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Abstract

In regular primary education, LVS tests are used to measure and pre-
dict pupils’ progress in math ability (θ). In special education, due to
measurement error and a distribution of scores that is different from reg-
ular education, both measuring and predicting progress is difficult. A
solution to the problem in measurement is investigated in the field of
computerized adaptive testing (CAT). Using a simulation study, two CAT
item selection mechanisms have been tested, for three different ability lev-
els. Results suggest that using CAT mechanisms, accurately estimating
a pupil’s ability is possible, as long as the items are suitable for the abil-
ity levels. Overall, allthough the selection mechanisms are different, both
mechanisms show equal performance in accuracy of measurment. For the
problem of predicting progress, a distribution for special education is cal-
culated and tested. The results suggest that, due to regression to the
mean, the special education distribution does not predict accurately for
pupils with θ values far from the population mean. Using Growth Mix-
ture Modeling (GMM) multiple distributions have been defined to solve
this problem. Using multiple distributions for pupils with different ability
levels, the problem of regression to the mean is less severe.
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1 Introduction

The Dutch National Institute for Educational Measurement (in Dutch called
Cito) has developed a system that makes it possible to monitor pupils’ progress
in several skills throughout their entire primary school career. This system is
called the Student Monitor System (in Dutch called LVS). For each skill the
system consists of a set of tests that are administered twice a year, for each year
of primary education. The student’s scores on those tests are converted into
one scale, so the results can be measured in a continuous and longitudinal way.

The scale that is studied in this paper is the math scale. Each test in the
math scale is used to measure math ability, beginning in grade three, continuing
into grade eight. However not all tests are used to measure the same part of
the math scale. The tests in grade three are easier than the tests in grade five,
so the tests in grade three cover a certain part of the total math scale, and the
tests in grade five cover another part. Each test is used to measure the same
latent construct, and each test covers a piece of the total scale, reaching from
grade three on to grade eight. This way a student’s progress can be measured in
a longitudinal way, and can be monitored and compared throughout his school
career. Besides the monitoring, by using growth models the system can be used
to predict a pupils future results (Kamphuis & Engelen, 1993).

The LVS is not only administered in regular primary education but also
in special primary education. The way progress is measured and predicted in
regular education will be explained in section 2 of this paper. Using the LVS
measuring progress and predicting future outcomes is in special education not
as straightforward as in regular primary education. Problems occur in both
measuring and predicting ability in special education.

Measuring a special education pupil’s ability is complex. The LVS tests are
administered such that a pupil in regular education should be able to make the
LVS test corresponding to the grade that pupil is in (Kamphuis & Moelands,
2000). In special education this is a problem. For example, a special education
pupil in grade six does not necessarily have the ability corresponding to the
level that can be expected from a pupil in grade six in regular education. On
average pupils in special education are behind on the LVS schedule and there is
a great amount of variability in the ability levels of pupils within one grade in
special education. This way it is uncertain what test should be administered in
order to make an accurate measure of a pupils ability at that time. When the
administered test is too difficult or too easy for a pupil the test becomes unin-
formative, and no precise estimate can be made about its ability level (Eggen,
2004). Therefore a solution has to be found to make measuring ability in special
education more accurate.

Also predicting a pupil’s progress in special education is problematic. The
program used to predict progress in the LVS system uses a regression model
based upon the means and variances of the population of children in regular
education. However, the distribution of scores in special education is differ-
ent from regular education. When using the regular education distribution for
special education, two problems occur. The first problem is that the means of
regular education are too high for special education. This results in unrealistic
predictions due to regression to the mean. Because the means in regular educa-
tion are higher than the means in special education, the ability levels of pupils
in special education are being overestimated in the predictions. The second
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problem is that the variance of scores in special education is much larger than
in regular education. This results in inaccurate predictions and wide confidence
intervals around the predictions.

In 2006 a pilot study has been performed under ten special education schools
in the Netherlands in order to create a model, that can be used to predict
pupils’ progress in special education. This model was based upon the means
and variances of a special education population. The results of the study show
that using that model, it is possible to make more realistic predictions. However,
the accuracy of this model has not been tested yet. Also because of the large
variance in special education, one single model may not be enough to cover
the whole population of pupils in special education. Therefore the accuracy
of the special education model should be tested, and when necessary multiple
subpopulations have to be defined and for each subpopulation a prediction model
has to be estimated, increasing the accuracy of prediction in special education
(CITO, 2007).

The aim of this study is to improve the accuracy of both measurement and
predictions in special education. Therefore first a possible solution to the prob-
lem of inaccurate and uninformative measurement is presented. A solution to
this problem may lie in using the technique of Computerized Adaptive Testing
(CAT), which is a technique in which tests are individualized such that each
pupil makes a test that is appropriate for its own ability level. In order to
investigate whether using CAT can solve the problem of inaccurate and un-
informative testing, simulation studies have been done. In these simulations
several CAT applications are investigated in order to find a CAT method that
is appropriate for the pupils in special education and can solve the problem.
Then a solution to the problem of inaccurate predictions is presented. A pop-
ulation model is estimated for special education and using several simulations
the accuracy of this model in several applications will be tested. Also Growth
Mixture Modeling (GMM) will be used to search for underlying latent classes
within the population of special education pupils, in order to define multiple
subpopulation models that can make predictions more accurate.

