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Abstract

A Single Nucleotide Polymorphism (SNP) set is used to estimate latent tumor severity of col-
orectal cancer. The Rasch model is applied to a data set of 78 colorectal tumors and 727 cytobands,
in order to obtain latent tumor severity estimates and cytoband information estimates. The origin
of this project lies in a predominant finding in cancer (including colon cancer) research of the last
four decades. Namely, the simultaneous occurrence of cancer with chromosomal abnormalities. The
value of tumor severity analysis using Rasch technology lies in the information it can provide to
the medical professional with regard to the severity of the tumor using only a biopsy. Hence, this
method could be a valuable tool for preoperative staging. The parameter estimates are obtained us-
ing maximum likelihood estimation and the appliance of a penalty in the log-likelihood. The penalty
technique added to the Rasch model is valuable in its ability to identify model parameter estimates
for tumors without chromosomal events on the cytobands. However, too high penalty values lead
to non-convergence of model parameter estimates. The interpretation of tumor severity parameter
estimates is similar to tumor grades given by medical experts. Besides information on the severity of
specific tumors, cytoband estimates give insight to the extent of the relation between chromosomal
aberrations on a specific cytoband location and the severity of a colorectal tumor.

Keywords: Single Nucleotide Polymorphism, Colorectal cancer, Rasch Model, Penalized Log-
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1 Introduction

The distinction between benign tumors (adenomas) and carcinomas with lymph-node metastasis (spread-
ing malignant tumors) is relevant choosing an appropriate treatment for colorectal tumors (Lips et al,
2007)). In order to have adequate preoperative staging, insights into the pathogenesis of colorectal cancer
are needed. A predominant finding in the literature of the past decade is the relation between colorec-
tal cancer and chromosomal instability (Goel & Boland, 2010; Grady & Carethers, 2008; Diep, Kleivi,
Teixeira & Lindgjrde, 2006). Tumor cells having abberations on hundreds of genes, and structure and
copy number of chromosomes (Balmain, Gray & Ponder, 2003; Sheffer, 2009) became of interest for
the prediction of the transition from adenoma to carcinoma (Diep et al., 2006; Lips et al., 2007; Lips et
al., 2008; Lips et al., 2008b) . This chromosomal or genetic instability is described as aberrant in copy
number of genes (both loss and gain) and loss of heterozygosity (LOH) (Goel & Boland, 2010) and is
measured using single nucleotide polymorphism (SNP) arrays (Lips et al., 2007) .

In a study of Lips et al. (2007) logistic regression was applied in order to model the progression from
adenoma to carcinoma. The use of logistic regression is relatively new (by knowledge of the present author
for the first time in Lips et al., (2007) in the modeling of tumor severity. Lips et. al. (2007) recoded
normal gene copy number and gain, loss and LOH into a dichotomous "event” "no event” scheme and
used aggregated genomic events to the chromosome level to build a quantitative model predicting tumor
severity from adenoma to carcinomas with lymph node meta-stasis. This study proposes an extension to
logistic regression, still modeling the dichotomous patterns of gene expression. Rasch models have the
capacity to create a latent dimension modeling dichotomous scored items (in this case cytobands). This
ability makes it a suitable tool for assessing severity of rectal tumors, as the covariation of abberations on
the chromosomes is modeled into a latent dimension tumor severity. The Rasch model will give estimates
for tumor severity moreover, it is a tool for identifying common implicated regions as biomarkers for the
severity of colorectal cancer. Due to lack of knowledge on specific genes and a lack of consensus between
studies, a method that can clearly identify cytobands which are key in predicting colorectal cancer can
be valuable (Goel & Boland, 2010) .

