
Formalisation of the Finite
Simple Conway Groups in

Lean
Mathematics Bachelor’s Thesis

Erik van der Plas (6784852)
Supervised by dr. Johan Commelin

June 17, 2024

i



CONT EN T S

CONTENTS

Contents ii

1 Introduction 1

2 Prerequisites 3
2.1 Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Maximal subgroups . . . . . . . . . . . . . . . . . . . . . 4
2.3 Normal subgroups . . . . . . . . . . . . . . . . . . . . . 4
2.4 Simple groups . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Perfect groups . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Permutation groups 7
3.1 Faithfulness . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Stabilizers . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Primitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Iwasawa’s Lemma . . . . . . . . . . . . . . . . . . . . . . 10

4 Classification of finite simple groups 11

5 Golay code 13
5.1 Linear codes . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Construction using the icosahedron . . . . . . . . . . . 16

6 Leech lattice 21
6.1 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Construction using the Golay code . . . . . . . . . . . . 22
6.3 Structure of the Leech lattice . . . . . . . . . . . . . . . . 24

7 Conway groups 27
7.1 Co0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 Co1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.3 Co2 and Co3 . . . . . . . . . . . . . . . . . . . . . . . . . 30

8 Formalisation 33
8.1 Lean theorem prover . . . . . . . . . . . . . . . . . . . . 33
8.2 mathlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3 Iwasawa’s Lemma . . . . . . . . . . . . . . . . . . . . . . 34

ii



CONT EN T S

8.4 Conway groups . . . . . . . . . . . . . . . . . . . . . . . 37

9 Conclusion & Future Work 41

A Lean code 43

B Iwasawa PR modifications 51

Bibliography 53

iii





1INTRODUCTION

In this thesis we study the Conway groups, a family of sporadic simple
groups discovered by John Horton Conway in 1968. These groups are
closely related to the Leech lattice, a remarkable lattice in 24-dimensional
Euclidean space, discovered by John Leech, just the year before, in
1967.1We will demonstrate a construction of the Leech lattice, show
how it can be used to construct the Conway groups and provide a proof
of the simplicity of one of them, Co1. Furthermore, we formalise part
of this proof in the Lean theorem prover, a computer programming
language for writing and verifying mathematical proofs. This is a tiny
contribution to the much greater project of formalising the classifica-
tion of finite simple groups in Lean.

The thesis is structured as follows. In Chapter 2, we introduce some
fundamental group theory concepts, revising definitions and results
taught during the Mathematics Bachelor’s program at Utrecht Univer-
sity. In Chapter 3, we dive into the theory of permutation groups,
which will provide a useful framework for studying the simplicity of
various sporadic simple groups through Iwasawa’s lemma, including
the Conway groups. Chapter 4 provides an overview of the classifica-
tion of finite simple groups (CFSG), which is a monumental result in
group theory. In Chapter 5 we introduce the Golay code, in order to
construct the Leech lattice in Chapter 6, and in turn the Conway groups
in Chapter 7. Finally, in Chapter 8, we present our formalisation of the
Conway groups in Lean, and discuss the challenges we encountered
during this process. Lastly, Chapter 9 summarizes our findings and
suggests directions for future research.

1 The German mathematician Ernst Witt claims to have discovered the Leech lattice in
1940, but he did not publish his results. To this day, it remains unclear to what extent
he indeed knew of this special lattice in advance of Leech.

1





2PREREQUIS ITES

We assume the reader to be familiar with the basic concepts of group
theory, as taught at the University of Utrecht in the course Groepen &
Ringen (WISB124), or equivalently, Part I of Dummit and Foote, 2003.
The most important definitions and results for this thesis will also be
reviewed in this chapter.

2 . 1 CO S E T S

Definition 1 (Left/right cosets). For a subgroup H of a group G and
g ∈ G, we define the left coset gH = {gh | h ∈ H} and the right coset
Hg = {hg | h ∈ H}. Furthermore, with G : H we denote the set of all
left (or right) cosets of H in G, and we call |G : H| the index of H in G.

A simple example of cosets is given by the integers modulo some
n ∈ N. For the group of integers under addition, denoted by Z, nZ is
a subgroup of Z of all multiples of n. The (left) cosets of nZ in Z are
given by a + nZ for a = 0, 1, . . . , n − 1, corresponding with all x ∈ Z

such that x ≡ a (mod n). Note that in this example, the left and right
cosets coincide, as the additive group is abelian.

Lemma 1. For a subgroup H of G, for all g1, g2 ∈ G the left cosets g1H
and g2H (and analogously, the right cosets Hg1 and Hg2) are either
disjoint or identical.

Proof. Let H be a subgroup of G and g1, g2 ∈ G. Suppose that g1H and
g2H are not disjoint. Consequently, there exist h1, h2 ∈ H such that
g1h1 = g2h2. We can rewrite as g−1

2 g1 = h2h−1
1 and as H is a subgroup,

and therefore closed under multiplication, we find that g−1
2 g1 ∈ H. Let

c ∈ g1H and h′ := g−1
1 c such that c = g1h′ ∈ g1H. Clearly, g−1

2 g1h′ ∈ H
and therefore c = g2g−1

2 g1h′ ∈ g2H. As our choice of c ∈ g1H was
arbitrary, we conclude g1H ⊆ g2H and by symmetric argument also
g2H ⊆ g1H, hence g1H = g2H. So indeed, cosets are either disjoint or
identical.

3



P R E R EQU I S I T E S

2 . 2 MAX IMAL SU BGROUP S

Definition 2 (Maximal subgroup). We consider a subgroup H of G
maximal if there is no subgroup K such that H < K < G.

For example, in the dihedral group D3 = 〈r, f | r3 = f 2 = 1, r f =

f r−1〉 of order 6, the subgroup H := 〈r〉 = {1, r, r2} is maximal, as
there is no subgroup K such that H < K < D3. In this case, this fol-
lows immediately from Lagrange’s theorem, as the order of such sub-
groupK would have to divide the order of D3, and the only suchdivisor
strictly larger than |H| = 3 is 6 itself.

2 . 3 NORMAL SU BGROUP S

Definition 3 (Normal subgroup). For a group G, a subgroup N is
called normal if for all g ∈ G we have that the coset gN = Ng. Equiva-
lently, N is invariant under conjugation by the elements of G, i.e. gng−1 ∈
N for all n ∈ N and g ∈ G. We denote this by N ⊴ G.

The same example from the previous section can be used to illus-
trate normal subgroups, as the subgroup 〈r〉 of the dihedral group D3

is normal. We can easily check this by considering all conjugates, but
it turns out there are many other ways to assess subgroup normality,
which can be more tractable for larger groups.

2 . 4 S IM P L E GROUP S

Definition 4 (Simple group). A group G is called simple if it has no
nontrivial normal subgroups, i.e. G has no normal subgroups other
than {1} and G itself.

A clear example of a family of simple groups, are the cyclic groups
of prime order, denoted by Cp = 〈g | gp = 1〉 for some prime p. Their
simplicity follows from Lagrange’s theorem, as the order of any sub-
group of Cp must divide p, and the only such divisors are 1 and p.
Consequently, Cp has no nontrivial (normal) subgroups.

Simple groups are the building blocks of group theory, as any finite
group can be decomposed into simple groups, in a so-called composi-
tion series.

4



2 . 5 P E R F E C T GROUP S

Definition 5 (Composition series). A composition series of a group G
is a sequence of subgroups

{1} = G0 ⊴ G1 ⊴ . . . ⊴ Gn−1 ⊴ Gn = G,

such that each Gi is a normal subgroup of Gi+1, and Gi+1/Gi is simple
for all i.

It is precisely for this reason that simple groups are of such impor-
tance in group theory, as we can study the structure of any finite group
by studying the structure of its simple composition factors. The classifi-
cation of such finite simple groups is one of the most important results
in group theory, and is the subject of Chapter 4. First, we will continue
with some more fundamental group theory concepts.

2 . 5 P E R F E C T GROUP S

Sometimes, it can be rather difficult to assess whether a group is simple
or not. For the groups of interest in this thesis, the Conway groups, we
will make use of Iwasawa’s lemma to show that they are simple. For
this lemma, we need the notion of commutator subgroups and perfect
groups.

Definition 6 (Commutator). For g, h ∈ G, we define the commutator
by [g, h] := g−1h−1gh.

Definition 7 (Commutator subgroup). The commutator subgroup of
G, denoted by G′, is the subgroup generated by all the commutators.

To illustrate the commutator subgroup, consider that for all abelian
groups, the commutator subgroup is trivial ( {1}). This also clarifies
the terminology, as for any group G and g, h ∈ G the commutator
[g, h] = 1 if and only if g and h commute. By construction, the com-
mutator subgroup is also invariant under conjugation, thus a normal
subgroup:

Lemma 2. For any group G, the commutator subgroup G′ is a normal
subgroup.

5



P R E R EQU I S I T E S

Proof. Let g, h, c ∈ G. Then, [g, h] ∈ G′ and

c−1[g, h]c = c−1g−1h−1ghc

= c−1g−1cc−1h−1cc−1gcc−1hc

= (c−1g−1c)(c−1h−1c)(c−1gc)(c−1hc)

= (c−1gc)−1(c−1hc)−1(c−1gc)(c−1hc)

= [c−1gc, c−1hc] ∈ G′.

As the choice for g, h and c was arbitrary, G′ is invariant under conju-
gation by the elements of G, hence G′ is normal in G.

In some sense, the commutator subgroup gives us a measure of
how far a group is from being abelian. More formally:

Lemma 3. For any group G and normal subgroup N ⊴ G, the quotient
group G/N is abelian if and only if G′ ⊆ N.

Proof. Let N be a normal subgroup of some group G.
Suppose that G/N is abelian. Then, for all g, h ∈ G wehave (gN)(hN) =

(hN)(gN). Consequently, (gN)−1(hN)−1(gN)(hN) = N, or equiva-
lently [g, h]N = N, and thus [g, h] ∈ N.

Conversely, suppose that [g, h] ∈ N for all g, h ∈ G. Then, [g, h]N =

N, hence (gN)−1(hN)−1(gN)(hN) = N and (gN)(hN) = (hN)(gN).
So, G/N is abelian.

Definition 8 (Perfect group). The group G is called perfect if the com-
mutator subgroup G′ = G.

Lemma 4. Any non-abelian simple group is perfect.

Proof. Let G be a non-abelian simple group, such that it has no non-
trivial normal subgroups. As the commutator subgroup G′ is a normal
subgroup by Lemma 2, we find that G′ = {1} or G′ = G. The former
case implies that all elements of G commute, which contradicts the as-
sumption that G is non-abelian. Hence, G′ = G and G is perfect.

Although it is rather trivial to show that non-abelian simple groups
are perfect, the converse is not true in general. However, Iwasawa’s
lemmaprovides a partial converse of this statement, as the introduction
of some extra constraints on a perfect group do imply simplicity.

6



3PERMUTATION GROUPS

It follows from Cayley’s theorem that all groups are isomorphic to a
permutation group (i.e. a subgroup of a symmetric group). Hence,
from now on, we can consider any group G as permuting the elements
of some set Ω. Here we adopt the notation from Wilson, 2009: for all
permutations π, ρ ∈ G acting on some a ∈ Ω we denote aπ = π(a) and
aπρ = ρ(π(a)). Note that this notation inverts the order of multiplica-
tion as compared to function composition.

In this chapter, wewill define someproperties of permutation groups.
Wewill use these properties in our statement of Iwasawa’s lemma,which
we will prove at the end of this chapter.

3 . 1 FA I TH FU LN E S S

Definition 9 (Faithfulness). The group action of G on Ω is called faith-
ful if aπ = a for all a ∈ Ω implies that π = 1.