This paper is structured as follows. In section two, the measurement model
used for the construction of the math scale is explained. Also the growth model
used for prediction is explained in this section. In section three, the framework
of CAT is explained and the simulations investigating accuracy of measurement
in special education are done and discussed. In section four, the simulations
investigating the accuracy of predictions in special education are done and dis-
cussed. Also a way to improve the accuracy of predictions is presented. In
section five, a discussion and conclusion is presented.

2 Measurement and prediction

The scale used in this thesis is the Cito math scale, which is measured by a
series of tests administered throughout a pupils primary school career. Each
year a great amount of schools use the Cito math tests and send the results of
their pupils back to Cito. The first test is usually administered halfway grade
three (denoted by M3), then every half a year a test is administered, continuing
to the end of grade eight (denoted by E8). Tests that are administered halfway
a grade are specified by the character M, tests that are administered at the end
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of a grade are specified with the character E. The total scale ranges from 0 to
153. These numbers correspond to θ values, representing the level on the latent
trait of math ability.

In this section the measurement model used for the construction of the math
scale is described. Also the growth model, used to predict a person’s skill on a
future time point is explained.

2.1 Measurement model

The items in the math tests are calibrated using Item Response Theory (IRT).
In IRT the item response function is crucial, this is the function that gives the
probability to a correct answer to the item, given a persons ability. In IRT
several models to calculate this probability are possible. The model that is used
to estimate the item parameters in the math scale, is called the One Parameter
Logistic Model (OPLM) (Verhelst, Glas & Verstralen, 1995). In the OPLM
model, the item response function is given by

P (X = 1 | θ) = fi(θ) =
exp[ai(θ − βi)]

1 + exp[ai(θ − βi)]

where θ represents a person’s math ability, βi is the difficulty of item i and
ai is the discrimination parameter of item i (Verhelst, 1993). X is ar random
variable with possible values 1 and 0. This function gives the probability of a
correct answer (X = 1) to item i with discrimination parameter ai and difficulty
parameter βi as a function of θ. All items in a test have their own β value,
estimated by the model described above. All items together form a scale ranked
from the easiest item to the most difficult item. By the probabilities of making
an item correctly by a person with abillity θ, this scale can be used to estimate
a pupil’s θ. For a complete scale the likelihood is then the probability of answer
pattern x given θ assuming local independence, and can be denoted by

P (x | θ) =
n∏

i=1

Pi(θ)xi [1− Pi(θ)]1−xi .

In the OPLM model ai is a chosen constant so it is not a parameter that
has to be estimated. Fixing the discrimination parameter ai makes it possi-
ble to estimate the difficulty parameters in the OPLM model with Conditional
Maximum Likelihood (CML). In CML for every item the total number of re-
sponses in a particular response category will be used for the estimation of the
parameters of the item. This number is a sufficient statistic for the parame-
ter. CML estimates are obtained by conditioning on sufficient statistics for the
person parameters, which are the persons’ sum scores, weighted by the discrim-
ination parameters. Item parameters are estimated by equating the sufficient
statistics to their expected values, conditional on the frequency distribution of
the persons’ scores (Verhelst, Glas & Verstralen, 1995).
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2.2 Growth model

The longitudinal design of the math scale

The LVS scales are designed such that the same latent construct is measured
through time. As stated in the introduction, each test covers a part of the total
math scale, so the data can be analyzed and monitored in a longitudinal design.
To be able to analyze the test results in a longitudinal design, either a static or
a dynamic approach can be used.

In the static approach the test results are analyzed in cross sections. This
means that for each individual the point estimates of θ for each measurement
occasion are compared with each other, and the development through time can
be monitored. In this case a pupil’s point estimate of θ at a certain time point
can be estimated using the Weighted Maximum Likelihood estimater (WML),
introduced by Warm (1989). This estimator is also called the Warm estimator
and it is the value of θ that maximizes the the likelihood function, weighted by
the square root of the testinformationfunction. The Warm estimator is given
by

θ̂wml,t = MaxP (sw,t | θt)
√
I(θ)

where θ̂t is the estimated ability for time point t, sw,t = Σaixit, which is the
sum of a pupil’s correct items xit for i = 1 . . .n, weighted by the discrimination
parameter ai at time point t, and

√
I(θ) is the square root of the test information

function.
However, when measuring progress this way a problem occurs. When a test

is administered a certain amount of measurement error is involved, resulting in
an irregular and unpredictable progress profile. For example, when the point
estimate of θ on a certain time point is higher than the estimate on the foregoing
timepoint it can be due to progress, but it can also be due to measurement error.

In order to make better estimations of θ, it can be assumed that each pupil is
part of a certain reference population. This population has a certain distribution
of scores through time with a mean µ and a variance-covariance matrix Σ. Σ is
a matrix describing the relations between the scores on each timepoint. In this
case the estimator of θ is called the ’Expected A Posteriori’ estimator or EAP.
The estimator is given by

θ̃t = E(θt | sw,t, µt, σ
2
t ) =

∫
θtP (sw,t | θt)P (θt)dθt∫
P (sw,t | θt)P (θt)dθt

and its variance by

V art(θt | sw,t, µt, σ
2
t ) =

∫
(θt − θ̂t)2P (sw,t | θt)P (θt)dθt∫

P (sw,t | θt)P (θt)dθt

where P (sw,t | θt) is again a pupil’s probability of weighted score sw,t, given
its θ, P (θt) is the distribution of θ in the population with the mean µ and
variance σ2, and θ is the ability of the population at time point t (Oud & van
Blokland-Vogelenzang, 1993).
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Figure 1: Population growth model

Estimation using the population growth model

In order to monitor a pupil’s progress in a longitudinal way, also a dynamic
aproach can be used. In this approach, using the relations between the mea-
surement points in the population a growth model is estimated. The relations
in this model can also be used to predict a pupils progress on future time points
(Kamphuis & Engelen, 1993).

