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Abstract

In this paper a novel approach for the evaluation of inequality con-
strained hypotheses is described. An inequality constrained hypothesis
(H;) is an hypothesis with order restrictions between the parameters of
interest. The Bayes factor is used to compare H; with its complement
H,, that is all situations in which H; is not true. This approach is ap-
plied to ANOVA models and the performance is evaluated by looking at
the error probabilities, which are the counterparts of Type 1 and Type 2
errors in the traditional null hypothesis testing framework. Furthermore,
the robustness of the approach proposed with respect to violations of the
assumption of homogeneity of variances is evaluated. Two examples are
also analyzed using this new approach. The overall result is that the ap-
proach works well, with low error probabilities for H; for relatively small
sample sizes. Furthermore, the approach is robust to violations to the

assumptions of homogeneity of variances.
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1 Introduction

This paper describes a novel approach for evaluating an inequality constrained
(or informative) hypothesis, which is an hypothesis with order restrictions be-
tween the parameters of interest. Evaluating inequality constrained hypothe-
ses is not new (see for example: Robertson, Wright, & Dykstra, 1988; Bar-
low, Bartholomew, Bremner, & Brunk, 1972; Silvapulle & Sen, 2005; Hoijtink,
Klugkist, & Boelen, 2008), but in this paper the inequality constrained hypoth-
esis will be compared to its complement, which has not been done before. This
paper is restricted to the evaluation of inequality constrained hypotheses in the
context of Analysis of Variance (ANOVA) models.

Many researchers have a specific expectation about the outcome of their re-
search, which often can be formulated as an inequality constrained hypothesis.
For example, in an hypothetical study with four means of interest, the expec-
tation could be that, on average, Group 1 scores higher than Group 2, Group 2
scores higher than Group 3 and Group 3 scores higher than Group 4. Let u de-
note the group mean, than the corresponding inequality constrained hypothesis
is:

Hi oty > pg > pz > pug. (1)

Although researchers frequently have such expectations, they often restore to

testing the null hypothesis, which in this hypothetical example is:

Hy:p = po = p3 = pia, (2)

which is tested against the alternative hypothesis,

Hyopy, po, p3, pa. (3)

Testing Equation (2) against Equation (3) is not a straightforward evaluation
of Equation (1). Even in combination with pairwise comparisons or planned
contrasts, would this not render a straightforward evaluation of H; (Hoijtink,
Huntjes, Reijntjes, Kuiper, & Boelen, 2008).

There are already two approaches for a direct evaluation of inequality con-
strained hypotheses. Such as the F-test, developed by Silvapulle and Sen (2005),
which evaluates H; by comparing it to H,:

Hi @ p>po>p3 > pa (4)
He oy, p2, ps, pa.

The F-test is an adaptation of the F-test for ANOVA models, for the evaluation



of a single inequality constrained hypothesis (see also Kuiper & Hoijtink, 2010).

The second approach is Bayesian evaluation of informative hypothesis using
Bayesian Model Selection, which is described by Klugkist, Laudy, and Hoijtink
(2005), Hoijtink, Klugkist, and Boelen (2008) and Kuiper and Hoijtink (2010)
in the context of ANOVA. With this approach H; is compared to another com-
peting inequality constrained hypothesis: H!. For software for the F-test and
Bayesian evaluation of informative hypothesis for ANOVA models, see the paper
by Kuiper, Klugkist, and Hoijtink (2010). Readers interested in the software
can also visit www.fss.uu.nl/ms/informativehypothesis.

Thus, in the F-test H; is compared to H,, which encompasses H;. However,
it is not logical to compare H; to an hypothesis that also encompasses H;,
furthermore, researchers do not always have competing hypotheses. Therefore,
in the current paper, one single H; will be evaluated by comparing it to it’s

complement H.:

Hi @ pa > pa > ps > g
vs (5)
H. : not H;.

Note that the complement encompasses all the situations in which H; is not
true.

In the next section, two examples are introduced, which are used through-
out this paper to illustrate the approach proposed in Equation (5). Section 3
elaborates on the generalization of inequality constrained hypotheses. Section
4 describes how H; can be compared to H. by making use of the Bayes fac-
tor. Section 5 introduces error probabilities for the comparison of H; versus
H.. Section 6 evaluates the robustness of the approach proposed with respect
to violations of the assumption of homogeneity of variances. In Section 7, the
inequality constrained hypotheses of the two examples introduced in the next

section, are evaluated using the novel approach proposed in the current paper.

2 Examples

This paper focuses on the evaluation of inequality constrained hypothesis in the
context of ANOVA models:

J
yi = Z,Ufjdij + &, (6)
j=1



Table 1: Descriptives Example 1
Mean o? N

w1 0.54  0.096 30
pe  0.20  0.048 30
ps  0.29  0.063 30
pa  0.19  0.068 30

where y; is the observation of the dependent variable of person i (i =1,...,N),
t; is the mean of group j (j =1,...,J), and d,; denotes the group membership
of a person, with 0 denoting not being a member of the group and 1 denoting
being a member of the group. The residuals, €;, for each group are assumed to
be normally distributed with mean zero and variance o2.