Before moving on to the application of the Rasch model and its use with respect to SNP arrays, a
short explanation of the data seems useful. A SNP refers to the replacement of a base (adenine (A),
guanine (G), cytosine(C) and thymine(T)) in a DNA string. This single or point mutation generally
concerns the replacement of T by A, G by C or the other way around. The effect of this point mutation
is reflected in the copy number of genes and LOH, which henceforth will be referred to as events. Events
occur often and are used as predictors of cancer severity (Balmain et al., 2003). As said before, however
the significance of the point mutations would be lost if their location on the specific chromosomes could
not be identified. The ”"bar code” used to identify this location is called cytoband. Obtaining results with
respect to the copy number of genes LOH or normal copy on different cytobands is usually done when
chromatids (the twin pair of a chromosome) are fixed at the centromere during the mitotic metaphase
(a phase in cell division) when DNA strands are coiled up. The cytoband is obtained with a staining
process with resulting banding patterns. As cytobands are indicators of locations on a chromosome
it gives an indication whether the SNP is located at the long end of the chromosome measured from
the centromere, called the q arm, or at the short end, called the p arm. As an example the resulting
cytoband 72q23.3” can be explained as a location on the second chromosome(”2”), measured at the long
end from the centromere (”q”) and its relative distance from the centromere (723.3”). This information
is important because besides a parameter estimate for each tumor () a parameter estimate (3) will be
assigned to each cytoband.

Extending the work of Lips et. al., (2007) this Rasch model is an extension of the logistic regression
used to predict tumor severity with events aggregated on the chromosomal level. The parameter estimates
f and 3 are obtained using multivariate logistic regression creating a single latent predictor tumor severity.
A high negative estimate of 6 indicates low tumor severity in this population relative to others, high
positive 6 estimates mean the opposite. The 8 parameter estimates will give an indication of where on
the latent tumor severity scale, that cytoband gives the most information. The reader with experience in
modeling SNP arrays in a regression setting is likely to expect problems with over-fit, parameter estimate
identification and multi-collinearity as all are present in a regression setting (Eilers, Boer, Ommen &
van Houwelingen, 2001). Problems in a regression setting with SNP array data are mostly caused
by the independent variables far outnumbering the cases (the regression coefficients of the cytobands
far outnumbering the tumors). The problems resulting from this cases to predictors ratio are often



solved using penalized regression (Le Cessie & van Houwelingen, 1992; Eilers et al., 2001; Verwij &
van Houwelingen, 1994). The Rasch model however, being often criticized for being too restrictive and
having under-fit, is not subject to these kinds of problems. Nevertheless, there is a possible other use for
the penalty. In this paper the penalty will be used to include tumors without any events in the model,
which is useful because 6 estimates for tumor severity are assigned to tumors relative to the tumors in
the group.

The aim of this article is to obtain the 6 and S parameter estimates and infer on their merit in
predicting tumor severity and investigate the possible use of the penalty. The validation of this method
is done using the information of the study of Lips et. al., (2007). In that study medical experts obtained
a biopsy for 78 tumors, and graded the tumors in five severity stages from adenoma to carcinoma with
lymph node metastasis. This information will be used to support the Rasch estimation as a tool for
tumor grading and preoperative staging. The remainder of this paper will address the Rasch model and
its estimation in section 2. Followed by the estimation of the Rasch model and penalty estimation in
section 3, followed by the results of the estimation and the discussion in sections 4 and 5 respectively.

2 Data and Rasch model

2.1 Data

The data set used in this paper was previously published by Lips et. al. (2007). It consists of 78 snap
frozen colorectal tumors on which four types of gene copy events are measured on 727 cytobands. The
four events are three aberration types (gain, loss and LOH) and normal copy number of genes. Illumina
SNP arrays were used to identify copy number and LOH of genes using the ”beadarraySNP” R-package.
For further information the reader is redirected to Lips et. al. (2007). The primary concern of this
study is to model deviations from normality (abberations). As a result the dichotomous Rasch model is
chosen analyze an event/ no event pattern. Note however that possibilities exist to model nominal data
(e.g. normal copy state, gain, loss and LOH) using nominal polytomous Rasch models. For the use of a
dichotomous model all the abberations are recoded into the score/event 1 and the normal copy number
is recoded into 0. The resulting data set is a matrix which has i = 1,....,n (n = 78) colorectal tumors on
its rows and j = 1,....k (k = 727) cytobands in its columns. Hence every variable X;; has either a 1 or
0 for an event in a tumor on a particular cytoband. From this data set two subsets were analyzed one
with all tumors (n = 78) and one with at least one event on a tumor (n = 74). For each tumor a severity
grade was available: Tumors with only adenoma tissue (A/A), tumors with adenoma fractions of cases
with carcinoma tissue infiltrating at least in the submucosa (A/C), tumor fractions containing a mixture
of adenoma and carcinoma tissue (AC/C), tumors with only carcinoma tissue (C/C) and carcinomas
with lymph node metastasis (C/C (N+)) L.