The growth model is a regression model of wich the structural part can be
described with

θ = α+Bθ̂ + ζ

for t = 1 . . .n, where θ is a T ×1 random vector representing the prediction of θ
for time points t=1 . . .T , α is a constant T ×1 vector representing te intercepts,
B is a T × T lower triangular matrix representing the covariance between the
measurements, and ζ is a T×1 zero mean disturbance vector uncorrelated with θ
and with diagonal covariance matrix (Joreskog & sorbom, 1996). T represents
the total number of timepoints, so in this case T= 1 . . . 10. In reduced form,
the model is

θ = (I −B)−1(α+ ζ).

Using this equation µ and Σ can be calculated. Figure 1 gives a graphical
representation of the model.

Using this model the progress profile can be smoothened and the estimations
of a pupil’s true ability at a certain time point can be made more reliable. θt

is estimated conditional on all other θt values. This is done as follows. First
the population distribution is defined. Using the computer program MULTI the
scores of the reference population are used to estimate a multivariate population
distribution with a mean µ and a variance covariance matrix Σ (Dempster, Laird
& Rubin, 1977).
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Then the following steps are taken:

Step 1: Estimate θ1 given s1, µ1, σ
2
1 (This is the EAP estimation for θ1).

Step 2: Insert θ̃1 in the growth model to estimate θ2 given θ1, s2, µ2, σ
2
2 .

Step 3: Insert θ̃1 and θ̃2 in the growth model to estimate θ3 given θ1, θ2, s3, µ3, σ
2
3 .

Step 4: Continue untill all θt values are estimated conditional on all foregoing
θ̃t values.

Now using these steps, the first measurement occasions are used to estimate
the last measurement occasions, however to smoothen the progress profile the
same steps are taken backwards. So θ̃9 will be smoothened conditional on θ̃10,
θ̃8 will be smoothed conditional on θ̃10 and θ̃9, and so forth, untill all θt values
are estimated conditional on all θ̃t values. With each step also the estimation
error covariance, belonging to the estimates of θ is calculated. In the end a
new distribution is created with the expecatation E(θ | sw, µ,Σ) and covariance
cov(θ | sw, µ,Σ).

Predictions using the population growth model

The population growth model can also be used to predict a pupil’s progress on
future time points (Kamphuis & Engelen, 1993). By using the model in combi-
nation with the first few scores of a pupil, future scores can be estimated forming
a pupil’s distribution of ability θ through time. For example when only two test
are administered and a prediction of the fourth time point must be made, θ1 is
estimated by the EAP estimator, θ2 is estimated using the EAP estimator and
θ̃1. But for θ3 the score is not known, so it is estimated conditionally on θ̃1 and
θ̃2, and θ4 is estimated by θ̃3,θ̃2 and θ̃1.

3 Measurement in special education

As stated in the introduction assigning the appropriate tests to pupils in special
education is problematic. Figure 2 shows measurement error functions of four
of the math tests as well as the probability density of θ in both regular and
special education, for θ values between 0 and 100. The M3 test is calibrated on
pupils of mid grade three, the E3 test is calibrated on pupils of end grade three,
M4 corresponds to mid grade four and E4 corresponds to the end of grade four.
All tests are calibrated on pupils in regular primary education. As can be seen
in the figure, the measurement error increases instantly when administering it
to a population with an ability level that is too high or too low for the test.
For example, the bold solid line represents the measurement error of the test
administered at the end of grade four (test E4). The measurement error is
smallest when made by pupils with a θ value of 60 on the scale. However, when
looking at the probability density of pupils in special education at the end of
grade four (represented by the bold dotted line), it can be seen that on average
the pupils have a θ value of 45. The line also shows that the variance around that
mean is relatively large compared to regular education, and that the tails of the
special education density are thicker. So for many special education pupils in
E4, the test administered in E4 does not measure well because of measurement
error.
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Figure 2: Measurement error for M3 to E4

Simply administering an easier test for pupils in special education is not
a solution. Because of the large variance in the distribution of θ in special
education it is uncertain where a pupil’s true θ lies on the scale. The bold
dotted line in figure 1 shows that a large range of θ values are clustered within
one grade. Assigning the test that fits a pupil’s latent ability level is thus a
challenge which makes measuring progress in special education pupils difficult.
For example, when a special education pupil scores low at an E4 test, this could
mean that its ability level is low, but it could also mean that the test does not
fit its ability level properly.

In this section a solution for this problem is investigated within the frame-
work of Computerized Adaptive Testing (CAT). In the first subsection the
framework of CAT is explained and in the second subsection it is investigated
whether using CAT as a solution to the problem of measurement in special
education is reasonable.

