D through kernel density plots. A kernel density plot

visualises data distribution over a continues interval, offering a smoothed version of a histogram. The

four CPOP conditions display bimodal distributions, with one peak around or just below 1 (wild-type-

like) and the other around 0 (detrimental). Notably, the distribution for CPOP at 37°C (Figure 4C) differs

significantly, a data shift towards the detrimental end. This shift indicates that DHFR is more unstable

at 37°C. However, upon adding MTX, the familiar bimodal peaks reappear, suggesting that MTX

stabilizes the DHFR protein (Figure 4D). This stabilising effect of MTX is MTX is also evident when

comparing the conditions at 30°C and 30°C with MTX, where the peak just below 1 becomes more

prominent than the peak around 0 for both insertion and deletion variants (Figure 4B). In contrast, the

dual distribution pattern observed in the CPOP conditions disappears in the computational scores

(Figure 4E-G). The pLDDT scores predicted by AF2 (Figure 4E) show that all deletion scores are above

92, and the insertion scores are above 86, indicating high confidence in all variants by AF2. The majority

of the RR ΔΔG scores cluster around or just above the DHFR wilt type score of 0, suggesting stability

comparable to the wild type (Figure 4F). The RR scores with MTX are even higher, with both peaks for

insertions and deletions falling below the wild type score of 0 (Figure 4G), clearly demonstrating that

MTX stabilises DHFR. Critically, while the computational methods show a high confidence in the

predicted structures and a general trend of stabilisation by MTX, they fail to capture the detailed

instability observed experimentally at 37°C without MTX. This discrepancy highlights a potential

limitation in the predictive power of the AF2-RR method under certain conditions, suggesting that

further refinement and additional data may be necessary to improve its accuracy.

Next, we evaluated the distribution of the scores by plotting them in a heatmap and comparing them

to the secondary structure of DHFR, as shown in Figure 5. Every column is a variant, every row a

different score (pLDDT, ΔΔG, ΔΔG + MTX, and the four CPOP conditions). The computational scores

align with the secondary structure, meaning a low pLDDT score and a high ΔΔG or ΔΔG + MTX score,

often falls within a α-helix or β-sheet, confirming the findings of Woods et al. This is also true for the

CPOP scores, however, they also have a low scoring block in the middle of the protein, from position

~47 to ~125 for both insertions and deletions and all four conditions. This middle block, where no indels

are tolerated, is not detected by AF2 or RR. The intolerance to indels in this central region of the DHFR

protein is intriguing and warrants further investigation. It may be specific to DHFR and related to its

unique folding and functional mechanisms. This discrepancy highlights a potential area for

improvement in our computational models, suggesting that additional structural or functional data

might be necessary to enhance their predictive accuracy. If it is found that the middle of a protein

generally does not accept indels, the AF2-RR method would benefit from an additional machine

learning step to improve predictive power.

Figure 4: Kernel density distributions of the DHFR indel variant scores from CPOP, AlphaFold2, and RosettaRelax.
A. CPOP 30°C scores: The distribution shows a clear separation between variants that are close to wild-type and those that
are detrimental. B. CPOP 30°C + MTX scores: The stabilising effect of MTX on DHFR shifts more scores closer to 1, indicating
increased stability. C. CPOP 37°C scores: At the higher temperature, most variants are detrimental, as indicated by the
concentration of scores around 0. D. CPOP 37°C + MTX scores: MTX stabilises the variants, particularly the insertion variants,
resulting in a distribution with more scores closer to 1. E. AlphaFold2 mean pLDDT scores: While insertion scores show a slight
tail towards lower values, all scores remain high, indicating high confidence in the predicted structures. F. RosettaRelax ΔΔG
scores: Similar to the pLDDT scores, the ΔΔG scores are generally close to WILD TYPE, indicating stability. G. RosettaRelax ΔΔG
+ MTX scores: Compared to the ΔΔG scores without MTX, these scores are shifted towards more negative values, reflecting
increased stability with MTX.

Figure 5: Secondary structure of DHFR and heatmaps of the indel scores: pLDDT, ΔΔG, ΔΔG + MTX, and CPOP. Variants are
compared to the secondary structure of DHFR for the different scores available.
A. Insertion scores: Lower scores align with the secondary structure elements of DHFR, indicating regions where insertions
are less tolerated. B. Deletion scores: Similar to insertion scores, lower scores align with the secondary structure elements,
indicating regions where deletions are less tolerated.

A more detailed analysis of the pLDDT scores per amino acid position and per variant can provide
deeper insights into the score composition. Figure 6 shows per position heatmaps for both insertion
(A) and deletion (B) variants, where each row represents a variant and each column corresponds to an
amino acid position in DHFR. The secondary structure of the protein is displayed on both axes. Several
observations can be made from these per position heatmaps, which apply to both insertion and
deletion variants:
1. Terminal Regions: The N-terminal and C-terminal amino acids consistently receive low confidence
scores from AF2. This is due to these regions being exposed and flexible, lacking a defined structure.
2. Loops/Unstructured Regions: Similar to the terminal regions, loops and other unstructured regions
are also assigned lower pLDDT scores, regardless of the indel position. This is indicated by the vertical
red lines aligning with the unstructured regions of DHFR between helices and sheets. This observation

holds true for the wild-type DHFR AF prediction, visualised at position zero.
3. Secondary Structure Elements: In contrast, helices and sheets tend to have higher pLDDT scores.
Variants score lower overall if the indel is within a helix or sheet, as indicated by the horizontal lines in
the heatmap.
4. Indel Impact Zone: A diagonal red line of lower pLDDT scores indicates that AF2 is less confident in
its prediction around and including the indel position, regardless of the indel's location.
5. Scattered Low Confidence Spots: Both insertion and deletion variants exhibit scattered spots of lower
confidence scores across the heatmap. Initially, it was hypothesised that these spots might correspond
to regions in close 3D proximity to the indel, as AF2 might be less confident in modelling amino acids
in contact with the indel. However, this hypothesis was not supported by the data. The scattered spots
may be specific to DHFR, and further evaluation of additional proteins is needed to draw more general
conclusions.

Figure 6: Heatmap of DHFR pLDDT scores per amino acid position for insertion (A) and deletion (B) variants plus DHFR
secondary structure. Each row is a variant, starting with 0 which is the wild type DHFR prediction. Every column is a position
within DHFR.

To further explore the relationship between the computational predictions and experimental data,

we replicated the plots from Woods et al. by plotting the ΔpLDDT on the x-axis and the ΔΔG value on

the y-axis, with colours representing the CPOP scores. The resulting four plots, corresponding to the

different experimental conditions, reveal a correlation between the computational and experimental

scores, similar to the findings of Woods et al. (Figure 7). This consistency suggests that the AF2-RR

method is capable of producing reliable predictions that align with experimental observations under

various conditions.