Below, two examples are presented, one based on Geraerts et al. (2009) and
one on Van de Schoot, Velden, Boom, and Brugman (2010). In both articles,
the researchers formulated a clear expectation. These two examples are used to

show how expectations can be translated into inequality constrained hypotheses.

2.1 Example 1

The first example is a study by Geraerts et al. (2009), who investigated the
cognitive mechanisms underlying recovered memory experiences of childhood
sexual abuse. Four different groups participated in the experiment: Group
1: memory recovered in therapy; Group 2: memory recovered spontaneously;
Group 3: continuous memory and Group 4: a control group containing persons
who reported no memory of abuse. In their introduction, Geraerts et al. (2009)

specifically state the following expectation:

“We predicted that people reporting childhood sexual abuse memo-
ries recovered during suggestive therapy would score high on a mea-
sure of susceptibility to false memories ... people who report spon-
taneously recovered memories of abuse ...would score similarly to

control subjects on false-memory tasks. (p. 93)”

Clearly, the researchers have one expectation they want to test and this expec-

tation can be translated into the following inequality constrained hypothesis:

Hiy : iy > {p2, i3, prat, (7)

which states that the mean false recall rate in Group 1 (memory recovered in
therapy) is larger than in the other three groups. There are no predictions with

respect to the relative size of the false recall rate within the other three groups.



False-recall rate was measured as the average proportion of false recall of
words over several different experiments. The mean proportions are given in
Table 1.

Despite their expectation, Geraerts et al. (2009) analyzed their data using
traditional null hypothesis testing in which they compared the null hypothesis
Hy : p1 = po = ps = pg with the alternative hypothesis H,. The result of
traditional null hypothesis testing is either that Hjy can not be rejected, or that
Hy can be rejected. Because rejection of Hy is not yet evidence in favor of H;,
pairwise comparisons (see, for example, Toothaker, 1993) or contrast analysis
(see, for example, Rosenthal & Rosnow, 1985) can be used for further analysis.
However, the resulting procedure does not provide a straightforward evaluation
of H;.

The aim of this paper is not to criticize traditional null hypothesis testing
(the interested reader is referred to: Cohen, 1994; Wagenmakers, 2007; Hoijtink,
Huntjes, et al., 2008), nor to give a comparison of different methods (Kuiper &
Hoijtink, 2010). The aim of this paper is to propose a method for the comparison
of an inequality constrained hypothesis with its complement using the Bayes

factor, and to investigate the properties of this method.

2.2 Example 2

The second example comes from a study by Van de Schoot et al. (2010). They
investigated the association between popularity and antisocial behaviour in a
large sample of young adolescents from preparatory vocational schools in the
Netherlands. Five, so-called, sociometric status groups were defined: Group 1:
a controversial group of adolescents, Group 2: a rejected group, Group 3: an
average group, Group 4: a popular group, and Group 5: a neglected group of
adolescents. Each sociometric status group has been characterized by distinct
behavioural patterns which influence the quality of social relations (Newcomb,
Bukowski, & Pattee, 1993).

It could, for example, be expected that the controversial adolescents would
report more signs of anti-social behaviour than the rejected group, the rejected
group would report more signs than the average group, the average group would
report more signs than the popular group and that the popular group would
report more signs of anti-social behaviour than the neglected group. These ex-
pectations can be summarized in the following inequality constrained hypothe-
sis:

Hig g > po > pg > pa > ps, (8)

which states that the mean reported signs of anti-social behaviour for Group 1

is larger than for Group 2, for Group 2 is larger than for Group 3, for Group 3



Table 2: Descriptives Example 2
Mean o? N

g1 03023 054 29
ps 0.0537 035 205
ps  0.0508  0.35 954
ps -0.0203 036 215
ps  -0.0907 029 88

is larger than for Group 4 and for Group 4 is larger than Group 5. Anti-social
behaviour was measured with a questionnaire of eight items scored on a 4-point
scale. Table 2 shows for each group, the mean of the factor scores obtained

analyzing these eight items.

3 Inequality constrained hypotheses

The previous section described two examples of inequality constrained hypothe-
ses. This section shows that these inequality constrained hypotheses can be

generalized by formulating them as follows:
H;:Rp > 0, (9)

where R denotes a K x P matrix containing real numbers, and 0 denotes a
vector of length K.
For the inequality constrained hypothesis of Example 1, H;1 : g > {us2, ps, pa}:

1 -1 0 0 i 0
R=|1 0 -1 0|, pu=|"|ando= 0|, (10)
1 0 0 -1 Ha 0
122!
which renders:
p1 — p2 >0
Hi= |p—p3 >0, (11)
1 — pg >0

which is equivalent to H;y : pg > {2, 3, tta }-
For Example 2, Hjo @ p1 > po > pg > g > ps can be written in the



following form:

1 -1 0 0 H 0
M2
0 -1 0 0
R = , = and 0 = , 12
0 1 124 M3 0 (12)
0 0 1 -1 Ha 0
L5
which renders: _
p1— p2 >0
- >0
Hyy = M2 — {3 ’ (13)
p3 — g >0
g — s >0

which is equivalent to H;o @ uy > o > 3 > pha > 5.