Faithfulness follows naturally for permutation groups acting on the
associated permuted set, such as G := Sym(Ω) acting on Ω. But we
can certainly consider group actions that are not faithful. For example
D3 := 〈r, f | r3 = f 2 = 1, r f = f r−1〉 acting on just the orientation of a
triangle. Here, the orientation that some ri f j ∈ D3 with i, j ∈ Z entails
is precisely determined by the parity of j. In particular, not only the
identity element fixes the orientation, but also r and r2, and thus the
action is not faithful.

3 . 2 S TA B I L I Z E R S

Definition 10 (Stabilizer). For a group G acting on Ω and some a ∈ Ω

we call
Ga = {π ∈ G | aπ = a}

the stabilizer of a in G.

For example, we can view D3 as a permutation group acting on the
triangle’s vertices. The group action corresponding with reflections

7



P E RMUTAT I ON GROUP S

over one of the vertices and the identity action both fix that vertex, and
are collectively its stabilizer.

Lemma 5. For a group G acting on Ω and some a ∈ Ω, the stabilizer
Ga is a subgroup of G (that is, Ga ≤ G).

Proof. Clearly, the identity element of G always fixes a, so Ga is non-
empty. Furthermore, for all π, ρ ∈ Ga, we find that πρ−1 ∈ Ga as
aπρ−1

= aρ−1
= a, where the latter equivalence holds as aρ = a. We can

conclude by the subgroup criterion that indeed Ga ≤ G.

Consequently, we can also unambiguously call a stabilizer a stabi-
lizer subgroup.

3 . 3 T RAN S I T I V I T Y

Definition 11 (Transitivity). The group action of G on Ω is called tran-
sitive if for all a, b ∈ Ω there exists some π ∈ G such that aπ = b.

An obvious example of a transitive group action is Sym(Ω) acting
on Ω, as it contains all possible permutations of Ω. In contrast, stabi-
lizer subgroups act non-transitively by definition. We can derive an
interesting consequence from transitivity regarding stabilizers:

Lemma 6. If G acts transitively on Ω, then for all a ∈ Ω there exists a
natural bijection from Ω to the right cosets of Ga in G, given by aπ ↔
Gaπ.

Proof. Assume G acts transitively on Ω and let a ∈ Ω. Let ϕ : Ω → G :

Ga be given by aπ 7→ Gaπ.
To prove that this map is well-defined, let x ∈ Ω. By transitivity, we

find there always exists some π ∈ G such that aπ = x. However, this
π is not necessarily unique. Suppose that aπ1 = aπ2 := x for distinct
π1, π2 ∈ G. Clearly, π1π−1

2 ∈ Ga, as aπ1π−1
2 = xπ−1

2 = a, so π1π−1
2 π2 ∈

Gaπ2 and clearly also π1π−1
2 π2 = π11 = 1π1 ∈ Gaπ1. Cosets are

either disjoint or identical by Lemma 1, so Gaπ1 = Gaπ2. Hence, ϕ is
well-defined.

To prove bijectivity, we need to show that ϕ is both injective and
surjective.

Suppose aπ1 6= aπ2 for some π1, π2 ∈ G. It follows that π1 /∈
Gaπ2, as otherwise there would be an element ρ ∈ Ga such that π1 =

ρπ2, which would imply aπ1 = aρπ2 = aπ2 . Clearly however, π1 =

8



3 . 4 P R IM I T I V I T Y

1π1 ∈ Gaπ1. Consequently, as cosets are either disjoint or identical
by Lemma 1, we find that Gaπ1 6= Gaπ2. This contrapositively proves
injectivity of ϕ.

Now, let Gaπ be any right coset of Ga in G, for some π ∈ G. Clearly,
aπ ∈ Ω, so surjectivity follows naturally.

We can conclude that ϕ is indeed a well-defined bijection Ω ↔ G :

Ga.

3 . 4 P R IM I T I V I T Y

Definition 12 (Partition). A partition of a set Ω is a set of mutually
disjoint nonempty subsets of Ω whose union is Ω. In other words, it
is a grouping of the elements of Ω into nonempty subsets, such that
every element is contained in precisely one of these subsets.

Two examples of partitions on any set Ω are the trivial partitions:
either into a single set, i.e. {Ω}, or into |Ω| singleton sets, i.e. {{x} |
x ∈ Ω}. We can also consider how a permutation group G acting on
the set Ω preserves partitions of Ω. In this context, we often call a
partition a ‘block system’ and its elements ‘blocks’. We say a partition
or block system is preserved, if for all a, b ∈ Ω in the same block of the
partition, aπ and bπ are also in the same block for all π ∈ G.

Definition 13 (Primitivity). The group action of G on Ω is called prim-
itive if it is transitive, and the only partitions it preserves are the trivial
partitions.

Equivalently, if a group action is not primitive, there exists a non-
trivial partition of Ω that is preserved by the group, which is often
called a ‘system of imprimitivity’. We can demonstrate maximality of
stabilizer subgroups for primitive groups:

Lemma 7. If G acts primitively on Ω, the stabilizer Ga is a maximal
subgroup of G for all a ∈ Ω.

Proof. Suppose that G acts primitively on Ω and let a ∈ Ω. Assume for
the sake of contradiction that Ga is not maximal, so that we can find a
subgroup H such that Ga < H < G. As G is primitive, it is transitive,
hence by Lemma 6 we find the natural bijection ϕ : Ω ↔ G : Ga. We
construct ψ : G : Ga → G : H by Gaπ 7→ Hπ for all π ∈ G, and
the composite function ψ ◦ ϕ mapping the elements of Ω to the right
cosets of H in G. As by assumption these cosets are strictly larger than

9



P E RMUTAT I ON GROUP S

the right cosets of Ga in G, we find that ψ ◦ ϕ groups the elements of
Ω in a nontrivial partition, which is naturally preserved by G. This
contradicts the primitivity of G, so we can conclude that Ga is indeed
a maximal subgroup for all a ∈ Ω.

3 . 5 IWA SAWA ' S L EMMA

Lemma 8 (Iwasawa). Let G be a finite perfect group, acting faithfully
and primitively on Ω. Suppose that some stabilizer Ga contains an
abelian normal subgroup A (that is, A ◁ Ga) whose conjugates in G
generate all of G. Then G is simple.

Proof. Suppose that G, Ω, Ga and A are as premised, and assume for
the sake of contradiction that N is a nontrivial normal subgroup of G.

First we show there exists an x ∈ Ω such that N ≰ Gx. Assume on
the contrary that N is contained in every stabilizer. So, for all x ∈ Ω

and π ∈ N we have π ∈ Gx, hence xπ = x. As G acts faithfully on Ω it
is implied that π = 1. But that contradicts that N is nontrivial.

Consequently, we can choose a point stabilizer Gx such that N ≰
Gx, and therefore G = NGx, since Gx is a maximal subgroup of G by
Lemma 7. By transitivity, we can write x = aπ for some π ∈ G, hence

Gx = Gaπ = {π−1ρπ | aρ = a} = π−1Gaπ.

So, Gx and Ga are conjugate and therefore isomorphic. Hence, there
also exists an abelian normal subgroup X ◁ Gx where X ∼= A.

Let π ∈ G and write π = ρσ where ρ ∈ Gx and σ ∈ N. We then
find that

π−1Xπ = σ−1ρ−1Xρσ = σ−1Xσ

by normality of X in Gx. As by assumption the conjugates of X in G
generate G, we find that G = NX. By the second isomorphism theorem
we then find that G/N ∼= X/(X ∩ N), which is abelian.

Consequently, G′ ⊆ N by Lemma 3 and N < G by assumption,
which contradicts that G is perfect, so G must be simple.

10



4CLASS IF ICAT ION OF F IN ITE S IMPLE GROUPS

Finite simple group are of great interest for group theorists, as they are
the building blocks of group theory. As explained in Section 2.4, any
finite group can be decomposed into simple groups, similar to how
any integer can be decomposed into prime factors. A lot of effort has
been put into classifying all finite simple groups, and the result is the
Classification of Finite Simple Groups (CFSG), cited here fromWilson,
20091:

Theorem 1 (CFSG). Every finite simple group is isomorphic to one of
the following groups:

1. a cyclic group Cp of prime order p,

2. an alternating group An for n ≥ 5,

3. a classical group [...],

4. an exceptional group of Lie type [...], or the [derived] Tits group,

5. one of 26 sporadic simple groups:

• the five Mathieu groups M11, M12, M22, M23, M24,

• the seven Leech lattice groups Co1, Co2, Co3, McL, HS, Suz,
J2,

• the three Fischer groups Fi22, Fi23, Fi′24,

• the five Monstrous groups M, B, Th, HN, He,

• the six pariahs J1, J3, J4, O’N, Ly, Ru.

Conversely, every group in this list is simple. There are some repeti-
tions in this list [...].

The full proof of this theoremgoeswell beyond the scope of this the-
sis. It was originally scattered over hundreds of journal articles written
by about 100 authors, and quite recently completed in 2004. Starting
with Gorenstein, Lyons, and Solomon, 1994, the Second Generation

1 Some of the details of the CFSG are omitted where an ellipsis (‘[...]’) was used, as
they are not relevant for the rest of this thesis.

11



C LA S S I F I CAT I ON O F F I N I T E S IM P L E GROUP S

Proof project, or by the authors’ initials, the ‘GLS’ project, was initi-
ated to provide a more accessible proof of the CFSG. In this yet unfin-
ished book series, the mathematics behind the original proof is rewrit-
ten, condensed to ‘just’ 12 volumes of about 500 pages each. Currently,
the first 10 volumes have been published, the latest being Capdeboscq
et al., 2023.

It is precisely due to the vastness of the theorem’s proof, that it is
very suitable for formalisation. Currently, only mathematicians with
an extremely deep understanding of the subject can understand the
proof, and verify parts of it. By formalising the proof in a proof assis-
tant, such as Lean, the complete proof can be verified at once. Conse-
quently, the results can be made accessible to a much larger audience,
allowing for further developments in the field of group theory.

12



5GOLAY CODE

The Golay code is a type of linear code, which is a concept from cod-
ing theory. First, we will introduce the basic definitions and results
from coding theory that are necessary to understand the Golay code.
Then, wewill provide a construction of the Golay code using the vertex
adjancency of the icosahedron.

5 . 1 L I N EAR CODE S

Definition 14 (Linear code). A q-ary linear code C of length n and
dimension d is a linear subspace with dimension d of the vector space
Fn

q where Fq is the finite field with q elements. The elements of C are
called codewords.

Linear codes can be used for error detection and correction in noisy
data transmission. For example, binary messages can be divided in
chunks of d bits, which are encoded as codewords in a binary linear
code (i.e. q = 2). As in practice n > d, these codewords contain in-
formation that is in a sense redundant. The best error-correcting codes
are designed such that the information can be recovered even if some
bits are corrupted, making use of this redundancy. Even when the re-
ceived codeword is corrupted by noise, the receiver can still decode
the message by finding the closest codeword in the code. Although in
this thesis we are not so interested in this application, the mathemat-
ical properties of linear codes will also be of interest in the context of
the Conway groups.

We can define a notion of distance between codewords in a linear
code, which is also indicative of the error-correcting capabilities of the
code. Namely, as the distance between two codewords increases, the
number of errors that can be corrected also increases, making the code
more robust against noise. Related to this notion of distance is the
weight of a codeword.

Definition 15 (Hamming distance). The Hamming distance between
two vectors u, v ∈ Fn

q (cf. codewords in a linear code) is the number

13



GOLAY CODE

of coordinates in which they differ. This Hamming distance is denoted
by dH(u, v), with dH : Fn

q × Fn
q → N.

Definition 16 (Codewordweight). Theweight of a vector u ∈ Fn
q is the

number of nonzero coordinates in u. This weight is denoted by w(u),
with w : Fn

q → N and clearly, w(u) = dH(u, 0).

