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1 Introduction

This thesis is a but part of the whole project. The project as a whole is
a submission for the PACE challenge 2024 [8]. As their about page states:
“The Parameterized Algorithms and Computational Experiments Challenge
(PACE) was conceived in Fall 2015 to deepen the relationship between pa-
rameterized algorithms and practice. Topics from multivariate algorithms,
exact algorithms, fine-grained complexity, and related fields are in scope.”

This year, in 2024, the problem is a so-called one-sided crossings min-
imization problem (OCP). Informally, OCP wants to find an ordering
of vertices of a layered graph such that the number of crossings of edges is
minimal. A formal definition will be given later.
The problem features three different tracks with different rules and require-
ments for submissions: an exact track, the heuristic track, and a parame-
terised track. Our submission is for the heuristic track, which means that
the result does not have to be optimal, but rather produce a good solution
quickly.

For this thesis, after introducing preliminary notation and definitions, we
will introduce the problem, including some of the variants and a proof of
NP-completeness. Then we will look at known heuristic methods, with our
motivation for the methods we chose to implement. We will discuss some
tiebreaking methods, methods that handle ties for certain heuristics.
After specifying what methods we intend to implement, we will give a gen-
eral overview of the code [8], breaking down the datastructures, important
functions, etc.
Finally, we end with a short discussion with some remarks about features
that could be improved/optimised or added, as well as choices and ideas
that could benefit from more extensive research.

1.1 Notation and definitions

Here, we will give some of the more general terminology and definitions we
will use for this thesis.

For specifying vertices or edges of a graph G, we will use the notation
G = (V,E), where V are the vertices and E the edges. Furthermore, if the
graph is a (k-)layered graph, it is denoted by G = (L0, L1, ..., Lk, E), with Li

the k layers, and E ⊂ L0×L1× . . .×Lk the edge set with e ∈ E of the form
e = (v0, v1, . . . vk), vi ∈ Li∀0 ≤ i ≤ k. The definition of a layer is a vertex
set with the property that each edge has its endpoints in subsequent layers,
and each each pair of layers is disjoint. The special case k = 2, which gives
a bipartitite graph, will be given as G = (L,U,E), with L,U for the “lower”
and “upper” layer/side respectively instead of L0, L1. Furthermore, any
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graph is complete if for each pair of vertices, there exists and edge between
them. For a layered graph we specify this to edges between layers only, i.e.
a layered graph is complete if for any pair of vertices in adjacent layers Li

and Li+1 there is an edge between them.
An ordering on a layer Li is denoted by li, such that ∀v ∈ Li, li(v) gives
the position of v. For comparison of vertices u, v in a layer Li, we say
li(v) < li(u) if v comes before u in that ordering, and li(v) < li(u) similarly
defined. In particular, each vertex is assigned a unique position {1...|Li|}.
For clarity, we use the notation l0 and u0 for bipartitite graphsG = (L,U,E),
even though L and U do not have subscripts themselves. This is to make
distinction between vertices and orderings more clear. A drawing of a graph
(G, l0, l1, ..., lk), is a visual representation of a graph G, given a specific order
for each layer.

Lastly, we define cross(G, l0, l1, ..., lk) denoting the number of cross-
ings for these orderings on the layers, and opt(G) as the order such that
cross(G, l0, l1, ..., lk) is minimal. This notation extends for (partially) given
orderings, for example a one-sided fixed problem can be denoted as opt(G, l0)
where l0 is a known ordering on L. Important is that the position (i.e. co-
ordinates) of the vertices does not matter for the total number of crossings,
only the relative order or the vertices. The number of crossings can be cal-
culated by checking each pair of edges and see if they cross or not. Note
that a crossing between two edges e = (u, v) and e′ = (u′, v′), with e, e′ ∈ E,
only occurs if the endpoints are in reverse order in their respective layers.
More clearly, assume u, u′ ∈ Li and v, v′ ∈ Li+1. We say e and e′ cross if
li(u) < li(u

′) ∧ li+1(v) > li+1(v
′), or vice versa. Important notion is that,

if we look at each pair of edges, we count both options e, e′ and e′, e. This
essentially counts each crossing twice, hence we can restrict ourselves to one
of the cases. Using li(u) < li(u

′) ∧ li+1(v) > li+1(v
′) as the condition for

crossing, define ce,e′ as 1 if e and e′ cross, and 0 otherwise. This gives us the
following formula for the total number of crossings for a bipartite graph:

cross(G, l0, u0) =
∑

e,e′∈E
ce,e′ (1)

For k-layered graphs with k > 2, we can use the same method applied to
each pair of subsequent layers, i.e. counting the crossings between L0 and
L1, then L1 and L2, etc. and summing these k − 1 terms.
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2 Problem definition

In this section we will look at the different variants of crossing minimiza-
tion problems, with our main focus on the one-sided crossing minimization
problems of a 2-layered graph, including a proof of NP-completeness.

2.1 Variants of Crossing minimization problem

The first variant is whether or not one side of the graph is fixed. As the
name suggests, the one-sides variant treats one of the layers as fixed, so a
given ordering on that layer, whereas the two-sided does not.
The second variant is the number of independent layers of G. An important
note is that for k > 2, this generally does not allow a two-sided variant.
Instead, most known algorithms/approaches for k-layered graphs use a so-
called “layer by layer sweep”, for example the methods introduced by Ma-
tuszewski et al. [12], and Patarasuk [13]. The idea of these implementations
is that they iterate over the layers, starting with an arbitrary order of the
first layer. This means that it treats each pair of subsequent layers as a one-
sided crossing minimization problem, finding a starting order for the next
pair, and solving the next pair of layers. These algorithms go “up and down”
so to speak. That is to say, once an ordering of the last layer Lk is found,
the algorithm solves for Lk and Lk−1 with the found order for Lk. Often,
there is some sort of condition that determines when to stop, for example
if there can no longer find an improvement on the ordering, or a certain
number of sweeps has been done. In the case of the two-sided approach,
most implementations aim to check all possible permutations, for example
the “branch and bound method” [17]. This method uses a decision tree to
check all permutations. A more detailed overview of the Branch-and-bound
method will be given in Section 3.1.3.

2.2 Problem complexity (NP-completeness proof)

We will now give a proof of NP-completeness for the One-sided crossing
minimization problem, hereafter shortened to Crossings Problem, fol-
lowing Eades et al. [6]. First, we will give the definition of the Crossings
problem, followed by the decision problem induced from a crossings prob-
lem. The decision version is used so that we can show that DCP is in NP
by giving a method to verify a given solution in polynomial time, whereas
we cannot do that with OCP.

Crossings Problem (OCP)
Instance: Given a bipartitite graph G = (L,U,E), and ordering l0 of L.
Problem: Find an ordering u0 of U such that the total number of crossings
cross(G, l0, u0) is minimal.
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The decision problem can then be defined as follows:

Decision Crossings Problem (DCP)
Instance: Given a bipartitite graph G = (L,U,E), and an ordering l0 of L
and an integer M .
Problem: Is there an ordering u0 of U such that cross(G, l0, u0) ≤M .

To prove NP-completeness, we will use a reduction, in polynomial time,
from a known NP-complete problem to DCP, concluding that DCP must
be NP-complete as well. For this, we use the Feedback Arc Set (FAS)
problem, which is NP-complete as proven by Karp [10].

Let us first introduce the Feedback Arc Set problem we will use as our
reduction problem:
Given a directed graph D with node set V and arc set B, a feedback arc set
B′ for D contains at least one arc of each directed cycle of D. Note that it
follows directly that B \B′ must be acyclic.

The formal definition of the Feedback Arc Set problem is:

Feedback Arc Set (FAS)
Instance: Given a directed graph D, and a positive integer k.
Problem: Does D have a feedback arc set of size at most k?

We will now proceed to prove the following theorem:

Theorem 2.1. DCP is NP-complete.

Proof. It is easy to see thatDCP is in NP: as shown earlier in Equation (1),
we can calculate the number of crossings of a graph with given orderings of
each layer in O(|E|2). This means that we can verify a solution in polynomial
time, hence it is in NP.

For the reduction from FAS to DCP, we want to transform a directed
graph D = (V,B) into a two-layered graph G = (L,U,E) from a given
instance of FAS.
So, given a directed graph D = (V,B), let U = V . Then, for each arc a ∈ B,
we define a “clump” C(a) = {c1(a), c2(a), ..., c6(a)} of six nodes and let L
be the union over B of all the clumps.

For the edges of G, we create two edges for each u ∈ V and a ∈ B. If
a = (u, v) for some v ∈ V , then u is joined to c1(a) and c5(a); if a = (v, u)
for some v ∈ V , we create the edges between u and c2(a) and c6(a). If u is
not incident with a, i.e. u is not an endpoint of a, then we join u to c3(a)
and c4(a). See Figure 1 for a visualisation of the three options.

Now, let l0 be an ordering on L that keeps the clumps together and
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u

c1 c2 c3 c4 c5 c6

C(a)

(a) C(a) where a = (u, v).

u

c1 c2 c3 c4 c5 c6

C(a)

(b) C(a) where a = (v, u).

u

c1 c2 c3 c4 c5 c6

C(a)

(c) C(a) where a is not inci-
dent with u.

