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1 INTRODUCTION

1 Introduction

Over 2000 years ago, famous mathematician Euclid proved in his famous Elements, that there
exist infinitely many primes. Euclid’s arithmetical proof then led to finding the lower bound
π(N) > log(log(N)) for N ≥ 2 where π is the prime counting function π : N → N, which is given
by

π(N) =
∣∣{p ≤ N : p is prime}

∣∣.
Eventually, it was proven independently by mathematicians Jacques Hadamard [6] and Charles
Jean de la Vallée Poussin [7] that, in asymptotic notation,

π(N) ∼ N

log (N)
.

This then tells us that given an arbitrary integer N , the probability that it is prime is given by
the limit

lim
N→∞

π(N)

N
= lim

N→∞

1

log(N)
= 0,

so it follows that while they are infinite, the prime numbers have asymptotic density equal to zero.

A different proof of the infinitude of the prime numbers was an analytical proof written by Leonhard
Euler [1], from which we can find as a corollary that the sum running over all primes p∑

p

1

p
, (1)

is in fact an infinite series. It can then be shown that it diverges. Using Euler’s approach to proving
the infinitude of the primes and the divergence of (1), we can once again find that for N ≥ 2, we
have that π(N) > log(log(N)) [1].

A third remarkable proof of the infinitude of primes was given by Hungarian mathematican Paul
Erdős [1] [5]. This proof uses a combinatorial argument, and while not being the first proof of that
nature, it is the first proof of the sharper lower bound for π of

π(N) ≥ log(N)/(2 log(2)),

making Erdős’ proof stand out from the previously mentioned ones.

As of 2024, there are roughly 200 different proofs of the infinitude of the primes [8]. The aim of this
thesis will be to look at proofs of the infinitude of primes that are either similar to Euclid’s, Eulers
or Erdős’. That is: the Euclid-like proofs all have an arithmetical argument, the Euler-like proofs
all make use of facts from analysis, and the Erdős-like proofs all use ideas from of combinatorics.

We will delve deeper into how these proofs relate to each other, and see a number of creative
approaches to proving the infinitude of the primes.
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2 EUCLID-LIKE ARITHMETIC PROOFS

2 Euclid-like arithmetic proofs

In this chapter, we will look at a variety of proofs that share the arithmetic nature which we see
in Euclid’s original proof of the infinitude of primes. For each proof, we will discuss its similarity
to Euclid’s proof. We will see proofs where this link takes relatively little work to spot, such as
Stieltjes’ [9], and see more involved comparisons as we move along the proofs. Eventually we will
find a generalized method of categorizing proofs which work by constructing infinite sequences of
coprime integers. We start of by recalling what Euclid’s proof looks like, and then move on to
different proofs.

2.1 Euclid’s proof

We first state the following lemma from elementary number theory:

Lemma 2.1. Any integer that is not equal to ±1 has a prime divisor.

Throughout this chapter, we will use this property of the integers repeatedly. We will now com-
mence with Euclid’s proof:

Theorem 2.2. There are infinitely many prime numbers.

Proof. Suppose, for contradiction, that there are only k distinct prime numbers, say p1, . . . , pk.
Now consider the integer

N = 1 +

k∏
i=1

pi.

Note that for all 1 ≤ i ≤ k, we know that pi |
k∏

i=1

pi. As such, if pi |N we must also have that pi | 1,

which is never true. It follows that pi ̸ | N for all 1 ≤ i ≤ k.

However, since every integer not equal to ±1 has at least one prime divisor, and N > 1, N must
have a prime divisor p. We conclude that p is a prime number which is not in our original list,
which is a contradiction since we assumed there are precisely k prime numbers.

The main argument we see in Euclid’s proof is that if there were finitely many prime numbers,
doing some arithmetic construction we find out that there exists some integer which has a prime
divisor not in our original finite set of prime numbers, which leads to a contradiction. In the
following proof done by Stieltjes, we see a very similar argument being used.

2.2 Stieltjes’ proof

Proof. Suppose p1, . . . , pk is a finite set of distinct prime numbers and let AB = p1 · · · pk be any
factorization of their product. Since AB is squarefree, note that none of the pi divide both A and
B since otherwise p2i would have to divide AB. As such, none of the pi divide the sum A+B, so
it has a prime divisor which is not in our original list.

As mentioned earlier, even at a glance Stieltjes’ proof feels very similar to Euclid’s. This becomes
especially apparent when we realize we can set A = 1, B = p1 · · · pk, in which case we get that
A+B = 1+ p1 · · · pk. This particular choice of A and B leads to the exact same argument as the
one we saw in Euclid’s proof.
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2.3 Eulers second proof 2 EUCLID-LIKE ARITHMETIC PROOFS

2.3 Eulers second proof

The following proof is the second proof Euler gave on the infinitude of primes. It uses the fact that
the Euler totient function is multiplicative.

Proof. Let p1, . . . pk be any finite list of primes. Since we know that there are at least 2 prime
numbers, namely 2 and 3, we can assume without loss of generality that k ≥ 2. Let φ denote the
Euler totient function. Using the multiplicative property of φ we get that

φ(

k∏
i=1

pi) =

k∏
i=1

φ(pi) =

k∏
i=1

(pi − 1).