2.2 Rasch model

As said the Rasch model computes a latent trait tumor severity. 6 and ( are obtained modeling the
responses in the variables X;; and the chance on an event m;; displayed in the Rasch model

ePi—0i

(1)

Hence, the chance on a chromosomal event 7;; is calculated by means of the § estimate of tumor
severity for tumor ¢ and the importance of the information of cytoband j represented by 3. The 6
parameter estimate is interpreted in this case as the unobserved tumor severity. This trait theoretically
ranges from minus infinity to plus infinity. Because an event/abberation is coded as 1 and the presence
of abberations is related to the more severe cases of cancer the interpretation of € is on a scale from
least severe to very severe. The [ parameter estimate should be interpreted as the value on the latent
cancer severity scale where the probability of an event is .5 as can be seen in Equation 1 and will be
further addressed later. Hence concerning the 5 parameter estimate one can say that it gives information
for each cytoband were a high value of 8 should be interpreted as the cytoband giving its optimum of

1Like the data the tumor grades are obtained from (Lips et al, 2007)



information on the higher end of the tumor severity scale. For each variable X;; in this matrix it can be
shown that the chance on an abberation/event is denoted by m;;, which is displayed in Equation 1 and
its corresponding chance on no event(Fischer & Molenaar, 1995), which is displayed as

1
Tren )

In Equation 1 one can easily see the interpretation of 5 giving a .5 probability on an event when it
is equal to A, and thus giving its optimum of information.
Under the Rasch model local independence is assumed. Local independence means
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Assuming independence of observations, it follows that the likelihood function is
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Substitution from (1) and (2) into (4) and taking the natural logarithm of both sides gives
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Where ¢; is the sum of events over row i and s; is the sum of events over column j. The estimates of
6 and S can be obtained by miximizing the Joint Maximum Likelihood (JML) estimates of Equation 5.

3 Computational statistics

3.1 Newton Raphson estimates

See Appendix II for an R function, executing a Rasch analysis as well as a penalized Rasch analysis.
To obtain the parameter estimates S and 6 the Newton Raphson algorithm is used. Newton Raphson
algorithms are calculated using derivations of the log-likelihood, in this case the JML. The first derivative
of the log-likelihood (5) with respect to 6,
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and the second derivative with respect to 6,
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are implemented in the equation for the Newton Raphson algorithm. This gives the Newton Raphson
algorithm for 6, with iterations u
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Newton Raphson iterations for § are obtained by implementing the first derivative of the JML with
respect to f3,
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and the second derivetive of the JML with respect to 3,

52/ n —efi—hi
T AT

i=1

(10)

in the equation of the Newton Raphson algorithm. The Newton Raphson algorithm for 8 with iterations

u is then be written as

g 8, 8
J(u) 38B;(u) 55?(@ :

In order to obtain JML estimates of 5 and € starting values are chosen for 6 (In(t;)/(k —t;)) and 3
(In(n—s;)/(s;)). The Newton Raphson algorithm for 6(8) is applied until convergence is reached (Baker
& Kim, 2004). A similar process is executed for 8 (see Equation 11). The parameter estimates 8 and 6
are estimated with updated values for 5 and 6 in each iteration, as the derivatives used in Equation 11
and Equation 8 depend on each other in JML. This is a direct consequence of the different elements of the
Newton Raphson algorithm: Equation (6, 7, 9 and 10). A drawback of this basic Rasch model is that it
can not model perfect response patterns as they give infinite parameter estimates (Fischer & Molenaar,
1995). Therefore tumors without events or with all events on each tumor, as well as cytobands with
all or none events have to be removed for the standard form of Rasch modeling. In this data set, four
tumors had no event at any of the cytoband and where therefore removed. In order to obtain converged
estimates for 8 and € one parameter estimate has to be has to fixed. For this purpose the values of 6 are
centered around their mean. The consecutive steps for the Newton Raphson algorithm in this case are:

/Bju+1 = (11)

Step 1 Choose Starting values, ;. ku=0 = In(n —s;)/(s;)) and 0;  n =0 = In(t;)/(k —t;).
Step 2 Execute one Newton Raphson iteration for 6 (see Equation 8).