Figure 1. The three possibilities visualised.

ordered, i.e. for each clump we have l0(ci(a)) < l0(cj(a)) for 1 ≤ i <
j ≤ 6 and a ∈ B, as well as that for each a, b ∈ B either l0(c6(a)) <
l0(c1(b)) or l0(c1(a)) > l0(c6(b)) must hold. This enforces that no clumps
intermingle, i.e. all C(a) are subsequent and grouped together without any
other between.
We will now show that D has a feedback arc set of size at most k if and only
if an ordering u0 of U can be chosen such that cross(G, l0, u0) ≤ M with
|B| = β, |V | = ν and

M = 4

(
β

2

)(
ν

2

)
+ β

(
ν − 2

2

)
+ 4β(ν − 2) + β + 2k.

For this, we will first prove the following lemma:

Lemma 2.2. If u0, is an ordering of U and B′ denotes {(u, v) ∈ B :
u0(u) > u0(v)}, then

cross(G, l0, l1) = 4

(
β

2

)(
ν

2

)
+ β

(
ν − 2

2

)
+ 4β(ν − 2) + β + 2|B′|.

Proof. First, look at crossings between arcs incident to different clumps:
Let a and b two distinct arcs in B. Then, for each u ∈ V , we have two arcs
between u and C(a) and two between u and C(b). This means that, for any
distinct pair u, u′ ∈ V , we will always have four crossings between the arcs
incident with u and C(a) and arcs incident with u′ and C(b) (see Figure 2
for an example). Summed over each pair of clumps and pair of nodes, we
get a total of 4

(
β
2

)(
ν
2

)
.

For the number of crossings between arcs from the same clump C(a),
let us look at the different cases.
First, the number of crossings between arcs incident with c3(a) and c4(a).
The number of arcs to c3(a) and c4(a) is ν−2, since for all but the endpoints
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u u′

c1(a) c2(a) c3(a) c4(a) c5(a) c6(a) c1(b) c2(b) c3(b) c4(b) c5(b) c6(b)

C(a) C(b)

Figure 2. Example with two arcs and two vertices.

of the arc a we have that a is not incident with those vertices, so each falls
in the category depicted in Figure 1c. This means that |U |−2 = ν−2 nodes
each give on edge incident with c3(a) and on with c4(a). Each distinct pair
vertices u, u′ ∈ V results in a crossing, so this gives an additional

(
ν−2
2

)
crossings.
Furthermore, if a = (u, v), then each arc out of c3(a) and c4(a) crosses one
of (u, c1(a)) and (u, c5(a)) and one of (v, c2(a)) and (v, c6(a)) (see Figure 3).
This gives a total of 4(ν − 2) crossings, namely 2(ν − 2) crossings between
the ν − 2 arcs out of c3 and c4 and the two edges between u and C(a), and
2(ν − 2) crossings with the arcs between C(a) and v.

u′ u

c1 c2 c3 c4 c5 c6

C(a)

(a) Case with a = (u, v).

u′ u

c1 c2 c3 c4 c5 c6

C(a)

(b) Case with a = (v, u).

Figure 3. Example with two clumps and two arcs.
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v u

c1 c2 c3 c4 c5 c6

C(a)

(a) Case with l1(u) > l1(v).

u v

c1 c2 c3 c4 c5 c6

C(a)

(b) Case with l1(u) < l1(v).

Figure 4. Showing scenarios of ordering on arc a = (u, v).

The only crossings not counted yet, are crossings between arcs (u, c1(a)),
(u, c5(a)), (v, c2(a)) and (v, c6(a)). We claim that this is 1 if u0(u) < u0(v)
and 3 if u0(u) > u0(v). First, note that the exact position in U does not
matter, only the position relative to each other. This can then easily be
seen if we visualise the two scenarios, see Figure 4.
If we combine all this, we get that the total number of crossings between arcs
from C(a) is

(
ν−2
2

)
+4(ν−2)+1 if u0(u) < u0(v) and C(a) is

(
ν−2
2

)
+4(ν−2)+3

if u0(u) > u0(v). If we sum this over all β clumps we get β−|B′| terms with
the 1, and |B′| terms with the 3, since we defined B′ as the set of elements
that satisfy u0(u) > u0(v). Now we can simply rewrite this to get

β

((
ν − 2

2

)
+ 4(ν − 2)

)
+ (β − |B′|) + 3|B′| =

β

(
ν − 2

2

)
+ 4β(ν − 2) + β − |B′|+ |B′|+ 2|B′| =

β

(
ν − 2

2

)
+ 4β(ν − 2) + β + 2|B′|.

Combining this with the first term we found of the number of crossings
between arcs incident with different clumps, we get the desired result from
the lemma:

cross(G, l0, l1) = 4

(
β

2

)(
ν

2

)
+ β

(
ν − 2

2

)
+ 4β(ν − 2) + β + 2|B′|.

■

Now to prove the theorem, we will use topological sort. A topological
sort, or topological ordering, of a Directed Acyclic Graph (DAG) is a
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linear ordering of vertices, such that for every directed edge (u, v), u comes
before v. In our case, because D is directed and B \ B′ is acyclic, we can
use topological sort.
Now suppose that D has a feedback arc set B′ of size at most k. We can use
topological sort on D to obtain an ordering u0 on U such that u0(u) < u0(v)
if (u, v) ∈ B \B′ since B \B′ is acyclic.
Combined, since |B′| ≤ k and

B′ = {(u, v) ∈ B : u0(u) > u0(v)}.

Theorem 2.2 implies that G has at most M crossings. This follows directly
from filling in the lemma and using |B′| ≤ k.

cross(G, l0, u0) ≤ 4

(
β

2

)(
ν

2

)
+ β

(
ν − 2

2

)
+ 4β(ν − 2) + β + 2|B′|

≤ 4

(
β

2

)(
ν

2

)
+ β

(
ν − 2

2

)
+ 4β(ν − 2) + β + 2k = M.

Conversely, suppose G has an ordering l0 on L0 such that G has at
most M crossings. Then we know that

cross(G, l0, u0) ≤M = 4

(
β

2

)(
ν

2

)
+ β

(
ν − 2

2

)
+ 4β(ν − 2) + β + 2k.

Additionally, it follows from Theorem 2.2 that, if B′ = {(u, v) ∈ B : u0(u) >
u0(v)}, then

cross(G, l0, u0) ≤ 4

(
β

2

)(
ν

2

)
+ β

(
ν − 2

2

)
+ 4β(ν − 2) + β + 2|B′|.

so |B′| ≤ k, since M is defined using k. Additionally, the graph D′ =
(U,B \B′) must be acyclic, which makes B′ a feedback arc set. This can be
seen since, if D′ is not acyclic, there is some arc (u, v) such that l1(u) > l1(v)
(based on a topological sort), which is a contradiction, since we removed all
those arcs in B′, so we conclude that D′ must be acyclic, so B′ must be a
feedback arc set, which concludes the proof of the theorem and we conclude
that DCP is indeed NP-complete.
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3 Known heuristic methods and their comparison

In this section we will go over some known heuristic methods, providing a
short explanation. Then we will discuss the methods we chose to implement,
with reasoning why that method was chosen.

3.1 Comparison between different considered heuristic meth-
ods

Mainly considering the time constraint on the thesis, we had to limit our-
selves as to what we could implement. As a result, we looked at known
methods and their performance relative to each other on One-sided cross-
ing minimization problems to determine which methods would be valid
options.

The methods we considered forOne-sided crossing problems where
the Assignment Method, the Stochastic Method, the Branch-and-
bound Method, the Barycenter Method and Median Method. We
will give a short overview of each of these methods, followed by argumenta-
tion on our final choice.

3.1.1 The Assignment Method

This method, first introduced by Catarci [1] considersOCP as an assignment
problem. Generally, an assignment problem can be seen as a problem to
find an optimal (i.e. highest rating/reward, or lowest cost) assignment of
jobs/tasks to applicants/workers, with some sort of rating/reward or cost
for each assignment.

This method specifically transforms OCP to an Assignment Prob-
lem, then applies a known algorithm to solve that Assignment Problem.
An example of an algorithm used for the assignment problem is the so-called
Hungarian Method [11], which solves an assignment problem with m tasks
and m jobs in O(m3) time.
A formal definition of the assignment problem, with m jobs and applicants,
uses a cost ci,j for each combination of job i with applicant j.
Furthermore, let x be a m×m matrix such that xij denotes whether appli-
cant i is assigned to job j. Specifically, xi,j is 1 if assigned, 0 otherwise. We
also add the constraint that each worker is assigned one job only, and that
each job is done by exactly one person. This gives the (formal) conditions∑m

i=1 xi,j = 1 for all m applicants, and similarly,
∑m

j=1 xi,j = 1 for all m
jobs.
Then, the formal definition becomes:
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Definition 3.1. For a general assignment problem of size m, we have

Minimize Z(x) =
m∑
i=1

m∑
j=1

xijci,j

m∑
i=1

xi,j for j = 1 to m

m∑
j=1

xi,j for i = 1 to m

xij ∈ {0, 1} for i, j = 1 to m

Here, x is called a base feasible solution, or assignment matrix. Then
xij is said to be allocated if xij = 1 and not allocated if it is 0. This
also implies the conditions that each row (and column) can have only one
allocation each.
In particular, a solution x specifically for an assignment problem results in
a permutation of U , denoted by the m × m assignment matrix such that
xij = 1 if and only if vertex i is placed at position j. The minimization of
Z(x) then uses this matrix to determine which cij count towards the total
cost, denoted by the multiplication with xij .