3.1 Computerized Adaptive Testing

When the measurement error of a test is too large, the number of items should be
increased in order to reduce the error. However, the LVS Math tests already have
a large amount of items, a test with 120 items is not exceptional. Many special
education pupils cope with problems in their concentration and get distracted
when the test is too long. Increasing the number of items would in this case likely
increase the measurement error instead of decreasing it. In order to decrease
the measurement error in special education a test is needed that is as short as
possible, using items with difficulty parameters close to a pupil’s true ability
level.

Computerized Adaptive testing can be a solution. In CAT the construction
and administration of the test is computerized and individualized. Each pupil
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gets a test that is appropriate for its own ability level. Using an item selection
algorithm the items that are to be administered to a pupil are selected, con-
ditional on whether the forgoing item was made correctly or not. The items
are contained in an item bank, and from each item in the item bank the psy-
chometric properties are considered to be known. The items are ranked on the
same ability scale as the pupil is measured on. When a pupil answers an item
correctly, there is a large probability that the item lies lower on the θ scale than
the θ value of the pupil, and a more difficult item is selected. When that item is
made incorrectly an easier item is selected. This proces continues until conver-
gence is reached (Eggen, 2004). Making use of items this way has advantages.
The selection of items can be made broader without increasing the actual length
of the test. This means that the test can measure beyond the range of ability
levels of the tests that are used in regular education. For example, the items of
test E3, M4 and E4 can be put in one CAT itembank so the CAT test covers a
broad part of the θ scale.

There are many possible item selection mechanisms and each mechanism uses
its own item selection criteria. For special education a mechanism is needed that
is able to make fast and accurate measurement possible. In the next subsection
two selection mechanism are compared in order to investigate how accurate CAT
measures, and which approach suits special education best.

3.2 Accuracy of CAT measurement

In order to investigate the accuracy of the measurements using CAT, a sim-
ulation study has been performed, comparing the accuracy of CAT at three
different θ values, and two different item selection mechanisms. Because of the
large variance in the θ distribution in special eduction, the method is tested on
a pupil with a low θ value (θ=30), a pupil with a mean θ value (θ=50) and
a pupil with a high θ value (θ=80). For all tests the same itembank is used,
with items that are usually in the LVS tests M3 and E3. In the simulation each
pupil makes two tests. The two tests use different item selection meachnisms.
In order to test the accuracy of the mechanisms each test is made 1000 times.

The math scale as it is used in practice ranges from θ values of 0 to 153.
However, the items are calibrated on another scale, and are then transformed
into the θ scale. Because the difficulty parameters in the itembank are on the
untransformed scale, the untransformed values of the θ scale are used in this
simulation. The untransformed values of θ=30, θ=50 and θ=80 are respectively
-.349, .246 and 1.138.

Selection mechanism

The selection mechanisms used in this simulation are the Fisher Information
Selection Criteria (FISC) and the Expected Shannon Information Selection Cri-
teria (ESISC). FISC uses the most common selection mechanism: it maximizes
the Fisher information given the estimated θ distribution conditional on the
foregoing answers. For example if the first item is made, θ is calculated, and the
item will be selected for which the pupil has 50% chance to answer it correctly.
If the next answer is correct, a new θ value is calculated, and again the item for
which the pupil has 50% chance to make it correctly is selected. This contin-
ues until a certain predestined stopping point, in this case after 25 items. The
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probability of making the item correctly does not necessarily have to be 50%Ṫhe
amount of information also depends on the item discrimination parameter.

ESISC uses another selection mechanism, in which the tails of the total
distribution of θ are cut off with each item. In order to select an item the
predictive distribution is used, based on the Expected Shannon Information
(Bernardo & Adrian, 1994). The Shannon information is the average amount
of information the observer has gained after receiving a correct answer to an
item (Grunwald & Vitanyi, 2004). In ESISC the expected distribution of the
shannon information is maximized, and used for item selection. In practice
relatively easy items are alternated with relatively difficult items. With each
answer the θ distribution for the pupil becomes more narrow, this continues
untill the distribution of θ becomes stable.

Figure 3 shows which items are selected in both mechanisms for a pupil
with θ=30. The bold line represents the difficulty of the selected items. The
horizontal line in both graphs represents the θ value of the pupil, and the dotted
lines represent the estimated θ value and its 80% confidence interval. As can
be seen in both cases the items are selected such that around item 15 the
pupil has to make items that are close to its true θ value, and thus give much
information. In both cases θ is slightly overestimated, but the true value lies
within the confidence interval.

Figure 3: Selection mechanisms FISC and ESISC for θ = 30

Accuracy of measurement

To be able to select the CAT item selection mechanism that suits special ed-
ucation best, the mean accuracy of the measurements have to be investigated.
Table 1 shows the mean estimated θ values for each item and the mean range
of the 80% confidence interval, for the θ values 30, 50 and 80, and for both se-
lection mechanisms. The results show that both mechanisms do about equally
well with low θ values. With θ = 30 both mechanisms on average slightly over-
estimate θ with estimates of around -0.355, whereas the untransformed value of
θ is -0.349. Also the mean 80% confidence interval shows that both mechanisms
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are equally accurate, both intervals have about the same range, with values of
respectively .267 and .275 for FISC and ESISC. With average θ values the same
conclusion can be drawn. Both mechanisms show with θ = 50 that they both
slighty underestimate θ, with .239 for FISC and .241 with ESISC, and both
reach equal accuracy values, with .280 for FISC and .281 for ESISC. With high
θ values also both mechanisms do equally well. Both mechanisms underestimate
θ. With mean estimates of around 1.107 and 1.115, ESISC is on average closer
to the true θ value than FISC, but shows a higher 80% confidence interval, with
values of respectively 1.029 for FISC and 1.125 for ESISC.