The matrix R can also be used in other situations for specifying inequality
constrained hypotheses. Consider, for example, H; : p11 — pio1 > 12 — fi22, that
is a constrained interaction effect for a 2 by 2 factorial design. This hypothesis

can be constructed using:

R=[1 -1 -1 1},;;: andOz[O}. (14)

Another example is H; : po — 1 > p3 — M2, where p; is a control group and
e and ps are treatment groups. This hypothesis states that, the difference
between the two treatment groups is smaller than the difference between the
control group and the first treatment group. This hypothesis can be constructed
using:
H1
R=[-1 2 1], p=|m|and0=]o]. (15)
M3

4 The Bayes Factor

The Bayes factor (Kass & Raftery, 1995) will be used for the comparison of
H,; versus H.. It is a measure of the relative support for both hypotheses. The
Bayes factor for H; versus H. can be derived from the Bayes factor for H; versus
H,. In this section the Bayes factor for H; versus H, is given and explained,
and in Section 4.4 the Bayes for H; versus H, is derived.

As was shown by Klugkist and Hoijtink (2007), the Bayes factor of H; versus



H, can be written as
Ji

Ci

BFia (16)

where f; can be interpreted as the fit and ¢; as the complexity of H;. Both

components will now be further elaborated.

4.1 Complexity

Complexity, ¢;, is measured as the proportion of the prior distribution of H,
in agreement with the constraints of H;. According to the encompassing prior
approach as proposed by Klugkist et al. (2005), Mulder, Klugkist, et al. (2009)
and Mulder, Hoijtink, and Klugkist (2009), the prior for H, in the context of
ANOVA models is:

h(p,0%|Hy) = N(plpo,75) X ... X N(pslpo, 75) (17)

xInv-Gamma(o?|a, b),

where po denotes the prior mean, 7¢ the precision and a and b are respectively,
the shape and the scale parameter of the inverse gamma distribution. From
this, it can be derived that:

1
s o H) = — % b, % o), (18)

where ¢; is the proportion of the prior distribution of H, in agreement with H;.

Note that in the encompassing prior approach the same prior distribution is
chosen for each f;. Furthermore, a and b should be chosen in such a way that it
results in a vague prior. As was shown by Hoijtink (2009), ¢; is independent of
o for hypotheses of the form Ry > 0 if 72 — 0. This vague and default prior
distribution for each j; renders a posterior distribution, and therefore also f;,
that are completely determined by the data. In this sense, the resulting Bayes

factor can be called objective.

4.2 Fit

As was shown by Klugkist et al. (2005), Mulder, Klugkist, et al. (2009) and
Mulder, Hoijtink, and Klugkist (2009), fit, f;, is the proportion of the posterior
distribution of H, in agreement with the inequality constrained hypothesis H;.
The posterior distribution is proportional to the product of the prior and the
likelihood function of the data. For ANOVA models, the likelihood is given by:

- i = i idi)?
Syl o) =] . exp{(y 2ot )}‘ (19)
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4.3 Calculation of complexity and fit

The previous two sections explained the complexity and fit and this section
describes how they can be computed.

The complexity can be estimated using a sample with elements t = 1,...,T
from h(u|H,):

L. Sample i from N (pjlpo,m0) for j=1,...,Jand t =1,...,T
2. Estimate ¢; by the proportion of uf for t = 1,...,T in agreement with H;

Complexity can be estimated using WinBUGS (Lunn, Thomas, Best, & Spiegel-
halter, 2000), which is explained in Appendix A.

When following the above described approach with the specification of the
priors from Section 4.1, it can be shown that the complexity of the hypotheses

used in our examples can be calculated using the following guidelines:
e For H; : g > {pa,...,us}, ci=1/J
o For H, : iy < ... < py, ¢ =1/J!

Consider Example 1 with H;; : p1 > {uo, us, pa}. If four means are sam-
pled from the prior as specified in Equation (17), P(u1 > {p2, u3, pa}|Hea) is
equal to P(uz > {1, p3, pa}|Ha), Plus > {p1, p2, pa}|Ha) or Ppa > {p1, po,
w3t Hg). Therefore each of these four equivalent models has the same complex-
ity: ¢; = 1/4 = 25%.

In the same manner, fit can be estimated using a sample from the posterior

distribution:

1. Sample p! from the posterior distribution for ¢ = 1,...,7. This can be
done using the Gibbs sampler.

2. Estimate f; by the proportion of pu! for t = 1,...,T in agreement with H;

Just like complexity, fit can also be estimated using WinBUGS, this is described
in Appendix B.

To determine the size of the samples from the prior and posterior necessary
to obtain stable estimates of ¢; and f;, the convergence of ¢; and f; can be
monitored. For each example the convergence plots of ¢; and f; will be given in

Section 7.

4.4 The Bayes Factor for H; vs. H.

Since H. is the complement of H;, it follows that f. =1 — f; and ¢, =1 — ¢;.