Step 3 Center ¢ around its mean.

Step 4 Execute one Newton Raphson iteration for 8 (see Equation 11).

Step 5 Check for convergence of parameter estimates 6 and 3

Step 6 Repeat step 2 through 5 until convergeance is reached.

3.2 Penalty estimation

As stated earlier penalized estimation is not necessary in order to obtain estimates of # and 8 parameters.
However, some aspects of the penalty can be useful. The penalty is implemented in the log-likelihood
function before derivation as can be seen below for

ﬁpzf—AZ%. (12)

The derivations of the penalized log-likelihood with respect to € for the Newton Raphson iterations
are easy. Like the penalty for 6 a penalty for 8 can be implemented for S in the stated estimation
methods given in the paragraph on Newton Raphson estimates. The function of a penalty constant
A is to discourage high values of the parameter estimate it is penalizing, as with the increase of the
parameter estimate directly leading to a decrease if likelihood function as can be seen in 12. This creates
an interesting possibility, namely the inclusion of tumors and cytobands with perfect scores.

In the Rasch model this would lead to unidentified parameter estimates because they tend to minus
or plus infinity. As stated before the inclusion of tumors with perfect scores can be very important as the
benign tumors are expected to have no events and the tumor grade 6 is relative too other tumors. The
use of this penalty can ensure the possibility to create a norm group for comparison. Different values for
penalties with regard to the estimate of # and 8 will be implemented and assessed which penalty leads
to the lowest value of the AIC (Akaike, 1974).



4 Results
4.1 Rasch Model

The Rasch model is fully identified and gives both 8 and 6 parameter estimates. As can be seen in
Figure (1) the tumor grades given by the medical experts correspond with the estimates of 6. One can
see a gradual increase in 6 as the tumor increases from a benign tumor (adenoma) to a severe carcinoma
with lymph-node meta-stasis ("CC (N+)”)
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Figure 1: Latent trait 6 in relation with observed tumor severity.

Furthermore the test information curve (Baker & Kim, 2004), given in Figure 2, gives a good indica-
tion of where on the latent trait scale this Model gives its optimum of information. For the interpretation
of this curve and the values of 8 one should know that the tumors graded in five groups from adenoma
to carcinoma with lymph-node metastasis had a n of respectively 20, 10, 9, 22 and 13. As can be seen
in Figure 1 the estimate of 6 increased with the increase of the tumor grades given by the medical ex-
perts. For a complete overview of the tumors and their severity estimates see Table 1 in Appendix I.
Furthermore one can see that if the information of Figure 2 is combined with the count in numbers in
the different tumor groups the test information curve is at its highest where the tumor type count is.

With regard to the cytobands it can be seen that many of the adjacent cytoband parameter estimates
B have the same value, as expected in research findings (Eilers et al., 2001). In the setting of the Rasch
model this means that these items give the same information about the tumor severity. Multi-collinearity
is in this case not a problem as the probability of events are functions of the parameter estimates, and
not like logistic regression where the estimates predict the tumor severity. The 8 parameter estimates
are summarized in the Appendix I table 2, the top five values for each chromosome and arm are listed
when possible. Extreme values are listed and equal values are left out. For an indication of the different
B estimates see Figure (2). In this Figure one can see the cytobands implicated the most with colorectal
cancer (the higher estimates of #). Figure 2 shows some slight negative 3 estimates. However, these are
not to be interpreted as having a negative relationship with tumor severity, as one might think baring a
regression analysis in mind. These values simply indicate that the optimum of information is somewhat
below the mean of 0, since the 8 parameter estimate should be interpreted as the location where the
cytoband gives its optimum of information on the latent tumor severity scale 6.