Since we assumed k ≥ 2 our list of primes contains at least k− 1 prime numbers which are greater
than 2. As such, we have that

k∏
i=1

(pi − 1) ≥ 2k−1 ≥ 2,

so there exists at least one integer n which is greater than 1 which is coprime to
∏k

i=1 pi. As such,

n has a prime divisor which is coprime to
∏k

i=1 pi, so we have found a prime number which is
not equal to one of p1, . . . , pk, from which we can conclude that there are infinitely many prime
numbers.

To see why this proof is similar to Euclid’s, lets take a deeper look at its main punchline. This of
course is the result that there exists at least one integer n which is less than and coprime to

k∏
i=1

pi.

The proof is in essence a slight abstraction of Euclid’s argument. Instead of constructing a specific
integer which is relatively prime to all primes in the original list, Euler’s proof shows that such an
integer should exist without giving a specific example.

We can find an explicit example of a possible n that Euler’s second proof is alluding to, namely

n = −1 +

k∏
i=1

pi.

This is only a sum of 2 apart from the integer we constructed in Euclid’s proof, which goes to show
that in the end the argument used in Euler’s proof is closely related to Euclid’s.
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2.4 Furstenberg’s topological proof 2 EUCLID-LIKE ARITHMETIC PROOFS

2.4 Furstenberg’s topological proof

We will first state Furstenberg’s topological proof on the theorem. Afterwards, we will be discussing
its similarity to Euclid’s well-known elementary number theory proof of the same theorem by
exploring an argument given by mathematician Keith Conrad [2].

Before giving Furstenberg’s proof, we define the following topology on Z:

We say U ⊆ Z is open if one of the following holds:

(i) U is the empty set

(ii) For all a ∈ U there exists an integer m ≥ 1 such that the arithmetic progression

a+mZ := {a+m · c | c ∈ Z}

is fully contained in U .

Equivalently, we say that U is open if it is empty, or if it can be written as a union of arithmetic
progressions. We show that this indeed defines a topology on Z:

1. The empty set and Z are open:

The empty set is open by (i), and Z is open since we can write Z = 0 + 1 · Z, so it satisfies
property (ii).

2. Arbitrary unions of opens are open:

Let {Ui}i∈I be some collection of opens in Z. Pick a ∈
⋃

i∈I Ui arbitrarily. Then a ∈ Uj for
some j ∈ I, so there exists an integer m ≥ 1 such that

a+mZ ⊆ Uj ⊆
⋃
i∈I

Ui,

which is what we wanted to show.

3. Finite intersections of opens are open:

Let U1, . . . , Uk be a finite amount of opens in Z. Observe that if
⋂k

i=1 Ui = ∅, it is open

by (i) so we can assume without loss of generality that
⋂k

i=1 Ui ̸= ∅. Now pick a ∈
⋂k

i=1 Ui

arbitrarily. Then it follows that for all i = 1, . . . , k we have some integer mi ≥ 1 such that
a+miZ ⊆ Ui. It follows that a+m1 ·m2 · · ·mkZ ⊆ Ui for all i = 1, . . . , k, so we have that

a+m1 ·m2 · · ·mkZ ⊆
k⋂

i=1

Ui,

which is what we wanted to show. We conclude that properties (i) and (ii) define a topology
on Z.

Remarks:

a) All non-empty opens in Z are infinite sets. This follows from the fact that they contain at
least one arithmetic progression, which is an infinite set.

b) Arithmetic progressions are both open and closed in Z. The proof of this remark goes as
follows:

Let a+mZ be some arithmetic progression, then it can be written as the union of arithmetic
progressions (namely a+mZ itself) so it is open.

Now to show it is closed, note that the complement of a +mZ is precisely the union of all
arithmetic progressions r+mZ where 1 ≤ r ≤ m and r ̸≡ a mod m, which by the first part
of our argument is the union of opens and therefore open.

6



2.5 Goldbach’s proof 2 EUCLID-LIKE ARITHMETIC PROOFS

Furstenberg’s proof

Proof. Consider the following union:

V :=
⋃

p is prime

pZ.

Note that each individual pZ is closed in Z by remark b). By the unique prime divisor property
of the integers, we then have that ⋃

p is prime

pZ = Z− {±1}

so its complement is equal to {±1}. By remark a), this set is not open since it is a finite non-empty
set. This implies that V is not closed.

Since the finite union of closed sets is closed, V can not be a finite union, so there must be infinite
prime numbers.

Furstenberg’s proof mostly makes use of the properties of arithmetic progressions, while the biggest
argument made with use of topology is that finite unions of closed sets are closed. We analyze this
particular claim further.

To verify that
⋃k

i=1 piZ is closed, we need to show its complement

I :=

k⋂
i=1

(Z− piZ) = {a ∈ Z : pi ̸ | a, i = 1, . . . , k}

is open. Note that this set contains ±1, which implies it is non-empty. Now this implies we can
pick a from the complement arbitrarily. Since p1, . . . , pk all don’t divide a, this implies that all the
pi don’t divide any of the elements of a+p1 · · · pkZ either, from which we conclude the complement
is open, so I is closed.