Now, to apply this to a crossings problem, we do the following:
Given an instance of a crossings problem with G = (L,U,E), |L| = n, |U | =
m, G a bipartite graph and l0 a fixed ordering on L. We denote A as the
n ×m adjacency matrix of G such that aij = 1 if and only if i and j are
adjacent.
Let B a m × n ×m × n matrix, such that its elements ba,b,c,d are 1 if and
only if (c > a and d < b) or (c < a and d > b) holds, and 0 otherwise for
all a, c ∈ U, b, d ∈ L. We see that this is precisely the condition to check if
the pair of edges (a, b) and (c, d) cross, for a, c ∈ U, b, d ∈ L. Note that this
matrix B gives all possible crossings, if G is a complete graph. That is, if G
is not complete, and not all pair of edges (a, b) and (c, d) exist, even though
they would cross, Ba,b,c,d is still defined as if these edges exist.
With this, can define the cost-function for any given i, j ≤ m

cij =

n∑
h=1

(
ahi

(
m∑
c=1

n∑
d=1

bj,h,c,d

))
where, ah,i is an element of A, the adjacency matrix, and bj,h,c,d an element
of B, the crossings matrix.

The idea is that ci,j is the maximum number of crossings resulting
from placing the i’th vertex at position j. Again, here we treat the remainder
of G like a complete graph (i.e. the graph consisting of all vertices except i
is complete), so this gives an upper bound of the number of crossings caused
by placing vertex i at position j.
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Now that we have our cost-function, we can treat this as an assignment
problem and solve it using the given formulas, with the important note that,
since B treated G like a complete graph, we are given an upper bound of
number of crossings, thus there is no guarantee that the resulting order is
optimal.

3.1.2 The Stochastic Method

Dresbach [3] introduced the stochastic method for directed acyclic graphs.
Because the graph was acyclic, one can transform that graph into a k-layered
graph since the layers can be determined based on the direction of the edges,
for example using topological sort. Once the layers are established, the
directions of the edges are no longer of importance. So in the case of a
OCP, where a bipartitite graph G is given, we can still use this method even
though it is not a directed graph, since the layers are already established.

For the remainder of this section, let G = (L,U,E) a bipartite graph
with an ordering l0 on L, and n = |L|,m = |U |. Specific points will be
referred to as li ∈ L and uj ∈ U with 1 ≤ i ≤ n and 1 ≤ j ≤ m. For a
specific drawing of G, define M as the adjacency matrix, with the rows and
columns given by L and U respectively. Note that L and U must be in the
same order as the order in which they appear in that particular drawing of
G. Then mi,j is 1 if the vertices in position i and j are adjacent, and 0 if
not.

The total number of crossings is then, using the following calculation
and M , as follows:

cross(G,M) =
n−1∑
a=1

n∑
b=a+1

m−1∑
c=1

m∑
d=b+1

ma,dmb,c. (2)

Now, define a frequency matrix F , with F an m × n-matrix. Here
fi,j is the number of times an edge crosses the edge between li and uj for a
complete graph. Note that this is the number of times that mi,j is counted
in Equation (2), which gives rise to the following formula:

fi,j = (m− j)(i− 1) + (n− i)(j − 1) ∀i = 1..n, j = 1..m.

Since this method uses a geometrical mean, some values must be redefined:
f1,1 = fn,m = 1, and not 0 (as it would otherwise be). Similarly to the
Assignment Method, because fi,j treats G as complete, it gives us an
estimation of the number of crossings caused by the edge between positions
li and uj .

We will use a so-called “assessment number” ai,k to denote the number
of crossings from placing the i’th vertex (w.r.t. the original, that is the given,
order) in L, call this vertex li, at the k’th position. We do this by taking
the geometric mean of the elements in the row vector of li (i.e. all adjacent
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vertices of li). The same can be done for elements in uj ∈ U by defining bj,l
in a similar manner.

For i = 1..n and k = 1..n, the mean is given by:

ai,k := δ(li)

√√√√ m∏
j=1

(fk,j)mi,j .

where δ(li) is the degree of vertex li.
Again, bj,l can be defined similarly for j = 1..m and l = 1..m.

This can be done for each pair (i, k) giving a n × n-matrix for L
and a m×m-matrix for U , where each element is an estimation how many
crossings are caused by placing vertex li and lk. The idea now is to use
greedy insert to determine which vertex should be put where based on the
lowest assessment number for all open spots. If all assessment numbers are
equal for all remaining vertices, try to fill in other spots first. After filling
as many spots as possible, order the remaining vertices in arbitrary order.

3.1.3 The Branch-and-bound Method

This method for bipartite graphs, introduced by Valls et al. [17], differs
quite a bit from the others in that it works with a decision tree as structure:
the aim is to represent each possible permutation (and thus ordering) as a
node in the graph. Each node is then given a value based on the number
of crossings in the ordering. The optimal result is then the node with the
lowest crossings associated.

Let G = (L,U,E) a bipartite graph. The general structure of the tree
is an empty root, splitting into |L|! branches, one for each permutation of
L. Note that this method does not require one side fixed, but it is possible,
eliminating all other branches.
Then, each child node becomes associated with one fixed node, starting at
the first position, then the second, etc. This gives a number of branches
equal to the number of unfixed vertices. We assume that these branches are
all ordered, such that two branches are ordered based on the fixed node. For
example, if one branch fixed vertex u in the i’th place, and the second branch
vertex v, the order of the branches must be equal to the order of u and v w.r.t.
each other in the original order of U . This recursively defines the whole tree.
See Figure 5 for a partial example with L = {1, 2, 3}, U = {4, 5, . . .}. Again,
note that if we already have a fixed order of L, we can ignore the other
branches, they are included for clarity of the construction.

As for the cost of a node S, it depends on three values:

• Crossings between two edges incident with vertices in U that are al-
ready fixed (in the current node), call this k1.
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S0

S1 S2 S3

S7 S8

S4 S5 S6

L = {1, 2, 3} L = {1, 3, 2} L = {2, 1, 3}

L = {2, 1, 3}
U = {4, . . .}

L = {2, 1, 3}
U = {5, . . .}

L = {2, 3, 1} L = {3, 1, 2} L = {3, 2, 1}

Figure 5. An example of Branch-and-bound.

• Crossings between edges incident with one fixed and one unfixed vertex
in U , call this k2.

• Crossings between edges incident with two unfixed vertices in U , call
this k3.

Giving the result cost(S) = k1 + k2 + k3. Note that only k3 is variant under
the order of the remaining vertices, k1 and k2 not. The proposed algorithm
then calculates a lower bound of k3, that we will call k4, resulting in a lower
bound of the cost.

To find the lower bound, we use an auxiliary directed graph H on
the remaining, unfixed vertices. For H, define the edges (u, v) with weights
K(u, v) for each pair u, v ∈ H. We then introduce the notation K(i, j), i, j ∈
U as the number of crossings between arcs incident with i and arcs incident
with j if vertex i comes before vertex j in the (proposed) ordering of U . Note
that this also includes (v, u), so for each pair of nodes, we get two connecting
edges with weights K(u, v) and K(v, u) respectively. For each such pair, we
take the minimum of the two, giving an estimated lower bound of crossings
between the vertices in H (i.e. the unfixed vertices in the original graph G),
call this k4. Formally, we say for H = (V,E), that

k4 =
∑

(u,v),(v,u)∈E

min(K(u, v),K(v, u))

Then we can define the lower bound of the node S as k1 + k2 + k4. The
result of the algorithm would then be, for each layer in the tree, the node
with the lowest lower bound. In particular, this method finds the optimal
result, if certain conditions apply (see [17, section 5]).
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3.1.4 The Barycenter Method

The barycenter method, first introduced by Sugiyama et al. [16], uses the
barycenter of a graph. Intuitively, a barycenter is the center of mass of a
body. In the case of a graph the center of mass can be seen as the average
weight of a vertex.

Given a bipartite graph G = (L,U,E) and an ordering l0 on L, this
method finds the barycenter of a vertex in the unfixed side by taking the
average of the x-coordinates of the neighbours. So for a vertex u in U , we
take the average of the x-coordinates of all neighbouring vertices v ∈ L.
For this, we need to first define the x-coordinate of v. This can be done by
taking the order of v in the ordering l0. Let Nu be all the neighbours of u,
so Nu = {v ∈ L : (u, v) ∈ E} for all u ∈ U , ordered w.r.t. l0. We can then
define the barycenter of u as follows:

Barycenter(u) = BC(u) =
1

|Nu|
∑
v∈Nu

l0(v) (3)

Now that we have the barycenter of each vertex, we can find an ordering
u0 of U by sorting all vertices in ascending order of barycenters. In case of
ties (equal barycenter), there are several options, which we will discuss in
Section 3.2;

3.1.5 The Median Method

The median method, first given by Eades and Wormald [5], is very similarly
to the barycenter method: rather than the average of the neighbours, take
the median. Do note that this ensures that the median is always the same
as one of its neighbours, except for vertices without neighbours. Again, let
Nu be the (ordered) neighbours. Assume these are vi with 1 ≤ i ≤ n with
n = |Nu|. Then we define:

Median(u) = med(u) = l0

(
v⌊n2 ⌋

)
(4)

For empty Nu, i.e. U has no neighbours, we choose med(u) = 0.
Sort this on median, with the caveat that vertices with odd degree come
before vertices with an even degree.
Similarly to the barycenter method, this can also result in ties between
vertices with the same median, for different methods, see Section 3.2.