Figure 7: Woods plots of insertion and deletion variants and the four different CPOP conditions. The ΔΔG scores are plotted
against the ΔpLDDT scores and coloured by the CPOP scores. Each plot is a different CPOP condition. The ΔΔG score with
MTX was used in the plots with MTX in the CPOP data.

To further assess the accuracy of our predictions, we performed ROC curve analysis and plotted the

area under the curve (AUC) to compare the computational scores with the CPOP scores. (Figure 8). In

addition to the mean pLDDT score, we examined the predictive performance of a small average or

window (w) around the indel position. The ROC curves reveal that the AUC increases with the size of

the window. However, the AUC never surpasses the mean pLDDT score, except in the case of CPOP

37°C, where it is 0.1 higher. This observation can be rationalised by revisiting Figure 6, where it is

evident that all positions around the indel exhibit lower scores, irrespective of the indel’s location in

the protein. Using a mean pLDDT score takes this into account, thereby enhancing predictive power.

Comparing ΔΔG with and without MTX to predict the CPOP scores under corresponding conditions

indicates that including MTX does not improve the AUC. Despite MTX's stabilising effect on DHFR, as

seen in the CPOP data, the computational model's predictive performance does not significantly

benefit from MTX inclusion. This discrepancy suggests that the stabilising influence of MTX, while

evident experimentally, may not be fully captured by the computational model, highlighting a potential

area for further refinement. In summary, our analysis demonstrates that the AF2-RR method developed

by Woods et al. provides a reliable tool for predicting the stability of DHFR indel variants. The

correlation between computational and experimental scores, as well as the trends observed in the ROC

analysis, underscore the method’s utility. However, there remain areas for improvement, particularly

in capturing the effects of specific stabilising agents like MTX and in accurately predicting the

intolerance to indels in certain protein regions. Future work should focus on integrating additional

structural or functional data and exploring machine learning techniques to enhance the predictive

accuracy of computational models for protein stability.

Figure 8: Area Under the Curve (AUC) from ROC Curve Analysis. This figure presents the AUC values derived from ROC curve
analysis, comparing the predictive performance of AF2 and RR scores against the experimental CPOP scores under various
conditions.

Conclusion
In this study, we applied the AlphaFold2-RosettaRelax (AF2-RR) method to predict the stability of DHFR

indel variants. Our findings demonstrate that the AF2-RR method can effectively predict stability scores,

with an AUC of 0.62-0.82. We observed a correlation between the computational predictions and the

experimental CPOP scores, though the computational models did not capture the intolerance to indels

in the middle segment of the DHFR protein. This discrepancy suggests a potential area for improvement

in the models, possibly requiring additional structural or functional data. Future research should focus

on expanding the dataset, incorporating more diverse protein structures, and refining computational

methods to better predict the effects of indels. More data would also enable the possibility to combine

the pLDDT and ΔΔG scores with machine learning for greater predictive power. Another route to

explore is the method developed by the Topolska et al. group mentioned in the introduction 8. We, like

woods et al., found that most indels are not accepted within secondary structures and more so in

unstructured regions, loops and surface exposed areas. The INDELi-X/D/G/E model of Topolska et al.

takes the variant position within the protein into account by giving it a score based on whether it is

positioned in a secondary structure, how long the structure is and what the neighbouring structures

are. This metric is combined with average substitution score, either experimentally determined

(INDELi-X) or computationally (DDMut: INDELi-D, GEMME: INDELi-G, ESM-1v: INDELi-E), for a very high

predictive power. They tested their INDELi-E method on known indel variants from the ClinVar

database, which resulted in an AUC of 0.92 for insertions and 0.86 for deletions. Making it a very

promising method to explore with the DHFR data. More so, replacing the computational predicted

average substitution score with a pLDDT score predicted by AF2 using a indel variant instead might

improve the accuracy even more. Overall, this study highlights the potential and limitations of using

AF2-RR for predicting the stability of protein indels, and suggests pathways for further improving these

computational approaches.

Word of thanks
I would like to express my gratitude towards Amelie Stein for providing me with an internship position,

the support during the project, and creative freedom. Marion, Aleks and Aitana, thank you so much for

answering all my questions. More importantly for the moral support and fun and games. I really had a

great time with everyone from the office and I will look back on this this abroad experience with a

smile.

A. B.

Bibliography

1. Durbin R. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319).

2. Loewe L, Hill WG. The population genetics of mutations: Good, bad and indifferent. Phil Trans R Soc B.

2010;365(1544):1153. doi: 10.1098/rstb.2009.0317.

3. Lin M, Whitmire S, Chen J, Farrel A, Shi X, Guo J. Effects of short indels on protein structure and function in human

genomes. Sci Rep. 2017;7(1). doi: 10.1038/s41598-017-09287-x.

4. Stenson PD, Mort M, Ball EV, et al. The human gene mutation database: 2008 update. . 2009.

5. Larsen-Ledet S. Mind the gap. . 2023. doi: https://doi.org/10.1016/j.str.2023.05.005.

6. Miton CM, Tokuriki N. Insertions and deletions (indels): A missing piece of the protein engineering jigsaw. Biochemistry.

2022;62(2):148. doi: 10.1021/acs.biochem.2c00188.

7. Woods H, Schiano DL, Aguirre JI, et al. Computational modeling and prediction of deletion mutants. Structure (London).

2023;31(6):713-723.e3. https://dx.doi.org/10.1016/j.str.2023.04.005. doi: 10.1016/j.str.2023.04.005.

8. Topolska M, Beltran A, Lehner B. Deep indel mutagenesis reveals the impact of amino acid insertions and deletions on

protein stability and function. . 2023. doi: 10.1101/2023.10.06.561180.

9. Kircher M, Witten DM, Jain P, O'roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative

pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310. doi: 10.1038/ng.2892.

10. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels.

PLoS ONE. 2012;7(10). doi: 10.1371/journal.pone.0046688.

11. Brandes N, Goldman G, Wang CH, Ye CJ, Ntranos V. Genome-wide prediction of disease variant effects with a deep

protein language model. Nat Genet. 2023;55(9):1512. doi: 10.1038/s41588-023-01465-0.

12. Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature.

2021;596(7873):583. doi: 10.1038/s41586-021-03819-2.

13. Conway P, Tyka MD, Dimaio F, Konerding DE, Baker D. Relaxation of backbone bond geometry improves protein energy

landscape modeling. Protein Science. 2013;23(1):47. doi: 10.1002/pro.2389.

https://doi.org/10.1016/j.str.2023.05.005.
https://dx.doi.org/10.1016/j.str.2023.04.005.

