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1 Introduction

In field theory, one of the most elegant theorems is the fundamental theorem of Galois theory, which was
originally introduced by Évariste Galois. It states a connection between the theory of field extensions and
group theory, which makes it less complicated to study the structure of certain extensions. In the course
’Fields en Galois Theory’ we have seen that such extensions must be finite, normal and separable. The
latter means that the minimal polynomial of any element in the extension can be factored into distinct
linear terms. The theorem then states that for such extensions, there is a one-to-one correspondence
between intermediate fields and subgroups of its group of automorphisms, where a subgroup corresponds
to its fixed field, and an intermediate field corresponds to the subgroup of automorphisms that fix that
field [2]. The diagram below shows the correspondence more clearly.

{
intermediate field

E

}
−→

 elements of the
automorphism
group that fix E

{
the fixed field of

H

}
←− { subgroup H }

In Galois theory, it is very important that the extension is separable. In practice, applying the theorem
means finding maps that permute the roots of the minimal polynomial of the extension. If a polynomial
is inseparable, then roots appear multiple times. This causes the correspondence to collapse, because
the index of the extension is larger then the cardinality of its automorphism group, among other, quite
equivalent, reasons.

The question naturally arises if there is a similar theory for the case that the extension is inseparable. The
goal of this thesis is to treat that case, and develop a correspondence similar in nature to Galois theory.
For this, we use the book ’Lectures in Abstract Algebra’ written by N. Jacobson [1], who developed
this theory in the 20th century. The theory that we will study is about purely inseparable extensions of
exponent one. The restriction of having just exponent one makes it so that the subject is accessible. There
is theory for higher exponents out there, but that goes beyond this thesis. With these requirements we
will formulate a Galois-type correspondence between intermediate fields and subalgebras of the restricted
p-Lie algebra of derivations. In this correspondence, the restricted p-Lie algebra of derivations plays a
similar role as the group of automorphisms that fix the base field of a Galois extension in Galois theory.
The theory of derivations will be discussed in chapter two of this thesis. There, we define the restricted
p-Lie algebra of derivations and discuss the field of D-constants, which has quite a similar role to that
of the fixed field of an automorphism subgroup in Galois theory. In the third chapter we state the main
theorem of the Galois-type correspondence and give some examples. We then prove that theorem after
discussing the notion of p-independence and stating some needed lemmas.

Finite purely inseparable field extensions are finite extensions for which the minimal polynomial of
every element is not separable. This narrows down the type of fields that we can apply the Galois-
type correspondence to. To illustrate, a perfect field always has separable extensions, so such perfect
fields are ruled out. This includes finite fields and fields with a characteristic of zero, so we will always
be discussing infinite fields of characteristic p for some prime. An example of such fields are fields of
fractions, like

F2(x),

which has elements of the form f(x)/g(x) with f(x), g(x) polynomials over F2. In this example the
characteristic is equal to p = 2.

Preliminaries

We expect the reader to be familiar with groups, rings, fields and Galois theory, as given in the courses
’Fields en Galois Theory’ and ’Introduction to Groups and Rings’, for example. These subjects can also
be consulted in the book ’Abstract Algebra’ by D.S. Dummit and R.M. Foote [2].
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2 Derivations

In this chapter we will discuss derivations, which will turn out to be very useful for the study of purely
inseparable extensions. To study the properties of derivations we relate them to homomorphisms between
an algebra and its dual space. We introduceD-constants, the elements that are ”fixed” by a derivationD.
We will also discuss extensions of derivations and the structure on all derivations of an algebra. Lastly,
we take a look at restricted p-Lie algebras and specifically the restricted p-Lie algebra of derivations.
With this, we will have developed most of the tools needed to state the Galois-type correspondence for
purely inseparable extensions of exponent one in the next chapter.

Recall that an algebra A over a base field F is a vector space over F equipped with a distributive and
associative binary operation · : A×A→ A such that (ax) · (by) = (ab)(x · y) for all a, b ∈ F and x, y ∈ A.
For example, the field of polynomials over F , written as F [x], is an algebra over F . We may now define
the concept of a derivation.

Definition 2.1. Let U be a subalgebra of A over a base field F. A derivation D of U into A is an
F -linear mapping U → A such that for all a, b ∈ U

D(ab) = (Da)b+ a(Db). (1)

If U = A then we say that D is a derivation in U (or A).

Intuitively, a derivation is am F -linear map that satisfies the Leibniz identity. The classical derivative
map f(x)→ f ′(x) is an example of a derivation in F [x]. Notice that this derivative satisfies the product
rule, which is the same as the Leibniz rule, and that its linearity is trivial. Notice that the set of
derivations of an algebra is also a module over that algebra, since it includes the zero-mapping, which is
F -linear and satisfies the Leibniz rule.

2.1 Dual space

In this section we relate the notion of derivations to homomorphisms. It gives us a way to derive
statements on derivations without having to work with them, but instead their respective homomorphism.
Consider the algebra F [x]/(x2) over a base field F . Then given the coset t = x + ⟨x2⟩, we have a basis
for F [x]/(x2) given by (1, t) where t2 = 0. We use this structure to define the dual numbers of an
algebra.