The Bayes factor of H. versus H, can then be written as:
c 1- [

BF,., = f— = !

ce 1—¢

(20)



Combining Equation (16) and Equation (20), it follows that

~_ BFi, _ fi/ci
BF;. = BE., A= F)/0—c) (21)

The Bayes factor can be interpreted as a relative measure of support. If
BF;. > 1, H; is more supported by the data than H.. If BF;. = 1, none of the
two hypotheses is preferred by the data. For BF;. < 1, H. is more supported by
the data than H;. Note that for Bayes factors the value 1 is a natural decision
point, but it should be clear that a Bayes factor of 50 provides more support
for an hypothesis than a Bayes factor of 1.05 does. By computing the estimates
for ¢; and f; in WinBUGS, BF;. can simply be computed using Equation (21).

5 Error Probabilities

The Bayes factor is a relative measure of support for H; and H., where the
decision which hypothesis is more supported by the data is based on the cut-off
value 1. As is illustrated in Figure 1, if a data-set is sampled from a population
in agreement with H,., there is a non-zero probability, a., that the resulting
Bayes factor is larger than 1. The probability of making a wrong decision for a

data-set sampled from a population in agreement with H,. is given by:
a. = P(BF;. > 1|H.). (22)

Similarly, if a data-set is sampled from a population in agreement with H;,
there is a non-zero probability, a;, that the resulting Bayes factor is smaller
than 1. The probability of making a wrong decision for a data-set sampled from

a population in agreement with H; is given by:
o = ‘P(B‘FZC < 1|Hz) (23)

These error probabilities (Garcia-Donato & Chen, 2005) are the counterparts of
the Type I and Type II errors in the traditional null hypothesis testing frame-
work.

In Section 5.1 and Section 5.2, a simulation study is executed, based on
the inequality constrained hypotheses of the two examples, respectively. For a
variety of situations the error probabilities are calculated. From multiple pop-
ulations, in agreement with H; or H., 1000 data matrices for different sample
sizes are generated. Thereafter, the Bayes factor for each data matrix is com-
puted, resulting in a distribution of Bayes factors for every stated population

and sample size. In WinBUGS, 10,000 iterations are used to generate a sample

10



Figure 1: Error probabilities

from the posterior distribution with a burn-in period of 1,000 iterations.

5.1 Simulation 1

The first simulation is based on the inequality constrained hypothesis of Exam-

ple 1:
Hiy : iy > {p2, g3, pa} (24)

Five populations are used in this simulation. The population means are dis-
played in Table 3. Note that for each group in each population ¢? = 1.0. For
each population, data matrices with different sample sizes are generated (N =
10, 20 and 40). The first two populations are in agreement with H; and are
based on, respectively, a medium effect size of 0.5 for M; and a small effect size
of 0.2 for My according to Cohen’s d (Cohen, 1988):
H1 — p2

d= — (25)
The last three populations are in agreement with H.. The third population
(M3) is the opposite of My, with a Cohen’s d of -0.2. The fourth (M,) and
fifth population (Mj5) have one and two violations, respectively, of the ordering
expected under H; and are based on a Cohen’s d of 0.5.

In Table 3, the models are ordered in such a manner that they range from
the most in agreement with H; to the least in agreement with H;. M; is more
in agreement with H; than Ms, because of the larger effect size of M;. For the
models in agreement with H., Ms, with two violations of the ordering expected
under H;, is expected to be the least in agreement with H;. M3 and M, both
have one violation of the ordering expected under H;.

11



Table 3: Population means used in Simulation 1

H1 M2 3 2z
Models in agreement with H;
M, 05 0.0 00 00
M, 02 00 00 0.0

Models in agreement with H,.
Mz -0.2 00 00 0.0
My, 05 00 1.0 0.0
Ms 05 00 1.0 1.5

It is expected that, for the models in agreement with H;, a; will become
smaller when the sample size is increased. Since M; is more in agreement with
H; than M, because of the larger effect size in M, it is expected that «; for
My will be smaller than «; for M. For the models in agreement with H. the
a. is expected to become smaller with increased sample sizes. Furthermore, it
can be expected that the models that are the least in agreement with H;, so the

most in agreement with H. have the smallest «..

5.1.1 Results Simulation 1

Table 4 shows the results for this simulation. For both models in agreement
with H;, it can be seen that a; becomes smaller with increased sample sizes.
For example, for M; with a sample size of 10 «; = 0.141, with a sample size
of 20 a; = 0.060 and with a sample size of 40 a; = 0.012. For the models in
agreement with H., a,. becomes smaller with increased sample sizes.

As expected, ay; of My, for all sample sizes, is smaller than «; of Ms. This
is because M; is more in agreement with H;. For the models in agreement with
H.,, it can be seen that for each sample size «. is the smallest for M5, the model
that is the least in agreement with H,;. Furthermore, for each sample size a.
is similar for both M3 and My, the two models with one violation to the order
expected under H;. Thus in general, «; is smaller for models that are more in
agreement with H; and o, is smaller for models that are less in agreement with
H;.