The main idea behind Furstenberg’s proof is that for a finite amount of prime numbers, the
intersection I contains arithmetic progressions which makes it open, while the set {±1} can not
be open due to contradiction with remark a). Now, since we know that 1 ∈ I, so is the arithmetic
progression 1+p1 · · · pkZ. In other words, the complement of all multiples of prime numbers I can
not be equal to {±1} since it contains numbers of the form 1+p1 · · · pkc for c ∈ Z. When choosing
c = 1, we see that this argument is the exact same as the one that is made in Euclid’s proof, so
we conclude that they are in fact very similar proofs.

It turns out that Furstenberg’s proof of the infinitude of primes, though seemingly unique at first,
is in fact a reinterpretation of Euclid’s classical proof. After going through the motions of defining
a topology on Z, in the end we never ended up needing any arguments that can only be made using
topology. Instead, we found that by making small observations to the part of the proof which uses
topology, it reveals the same argument as the on from Euclid’s proof.

2.5 Goldbach’s proof

In the following sections we will be looking at proofs which a priori use a slightly different, approach
when compared to Euclid’s proof. The first of these proofs we will be going over is Goldbach’s [9].
We will eventually see that even though Goldbach’s proof may seem to take a different approach
than Euclid’s, we can find its similarity to Euclid’s proof by giving an intermediate proof that uses
both Euclid and Goldbach’s approach.

In the end, we will find that there is a fairly natural way of changing Euclid’s proof into a proof
using the method we see in Goldbach’s proof. Goldbach’s proof goes as follows:
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2.6 Pólya’s proof 2 EUCLID-LIKE ARITHMETIC PROOFS

Proof. We define the following sequence (ni)i∈N as follows: Set n1 = 3 and define

nk+1 = 2 +

k∏
j=1

nj . (2)

We make the following observations:

a) Each ni is odd. This follows from a simple induction argument.

b) For all j > i we have nj ≡ 2 mod ni. We prove this as follows:

Suppose after all that j > i. Then

nj = 2 +

j∏
k=1

nk = 2 + ni

( j∏
k=1,k ̸=i

nk

)
≡ 2 mod ni.

c) Whenever i ̸= j, we have that ni and nj are relatively prime to eachother. We prove this by
combining the previous 2 items as follows:

Suppose m |nj and m |ni. Without loss of generality assume that j > i. Then by b), we
must have that nj = 2 + nik for some integer k.

Since a) tells us nj is odd, so is nik. It follows that nik and 2 are relatively prime. This
implies that m |nj if and only if m | 2 and m |nik. We conclude m = 1 as this is the only
integer that divides both even and odd integers.

Now since each new entry to the sequence (ni)i∈N is relatively prime to all previous entries and
larger than 1, it has a prime divisor which none of the previous entries has. Since the sequence is
infinite, so is the set of all primes.

Both this proof and Euclid’s use some arithmetic construction to conclude that some integer which
has a new prime number as a divisor exists, but do so in slightly different ways. It turns out we
can do even better in finding out just how related Goldbach’s proof is to Euclid’s: We will make
the connection between Euclid’s proof and proofs using infinite coprime integer sequences more
clear in section 2.7, where we introduce some theory on dynamical systems.

Before doing this, instead we take a look at a proof by Pólya, and clear up a small misconception
surrounding Goldbach and Pólya’s proofs.

2.6 Pólya’s proof

In the following proof we introduce Fermat numbers, and prove that all Fermat numbers are
relatively prime to eachother, from which we conclude the infinitude of primes just like we did
with Goldbach’s proof.

Proof. We define the nth Fermat number Fn as

Fn = 22
n
+ 1.

We show that all distinct Fermat numbers are relatively prime. Suppose that Fn and Fp are two
Fermat numbers. Without loss of generality, we assume that Fp = Fn+k for some integer k ≥ 1.
Furthermore, suppose that m |Fn and m |Fn+k. Then note that when setting x = 22

n
, we have

that Fn = x+ 1, and Fn+k − 2 = x2k − 1.

Note that if we view Fn+k−2 as a polynomial in x, it has x = −1 as a root. Since each polynomial

factors into its roots, we then must have that x + 1 |x2k − 1, or in other words Fn |Fn+k − 2. It
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2.7 Infinite coprime integer sequences 2 EUCLID-LIKE ARITHMETIC PROOFS

follows that m |Fn+k − 2 and m |Fn+k, so m = 1 or m = 2. Since every Fermat number is odd,
m = 1.

In this proof, we constructed an infinite sequence of relatively prime integers from which we imme-
diately are able to conclude the infinitude of the prime numbers. This is the exact same argument
that was made in Goldbach’s proof. It becomes especially apparent when we realize that with
Goldbach’s proof, one can show by induction that

ni = 22
i−1

+ 1,

so the sequence used in Goldbach’s proof uses Fermat numbers as well. The recursive definition (2)
for ni seems at first like it gives a slightly different proof compared to Pólya’s, when in actuality
they are the exact same proofs.

The proof using Fermat numbers is commonly attributed to Pólya due to it being credited in well
known number theory works [10], but Goldbach had already written the same proof before Pólya
did. Part of this confusion was caused by the fact that while Goldbach was the first to find that
the Fermat numbers are relatively prime, he did not use it to make the implication that there are
infinitely many prime numbers [11].