3.1.6 Conclusion on the heuristic methods.

Now that we have outlined our choices, we will give our reasoning for choos-
ing from the methods we explained above. The reasoning for the heuristics
is largely based on Jünger and Mutzel [9], which showcases all the methods
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above with their respective performances, combined with the want/need for
a guarantee for the upper bound.

First, based on from their “relative optimality” [9, Figures 2 and 4],
and somewhat of their runtime [9, Figures 3 and 5], we decided to at least im-
plement the barycenter method. The problem with the barycenter method is
that their is no known constant approximation of the result, although there
is a O(

√
n) approximation as proven by Eades and Wormald [5, Section 4.2,

Theorem 4]. However, we do not think this is a good enough guarantee, so
we opted to include the median heuristic as well, since we thought it had a
upper bound of three times the optimum, as proven by Eades and Wormald
[5, Section 4.1, Theorem 3]. However, after being stuck on replicating the
proof for a while, one of my advisors actually found that the original proof
had a mistake. We will still give this proof here for completeness’ sake, and
where we found a mistake.

Theorem 3.1. For all two-layered networks G = (L,U,E) and orderings l0
on L, cross(G, l0) ≤ 3 opt(G, l0).

Proof. (Proposed proof1) First, let us introduce terminology: Let χ(t) =
t(t−1)

2 ; if t is a nonnegative integer, χ(t) is the number of subsets of cardi-
nality 2 of a set of cardinality t.
The “crossings array” C = |U |×|U | is a matrix where the uv-th entry denote
the number of crossings between arcs incident with u with arcs incident with
v when u0(u) < u0(v), with u0 an ordering on U . Formally, for u, v ∈ U ,
u ̸= v,

cuv = |{(t, u), (w, v) ∈ E : l0(u) < l0(v)}|

and cuu = 0.
Additionally, define τuv = 1 if med(u) = med(v), and τuv = 0 otherwise.
Finally, remember that Nu denotes all neighbours of vertex u. The degree
of u is denoted with du = |Nu|. We then define ιuv as |Nu ∩Nv|.
Before proving the theorem above, we will first prove the next lemma.

Lemma 3.2. Suppose that u, v ∈ U and med(u) ≤ med(v).

(a) If du and dv are both even, then

4cuv ≤ 3dudv − 2du − 8χ
( ιuv

2

)
,

4cvu ≥ dudv + 2du + 8χ
( ιuv

2

)
− (1 + 2ιuv)τuv.

1For lack of better terminology, it is still called “Theorem”, which implies something
that can be proven, even though this proof is incorrect. Hence this annotation.
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(b) If du is even and dv is odd, then

4cuv ≤ 3dudv − du − 8χ
( ιuv

2

)
,

4cvu ≥ dudv + du + 8χ
( ιuv

2

)
− (1 + 2ιuv)τuv.

(c) If du is odd and dv is even, then

4cuv ≤ 3dudv − 2du − dv − 2− 8χ
( ιuv

2

)
,

4cvu ≥ dudv + 2du + dv + 2 + 8χ
( ιuv

2

)
− (1 + 2ιuv)τuv.

(d) If du and dv are both odd, then

4cuv ≤ 3dudv − du − dv − 1− 8χ
( ιuv

2

)
,

4cvu ≥ dudv + du + dv + 1 + 8χ
( ιuv

2

)
− (1 + 2ιuv)τuv.

Proof. (Proposed proof) Divide the edges incident with two vertices u and
v in four groups:

α = {uw : l0(w) ≤ med(u)},
β = {vw : l0(w) ≥ med(v)},
γ = {vw : l0(w) < med(v)},
δ = {uw : l0(w) > med(u)},

E = {uw ∈ α : vw ∈ γ},
F = {vw ∈ β : uw ∈ δ},
G = {vw ∈ γ : uw ∈ δ}.

and denote a = |α|, b = |β|, c = |γ|, d = |δ|, e = |E|, f = |F | and g = |G|.
See Figure 6 for examples for cases in e, f and g.

u v

w

(a) Drawing of an element
for e.

u v

w

(b) Drawing of an element
for f .

u v

w

(c) Drawing of an element
for g.

Figure 6. Showing examples for given sets e, f, g.

We see that, if med(u) = u0(u) ≤ med(v) = u0(v), then edges in α
cannot cross edges in β, based on the condition of the groups. For crossings
between edges in α and γ is at most a(c− g)− χ(e+ 1).
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Intuitively, this can be seen as follows: ac is the maximum number of
crossings possible between α and γ. Then ag is subtracted, since g denotes
the number of edges that cannot cross with an edge in γ, giving a total of
ag less possible crossings. That these g edges cannot cause crossings can
be seen by taking Figure 6c and adding an edge from α. Per definition, w′

lies left of u, hence cannot cross the edge (w, u). Lastly, note that elements
that count towards e are vertices w such that both (u,w) and (v, w) are
existing edges. In particular, note that, if med(w) < med(w′), the pairs
(u,w) and (v, w′) do not cross. If med(w) > med(w′), the pair (u,w′) and
(v, w) do not cross. This holds for each distinct pair of w,w′. (Again, this
can be seen by adding a vertex w′ to Figure 6a and checking the pairs.) This
means that each pair reduces the total number of possible crossings by one,
giving χ(e). Additionally, for w = w′, the edges (u,w) and (v, w), giving an
additional 2e less crossings. This gives the total of χ(e) + e. We then note

that χ(e + 1) = (e+1)e
2 = e(e−1)

2 + 2e
2 = χ(e) + e, which gives the desired

term, so we can agree that the total number of crossings between elements
of α and γ is at most a(c− g)− χ(e+ 1), between edges in α and γ.

A similar bound for crossings between edges in β and edges in δ can
be found, namely b(d− g)− χ(f + 1). Remains crossings between edges in
γ with edges in δ. This is at most cd− χ(g + 1).

Combining all these terms combined then give the following:

cuv ≤ a(c− g)− χ(e+ 1) + b(d− g)− χ(f + 1) + cd− χ(g + 1) (5)

u v

E G F

Figure 7. Visualisation of ιuv = e+ f + g + τuv.

For the following steps we will use that ιuv = e + f + g + τuv. This
follows from the fact that elements counted towards e, f and g have edges
incident with u and v, hence they are neighbour of both u and v. Finally, if u
and v have the same median, τuv = 1, else 0. See Figure 7 for a visualization.
First of, it is clear that e, f and g give the desired outcome if the medians
of u and v are different.
If the medians of u and v are the same, the first we see is that g = 0 since
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there can be no values in-between. Furthermore, per the definition of the
median it is a neighbour of both u and v. This means that the number of
vertices not counted in e and f is exactly 1, namely the shared neighbour.
This one vertex is then counted with τuv, proving that ιuv = e+f +g+τuv.
The original proof then takes the following steps:

cuv ≤ ac+ bd+ cd− eg − fg − e2 + f2 + g2

2
(6)

≤ ac+ bd+ cd− ι2uv + ιuv − τuv − 2ef

2
(7)

≤ ac+ bd+ cd− (ιuv − τ2uv) + 2ιuv − 2τuv
4

(8)

concluding that

cuv ≤ ac+ bd+ cd− 2χ
( ιuv

2

)
(9)

This is where we were unable to reproduce the step from Equation (6) to
Equation (7) that the original proof did, later realizing that it contained a
mistake. We will show why it cannot be true, starting from Equation (5)

and using that a ≥ e, b ≥ f and χ(t+ 1) ≥ t2

2 .

cuv ≤ a(c− g)− χ(e+ 1) + b(d− g)− χ(f + 1) + cd− χ(g + 1)

≤ ac− eg − e2

2
+ bd− fg − f2

2
+ cd− g2

2

This gives us Equation (6). We will now prove by contradiction that the
second step cannot be obtained from the first step. Assume

ac+ bd+ cd− eg − fg − e2 + f2 + g2

2
≤ ac+ bd+ cd− ι2uv + ιuv − τuv − 2ef

2

Now rewrite, and use ιuv = e+f+g+τuv, so ι2uv = (e+ f + g + τuv)
2. This

gives

e2 + f2 + g2 + 2eg + 2fg

2
≥ ι2uv + ιuv − τuv − 2ef

2
ι2uv − 2ef − 2ιuvτuv + τ2uv

2
≥ ι2uv + ιuv − τuv − 2ef

2
τ2uv − 2ιuvτuv ≥ ιuv − τuv

τ2uv + τuv ≥ ιuv + 2ιuvτuv.

Note that ιuv = e+ f + g + τuv, hence ιuv ≥ τuv. From this, we know that
τ2uv < 2ιuvτuv, again using that ιuv ≥ τuv. Based on this, the steps are not
true,

20



For now assume that the steps above are correct, then we will complete
the original proof.
Now, after looking at u0(u) ≤ u0(v), we will now look at the case if u and
v are placed such that u0(u) > u0(v), with u0 the ordering induced by the
median method. Then, the edges in α must cross edges in β, except for one
crossing if med(u) = med(v). This gives:

cvu ≥ ab+ χ(e) + χ(f) + χ(g) + ef + fg − τuv

and, analyzing as for Equation (9)2

cvu ≥ ab+ 2χ
( ιuv

2

)
− (1 + 2ιuv)τuv

4
. (10)

We will now prove part (a) of Lemma 3.2, the case with both du and dv even.
That du and dv are both even implies that a = d = du

2 and b = c+2 = dv+2
2 .