Definition 2.2. The algebra of dual numbers of an algebra A over F is defined as A⊗ F [x]/(x2).

Notice that A and F [x]/(x2) are subalgebras of this algebra by considering the elements a ⊗ 1, a ∈ A
and 1 ⊗ u, u ∈ F [x]/(x2) respectively. We can define a mapping s = s(D) for any derivation D in the
algebra A into the algebra of dual numbers in the following way,

s : A→ A⊗ F [x]/(x2), a 7→ s(a) := a+ (Da)t.

Let’s introduce the projection of A ⊗ F [x]/(x2) into A defined by π : a + bt 7→ a. This is the identity
mapping on the subalgebra A and clearly a homomorphism because t2 = 0. An overview of the mappings
s(D) and π is depicted below.

A A⊗ F [x]/(x2) A
s(D) π

We introduce a theorem that relates derivations to homomorphisms, which will be useful later since we
will only have to consider homomorphisms.

Theorem 2.3. Let A be an algebra over F and D a derivation in A, then s(D) is a homomorphism of A
into its algebra of dual numbers A⊗F [x]/(x2). Conversely, any homomorphism s of A into A⊗F [x]/(x2)
such that π(s(a)) = a for all a ∈ A, is of the form a 7→ a+ (Da)t for some derivation D in A.

Proof. Firstly, we will to prove that s is a homomorphism. For any a, b ∈ A and u ∈ F , we may write



2 DERIVATIONS 3

because of the F -linearity of D that

s(ua+ b) = ua+ b+ (D(ua+ b))t

= ua+ b+ (uDa+Db)t

= ua+ u(Da)t+ b+ (Db)t

= u(a+ (Da)t) + b+ (Db)t

= us(a) + s(b).

So it follows that s is a homomorphism. To prove the second statement, let s be any homomorphism
of A into A ⊗ F [x]/(x2) such that π(s(a)) = a for all a ∈ A. Since π(s(a)) = a for a ∈ A, we have
s(a) = a+ bt for b ∈ A uniquely determined by a. We call this unique determination the map

D : A→ A, a 7→ b.

We show that this map is a derivation. It is clearly F -linear since s is. Because s is a homomorphism
and t2 = 0 we have

s(ab) = s(a)s(b),

ab+ (D(ab))t = ab+ (a(Db) + (Da)b)t,

so D satisfies the Leibniz identity. We conclude that s is of the form a 7→ a + (Da)t for a derivation
D.

Here we see that we can relate every derivation to a homomorphism to the algebra of dual numbers. A
concrete example of linking derivations to homomorphisms, but not in the algebra of dual numbers, is
given in the following example.

Example 2.4. Let A be an algebra. A map D is a derivation in A if and only if the map

ϕ : A→ A2, a 7→
(
a Da
0 a

)
(2)

is a homomorphism, where A2 is the algebra of 2× 2 matrices over A.

Proof. First, assume that D is a derivation in A. Then

ϕ(a)ϕ(b) =

(
a Da
0 a

)(
b Db
0 b

)
=

(
ab a(Db) + (Da)b
0 ab

)
=

(
ab D(ab)
0 ab

)
= ϕ(ab),

per Leibniz rule. So ϕ is a homomorphism. On the contrary, if ϕ is a homomorphism then D(ab) =
a(Db) + (Da)b according to the calculation above. From linearity of A2 it is clear that D is linear if ϕ
is a homomorphism, so then D is indeed a derivation.

2.2 D-constants

In this subsection we introduce the D-constants of a derivation and their properties for different cases of
the algebra the derivation is in. The role of D-constants is strongly related to the role that fixed fields
have in Galois theory.

Definition 2.5. An element a ∈ A is called a D-constant for a derivation D in A if Da = 0. The
D-constants for a set D of derivations in A are the elements in A that are D-constants for all D ∈ D.

For example, 1 is a D-constant of any derivation. For the derivation in the ring polynomials over a
field F that maps f(x) 7→ f ′(x), any element in F is a D-constant. Recalling back to the dual space
A ⊗ F [x]/(x2), we see that a is a D-constant if and only if s(a) = a, with s = s(D) defined earlier.
You could say that the D-constants are fixed by s(D), and thus this notion is quite similar to that of
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a fixed field. It also follows rather immediately from the definition that the set of D-constants forms a
subalgebra of A.

Let’s look at the case that A is a commutative algebra. Then the Leibniz rule implies for a = b that

(Da2) = (Da)a+ a(Da) = 2a(Da).

For any power it follows with induction that D(an) = nan−1(Da). So if F has characteristic p, then
D(ap) = 0 for all a ∈ A. In other words, then every p-th power is a D-constant for any derivation in A.
Consider the case that the algebra A = P is a field over a base field F . We propose that the D-constants
of a derivation D in such an algebra is a subfield of P .