2.7 Infinite coprime integer sequences

The main punchline of Euclid’s proof is that given any set of relatively prime integers a1, . . . ak,
they are all relative prime to the new integer a1 ·a2 · · · ak−1 ·ak+1. In the following section, we will
take this argument and use it to construct an infinite sequence of coprime integers, and eventually
find a way to classify these proofs [12]. In doing this, we will work towards definitively finding the
connection between these types of proofs and Euclid’s. In the end, we look further into classifying
all proofs using these infinite sequences.

Euclid’s proof modified

Proof. We define the following sequence of integers: Set a0 = 2, a1 = 3, and recursively define

ai+1 = a0 · a1 · · · ai + 1.

We show that (an)n∈N defines a sequence of coprime integers. Let am and an be two integers from
this sequence. Suppose without loss of generality that m < n, then note that

am | a0 · a1 · · · an−1 = an − 1.

As such, we have that
gcd(am, an) | gcd(an−1, an) = 1.

So gcd(am, an) = 1.

Note that alternatively we could have written

ai+1 = a0 · a1 · · · ai + 1 = ai(ai − 1) + 1 = a2i − ai + 1,

so ai+1 = f(ai) where f(x) = x2 − x+ 1. Using this polynomial, we can derive yet another proof.
This rephrasing of Euclid’s modified proof will introduce a pattern which we will be exploring
further afterwards.
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2.7 Infinite coprime integer sequences 2 EUCLID-LIKE ARITHMETIC PROOFS

Euclid’s modified proof rephrased

We introduce the following lemma:

Lemma 2.3. Let r, s be two distinct integers and let f ∈ Z[x]. Then r − s divides f(r)− f(s).

Using this lemma, we can derive the following proof of the infinitude of primes:

Proof. Set a0 = 2, and define recursively an+1 = f(an) where f(x) = x2 −x+1. We show that an
and am are relatively prime whenever n ̸= m (or, without loss of generality when n > m). Suppose
r ≡ s mod p for any prime p. So by Lemma 2.3. f(r) ≡ f(s) mod p. Suppose that p | am, then
it follows that

am+1 = f(am) ≡ f(0) = 1 mod p.

In general, for any n = m+ k > m we have that

an = am+k = f(am+k−1) = f(f(f(. . . (am)))) ≡ 1 mod p,

so an ≡ 1 mod p for all n > m. It follows that gcd(an, am) = 1, so they are relatively prime.

Orbits in coprime sequence proofs

In the rephrased version of our modified version of Euclid’s proof, we used a sequences generated by
a polynomial in Z[x]. More generally, the sequence (xi)i∈N of coprime integers is given inductively
by

xi+1 = f(xi)

for some polynomial f . Such a sequence is an example of a dynamical system.

In Euclid’s modified proof, we assumed that p divides xm (so xm is zero mod p), and then observe
that

xn ≡ 1 mod p

for all n > m. We introduce the following terminology to make more sense of this.

Definition 2.4. The orbit of xm ∈ (xi)i∈N under the map f are all elements of the sequence
(xn)n≥m. It is denoted as

xm → xm+1 → xm+2 → . . . .

Definition 2.5. We call the orbit of x0 under the map f periodic if x0 = xk for some k ≥ 0. We
call x0 pre-periodic if it eventually becomes periodic.

Example 2.6. The orbit of 0 under f(x) = x2 − x + 1, the polynomial we used for Euclid’s
modified proof, is

0 → 1 → 1 → . . . ,

and 0 is pre-periodic.

From this example we see that Euclid’s rephrased proof’s main argument is that 0 is (stricly)
pre-periodic. After all, if this is the case, whenever an element from the sequence (xm)m∈N is zero
mod some prime p, all elements which come afterwards are not. This is exactly the property which
we want our sequence to have.

One can show that the following lemma is true:

Lemma 2.7. All dynamical systems have periods of length at most 2.

This lemma has the following usefull corollary, which we can use to get a classification of infinite
coprime integer sequences:

Corollary 2.8. If 0 is pre-periodic for the dynamical system given by f ∈ Z[x], then its orbit is
one of the following four possibilities:
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2.7 Infinite coprime integer sequences 2 EUCLID-LIKE ARITHMETIC PROOFS

• The orbit
0 → a → a → . . .

We get this case using for example the polynomial f(x) = x2 − ax+ a.

•
0 → −a → a → a → . . . .

This works for a = −1,−2, 1 or 2. When a = 2, we find for example f(x) = x2 − 2 works.

• The orbit
0 → ±1 → a → ±1 → . . . ,

from which the first case is obtained from for example f(x) = x2−ax− 1. If we replace f(x)
with −f(−x), we get the case with flipped signs instead.

• The orbit
0 → ±1 → ±2 → ∓1 → ±2 → . . .

which follows for example from f(x) = 1 + x+ x2 − x3. If we replace f(x) with −f(−x), we
get the case with flipped signs instead.

Example 2.9. The Fermat numbers are a dynamical system under the map f(x) = x2 − 2x+ 2:

Proof. Recall that we defined
Fn = 22

n
+ 1,

so
Fn+1 = 22

n+1
+ 1 = (22

n
+ 1)(22

n − 1) + 2 = Fn(Fn − 2) + 2 = f(Fn).