Table 4 can be used to check how large the sample size needs to be in combi-
nation with the expected effect size to obtain reasonable error probabilities. For
example, if a medium effect size is expected, the error probabilities are already
small for N = 20 and larger. However, if a small effect size is expected, it can
be seen that the error probabilities are quite high and therefore the possibility
of making a wrong decision needs to be taken into account. Furthermore, the

table shows that for models in agreement with H. the error probabilities are

12



Table 4: Results of Simulation 1
N Q5 Q¢

Models in agreement with H;

M; 10 0.141
20 0.060
40 0.012
M, 10 0.366
20 0.344
40 0.204
Models in agreement with H,
Ms 10 0.229
20 0.144
40 0.097
My 10 0.330
20 0.153
40 0.068
My 10 0.030
20 0.003
40 0.000

relatively small for a sample size of 30 and larger. So for this experiment with
Hiy : py > {pe, ps, pa} a sample size of 30 will lead to relatively small error
probabilities.

5.2 Simulation 2

This second simulation study is a copy of the first simulation study but now

based on the inequality constrained hypothesis of Example 2:
H;s : H1 > o > U3 > g > Us. (26)

Again five populations are used in this simulation. The population means are
displayed in Table 5. Note that for each group in each population o = 1.0.
For each population, data matrices with different sample sizes are generated (N
= 10, 20 and 40). The first two populations are in agreement with H;. The
first population, (M), is based on a Cohen’s d of -0.5 (medium effect size),
so the sample means decrease by 0.5 going from Group 1 to Group 5. The
second population, (Ms), is based on a Cohen’s d of -0.2 (small effect size). The
last three populations are in agreement with H.. M3 and M, have one or two
violations, respectively, of the ordering expected under H;, and are based on
a Cohen’s d of -0.5. The fifth population (M;) is exactly the opposite of My
with a Cohen’s d of 0.2. This means that this model has five violations of the

ordering expected under H;.
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Table 5: Population means used in Simulation 2
Ha M2 M3 2

Models in agreement with H;
My, 20 15 1.0 05 00
M, 08 06 04 02 00

Models in agreement with H,

Ms 20 15 05 1.0 0.0
My, 15 20 05 10 0.0
Ms -08 -06 -04 -0.2 0.0

In Table 5, the five models are ordered in a way that the top model is the one
most in agreement with H; and the bottom one is the model least in agreement
with H;. This automatically means that the last model is also the most in
agreement with H..

Like in Simulation 1, it is expected that, for the models in agreement with
H,;, «; should become smaller with increasing sample size. As well, it is expected
that «; for My will be smaller than «; for M, since M; is more in agreement
with H; than Ms, because the effect size of model M is larger. For the models
in agreement with H., a. is expected to become smaller with increased sample
sizes. Furthermore, it can be expected that for models less in agreement with

H;, a. becomes smaller.

5.2.1 Results Simulation 2

Table 6 shows the results for the second simulation. For both models in agree-
ment with H;, a; becomes smaller with increased sample sizes. For the models
in agreement with H., a. also becomes smaller with increased sample sizes.

As expected, a; of My, for each sample size, is smaller than «; of Ms, since
M is more in agreement with H; because of the larger effect size. For the
models in agreement with H,, it can be seen that for each sample size «. is the
smallest for M5, the model that is the least in agreement with H;. Furthermore,
for each sample size « is smaller for M, than for M3, which is as expected since
M, with two violations of the order expected under H; is less in agreement than
M3 with only one violation. In general, «; is smaller for models that are more
in agreement with H; and «. is smaller for models that are less in agreement
with H;.

Table 6 can be used to determine the sample size needed, in combination
with the expected effect size, to obtain reasonable error probabilities. For a
population in agreement with H;, for both a small and medium effect size, the

error probabilities are already small for a sample size of 20 and larger. However,

14



Table 6: Results of Simulation 2
N Q5 Q¢

Models in agreement with H;
M; 10 0.002

20 0.000
40  0.000
M, 10 0.156
20 0.056
40 0.014
Models in agreement with H,
Ms 10 0.823
20 0.737
40 0.550
My 10 0.527
20 0.303
40 0.095
Mg 10 0.009
20 0.000
40 0.000

it can be seen that with a sample size of 20, the error probabilities are still very
high for populations in agreement with H., so there is still a high probability
of making the wrong decision. Taking these error probabilities into account, a

sample size of at least 40 is needed to keep the error probabilities under control.

6 Robustness

An important assumption of ANOVA models is homogeneity of variances. To
further evaluate the performance of the comparison of H; versus H. using the
Bayes factor, a simulation study is executed to determine the robustness with
respect to violations of this assumption. P-values in the classical ANOVA are
fairly robust to violations of the homogeneity of variance. When the sample
sizes are within a ratio of 4:1 for the largest to smallest group size, then a ratio
of 10:1 is acceptable for the largest to the smallest group variance (Tabachnick
& Fidell, 2007). In this simulation study, both the ratio of the sample sizes as

the ratio of the variances are varied in order to evaluate the robustness.