Note that for binary codes, we find that w(u) = u · u where · de-
notes the standard vector dot product. The relation between the Ham-
ming distance and the weight of codewords is given by the following
lemma.

Lemma 9. For a linear code C, the minimum nonzero Hamming dis-
tance

min
u,v∈C,u 6=v

dH(u, v)

is equal to the minimum nonzero weight

min
0 6=u∈C

w(u).

Proof. Let u, v ∈ C be two distinct codewords such that their Hamming
distance is minimal, and let 0 6= x ∈ C be a codeword such that w(x) is
minimal. Then, dH(u, v) = w(v− u), and w(v− u) ≥ w(x) as v− u 6=
0 and w(x) is minimal. Conversely, w(x) = dH(x, 0) ≤ dH(u, v) as
x 6= 0 and dH(u, v) is minimal. We conclude that dH(u, v) = w(x),
and consequently, the minimum nonzero Hamming distance is equal
to the minimum nonzero weight.

For binary codes in particular, we can derive an interesting relation
between the weight of two codewords and the weight of their sum.

Lemma 10. For any two vectors u, v ∈ Fn
2 , the weight of their sum is

related to their own weights by

w(u + v) = w(u) + w(v)− 2w(u ◦ v),

where ◦ denotes the pointwise product of the vectors.

Proof. Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn). Then, the sum
u + v is given by

(u1 + v1, u2 + v2, . . . , un + vn).

Then, for all 0 ≤ i ≤ n, we have that ui + vi ≡ 1 (mod 2) if and only
if ui 6= vi, and ui + vi ≡ 0 (mod 2) otherwise. Also, ui ◦ vi = 1 if and

14



5 . 1 L I N EAR CODE S

only if ui = vi = 1, and ui ◦ vi = 0 otherwise. We find that w(u + v) =

w(u)+w(v)− 2w(u ◦ v), as claimed: only in coordinateswhere both u

and v are 1, the sum’sweight is corrected (-2) by the pointwise product
of the vectors. As our choice of u and v was arbitrary, we conclude that
the lemma holds for all vectors in Fn

2 .

We can define another interesting property on linear codes, namely
self-orthogonality.

Definition 17 (Self-orthogonality). A linear code C over the field F is
self-orthogonal if for any two codewords u, v ∈ C, we have u · v = 0.

Lemma 11. If a linear code C of dimension d has a self-orthogonal basis
B, then C is self-orthogonal.

Proof. Let u, v ∈ C. Given the basis B, we can write u and v as

u =
d

∑
i=1

αibi,

v =
d

∑
i=1

βibi,

where bi ∈ B and αi, βi ∈ F. We find by linearity of the dot product
that

u · v =
d

∑
i=1

d

∑
j=1

αiβ j(bi · bj) = 0,

as the basis B is self-orthogonal. As our choice of u and v was arbitrary,
we conclude that C is self-orthogonal.

Binary self-orthogonal codes have an interesting property regard-
ing the weight of their codewords, which is demonstrated in the fol-
lowing lemma.

Lemma 12. If a binary linear code C is self-orthogonal, then all its code-
words have even weight.

Proof. Let u ∈ C be a codeword. Then, u · u = 0 by self-orthogonality.
As w(u) ≡ u · u ≡ 0 (mod 2), we find that w(u) is even. As our
choice of u was arbitrary, we conclude that all codewords in C have
even weight.

Another interesting property of binary codes is that of being doubly
even.

15



GOLAY CODE

Definition 18 (Doubly even code). A binary linear code is called dou-
bly even if all its codewords have a weight divisible by 4.

Lemma 13. If a binary linear code C of dimension d is self-orthogonal,
and has a basis B with codewords of weight divisible by 4, then C is a
doubly even code.

Proof. Let u ∈ C. Then, u can be written as a linear combination of the
basis B:

u = ∑
i∈U

bi,

where bi ∈ B and U ⊆ {1, . . . , d}. We can now prove that C is doubly
even by induction on the size of U. Suppose |U| = 1. Then, u = bi for
some bi ∈ B, and by assumption w(bi) is divisible by 4. Now, suppose
that |U| = k and assume the induction hypothesis holds, that for all
V ⊆ {1, . . . , d} such that |V| = k − 1, the codeword ∑i∈V bi has weight
divisible by 4. Then, we can choose some i ∈ U. Let V := U \ {i} and
v := ∑j∈V bj. By Lemma 10, we find:

w(u) = w(bi) + w(v)− 2w(bi ◦ v).

As w(bi) is divisible by 4 by assumption, w(v) is divisible by 4 by the
induction hypothesis, and 2w(bi ◦ v) is divisible by 4 by Lemma 12, we
find that w(u) is divisible by 4. By induction, we can conclude that all
codewords in C haveweight divisible by 4 and hence C is a doubly even
code.

Finally, to construct theGolay code, wewillmake use of the concept
of a generator matrix:

Definition 19 (Generator matrix). A generator matrix of a q-ary linear
code C of length n and dimension d is a d × n matrix over Fq whose
rows form a basis for C.

5 . 2 CON ST RUC T I ON U S I NG TH E I CO SAHEDRON

We now have all the tools from coding theory to construct a mathemat-
ical object called the Golay code, which in turn will be used in the con-
struction of the Leech lattice. Although irrelevant for this thesis, the
Golay code is not only of mathematical interest, but also found practi-
cal applications in the Voyager space program of NASA, where it was
used to successfully transmit color images from outer space.

16



5 . 2 CON ST RUC T I ON U S I NG TH E I CO SAHEDRON

Definition 20 (Golay code). The (extended binary)1Golay code is the
binary linear code of length 24 and dimension 12 such that the Ham-
ming distance between any two distinct codewords is at least 8.

It is not immediately clear that such code exists, nor that it is unique
up to the reordering of vector coordinates. To show this, we will first
provide a construction of the Golay code.

5 . 2 . 1 Generator matrix

Lemma 14. A generator matrix of the Golay code is given by (I12 | A),
where I12 is the 12 × 12 identity matrix, and A is the complement of
the adjacency matrix of the icosahedron.

Proof. The adjacency matrix of the icosahedron is given by the follow-
ing 12 × 12 matrix:

A =



1 0 0 1 1 1 1 1 0 0 0 1
0 1 0 0 1 1 1 1 1 0 1 0
0 0 1 0 0 1 1 1 1 1 0 1
1 0 0 1 0 0 1 1 1 1 1 0
1 1 0 0 1 0 0 1 1 1 0 1
1 1 1 0 0 1 0 0 1 1 1 0
1 1 1 1 0 0 1 0 0 1 0 1
1 1 1 1 1 0 0 1 0 0 1 0
0 1 1 1 1 1 0 0 1 0 0 1
0 0 1 1 1 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0 1 1 1
1 0 1 0 1 0 1 0 1 0 1 1


,

where the entry at (i, j) is 0 if vertices i and j are adjacent, and 1 oth-
erwise, using the labelling of the vertices of the icosahedron as in Fig-
ure 5.2.12. Clearly, the rows of (I12 | A) form the basis, which we
will denote with B, for a 12-dimensional linear subspace of F24

2 , which
we will denote by C. We will show that the linear code C is indeed
the Golay code, by showing that the minimum nonzero Hamming dis-
tance between two distinct codewords is 8. By inspecting the rows of
(I12 | A)wefind thatB is self-orthogonal, hence C is self-orthogonal by
Lemma 11. Also, the codewords in the basis B, or the basis codewords,
have weight 1+ (12− 5) = 8 | 4, hence by Lemma 13, we find that C is
a doubly-even code. Next, suppose there exists a codeword 0 6= u ∈ C
with weight w(u) < 8. Then, as C is a doubly even code, we find that
w(u) = 4. Clearly, u is a sum of at most 4 basis codewords, but we
can check that no such sum has weight 4 (either by iterating over the
12 + (12 · 11)/2! + (12 · 11 · 10)/3! + (12 · 11 · 10 · 9)/4! = 793 possible
sums, or using the symmetry of the icosahedron), thus we arrive at a

1 We will refer to the extended binary Golay code as the Golay code. There are other
Golay codes, but we will not consider them in this text.

17



GOLAY CODE

contradiction. So theminimumnonzeroweight of a codeword in C is 8,
and consequently, the minimum nonzero Hamming distance between
two distinct codewords is 8 by Lemma 9. In conclusion, C is the Golay
code as defined in Definition 20.

1

2

7

6

9

12

11

4

108

3

5

Figure 5.2.1: Icosahedron with labelled vertices: vertices adjacent to
vertex 1 (highlighted in blue) are colored red.

5 . 2 . 2 Cardinality of codewords by weight

As the Golay code is a linear code, there are 212 = 4096 codewords in
total. The weight distribution of these codewords is as follows:

• There is 1 codewordwith all coordinates zeroes (‘zero codeword’).

• There is 1 codeword with all coordinates ones.

• There are 759 codewords with weight 8. As the Hamming dis-
tance between two distinct weight 8 codewords is at least 8, we
find that no 5 coordinates have shared ones. In other words, the
(24

5 ) sets of 5 coordinates are in precisely one weight 8 codeword
each, which in turn contain (8

5) of such sets. Indeed, (24
5 )/(

8
5) =

759.

• There are 759 codewords with weight 16. They correspond with
the complements of the weight 8 codewords.

18



5 . 2 CON ST RUC T I ON U S I NG TH E I CO SAHEDRON

• There are 2576 codewords with weight 12. This is the remainder
of codewords: 4096 − 1 − 1 − 759 − 759 = 2576.

5 . 2 . 3 Automorphisms of the Golay code

The aforementioned construction is just one of the ways to construct a
linear code that satisfies the properties of the Golay code, as defined in
Definition 20. In the chapter on M24 of The Finite Simple Groups Wil-
son, 2009, it is shown that this version of the Golay code is unique up
to the reordering of vector coordinates, and its automorphism group is
isomorphic to the Mathieu group M24. This proof is beyond the scope
of this thesis, but we will use this fact in proving the simplicity of the
Conway group Co1 in Chapter 7.

19





6LEECH LATT ICE

We will now lift the Golay code to a geometric structure called a lat-
tice. First, we will define the general concept of a lattice. Then, we will
construct the Leech lattice, which is closely related to the Golay code.

6 . 1 L AT T I C E S

Definition 21 (Lattice). An n-dimensional lattice Λ is an infinite addi-
tive group of vectors in Rn, generated by a set of n linearly independent
vectors. As such, any lattice can be written as

Λ =

{
n

∑
i=1

sibi | si ∈ Z

}
,

where b1, . . . , bn form a basis of Rn.

An example of a 2D lattice is the hexogonal lattice, as shown in Fig-
ure ??. It is clear that all its points can be generated by integermultiples
of the colored basis vectors.

We can define a norm over the lattice vectors, as follows:

x

y

Figure 6.1.1: The hexagonal lattice in R2, with a basis indicated by the
red and blue vectors.

21



L E E CH LAT T I C E

Definition 22 (Lattice point norm). For an n-dimensional lattice Λ, the
norm of a vector v ∈ Λ is defined as

‖v‖ = v · v,

where ·denotes the standard inner dot product overRn, i.e. the squared
Euclidean length.

Furthermore, we candefine the followingproperties of lattice, which
we will use in our definition of the Leech lattice:

Definition 23 (Integrality). A lattice is called integral if the standard
inner dot product of any two vectors in Λ is an integer.

Definition 24 (Integral lattice parity). A lattice, if it is integral, is called
even if the norms of all vectors in Λ are even, and odd otherwise.

Definition 25 (Lattice determinant). The determinant of a lattice Λ is
the determinant of the n × n matrix with entries bi · bj for 1 ≤ i, j ≤ n
where b1, . . . , bn form a basis of Λ.

Note that the determinant of a lattice is independent of the choice
of basis up to a sign change, which follows from linear algebra on the
properties of the determinant of a matrix.