If we compute the orbit of 0 under f , we get

0 → 2 → 2 → . . . ,

which corresponds to the first bullet of Corollary 2.8.

From the results of Example 2.6. and Example 2.9. we can conclude that Goldbach/Pólya’s proof
using Fermat numbers is indeed very similar to Euclid’s (modified) proof. After all, they are both
proofs in which we show a that all the integers of some dynamical system are relatively prime. In
fact, the polynomials used in the proofs even have orbits of the same form.
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3 EULER-LIKE ANALYTICAL PROOFS

3 Euler-like analytical proofs

This chapter will focus on proofs that have an analytical flavor similar to Euler’s first proof of the
infinitude of primes. In particular, we will explore a proof given by Euler which uses the properties
of the geometric and harmonic series [1]; a proof by Chebysheff that combines the properties of
geometric series with those of the logarithmic function [3]; and a proof by Barnes which combines
theory on continued fractions and non-Pellian equations [3] [4]. While these proofs all have a very
distinct feel to them, their similarity as proofs with an analytical framework will come to light as
well.

3.1 Euler’s proof using the geometric and harmonic series

The first proof we will examine is the first proof Euler wrote on the infinitude of primes. It uses
a neat observation on the product of a particular set of geometric series and its convergence. The
(non-)convergence of particular objects is something which we will very clearly see in Chebysheff’s
proof as well.

Euler’s proof

Proof. Suppose there are only finitely many prime numbers, write p1, . . . pr. For any fixed prime
number p, we consider the following geometric series:

1

1− 1/p
=

∞∑
k=0

1

pk
.

Let pm and pn be 2 arbitrary distinct prime numbers. Then we make the observation that

1

1− 1/pm
· 1

1− 1/pn
=

( ∞∑
km=0

1

pkm
m

)
·
( ∞∑

kn=0

1

pkn
n

)
=

∞∑
km=0

∞∑
kn=0

1

pkm
m pkn

n

,

which is precisely the sum of reciprocals of all integers which can be factorized using only pm and
pn. More generally, we see that

∏
1≤i≤r

1

1− 1/pi
=

( ∞∑
k1=0

1

pk1
1

)
· · ·

( ∞∑
kr=0

1

pkr
r

)
=

∞∑
k1=0

· · ·
∞∑

kr=0

1

pk1
1 · · · pkr

r

.

Since the above sum is precisely the sum of reciprocals of all possible prime factorizations of the
non-negative integers which can be constructed with p1, . . . , pr, and all non-negative integers have
such a unique prime factorization, we must have that

∏
1≤i≤r

1

1− 1/pi
=

∞∑
k1=0

· · ·
∞∑

kr=0

1

pk1
1 · · · pkr

r

=

∞∑
n=0

1

n
,

which is the harmonic series. Since the harmonic series diverges, so must

∏
1≤i≤r

1

1− 1/pi
,

which is a contradiction since we assumed this to be a finite product of converging series, which we
know to be a converging series as well. We conclude the above product must be infinite instead,
so there are infinitely many prime numbers.
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3.2 Chebysheff’s proof using the geometric series 3 EULER-LIKE ANALYTICAL PROOFS

3.2 Chebysheff’s proof using the geometric series

The following proof uses an upper bound for a particularly interesting geometric series, to find a
lower bound for the sum

∑
p≤N

log(p)/(p− 1),

with N sufficiently large and p prime. Since the lower bound we end up finding converges as
N → ∞, so must the above sum, which is how we conclude there are infinitely many prime
numbers. To arrive at our desired lower bound, we introduce some notation and then make some
observations.

Notation. Suppose that p is a prime number dividing N !. We write a(p,N) for the exponent of
p in the unique prime factorization of N !.

Observation. One can observe that a(p,N) =
∞∑
k=1

⌊N/pk⌋. After all, for k = 1 we see that

⌊N/pk⌋ = N/p = |{pm ≤ N |m ∈ N}|. Each of the elements of this set is a multiple of p
that occurs in N !. Similarly when k = 2, the elements from the previous set that contain p
in their unique prime factorization twice get detected again, and so on. It follows that indeed
a(p,N) =

∑
k=1

⌊N/pk⌋. This is known as Legendre’s formula.

Observation. We have that

a(p,N) =

∞∑
k=1

⌊N/pk⌋ <
∞∑
k=1

N/pk =

∞∑
k=1

(N/p)(1/p)k−1,

which is a geometric series, converging to

N/p

1− (1/p)
=

N

p− 1
.

Chebysheff’s proof

Proof. Consider the finite sum ∑
p≤N

log(p)/(p− 1).

Then from our previous observations and the basic properties of the logarithmic function, we find
that

∑
p≤N

log(p)/(p− 1) >
∑
p≤N

a(p,N) log(p)/N =
∑
p≤N

log(pa(p,N))/N = log(N !)/N.

It is known that log(N !)/N converges to log(N) when we take the limit N → ∞ (the proof follows
from substituting Stirling’s approximation of N ! into the fraction log(N !)/(N log(N)), and then
taking the limit N → ∞), so we can certainly state that

log(N !)/N > log(N)− 1

for N sufficiently large. We conclude that
∑
p≤N

log(p)/(p − 1) > log(N) − 1 for N large enough,

so when taking the limit N → ∞ the sum cannot be finite and there must therefore be infinitely
many primes.