14. Alford RF, Leaver-Fay A, Jeliazkov JR, et al. The rosetta all-atom energy function for macromolecular modeling and

design. J. Chem. Theory Comput. 2017;13(6):3031. doi: 10.1021/acs.jctc.7b00125.

15. Schnell JR, Dyson HJ, Wright PE. Structure, dynamics, and catalytic function of dihydrofolate reductase. Annu. Rev.

Biophys. Biomol. Struct. 2004;33(1):119. doi: 10.1146/annurev.biophys.33.110502.133613.

16. Bjerre B, Nissen J, Madsen M, et al. Improving folding properties of computationally designed proteins. .

2019;32(3):145. doi: 10.1093/protein/gzz025.

17. Chen EA, Porter LL. SSDraw: Software for generating comparative protein secondary structure diagrams. . 2023. doi:

10.1101/2023.08.25.554905.

Supplements
Here all/most of the code can be found used to run AF2-RR and produce the figures. Most scripts are

only shown in part due to the repetitiveness of the code.

Script 1: Python code to produce the insertion variants FASTA files used for AF2 input.

Script 2: Python code used to run AlphaFold2 in Computerome (supercomputer cluster).

Script 3: Python code used to fetch the AF2 output from Computerome (pLDDT scores).

Script 4: Python code to fetch the pLDDT score per amino acid position

Script 5: Python code to run RosettaRelax in DeiC (Danish e-infrastructure Cooperation).

Script 6: R code used to make Figure 4: distributions of the data.

Script 7: R code used to make Figure 5: heatmap, of all the scores.

Script 8: R code used to make Figure 6: heatmap of the per position pLDDT scores.

Script 9: R code used to make Figure 7: Woods plots.

Script 10: R code to calculate the average pLDDT scores with different window sizes.

Script 11: R code to make Figure 8: calculating the area under the curve.

Script 1: Python code to produce the insertion variants FASTA files used for AF2 input.

aim of the script is to produce a .FASTA file of insertion variants

deletion script written (and used) by Aitana Genzor

with the wt sequence and all amino acid insertions on every position,

individually

import

import os

Global Variables

P00374-1 human wt DHFR (can be replaced with any desired protein

sequence)

PROTEIN_NAME = "dhfr"

PROTEIN_AA_SEQUENCE =

"MVGSLNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQNLVIMGKKTWFSIPEKNRPLKGRINL

VLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSSVYKEAMNHPGHLKLFVTRIMQDFESDTFF

PEIDLEKYKLLPEYPGVLSDVQEEKGIKYKFEVYEKND"

AMINO_ACIDS = "G" # all amino acids: "ARNDCEQGHILKMFPSTWYV"

FILE_PATH = './dhfr_fasta_insert_files'

FASTA_NAME = ">sp|P00374|DYR_HUMAN|DHFR"

ZEROS = "{:0" + str(len(str(len(PROTEIN_AA_SEQUENCE)))) + "d}" # to add

leading zero's to the names {:03d}

make folder to hold all other folders with the .FASTA files

os.mkdir(FILE_PATH)

make protein wt folder

os.mkdir(FILE_PATH + "/" + PROTEIN_NAME)

make protein .FASTA file and place in said folder

step 1: make the path to the protein file

fasta_path = FILE_PATH + "/" + PROTEIN_NAME + "/" + PROTEIN_NAME + ".FASTA"

step 2: write the fasta file, fill it and close it

save_fasta = open(fasta_path, "w+")

save_fasta.write(FASTA_NAME + "\n" + PROTEIN_AA_SEQUENCE)

save_fasta.close()

for all the insertion sequences

current_aa_seq = ""

protein_seq_library = []

name = ""

filename = ""

for pos in range(1,len(PROTEIN_AA_SEQUENCE) + 1):

 for aa in AMINO_ACIDS:

 current_aa_seq = str(PROTEIN_AA_SEQUENCE[:pos] + aa +

PROTEIN_AA_SEQUENCE[pos:len(PROTEIN_AA_SEQUENCE)])

 if current_aa_seq in protein_seq_library:

 print("insert aa sequence already present, FASTA file not made,

nr:" + str(pos))

 else:

 # add FASTA to the library

 protein_seq_library.append(current_aa_seq)

 # make the FASTA sequence name:

 name = FASTA_NAME + "_" + aa + "_inserted_at_position_" +

ZEROS.format(pos)

 # filename

 filename = PROTEIN_NAME + "_" + aa.lower() +

"_inserted_at_position_" + ZEROS.format(pos)

 # make protein varient folder

 os.mkdir(FILE_PATH + "/" + filename)

 # make protein .FASTA file and place in said folder

 # step 1: make the path to the protein file

 fasta_path = FILE_PATH + "/" + filename + "/" + filename +

".FASTA"

 # step 2: write the fasta file, fill it and close it

 save_fasta = open(fasta_path, "w+")

 save_fasta.write(FASTA_NAME + "|" + name + "\n" +

current_aa_seq)

 save_fasta.close()

Script 2: Python code used to run AlphaFold2 in Computerome (supercomputer cluster).

Only showing insertions due to the repetitiveness of the code.

aim of the script is to run alphafold in computerome on the fasta files

that are each in a likewise named folder

import

import os

import subprocess

global variables

EMAIL = "h.lanters@students.uu.nl" #to notify when the job is done

NODES = 1

GPUS = 1

PPN = 40

MEMORY = 100

WALLTIME = 4 #hours

MAIN_FOLDER_DIRECTORY = "./dhfr_fasta_insert_files"

#MAIN_FOLDER_DIRECTORY =

"/home/projects/ku_00122/people/hellan/dhfr_fasta_insert_files"

START = 0

STOP = 10 # how many jobs you want to submit, max 188

List all subdirectories in the main folder

subdirectories = [d for d in os.listdir(MAIN_FOLDER_DIRECTORY) if

os.path.isdir(os.path.join(MAIN_FOLDER_DIRECTORY, d))]

Iterate over each subdirectory

for folder in subdirectories[START:STOP]:

 # Store the folder name in a variable

 folder

 # make the .sh script with the job details:

 script_content = f"""#!/bin/bash

#PBS -W group_list=ku_00122 -A ku_00122

#PBS -N {folder}

#PBS -e {folder}/slurm.err

#PBS -o {folder}/slurm.out

#PBS -m e

#PBS -M {EMAIL}

#PBS -l nodes={NODES}:gpus={GPUS}:ppn={PPN},mem={MEMORY}gb

##PBS -l nodes=1:thinnode:ppn=40,mem=100gb

#PBS -l walltime={WALLTIME}:00:00

module load cuda/toolkit/11.3.0 cudnn/11.3-8.2.1.32 tensorrt/7.2.1.6

anaconda3/2023.09-0 perl/5.36.1 openmpi hhsuite/3.3.0 hmmer/3.3.2

kalign/3.3.1

module load tools alphafold/2.2.4

dir_AF=/services/tools/alphafold/2.2.4

dir_db=/home/databases/alphafold

dir_F={MAIN_FOLDER_DIRECTORY}

#source $dir_F/env.sh || exit 1

bash $dir_AF/run_alphafold.sh -f $dir_F/{folder}/{folder}.FASTA -t 2021-11-

01 -d $dir_db -o $dir_F/{folder}/af_output -r false

"""

 # save the bash script

 print(folder)

 with open(MAIN_FOLDER_DIRECTORY + "/" + folder + "/" + folder + ".sh",

"w") as file:

 file.write(script_content)

 # how to run the qsub submission script from the python script

 subprocess.run(['qsub', MAIN_FOLDER_DIRECTORY + "/" + folder + "/" +

folder + ".sh"])

Script 3: Python code used to fetch the AF2 output from Computerome (pLDDT scores).

Only showing insertions due to repetitiveness of the code.

This will be a script to process the JSON file output from AlphaFold.

This script will collect all the ranking_debug.json data.

Each file has 5 AF predicted scores, for the 5 predicted structures per

variant

The scores are already the average per predicted structure.

The scores will be saved in a matrix:

Each row is a variant, each column an AF score for that variant

To run the script in Computerome, numpy and pandas had to be installed,

which I did with the following commands:

Create a Virtual Environment

#python3 -m venv myenv

Activate the virtual environment

#source myenv/bin/activate

install packages

#pip install numpy

#pip install pandas

run the script

#python3 process_json.py

how to exit the virtual environment

#deactivate

copy the file to the login node so you can email it to yourself

#cp /home/projects/ku_00122/people/hellan/dhfr_af_average_plddt_scores.csv

/home/people/hellan/Documents/dhfr_af_average_plddt_scores.csv

PACKAGES

import os

import json

import numpy as np

import pandas as pd

GLOBAL VARIABLES

This is the amount of variants.

Find out how many there are by running this command in Computerome in the

directory with all the variant files:

ls -1 | wc -l

NR_OF_ROWS = 175

NR_OF_COLS = 5 # Because we have 5 AF scores (one per prediction)

MAIN_FOLDER_DIRECTORY = "./dhfr_fasta_insert_files"

#MAIN_FOLDER_DIRECTORY =

"/home/projects/ku_00122/people/hellan/dhfr_fasta_insert_files"

#OUTPUT_CSV_PATH =

"home/people/hellan/Documents/dhfr_af_average_plddt_scores.csv"

#OUTPUT_CSV_PATH =

"/home/projects/ku_00122/people/hellan/dhfr_af_average_plddt_scores.csv"

OUTPUT_CSV_PATH = "./dhfr_af_average_plddt_scores.csv" # The people

directory did not work, I copied the files there

START = 0

STOP = NR_OF_ROWS

Function to process a JSON file and update the matrix

def process_json(json_path, matrix, row_names):

 with open(json_path, 'r') as json_file:

 data = json.load(json_file)

 # Extract plddt scores and update the matrix

 plddt_scores = [data['plddts'][model] for model in data['order']]

 matrix.append(plddt_scores)

 # Extract row name from the directory name

 row_name = os.path.basename(os.path.dirname(json_path))

 row_names.append(row_name)

List all subdirectories in the main folder

subdirectories = [d for d in os.listdir(MAIN_FOLDER_DIRECTORY) if

os.path.isdir(os.path.join(MAIN_FOLDER_DIRECTORY, d))]

Initialize an empty matrix

matrix = []

row_names = []

col_names = [f"plddt_score_{i+1}" for i in range(NR_OF_COLS)]

Iterate over each subdirectory

for folder in subdirectories[START:STOP]:

 # Create the path to the json file

 json_file_path = os.path.join(MAIN_FOLDER_DIRECTORY, folder,

"af_output", folder, "ranking_debug.json")

 # Extract the plddt data

 process_json(json_file_path, matrix, row_names)

matrix = np.array(matrix)

Create a DataFrame with row and column names

df = pd.DataFrame(matrix, index=row_names, columns=col_names)

Print the final DataFrame

#print(df)

Save the DataFrame as a CSV file

df.to_csv(OUTPUT_CSV_PATH)

print(f"CSV file saved to: {OUTPUT_CSV_PATH}")

Script 4: Python code to fetch the pLDDT score per amino acid position.

Only showing deletions due to repetitiveness of the code

script to extract the per position pLDDT score (currently set for

deletions)

import os

import pandas as pd

import re

Directory containing PDB files

directory =

"C:/Users/hllee/Documents/UU/Copenhagen/Data/DHFR/dhfr_pdbs_del"

Initialize a list to store plddt scores for each residue

plddt_series_list = []

Iterate over each PDB file in the directory

for filename in os.listdir(directory):

 if filename.endswith(".pdb"):

 filepath = os.path.join(directory, filename)

 plddt_scores = {}

 with open(filepath, "r") as file:

 # Iterate over each line in the PDB file

 for line in file:

 if line.startswith("ATOM"):

 # Extract residue number (column 6) and plddt score

(column 11)

 residue_number = int(line[22:26].strip())

 plddt_score = float(line[61:68])

 # Store plddt score for each residue only once

 plddt_scores[residue_number] = plddt_score

 # Extract part of the filename to use as row name

 rn = filename.split("_")[-2] # Extracts the xxx_x part from the

filename

 row_name = re.sub('\D', '', rn)

 # Append plddt scores for the current file to the list

 plddt_series_list.append(pd.Series(plddt_scores, name=row_name))

Concatenate all Series into a DataFrame

plddt_df = pd.concat(plddt_series_list, axis=1)

Transpose the DataFrame to have files as rows and residues as columns

plddt_df = plddt_df.transpose()

Reset index to make filenames a column

plddt_df.reset_index(inplace=True)

plddt_df.rename(columns={"index": "position"}, inplace=True)

sort the position row

plddt_df['position'] = pd.to_numeric(plddt_df['position'])

plddt_df_sort = plddt_df.sort_values(by=['position'], na_position='first')

Print the DataFrame

print(plddt_df_sort)

plddt_df_sort.to_csv(r'C:\Users\hllee\Documents\UU\Copenhagen\Data\DHFR\dhf

r_plddt_perpos_dup_all_del.csv', index = False)

Script 5: Python code to run RosettaRelax in DeiC (Danish e-infrastructure Cooperation).