Proposition 2.6. If A = P over F is a field, then the D-constants of a derivation D in P form a
subfield E of P .

Proof. It is clear that the D-constants are a subset of P . Notice for u ∈ F, a ∈ P that D(au) =
(Da)u + a(Du) because of the Leibniz rule, but also D(au) = (Da)u because of the F -linearity of D.
Thus Du = 0 for all elements u in F . We conclude that the set of D-constants contains F , and thus is
nonempty. If a, b ∈ P are D-constants it is easy to check that a− b and a/b if b ̸= 0 are also D-constants.
Since the D-constants satisfy the subfield criterion we conclude that they are a subfield of P .

In the future it will be useful to be able to refer to the D-constants as some subfield E/F of P/F .
Remark that in the proof of proposition 2.6 we’ve come across the following: for a derivation D in P/F ,
the base field F is always D-constant. This follows from the F -linearity of D and the Leibniz rule.

2.3 Restricted Lie algebra of derivations

In Galois theory the main correspondence is between automorphism subgroups and their fixed fields.
Since the automorphism group for the case of inseparable extensions is trivial, this won’t suffice. The
structure that takes a similar role as the automorphism groups is the restricted p-Lie algebra of derivations.
In this subsection we introduce what this means so that we have another concept needed to state the
theorem of the Galois correspondence for purely inseparable extensions of exponent one.

We start with describing the structure of a restricted p-Lie algebra. Consider the field P of characteristic
p ̸= 0, without necessarily specifying P as an extension of some other base field. We give the following
definition.

Definition 2.7. A set of endomorphisms E of P is called a restricted p-Lie algebra if it satisfies the
following properties:

1. E is closed under addition

2. E is closed under multiplication by elements in P

3. E is closed under the Lie commutator, so for E1, E2 ∈ E we have that E1E2 − E2E1 ∈ E .

4. E is closed under p-th powers

The first two properties say that such an algebra is a vector space. So in other words, a restricted p-Lie
algebra is a vector space over P of endomorphisms of (P,+) closed under the Lie commutator and p-th
powers. If we take the field P as an extension of a base field F , we can talk about derivations in P/F .
One example of a restricted p-Lie algebra is the restricted p-Lie algebra of derivations. Its structure
will be enough for the correspondence later on. We claim that the set of derivations in P is indeed a
restricted p-Lie algebra in the following proposition.

Proposition 2.8. The set D of derivations in P over F is a restricted p-Lie algebra.

Proof. Notice that any derivation in P is also an endomorphism of the space P with just the addition
operator, (P,+). So we can consider D as the set of endomorphism of (P,+) such that D(ab) =
(Da)b+ a(Db) for all a, b ∈ P . We’ve also seen already that D is a module over P . We are left to check
property 3 and 4 of 2.7. Take any D1, D2 ∈ D. For the third, we need to show that D := D1D2 −D2D1
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is also a derivation in P . Fist we prove that D is F -linear, which follows by applying the F -linearity of
D1 and D2. Take a, b ∈ P and r ∈ F , then

D(a+ rb) = (D1D2 −D2D1)(a+ rb)

= D1D2(a+ rb)−D2D1(a+ rb)

= D1D2a+D1D2(rb)−D2D1a−D2D1(rb)

= Da+D(rb) = Da+ r(Db),

so D is F -linear. Now we want to show that D follows the Leibniz rule. Because D1 and D2 do, we may
write for a, b ∈ P

D(ab) = (D1D2 −D2D1)(ab)

= (D1D2)(ab)− (D2D1)(ab)

= D1(D2(ab))−D2(D1(ab))

= D1((D2a)b+ a(D2b))−D2((D1a)b+ a(D1b))

= D1((D2a)b) +D1(a(D2b))−D2((D1a)b)−D2(a(D1b))

= (D1D2a)b+ (D2a)(D1b) + (D1a)(D2b) + a(D1D2b)

− (D2D1a)b− (D1a)(D2b)− (D2a)(D1b)− a(D2D1b)

= (D1D2a)b+ a(D1D2b)− (D2D1a)b− a(D2D1b).

These terms collapse with F -linearity and the definition of D to the expression

D(ab) = (Da)b+ a(Db),

so D is a derivation and D is closed under the Lie commutator. We are left to prove that D is closed
under p-th powers. Notice that the composition of multiple F -linear maps is still F -linear, so any D ∈ D
gives that Dp is F -linear. Now for the last part we have to show that Dp follows the Leibniz rule. We
propose the following higher order Leibniz formula

Dn(ab) =

n∑
i=0

(
n

i

)
(Dia)(Dn−ib),

for n ∈ N+. This can be proved with induction, but we’ll skip over it because it is rather trivial. Now
notice that

(
p
i

)
a = 0 for i < p and a ∈ P , so what is left of the higher order Leibniz formula for n = p is

Dp(ab) = (Dpa)b+ a(Dpb),

so it follows that Dp satisfies the Leibniz rule. We conclude that the set of derivations in P/F is a
restricted p-Lie algebra.