13
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We see the analytical nature of Chebysheff’s proof clearly when finding the upper bound of a(p,N),
as this uses the convergence of the geometric series just like we did in Euler’s proof. Another
argument from analysis we see in the proof is the convergence of log(N !)/N to log(N) when N
tends to infinity.

3.3 Barnes’ proof using continued fractions

Barnes’ proof uses results on continued fractions and non-Pellian equations, a special type of
diophantine equation. We start with defining continued fractions and non-Pellian equations to
build the theory which we need for Barnes’ proof.

Definition. A continued fraction, denoted [a0, a1, a2, . . . ], is the fraction

a0 +
1

a1 +
1

a2 +
.. .

.

Its approximants are the rational numbers obtained from terminating the continued fraction at

some point: the 0th approximant is a0, the 1st is a0 +
1

a1
and so on. We write Ai, Bi for the

numerator and denominator respectively of the ith approximant (for i ∈ N).

Example 3.1. In the standard form we gave above, we see that A0 = a0, B0 = 1 since A0/B0 = a0

and A1 = a0 · a1 + 1, B1 = a1 since then A1/B1 =
a0 · a1 + 1

a1
= a0 +

1

a1
. In general one can show

that for i > 1,
Bi+1 = ai+1Bi +Bi−1.

Lemma 3.2. Every periodic continued fraction (a continued fraction with eventually periodic iter-

ates) is a quadratic irrational. For p ∈ N, the continued fraction [p, p, p, . . . ] is equal to
p+

√
p2 + 4

2

We now take a look at non-Pellian equations, and state an important result which we will use to
eventually link it back to continued fractions:

Definition. We define the non-Pellian equation as the Diophantine equation of the form

x2 − dy2 = −1.

Lemma 3.3. Suppose that the simple continued fraction of
√
d has an odd period m. Then for the

non-Pellian equation x2 − dy2 = −1, all of its positive solutions are of the form (x, y) = (Ai, Bi)
with Ai and Bi as before and i = qm− 1 with q odd.

Barnes’ proof

Proof. Assume that p1, . . . , pk are all the prime numbers. Write P =
∏
i=1

pi, and Q =
∏
i=2

pi, where

p1 = 2 and Q becomes the product of all odd primes. By the p = P case of Lemma 3.2., we see
that

[P, P, P, . . . ] =
P +

√
P 2 + 4

2
= Q+

√
Q2 + 1.

Observe that since Q2 + 1 ≡ 1 mod pi, we see that pi ̸ | Q2 + 1 for all i > 1. This then implies
that Q2 + 1 has to be a power of 2.

Note that if Q2 + 1 is an even power of 2, it would follow that Q+
√
Q2 + 1 is rational which is a

contradiction since infinite continued fractions are irrational. It follows that Q2+1 = 22l+1, which
we can rewrite as the equality

Q2 − 2 · (2l)2 = −1,

so the non-Pellian equation has a solution for x = Q, d = 2, y = Q2 + 1. It is known that
√
2 = [1, 2, 2, 2, . . . ],

14



3.3 Barnes’ proof using continued fractions 3 EULER-LIKE ANALYTICAL PROOFS

which is a periodic continued fraction with period 1. It follows from Lemma 3.3. that all its
positive solutions are of the form (Q, 2l) = (Ai, Bi) for some even integer i = 2n. One can show
using induction that B2n is an odd integer for all n ∈ N. So, since 2l is even for all l > 1, we must
have that 2l = B0 implying that

Q

2l
=

A0

B0
=

1

1
,

so Q = 1 since gcd(Q, 2l) = 1. This is a contradiction since clearly Q > 1.

This proof uses many different properties of continued fractions. Studying these fractions is akin
to studying limits, as a continued fraction is precisely the limit of the infinite row

[a0], [a0, a1], [a0, a1, a2], . . .

where [a0, . . . , an] is shorthand notation for the n−th approximant of the continued fraction
[a0, a1, a2, . . . ]. Realizing this fact, it becomes rather clear that Barnes’ proof has a very ana-
lytical approach.

It almost looks like Euclid’s argument gets used when the observation gets made that pi ̸ | Q2 + 1
for all i > 1, but the fact that this does not hold for i = 1 keeps the two arguments from being
exactly the same.
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4 ERDŐS-LIKE COMBINATORIAL PROOFS

4 Erdős-like combinatorial proofs

In this chapter, we will examine proofs which use combinatorics. A well known example of this,
is Paul Erdős’ proof, which uses combinatorics to derive a lower bound for the prime counting
function [5]. This lower bound will be sharper than the one which we can obtain using Euclid’s
and Euler’s proof.

4.1 Erdős’ proof

We introduce the following lemma, which is essentially a rephrasing of the unique prime factoriza-
tion property of the integers larger than 1:

Lemma 4.1. Let N be a positive integer. Then we can uniquely factorize N = a2b where a, b are
positive integers, and b is squarefree.