4.2 Penalized Rasch model

The penalty was successful in estimating tumor parameters without any chromosomal events on the
cytobands (for the cases see, Appendix I, table 1 cases 1,2,3 and 24). As the regular Rasch model
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Figure 2: Display of test information, test information curve and [ parameter estimates respectively.

cannot identify parameter estimates for these cases sometimes it is possible to add one event so that the
parameter estimates are obtained, although it is not recommended (Fischer & Molenaar, 1995) . When
comparing the estimate of cases without events for the model with just one event added the difference
is apparent. The Rasch model without penalty does not identify the model parameter estimates, the
Rasch model with a constant added to each tumor identified the model parameter estimates. However,
when the constants (1 event) for the cases which originally had no events are added, extreme estimates
are obtained (-38 where the normal scale would range from -4 to 3). The model with a small penalty
(A = .01 see appendix 1, table 1) obtained measurements the most like the normal regression method.
The last model with the largest penalty had parameter estimates most marginalized by the penalty.

Now that the penalty works attempts where made to find the optimal constant to be implemented for
the penalty. The AIC for both models was calculated and plotted against penalty values for the 6§ and
[ parameter estimates. However the AIC (as can be seen in 3) had no minimum, at the largest possible
value of A = 25 larger values resulted in convergence problems for the model parameter estimates.
Therefore, the AIC was not a useful tool for identifying the appropriate penalty.

Akaike's Information Criterion
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140000 145000
I I

135000
I

130000
I
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Figure 3: AIC for models penalizing for model parameter estimates



5 Discussion

The dichotomous Rasch model used in this paper produced parameter estimates of 8 and 6 of tumors
and cytobands with events > 1. The # parameter estimates follow same ordering of the observed tumor
severity scores (A/A to C/C (N+)). Therefore the model can further be investigated to be eventually
used as tumor severity rating tool, which only uses a tumor. Further study is needed with different
samples in order to validate the model. Furthermore in order to distinguish adenomas from carcinomas
for populations of interest careful construction of norm groups is necessary as this paper only concerns
the statistical implementation of the Rasch model on this type of data. Interesting model extensions are
also possible. The data used is a display of the presence of a chromosomal abberation, and therefore a
dichotomous Rasch model is used. It might be possible that a polytomous Rasch model is fitted on a data
set which displays loss, gain or LOH on the cytobands. This was however not the present concern. A
final model extension could also be another Item Response model, such as the 2PL model of (Birnbaum,
1968) besides giving an estimate of tumor severity for the tumor and maximum information estimate
for the cytoband the IRT model can also present the researcher with a parameter estimate that displays
information for each cytoband on the extent it is measuring the latent trait (colorectal tumor severity).

The penalized estimation, which was executed to estimate € parameter estimates for tumors without
events, was successful for that purpose. The resulting tumor severity estimates where in concurrence with
theory as the tumors without chromosomal events had the lowest tumor severity estimates. (Appendix
1, Table 1). However the AIC of models with different penalty’s did not result in a penalty value with
an identified clear minimum. Instead, the penalty decreased with an increase of the penalty value until
the size of the penalty caused the parameter estimates to be unidentified. What causes this problem
will be further investigated and attempts will be made to find a suitable manner to optimize the model
penalty. For the pragmatic reader it might be worthwhile to know that in order to obtain the estimates
of # a very small penalty with minimal influence on g or 6 values is enough to identify all tumors severity
estimates and produces 6 estimates almost equal to normal Rasch analysis.