Definition 26 (Unimodularity). A lattice is called unimodular if its de-
terminant is ±1.

If we take the hexagonal lattice in Figure ?? as an example, with
basis vectors b1 = (1,

√
3) and b2 = (1,−

√
3), we find that the lattice

is integral and even, but not unimodular. The lattices Zn with n ∈ Z+,
however, are integral and unimodular (consider for example the basis
b1 = (1, 0, . . . , 0), b2 = (0, 1, . . . , 0), . . . , bn = (0, 0, . . . , 1)).

6 . 2 CON ST RUC T I ON U S I NG TH E GOLAY CODE

Now we have defined what a lattice is, we can define the Leech lattice
using the properties as defined in the previous section.

Definition 27 (Leech lattice). The Leech lattice is the 24-dimensional
even unimodular lattice such that the norm of every nonzero vector is
at least 4.

22



6 . 2 CON ST RUC T I ON U S I NG TH E GOLAY CODE

It is not immediately clear that such lattice exists, sowewill provide
a construction of a lattice that satisfies this definition using the Golay
code. This constructionwill allowus to exhibit certain properties of the
Leech lattice in a more explicit fashion, and will be used to construct
the automorphism group Co0 in the next chapter.

Lemma 15. The Leech lattice can be constructed as the set of all vectors
1√
8
(x1, . . . , x24) with xi ∈ Z for all 1 ≤ i ≤ 24 such that

24

∑
i=1

xi ≡ 4x1 ≡ 4x2 ≡ . . . ≡ 4x24 (mod 8), and (6.1)

([x1 ≡ k], [x2 ≡ k], . . . , [x24 ≡ k]) ∈ G (6.2)

for all k ∈ Z/4Z, where [. . .] denotes the Iverson bracket1, and G is the
Golay code.

Proof. Let Λ denote the lattice as constructed above, which is suppos-
edly the Leech lattice. Clearly, Λ is a lattice as an infinite group un-
der addition of dimension 24 (consider the vector with all coordinates
zero, except for one 8). The scalar 1√

8
is chosen such that unimodular-

ity holds, and correspondingly theminimal norm condition is satisfied.
Namely, if we construct nonzero vectors using the relations 6.1 and 6.2
with as small a norm as possible, particularly with every coordinate
(when scaled by

√
8) having the same parity and 0 or at least 8 coordi-

nates in each congruence class modulo 4, we find:

• A vector with 8 coordinates equal to 2, the rest zeroes. This vector
has norm

(
1√
8

)2
· 8 · 22 = 32/8 = 4.

• A vector with 2 coordinates equal to 4, the rest zeroes. This vector
has norm

(
1√
8

)2
· 2 · 42 = 32/8 = 4.

• A vector with one coordinate equal to 3, the rest −1. This vector
has norm

(
1√
8

)2
· (32 + 23 · (−1)2) = 32/8 = 4.

So, indeed every nonzero vector in Λ has norm at least 4.
Furthermore, for anyvector 1√

8
(x1, . . . , x24) ∈ Λ, the sumof squares

∑24
i=1 x2

i is divisible by 16, hence the lattice is even.
1 The Iverson bracket is defined as:

[P] =

{
1 if P is true,
0 otherwise,

for any logical statement P.

23



L E E CH LAT T I C E

6 . 3 S T RUC TUR E O F TH E L E E CH LAT T I C E

Fromhere on, wewill refer to the Leech lattice as Λ. Wewill now take a
closer look at the structure of the Leech lattice, as this will be important
to understand its automorphism group, fromwhich we will derive the
simple Conway groups in the next chapter.

6 . 3 . 1 Minimal vectors

Wewill first consider all minimal vectors of the Leech lattice, which are
the vectors of smallest nonzero norm in the lattice. ByDefinition 27, we
know that the norm of any nonzero vector in the Leech lattice is at least
4. Let x ∈ Λ such that ‖x‖ = 4 and let us write x = 1√

8
(x1, . . . , x24).

Then, ∑24
i=1 x2

i = 32. Using our construction from Lemma 15, we find
that x must be of shapes:

• 1√
8
((±4)2, 022) (i.e. ±4 in two coordinates and zeroes elsewhere),

which corresponds with the zero codeword of the Golay code,
such that there are (24

2 ) positions to place the ±4, and 22 ways to
choose signs, hence there are (24

2 ) · 22 = 1104 such vectors.

• 1√
8
((±2)8, 016) (i.e. ±2 in eight coordinates and zeroes elsewhere),

which corresponds with a codeword of weight 8 in the Golay
code, of which there are 759, as shown in Subsection 5.2.2. There
are 27 ways to choose the signs such that the congruency relation
6.1 holds (namely, wemust have an even number of−2’s), hence
there are 759 · 27 = 97152 such vectors.

• 1√
8
(±3, (∓1)23) (i.e. ±3 in one coordinate,∓1 elsewhere), which

corresponds with the zero codeword of the Golay code, such that
there are 24 positions to place the ±3. We can let all codewords
of the Golay code act on such vectors by flipping the sign of the
coordinates where the codeword has a 1, to have the Golay code
condition 6.2 hold. Consequently, we have 24 · 212 = 98304 such
vectors.

In total, we find that there are 1104 + 97152 + 98304 = 196560 min-
imal vectors in the Leech lattice. Note that these vectors correspond
precisely with the orbits of the given shape vectors under the action of
the semidirect product 212 : M24: as discussed in Subsection 5.2.3, M24

gives the coordinate permutations fixing the Golay code, and 212 acts
as sign flips by the Golay code (cf. the reasoning for the last case).

24



6 . 3 S T RUC TUR E O F TH E L E E CH LAT T I C E

6 . 3 . 2 Vectors of other norms

Similarly, we can consider the vectors of norm 6 in the Leech lattice
by studying its orbits under the action of 212 : M24. We will be more
concise in our reasoning here, but we use the same methods as for the
minimal vectors. We find the following shapes and orbit sizes of vec-
tors of norm 6:

• 1√
8
((±2)12, 012), with 2576 · 211 = 5275648 such vectors.

• 1√
8
((±2)7,±4,∓2, 015), with 759 · 16 · 28 = 3108864 such vectors.

• 1√
8
(±5, (±1)23), with 24 · 212 = 98304 such vectors.

• 1√
8
((±3)3, (∓1)21), with (24

3 ) · 212 = 8290304 such vectors.

In total, we find that there are 5275648+ 3108864+ 98304+ 8290304 =

16773120 vectors of norm 6 in the Leech lattice.

For vectors of norm 8, we find the shapes and orbit sizes:

• 1√
8
(±8, 023), with 24 · 2 = 48 such vectors.

• 1√
8
(±6, (±2)7, 016), with 759 · 8 · 27 = 777216 such vectors.

• 1√
8
((±4)4, 020), with (24

4 ) · 24 = 170016 such vectors.

• 1√
8
((±4)2, (±2)8, 014), with 759 · (16

2 ) · 22 · 27 = 46632960 such vec-
tors.

• 1√
8
(±4, (±2)12, 011), with 2576 · 12 · 2 · 211 = 126615552 such vec-

tors.

• 1√
8
((±2)16, 08), with 759 · 215 = 24870912 such vectors.

• 1√
8
(±5, (∓3)2, (±1)21), with 24 · (23

2 ) · 212 = 24870912 such vec-
tors.

• 1√
8
((±3)5, (∓1)19), with (24

5 ) · 212 = 174096384 such vectors.

In total, we find that there are 48 + 777216 + 170016 + 46632960 +

126615552+ 24870912+ 24870912+ 174096384 = 398034000 vectors of
norm 8 in the Leech lattice.

25



L E E CH LAT T I C E

6 . 3 . 3 Crosses

If we consider the quotient Λ/2Λ ∼= F24
2 and classify the resulting 224

cosets, we can make some interesting observations. Let x, y ∈ Λ and
suppose that x ≡ y (mod 2Λ). Then x ± y ∈ 2Λ, hence ‖x ± y‖ = 0

or ‖x ± y‖ ≥ 22 · 4 = 16. The former case is only possible if x = ±y, in
the latter case we find:

‖x + y‖ = ‖x‖+ 2(x · y) + ‖y‖ ≥ 16,

‖x − y‖ = ‖x‖ − 2(x · y) + ‖y‖ ≥ 16, thus,

‖x‖+ ‖y‖ ≥ 16. (6.3)

Consequently, the zero vector is in its own congruency class, the vec-
tors of norm 4 are in 196560/2 = 98280 congruency classes with their
negatives and the vectors of norm 6 are in 16773120/2 = 8386560 con-
gruency classes with their negatives. The vectors of norm 8 are also in
congruence classes with their negatives, but also with perpendicular
vectors of norm 8, satisfying full equality in 6.3. As sets of perpendicu-
lar vectors are linearly independent, these congruence classes, includ-
ing negatives, contain 24 · 2 = 48 vectors. We have now accounted for
all 1 + 98280 + 8386560 + 398034000/48 = 224 congruence classes.

Definition 28 (Leech lattice cross). A cross C is defined as a subset of
the Leech lattice consisting of vectors of norm 8 such that for each pair
x, y ∈ C one of the following three conditions holds:

• x and y are perpendicular, i.e. x · y = 0,

• x = y, or,

• x = −y.

We can now associate the cosets of the Leech lattice modulo 2Λ for
vectors of norm 8 with these crosses, each containing 48 vectors. In
particular, we find that there are 398034000/48 = 8292375 crosses in
the Leech lattice. Wewill use these crosses to define the automorphism
group of the Leech lattice in the next chapter.

26



7CONWAY GROUPS

In this chapter, we will finally introduce the Conway groups. These
groups were discovered by John Conway in 1968 by investigation of
the Leech lattice (Conway, 1968; Conway, 1969). In his work, Conway
designed a similar construction of the Leech lattice as we did in the pre-
vious chapter, and described the automorphism group for this highly
symmetric lattice. He also discovered three associated, previously un-
known sporadic simple groups. This caused a major surge in the dis-
covery of the remaining sporadic simple groups, and marked Conway
as one of the most influential mathematicians of the 20th century.

The largest of the Conway groups is the Conway group Co0, which
is the full automorphism group of the Leech lattice, and is not simple.
The largest simple Conway group is the Conway group Co1, which is
the quotient of Co0 by its center. The other Conway groups, Co2 and
Co3, are subgroups of Co0, both constrained to fix certain vectors of the
Leech lattice. In this chapter, we will describe these groups in more
detail and prove the simplicity of Co1.

7 . 1 Co0

We start with the largest of the Conway groups, Co0. This is the autho-
morphism group of the Leech lattice, considering the isometries pre-
serving the lattice, fixing the origin.

To describe Co0 in more detail, we will consider how it acts on the
crosses. We call the canonical cross C0 the cross consisting of the vec-
tors 1√

8
(c1, . . . , c24) where ci = ±8 for one 1 ≤ i ≤ 24 and cj = 0 for

all j 6= i. As is clear from our construction in Lemma 15, the canon-
ical cross is fixed precisely by 212 : M24 from the previous chapter.
For the other crosses, we can find their stabilizers as follows. As de-
termined before, each cross consists of 48 vectors, which are pairwise
orthogonal, negatives or equal. Therefore, we can think of a cross as
a set of 24 orthogonal pairs, where each vector forms such pair with
its negative. We can consider the action of M24 acting on a cross by
permuting the 24 orthogonal pairs, and the action of 212 by swapping

27



CONWAY GROUP S

the order of the pairs, and we conclude that the other crosses are sta-
bilized by conjugates of 212 : M24 in Co0. As by our counting argu-
ment in Λ/2Λ in Subsection 6.3.3 we know that all norm 8 vectors fall
into one of 8292375 crosses, we can conclude that Co0 acts transitively
on the set of crosses. Now, using Lemma 6, we find the order of Co0

to be |Co0 | = 8292375 · 212 · |M24| = 8 315 553 613 086 720 000. Also,
212 : M24 is a maximal subgroup of Co0. As its conjugates in Co0 stabi-
lize all crosses, we find that Co0 acts primitively on the set of crosses.
Furthermore, Co0 is a perfect group, as Conway has shown in his orig-
inal construction (Conway, 1968).