6.1 Simulation 3

Table 7 shows the population parameters and sample sizes used in this simula-
tion. The models are all based on the first model from Simulation 2 with N = 20,

with decreasing means based on Cohen’s d of -0.5 and o2 of 1.0 per group. M;

15



Table 7: Populations and group sizes used in Simulation 3

Ratio w1 =20 po=15 pu3=10 pg=05 pu5=0.0
Equal sample sizes and increasing o>
My, 11 N 20 20 20 20 20
1:10 o2 0.182 0.591 1.000 1.409 1.818
My, 1:1 N 20 20 20 20 20
1:20 o? 0.095 0.548 1.000 1.452 1.905
Increasing N and increasing o>
Ms 14 N 8 14 20 26 32
1:10 o? 0.182 0.591 1.000 1.409 1.818
My 14 N 8 14 20 26 32
1:20 o? 0.095 0.548 1.000 1.452 1.905
My  1:8 N 4 12 20 28 36
1:10 o? 0.182 0.591 1.000 1.409 1.818
Mg  1:8 N 4 12 20 28 36
1:20 o? 0.095 0.548 1.000 1.452 1.905
Decreasing N and increasing o>
M;  4:1 N 32 26 20 14 8
1:10 o2 0.182 0.591 1.000 1.409 1.818
Mg 4:1 N 32 26 20 14 8
1:20 o? 0.095 0.548 1.000 1.452 1.905
My 8:1 N 36 28 20 12 4
1:10 o2 0.182 0.591 1.000 1.409 1.818
My 8:1 N 36 28 20 12 4
1:20 o? 0.095 0.548 1.000 1.452 1.905

and Ms are based on equal sample sizes but with unequal variances, increasing
from small to large with a ratio of 1:10 for M; and 1:20 for M. The models
M3 through Mg are based on both unequal sample sizes and variances, both
increasing from small to large, with a ratio of 1:4 and 1:8 for the sample size
and 1:10 and 1:20 for the variances. The models M7, through Mg are also based
on both unequal sample sizes and variances, but the sample sizes are decreasing
from large to small while the variances are increasing from small to large.

As in Simulation 1 and 2, 1000 data matrices are generated from these
populations and for each data matrix the Bayes factor is calculated, resulting
in a distribution of BFj, for every population from Table 7.

The results from this simulation are displayed in Table 8. For populations
My and M, it can be seen that «; is not higher than for the original population
with no violations.

The same holds for the populations with both increasing sample size and
variances (Msz - Msg), a; values are not higher than for the original population

with no violations.
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Table 8: Results of Simulation 3

a;
No violations
0.000
Equal sample sizes and increasing o>
M, 0.000
M, 0.000
Increasing N and increasing o>
Ms 0.000
My 0.000
Ms 0.000
Mg 0.000
Decreasing N and increasing o>
M~ 0.014
Mg 0.016
My 0.016
Mo 0.020

The populations M; through Mjg, with decreasing sample sizes and in-
creasing variances, perform slightly worse than the original population with no
violations. «; values are a bit higher but are still rather small. Even for M,
with decreasing sample sizes with a ratio of 8:1 and increasing variances with a
ratio of 1:20, «; is only 0.020.

Thus, looking at the error probabilities of H;, the comparison of H; versus
its complement seems robust to violations of the assumption of homogeneity of

variances.

7 Analysis of the Examples

7.1 Example 1

The inequality constrained hypothesis from Example 1is H;q : ug > {2, ps, pa}-
Appendix A.1 and Appendix B.1 show how the complexity and fit for Example
1 are computed in WinBUGS. To determine the number of iterations necessary
to obtain a stable estimate of the complexity and fit, the convergence should be
inspected. Figure 2 and Figure 3 show the convergence plots of ¢; and f; for
this example. The convergence plots show that 10,000 iteration is enough to
obtain stable estimates of ¢; and f;. A burn-in period of 1,000 iteration is used.

The complexity for this example is 0.252 and the fit of this model is 0.999.
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Figure 2: Convergence plot of the complexity of Example 1

Thus, according to equation (21), the Bayes factor is

0.999/0.252
(1—0.999)/(1 — 0.252)

= 2965.286 (27)

This means that the inequality constrained hypothesis: Hjy : 1 > {ua, 13, fta
is 2965 times more supported by the data than its complement.

As discussed in Section 5.1.1, the error probabilities for this experiment are
relatively small with a sample size of minimal 30 for each group. In this example
data, N = 30 for each group, and moreover, the Bayes factor is 2965. This is
so much evidence for H; that the probability of making a wrong decision in this

case is close to zero.

7.2 Example 2

The inequality constrained hypothesis of Example 2 is H;o : g1 > puo > pug >
ta > ps. Appendix A.2 and Appendix B.2 show how WinBUGS can be used

0.8
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0.0

I T T T T I
0 2000 4000 6000 8000 10000

Iterations

Figure 3: Convergence plot of the fit of Example 1
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Figure 4: Convergence plot of the complexity of Example 2

to obtain the complexity and fit for Example 2. Figure 4 and Figure 5 show
the convergence plots for Example 2. The convergence plots show that 10,000
iteration is enough to obtain stable estimates of ¢; and f;. A burn-in period of
1,000 iteration is used.

The fit is 0.385 and the complexity of the model is 0.009. Thus, according
to equation (21), the Bayes factor is

0.385/0.009
(1—0.385)/(1 — 0.009)

= 68.931. (28)

This means that the inequality constrained hypothesis of Example 2: H;o : 1 >
Lo > i3 > g > is is 69 times more supported by the data than H..