Script to Run Rosetta Relax (adapted for deletions)

import os

import subprocess

run_dir = '/groups/sbinlab/heleen/rundir'

input_dir = '/groups/sbinlab/heleen/dhfr_pdbs'

#pdb_list = os.listdir(input_dir)

pdb_list = ["dhfr_0", "dhfr_1"]

output_dir = '/groups/sbinlab/rosetta_relax_dhfr_insertions_ddg'

path_to_ROSETTA =

'/sbinlab/software/Rosetta_2021_Aug_c7009b3/source/bin/relax.default.linuxg

ccrelease'

partition = 'sbinlab'

for pdb in pdb_list:

 pdb_path = os.path.join(input_dir, pdb)

path_to_bash = os.path.join(run_dir, (pdb + '.sbatch'))

with open(path_to_bash, 'w') as fp:

 fp.write(f'''#!/bin/sh

#SBATCH --job-name=Woods_relax

#SBATCH --time=60:00:00

#SBATCH --mem 5000

#SBATCH --partition={partition}

''')

fp.write((f'/sbinlab/software/Rosetta_2021_Aug_c7009b3/source/bin/relax.def

ault.linuxgccrelease '

 f'-s {pdb_path} '

 f'-relax:constrain_relax_to_start_coords 1 '

 f'-nstruct 10 '

 f'-out:file:silent {output_dir}_{pdb.split(".")[0]}.out '

 f'-out:file:scorefile {output_dir}_{pdb.split(".")[0]}.sc >

{output_dir}_{pdb.split(".")[0]}.log'))

subprocess.call(f'sbatch {path_to_bash}', shell=True, cwd=run_dir)

Script 6: R code used to make Figure 4: distributions of the data.

Only one condition shown (CPOP 30°C) due to the repetitiveness of the code

####################### CPOP 30°C #######################

wt <- 1

Create the combined plot

combined_plot <- ggplot() +

 geom_density(data = del, aes(x = cpop_30, fill = "Deletions"), alpha =

0.5) +

 geom_density(data = ins, aes(x = cpop_30, fill = "Insertions"), alpha =

0.5) +

 scale_fill_manual(values = c("Deletions" = "magenta", "Insertions" =

"yellow")) +

 labs(title = "A. Plot of CPOP 30°C indel scores",

 x = "CPOP 30°C",

 y = "Density") +

 theme_minimal() +

 theme(legend.title = element_blank()) +

 xlim(-1, 1.7) +

 geom_vline(xintercept = wt, linetype = "solid", color = "black", size =

.8) +

 annotate("label", x = 1.2, y = 1.28, label = "WT" , color = "black",

alpha = 0.3)

Print the combined plot

print(combined_plot)

Script 7: R code used to make Figure 5: heatmap, of all the scores.

Secondary DHFR structure was obtained using SSDraw and put together in PowerPoint.
libraries

library(pheatmap)

library(RColorBrewer)

library(viridis)

library(reshape2)

library(grid)

library(gridExtra)

load the data

ins <-

read.csv("~/UU/Copenhagen/Data/DHFR/dhfr_cpop_plddt_dplddt_ddg_ddgmtx_windo

ws_dup_ins.csv")

del <-

read.csv("~/UU/Copenhagen/Data/DHFR/dhfr_cpop_plddt_dplddt_ddg_ddgmtx_windo

ws_dup_del.csv")

"settings" for the heatmaps

nr of colors (same as number of breaks)

nrcolors <- 100

add column with new numbers, starting at 1 skipping 5

Create a vector with the values for the skip_pos column

skip_values <- rep(".", nrow(ins))

skip_values[seq(1, nrow(ins), by = 5)] <- seq(1, nrow(ins), by = 5)

Assign the skip_pos column to the ins dataframe

ins$skip_pos <- skip_values

CPOP insertions heatmap

colrwb <- colorRampPalette(c("#720000", "white", "#001540"))

cmin <- -0.3

cmax <- 2.3

pheatmap(t(ins[,2:5]), cluster_rows = F, cluster_cols = F,

 color = colrwb(nrcolors),

 breaks = seq(from = cmin, to = cmax, length.out = nrcolors),

 labels_row = c("", "", "", ""), # removing the rownames makes it

easier to align

 labels_col = ins$skip_pos)

CPOP deletions heatmap

pheatmap(t(del[,2:5]), cluster_rows = F, cluster_cols = F,

 color = colrwb(nrcolors),

 breaks = seq(from = cmin, to = cmax, length.out = nrcolors),

 labels_row = c("", "", "", ""), # removing the rownames makes it

easier to align

 labels_col = ins$skip_pos)

CPOP insertions heatmap only CPOP 30

colrwb <- colorRampPalette(c("#720000", "white", "#001540"))

cmin <- -0.234

cmax <- 2.234

pheatmap(t(ins$score_30), cluster_rows = F, cluster_cols = F,

 color = colrwb(nrcolors),

 breaks = seq(from = cmin, to = cmax, length.out = nrcolors),

 labels_col = ins$skip_pos)

CPOP deletions heatmap

pheatmap(t(del$score_30), cluster_rows = F, cluster_cols = F,

 color = colrwb(nrcolors),

 breaks = seq(from = cmin, to = cmax, length.out = nrcolors),

 labels_col = ins$skip_pos)

heatmap pLDDT insertions

colrwb <- colorRampPalette(brewer.pal(10, "Spectral"))

cmin <- 86 # OWN SCALE

cmax <- 96

pheatmap(t(ins$plddt), cluster_rows = F, cluster_cols = F,

 color = colrwb(nrcolors),

 breaks = seq(from = cmin, to = cmax, length.out = nrcolors))

and deletions OWN SCALE

cmin <- 92

cmax <- 97

pheatmap(t(del$plddt), cluster_rows = F, cluster_cols = F,

 color = colrwb(nrcolors),

 breaks = seq(from = cmin, to = cmax, length.out = nrcolors))

heatmap ddG insertions

colrwb <- colorRampPalette(c("darkgreen", "white", "#7c1881"))

truncated because the extremes are not important

cmin <- -16.5

cmax <- 16.5

pheatmap(t(ins$ddg), cluster_rows = F, cluster_cols = F,

 color = colrwb(nrcolors),

 breaks = seq(from = cmin, to = cmax, length.out = nrcolors))

and deletions

pheatmap(t(del$ddg), cluster_rows = F, cluster_cols = F,

 color = colrwb(nrcolors),

 breaks = seq(from = cmin, to = cmax, length.out = nrcolors))

heatmap ddG + MTX insertions

colrwb <- colorRampPalette(c("#026e97", "white", "#cc9b00"))

cmin <- -35.5

cmax <- 35.5

pheatmap(t(ins$ddg_mtx), cluster_rows = F, cluster_cols = F,

 color = colrwb(nrcolors),

 breaks = seq(from = cmin, to = cmax, length.out = nrcolors))

and deletions

pheatmap(t(del$ddg_mtx), cluster_rows = F, cluster_cols = F,

 color = colrwb(nrcolors),

 breaks = seq(from = cmin, to = cmax, length.out = nrcolors))

Script 8: R code used to make Figure 6: heatmap of the per position pLDDT scores.