Since this notion is well-defined, we will call this the restricted p-Lie algebra of derivations in P .
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3 Galois-type correspondence

This chapter we study the main goal of this thesis: constructing a Galois-type correspondence for the
case of finite purely inseparable field extensions of exponent one. We state the theorem and give
some examples. Then we prove it step by step and discuss some properties of the correspondence.
Throughout we discuss how this correspondence is related to that of the basic Galois theory and their
differences.

Let’s first define what it means for a field extension to be of exponent one. Recall for example from [2]
the following theorem.

Theorem 3.1. An algebraic field extension E/F with characteristic p is purely inseparable if and only
if for all α ∈ E, there exists n ∈ N such that αpn ∈ F .

Because this n is well-defined for purely inseparable extensions, we may now define the exponent.

Definition 3.2. The exponent of a purely inseparable field extension E/F of characteristic p ̸= 0 is the
minimal n ∈ N such that

ep
n

∈ F,

for all e ∈ E.

In this thesis, we study the case where n = 1. From now on we will only be talking about fields of
characteristic p ̸= 0. Also consider from now on the purely inseparable field extension P/F of exponent
≤ 1, then any e ∈ P/F , ep ∈ F . We will formulate a proposition that states that any intermediate field
of P/F is another purely inseparable field extension of F of exponent ≤ 1.

Proposition 3.3. Let E/F be any subfield of P/F . Then E is purely inseparable of exponent ≤ 1 over
F .

Proof. Consider a derivation
D : E/F → P/F.

We want to show that for any e ∈ E/F , ep ∈ F . We do this by showing that the map D is the same as
a derivation from E/F (Ep) to P/F (Ep), so it follows that Ep ⊆ F . Denote the set of all D-constants
by ∆. By proposition 2.6 this is a subfield of E/F . We claim that D is also a derivation from E/∆ into
F/∆, because if we take δ ∈ ∆ and e ∈ E, then D(δe) = δ(De) + (Dδ)e = δ(De), so D is ∆-linear.
Notice that the set Ep is always D-constant because

Dep = pep−1De = 0,

for all e ∈ E, hence F (Ep) ⊆ ∆. We now conclude that D is also a derivation from E/F (Ep) into
P/F (Ep). The other way around, that any derivation from E/F (Ep) into P/F (Ep) is also a derivation
like D, follows trivially because F ⊆ F (Ep). We conclude that any derivation like D is equal to a
derivation from E/F (Ep) into P/F (Ep), so F is replaceable by F (Ep). Hence ep ∈ F for all e ∈ E/F .

This will make our main theorem in this thesis more powerful and generalized, since we won’t have to
specify further what kind of subfields the Galois-type correspondence holds for, as you will see in the
next section.
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3.1 Theorem and examples

In this section we present the main theorem of this thesis, which gives a Galois-type correspondence for
the case of finite purely inseparable field extensions of exponent one. We will also discuss some examples.
In the next section you may find the proof.

Theorem 3.4. Let P over F be a finite purely inseparable field extension of exponent ≤ 1 and D the
restricted p-Lie algebra of derivations in P/F . Then there is a bijection{

subfields E of P
containing F

}
←→

{
subalgebras D of

D

}
(3)

given by the correspondences

{
intermediate field

E

}
−→


the restricted

p-Lie algebra of
derivations in

P/E

 (4)

{
the field of
D-constants

}
←− { subalgebra D } (5)

which are each-others inverses.

Later this section, we will talk about more of the properties of this correspondence. But first, we will
give some examples of theorem 3.4.

Example 3.5 (Extension of dimension p). Take for instance the field of fractions P = Fp(t) as an extension
of the field of fractions F = Fp(x), where tp = x. In other words, we extend the field F with the p-th
root of x. It is clear that this is an extension of finite dimension p. Also, for any f(t)/g(t) ∈ P we see
with the Frobenius homomorphism that

(f(t)/g(t))p = f(tp)/g(tp) = f(x)/g(x) ∈ P

because for all coefficients ap = a. Since f(x)/g(x) ∈ F , it follows that P/F is an extension of exponent
≤ 1. We conclude that P/F is a finite purely inseparable field extension of exponent ≤ 1, so we may
apply theorem 3.4. Notice also that the exponent is certainly not 0, because t /∈ P .

We would like to find the restricted p-Lie algebra of derivations in P/F . Consider the derivation given
by

Dt : P/F → P/F, f(t) 7→ f ′(t),

with f ′(t) being the common derivative in t. Then for any f ∈ F we see with the chain rule that

Dt(f(x)) = Dt(f(t
p)) = f ′(tp)ptp−1 = 0,

so elements of F are Dt-constants. Then we see with the Leibniz rule that Dt is F -linear:

f ∈ F, g ∈ P =⇒ Dt(fg) = fDt(g) +Dt(f)g = fDt(g).