Further research into penalty estimation of Rasch models could also yield research into the possibility
to obtain more exact estimates for a certain cutoff point. As penalty estimation makes model parameter
estimates smaller (as it penalizes harder as the estimates are larger) the let penalized [ parameter
estimates tend to zero. Because 6 has to be constrained (usually it would be a mean of zero) one could
arbitrarily decide on the constraint. For example if one would have a norm group where 80% of the
cases are adenomas and 20% where carcinomas the model constraint for 8 could be: 6 — .80. When the
[ parameter estimates tent to zero it might be possible that it optimizes the information around the
chosen constraint of #. For this to work it is necessary to find a way to optimize 6.
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Appendix 1

Table 1: Tumor parameter 6 for different tumor () and cytoband penalty’s (k)

Rasch model Penalized Rasch
Tumor
number Tumor Grade No penalty event 41 A=0,k=15 A=.1k=0
1 AA * -38.021 -38.021 -5.656
2 AA * -38.021 -38.021 -5.656
3 AA * -38.021 -38.021 -5.656
4 AA -3.768 -1.780 -1.780 -3.396
5 AA -2.789 -0.798 -0.798 -2.463
6 AA -2.572 -0.581 -0.581 -2.251
7 AA -2.508 -0.517 -0.517 -2.188
8 AA -1.866 0.130 0.130 -1.552
9 AA -1.671 0.326 0.326 -1.358
10 AA -1.584 0.414 0.414 -1.271
11 AA -1.264 0.737 0.737 -0.952
12 AA -1.180 0.823 0.823 -0.867
13 AA -0.936 1.071 1.071 -0.623
14 AA -0.885 1.122 1.122 -0.572
15 AA -0.804 1.205 1.205 -0.490
16 AA -0.625 1.387 1.387 -0.311
17 AA -0.597 1.415 1.415 -0.283
18 AA -0.570 1.443 1.443 -0.256
19 AA -0.295 1.725 1.725 0.021
20 AA 0.064 2.093 2.093 0.381
21 AA 0.131 2.162 2.162 0.447
22 AA 0.205 2.238 2.238 0.521
23 AA 0.521 2.566 2.566 0.838
24 AC * -38.021 -38.021 -5.656
25 AC -3.289 -1.300 -1.300 -2.947
26 AC -2.572 -0.581 -0.581 -2.251
27 AC -2.057 -0.062 -0.062 -1.742
28 AC -1.733 0.264 0.264 -1.419
29 AC -1.641 0.356 0.356 -1.328
30 AC -1.556 0.442 0.442 -1.244
31 AC -0.097 1.928 1.928 0.219
32 AC 0.055 2.083 2.083 0.371
33 AC 1.054 3.125 3.125 1.365
34 AC 1.799 3.933 3.933 2.087
35 ACC -1.733 0.264 0.264 -1.419
36 ACC -1.584 0.414 0.414 -1.271
37 ACC -0.543 1.470 1.470 -0.229
38 ACC -0.517 1.498 1.498 -0.202
39 ACC -0.015 2.012 2.012 0.301
40 ACC 0.800 2.858 2.858 1.115

Note:* unidentified
Continues on the next page
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Table 2: Tumor parameter 6 for different tumor () and cytoband penalty’s (k)

Rasch model Penalized Rasch
Tumor
number Tumor Grade No penalty event +1 A=0,k=15 A=14k=0
41 ACC 0.932 2.997 2.997 1.245
42 ACC 1.541 3.649 3.649 1.841
43 ACC 1.697 3.820 3.820 1.990
44 cC -0.237 1.783 1.783 0.078
45 cC -0.005 2.022 2.022 0.312
46 cC 0.168 2.200 2.200 0.485
47 cC 0.178 2.210 2.210 0.494
48 CcC 0.679 2.731 2.731 0.994
49 CC+ 2.409 4.636 4.636 2.651
50 cC -1.081 0.923 0.923 -0.768
51 cC -0.283 1.736 1.736 0.032
52 CC 0.131 2.162 2.162 0.447
53 cC 0.250 2.285 2.285 0.567
54 cC 0.633 2.682 2.682 0.948
55 cC 0.664 2.715 2.715 0.979
56 cC 0.733 2.787 2.787 1.048
57 cC 0.763 2.818 2.818 1.078
58 cC 0.954 3.019 3.019 1.267
59 cC 1.004 3.072 3.072 1.316
60 CC 1.145 3.222 3.222 1.455
61 cC 1.656 3.775 3.775 1.951
62 cC 1.704 3.827 3.827 1.997
63 cC 1.827 3.964 3.964 2.113
64 CcC 2.028 4.190 4.190 2.302
65 cC 2.805 5.127 5.127 2.996
66 cC 2.868 5.209 5.209 3.049
67 CC+ -1.701 0.296 0.296 -1.388
68 CC+ 0.005 2.032 2.032 0.321
69 CC+ 0.112 2.142 2.142 0.428
70 CC+ 0.414 2.455 2.455 0.731
71 CC+ 0.664 2.715 2.715 0.979
72 CC+ 0.968 3.035 3.035 1.281
73 CC+ 1.138 3.215 3.215 1.448
74 CC+ 1.283 3.370 3.370 1.590
75 CC+ 1.460 3.561 3.561 1.762
76 CC+ 1.758 3.887 3.887 2.049
7 CC+ 2.658 4.940 4.940 2.870
78 CC+ 2.700 4.993 4.993 2.906