Only insertions shown due to receptiveness of the code.

heatmap of per position pLDDT score INSERTIONS

ppins <-

read.csv("~/UU/Copenhagen/Data/DHFR/dhfr_perpos_plddt_dup_all_av_ins.csv")

colnames(ppins) <- sub("^X", "", colnames(ppins))

ppins <- ppins[-1,] # exclude wt

Define color range and breaks

colrwb <- colorRampPalette(c("#720000", "white"))

ccol <- c(colrwb(100))

cmin <- min(apply(ppins[,-1], 1, min, na.rm = T))

cmax <- max(apply(ppins[,-1], 1, max, na.rm = T))

add column with new numbers, starting at 1 skipping 5

Create a vector with the values for the skip_pos column

skip_values <- rep(".", nrow(ppins))

indices <- seq(0, nrow(ppins) - 1, by = 5)

skip_values[indices + 1] <- indices

Assign the skip_pos column to the df

ppins$skip_pos_row <- skip_values

make the heatmap

hm_pp_ins <- pheatmap(ppins[,-c(1, 190)], cluster_rows = F, cluster_cols =

F,

 color = ccol,

 breaks = seq(from = cmin, to = cmax, length.out =

100) ,

 main = "Heatmap of DHFR per postion pLDDT score of

the insertion variants",

 labels_row = ppins$skip_pos_row, fontsize_row = 7,

 labels_col = ppins$skip_pos, fontsize_col = 7)

Script 9: R code used to make Figure 7: Woods plots.

Only insertions shown due to repetitiveness of the code.

scripts to make all the plots with the complete CPOP data

library(ggplot2)

library(gridExtra)

library(pROC)

ins <-

read.csv("~/UU/Copenhagen/Data/DHFR/dhfr_cpop_dplddt_ddg_ddgmtx_dup_ins.csv

")

del <-

read.csv("~/UU/Copenhagen/Data/DHFR/dhfr_cpop_dplddt_ddg_ddgmtx_dup_del.csv

")

###

########## INSERTIONS

plot_ins_30 <- ggplot(ins, aes(x = dplddt, y = ddg, color = cpop_30)) +

 geom_point() +

 scale_color_gradientn(colours = c("#8E1652", "#C5247D", "#DE77AE",

"#F1B6DA", "#FDE0EF",

 "#E6F5D0", "#B8E186", "#7FBC41",

"#4D9220", "#286419"),

 name = "CPOP \n30°C") +

 geom_vline(xintercept = 0) + geom_hline(yintercept = 0) +

 ggtitle("DHFR insertions ∆∆G over ∆plDDT \nColored by CPOP 30°C") +

 labs(x= "∆plDDT", y="∆∆G") +

 theme(plot.title = element_text(size = 12))

plot_ins_30_mtx <- ggplot(ins, aes(x = dplddt, y = ddg_mtx, color =

cpop_30_mtx)) +

 geom_point() +

 scale_color_gradientn(colours = c("#8E1652", "#C5247D", "#DE77AE",

"#F1B6DA", "#FDE0EF",

 "#E6F5D0", "#B8E186", "#7FBC41",

"#4D9220", "#286419"),

 name = "CPOP \n30°C\n+ MTX") +

 geom_vline(xintercept = 0) + geom_hline(yintercept = 0) +

 ggtitle("DHFR insertions ∆∆G + MTX over ∆plDDT \nColored by CPOP 30°C +

MTX") +

 labs(x= "∆plDDT", y="∆∆G + MTX") +

 theme(plot.title = element_text(size = 12))

plot_ins_37 <- ggplot(ins, aes(x = dplddt, y = ddg, color = cpop_37)) +

 geom_point() +

 scale_color_gradientn(colours = c("#8E1652", "#C5247D", "#DE77AE",

"#F1B6DA", "#FDE0EF",

 "#E6F5D0", "#B8E186", "#7FBC41",

"#4D9220", "#286419"),

 name = "CPOP \n37°C") +

 geom_vline(xintercept = 0) + geom_hline(yintercept = 0) +

 ggtitle("DHFR insertions ∆∆G over ∆plDDT \nColored by CPOP 37°C") +

 labs(x= "∆plDDT", y="∆∆G") +

 theme(plot.title = element_text(size = 12))

plot_ins_37_mtx <- ggplot(ins, aes(x = dplddt, y = ddg_mtx, color =

cpop_37_mtx)) +

 geom_point() +

 scale_color_gradientn(colours = c("#8E1652", "#C5247D", "#DE77AE",

"#F1B6DA", "#FDE0EF",

 "#E6F5D0", "#B8E186", "#7FBC41",

"#4D9220", "#286419"),

 name = "CPOP \n37°C\n+ MTX") +

 geom_vline(xintercept = 0) + geom_hline(yintercept = 0) +

 ggtitle("DHFR insertions ∆∆G + MTX over ∆plDDT \nColored by CPOP 37°C +

MTX") +

 labs(x= "∆plDDT", y="∆∆G + MTX") +

 theme(plot.title = element_text(size = 12))

grid.arrange(plot_ins_30, plot_ins_30_mtx, plot_ins_37, plot_ins_37_mtx,

ncol = 2

Script 10: R code to calculate the average pLDDT scores with different window sizes.