We can also show that Co0 is not simple. Namely, the nontrivial
subgroup generated by the scalar matrix (−1) := −1 · I, with I the
identitymatrix, is normal inCo0: scalarmatrices always commutewith
other matrices. In particular, all crosses are fixed by 〈−1〉.

7 . 2 Co1

The next Conway group we will consider is Co1, which is defined as
the quotient of Co0 by its normal subgroup generated by the scalar ma-
trix −1. It has order |Co1 | = |Co0 |/2 = 4 157 776 806 543 360 000.

In this section, we will prove that Co1 is simple. To this end, we
will collect our conditions to apply Iwasawa’s lemma. Primitivity of
the action of Co1 on the set of crosses follows naturally from the action
of Co0 on the set of crosses. Similary, Co1 is perfect, as it is a quotient
of the perfect group Co0. Whereas Co0 did not act faithfully on the
set of crosses, we factored out precisely the normal subgroup fixing all
crosses to obtain Co1, hence Co1 acts faithfully on the set of crosses.

Now, we only need to exhibit a particular structure of the stabilizers
of the crosses in order to apply Iwasawa’s lemma. As all stabilizers are
conjugates of the stabilizer of the canonical cross, we can focus on its
stabilizer, 212 : M24. We will now demonstrate that its normal abelian
subgroup 212 generates all of 212 : M24 by conjugation. To this end,
we’ll construct an alternate cross, labeled C ′, as follows. For clarity, let

28



7 . 2 Co1

us write the coordinates of any c ∈ C ′ in 6 × 4 blocks, as follows:

c =
1√
8



c1 c2 c3 c4

c5 c6 c7 c8

c9 c10 c11 c12

c13 c14 c15 c16

c17 c18 c19 c20

c21 c22 c23 c24


, (7.1)

where precisely one of the rows (blocks) is one of

±(+4,+4,+4,+4),

±(−4,−4,+4,+4),

±(−4,+4,−4,+4),

±(+4,−4,−4,+4),

(7.2)

and the others are zeroes. One can easily verify that this is indeed a
cross: we can construct 6 · 2 · 4 = 48 such vectors, which are are in the
Leech lattice as constructed in Lemma 15, have norm 8, and are pair-
wise perpendicular, negatives or equal. We now exhibit the nontrivial
coordinate permutation π ∈ M24 acting on the vectors c ∈ C ′, written
in matrix form as in 7.1, as follows:

cπ =
1√
8



c1 c2 c3 c4

c6 c5 c8 c7

c9 c10 c11 c12

c14 c13 c16 c15

c19 c20 c17 c18

c24 c23 c22 c21



Type A: identity
Type B: swap columns 1-2, and 3-4
Type A
Type B
Type C: swap columns 1-3, and 2-4
Type D: swap columns 1-4, and 2-3,

where the permutation of each row is of a different type, as labeled
above. If we consider the action of these types on the rows in 7.2, we
find the following permutations for each row:

• ±(+4,+4,+4,+4): fixed by all types,

• ±(−4,−4,+4,+4): fixed by A and B, but C and D act as a sign
flip, mapping to ±(+4,+4,−4,−4),

• ±(−4,+4,−4,+4): fixed by A and C, but B and D act as a sign
flip, mapping to ±(+4,−4,+4,−4),

• ±(+4,−4,−4,+4): fixed by A and D, but B and C act as a sign
flip, mapping to ±(−4,+4,+4,−4).

29



CONWAY GROUP S

Note that the action of π flips the signs of a total of 8 pairs in the cross,
so it is indeed contained in M24. Furthermore, the cross C ′ as a whole
is fixed by π. Therefore, the action of π corresponds with a sign flip
on this alternate cross, or, in other words, is conjugate to some ρ ∈ 212

acting on the canonical cross. As M24 is simple, no nontrivial subgroup
of M24 is invariant under conjugation, sowe conclude that 212 generates
all of 212 : M24 by conjugation. Consequently, as all cross stabilizers are
conjugate, 212 generates all of Co1 by conjugation.

Lemma 16. The group Co1 is simple.

Proof. Wehave shown thatCo1 is perfect, and acts primitively and faith-
fully on the set of crosses of the Leech lattice. Moreover, we have
demonstrated that the normal abelian subgroup 212 of the canonical
cross stabilizer 212 : M24, generates all of Co1 by conjugation. There-
fore, we can apply Iwasawa’s lemma to conclude thatCo1 is simple.

This is the main result of this thesis, and the aim of the next chapter
is to show how part of this proof was formalised in the Lean theorem
prover. For completeness, wewill now also construct the other Conway
groups Co2 and Co3, but we will not go into as much detail as before,
and not prove their simplicity, nor formalise them.

7 . 3 Co2 AND Co3

In this section, wewill describe theConway groupsCo2 andCo3. These
groups are subgroups of Co1, and in particular they are constrained to
fix a lattice vector of norm 4 and 6, respectively. It turns out that both
Co2 and Co3 are simple. Furthermore, one can show that the action
of Co0 is transitive on both the vectors of norm 4 and 6, so, using the
results from Section 6.3, we find the orders of their respective stabilizer
subgroups are:

• |Co2 | = |Co0 |/196560 = 42 305 421 312 000,

• |Co3 | = |Co0 |/16773120 = 495 766 656 000.

This process of construcing subgroups fixing part of the lattice is first
described in great detail byConway himself (Conway, 1969) and can be
extended to vectors of other norms, and even to other simplices. Other
groups that can be constructed in this way were already discovered,
thus were not new (simple) groups, at the time. However, their new

30



7 . 3 Co2 AND Co3

construction through the Leech lattice offers an elegant and uniform
way to construct many groups that are of great interest in the broader
study of finite groups.

31





8FORMALISAT ION

In this chapter, we will discuss the formalisation of the finite simple
Conway groups in Lean. Wewill start by introducing the Lean theorem
prover and the mathlib library, then we will discuss the implementa-
tion of part of the proofs outlined earlier in this thesis. Part of the code
is listed in the appendices and throughout this chapter. The full source
code is listed on GitHub at https://github.com/erikvdplas/
mathlib4.

8 . 1 L EAN THEOR EM PROV E R

Lean is an interactive theoremprover originally developedbyLeonardo
de Moura at Microsoft Research (Moura et al., 2015). The latest ver-
sion of Lean, Lean 4, was released in 2023 and is the version used in
this project. The aim of Lean is to provide a powerful and efficient tool
for formalising mathematics and verifying proofs. The core idea is to
encode mathematical definitions and theorems in a formal language,
and use a sophisticated type checker to verify the correctness of proofs.
Loosely speaking, if a proof written in Leanmatches the type of a given
proposition, and the code compiles, then the proof is verifiably correct.
Alternatively, one can also skip certain proof steps using the ‘sorry’
keyword instead of a proof, but Lean will justly mark all dependent
proofs as incomplete. The type checker itself is based on a small set
of axioms and rules, which are used to derive all other results. This
means that the only part of the system that needs to be trusted is this
foundational kernel, which is the implementation of the type checker.

Furthermore, Lean is also designed to automate as much of the
proving process as possible, by supplying a set of tactics which auto-
mate common proof steps. In these thesis we are mainly interested in
pragmatic use of Lean, and will not go into further details about the
underlying computer science theory. Instead, we will give many ex-
amples of Lean code in this chapter to illustrate how it can be used to
formalise mathematics.

33

https://github.com/erikvdplas/mathlib4
https://github.com/erikvdplas/mathlib4


FO RMAL I SAT I ON

8 . 2 MATHL I B

Mathlib is an open-source project on Github, serving as a collection
of definitions and proofs from all branches of mathematics (The math-
lib community, 2020). It has a large community of contributors, pri-
marily from the mathematical academic community. Guided by a se-
lect group ofmaintainers, anyone can contribute through pull requests.
Communication regarding the development of mathlib takes place on
the Zulip chat platform. Besides the more general results in (linear) al-
gebra, analysis, and topology, mathlib also contains more specialized,
larger projects: the classification of finite simple groups would also fit
well within this library. In fact, many of the more fundamental group
theoretic results are already present in mathlib, which we also grate-
fully used for this thesis.

8 . 3 IWA SAWA ' S L EMMA

At the time of writing, there is an open pull request in the mathlib
repository formalising Iwasawa’s Lemma (Chambert-Loir, 2024). In
our fork of mathlib, we have already merged this pull request, and
modified it in order to compile (see Appendix B).

Iwasawa’s lemma applies to groups acting on sets with a certain
structure. Reiterating Lemma 8, it is concerned with any perfect group
G acting faithfully and primitively on a set Ω. Furthermore, the stabi-
lizer Ga of some point a ∈ Ω, has a normal abelian subgroup A gener-
ating the whole group G by conjugation. In the proof of the lemma we
have demonstrated that all stabilizer subgroups are conjugate, so we
can actually consider any stabilizer subgroup without loss of general-
ity.

In 8.1, precisely this subgroup structure is implied, albeit in a differ-
ent way. This ‘Iwasawa structure’ can now be used to build and prove
the lemma. To exhibit the structure, one must show that for some spe-
cific group and associated group action on a set, we can construct the
Iwasawa structure, i.e. provide an instance of such structure.

variable (M : Type*) [Group M] (α : Type*) [MulAction M α]

/-- The structure underlying the Iwasawa criterion -/

34



8 . 3 IWA SAWA ' S L EMMA

structure IwasawaStructure where
/-- The subgroups of the Iwasawa structure -/

T : α → Subgroup M
/-- The commutativity property of the subgroups -/

is_comm : ∀ x : α, (T x).IsCommutative
/-- The conjugacy property of the subgroups -/

is_conj : ∀ g : M, ∀ x : α, T (g • x) = MulAut.conj g • T x
/-- The subgroups generate the group -/

is_generator : iSup T = >

Source Code 8.1: Iwasawa subgroup structure
(© Antoine Chambert-Loir, 2024)

Here, our objects of interest are denoted by the variables M and α,
where M imposes a multiplicative action on α. Next, we can prove the
lemma using this structure. In 8.2, we further premise that M is non-
trivial (the trivial group is not considered simple) and perfect, and that
the action is quasiprimitive and faithful. Note that quasipreprimitivity
is also a less restrictive condition than primitivity, and is sufficient for
the lemma to hold. However, we will not go into the detail about the
difference here, as it is not relevant for the rest of the proof.