Note:* unidentified

11



Table 3: Cytoband parameter 5 of Rasch model without penalty

Cytoband 0 Cytoband 0 Cytoband [%

1pl2. 223  7pl5.2 0.32  14q32.2 1.30
1p13.2 212 7pld.l 0.25 14qll1.2 1.22
1p32.2 2.02  7q21.11 1.14  14g32.13  1.22
1p33. 1.92  7q21.13 0.99 14q13.2 1.14
1p34.1 1.83  7g22.1 0.76  14q13.1 1.06
1q42.2 1.64 79222 0.83  15q26.2 1.73
1q43. 1.73  7q31.1 091  15q21.3 1.64
1q42.12 1.83  8pll.l 1.06  15q21.2 1.55
1q44. 1.92  8pl2. 0.99  15q21.1 1.47
2p16.3 2.85 8p23.3 0.91  15ql4. 1.38
2p25.1 271 8p23.2 0.76  16pl3.12  2.12
2p25.3 2.58  8p23.1 0.69 16pl3.3 2.02
2p22.1 2.46  8ql1.21 0.99  16ql2.1 1.92
2p23.1 234 8qll.1 0.91  16q23.3 1.92
2q13. 2.85 8ql3.2 0.83  16q21. 1.83
2q12.2 271 8q21.3 0.76  17p13.2 -0.11
2q11.2 2.58  8q21.2 0.69 17pl3.1 -0.18
2¢22.1 246  9p24.3 1.64  17pl2. 0.04
2q21.2 234 9p24.2 1.55  17pll.2 0.25
2¢37.1 223 9p24.1 147  17qll.1 1.55
3p25.3 2.46  9ql2. 2.02 17ql2. 1.64
3p22.2 234 9ql3. 2,02  17q23.2 1.83
3p26.3 2.23  9g21.11 1.92  17923.3 1.73
3p24.1 212 9q21.13 1.83  17q24.3 1.55
3¢23. 271 9921.2 173 18pll.32  -0.11
3q11.2 2,58 10pll.21 212  18pll.22  -0.04
3q13.12 2.46  10pl3. 1.92  18qll.2 -0.18
3q13.31 2.34  10pl12.31  1.92  18ql2.1 -0.25
3q27.1 2.23  10pl5.3 173 18ql2.2 -0.33
3q27.2 2.23  10qll.1 2.46  18q23. -0.25
3q27.3 223 10q11.22  2.34  19pl3.3 1.83
3929. 223 10g21.2 2.23  19pl3.2 1.73
3q28. 212  10g26.13  2.12  19pl3.12  1.47
4p16.3 1.73  10q21.1 2.02 19pl13.11  1.38
4p15.33 1.64 11pl5.5 2.58  19pl2. 1.64
4p16.1 1.55 11pl4.3 2.46  19q12. 2.34
4p15.1 147  1lpld.l 2.34  19q13.11  2.46
4q11. 1.55 11pl3. 2.23  19q13.12  2.12
5pl4.2 147  11pll.2 2.12  19q13.2 2.02
5p15.33 1.38  11q25. 2.23  19ql13.42  2.12
5q11.2 1.14  11q135 2.12  20pl3. 0.04
5q12.1 0.99 1lqll. 2.02 20pl2.1 0.11
5q12.3 0.91 1lqld.l 1.92  20pl1.23  0.32
6pll.2 1.92  11q23.2 1.83  20pl1.21  0.11
6p12.3 1.83  12qll. 2.02 20qll.21  -0.55
6p21.2 1.55 12p12.3 1.83  20ql1.22  -0.62
6p21.32 147 12p13.33 173 20q13.31  -0.70
6p22.1 1.38  12pll.l 173 21qll.2 1.73
6p24.3 1.22  12pl3.2 1.64 21g22.11  1.64
6p25.1 1.14  12pl3.32 1.55 21q22.12  1.55
6p25.3 1.06  12ql14.2 212 21q22.3 1.64
6q22.1 1.92  12q15. 2.02 22qll.1 1.38
6ql1.1 1.83  12ql2. 1.83  22q11.21  1.30
6q13. 173 12q21.1 173 22q12.1 1.64
6q14.1 1.64 12q21.32  1.64 22ql12.3 1.47
7p21.2 0.76 13gl2.12  -0.04 22q13.1 1.38
7p22.3 0.69 13ql2.11  0.04