Only insertions shown due to repetitiveness of the code, data used for the ROC curves.

script to calculate the per position plddt scores with different window

sizes

insertions

load the data

ppins <-

read.csv("~/UU/Copenhagen/Data/DHFR/dhfr_plddt_perpos_dup_ins.csv",

check.names = F)

ppins_wt <- as.matrix(ppins[1,])

ppins <- as.matrix(ppins[-1,])

ppins_av <- matrix(nrow = nrow(ppins), ncol = 6)

for (i in 1:nrow(ppins)) {

 colnr <- which(colnames(ppins) == ppins[i+1, 1])

 ppins_av[i, 1] <- ppins[i, 1]

 ppins_av[i, 2] <- mean(c(ppins[i, colnr-1], ppins[i, colnr], ppins[i,

colnr+1]))

 ppins_av[i, 3] <- mean(c(ppins[i, colnr-2], ppins[i, colnr-1], ppins[i,

colnr], ppins[i, colnr+1], ppins[i, colnr+2]))

 ppins_av[i, 4] <- mean(c(ppins[i, colnr-3], ppins[i, colnr-2], ppins[i,

colnr-1], ppins[i, colnr], ppins[i, colnr+1], ppins[i, colnr+2], ppins[i,

colnr+3]))

 ppins_av[i, 5] <- mean(c(ppins[i, colnr-4], ppins[i, colnr-3], ppins[i,

colnr-2], ppins[i, colnr-1], ppins[i, colnr], ppins[i, colnr+1], ppins[i,

colnr+2], ppins[i, colnr+3], ppins[i, colnr+4]))

 ppins_av[i, 6] <- mean(c(ppins[i, colnr-5], ppins[i, colnr-4], ppins[i,

colnr-3], ppins[i, colnr-2], ppins[i, colnr-1], ppins[i, colnr], ppins[i,

colnr+1], ppins[i, colnr+2], ppins[i, colnr+3], ppins[i, colnr+4], ppins[i,

colnr+5]))

}

colnames(ppins_av) <- c("position", "w_3", "w_5", "w_7", "w_9", "w_11")

fix the averages at the beginning and end

if the window is bigger then there are numbers I will take less numbers

############# pos 1

w5

ppins_av[1,3] <- mean(ppins[1, 2:5])

w7

ppins_av[1,4] <- mean(ppins[1, 2:6])

w9

ppins_av[1,5] <- mean(ppins[1, 2:7])

w11

ppins_av[1,6] <- mean(ppins[1, 2:8])

############# pos 2

w7

ppins_av[2,4] <- mean(ppins[2, 2:7])

w9

ppins_av[2,5] <- mean(ppins[2, 2:8])

w11

ppins_av[2,6] <- mean(ppins[2, 2:9])

############# pos 3

w9

ppins_av[3,5] <- mean(ppins[3, 2:9])

w11

ppins_av[3,6] <- mean(ppins[3, 2:10])

############# pos 4

w11

ppins_av[4,6] <- mean(ppins[4, 2:11])

now the same for the end values

#################### pos 183

w 11

ppins_av[183, 6] <- mean(ppins[183, 180:189])

#################### pos 184

w 11

ppins_av[184, 6] <- mean(ppins[184, 181:189])

w 9

ppins_av[184, 5] <- mean(ppins[184, 182:189])

w 7

ppins_av[184, 4] <- mean(ppins[184, 183:189])

w 5

ppins_av[184, 3] <- mean(ppins[184, 184:188])

w 3

ppins_av[184, 2] <- mean(ppins[184, 185:187])

pos

ppins_av[184, 1] <- 184

#################### pos 185

w 11

ppins_av[185, 6] <- mean(ppins[185, 182:189])

w 9

ppins_av[185, 5] <- mean(ppins[185, 183:189])

w 7

ppins_av[185, 4] <- mean(ppins[185, 184:189])

w 5

ppins_av[185, 3] <- mean(ppins[185, 185:189])

w 3

ppins_av[185, 2] <- mean(ppins[185, 186:188])

pos

ppins_av[185, 1] <- 185

#################### pos 186

w 11

ppins_av[186, 6] <- mean(ppins[186, 183:189])

w 9

ppins_av[186, 5] <- mean(ppins[186, 184:189])

w 7

ppins_av[186, 4] <- mean(ppins[186, 185:189])

w 5

ppins_av[186, 3] <- mean(ppins[186, 186:189])

w 3

ppins_av[186, 2] <- mean(ppins[186, 187:189])

pos

ppins_av[186, 1] <- 186

#################### pos 187

w 11

ppins_av[187, 6] <- mean(ppins[187, 184:189])

w 9

ppins_av[187, 5] <- mean(ppins[187, 185:189])

w 7

ppins_av[187, 4] <- mean(ppins[187, 186:189])

w 5

ppins_av[187, 3] <- mean(ppins[187, 187:189])

w 3

ppins_av[187, 2] <- mean(ppins[187, 188:189])

pos

ppins_av[187, 1] <- 187

###

###############################

ppins_d <- ppins_av - ppins_wt_av

ppins_d[,1] <- ppins_av[,1]

write.csv(ppins_av,

"~/UU/Copenhagen/Data/DHFR/dhfr_perpos_plddt_dup_windows_ins.csv",

row.names = F,

 quote = F)

write.csv(ppins_wt_av,

"~/UU/Copenhagen/Data/DHFR/dhfr_perpos_plddt_dup_windows_wt_ins.csv",

row.names = F,

 quote = F)

write.csv(ppins_d,

"~/UU/Copenhagen/Data/DHFR/dhfr_perpos_dplddt_dup_windows_ins.csv",

row.names = F,

 quote = F)

Script 11: R code to make Figure 8: calculating the area under the curve.

For the ROC plots only pLDDT insertions are shown due to the repetitiveness of the code. Note how

the deduplicated data was used.

script to make ROC plots for the CPOP ins and dels to get the AUC

library(ggplot2)

library(pROC)

library(gridExtra)

library(RColorBrewer)

library(tidyverse)

ins <-

read.csv("~/UU/Copenhagen/Data/DHFR/dhfr_cpop_plddt_dplddt_ddg_ddgmtx_windo

ws_dedup_ins.csv")

del <-

read.csv("~/UU/Copenhagen/Data/DHFR/dhfr_cpop_plddt_dplddt_ddg_ddgmtx_windo

ws_dedup_del.csv")

cut off for cpop data 0.5

above 0.5 soluble, below and equal to 0.5 deleterious

calculate_cutoff <- function(df, cutoff_nr, colnr, new_colname){

 for (i in 1:nrow(df)) {

 if (is.na(df[i, colnr])) {

 df[i, new_colname] <- NA

 } else if (df[i, colnr] > cutoff_nr) {

 df[i, new_colname] <- 1

 } else {

 df[i, new_colname] <- 0

 }

 }

 return(df)