It can be concluded that both mechanisms are able to accurately estimate θ
when the true θ value is around 30 or 50. On average the results are less accurate
with θ values 80, and are less certain. A closer look at the data shows that on
average pupils with a θ of 80 make 23.67 of the 25 items correctly. This makes
measuring accurately very difficult because of a ceiling effect. This means that
when almost all items are made correctly, not much information is given except
for the fact that the pupil probably has a high θ value. The exact level however
cannot be estimated accurately. Figure 4 shows the items that are selected for
a pupil with θ = 80. The bold black line represents the item difficulties, and the
horizontal line represents the true θ value. The figure shows that the items in
the itembank are not difficult enough to give information of the correct θ value
of the pupil. For all items the probability of making the item correctly is likely
to be large.

Figure 4: Selection mechanisms FISC and ESISC for θ = 80
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In order to investigate the reliability of the mechanisms the 80% coverage
rate for each test is calculated. For FISC with a θ of 30, in 20.5% of the cases the
true θ value falls outside the 80% confidence interval. That is slightly more than
the 80% confidence interval would allow. For ESISC with a θ of 30, in 19,3% of
the cases θ falls outside the interval, which is reasonable. The coverage rate for
the θ = 50 simulations are with both mechanisms .20, which is reasonable. For
FISC with a θ of 80, in only 9.7% of the cases θ falls outside the interval and for
ESISC with θ 80, in 20.2% of the cases θ falls outside the confidence interval.

In general these results suggest that using CAT for measurement in special
education is a reasonable option. Using short tests a good indication of a pupils
ability can be estimated. However, as in the normal LVS tests, CAT has its
limitations. The selection of items can be made more broad, but then still it
has to fit ones true θ value. If the true θ does not fit the item bank, accurate
measurement is still difficult.

4 Predictions in special education

When a child enters special education, usually not much is known about the
ability of this pupil and about what is to be expected from it. A prediction of his
progress is however wanted at a early stage of its school career, so teachers know
what to aim for (Clijssen et al., 2009). As stated in the introduction, predicting
progress in special education is complicated. A large amount of background
variables influence the distribution of the data, resulting in a large variability of
scores, and a large variability in possible growth compared to regular education.
When the regular education population distribution is used in the growth model
described in section 2, due to regression to the mean the predictions for special
eduction will be unrealistic and inaccurate.

In this section, using the program MULTI a special education population
distribution is estimated. Then, using several simulations the accuracy of pre-
dictions made using this new distribution is investigated. A dataset is created
and using the information from different numbers of time points, predictions are
made of the ability level θ at the tenth time point using the population growth
model described in section 2.

The accuracy is investigated for several different situations. Schools cannot
always provide all information about the tests that are administered and the
items that are made correctly. In the ideal situation, all information of the
administered test is available, and the weighted score (denoted by sw) can be
calculated. This means that it is known what test is made, what items de
pupil answered correctly and which are answered incorrectly. Using the item
discrimination parameter a the scores x on the items are weighted, so sw =
Σax. The sw is a sufficient statistic for θ, this means that sw can be used to
estimate θ, by inserting it in the EAP estimator described in section 2.

However in practice sometimes only Σx (the number of correct answers on
the test) is provided, without the information of which items are answered
correctly, and which are answered incorrectly. Then only unweighted scores
(denoted by suw) are available for the prediction. In this case for each item the
chance of scoring the item correctly are included in the process of calculating θ.

In some cases there is no information available about the test that was made
at all. Then the item parameters are not known and cannot be included in the
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growthmodel, and cannot be included in the estimates and predictions. In that
case only ’Warm estimations’ of θ, (denoted by θ̂wml) are available. When item
parameters are not known, the scores that are used to make the predictions are
slightly biased. There is an amount of measurement error involved, which adds
up to the error in the predictions.

4.1 Accuracy of predictions with sw, suw and θ̂wml

Creating data

To be able to test the accuracy of the predictions simulation studies have been
done. A complete dataset is created with measurements available on all time
points, of which θ̂ can be calculated. Then measurement points are deleted from
the data so that predictions can be made and tested against the known values
from the complete dataset. For the simulation of the parameters, realistic values
have been used, seen in a study after growth modeling in special education.

The dataset is created as follows. First the parameters θ for each time
point have been simulated for each person in the sample. Then using these
values response patterns on a series of tests are created measuring math ability
through time. This way a sample of test scores are created for each person in
the sample, for each time point, resulting in a complete dataset, with which θ̃
can be calculated.

To make sure the measurement error is as small as possible, the test that
fits the pupil’s ability level is assigned, such that each pupil has a 60% chance
to pass the test.

The dataset contains 800 pupils with measurements on 10 time points, be-
ginning from the middle of grade 4 (M4), untill the end of grade 8 (E8). Table
2 shows the descriptives of the complete dataset. As can be seen in the table,
the means of the scores range from 36.19 on the first measurement to 86.45 on
the tenth measurement. These are realistic values in special education whereas
in regular education the scores are on average about twenty points higher on
the scale and the standard deviation is smaller in regular education.