In proving the lemma, we first unpack what it means for a group to
be simple, namely that any of its normal subgroups is either the trivial
group or the whole group. Then, we introduce a normal subgroup N
of M and show that it is either the trivial group or the whole group.
In the next step, a generalized version of Iwasawa’s lemma is used to
show that any normal subgroup of M that does not fix all points con-
tains the commutator subgroup of M. This correspondswith our proof
of the complete lemma, without the final step, where we use that the
commutator subgroup is thewhole group, i.e. M is perfect. In the alter-
nate case that N does fix all points, we show that N must be the trivial
group by faithfulness of the action.

theorem IwasawaStructure.isSimpleGroup
(is_nontrivial : Nontrivial M) (is_perfect : commutator M = >)
(is_qprim : IsQuasipreprimitive M α) (is_faithful : FaithfulSMul M

α)↪→
(IwaS : IwasawaStructure M α) : IsSimpleGroup M := by

apply IsSimpleGroup.mk
intro N nN
cases or_iff_not_imp_left.mpr (IwaS.commutator_le is_qprim nN) with
| inl h =>

refine' Or.inl (N.eq_bot_iff_forall.mpr fun n hn => _)
apply is_faithful.eq_of_smul_eq_smul
intro x
rw [one_smul]
exact Set.eq_univ_iff_forall.mp h x ⟨n, hn⟩

35



FO RMAL I SAT I ON

| inr h => exact Or.inr (top_le_iff.mp (le_trans (ge_of_eq is_perfect)
h))↪→

Source Code 8.2: Iwasawa’s lemma
(© Antoine Chambert-Loir, 2024)

In the proof of the generalized lemma concerning any normal sub-
group N of M, that does not fix all points, we use the Iwasawa struc-
ture to show that N contains the commutator subgroup. This proof is
a bit more involved, and differs slightly from our written proof as the
quasipreprimitivity of the action is used and the subgroup structure is
expressed differently. In 8.3, an important step that overlaps with our
written proof is the (indirect) use of the second ismorphism theorem,
using ‘commutator_le_of_self_sup_commutative_eq_top’ to show that
the commutator subgroup is contained in N, as NA is thewhole group,
for some abelian subgroup A of M (cf. Lemma 3). This is a good ex-
ample of how you can use nested lemmas in Lean to build up to amore
complex result.

theorem IwasawaStructure.commutator_le
(is_qprim : IsQuasipreprimitive M α) (IwaS : IwasawaStructure M α)
{N : Subgroup M} (nN : N.Normal) (hNX : MulAction.fixedPoints N α

≠ >) :↪→
commutator M ≤ N := by

have is_transN := is_qprim.pretransitive_of_normal nN hNX
have ntα : Nontrivial α := isnontrivial_of_nontrivial_action hNX
obtain a : α := Nontrivial.to_nonempty.some
apply nN.commutator_le_of_self_sup_commutative_eq_top ?_ (IwaS.is_comm

a)↪→
-- We have to prove that N t IwaS.T x = >
rw [eq_top_iff, ← IwaS.is_generator, iSup_le_iff]
intro x
obtain ⟨g, rfl⟩ := MulAction.exists_smul_eq N a x
rw [Subgroup.smul_def, IwaS.is_conj g a]
rintro _ ⟨k, hk, rfl⟩
have hg' : ↑g ∈ N t IwaS.T a := Subgroup.mem_sup_left (Subtype.mem g)
have hk' : k ∈ N t IwaS.T a := Subgroup.mem_sup_right hk
exact (N t IwaS.T a).mul_mem ((N t IwaS.T a).mul_mem hg' hk') ((N t

IwaS.T a).inv_mem hg')↪→

Source Code 8.3: Generalized Iwasawa’s lemma
(© Antoine Chambert-Loir, 2024)

In the next section, our aim is to construct the Conway groups Co0

and Co1, and discuss how we can use this formalised lemma to show
that Co1 is simple.

36



8 . 4 CONWAY GROUP S

8 . 4 CONWAY GROUP S

In this section, we will describe the code written to formalise the Con-
way groups in Lean. Furthermore, we will discuss the formalisation of
the simplicity of Co1, and what is still missing to complete proof. As
in our written construction, the Conway groups are constructed using
the Leech lattice, sowewill start by introducing the formalisation of lat-
tices and the isometries preserving them, fixing the origin. The code
for this section is listed in Appendix A.

8 . 4 . 1 Lattices and automorphisms

In 8.4, we define the class of integral lattices. This class extends the
‘AddCommGroup’ class, describing an abelian group with an addition
operation, and the ‘Inner’ class, endowing it with an inner product op-
eration mapping to the integers. We require a lattice to be ‘Free’ and
‘Finite‘, such that it is generated by integer multiples of a finite basis
of vectors. Furthermore, we require the inner product to be additive in
the first argument, symmetric, andwhen applied to a vector with itself,
non-negative and zero only for the zero vector. From these properties
we can later show that the inner product is also additive in the second
argument (‘inner_add’), and that the inner product with the zero vec-
tor is zero (‘inner_zero’ and ‘zero_inner’). We also define properties
of lattices, namely its parity (‘IsEven’) and whether it is unimodular
(‘IsUnimodular’).

class IntegralLattice (Λ : Type*) extends Inner ℤ Λ, AddCommGroup Λ where
[free : Free ℤ Λ]
[finite : Finite ℤ Λ]
(add_inner : ∀ x y z: Λ, 〈(x + y), z〉_ℤ = 〈x, z〉_ℤ + 〈y, z〉_ℤ)
(inner_sym : ∀ x y: Λ, 〈x, y〉_ℤ = 〈y, x〉_ℤ)
(inner_self : ∀ x: Λ, 〈x, x〉_ℤ ≥ 0)
(inner_self_eq_zero : ∀ x: Λ, 〈x, x〉_ℤ = 0 → x = 0)

Source Code 8.4: Integral lattice class

Next, we define equivalences, i.e. isometries fixing the origin, be-
tween lattices, as shown in 8.5. We can build upon the existing ‘AddE-
quiv‘ structure, which describe equivalences preserving the addition
operation. Hence, we only need to add the preservation of the inner
product, which we do in the ‘preserves_inner’ field. Furthermore, we

37



FO RMAL I SAT I ON

define an infix notation for lattice equivalence, for brevity. Addition-
ally, we define a bit of boilerplate to make use of results from more
generic equivalence structures, and help Lean automatically make the
correct inferences.

structure IntegralLatticeEquiv (Λ₁ Λ₂ : Type*)
[IntegralLattice Λ₁] [IntegralLattice Λ₂]
extends Λ₁ ≃+ Λ₂ where
(preserves_inner' : ∀ x y: Λ₁, 〈toFun x, toFun y〉_ℤ = 〈x, y〉_ℤ)

infixl:25 " ≃l " => IntegralLatticeEquiv

Source Code 8.5: Lattice equivalence

Lastly, we define the group of automorphisms of a lattice, as shown
in 8.6. An automorphism is defined as an equivalence between the
lattice and itself, and the group structure is defined by composition of
equivalences.

variable (Λ : Type*) [IntegralLattice Λ]

@[reducible]
def IntegralLatticeAut := IntegralLatticeEquiv Λ Λ

namespace IntegralLatticeAut

instance : Group (IntegralLatticeAut Λ) where
mul f g := IntegralLatticeEquiv.trans g f
one := IntegralLatticeEquiv.refl Λ
inv := IntegralLatticeEquiv.symm
mul_assoc := by intros; rfl
one_mul := by intros; rfl
mul_one := by intros; rfl
mul_left_inv := IntegralLatticeEquiv.self_trans_symm

Source Code 8.6: Lattice automorphism group

8 . 4 . 2 Leech lattice and crosses

We can now define the Leech lattice, by extending our ‘IntegralLat-
tice’ class with the requirements uniquely defining the Leech lattice,
as shown in 8.7 (cf. Definition 27). Note in particular that we inherit
the inner product from the ‘IntegralLattice’ class, and can use ‘IsEven’
and ‘IsUnimodular’ as properties.

Demonstrating the uniqueness of the Leech lattice in Lean is still an
open problem, and constructing an instance of the Leech lattice built

38



8 . 4 CONWAY GROUP S

from the Golay code also turned out to be too challenging in the given
time. The latter would also allow us to concretely demonstrate certain
properties of the Leech lattice, similar to our written proofs in Chap-
ter 6.

class LeechLattice (Λ : Type*) extends IntegralLattice Λ where
(even : IsEven Λ)
(unimodular : IsUnimodular Λ)
(rank_eq_24 : finrank ℤ Λ = 24)
(min_norm : ∀ (x : Λ), x ≠ 0 → 〈x, x〉_ℤ ≥ 4)

Source Code 8.7: Leech lattice

Next, we define the notion of Leech lattice crosses, and the action
of Leech lattice automorphisms on them, as shown in 8.8.

variable (Λ : Type*) [LeechLattice Λ]

structure Cross where
(carrier : Set Λ)
(norm_8 : ∀ x ∈ carrier, 〈x, x〉_ℤ = 8)
(perpendicular : ∀ x ∈ carrier, ∀ y ∈ carrier, x ≠ y → 〈x, y〉_ℤ = 0 ∨ x

= -y)↪→

instance : SMul (IntegralLatticeAut Λ) (Cross Λ) where
smul f C := {

carrier := f '' C.carrier,
norm_8 := by

intro x h
simp at h
rcases h with ⟨y, hy, rfl⟩
rw [f.preserves_inner]
apply C.norm_8 y hy

perpendicular := by
intro x hx y hy hxy
simp at hx hy
rcases hx with ⟨x, hx, rfl⟩
rcases hy with ⟨y, hy, rfl⟩
rw [f.preserves_inner]
have := C.perpendicular x hx y hy
rw [← map_neg f]
simp_all [- map_neg]

}

Source Code 8.8: Leech lattice crosses, and automorphism action

8 . 4 . 3 Conway groups and the simplicity of Co1

Now, we finally define the Conway groups, as shown in 8.9. We define
Co0 as the group of integral lattice automorphisms of the Leech lattice,
and Co1 as the quotient of Co0 by its center.

39



FO RMAL I SAT I ON

variable (Λ : Type*) [LeechLattice Λ]

abbrev Conway₀ := IntegralLatticeAut Λ
abbrev Conway₁ := Conway₀ Λ / (Subgroup.center (Conway₀ Λ))

Source Code 8.9: Conway groups Co0 and Co1

There are many open problems left to solve in order to prove sim-
plicity of Co1. If we choose to go along the lines of the written proof,
we need to describe the action of Co1 on the set of crosses, and show
that it acts faithfully on this set. Furthermore, we need to show that
Co0 (and consequently, Co1) is perfect, and acts primitively on the set
of crosses, or alternatively, quasipreprimitively. Lastly, we need to ex-
hibit the Iwasawa structure with subgroups of Co1, namely the max-
imal abelian subgroups of the cross stabilizers. Then, we can finally
apply Iwasawa’s lemma from the previous section to show that Co1 is
simple. This is left as future work.

40



9CONCLUS ION & FUTURE WORK

In this thesis, we have introduced the Leech lattice and the Conway
groups. We have shown how the Leech lattice can be constructed from
theGolay code, and in turn how theConway groups can be constructed
from the Leech lattice. We have calculated the order of all Conway
groups, and proven that Co1 is simple. Part of this last proof was for-
malised in the Lean theorem prover.

The work is far from complete, however. Some of the written proof
in Chapter 7 is still a bit informal or hand-wavy, and a lot of details need
to be filled in before it can be formalised. Therefore, in the Lean code a
lot of declerations still use the ‘sorry’ keyword to skip proof steps. Due
to the steep learning curve of Lean and the complexity of the proof, it
was not feasible to complete the proof in the time frame of this thesis.
However, the existing structures could provide a good starting point
for future work, possibly by other students or researchers.

Furthermore, the formalisation of the other Conway groups, Co2

and Co3, is still open. These groups are subgroups of Co1 that fix cer-
tain vectors of the Leech lattice, as succinctly described in Section 7.3.
In a broader context, the formalisation of the Classification of Finite
Simple Groups, as discussed in Chapter 4, is a very interesting but am-
bitious project. Precisely because of the complexity and sheer size of
the proof, it is very suitable for formalisation. This thesis has demon-
strated that the Lean theorem prover is well-suited for research con-
cerning finite groups; nevertheless, our code is a neglible contribution
to this project, and much more work is needed to achieve this goal.

Acknowledgements. I would like to thank my supervisor, Johan
Commelin, for his guidance and support during this project. His first-
hand knowledge of Lean and his literature recommendations proved
invaluable. Besides his technical expertise, he also provided me with
the positive encouragement, flexibility and understanding I needed at
times, and for that I am very grateful.