This can be seen using the definition of med(u) and med(v). Since these are
even, the median is at position du

2 . We can then see that half of the total
is smaller or equal, and the the other half larger then the median, giving
a = d = du

2 . Similarly, dv
2 −1 vertices are strictly smaller in terms of median,

and du
2 + 1 larger of equal, giving b = c+ 2 = dv+2

2 as claimed.
Applying these claims to Equation (9),

cuv ≤ ac+ bd+ cd− 2χ
( ιuv

2

)
≤ cd+ ab+ cd− 2χ

( ιuv
2

)
≤ ab+ 2(b− 2)a− 2χ

( ιuv
2

)
≤ ab+ 2bd− 4a− 2χ

( ιuv
2

)
≤ ab+ 2ab− 4a− 2χ

( ιuv
2

)
≤ 3ab− 4a− 2χ

( ιuv
2

)
resulting in (a) as in Lemma 3.2:

cuv ≤ 3ab− 4a− 2χ
( ιuv

2

)
≤ 3

4
du(dv + 2)− 2du − χ

( ιuv
2

)
.

2There are no intermediate steps in the original proof, to support this, and we have
not had time to work out the steps and check this claim, since it (supposedly) is similar
to the steps in ??.
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Similar for Equation (10)

cvu ≥ ab+ 2χ
( ιuv

2

)
− (1 + 2ιuv)τuv

4

cvu ≥
du
2

dv + 2

2
+ 2χ

( ιuv
2

)
− (1 + 2ιuv)τuv

4

cvu ≥
du(dv + 2)

4
+ 2χ

( ιuv
2

)
− (1 + 2ιuv)τuv

4
,

which is equal to the claim in Lemma 3.2, divided by four.
These two statements combined prove part (a) of the lemma, parts (b)-(d)
can be proven in a similar manner. ■

To prove Theorem 3.1, we use two lemmas from Eades and Kelly [4]:

Lemma 3.3. [4, Lemma 2] cross(G, l0, u0) =
∑

u0(u)<u0(v)
cuv.

Lemma 3.4. [4, Lemma 3] opt(G, l0) ≥
∑

u,v min(cuv, cvu), where the sum
is over all unordered pairs {u, v}.

These lemmas imply that, if we can establish that there is a uniform
bound B such that whenever u0(u) < u0(v) we have

cuv ≤ Bcvu

then it follows that

cross(G, l0, u0) ≤ B opt(G, l0)

by summing the inequality over all pairs u, v with u0(u) < u0(v).
The left side follows directly, the right side is a bit more work.

cross(G, l0, u0) =
∑

u0(u)<u0(v)

cuv (11)

≤
∑

u0(u)<u0(v)

min(cuv, Bcvu) (12)

≤ B
∑

u0(u)<u0(v)

min(cuv, cvu) (13)

≤ B opt(G, l0). (14)

Here we used that each term in Equation (12) is larger or equal then the
same terms in : for terms in Equation (12), we know that cuv ≤ Bcvu. Then,
for Section 3.1.6, if cuv ≤ cvu, the term becomes Bcuv, which is larger then
in Equation (12). Similarly, if cuv > cvu the term becomes Bcvu, which is
equal to the term in Equation (12).
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We see that, for the parity of the degree of u odd and any parity of the
degree of v, using

ι ≤ min{du, dv},

8χ
( ιuv

2

)
≥ −1,

that Lemma 3.2 directly implies the bound cuv ≤ 3cvu, by taking the re-
spective inequalities and multiplying cvu by 3.
For du even and dv odd, we will use Lemma 3.2 and the following inequalities

ι ≤ min{du, dv},

8χ
( ιuv

2

)
≥ −1,

to show that cuv ≤ 3cvu.
Then, Theorem 3.1 follows directly from Lemmas 3.3 and 3.4 with B = 3.
It is clear that all cases with u0(u) < u0(v) fall under Lemma 3.2, but we
will mention a somewhat special case, with du even and dv odd.

we can assume that τuv = 0, because if not, the median heuristic
enforces order based on parity of the degree, odd before even, which would
give u0(u) > u0(v). This is a contradiction since we are only looking at pairs
u, v such that u0(u) < u0(v). So we conclude that u and v cannot have the
same median, i.e. τuv = 0. Then (b) of Lemma 3.2 and the proof follows
directly, using τuv = 0.

We will write out the case with du, dv both even, all other cases are similar.

4cuv ≤ 3dudv − 2du − 8χ
( ιuv

2

)
≤ 3dudv − 2du + 1 ≤ 3dudv − 3

Here we used that 8χ
(
ιuv
2

)
≥ −1 and that du ≥ 2 (since it is even), resulting

in −2du + 1 ≤ −3.
We also get:

4cvu ≥ dudv + 2du + 8χ
( ιuv

2

)
− (1 + 2ιuv)τuv ≥ dudv + 2u − 1

Here we used that 2du + 8χ
(
ιuv
2

)
− ιuv ≥ 0 because ι ≤ min{du, dv}, giving

du − ιuv≥0. Similarly, we know du ≥ 2, resulting in the statement above.
Now we see the desired inequality, concluding the proof:

4cuv ≤ 3dudv − 3 ≤ 3dudv + 6du − 3 ≤ 12cvu

cuv ≤ 3cvu

So we have found a bound B = 3. Now, using Lemma 3.3 and ??, we can
directly conclude that cross(G, l0, u0) ≤ 3 opt(G, l0), as desired.
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Again, because of the mistake we found in Equations (6) to (7), this
does not guarantee the constant approximation of the median heuristic that
was claimed and we would have wanted. However, it might be possible to
find bounds similar to Equations (9) and (10), resulting in a theorem with
a different factor than 3 as in Theorem 3.1.

3.2 Tiebreaking methods for Barycenter and Median meth-
ods

This section will showcase different ways to handle the aformentioned ties
occuring in the Barycenter and Median methods. This is based on
a test by Poranen and Mäkinen [14], complemented by the results of our
implemented methods ran on the public instances of the PACE challenge,
which can be seen in Appendix A.

For the following, with the “original order” we mean the order of the
vertices as they originally were given. So if we are to use the median method
to determine the order of a list of vertices {v0, v1, ..., vk}, this is the original
order.
Poranen and Mäkinen tested several methods and combinations of methods.
The “building blocks” are the following six methods:

• Standard: the standard procedure, i.e. no tiebreaking, preserve the
order in the original.

• Reverse: this reverses the order of the tied vertices w.r.t. the original
order.

• Random: this chooses a random permutation of all tied vertices.

• Optimal: a procedure that find the optimal arrangement of the tied
vertices, i.e. the permutation that minimizes the number of crossings
between edges incident with tied vertices.

• Variance: a formula to determine the “orientation” of a vertex, ei-
ther left- or right-oriented with the idea that it is better, in terms of
crossings, to place a left oriented vertex to the left and a right one to
the right. Assume that the vertices u0, u1, .., ui are the vertices to the
left of BC(u) under ordering l0, and ui+1, ui+2, ..., uk the ones to the
right. Then the left orientation vl(u) and right orientation vr(u) of a
vertex u are defined as follows

vl(u) = (l0(u1)−BC(l0(u)))
2 + (l0(u2)−BC(l0(u)))

2 + . . .

+ (l0(ui)−BC(l0(u)))
2
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and

vr(u) = (l0(ui+1)−BC(l0(u)))
2 + (l0(ui+2)−BC(l0(u)))

2 + . . .

+ (l0(uk)−BC(l0(u)))
2.

If vl(u) > vr(u), then u is said to be left oriented with value vl(u) −
vr(u). Otherwise, u is said to be right oriented with value vr(u) −
vl(u). For the median heuristic, vl and vr are obtained by using med’s
instead of BC’s. In the variance heuristic the vertices with identical
barycenters (resp. medians) are ordered according to their orientation
values. If orientation values are identical, then their relative order is
kept unchanged.

A combination of these methods will be denoted with something like “standard-
optimal” (on either barycenter of median), meaning that we apply the “op-
timal” tiebreaking method to the “standard” (barycenter/median) heuristic
method. The authors also used a combination of the tiebreaking meth-
ods above with the other heuristic, i.e. “bc+std” means that the barycenter
heuristic is applied as a tiebreaking method to the “standard” median heuris-
tic, sorting tied vertices w.r.t. to the median method on their barycenter.

Poranen and Mäkinen conclude that the following tiebreaking meth-
ods are the most optimal: for the barycenter heuristic, the reverse, random,
and reverse with optimal method. In the case of the median heuristic, the
best tie-breaking method was the reversed barycenter method.