Since any p-th power of Dt and derivation of the form aDt, a ∈ F is also a derivation, we conclude that
Dt is an element of D and that D is at least generated by Dt. To know whether D = ⟨Dt⟩ we refer to
corollary 3.12 of theorem 3.11 that gives us information about the degree of D as a vector space over P ,
namely

[D : P ] = 1,

in our case. Since ⟨Dt⟩ also has degree one over P as a vector space, it follows that ⟨Dt⟩ equals D. The
only restricted p-Lie subalgebra of ⟨Dt⟩ is the trivial one, since for example, it must be closed under
p-th powers. From the correspondence it then is clear that there are no subfields E of P/F such that
P ̸= E ̸= F . The diagram of the correspondence then looks as follows:

Fp(t) D0

Fp(x) ⟨Dt⟩
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This diagram represents with the correspondences of the theorem that the restricted p-Lie algebra of
derivations in P/F and P/P are ⟨Dt⟩ and D0, the trivial algebra of one derivation that maps everything
to zero, respectively. This is what we would have expected, since the only derivations in P over P must
send every element to zero as all elements of P are D-constants.

We will now discuss another example that is strongly related to the previous one, but uses more variables.
This make the correspondence diagram more interesting, as the extension now contains intermediate fields
as well.

Example 3.6 (Extension of dimension p3). Similarly to the previous example we consider the field of
fractions P = Fp(t, u, v) as an extension of F = Fp(x, y, z), where tp = x, up = y and vp = z. In other
words, we extend Fp(x, y, z) with the three p-th roots of the variables. Just as before, it follows from
the Frobenius homomorphism that this is an extension of exponent ≤ 1. Since F ̸= P , we see with 3.1
that it is a purely inseparable extension of exponent ≤ 1. The restricted p-Lie algebra of P/F is the
one generated by derivations over several the variables, so D = ⟨Dt, Du, Dv⟩. Given below is a diagram
of a part of the correspondence, for the subalgebras that are generated by different combinations of the
derivation maps Di, with i ∈ {t, u, v}.

Fp(t, u, v) D0

Fp(t, u, z) Fp(t, y, v) Fp(x, u, v) ⟨Dv⟩ ⟨Du⟩ ⟨Dt⟩

Fp(t, y, z) Fp(x, u, z) Fp(x, y, v) ⟨Du, Dv⟩ ⟨Dt, Dv⟩ ⟨Dt, Du⟩

Fp(x, y, z) ⟨Dt, Du, Dv⟩

Consider ⟨Dt⟩ for example. According to the theorem, it is the restricted p-Lie algebra of derivations in
Fp(t, u, v) over E := Fp(x, u, v). Similarly to the previous example, we see that any f(x, u, v) ∈ E is a
D-constant of all derivations in ⟨Dt⟩. If g(t, u, v) ∈ F but g(t, u, v) /∈ E then there are terms within the
polynomial that have a root of x, so Dg ̸= 0. We illustrate this with the following calculation for p = 5.

g(t, u, v) := 3t2u+ 2uv,

Dtg(t, u, v) = 6tu ̸= 0,

but if the power is t5 = x in the polynomial instead, then g ∈ E and

Dtg(t, u, v) = 3 · 5t4u = 0.

Notice that these are not all the subalgebras, since Dt + Du or DuDv also generate subalgebras. The
relations between the subalgebras and intermediate fields in the diagram follow from reapplying the
theorem. For example, for P = Fp(t, u, z) over F the proper intermediate fields are Fp(t, y, z) and
Fp(x, u, z). Then the restricted p-Lie algebras of P over each intermediate field is as given in the diagram
above, except Dv = D0 practically in this case, because there is no v to speak of at all.

We can ask ourselves what would happen if the extension is not purely inseparable of exponent one. In
the case that the exponent is zero, then P = F so there isn’t really any extension to speak of. If the
extension is not purely inseparable, we have that the exponent is not well-defined, and we can’t apply
the theory that follows from having an exponent of one which will be used in the next subsection for the
proof.
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3.2 Proof

In this subsection we will give the proof for theorem 3.4. The main steps of the proof include showing
that the mappings described in the theorem are well-defined and in fact each-others inverses. But
first, we need to do some preparations. One of the important lemmas for the main proof claims that
a derivation of an extended field is uniquely determined by how it acts on a p-basis of the extension.
This gives us information about mapping a field extension to a restricted p-Lie algebra of derivations.
Another important building block is Jacobson’s theorem in [1], which answers the question ”starting
with a restricted p-Lie algebra of derivations, what can we say about extensions?”.

3.2.1 p-independence

We start with defining the notion of p-(in)dependence, then we may define a p-basis for an extension.

Definition 3.7. Let P/F be a purely inseparable extension. An element a ∈ P is p-dependent in P/F
on some subset S ⊆ P if a ∈ F (P p)(S). In other words, this holds when a is linearly dependent over
F on S and p-th powers of P . We call a ∈ P p-independent in P/F on a subset S ⊆ P if it is not
p-dependent in P/F on S.

Intuitively then, an element is p-independent if it is regularly independent and independent on p-th powers
of P . In the definition above S is like a basis, but without necessarily having mutual p-independence for
the elements in S, which is what we would like if we had an actual basis. This brings us to define what
it means for a set to be p-independent ’on itself’.