41





ALEAN CODE

Mathlib 〉 GroupTheory 〉 IntegralLattice 〉 Basic.lean (New file)

/-
Copyright (c) 2024 Erik van der Plas. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Erik van der Plas
-/
import Mathlib.Analysis.InnerProductSpace.Basic
import Mathlib.LinearAlgebra.FreeModule.Basic
import Mathlib.LinearAlgebra.Matrix.Determinant

open Module
open FiniteDimensional

/-- An *integral lattice* is a finitely generated free abelian group
of finite rank `n` with a bilinear form that takes integer values. -/
class IntegralLattice (Λ : Type*) extends Inner ℤ Λ, AddCommGroup Λ where

[free : Free ℤ Λ]
[finite : Finite ℤ Λ]
(add_inner : ∀ x y z: Λ, 〈(x + y), z〉_ℤ = 〈x, z〉_ℤ + 〈y, z〉_ℤ)
(inner_sym : ∀ x y: Λ, 〈x, y〉_ℤ = 〈y, x〉_ℤ)
(inner_self : ∀ x: Λ, 〈x, x〉_ℤ ≥ 0)
(inner_self_eq_zero : ∀ x: Λ, 〈x, x〉_ℤ = 0 → x = 0)

attribute [instance] IntegralLattice.free IntegralLattice.finite

namespace IntegralLattice

variable {Λ : Type*} [IntegralLattice Λ]

/-- Inner product is also additive in the second argument by symmetry. -/
lemma inner_add (x y z : Λ) : 〈x, (y + z)〉_ℤ = 〈x, y〉_ℤ + 〈x, z〉_ℤ := by

rw [inner_sym, add_inner, inner_sym y x, inner_sym z x]

/-- Bilinear form of the inner product on an integral lattice as additive
monoid homomorphism. -/↪→

def InnerBilin : Λ →+ Λ →+ ℤ :=
AddMonoidHom.mk' (fun x ↦ AddMonoidHom.mk' (fun y ↦ 〈x, y〉_ℤ) (inner_add

x)) <| by↪→
intro x y
ext z
dsimp
apply add_inner

/-- Inner product with zero vector is always zero. -/
@[simp]
lemma inner_zero (x : Λ) : 〈x, 0〉_ℤ = 0 := by

apply (InnerBilin x).map_zero

@[simp]
lemma zero_inner (y : Λ) : 〈0, y〉_ℤ = 0 := by

rw [inner_sym, inner_zero]

variable (Λ)

/-- A lattice is even if all norms are even. -/
def IsEven : Prop := ∀ x: Λ, Even 〈x, x〉_ℤ

def gramMatrix {Λ ι : Type*} [IntegralLattice Λ] (v : ι → Λ) :=

43



L EAN CODE

Matrix.of (fun i j ↦ 〈v i, v j〉_ℤ)

/-- The determinant of a lattice is defined as the determinant
of the Gram matrix of its basis. -/
noncomputable
def determinant : ℤ :=

(gramMatrix (Free.chooseBasis ℤ Λ)).det

/-- A lattice is unimodular if its determinant is equal to 1. -/
def IsUnimodular : Prop := determinant Λ = 1

end IntegralLattice

Mathlib 〉 GroupTheory 〉 IntegralLattice 〉 Equiv.lean (New file)

/-
Copyright (c) 2024 Erik van der Plas. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Erik van der Plas
-/
import Mathlib.GroupTheory.IntegralLattice.Basic

open IntegralLattice

/-- A lattice equivalence corresponds to structure preserving isometries
fixing the origin,↪→

i.e. equivalence preserving vector additions and inner products. -/
structure IntegralLatticeEquiv (Λ₁ Λ₂ : Type*)

[IntegralLattice Λ₁] [IntegralLattice Λ₂]
extends Λ₁ ≃+ Λ₂ where
(preserves_inner' : ∀ x y: Λ₁, 〈toFun x, toFun y〉_ℤ = 〈x, y〉_ℤ)

/-- Notation for an `IntegralLatticeEquiv`. -/
infixl:25 " ≃l " => IntegralLatticeEquiv

namespace IntegralLatticeEquiv

variable {Λ₁ Λ₂ Λ₃ : Type*} [IntegralLattice Λ₁] [IntegralLattice Λ₂]
[IntegralLattice Λ₃]↪→

/-- Lattice equivalence relation is reflexive. -/
def refl (Λ : Type*) [IntegralLattice Λ] : Λ ≃l Λ where

__ := AddEquiv.refl Λ
preserves_inner' _ _ := rfl

/-- Lattice equivalence relation is symmetric. -/
def symm (f : Λ₁ ≃l Λ₂) : Λ₂ ≃l Λ₁ where

__ := f.toAddEquiv.symm
preserves_inner' x y := by

rw [← f.preserves_inner']
simp

/-- Lattice equivalence relation is transitive. -/
def trans (f : Λ₁ ≃l Λ₂) (g : Λ₂ ≃l Λ₃) : Λ₁ ≃l Λ₃ where

__ := f.toAddEquiv.trans g.toAddEquiv
preserves_inner' x y := by

rw [← f.preserves_inner', ← g.preserves_inner']
simp

instance : EquivLike (Λ₁ ≃l Λ₂) Λ₁ Λ₂ where
coe := fun x => x.toFun

44



inv := fun x ↦ x.invFun
left_inv := fun x ↦ x.left_inv
right_inv := fun x ↦ x.right_inv
coe_injective' := by

intros f g h
cases f
simp_all

instance : AddEquivClass (Λ₁ ≃l Λ₂) Λ₁ Λ₂ where
map_add f a b := f.map_add a b

lemma preserves_inner (f : Λ₁ ≃l Λ₂) (x y : Λ₁) : 〈f x, f y〉_ℤ = 〈x, y〉_ℤ
:=↪→

f.preserves_inner' x y

@[ext]
theorem ext {f g : Λ₁ ≃l Λ₂} (h : ∀ x, f x = g x) : f = g :=

DFunLike.ext f g h

@[simp]
theorem self_trans_symm (f : Λ₁ ≃l Λ₂) : f.trans f.symm = refl Λ₁ :=

ext f.left_inv

end IntegralLatticeEquiv

Mathlib 〉 GroupTheory 〉 IntegralLattice 〉 Aut.lean (New file)

/-
Copyright (c) 2024 Erik van der Plas. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Erik van der Plas
-/
import Mathlib.GroupTheory.IntegralLattice.Equiv
import Mathlib.LinearAlgebra.Determinant

variable (Λ : Type*) [IntegralLattice Λ]

/-- The group of integral lattice automorphisms -/
@[reducible]
def IntegralLatticeAut := IntegralLatticeEquiv Λ Λ

namespace IntegralLatticeAut

/-- Integral lattice automorphisms form a group under composition. -/
instance : Group (IntegralLatticeAut Λ) where

mul f g := IntegralLatticeEquiv.trans g f
one := IntegralLatticeEquiv.refl Λ
inv := IntegralLatticeEquiv.symm
mul_assoc := by intros; rfl
one_mul := by intros; rfl
mul_one := by intros; rfl
mul_left_inv := IntegralLatticeEquiv.self_trans_symm

variable {Λ}

@[simp]
lemma one_apply (x : Λ) : (1 : IntegralLatticeAut Λ) x = x :=

rfl

@[simp]
lemma mul_apply (f g : IntegralLatticeAut Λ) (x : Λ) : (f * g) x = f (g x)

:=↪→

45



L EAN CODE

rfl

/-- The determinant of an integral lattice automorphism, as a group
homomorphism. -/↪→

noncomputable
def det : IntegralLatticeAut Λ →* ℤ where

toFun := fun f ↦ LinearMap.det
f.toAddEquiv.toAddMonoidHom.toIntLinearMap↪→

map_one' := LinearMap.det_id
map_mul' := fun f g ↦ by

dsimp
rw [← map_mul]
rfl

lemma _root_.SignType.cast_inj : Function.Injective SignType.cast := by
intros a b h
revert a b
decide

def _root_.Int.SignHom : ℤ →* SignType := {
toFun := fun n => SignType.sign n,
map_one' := rfl
map_mul' := fun n m => by

dsimp
have : Int.sign (n * m) = Int.sign n * Int.sign m := by

simp
simp [Int.sign_eq_sign] at this
norm_cast at this
rwa [SignType.cast_inj.eq_iff] at this

}

noncomputable
def SignHom : IntegralLatticeAut Λ →* SignType := Int.SignHom.comp det

end IntegralLatticeAut

Mathlib 〉 GroupTheory 〉 IntegralLattice 〉 Leech 〉 Basic.lean (New file)

/-
Copyright (c) 2024 Erik van der Plas. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Erik van der Plas
-/
import Mathlib.GroupTheory.IntegralLattice.Equiv
import Mathlib.LinearAlgebra.Dimension.Finrank

universe u

open IntegralLattice
open FiniteDimensional

/-- The Leech lattice is the unique even, unimodular integral lattice of
rank 24↪→

such that the norm of any nonzero vector is at least 4.
-/
class LeechLattice (Λ : Type*) extends IntegralLattice Λ where

(even : IsEven Λ)
(unimodular : IsUnimodular Λ)
(rank_eq_24 : finrank ℤ Λ = 24)
(min_norm : ∀ (x : Λ), x ≠ 0 → 〈x, x〉_ℤ ≥ 4)

46



namespace LeechLattice

variable (Λ : Type*) [LeechLattice Λ]

theorem unique (Λ₁ Λ₂ : Type*) [LeechLattice Λ₁] [LeechLattice Λ₂]:
Nonempty (Λ₁ ≃l Λ₂) := sorry

theorem exists_leech : ∃ (Λ : Type u), Nonempty (LeechLattice Λ) := sorry

instance (n : ℕ) : Finite {x: Λ | 〈x, x〉_ℤ = n} := sorry
instance (n : ℕ) : Finite {x: Λ // 〈x, x〉_ℤ = n} := sorry

-- Lemma's about cardinality of vectors of norms 2, 4, 6 and 8:
lemma card_norm_2 : Nat.card {x: Λ | 〈x, x〉_ℤ = 2} = 0 := by

rw [Nat.card_eq_zero]
left
simp
intro x hx
by_cases hx0 : x = 0
· subst x

simp at hx
· have := min_norm x hx0

linarith

lemma card_norm_4 : Nat.card {x: Λ | 〈x, x〉_ℤ = 4} = 196560 := sorry
lemma card_norm_6 : Nat.card {x: Λ | 〈x, x〉_ℤ = 6} = 16773120 := sorry
lemma card_norm_8 : Nat.card {x: Λ | 〈x, x〉_ℤ = 8} = 398034000 := sorry

end LeechLattice

Mathlib 〉 GroupTheory 〉 IntegralLattice 〉 Leech 〉 Cross.lean (New file)

/-
Copyright (c) 2024 Erik van der Plas. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Erik van der Plas
-/
import Mathlib.GroupTheory.IntegralLattice.Leech.Basic
import Mathlib.GroupTheory.IntegralLattice.Aut
import Mathlib.Analysis.InnerProductSpace.Basic

variable (Λ : Type*) [LeechLattice Λ]

/-- A cross `C` is a subset of the Leech lattice `Λ` consisting of vectors
of norm 8↪→

such that for each pair `x, y ∈ C` one of the following three conditions
holds:↪→

(1) `x` and `y` are perpendicular, i.e. `〈x, y〉_ℤ = 0`,
(2) `x = y` or
(3) `x = -y`.