Because of this, we wanted to implement all tiebreaking methods and
try to verify those findings. In the end, we did not manage to implement
the reverse optimal tiebreaking for the barycenter heuristic due to perfor-
mance issues (calculating the score for all possible permutation was simply
too slow).
Additionally, we realised, after submitting the project for the PACE chal-
lenge, that we misinterpreted the “Reverse + Barycenter on Median”: rather
than running the barycenter method on the median and reversing ties w.r.t.
the barycenter method, we implemented it to sort on barycenter in descend-
ing order. The latter option reverses all rather than just the tied vertices.
Because we already submitted the project, we could not really change it, al-
though we did do a cursory test to see if it differs (results are included in the
.csv file in the repository [8]). We tested by running both implementations
on the same 113 test cases, comparing the crossingcount per problem. The
result was only a handful of cases where the result was different, although,
as expected, the “fixed” implementation is the favored version.
As for the rest, to verify the findings of Poranen and Mäkinen, we ran all
these methods on the public instances of the PACE challenge, which are
the 100 public instances and the tiny set, found on their website, to see if
any of these methods excel on specific test cases, which would make these
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methods more useful in this specific use-case. The results can be seen in
Appendix A. We made a more grouped and compact overview which can be
seen in Table 1. We can clearly see that the barycenter method outperforms
the median by a large margin in terms of number of times those methods give
the best answer, although there does not seem to be a substantial difference
between the different tiebreaking methods for the barycenter heuristic them-
selves. Looking at and comparing the problems where different tiebreaking
methods are the best does not give any easily identifiable result: no visible
relation w.r.t. density, size or any other problems property give any reason
as to why that method is best for those cases. Because of this, for the final
program we chose to simply run all methods and chose the best answer.
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4 The implemented algorithm

Now that we have gone over the different options we considered, this section
will go over the process of writing the actual program, found at [8], start-
ing from the given input and ending with the desired result. This includes
motivation for the chosen programming language, parsing of the input, ex-
planation of the datastructure, heuristic methods, tiebreaking methods, for-
matting the output, etc.

4.1 Programming Language

Even though the tester/verifier library provided by PACE is given in python,
we opted for C# instead. The main reason is familiarity, but it also helps
that C# is a more performance-oriented language. Additionally, it turned
out that LINQ (built-in query language for C#, similarly structured as
SQL) is quite helpful for applying functions, like group, filter and sort, to
large data sets.

4.2 Parsing the input

The input, as given on io-page on the PACE-site contains a problem descrip-
tor line containing “n0, n1, and m”, where

• n0 is the number of vertices in bipartition L (the fixed side);

• n1 is the number of vertices in bipartition U (the free partition);

• m the number of edges to follow.

This represents a bipartite graph G = (L,U,E) with |L| = n0, |U | =
n1, |E| = m.
The vertices in L are numbered 1 to n0 and the vertices in U from n0 + 1
to n0 + n1. Each edge is given as a pair of integers (u, v) with 1 ≤ u ≤ n0

and n0 + 1 ≤ v ≤ n1. We will refer to this given number as u.order for a
given vertex u. Keep in mind that this is/can be different from the assigned
order in the final result.

These lines are given from the console, so they are read using a readline
command, and parsed into the datastructure as described below.

4.3 Datastructures

There are basically two datastructures that are consistently used. One to
store the original problem and one to store the solution.

First, to store the original problem, we store n0 and n1 and an array
of size m containing all edges. We also store the neighbours of nodes in U as
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an array of lists of nodes Neighbours such that the u-th entry corresponds
to the list of neighbours Nu of the vertex u for all u ∈ {1...n1}. We make
sure that

• Neighbours is ordered such that Neighbours[i] contains the neigh-
bours of node i in U ;

• the neighbours are ordered w.r.t. u. So for all v, w ∈ Nu, we have that
l0(v) < l0(w).

This way, given a vertex u ∈ U , we can use the order of u to find its
neighbours. This is done by taking u.order and subtracting n0 + 1. This
gives an index i such that 0 ≤ i ≤ n1−1 such that Neighbours[i] gives the
neighbours of u. This list can be made in conjunction with storing the edges
by storing the first point of the edge to the list for the second. For example,
the edge (u, v) with u ∈ L, v ∈ U is stored in Neighbours[v.order-|L|-1],
as described above.
Each edge is stored as a tuple of integers corresponding to the labels of the
vertices as read from the input, so edge u.order,v.order. An edge is stored
as a pair of nodes. A node is given a label order which corresponds to the
given number in the original problem. This way, we are able to identify
which vertex is placed at what position.
The solution is stored as an array of size n1, containing a permutation of
the nodes numbered n0 + 1 to n0 + n1. The label on the vertex is used to
output the found order. For this, loop over the result and output the label
of each entry, which corresponds to the “original vertex”.

4.4 Implemented Heuristic Methods

As we already discussed in Section 3.1.6, we opted for the median heuristic
and the barycenter. These can be found in the files with the same name.
The implementation of these two is pretty straightforward. Using the list
of neighbours, one can calculate the median and barycenter easily using the
definition give in Equation (4) and Equation (3) respectively. Once we have
the median (or barycenter) of all vertices, we can use LINQ to sort them,
giving the resulting order.

4.5 Implemented Tiebreaking Methods

For this section, note that each tiebreaking method works on groups of ties,
that is, all vertices that would be tied under the standard method (same
barycenter or same median & degree), leaving the rest of the vertices in the
same order.
The implemented tiebreaking methods are, for the median method Reverse
+ Barycenter and the standard median methods.
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The Reverse + Barycenter calculates the barycenter for each vertex,
and sorts them in reverse order (i.e. descending) w.r.t. the original order
(using u.order).
The Standard does not do any additional tiebreaking. This is the bare-
bones median method as discussed in 3.1.5.

For the barycenter method we have the standard, Random and Reverse
tiebreaking methods.
Again, Standard dos not do any tiebreaking, it follows the method as dis-
cussed in 3.1.4.
The Reverse method simply reverses (w.r.t. the original order, using
u.order) each group of ties and returns the concatenated result.
The Random method uses the so-called Fisher-Yates shuffle [7]. This al-
gorithm shuffles by elements by swapping them following this psuedocode,
given an array A of n elements:

f o r i from n−1 down to 1 do
j ← random in t e g e r such that 0 ≤ j ≤ i
exchange A[j] and A[i]

4.6 General helperfunctions

Here we will touch upon some of the things we implemented that do not
influence the solution, like functions for outputting, logging and tests.

There are two types of output accepted, either via stdin/stdout or a
file. Because of this, there are two functions that output the result to either
console or file.

For logging, considering the program has to be called from a shell
script, we cannot use the console for debugging purposes because that would
be considered “giving output”. So in order to have some information (like
the value of a variable, number of loops, etc.) while the program is running,
we implemented a simple logging system that outputs a value to a specified
file. This was the main method used to gather the data represented in
Appendix A.

4.7 Testing Verification

At the start we wanted to be able to make our own tests, so we
implemented a graph generator. This generator constructs a bipartite graph
G = (L,U,E). For this, it takes two bounds for L and U and a percentage,
which we see as 100 times the density. We can then take random numbers
between the bounds for L and U , giving the size of L and U . Then, for each
possible edge (u, v) ∈ L × U , take a random number and see if is smaller
then the percentage given. This way, we construct a graph with density
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times a hundred roughly equal to the given percentage.

The idea was to use tests to check functions and assumptions on the
generated tests, for example whether the neighbours are sorted, the edges are
given in ascending order, etc. but we ended up using the provided instances
instead, mostly because it felt that the investment for making tests could not
be justified if we could be doing other things, like implementing tiebreaking
methods and (more) heuristic methods.

4.8 Crossing counters

One of the biggest challenges was implementing the crossing counter function
in a way that is was fast enough to be usable while running. This is a
requirement in order to be able to compare the optimal method mid-run. So,
after running the median method and the barycenter method, we compare
the solutions and take the best one of the two. Here, ”best” of course
refers to the solution that has the least amount of crossings. This requires
a method to efficiently and quickly calculate these crossings.

The most straightforward implementation is in O(|E|2), which checks
for each pair of edges if they crossed or not, but his turned out to be too
slow when running graphs containing hundreds of thousands of edges.

A more efficient approach is to use the list of neighbours to find edges
which can cause crossings, rather than checking all edges. We know that
the crossings are only between edges with the endpoints reversed. This also
means that, given an edge e = (u, v) with u ∈ U, v ∈ L, we can limit our
search to the edges e′ = (u′, v′), u′ ∈ U, v′ ∈ L such that u′ < u ∨ v′ > v.
We can do this by filtering the neighbours of all vertices u′ < u with the
condition v′ > v. This enforces that, for each filtered neighbour v′ of u′,
(u, v) crosses (u′, v′) The number of crossings is then the size of that list.
resulting in the following psuedocode:

c r o s s i ngTota l = 0
f o r each u ∈ U

fo r each v ∈ Nu

f o r each u ’ < u do
r e s u l t ← f i l t e r Nu′ on v ’ > v
c ro s s i ngTota l += | r e s u l t |

Listing 1. Psuedocode of the crossingcounter using filtering of vertices.

Still, this had to run around five times (once for each method used),
which took more then 10 minutes combined on some of the larger test cases,
so this was still not practical.

For the next improvement, we had the idea to use binary search on
Nu to find the first vertex v′ that was smaller then v. Note that “larger
then v” also works, but then the number of neighbours would be |Nu| −
1 − indexOf(v′) rather then indexOf(v′). (Note that this works because
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the vertex list Nu is sorted.) Furthermore, we can also tighten the lower
bound for the binary search for each subsequent neighbour. We can do this
because each subsequent neighbour is further to the right than the last, so
the first vertex smaller then that v must also be further to the right then the
previous result. In other words, say we find index i for neighbour w. The
resulting index i′ for the next neighbour w′ satisfies i ≤ i′, so we can tighten
the lower bound of our search to i, or the previous result. If we move on the
the next vertex u, we reset the lower bound.
So, what we do is use binary search to find the first index that is smaller
then the given vertex. Because the neighbours are sorted, we can tighten
the lower bound after each search.
See the psuedocode below for a more structured overview.

c r o s s i ngTota l = 0
f o r each u in U

Nu ← Neighbours [ u . order −1−|L | ]
f o r each u ’ > u do

Nu′ ← Neighbours [ u ’ . order −1−|L | ]
lowerBound = 1
upperBound = |Nu′ |
f o r each v in Nu

r e s u l t ← BinarySearch ( lowerBound ,
upperBound , v , Nu′ )

lowerBound = r e s u l t
c r o s s i ngTota l += r e s u l t

Listing 2. Psuedocode of crossingcounter using BinarySearch.