As discussed in Section 5.2.1, a minimum sample size per group of 40 is
needed to keep the error probabilities relatively small. In this example, there
are unequal sample sizes, but this has no effect as shown in Simulation 3. Fur-

thermore, N is only smaller than 40 in one group, the sample sizes of the other
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T
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Figure 5: Convergence plot of the fit of Example 2
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group are well above 40. The Bayes factor is 69, which is strong evidence for
H,;. Therefore, the chance of making a wrong decision is also for this example

very small.

8 Discussion

In this paper, a method is proposed for the comparison of an inequality con-
strained hypothesis with its complement. It was shown that the Bayes factor
can be used to evaluate the comparison between H; and H.. Furthermore, sim-
ulation studies showed that the error probabilities depend on a combination
of sample size and effect size. With larger samples sizes, the error probabili-
ties decrease. Furthermore, with larger effect sizes, the population is more in
agreement with H; and therefore the error probabilities also decrease.

Moreover, it was shown that the new approach for evaluating H; by com-
paring it to H, is robust against violations of the assumption of homogeneity of
variances.

Concluding, if the interest lies in the comparison of an inequality constrained
hypothesis with its complement, than the approach proposed is a valuable ad-

dition to the existing methods.

20



Relevant Literature

Barlow, R. E., Bartholomew, D. J., Bremner, H. M., & Brunk, H. D. (1972).
Statistical inference under order restrictions. New York: Wiley.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (second
ed.). Lawrence Erlbaum Associates.

Cohen, J. (1994). The earth is round (p < .05). American Psychologist, 49,
997-1003.

Garcia-Donato, G., & Chen, M. (2005). Calibrating bayes factor under prior
predictive ditributions. Statistica Sinica, 15, 359-380.

Geraerts, E., Lindsay, D., Merckelbach, H., Jelicie, M., Raymaekers, L., Arnold,
M., et al. (2009). Cognitive mechanisms underlying recovered-memory
experiences of childhood sexual abuse. Psychological Science, 20, 92-98.

Hoijtink, H. (2009). Objective bayes factors for inequality constrained hypoth-
esis. In Manuscript submitted for publication.

Hoijtink, H., Huntjes, R., Reijntjes, A., Kuiper, R., & Boelen, P. (2008).
Bayesian evaluation of informative hypothesis. In H. Hoijtink, I. Klugkist,
& P. A. Boelen (Eds.), (p. Chap. 5). New York : Springer.

Hoijtink, H., Klugkist, I., & Boelen, P. A. (2008). Bayesian evaluation of
informative hypotheses. New-York: Springer.

Kass, R., & Raftery, A. (1995). Bayes factors. Journal of the American Statis-
tical Association, 90, T73-795.

Klugkist, I., & Hoijtink, H. (2007). The bayes factor for inequality and about
equality constrained models. Computational Statistics and Data Analysis,
51, 6367-6379.

Klugkist, I., Laudy, O., & Hoijtink, H. (2005). Inequality constrained analysis
of variance: A bayesian approach. Psychological Methods, 10, 477-493.

Kuiper, R. M., & Hoijtink, H. (2010). Comparisons of means using exploratory
and confirmatory approaches. Psychological Methods, 15, 69-86.

Kuiper, R. M., Klugkist, I., & Hoijtink, H. (2010). A fortran 90 program for
confirmatory analysis of variance. Journal of Statistical Software., 34,
1-31.

Lunn, D., Thomas, A., Best, N., & Spiegelhalter, D. (2000). Winbugs -
a bayesian modelling framework: concepts, structure, and extensibility.
Statistics and Computing, 10, 325 - 337.

Mulder, J., Hoijtink, H., & Klugkist, I. (2009). Equality and inequality con-
strained multivariate linear models: Objective model selection using con-
strained posterior priors. Journal of Statistical Planning and Inference,
4, 887-906.

Mulder, J., Klugkist, 1., Schoot, R. Van de, Meeus, W., Selfhout, M., & Hoijtink,

21



H. (2009). Bayesian model selection of informative hypotheses for repeated
measurements. Journal of Mathematical Psychology, 53, 530-546.

Newcomb, A., Bukowski, W., & Pattee, L. (1993). Children’s peer relations:
a meta-analytic review of popular, rejected, neglected, controversial, and
average sociometric status. Psychological Bulletin, 113, 99-128.

Robertson, T., Wright, F. T., & Dykstra, R. L. (1988). Order restricted statis-
tical inference. New York : Wiley.

Rosenthal, R., & Rosnow, R. (1985). Contrast analysis: focused comparisons
in the analysis of variance? Cambridge University Press.

Silvapulle, M. J., & Sen, P. K. (2005). Constrained statistical inference. order,
inequality and shape contraints. Hoboken, NJ: Wiley.

Tabachnick, B., & Fidell, L. (2007). Using multivariate statistics. Pearson.

Toothaker, L. E. (1993). Multiple comparison procedures. Newbury Park, CA:
Sage.