We are now ready to prove the infinitude of primes:

Proof. Suppose, for contradiction, we have finitely many primes, say p1, . . . , pk. By Lemma 4.1.,
for any fixed N ∈ N we have that any 1 ≤ x ≤ N can be uniquely written as x = a2b with a, b as
in Lemma 4.1.

Since a2 ≤ x ≤ N , we observe that a2 ≤ N , so in particular a ≤
√
N . Since b is squarefree, and

there are exactly k different prime numbers, there are 2k distinct candidate factorizations for b.

As such, it follows that there are
√
N2k different possible ways of writing a2b given a finite set of

prime numbers. Since we are able to do this uniquely for all 1 ≤ x ≤ N , it follows that

N ≤
√
N2k.

Squaring both sides and dividing by N yields the inequality

N ≤ 22k,

for all N ∈ N, which is a contradiction since 22k is a constant but N is not bounded from above.
We conclude that there must be infinitely many prime numbers.

Erdős’ proof is very distinct from the Euclid- and Erdős-like proofs we have seen thus far. The
proofs from the previous chapters seemed to all contain some sort of construction of a prime divisor
which is not a part of the list of primes used in said construction, or explore a certain niche from
analysis, where Erdős’ proof is more combinatorial in nature. To further illustrate the difference
between Euclid and Erdős’ proofs, we consider the following corollary that we can derive from
it. More precisely, this is the statement which Erdős’ original proof was intended for and it is a
stronger result than the infinitude of the prime numbers:

Corollary 4.2. Let π be the prime counting function. Then

π(N) ≥ log(N)/(2 log(2)).

Proof. Let p1 . . . , pπ(N) denote all prime numbers less than or equal to N for some N ∈ N. Then
we have that

2π(N)
√
N ≥ N,

so
22π(N) ≥ N.

Taking the base 2 logarithm and dividing by 2 on both sides then yields the inequality

π(N) ≥ log2(N)/2 = log(N)/(2 log(2)).
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Euclid and Euler’s proofs also yield a lower bound for the prime counting function, but it is worse
than the one we get from Erdős’ proof. The lower bound we can derive from Euclid and Euler’s
proofs was π(N) > log(log(N)) for N ≥ 2, which contains an extra log when compared to the
lower bound we just found.

4.2 Thue’s proof

The following proof was given by mathematician Axel Thue in 1897 [14]. Whereas Erdős’ proof
works by counting unique factorizations in the form of Lemma 4.1., Thue’s proof instead focusses
on sequences of exponents of unique prime factorizations.

Proof. Assume that p1, . . . , pk are all of the prime numbers. Then we know that for any fixed
n ∈ N we can uniquely factorise it in the form n = pa1

1 · · · pak

k . Furthermore, in this case we can
observe that n < 2m for some m ∈ N since N is not bounded from above. Since we know that 2 is
the smallest prime number, substituting p1 = 2 shows us that

n = pa1
1 · · · pak

k = 2a1 · · · pak

k < 2m,

from which we see that
a1, a2, . . . , ak−1, ak < m.

From this we can conclude that 0 ≤ ai ≤ m− 1 for all 1 ≤ i ≤ k, so there are mk different possible
sequences a1, . . . , ak of exponents of the unique prime factorization of n.

Now note that since mk < 2m for m sufficiently large, there are not enough ways to uniquely
factorise every integer less than 2m with finitely many prime numbers, so our assumption that
there are only finitely many prime numbers must have been wrong.

This proof is very similar to the one which Erdős wrote a couple of decades after Thue’s proof was
published. With both proofs, the main punchline is that given a finite set of prime numbers, you
cannot constuct a high enough amount of unique factorizations that satisfy a certain constraint.

In other words, these proofs formalize the intuition that without infinitely many prime numbers,
some integers get skipped when going over all unique factorizations we can possibly make using
finetely many primes.

4.3 Wunderlich’s proof

This proof uses the Fibonacci number sequence, which we define recursively by setting F1 = F2 = 1,
and

Fk = Fk−1 + Fk−2.

Lemma 4.3. Given Fibonacci numbers Fn and Fm with gcd(n,m) = d. Then gcd(Fn, Fm) = Fd.

We are now ready for Wunderlich’s proof [13].

Wunderlich’s proof using Fibonacci numbers

Proof. Assume that

{p1, p2, p3, . . . , p12 . . . , pk} = {2, 3, 5, . . . , 37, . . . , pk}

is the set of all prime numbers. We now consider the Fibonacci numbers with prime index:

F2, F3, . . . , F37, . . . , Fpk

By the above lemma, gcd(Fpi
, Fpj

) = 1 whenever i ̸= j. It follows that any two Fibonacci numbers
with prime index are relatively prime. Aditionally, every prime indexed Fibonacci number (besides
F2 = 1) admits has a unique prime divisor. In total we find k − 1 distinct prime numbers.
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This then implies that there is no single Fibonacci number which has three distinct prime divi-
sors. However: F37 = 73 · 149 · 2221 is the product of three distinct prime numbers, which is a
contradiction.

We derive our contradiction from the fact that we cannot construct k prime-indexed Fibonacci
numbers using only k primes, which is once again a very combinatorial argument. Note that since
we assumed that k is a finite integer, the sequence of prime-indexed Fermat numbers is not an
infinite coprime integer sequence as it is assumed to be finite.