After this, we were able to run the 100 public instances in about half an hour,
so the performance had definitely improved enough that it was acceptable.

4.9 Running the program

Some of the other things that made this project fairly difficult are (1) that it
has to run in a Linux environment and (2) if the program is not in python,
it contain a executable, for example a shell script. In the end, we included
several script files, for Windows and Linux, for manual testing and for testing
using the dedicated tester from PACE3. The manual testers use a local
instance of the test cases, where as the supplied tester calls the solver with
each test case separately.

To run the program yourself, using the manual solver, make sure you
have the test cases included in the IOFiles folder (more detailed instruc-
tions in the included README). If you use the tester from PACE, simply

3A python package, found on their website and in the default pip package manager.

32

https://pacechallenge.org/2024/verifier/


run that tester and supply it with the solver.sh or .bat, and it should run
automatically.

4.10 Scrapped/partially implemented features

There were some things that we did not manage to finish in time. We will
quickly go over those things, and the reasoning why.

First, one of the initial plans was to find the optimal permutation of ties.
This was before looking into serious tiebreaking methods, just a personal
idea to attempt some form of optimization of the found order. This was
done using a function to calculate each permutation of each group of ties
and taking the Cartesian product of all these groups. This was immediately
scrapped when we tried to run this method on the larger instances given the
way the complexity scales.
Quite similar, one of the tiebreaking methods that was considered the best
option in Section 3.2 was the Optimal method, which finds the optimal
permutation of tied vertices. Here, “optimal” means that the permutation
of tied vertices produces the least number of crossing with each other. This
is similar to the original idea, except for the fact that this looks only at the
tied vertices themselves, without calculating it for the total order.
Even though we did manage to implement this, given the nature of the
method in that it check every possible permutation, there was no way to
implement a crossing counter that was fast enough to run this millions of
times. The implemented functions include a partial crossing counter, fol-
lowing the same idea as for the “complete” crossing counter, as well as a
functions to calculate all possible permutations.

Additionally, one of the final attempts at optimizing the function for count-
ing crossings was also a suggestion from a supervisor, to look at the sweepline
algorithm. Sadly, there was not enough time to fully implement this algo-
rithm, but we will still give a quick and general idea of the algorithm. For
a more detailed overview and formal proof, see [15].
This algorithm uses a line called the sweepline that moves over all event
points (all vertices and crossings). Additionally, it uses a sweepline sta-
tus (all events “currently happening”, in this cases all edges that cross the
sweepline) and an event queue, which contains all possible events in the fu-
ture. Important is that both the sweepline status is sorted on the order in
which the edges cross the sweepline, and the event queue sorted in the order
that the events happen.
See 8 for an example. The dashed line is the sweepline, going from top to bot-
tom. The event points are the ui, vi and the four points indicated. The cur-
rent sweepline status (from left to right) is {(v1, u1), (v2, u2), (v3, u1), (v3, u3)}.
The event queue is {Red circle 1,Red circle 2, u1, u2, u3, u4}. The current
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event is the point at the blue square.
We see that the points vi are passed, so they are in the queue. The point at
the green diamond is passed as well, so at that point, the order of (v1, u4)
and (v2, u2) was swapped. Also, after swapping those two, as said above, we
check the swapped pair with their respective neighbours for possible event
points. So because of that, the blue square and the first red circle were
added to the event queue.

u1 u2 u3 u4

v1 v2 v3

Figure 8. Example with two arcs and two vertices.

Each event point triggers certain changes in the sweepline status and
the event queue, either adding or removing event points. In particular, each
time the sweepline status changes, the changed event is checked with its
neighbours (the previous and next event in the queue) to see if they crossed
or not, changing the order of events. The point of intersection is added to
the event queue, since this would impact the ordering of the sweepline.
In the case of finding all crossings between edges, the event points are the
vertices which are either a “starting point” or “end point” of an edge. If the
sweepline passes a starting point, we can easily see that the corresponding
edge now crosses the sweepline, so it is removed from the sweepline sta-
tus. Similarly, passing an endpoint means that edge no longer crosses the
sweepline.
If the sweepline changes, the algorithm checks if any future events change,
i.e. if the changed order/added edge introduces a intersection in the future.
If so, this point is added to the event queue.
Obviously, since each intersection is passed by the sweepline, we know the
total number of crossings based on the total number of events (minus the
vertices of edges).

Lastly, we would have liked to expand the test cases, just to make sure that
the implemented features work as intended, but it felt a bit “too much” for
the rewards, compared to some other things we could implement instead.
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5 Discussion & Future work

In this section we will touch on some points that still have and future work.

First, as already mentioned, we wanted to improve the crossings function
by using the sweepline algorithm, but due to the time constraint we did not
manage to implement the working function before the thesis deadline. It
definitely looks like an interesting approach for a crossings algorithm, com-
pared to the “default” crossing count.

Secondly, we misinterpreted the reverse + barycenter tiebreaking for the
median method, so our data does not cover all tiebreaking methods we
wanted. Furthermore, with the data we did obtain for our tiebreaking com-
parisons, as shown in Appendix A,we did not find any clear reason or idea
as to what caused the difference in performance of the respective methods.
We would have liked to look into it further, especially to see if there is some
sort of property or logic for the cases, for example whether certain methods
perform better on dense or sparse graphs, or that size plays a role, etc.

Additionally, at the start of the project, we had ideas to implement some
sort of improvement system. For the submission to the PACE challenge,
there are 8 minutes to find the best result of a given problem, so it would
be a good investment to see if a iterative improving algorithm, for example
would be 2-opt4 would have improved the performance, or changing up the
starting order, different combinations of tiebreaking methods, etc.

Obviously, there is also the point of adding more diverse heuristic meth-
ods, besides the median and barycenter methods. As shown in [9], there
are at least a dozen heuristic methods that could have their uses. This also
ties into the lack of “logic” w.r.t. the different problems: right now the im-
plementation simply runs all implemented methods and chooses the method
that returns the best result, without any prior choosing or optimization. For
example, there are several mentions that the barycenter and median meth-
ods perform better on denser graphs [5, 6]. This would be an interesting test
to see how well differentiating on certain properties of the problems impacts
the results and performance of the program.

As for the mistake in the proof, without the upper bound of the median
method we no longer have a proof for a constant approximation of the up-
per bound like we wanted. Even though it does not impact the submission
for the PACE-challenge directly, we would have liked to search for a valid

4For clarification: in short, 2-opt swaps two elements such that the remaining solution
is better. First introduced as a possible solution to the Travelling salesman problem
by Croes [2].
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upper bound and write a correct proof.

In conclusion, we can say that even though the program is fully functional
as is, there is more then enough room for optimization and expansion on
the existing framework.
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A Tiebreaking comparison data