Definition 3.8. A subset S ⊆ P is p-independent on P/F if for all s ∈ S, s is p-independent in P/F
on S − {s}.

We illustrate this concept more with the following example.

Example 3.9. Consider a field F and an element ρ such that ρp /∈ F and ρp
2 ∈ F . To know if the

subset {ρp} ⊆ F (ρp) is p-dependent in F (ρp)/F , we need to check whether ρp ∈ F (F (ρp)p) according

to the definitions above. However, F (F (ρp)p) = F (ρp
2

), because for any other x ̸= ρp, x ∈ F we have

that xp = x. Then because ρp
2 ∈ F we have that F (ρp

2

) ⊆ F . Since ρp /∈ F we see that {ρp} is
p-independent on F (ρp)/F . With similar reasoning we see that {ρp} is p-dependent on F (ρ)/F because
ρp ∈ F (F (ρ)p) = F (ρp).

The definition of a p-basis of an extension then follows naturally.

Definition 3.10. A p-basis of an extension P over F is a p-independent subset B ⊆ P such that every
element of P is p-dependent on B. In other words, we have that F (P p)(B) = P .

The general basis theorem shows that such a basis always exists. Furthermore, it holds that any
two p-bases always have the same cardinality. We will now introduce the lemma that states that a
derivation between finitely extended fields is uniquely characterized by how it acts on a p-basis of the
extension.

Lemma 3.11. Let F ⊆ E ⊆ P all be fields of characteristic p ̸= 0 and say that P/F is a finite field
extension of exponent ≤ 1. Let B be a p-basis of E over F and τ an arbitrary mapping of B to P . Then
there exists exactly one derivation D of E/F into P/F such that Db = τ(b) for all b ∈ B.

Proof. Because of lemma 3.3 we have that E is purely inseparable of exponent ≤ 1 over F . We discuss
two cases. Firstly, the exponent of E/F is zero, then ap

0

= a ∈ F for all a ∈ E. It follows that E ⊆ F
and thus E = F . Then the p-basis of E over F must be empty and the situation is rather trivial because
the image of τ must be empty, and the only derivation allowed is the zero-mapping. We continue with
the case that the exponent of E/F is equal to one. Since B is now nonempty, we can define B = Be+{e}.
Because of p-independence of the p-basis B, we have that e ̸∈ F (Be). Since the extension is of exponent
one, the minimal polynomial of e over F (Be) equals xp − c for some c ∈ F (Be). In other words, e is
some p-th root of an element in F (Be). It then follows that there exists a derivation

D : F (Be, e)/F (Be)→ P/F,

that sends e to τ(e) and any element of F (Be) to zero. Notice that this derivation is uniquely determinant
by the image of e under τ . We can do this for every element ei of the basis, which will give us a set of
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derivations
{Di : F (Bei , ei)/F (Bei)→ P/F}.

Consider the derivation defined by the addition of all Di. It is clear that this is a well-defined derivation.
Notice that ei /∈ F (Bei) is always sent to zero by any Dj when i ̸= j, and when i = j that ei is send
to τ(ei). It follows that this derivation has the properties we are looking for. It is also a well-defined
derivation of F (B)/F = E/F into P/F . Since the basis unique, the resulting derivation is as well.

A consequence of this lemma about the degree of the set of derivations as a vector space is given in the
following corollary [1].

Corollary 3.12. Denote by DF (E,P ) the set of derivations of E/F into P/F and consider this as a
vector space over P . Let B be the p-basis of E over F . If B is finite, then [DF (E,P ) : P ] = |B|.

Proof. Denote by T the set of mappings of B into P . We can consider T as a vector space over P by
defining

(τ1 + τ2)b = τ1b+ τ2b, (τa)b = (τb)a,

for all τ, τ1, τ2 ∈ T, b ∈ B and a ∈ P . Define π to be the map from DF (E,P ) into T by mapping any
derivation to its restriction to B. Notice that this map is linear. Because E = F (B) per definition, π
is injective and lemma 3.11 shows that π is surjective. It follows that T and DF (E,P ) are isomorphic.
If B = {b1, . . . , bm} is finite with cardinality |B| = m, then we can construct a basis for [τ : P ] with
m amount of maps δi defined by δi(bj) = δji , the Kronecker delta. We then see that |B| = [T : P ] =
[DF (E,P ) : P ], which concludes the proof.

In other words, the corollary says that the index of the set of derivations of E/F into P/F as a vector
space over P is equal to the cardinality of the p-basis if it is finite. Coming back to example 3.6, we see
that the index of D over P should be equal to the cardinality of the p-basis of P/F . Since we extended
F with one p-th root of an element in F the p-basis has size 1.

In the case that P = E the lemma above has another interesting result which is stated in the next
corollary.

Corollary 3.13. Let P/F be a field extension. Then for all a ∈ P it holds that a ∈ F (P p) if and only
if Da = 0 for all derivations D in P/F .