4.4 Perott’s proof

The following proof is a proof which may seem analytical at first as it starts off by deriving an
upper bound for a series, but in actuality we will see its main argument uses mostly combinatorics,
so it does have more in common with Erdős’ proof than Euler’s proof.

We first consider the series

∞∑
n=1

1

n2
.

Observation. One can show that

∞∑
n=1

1

n2
= 1+

1

4
+

∞∑
n=3

1

n2
<

5

4
+

∞∑
n=3

1

n(n− 1)
=

5

4
+

∞∑
n=3

1

n− 1
− 1

n
=

5

4
+

∞∑
n=2

1

n− 1
−

∞∑
n=3

1

n
=

5

4
+

1

2
=

7

4
.

We are now ready to state Perott’s proof [3].

Proof. Define δ = 2−
∞∑

n=1

1

n2
. Then from our previous observation we know that δ >

1

4
.

Suppose that p1, . . . pk are all the primes. It follows that the number of squarefree integers less
than or equal to N is at most 2k. We also know that there are at most N/d2 integers m which are
divisible by d2.

It follows that the number of integers less than or equal to N which are divisible by a square d2 > 1
is bounded from above by the sum

N∑
d=2

N

d2
= N ·

(
(

N∑
d=1

1

d2
)− 1

)
,

which after substituting in δ is equal to N(1− δ). Adding up our upper bounds for squarefree and
non-squarefree integers that are less than or equal to N , we find the inequality N ≤ 2k +N(1− δ),
so

2k ≥ Nδ > N/4,

so we find that k > log2(N/4) = log2(N) − 2 =
log(N)

log(2)
− 2, which is a contradiction for large

enough N .
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The main argument of Perott’s proof is once again very similar to the one we see in Erdős’ proof.
Namely, they share the combinatorial argument that there are at most 2k squarefree integers
contructable with k primes. Repeating a similar argument to the one we did with Erdős’ proof, we

find that π(N) ≥ log(N)

log(2)
− 2, which differs from the lower bound we found in Corollary 4.2. only

by a factor and a constant.

At first, one might be thrown off by the estimation that was done for δ and conclude the proof has
an analytical side to it as well, but the argument in question is very elementary and does not use
any big results from analysis.

4.5 Alpoge’s proof

This proof uses Van der Waerden’s theorem, which goes as follows:

Theorem 4.4 (van der Waerden). Color all positive integers with one of r different colors. Then
for all integers N ≥ 3 there exists an arithmetic progression of integers in which at least N elements
have the same color.

We also use the following lemma which was proven by Fermat:

Lemma 4.5 (Fermat). An arithmetic progression cannot contain 4 different squares.

We are now ready to give Alpoge’s proof [12].

Proof. Assume p1, . . . , pk are all the primes. Note that this implies every integer n can be written
as

n = pe11 · · · pekk .

We define ri to be the parity of ei. That is:

ri =

{
0 ei is even

1 ei is odd
.

Now we consider the integer R = pr11 · · · prkk , and we observe that the quotient

n/R = pe1−r1
1 · · · pek−rk

k

is a square. We now assign the color R to n. Additionally, we observe that there are 2k different
possible choices of R.

Now applying Van der Waerden’s theorem for r = 2k and N = 4 to see that there exists an
arithmetic progression

A,A+D,A+ 2D,A+ 3D, D ≥ 1

of integers which all have the color R. In particular, R divides each of these integers, so

A/R, (A+D)/R, (A+ 2D)/R, (A+ 3D)/R

is an arithmetic progression with 4 elements. However, we previously observed that whenever n
has color R, n/R is a square. This contradicts Fermat’s lemma, which states that an arithmetic
progression cannot contain 4 different squares. We conclude that our initial assumption that their
are finitely many prime numbers must have been wrong, so there are infinitely many primes.

This proof fits in nicely between the combinatorial proofs we have found thus far. The assumption
that there are finitely many primes was used to conclude that there can only be finitely many
squarefree integers R, which is a similar argument to the one that was used in Erdős’ proof. The
main contradiction then comes from the fact that we have a hard limit on how many integers are
divided by that same R, which again is similar to what was done in Erdős’ proof.

19



REFERENCES REFERENCES

References

[1] K. Conrad, The infinitude of the primes, kconrad.math.uconn.edu, pp. 2 − 6,
URL https://kconrad.math.uconn.edu/blurbs/ugradnumthy/infinitudeofprimes.pdf
(Accessed 19 June 2024)

[2] K. Conrad, THE “TOPOLOGICAL” PROOF OF THE INFINITUDE OF PRIMES, kcon-
rad.math.uconn.edu, pp. 1 − 2, URL
https://kconrad.math.uconn.edu/blurbs/ugradnumthy/primestopology.pdf
(Accessed 19 June 2024)

[3] T. Yamada, Proofs of the inifitude of primes, (2018), tyamada1093.web.fc2.com, pp. 5 − 7,
URL https://tyamada1093.web.fc2.com/math/files/infprime.pdf

[4] C.W. Barnes, THE INFINITUDE OF PRIMES; A PROOF USING CONTINUED FRAC-
TIONS, L’Enseignement Mathematique, 22 (1976), pp. 314 − 316.
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