Problem |L| |U | |E| Graph Density Number of Medians Number of Barycenters

1 6328 6218 12545 0.000318826 3 2
2 10153 10013 20165 0.000198353 3 2
3 1485 1433 2917 0.001370767 3 2
4 1078 991 2148 0.002010675 18 17
5 3638 3426 7191 0.000576951 27 26
6 949 870 1898 0.002298851 18 17
7 5580 5356 10973 0.000367156 18 24
8 791 718 1581 0.002783755 17 22
9 45740 45444 91183 4.38673E-05 6 7
10 131315 130809 262123 0.00001526 6 7
11 1467 1483 3723 0.001711283 623 816
12 1608 1647 4099 0.001547741 724 943
13 1920 1998 4890 0.001274712 858 1116
14 847 839 15362 0.021617347 689 714
15 982 973 30672 0.032100941 831 931
16 1098 1109 2206 0.001811639 562 779
17 2245 2224 4468 0.000894874 1107 1570
18 2502 2371 4872 0.000821275 1211 1691
19 2125 2096 8257 0.001853839 1382 1755
20 639 626 1264 0.003159889 323 432
21 794 895 1688 0.002375357 407 554
22 1070 1070 3210 0.002803738 797 814
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23 1564 1564 4692 0.001918159 1174 1202
24 1828 1828 5484 0.001641138 1376 1410
25 6889 6682 20273 0.000440408 2408 4440
26 10343 10092 30536 0.000292542 3667 6694
27 7511 7804 15237 0.000259947 2420 4523
28 10040 10453 20447 0.00019483 3201 5997
29 15829 2461 18289 0.000469488 2461 2461
30 17219 2657 19875 0.000434418 2657 2657
31 657 657 1314 0.00304414 436 483
32 745 745 1490 0.002684564 494 555
33 922 922 1844 0.002169197 608 690
34 13122 1747 13122 0.00057241 1747 1747
35 21362 2847 21362 0.000351247 2847 2847
36 1599 1548 1991 0.000804363 446 827
37 1597 1564 13283 0.005318076 909 1435
38 1629 1692 12744 0.004623643 998 1518
39 2484 2596 9919 0.001538196 1917 2251
40 2860 2943 11305 0.001343118 2213 2592
41 4800 4800 19004 0.000824826 4798 4800
42 2345 2345 9243 0.001680843 2343 2344
43 3321 3321 13121 0.001189677 3319 3319
44 65536 65536 1114112 0.000259399 29476 58471
45 256 256 2304 0.03515625 144 225
46 16077 16077 33433 0.00012935 16077 16076
47 794 794 1891 0.002999511 794 794
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48 1234 1234 2967 0.001948441 1234 1234
49 493 493 1189 0.004892018 493 492
50 975 975 2344 0.002465746 975 974
51 1086 1086 2631 0.002230803 1086 1085
52 2095 2074 4168 0.000959257 835 1505
53 912 886 1797 0.002223922 403 680
54 1183 1230 2412 0.001657629 480 888
55 1644 1634 3277 0.001219895 704 1121
56 1152 1201 2352 0.001699972 503 812
57 2006 2006 4010 0.000996512 3 4
58 2606 2606 5210 0.000767165 3 4
59 2934 2934 5866 0.000681431 3 4
60 1442 1472 3028 0.001426536 355 783
61 804 801 1696 0.002633524 188 463
62 943 907 2024 0.002366418 213 510
63 1186 1200 1719 0.001207841 258 624
64 1580 1535 2146 0.000884839 340 777
65 518 504 763 0.002922565 128 259
66 1013 1077 1074 0.000984417 257 566
67 1719 1786 2158 0.000702901 532 1041
68 1840 1866 2310 0.000672795 566 1112
69 26294 7532 26294 0.000132767 7532 7216
70 30514 8706 30514 0.000114863 8706 8385
71 11678 6020 20924 0.000297632 4765 5451
72 15818 8772 30611 0.000220611 6722 7880
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73 1492 1445 4427 0.002053397 406 961
74 1517 1543 4610 0.00196947 415 982
75 1980 1989 6024 0.001529625 558 1283
76 498 528 1025 0.003898168 236 365
77 654 645 1298 0.003077069 325 478
78 1508 1466 2973 0.001344806 707 1072
79 525 539 1063 0.003756516 255 403
80 581 593 1173 0.003404609 279 448
81 1230 1277 2506 0.001595457 606 921
82 1700 1667 3313 0.00116906 500 1011
83 1738 1731 3466 0.001152078 488 996
84 1804 1832 3549 0.001073851 498 1055
85 674 673 1759 0.003877849 399 543
86 865 884 2700 0.003530981 536 736
87 971 989 2630 0.002738673 577 796
88 1179 1184 4051 0.002901996 727 989
89 1531 1537 5157 0.002191533 967 1293
90 720 724 2532 0.004857274 455 592
91 1033 1038 3335 0.003110271 674 883
92 519 522 1705 0.006293417 334 435
93 769 773 2389 0.004018929 509 648
94 1352 1377 4749 0.002550889 951 1198
95 1463 1429 3906 0.001868339 888 1202
96 2005 2097 2161 0.000513975 520 1088
97 1180 1110 3431 0.002619484 158 578
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98 1736 1719 5182 0.001736488 221 856
99 7006 9340 18680 0.00028547 2336 7004
100 8794 11724 23448 0.000227428 2932 8792
complete 4 5 4 5 20 1 1 1
cycle 8 shuffled 4 4 8 0.5 3 3
cycle 8 sorted 4 4 8 0.5 3 4
grid 9 shuffled 4 5 12 0.6 2 3
ladder 4 4 shuffled 4 4 10 0.625 4 3
ladder 4 4 sorted 4 4 10 0.625 4 4
matching 4 4 4 4 4 0.25 1 4
path 9 shuffled 5 4 8 0.4 3 4
path 9 sorted 5 4 8 0.4 4 4
plane 5 6 5 6 10 0.333333333 4 5
star 6 2 6 6 0.5 1 2
tree 6 10 6 10 15 0.25 3 5
website 20 10 10 12 0.12 2 9

Table 2. A table containing basic details on that problems graph.
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Problem Barycenter Method Median Method Random on BC Reverse + BC on Median: Reverse on BC

1 259822 38651088 170062 38651088 448802
2 997222 100240143 622582 100240143 444362
3 18774 2050623 25846 2050623 61362
4 18425 637127 11551 1011527 2408
5 99495 7141427 63501 12097107 7536
6 15642 518080 5844 797762 2166
7 10847 23583253 10839 28881982 10839
8 1962 435118 1968 518780 1974
9 12885182 2037978558 10526358 2064930216 568622
10 60616276 16979783549 29633896 17110340946 5577138
11 2062625 2504627 2062641 2524668 2062614
12 2502967 3069589 2502968 3100757 2502973
13 3417751 4123336 3417746 4162249 3417746
14 1442511 1542654 1442511 1542752 1442511
15 10857054 10864422 10857057 10865550 10857057
16 238632 716626 238617 790577 238616
17 923744 2905158 923744 3206388 923766
18 1155200 3403053 1155200 3737092 1155205
19 11130815 11983613 11130794 11984723 11130758
20 186929 325197 186927 348173 186920
21 324562 601066 324567 657995 324559
22 1596236 1915982 1596266 1916307 1596267
23 3431064 4121780 3431068 4122207 3431047
24 4543996 5407714 4543964 5408212 4543951
25 272176 14978072 272235 16152883 272234
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26 409532 32573193 409520 35195712 409498
27 120290 17861434 120313 21941780 120347
28 160556 31520183 160579 38880075 160622
29 0 0 0 0 0
30 0 0 0 0 0
31 213510 213626 213510 213731 213510
32 280916 281036 280916 281167 280916
33 440799 440958 440799 441113 440799
34 0 0 0 0 0
35 0 0 0 0 0
36 443607 807671 443595 886056 443590
37 33673667 35003979 33673668 35006691 33673671
38 30684426 32184204 30684400 32186542 30684397
39 790778 1477204 790845 1479240 790820
40 239105 834102 239128 835978 239152
41 1333704 1353842 1333704 1353842 1333704
42 447719 457372 447720 457377 447720
43 773096 786960 773096 786960 773098
44 2.60871E+11 2.9798E+11 2.60871E+11 2.97982E+11 2.60871E+11
45 1023445 1164406 1023465 1165227 1023435
46 39567 59228 39567 59228 39567
47 1453 2018 1453 2018 1453
48 2204 3067 2204 3067 2204
49 876 1209 876 1209 876
50 1751 2423 1751 2423 1751
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51 1915 2628 1915 2628 1915
52 1732172 3370922 1732171 3643781 1732194
53 308164 620751 308158 664574 308164
54 590291 1194290 590302 1294025 590288
55 1310790 2253576 1310794 2419583 1310799
56 680115 1200845 680094 1294758 680081
57 252004 2759132 252004 3263012 252004
58 425104 4675704 425104 5509412 425104
59 538756 5915166 538756 6984756 538756
60 1270945 1601862 1270954 1675667 1270956
61 371612 488253 371615 510316 371619
62 566769 702349 566741 724131 566745
63 371601 570599 371600 622785 371604
64 561984 890179 561982 985404 561978
65 74807 110663 74799 120674 74794
66 106127 246979 106131 286453 106131
67 475994 896415 476000 998726 475992
68 582986 1055552 582985 1172618 582988
69 728697 775578 728698 775578 728708
70 847368 902428 847393 902428 847377
71 571161 611451 571171 613362 571185
72 841172 901888 841215 905111 841237
73 2905493 3333146 2905486 3372364 2905508
74 3167271 3572724 3167276 3610360 3167285
75 5573430 6317943 5573403 6380944 5573425
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76 119586 213127 119577 227657 119585
77 207462 351425 207468 368444 207456
78 1088145 1823360 1088149 1921914 1088175
79 138520 240134 138527 253816 138523
80 163537 278501 163537 295159 163531
81 757438 1263088 757435 1348983 757425
82 1519623 2031491 1519619 2124104 1519624
83 1698309 2191631 1698306 2298899 1698313
84 1760965 2345993 1760980 2462376 1760988
85 475933 564959 475930 568776 475931
86 1131716 1285076 1131709 1289046 1131727
87 1033705 1249618 1033700 1259218 1033697
88 227173 545195 227143 556038 227153
89 370934 866434 370933 881404 370935
90 79614 202677 79616 206926 79623
91 162159 326431 162164 334157 162154
92 60178 117773 60191 120729 60193
93 133386 266589 133378 272646 133373
94 3634300 3993653 3634320 3995600 3634340
95 2215289 2667330 2215281 2689079 2215299
96 463951 948301 463950 1092502 463951
97 1961889 2407475 1961876 2435212 1961867
98 4504928 5543296 4504954 5613304 4504971
99 51792631 53175502 51792631 54524581 51792631
100 81607829 83743892 81607829 85910537 81607829
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complete 4 5 60 60 60 60 60
cycle 8 shuffled 4 4 4 5 4
cycle 8 sorted 3 3 3 4 3
grid 9 shuffled 17 21 17 21 17
ladder 4 4 shuffled 11 13 11 13 11
ladder 4 4 sorted 3 5 3 5 3
matching 4 4 0 2 0 6 0
path 9 shuffled 6 6 6 7 6
path 9 sorted 0 0 0 0 0
plane 5 6 0 6 0 6 0
star 6 0 3 0 9 0
tree 6 10 13 38 13 59 13
website 20 17 33 17 45 17

Table 3. A table containing results for the used methods per problem with the best result highlighted.
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