Table 2: Descriptives.

Timepoint Grade Mean θ̂ SD

1 M4 36.19 17.41
2 E4 46.59 15.64
3 M5 52.09 16.00
4 E5 57.94 15.48
5 M6 64.93 14.05
6 E6 69.70 14.33
7 M7 74.07 13.94
8 E7 78.56 14.34
9 M8 82.73 15.03
10 E8 86.45 15.36
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Special education population distribution

As described in section 2, first the population distribution is estimated. Table
3 shows the correlations between the θ values, on the different time points in
the population distribution as it is estimated by MULTI. As can be seen the
correlations between the values are high. This shows that the scores on the
different time points can be used well for the prediction of future scores. The
correlations are highest between scores on adjacent time points. This is to be
expected because the scores on the different time points are assumed to measure
the same construct on a continuous scale. Scores on adjacent timepoints will
then be more alike than scores further apart on the scale. Using only these first
measures for the prediction of scores up to the tenth measurement will probably
produce uncertain predictions.

Table 3: Correlation matrix of the outcome distribution.
Timepoint 1 2 3 4 5 6 7 8 9 10

1 1.00 - - - - - - - - -
2 .939 1.00 - - - - - - - -
3 .884 .856 1.00 - - - - - - -
4 .833 .775 .938 1.00 - - - - - -
5 .820 .826 .849 .861 1.00 - - - - -
6 .772 .731 .880 .865 .893 1.00 - - - -
7 .764 .742 .864 .852 .865 .935 1.00 - - -
8 .769 .770 .876 .850 .859 .917 .944 1.00 - -
9 .682 .736 .861 .868 .860 .916 .927 .932 1.00 -
10 .668 .718 .863 .818 .865 .924 .909 .923 .968 1.00

Accuracy of predictions using sw

To be able to test the accuracy of the predictions, measurements on several
time points are deleted, and then predicted using the population growth model
described in section 2. First only the tenth measurement was deleted, and a
prediction was made using the information of the other available time points.
Then the tenth and the ninth time points were deleted, then the eighth to the
tenth, and so forth. Each time a prediction of the tenth measurement was
made using the information of the remaining time points. The predicted tenth
measurement can then be compared with the true tenth measurement point.

Table 4 shows the means, variances and standard deviations from the MULTI
predictions of the tenth measurement point. As can be seen in the table, the
earlier the predictions are started, the less information is used and the less
accurate the prediction becomes. What is striking is that the less information
is used, the more the predictions tend to underestimate θ̂ on average, where on
the most precise predictions θ̂ is slightly overestimated. The turning point is
between the predictions using 1 to 5 timepoints and 1 to 6 timepoints.
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Table 4: Means and SD’s for predictions of θ using sw.

Measurements Mean of Difference with Mean
used predictions true mean SD

Timepoint 1 to 9 86.690 0.240 3.221
Timepoint 1 to 8 86.728 0.278 3.988
Timepoint 1 to 7 86.717 0.267 4.302
Timepoint 1 to 6 86.759 0.309 4.634
Timepoint 1 to 5 86.475 0.025 5.935
Timepoint 1 to 4 86.443 -0.007 7.304
Timepoint 1 to 3 86.350 -0.100 7.527
Timepoint 1 to 2 85.295 -1.155 10.875
Only Timepoint 1 85.951 -0.499 11.613

Accuracy of predictions using suw

All given results so far, concern sw values, which is the ideal situation. In
this subsection it is investigated whether using suw for prediction results in a
difference in the prediction or not, and what the effect is on the accuracy of the
prediction.

Table 5 shows the summarized results of the predictions using weighted
and unweighted scores and the differences between them. As can be seen the
results using unweighted scores are very similar to the predictions using weighted
scores. The differences in the predicted means are over all slightly higher with
unweighted scores than in the weighted scores, except for the predictions using 1
to 8 time points and from 1 to 5 time points. However in all cases the difference
is very small, with .013 points of difference at the most in the prediction using 1
to 2 time points. Also in the standard deviations there is just a small difference
with at the most .038 points. What is striking here is that standard deviations
are more similar in the last two predictions, being the one with 1 to 2 time points
and the one with only 1 time point. Here the standard deviation differs only
.008 and .007 points whereas in the other predictions the difference is around
.045.

Table 5: Means and SD’s for predictions of θ using sw and suw.
Timepoints Mean mean SD
used (sw) (suw) (diff) (sw) (suw) (diff)

1 to 9 86.690 86.691 .001 3.221 3.262 .041
1 to 8 86.728 86.727 -.001 3.988 4.029 .041
1 to 7 86.717 86.719 .002 4.302 4.347 .045
1 to 6 86.759 86.763 .004 4.634 4.684 .050
1 to 5 86.475 86.469 -.006 5.935 5.979 .044
1 to 4 86.443 86.447 .004 7.304 7.336 .032
1 to 3 86.350 86.352 .002 7.527 7.565 .038
1 to 2 85.295 85.308 .013 10.875 10.883 .008
Only 1 85.951 85.954 .003 11.613 11.620 .007
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Accuracy of predictions using θ̂wml

In stead of creating test scores on each time point for each student, θ̂wml has
been calculated from the weighted scores of each time point. Using the same
growth model as in the previous simulations predictions for each tenth time
point have been made.