7p21.1 0.61 13q13.3 0.11

7pll.2 0.47 13ql3.1 0.18

7p15.3 0.40 13g31.1 0.32
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Appendix I1

R-code, consisting of a function used to run a Rasch analysis. Kappa is the cytoband penalty, lambda
the tumor penalty, X is the data matrix with cytobands in the columns and tumors in the rows.

Rasch_pro = function(X, kappa., lambda.){

t. = as.matrix(apply(X, 1, sum))

s. = as.matrix(apply(X, 2, sum))

n = nrow(t.)

k = nrow(s.)

theta. =1 * (log((t.+1)/(k - t.))) # setting start values for theta
theta. = theta. - mean(theta.) # constraining one parameter
beta. = log((n - s.)/(s.)) # setting start values for beta

convergeance = 0

# for loop in order to find converged beta and theta parameters
for (i in 1:40){

# Obtaining theta
thet.ml = matrix(theta., nrow = n, ncol = k, byrow = FALSE)
bet.m2 = matrix(beta., nrow = n, ncol = k, byrow = TRUE)
exp.m = exp(thet.ml - bet.m2)

inp = exp.m/(1 + exp.m) # numerator N.R. algorithm

num = t. - apply(inp, 1, sum) - (theta. * lambda.) # First derivative for theta

inp2 = exp.m/((1 + exp.m)2) # denominator N.R. algorithm

denom = - apply(inp, 1, sum) - lambda. # Second derivative for theta
theta. = theta. - (num / denom) # New theta estimate

theta. = theta. - mean(theta.) # Fixing parameter for convergeance
difl = thet.mi[,1] - theta. # convergeance

# Obtaining beta
thet.ml = matrix(theta., nrow = n, ncol = k, byrow = FALSE)
bet.m2 = matrix(beta., nrow = n, ncol = k, byrow = TRUE)
exp.m = exp(thet.ml - bet.m2)

inp = exp.m/(1 + exp.m)

num = (- s. + apply(inp, 2, sum)) - (beta. * kappa.)
inp2 = -exp.m /(1 + exp.m)2

denom = apply(inp2, 2, sum) - kappa.

beta. = beta. - (num / denom)

dif2 = bet.m2[1,] - beta.

numerator N.R. algorithm
First derivative for beta
denominator N.R. algorithm
Second derivative for beta
New beta estimate

for convergeance estimate

H O H H O H

dif = (sum(abs(dif1)))+ (sum(abs(dif2))) # Convergeance
convergeance = c(convergeance, dif)
if (dif < 1e-3) break

}
# AIC creating the AIC
penalbeta = kappa.* sum((beta.2)/2)) # Penalty for beta
penaltheta = lambda.* sum((theta.2)/2) # Penalty for theta
loglik = sum(theta. * t.) - sum(beta. * s.) - sum(log(l + exp(exp.m))) - penalbeta - penaltheta

# Loglikelihood of JML of Rasch model.
AIC. = 2 % (2%(k-1)) - 2 * loglik

return(list(theta. = theta., beta. = beta., convergeance = convergeance, AIC. = AIC.))

}

13