Van de Schoot, R., Velden, R. van der, Boom, J., & Brugman, D. (2010). Can
at-rik young adoloscents be popular and anti-social? sociometric status
groups, anti-social behaviour, gender and ethnic background. Journal of
Adolescence, 1, 1-10.

Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of
p values. Psychonomic Bulletin & Review, 14, 779 - 804.

22



A Computation of ¢; in WinBUGS

This Appendix shows how WinBUGS can be used to compute the complexity.
The WinBUGS code of both examples is given below.

A.1 WinBUGS code for Example 1

MODEL {

# Specification of the prior *
mul~dnorm(0.0,0.001)
mu2~dnorm(0.0,0.001)
mu3~dnorm(0.0,0.001)
mu4~dnorm(0.0,0.001)

# Calculation of the complexity 2
cl< —step(mul-mu2)
c2< —step(mul-mu3)
¢3< —step(mul-mu4)

complexity< —c1*c2*c3

! Here, the priors are specified with the parameters o and 73 as given in Equa-

2

tion (17). Note that specification of the prior for o is not necessary for the

computation of ¢;.

2 As shown in Section 4.3, the proportion of u! for t = 1,...,T in agreement
with H; needs to be computed. First, c1 —¢3 checks if the relations between the
separate means are in accordance with H;, these are the same steps as given in
Equation (11). Secondly, complexity checks if all the relations are in agreement
with H;. Finally, to obtain the proportion of ! in agreement with H;, the mean

of complexity can be requested in WinBUGS.
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A.2 WinBUGS code for Example 2
MODEL {

# Specification of the prior
mul~dnorm(0.0,0.001)
mu2~dnorm(0.0,0.001)
mu3~dnorm(0.0,0.001)
mu4~dnorm(0.0,0.001)
mub~dnorm(0.0,0.001)

# Calculation of the complexity 3
cl< —step(mul-mu2)
c2< —step(mu2-mu3)
¢3< —step(mu3-mu4)
c4< —step(mud-mub)

complexity< —c1*c2*c3*c4

3 As in the WinBUGS code of Example 1, here the proportion of u! for t =
1,...,T in agreement with H; is calculated by the steps given in Equation (13).
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B Computation of f; in WinBUGS

This Appendix shows how the fit can be computes using WinBUGS. The Win-
BUGS code of both examples is given below.

B.1 WinBUGS code for Example 1

MODEL({

# Specification of the likelihood !
for(i in 1:n){
mufi] < — mul*d1[i] + mu2*d2[i] + mu3*d3[i] + mud*d4[i]

y[i] dnorm(muli],inv-02)}

# Specification of the prior
mul~dnorm(0.0,0.001)
mu2~dnorm(0.0,0.001)
mu3~dnorm(0.0,0.001)
mu4~dnorm(0.0,0.001)
inv-0?~dgamma(0.01,0.01)

# Calculation of the fit 3
fl1< —step(mul-mu2)
f2< —step(mul-mu3)
f3< —step(mul-mu4)
fit< —f1*£2*£3

}

# Specification of the data *
list( n=120)

yll a1l a2l a3 d4f]
0332 1
0212 1

0.341 0 0 0 1
0.289 0 0 0 1
END

# Specification of the initial values 3
list(mul=1.0, mu2=1.0, mu3=1.0,mu4=1.0,inv-0%=1.0)
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I For the computation of the fit, the likelihood function needs to be specified,
this is based on the general likelihood function of ANOVA model as given in
Equation (19).

2 The priors for p are specified with the parameters po and 78 as given in
Equation (17).

3 As shown in Section 4.3, the proportion of ut for ¢t = 1,...,T from the pos-
terior distribution in agreement with H; needs to be computed. First, f1 — f3
checks if the relations between the separate means are in accordance with H;,
these are the same steps as given in Equation (11). Secondly, fit checks if all
the relations are in agreement with H; and finally to obtain the proportion of

p! in agreement with H; the mean if fit can be requested in WinBUGS.
4 The data need to be specified.

5 The initial values for the parameters of the prior need to be specified.
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B.2 WinBUGS code for Example 2
MODEL{

F#likelihood
for(i in 1:n){
mufi] < — mul*d1[i] + mu2*d2[i] + mu3*d3[i] + mud*d4[i] + mu5*d5][i]

y[i] dnorm(muli],inv-02)}

#priors
mul~dnorm(0.0,0.001

( )
mu2~dnorm(0.0,0.001)
mu3~dnorm(0.0,0.001)
mu4~dnorm(0.0,0.001)
mu5~dnorm(0.0,0.001)
inv-o?~dgamma(0.01,0.01)

fl< —step(mul-mu2

( )
f2< —step(mu2-mu3)
f3< —step(mu3-mu4)
f4< —step(mud-mub)
fit< —f1*f2*£3*f4

}

# Specification of the data
list( n=1491)

yll dif] a2} a3 d4f] d5]]
1754 1 0 0 0 0
-85 1 0 0 0 0
-016 1 0 0 0 0

—.424 0 0 0 0 1
445 0 0 0 0 1
—.253 0 0 0 0 1

END

# Specification of the initial values
list(mul=1.0, mu2=1.0, mu3=1.0,mud4=1.0,mu5=1.0,inv-02=1.0)
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