Table 6 shows the results of the analysis using θ̂wml as input. The results
show that using θ̂wml for predictions does not produce any flaws compared to
using the weighted and unweighted test scores. The mean standard deviations
are only slightly higher and the predictions are very similar to the results shown
in table 5.

Table 6: Means and SD’s for predictions of θ using θ̂wml.
Measurements Mean of Difference with Mean
used predictions true mean SD

Timepoint 1 to 9 86.596 .146 3.217
Timepoint 1 to 8 86.569 .119 4.004
Timepoint 1 to 7 86.556 .106 4.318
Timepoint 1 to 6 86.600 .150 4.649
Timepoint 1 to 5 86.322 -.217 5.943
Timepoint 1 to 4 86.318 -.132 7.314
Timepoint 1 to 3 86.241 -.209 7.532
Timepoint 1 to 2 85.342 -1.108 10.876
Only timepoint1 86.156 -.294 11.627

4.2 Reducing error using multiple population distribu-
tions

Regression to the mean

As seen in the analysis in the previous subsection, all given results give about
the same predictions when time points are taken away from the data. However,
the results also show that the accuracy in prediction decreases fast when using
less information. In all results it can be seen that the interval around the
mean prediction becomes very large and a lot of uncertainty has to be taken for
granted.

In the used prediction method the mean of the prior population distribution
on each time point is very important. A consequence of this is that when
predictions are made of measurements of more than one time point further in
time than the current measurement, the prediction will be drawn towards the
mean of the population. This means for pupils that score low relatively to the
mean, their predicted score will be overestimated, and for pupils that score high
relatively to the mean, their predictions will be underestimated. Because of the
large variance in the scores in special education this problem becomes severe,
especially for long term predictions.

A solution to the problem of regression to the mean may be in defining
multiple population distributions. So far, it is assumed that all pupils are part
of the same distribution. That means that the same model is used for the
prediction of scores of all pupils, irrespectively of their level of ability. The
predictions may be made more accurate when different distributions are assumed
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for pupils with different levels of ability, or with different growth speed. When
the distribution of scores in special education is split up into several smaller
distributions, the variance around each mean will be smaller, and the problem
of regression to the mean will be less severe.

Growth Mixture Modeling

In order to define multiple distributions, Growth Mixture Modeling (GMM) is
used. GMM assumes that the data consist of a mixture of multiple distributions
in stead of one multivariate normal distribution. In GMM a growth model is
fitted to the data, estimating an intercept and a slope for a defined number of
latent classes (Muthen, 2004).

The model used in this study can be written as Yt = i+ bt+ bt2 + e, where
Yt represents the outcome for the measurement at timepoint t, i represents the
intercept, bt represents the slope of time and e represents the error. Because
growth in math ability is likely to be slightly curved a quadratic term is added
to the model, represented by bt2. This model is estimated for each latent class
separately.

Figure 5: Growth Mixture Model

Figure 2 shows a graphical representation of the model. The loadings of the
measurements on the intercept are fixed at 1 in order to be able to calculate the
intercept, and the loadings of the measurements on the slope increasing from
0 to 9, representing a linear growth curve. The quadratic term is represented
by the ’q’, of which the loadings are fixed to the squares of 0 to 9 (Kline, 2005;
Muthen & Muthen, 1998-2007).

Estimating the number of latent classes

In order to decide the number of latent classes that should be defined, several
analyses have been performed. 4000 θ values have been simulated, having the
same properties as the data used in the analysis in the foregoing subsection. The
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growth model shown in Figure 5 has been fitted on the data, first on four classes,
then on three, and so forth. With each analysis a Vuong-Lo-Mendell-Rubin
Likelihood Ratio Test has been performed in order to decide whether defining
a model with that particular number of classes is a significant improvement on
the model with one class less (Muthen & Muthen, 1998-2007). Table 7 shows
the results of these tests. As can be seen, deciding on 2 latent classes is the best
solution on these data.

Table 7: Vuong-Lo-Mendell-Rubin Likelihood Ratio Test results

Number of H0 2 times log Difference in Mean SD p
latent loglikelihood likelihood number of
classes value difference parameters

2 vs 1 -139902.669 101.149 4 5.350 4.810 .000
3 vs 2 -139852.094 6.570 4 4.781 6.326 .268
4 vs 3 -139848.809 18.555 4 6.831 10.469 .106

Results per latent class

Table 8 shows the results of the GMM analysis with two latent classes. For
each class the estimated intercept, slope and quadratic term are shown as well
as the percentage of pupils that are classified to be part of that latent class.
The results show that 88,4% of the pupils are part of the second latent class.
On average these pupils start with a θ value of 39.13, and grow on average 8.11
points between measurements 1 and 2. However, the quadratic term shows that
the growth decreases each measurement with a quadratic term of .29. Most
pupils in special education will likely belong to this class. 11.6% of the pupils
belong to the first latent class, starting at a lower θ value, with an intercept of
11.62. On average they grow slightly faster than the largest group with a slope
of 10.07 between measurements 1 and 2, however this slope is also decreasing
faster with a quadratic term of -.44.