Proof. Notice that a ∈ F (P p) if and only if a /∈ B, the p-basis of P over F . Assume first that Da = 0 for
all derivations D in P/F . Then a can’t be in B, because if that were the case we could construct a map
τ : B → P with τ(a) ̸= 0. The lemma then states that there exists a derivation such that Da = τ(a) ̸= 0,
which is a contradiction. Thus if Da = 0 for all derivations D in P/F , then a /∈ B, so a ∈ F (P p). Now
assume that for all a ∈ P , a ∈ F (P p). Then a can be expressed as a linear combination of elements in
F and p-th powers of elements in P . Since any derivation is an F -linear map and

Dρp = pρp−1Dρ = 0,

for all ρ ∈ P and derivations, it follows that Da = 0 for all derivations D in P/F .

3.2.2 Jacobson’s theorem

In this section we discuss two big theorems from [1]. Jacobson’s theorem views the correspondences
of theorem 3.4 from right to left, so to say. It starts with a restricted p-Lie algebra of derivations D
and then implies that any derivation in P over D-constants is again a derivation in D. It is proved
by considering the ring of endomorphisms of (P,+), and uses the Jacobson-Bourbaki theorem. This
theorem also implies the usual Galois correspondence for Galois extensions. We will only state the
Jacobson-Bourbaki theorem and not prove it, since it is beyond the scope of this thesis. However, if you
wish to read more about it, you can consult [1].

Theorem 3.14 (Jacobson-Bourbaki). Let P be a field, E the ring of endomorphisms of (P,+). Let U
a subring of E and a subspace of E as a vector space over P such that [U : P ] = n < ∞. Let F be the
subset of P of elements a such that A(ab) = aA(b) for all b ∈ P and A ∈ U . Then F is a subfield of P ,
[P : F ] = n and U is the complete set of all F -linear transformations of P over F .

We will now move on to Jacobson’s theorem, where we apply the theorem given above.
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Theorem 3.15 (Jacobson). Let P be a field of characteristic p ̸= 0 and D a restricted p-Lie algebra of
derivations in P such that its dimension over P as a vector space [D : P ] = m is finite, then:

1. if F is the subfield of D-constants, then P is purely inseparable of exponent less than one over F
and its index over F equals [P : F ] = pm;

2. any derivation in P over F is contained in D;

3. if {Di} for 1 ≤ i ≤ m is a right basis for D over P , then the set

{Dl1
1 Dl2

2 · · ·Dlm
m | 0 ≤ li < p} (6)

is a right basis for the ring of F -linear transformations of P over F considered as a right vector
space over P .

Proof. This proof is based on the proof given in [1]. We won’t show every detail, for that we refer to the
source.

Firstly, we would like to apply the Jacobson-Bourbaki theorem 3.14. Recall that the elements of D can be
considered as endomorphisms on (P,+). Notice that it is also a vector space over P of finite dimensions
m. Define a sub- vector space U of D over P by the set of linear combinations of the endomorphisms as
given in equation (6). Then its dimensions over P as a vector space adheres to

[U : P ] ≤ pm,

with equality if and only if the set in equation (6) is a p-independent set, and thus if it forms a basis of
U . Because of this inequality, U is a finite sub- vector space of D over P . Assume that we have proven
that U is a subring of the endomorphisms D [1]. We may now apply the Jacobson-Bourbaki theorem.
We find that the subset F of P of elements a such that aA = Aa for all endomorphisms A ∈ U satisfies

[P : F ] = [U : P ]

] and U contains all F -linear transformations of P over F . Notice that all elements A ∈ U are derivations,
so the criterion that A(ab) = aA(b) for all b ∈ P and A ∈ U implies with the Leibniz rule that A(a) = 0.
It follows that F is the subfield of D-constants for D ∈ D. Notice that ap is a D-constant for any a ∈ P
because of characteristic p, so we see that P is purely inseparable of exponent ≤ 1 over F .

We will now proof that [P : F ] = pm. Let B = {b1, b2, . . . bm′} be the p-basis of P/F of cardinality m′.

Notice that the elements bk1
1 bk2

2 . . . b
km′
m′ form a p-basis for the extension P/F . Hence, [P : F ] = pm

′
.

Combining what we know gives that m′ ≤ m since [P : F ] = [U : P ] ≤ pm from the Jacobson-Bourbaki
theorem. Corollary 3.12 shows that if D(P/F ) is the set of derivations in P/F , then [D(P/F ) : P ] = m′.
If a ∈ F then a is a D-constant for any D ∈ D. Hence any such D is F -linear and D ⊆ D(P/F ).
Since [D : P ] = m we conclude that D = D(P/F ), so any derivation in P over F is contained in D.
Furthermore, it follows that m = m′, thus [P : F ] = pm. With this we conclude the proof of the
theorem.

In this proof, we have uncovered information about the dimension of the field extension. We see that it is
related to the size of the restricted p-Lie subalgebras similarly to how the indices of field extensions and
the size of the subgroups of the Galois group are related in the fundamental theorem of Galois theory.
To conclude these properties, we state the following corollary.