-/
@[ext]
structure Cross where

(carrier : Set Λ)
(norm_8 : ∀ x ∈ carrier, 〈x, x〉_ℤ = 8)
(perpendicular : ∀ x ∈ carrier, ∀ y ∈ carrier, x ≠ y → 〈x, y〉_ℤ = 0 ∨ x

= -y)↪→

namespace Cross

instance : SMul (IntegralLatticeAut Λ) (Cross Λ) where

47



L EAN CODE

smul f C := {
carrier := f '' C.carrier,
norm_8 := by

intro x h
simp at h
rcases h with ⟨y, hy, rfl⟩
rw [f.preserves_inner]
apply C.norm_8 y hy

perpendicular := by
intro x hx y hy hxy
simp at hx hy
rcases hx with ⟨x, hx, rfl⟩
rcases hy with ⟨y, hy, rfl⟩
rw [f.preserves_inner]
have := C.perpendicular x hx y hy
rw [← map_neg f]
simp_all [- map_neg]

}

@[simp]
lemma smul_carrier (f : IntegralLatticeAut Λ) (C : Cross Λ) :

(f • C).carrier = f '' C.carrier := rfl

instance : MulAction (IntegralLatticeAut Λ) (Cross Λ) where
one_smul := by

intro C
ext x
simp

mul_smul := by
intro f g C
ext x
simp

lemma card_cross : Nat.card (Cross Λ) = 8292375 := sorry

lemma card_cross_carrier (C : Cross Λ) : Nat.card C.carrier = 48 := by
sorry

end Cross

Mathlib 〉 GroupTheory 〉 SpecificGroups 〉 Conway.lean (New file)

/-
Copyright (c) 2024 Erik van der Plas. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Erik van der Plas
-/
import Mathlib.GroupTheory.IntegralLattice.Leech.Basic
import Mathlib.GroupTheory.IntegralLattice.Leech.Cross
import Mathlib.GroupTheory.Subgroup.Center
import Mathlib.GroupTheory.GroupAction.Primitive
import Mathlib.GroupTheory.Subgroup.Simple
import Mathlib.GroupTheory.GroupAction.Iwasawa

open IntegralLatticeAut

variable (Λ : Type*) [LeechLattice Λ]

-- The Conway-0 group is the automorphism group of the Leech lattice.
-- We use the IntegralLatticeAut structure to construct the variable.
abbrev Conway₀ := IntegralLatticeAut Λ

48



-- The Conway-1 group is the Conway-0 group modulo its center.
abbrev Conway₁ := Conway₀ Λ / (Subgroup.center (Conway₀ Λ))

namespace Conway₁

def iwasawa : IwasawaStructure (Conway₀ Λ) (Cross Λ) where
T := sorry
is_comm := sorry
is_conj := sorry
is_generator := sorry

lemma nontrivial : Nontrivial (Conway₁ Λ) := by
apply Nontrivial.mk
let id : Conway₁ Λ := 1
-- TODO: Exhibit a non-identity element in the Conway-1 group.
have hnt : ∃ x : Conway₁ Λ, id ≠ x := sorry
use id

lemma quasipreprimitive : IsQuasipreprimitive (Conway₀ Λ) (Cross Λ) :=
sorry↪→

lemma perfect : commutator (Conway₀ Λ) = > := sorry

-- TODO: Define the action of the Conway-1 group on the crosses.
-- lemma faithfull : FaithfulSMul (Conway₁ Λ) (Cross Λ) := sorry

-- The Conway-1 group is a simple group.
instance simple : IsSimpleGroup (Conway₀ Λ) := by

-- TODO: Use the Iwasawa structure by ACL and apply the isSimpleGroup
theorem.↪→

sorry

end Conway₁

49





B
IWASAWA PR MODIF ICAT IONS

Modifications to the Iwasawa pull request by Antoine Chambert-Loir (Chambert-Loir,
2024), compared to its state on 2024-05-28.

Mathlib 〉 GroupTheory 〉 GroupAction 〉 Blocks.lean (Modified file)

diff --git a/Mathlib/GroupTheory/GroupAction/Blocks.lean
b/Mathlib/GroupTheory/GroupAction/Blocks.lean↪→

index 9cf09ce89..1333e2e85 100644
--- a/Mathlib/GroupTheory/GroupAction/Blocks.lean
+++ b/Mathlib/GroupTheory/GroupAction/Blocks.lean
@@ -72,7 +72,7 @@ theorem IsPartition.of_orbits :

exact Set.Nonempty.ne_empty (MulAction.orbit_nonempty a) ha
intro a; use orbit G a
constructor

- · simp only [Set.mem_range_self, mem_orbit_self,
exists_unique_iff_exists, exists_true_left]↪→

+ · simp only [Set.mem_range, exists_apply_eq_apply, mem_orbit_self,
and_self]↪→

· simp only [Set.mem_range, exists_unique_iff_exists, exists_prop,
and_imp, forall_exists_index,↪→
forall_apply_eq_imp_iff']

rintro B b ⟨rfl⟩ ha
@@ -416,7 +416,7 @@ theorem IsBlock.isBlockSystem [hGX :

MulAction.IsPretransitive G X]↪→
use g • B
constructor
· simp only [Set.mem_range, exists_apply_eq_apply,

exists_unique_iff_exists, exists_true_left]↪→
- exact hg
+ simp [hg]

· simp only [Set.mem_range, exists_unique_iff_exists, exists_prop,
and_imp, forall_exists_index,↪→
forall_apply_eq_imp_iff']

intro B' g' hg' ha
@@ -608,14 +608,13 @@ theorem Setoid.nat_sum {α : Type _} [Finite α] {c :

Set (Set α)} (hc : Setoid↪→
simp only [Subtype.mk_eq_mk, Subtype.coe_mk]
apply And.intro _ hab
refine' ExistsUnique.unique (hc.2 b) _ _

- simp only [exists_unique_iff_exists, exists_prop]
exact ⟨hx, ha⟩

- simp only [exists_unique_iff_exists, exists_prop]
exact ⟨hy, hb⟩
-- surjectivity
intro a

- obtain ⟨x, ⟨hx, ha : a ∈ x, _⟩, _⟩ := hc.2 a
- use ⟨⟨x, hx⟩, ⟨a, ha⟩⟩
+ obtain ⟨x, ⟨hx, ha⟩, _⟩ := hc.2 a
+ simp only [Sigma.exists, Subtype.exists, exists_prop, exists_eq_right]
+ use x, hx, ha

theorem Set.ncard_coe {α : Type*} (s : Set α) :
s.ncard = Set.ncard (Set.univ : Set (Set.Elem s)) := by

Mathlib 〉 GroupTheory 〉 GroupAction 〉 Primitive.lean (Modified file)

51



IWA SAWA PR MOD I F I CAT I ON S

diff --git a/Mathlib/GroupTheory/GroupAction/Primitive.lean
b/Mathlib/GroupTheory/GroupAction/Primitive.lean↪→

index 75ed120aa..0dc27869b 100644
--- a/Mathlib/GroupTheory/GroupAction/Primitive.lean
+++ b/Mathlib/GroupTheory/GroupAction/Primitive.lean
@@ -472,7 +472,7 @@ theorem _root_.Setoid.IsPartition.ncard_eq_finsum

simp only [Set.singleton_subset_iff, Set.mem_empty_iff_false,
not_false_eq_true, and_true]↪→

exact ⟨hx.2, hy.2⟩
· rintro ⟨x, hx⟩

- obtain ⟨t, ⟨ht, hx', _⟩, _⟩ := hP.2 x
+ obtain ⟨t, ⟨ht, hx'⟩, _⟩ := hP.2 x

use ⟨⟨t, ht⟩, ⟨x, ⟨hx, hx'⟩⟩⟩

/-- The target of an equivariant map of large image is preprimitive if
the source is -/↪→

52



B I B L I OGRA PHY

B IBL IOGRAPHY

Capdeboscq, Inna et al. (Dec. 2023). The classification of the finite sim-
ple groups, number 10. en. Providence, RI: American Mathematical
Society.

Chambert-Loir, Antoine (2024). The Iwasawa criterion for simplicity. URL:
https://github.com/leanprover-community/mathlib4/
pull/12048.

Conway, J.H. (1968). “APERFECTGROUPOFORDER8,315,553,613,086,720,000
AND THE SPORADIC SIMPLE GROUPS”. In: Proceedings of the Na-
tional Academy of Sciences 61.2, pp. 398–400. DOI: 10.1073/pnas.
61.2.398. eprint: https://www.pnas.org/doi/pdf/10.
1073/pnas.61.2.398. URL: https://www.pnas.org/doi/
abs/10.1073/pnas.61.2.398.

— (1969). “A Group of Order 8,315,553,613,086,720,000”. In: Bulletin
of the LondonMathematical Society 1.1, pp. 79–88. DOI:https://doi.
org/10.1112/blms/1.1.79. eprint: https://londmathsoc.
onlinelibrary.wiley.com/doi/pdf/10.1112/blms/1.
1.79. URL: https://londmathsoc.onlinelibrary.wiley.
com/doi/abs/10.1112/blms/1.1.79.

Dummit,D.S. andR.M. Foote (2003).Abstract Algebra.Wiley. ISBN: 9780471433347.
URL: https://books.google.nl/books?id=KJDBQgAACAAJ.

Gorenstein, Daniel, Richard N. Lyons, and Ronald M. Solomon (Nov.
1994). The classification of the finite simple groups. Mathematical Sur-
veys andMonographs. Providence, RI: AmericanMathematical So-
ciety.

Moura, LeonardoMendonçade et al. (2015). “TheLeanTheoremProver
(System Description).” In: CADE. Ed. by Amy P. Felty and Aart
Middeldorp. Vol. 9195. LectureNotes inComputer Science. Springer,
pp. 378–388. ISBN: 978-3-319-21400-9. URL: http://dblp.uni-
trier.de/db/conf/cade/cade2015.html#MouraKADR15.

The mathlib community (2020). “The Lean mathematical library”. In:
Proceedings of the 9th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs, CPP 2020, New Orleans, LA, USA, January
20-21, 2020, pp. 367–381. DOI: 10.1145/3372885.3373824. URL:
https://doi.org/10.1145/3372885.3373824.

53

https://github.com/leanprover-community/mathlib4/pull/12048
https://github.com/leanprover-community/mathlib4/pull/12048
https://doi.org/10.1073/pnas.61.2.398
https://doi.org/10.1073/pnas.61.2.398
https://www.pnas.org/doi/pdf/10.1073/pnas.61.2.398
https://www.pnas.org/doi/pdf/10.1073/pnas.61.2.398
https://www.pnas.org/doi/abs/10.1073/pnas.61.2.398
https://www.pnas.org/doi/abs/10.1073/pnas.61.2.398
https://doi.org/https://doi.org/10.1112/blms/1.1.79
https://doi.org/https://doi.org/10.1112/blms/1.1.79
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/blms/1.1.79
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/blms/1.1.79
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/blms/1.1.79
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/blms/1.1.79
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/blms/1.1.79
https://books.google.nl/books?id=KJDBQgAACAAJ
http://dblp.uni-trier.de/db/conf/cade/cade2015.html#MouraKADR15
http://dblp.uni-trier.de/db/conf/cade/cade2015.html#MouraKADR15
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824


B I B L I OGRA PHY

Wilson, R. (2009). The Finite Simple Groups. Graduate Texts in Math-
ematics. Springer London. ISBN: 9781848009875. URL: https : / /
books.google.nl/books?id=lYMAg_Sj7hUC.

54

https://books.google.nl/books?id=lYMAg_Sj7hUC
https://books.google.nl/books?id=lYMAg_Sj7hUC

	Contents
	Introduction
	Prerequisites
	Cosets
	Maximal subgroups
	Normal subgroups
	Simple groups
	Perfect groups

	Permutation groups
	Faithfulness
	Stabilizers
	Transitivity
	Primitivity
	Iwasawa's Lemma

	Classification of finite simple groups
	Golay code
	Linear codes
	Construction using the icosahedron

	Leech lattice
	Lattices
	Construction using the Golay code
	Structure of the Leech lattice

	Conway groups
	Co0
	Co1
	Co2 and Co3

	Formalisation
	Lean theorem prover
	mathlib
	Iwasawa's Lemma
	Conway groups

	Conclusion & Future Work
	Lean code
	Iwasawa PR modifications
	Bibliography