Table 8: Latent classes

Class Intercept Slope Quadratic term % of pupils

1 11.619 10.065 -0.441 11.6
2 39.125 8.110 -0.291 88.4

Figure 6 shows a graphical representation of the results shown in Table 8.
Both the estimated values and the observed values are represented in the graph.
As can be seen the estimated and the observed scores lie close to each other.
The quadratic growth curve is thus a good representation of the growth in the
data. Also the figure shows that despite the differences in slope and quadratic
term, the lines seem to be parallel. The line of the first latent class is only
slightly more curved.
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Figure 6: Estimated and observed means of both latent classes

Assigning pupils to distributions

Defining multiple distributions creates a new problem. In order to make an
individual prediction, a decision should be made for each pupil to which latent
class it belongs. The majority of the pupils will be classified to be part of
the second latent class and for pupils with scores around the means of both
distributions the decision will not be difficult. However it is more challenging
when dealing with pupils that score in between both distributions.

Table 9 shows the probabilities for each class by membership of each class.
The columns represent the actual latent classes, and rows represent the most
likely latent class. As can be seen in the table, a pupil that is classified to be
in class 1 has a probability of .26 that it should belong to class 2. This 26% is
likely the part of the distribution of whitch the results lie between both classes.
Because of the great amount of pupils in class 2, the probability of actually
belonging to class 1 is only 7 percent. For these pupils it is useful to take the
chances to belong to the other class into account.

Table 9: Probabilities for most likely class membership

Class 1 2

1 0.738 0.262
2 0.066 0.934
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Accuracy of predictions using multiple population distributions

Table 10 shows the means and standard deviations on all time points for both
latent classes. The results in the table show that the standard deviations remain
relatively large. They are only slightly smaller than the standard deviations of
the total distribution as it is seen in Table 2. This is not a surprise since the total
distribution is split up into only two parts, with one part representing 88.4% of
the pupils. However, the problem of regression to the mean was the largest with
very low θ values, deviating strongly from the mean of the population, because
the number of pupils with very low scores was relatively large. Because the most
extreme deviating pupils will be part of a class with a lower mean, the problem
of regression to the mean will be smaller, and a more accurate prediction can
be made for each pupil.

Table 10: Mean scores and standard deviations on all time points for both latent
classes

Class 1 Class 2
Time Mean SD Mean SD
point

M4 12.188 15.23 39.531 15.09
E4 25.561 13.83 49.417 13.64
M5 29.829 14.08 54.988 13.61
E5 37.354 14.02 60.636 13.28
M6 46.208 12.64 67.493 12.38
E6 50.759 12.76 72.341 12.54
M7 55.759 12.41 76.574 12.24
E7 59.517 12.84 81.195 12.43
M8 63.735 13.51 85.267 13.17
E8 67.195 13.90 89.031 13.55

5 Discussion and conclusion

The aim of this study was to improve the accuracy of measurement and pre-
dictions in special education. First a solution to the problem of inaccurate and
uninformative measurement was presented within the framework of Computer-
ized Adaptive Testing (CAT). Several applications were tested in order to find
a CAT method that fits the pupils in special education. The results show that
using CAT in special education would be resonable. With low θ values both
tested methods behave properly, giving accurate θ values and small confidence
intervals. Also a good estimation can be made in a short test, which has an
advantage for children in special education. However, as in the normal LVS
tests, CAT has its limitations. The selection of items can be made more broad,
but then still it has to fit ones true θ value. If the true θ does not fit the item
bank, accurate measurement is still difficult.

With respect to the accuracy in predictions in special education, a dataset
is created from which measurement points were deleted. A distribution was
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estimated and used for the prediction of the deleted tenth time point. In general
the results have shown that the accuracy of the prediction decreases fast when
more time points are deleted from the data. The estimations of θ on the tenth
measurement occasions are on average close to the real mean of the data, but
the standard deviation is on average very large. The simulation was done for
several situations, including weighted scores sw, unweighted scores suw and
Warm estimations θ̂wml. The results have shown that using suw and θ̂wml as
input does not result in any flaws in the predictions compared to input using sw.
The difference with the predictions using sw are only small and also the standard
deviation increases only little. This is a useful result in the practice of eduction,
because it means that relatively easy programs can be used as productively
as sophisticated and complex programs including the measurement model and
all item parameters. However these results have to be interpreted with care.
The data used for these simulations are created under the OPLM model. The
results of these simulations can not necessarily be generalized to tests that are
calibrated under another model. Also in the the simulations, the test results
were simulated such that the test fitted the pupil’s ability level well. In practice
this is not alway the case. These simulations can be repeated on real data, in
order to investigate the accuracy of predictions in less optimal circumstances.

In long term predictions the problem of regression to the mean occurred,
making the predictions inaccurate. To make the predictions more accurate a
Growth Mixture Model is fitted to the data to search for underlying latent
classes. The results show that the total distribution can be split up into two
groups with different intercepts and growth curves. The largest part of the
population of special eduction pupils are part of the same group, but a small
group with scores far beneath the mean of the population form a different group.
When these groups are taken into account when predicting pupils’ progress the
accuracy in prediction can be improved, especially for the pupils with low scores.
However the given results are still exploratory. The model has to be tested on
real data in order to check whether this structrure truly exists in the general
population of special education pupils in the Netherlands. To investigate this,
further study on this particular topic is needed.
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