Corollary 3.16. Let P over F be a finite purely inseparable field extension of exponent ≤ 1. Let E
be an intermediate field and denote by B the p − basis of the extension P/E with |B| = m. Then the
dimension of the extension is [P : E] = pm which is also the size of restricted p-Lie algebra of derivations
in P/E.

To illustrate this property we discuss an example with base field Fp(x, y). This example is closely related
to example 3.6.

Example 3.17 (Extension of dimension p2). Consider F = Fp(x, y) and P = Fp(t, u) with tp = x and
up = y. With the same logic as in 3.6 we find some, but not all, proper intermediate fields Fp(t, y) and
Fp(x, u) with according subalgebras ⟨Du⟩ and ⟨Dt⟩ respectively. The sizes of these subalgebras are p,
since they contain the derivations Di

t and Di
u for 1 ≤ i ≤ p respectively. This is the same set as given in
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equation 6 in Jacobson’s theorem. Since D contains again exactly their combinations as given in 6, its
cardinality is p2. Applying the corollary above we can depict the indices of some of the field extensions
and subalgebras as in the following diagram.

Fp(t, u) D0

Fp(t, y) Fp(x, u) ⟨Du⟩ ⟨Dt⟩

Fp(x, y) ⟨Dt, Du⟩

1p p 1

p2

p p

2

1 1

3.2.3 Proof of the Galois-type correspondence

In this section we will prove theorem 3.4. The method includes showing that the maps given in the
correspondence are actually each other’s inverses. We also show that they are well-defined.

Proof (Theorem 3.4). Denote by C(D) the D-constants of a set of derivations D and by Der(P/F ) the
restricted p-Lie algebra of derivations in P over F . If P = E then we are working with the trivial case
of the restricted p-Lie algebra of derivations in P/E existing of just the zero-mapping. Therefore, from
now on, we assume that P ̸= E. We will prove that P over E is a finite purely inseparable extension
of exponent one. Since E is an intermediate field and P/F is a finite extension, so must P/E. Because
F ⊆ E and P/F has exponent ≤ 1 we see that for all a ∈ P , ap ∈ E. Recall that ap

n ∈ E for some n ∈ N
for all a ∈ P is equivalent to the minimal polynomial of a in P/E being inseparable, see the discussion
at the start of the chapter where we define the exponent of an extension. Hence, P/E is a finite purely
inseparable extension of exponent one. This fact is used a lot throughout this proof to be able to apply
the earlier developed theory in this thesis.

We would like to show that the correspondences stated in the theorem are well-defined. We start with
the correspondence given by{

the field of
D-constants

}
←− { subalgebra D } (7)

We need to show that the D-constants of a subalgebra D of D is a subfield field of P/F , but this is exactly
what proposition 2.6 says. Furthermore, since P is a finite extension over F any subfield must be as
well, so we conclude that field of D-constants is a subfield of P that contains F . For the correspondence
given by

{
intermediate field

E

}
−→


the restricted
p-Lie algebra of
derivations in

P/E

 , (8)

we need to show that Der(P/E) is indeed a subalgebra of D. It is enough to show that Der(P/E) is also
F -linear, because it is clear it is a restricted p-Lie algebra from the definition. This follows immediately
from the fact that F ⊆ E. Thus we may conclude that both correspondences are well-defined.

Now, we will prove that the correspondences are each-others inverses. From this the bijection between
intermediate fields and subalgebras as given in the theorem follows. For the first inverse check, we would
like to show that

C(Der(P/E)) = E, (9)

for every subfield E of P that contains F . In words, we want to show that the D-constants of derivations
in P over a subfield E is again equal to E itself. Because the derivations in P over E are E-linear it
follows with the Leibniz rule that E ⊆ C(Der(P/E)), as we have seen before. For the reverse inclusion,
we apply corollary 3.13. This gives that the D-constants of Der(P/E) are contained within E(P p). Since
P p ⊆ F ⊆ E, it follows that

C(Der(P/E)) ⊆ E(P p) ⊆ E.
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Hence we may conclude that equation 9 holds.

Lastly, we will show that

Der(P/C(D)) = D, (10)

for all subalgebras D of D. In words, this means that for any subalgebra D of D, the restricted p-Lie
algebra of derivations in P over the D-constants is equal to D itself. Let d ∈ D, x ∈ C(D) and y ∈ P
be arbitrary. For the inclusion D ⊆ Der(P/C(D)) it is enough to show that d is C(D)-linear, because
D ⊆ Der(P/F ) already. We write

d(xy) = d(x)y + xdy = xdy,

so d is always C(D)-linear, as desired. Hence, we conclude that d ∈ Der(P/C(D)). For the reverse
inclusion Der(P/C(D)) ⊆ D, we apply Jacobson’s theorem 3.15 to find that any derivation of P over
C(D) is contained within D, so we may conclude that equation (10) holds.

We have showed that the correspondences are well-defined and each-others inverses, so we conclude the
proof of the Galois-type correspondence in theorem 3.4.
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