}

add the cut-off score as a new column to the dataset

ins <- calculate_cutoff(df = ins, cutoff_nr = 0.5, colnr = 2,

"cutoff_30")

ins <- calculate_cutoff(df = ins, cutoff_nr = 0.5, colnr = 3,

"cutoff_30_mtx")

ins <- calculate_cutoff(df = ins, cutoff_nr = 0.5, colnr = 4,

"cutoff_37")

ins <- calculate_cutoff(df = ins, cutoff_nr = 0.5, colnr = 5,

"cutoff_37_mtx")

del <- calculate_cutoff(df = del, cutoff_nr = 0.5, colnr = 2,

"cutoff_30")

del <- calculate_cutoff(df = del, cutoff_nr = 0.5, colnr = 3,

"cutoff_30_mtx")

del <- calculate_cutoff(df = del, cutoff_nr = 0.5, colnr = 4,

"cutoff_37")

del <- calculate_cutoff(df = del, cutoff_nr = 0.5, colnr = 5,

"cutoff_37_mtx")

roc plots for plddt and ins

rocobj1 <- roc(ins$cutoff_30, ins$dplddt)

auc1 <- round(auc(ins$cutoff_30, ins$dplddt), 4)

roc_ins_dplddt_30 <- ggroc(rocobj1, colour = 'steelblue', size = 2) +

 ggtitle(paste0('ROC Curve, DHFR insertions, CPOP 30°C, ΔpLDDT ', '(AUC =

', auc1, ')'))

rocobj2 <- roc(ins$cutoff_30_mtx, ins$dplddt)

auc2 <- round(auc(ins$cutoff_30_mtx, ins$dplddt), 4)

roc_ins_dplddt_30_mtx <- ggroc(rocobj2, colour = 'steelblue', size = 2) +

 ggtitle(paste0('ROC Curve, DHFR insertions, CPOP 30°C MTX, ΔpLDDT ',

'(AUC = ', auc2, ')'))

rocobj3 <- roc(ins$cutoff_37, ins$dplddt)

auc3 <- round(auc(ins$cutoff_37, ins$dplddt), 4)

roc_ins_dplddt_37 <- ggroc(rocobj3, colour = 'steelblue', size = 2) +

 ggtitle(paste0('ROC Curve, DHFR insertions, CPOP 37°C, ΔpLDDT ', '(AUC =

', auc3, ')'))

rocobj4 <- roc(ins$cutoff_37_mtx, ins$dplddt)

auc4 <- round(auc(ins$cutoff_37_mtx, ins$dplddt), 4)

roc_ins_dplddt_37_mtx <- ggroc(rocobj4, colour = 'steelblue', size = 2) +

 ggtitle(paste0('ROC Curve, DHFR insertions, CPOP 37°C MTX, ΔpLDDT ',

'(AUC = ', auc4, ')'))

grid.arrange(roc_ins_dplddt_30, roc_ins_dplddt_30_mtx, roc_ins_dplddt_37,

roc_ins_dplddt_37_mtx, ncol = 2)

################################### AUC ###################################

Collect the AUC scores and put them into a df

Insertions

auc_ins_dplddt <- c(auc1, auc2, auc3, auc4) # pLDDT

auc_ins_ddg <- c(auc5, auc6, auc7, auc8) # ddG

auc_ins_ddg_mtx <- c(auc5m, auc6m, auc7m, auc8m) # ddG + MTX

auc_ins_ppdplddt_w3 <- c(auc31, auc32, auc33, auc34) # window 3

auc_ins_ppdplddt_w5 <- c(auc51, auc52, auc53, auc54) # window 5

auc_ins_ppdplddt_w7 <- c(auc71, auc72, auc73, auc74) # window 7

auc_ins_ppdplddt_w9 <- c(auc91, auc92, auc93, auc94) # window 9

auc_ins_ppdplddt_w11 <- c(auc111, auc112, auc113, auc114) # window 11

combine

auc_insertions <- rbind(auc_ins_dplddt, auc_ins_ddg, auc_ins_ddg_mtx,

auc_ins_ppdplddt_w3, auc_ins_ppdplddt_w5,

 auc_ins_ppdplddt_w7, auc_ins_ppdplddt_w9,

auc_ins_ppdplddt_w11)

colnames(auc_insertions) <- c("CPOP 30°C", "CPOP 30°C + MTX", "CPOP 37°C",

"CPOP 37°C + MTX")

deletions

auc_del_dplddt <- c(auc9, auc10, auc11, auc12) # pLDDT

auc_del_ddg <- c(auc13, auc14, auc15, auc16) # ddG

auc_del_ddg_mtx <- c(auc13m, auc14m, auc15m, auc16m) # ddG + MTX

auc_del_ppdplddt_w2 <- c(auc21, auc22, auc23, auc24) # window 2

auc_del_ppdplddt_w4 <- c(auc41, auc42, auc43, auc44) # window 4

auc_del_ppdplddt_w6 <- c(auc61, auc62, auc63, auc64) # window 6

auc_del_ppdplddt_w8 <- c(auc81, auc82, auc83, auc84) # window 8

auc_del_ppdplddt_w10 <- c(auc101, auc102, auc103, auc104) # window 10

combine

auc_deletions <- rbind(auc_del_dplddt, auc_del_ddg, auc_del_ddg_mtx,

auc_del_ppdplddt_w2, auc_del_ppdplddt_w4,

 auc_del_ppdplddt_w6, auc_del_ppdplddt_w8,

auc_del_ppdplddt_w10)

colnames(auc_deletions) <- c("CPOP 30°C", "CPOP 30°C + MTX", "CPOP 37°C",

"CPOP 37°C + MTX")

barplot ins

bp_ins <- barplot(auc_insertions, beside = T,

 col = brewer.pal(nrow(auc_insertions), "Spectral"),

 ylim = c(0, 1), ylab = "Area Under Curve",

 main = "AUC comparison of DHFR insertion variants")

text(x = bp_ins, y = 0.54, labels = format(round(auc_insertions, digits =

2), nsmall = 1), srt = 90, cex = 0.8)

legend('topleft', fill=brewer.pal(nrow(auc_insertions), "Spectral"),

 legend = c("ΔpLDDT", "ΔΔG", "ΔΔG + MTX", "per pos ΔpLDDT W3", "per

pos ΔpLDDT W5", "per pos ΔpLDDT W7",

 "per pos ΔpLDDT W9", "per pos ΔpLDDT W11"), horiz = F,

inset = c(0, -0.1), xpd = T, cex = 0.625,

 bty = "n")

barplot del

bp_del <- barplot(auc_deletions, beside = T,

 col = brewer.pal(nrow(auc_deletions), "Spectral"),

 ylim = c(0, 1), ylab = "Area Under Curve",

 main = "AUC comparison of DHFR deletion variants")

text(x = bp_del, y = 0.54, labels = format(round(auc_deletions, digits =

2), nsmall = 1), srt = 90, cex = 0.8)

legend('topleft', fill=brewer.pal(nrow(auc_deletions), "Spectral"),

 legend = c("ΔpLDDT", "ΔΔG", "ΔΔG + MTX", "per pos ΔpLDDT W2", "per

pos ΔpLDDT W4", "per pos ΔpLDDT W6",

 "per pos ΔpLDDT W8", "per pos ΔpLDDT W10"), horiz = F,

inset = c(0, -0.1), xpd = T, cex = 0.625,

 bty = "n")

